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Figure 1: (Ref. [12, 14]) The extrapolation of )(f} to finite baryon chemical potential on a lattice of size
48% x 12.

1. Analytic continuation and the equation of state

The equation of state at vanishing baryon chemical potential up is known from lattice QCD
simulations in the continuum limit (Refs. [1-3]) up to high enough temperatures to be matched to
perturbative results (Refs. [4-6]).

To extend the equation of state to finite chemical potentials it is common to use a Taylor
expansion in the chemical potentials for the pressure:

A_ P A AN 1 gs NN
b= 13 (T fis. fis) = Z e (D Al (1)
ijk
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Xﬁs = & (2)
Yoo 0 apdifis
— Hi

and the dimensionless chemical potentials are fi; = It is possible to include the charge chemical

T
potential up in the expansion, however in this proceedings uop = 0 leading to )(IQ =0.5 /\(f . The
influence of tuning this relation to /\/IQ =04 /\/F is shown to be small in Ref. [7]. The expansion
coeflicients )(g.s are interesting lattice observables with a variety of applications. They are known
up to the fourth order derivatives in the continuum limit (Refs. [8—11]) and up to 8th order at finite
lattice spacing (Refs. [11-13]).

If one computes the Taylor expansion of XF up to the third order and to ug/T 2 (2 —2.5) it
shows undesirable properties for temperatures slightly above the crossover transition as shown in
Figure 1. In Ref. [14] this behavior has been reproduced in a simple toy model for truncation of the

Taylor expansion but vanishes for the infinite Taylor series.

2. Rescaling and expansion - the analysis

In Ref. [14] we introduced a resummed extrapolation method that avoids the undesired behavior
of the equation of state discussed above for the case of us = up = 0. We now aim to improve
this scheme to achieve results which match the overall strangeness neutrality present in heavy ion
collision experiments. This means enforcing the conditions pp = 0 and )(f = 0, yielding a relation
between us and up:

dup X; .
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Figure 2: (Ref. [7]) Left: The total derivative cf on the strangeness neutral line from our imaginary
chemical potential simulations. The data points at fip = 0 show the second derivative dz—p Right: The same

d/l%;
observables, with the temperature rescaled by a factor 1 + K/:l%.

On this line, total derivatives with respect to the baryochemical potential read

d 8 dps 8 8 xP oo
dip  Opp  dapdps O xS Ofis

The total derivatives of the pressure on the strangeness neutral line we denote by:

d"p(T, fip)
dif  |uo=0
xP=0

cB(T, ig) =

We denote the Stefan-Boltzmann limit of those derivatives by g(ﬁ p). In the special case of the
net baryon density it does not change compared to the case of us = o = 0:

/YBS
A(Tpp)=xf - X7 =x
Xy ~——

=0

however, higher order derivatives differ from the y25 and include additional terms which have to
be computed.

The resummation scheme introduced in Ref. [14] is based on the approximate shifting of cf
with imaginary pp for a fixed temperature as shown in figure 2.

The cause of this shifting behavior is not clear. It could suggest an approximate scaling variable
in the equation of state. It could be related to the critical scaling in the chiral limit. If the universal
contribution to cf is large, the curves are expected to approximately keep their shape. Furthermore,
this observation is consistent with the fits to the observation of constant width of the transition
reported in reference [15]. Regardless, the general idea of the resummation method works, even if
the shape of the curves is changing. However, the fast convergence is caused by the vanishing of
higher order contributions which means, that the shape of the curves is kept.

To further improve the scheme, we need to address the fact that our extrapolation method will
fail at high temperatures. To avoid this we introduced a correction by dividing cf by its Stefan-
Boltzmann limit. As can be seen in figure 3 the approximate shift is still there after this correction.
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Figure 3: (Ref. [7]) Illustration of the measurement of our proxy II(7, fig, N;) = B e

To make use of it we measure the difference between the curves at fip = 0 and at imaginary fip as
also illustrated in figure 3. To measure the shift we need to fit a spline function defined at various
points through our data points. This allows us to define the proxy:

T(T, pg,N) - T

I(T, fig, N;) = ) , (3)
Thp
which we can expand as
. . . 1 - -
(T fip, Ne) = 3+ A0 + A0 + — (o + B4 + v i) “)
T

The /If coefficients will be used to calculate various quantities for the equation of state.

Our results are based on lattice QCD simulations of 2+1+1 flavours of dynamical quarks with
the tree-level Symanzik improved gauge action and four times stout smeared staggered fermions.
The simulation is performed on a LCP which is set by pion and kaon mass and at (ng) = 0. We
use four different lattice sizes: 323 x 8, 40% x 10, 483 x 12 and 643 x 16 to estimate the continuum
limit. For the imaginary chemical potentials we use the values ”T—B = i%r with j =0,3,4,5,(5.5),6
and 6.5, where the value 5.5 is only available on the 483 x 12-lattice.

To present a comprehensive analysis on the systematic error we use 3 different sets of spline
node points at up=0 and 2 different sets of spline node points at finite imaginary ug. To set the
scale, we use two methods: wg or f, based scale setting. Additionally, we consider 2 different
chemical potential ranges in the global fit: fip < 5.5 or fip < 6.5, and we use 2 functions for the
chemical potential dependence of the global fit: linear or parabola. We also include or not the
coarsest lattice, N; = 8, in the continuum extrapolation. In total, we perform 96 fits. We weigh
every result with a Q > 0.01 uniformly to take into account the quality of the fits.
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Figure 4: (Ref. [7]) The expansion results for the shift proxy of cf from equation 4.
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Figure 5: (Ref. [7]) Results for ’}—’3 and % at various real chemical potentials along the strangeness neutral
line.

The results of this analysis are shown in figure 4. We make a fit to calculate derivatives and
constrain it with results from the hadron resonance gas at low temperature, which are also shown in
figure 4 and smoothly fit to our data points.

Now we can compute several observables for the equation of state. As an example we show
np

7% and £ in figure 5.

3. Beyond strangeness neutrality

In addition to having results along the strangeness neutral line, we also investigate how the
equation of state can be extrapolated to small values of the strangeness density, slightly off the
)(f = 0 line. Therefore we need to repeat the analysis discussed in the previous section for two more
observables, that allow us access to the strangeness derivatives as well as the mixed derivatives for
[ip and [is. We are using the quantities Xﬁq and Z—Z A58 ABS

leading to the lambda coefficients and

which are shown in figure 6.
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Figure 6: (Ref. [7]) Results of the shift analysis for XZS and I’j—z

Let us denote the value of the dimensionless strange quark chemical potential that solves )(f =0
at fixed T and fip as [ig. Still considering a fixed fip and T, but changing fis slightly from the
strangeness neutral choice by a small amount:

Afis = fis — fig, &)

the dimensionless strangeness and baryon densities become:
X1 (fis) = x5 (fi§)Afis (6)
X1 (fis) ~ X7 (A5) + x> (05)ALs, (7

where we only kept the linear leading order terms in Afis. Now, we will express thermodynamic
quantities in terms of the strangeness-to-baryon fraction:

X7 X5 (B5)Afis
T UB T _BianAn BS %\’ ®)
X1 X1 (lus)A,uS + X11 (:us)
Inverting this equation we get:
. REP ()
Ajis = — ©)

Xzs(ﬁg) - RXUS(ﬁg) ‘
This quantity is shown for fig = 2 as a function of temperature for various values of R in figure 7.
Substituting Eq.(9) into Eq.(7) we obtain (to leading order in R):

T R) X (T s R=0)
XE(T, ap, R =0) )(f(T,,&B,R:O)’

(10)

where all quantities on the right hand side are along the strangeness neutral line. We show the
results of a leading order (in R) extrapolation of the dimensionless baryon density as a function of
T at ip = 2 for several values of R in the left hand side of figure 8.

At the strangeness neutral line the O(R) correction of the pressure vanishes. The leading order

correction gives:
PP, N 1d%
p(T’ MB, R) ~ P(T, MB, R) + =

R (T, i) R%, (11)
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Figure 7: (Ref. [7]) Shift of the strangeness chemical potential as a function of the temperature at jip = 2,
at various values of the strangeness-to-baryon ratio R = Xf/ X]B. The solid lines show the exact solution
of 0.4 XlB = XIS in the hadron resonance (HRG) model, while the dashed lines show the evaluation of the
approximation of Eq. (9) in the HRG model.
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Figure 8: (Ref. [7]) Left: The dimensionless baryon density as a function of the temperature at fip = 2, for
various values of the strangeness-to-baryon ratio R = Xls / Xf. Right: The leading order Taylor coefficient
of the pressure in the strangeness-to-baryon ratio R on the strangeness neutral line as a function of the
temperature for several fixed values of f[ip.

where
&p x (T, ig, R = 0)

TRz - - .
dR® [ x5(T, fip, R = 0) = Rx1155(T, i, R = 0)]

We show the results of a leading order (in R) extrapolation of the dimensionless pressure as a
function of T at fip = 2 for several values of R in the right hand side of figure 8.

12)

4. Cross-check

In Ref. [16] we present a study of the equation of state of a quark gluon plasma at high
temperatures and densities from direct lattice simulations by employing reweighting techniques.
While large lattices as discussed throughout the rest of this proceedings are currently out of reach,
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Figure 9: (Ref. [16]) Comparison of different extrapolation methods for /iy as defined in equation (13) with
direct simulations. The top panel shows the results of the resummation schemes without Stefan-Boltzmann
correction (Ref. [14]) in violet and with Stefan-Boltzmann correction (Ref. [7]) in orange as discussed in this
proceedings. The bottom panel shows the results from the Taylor expansion either directly from the ug = 0
data or from imaginary chemical potential. A spline interpolation of the direct results is included to lead the
eye.

we can test several extrapolation techniques with high precision on a 16 x 8 lattice with pg = 0
(leading to us = u3_3). We execute each analysis on this lattice ensemble and show the results in
figure 9 for the observable

13)

. R dp 1 olnZ(T, [
AL(T, fip) = ~— = ( ( 'uB)) :
”S:O

dig ~ 3(LT) dfiq

In the top panel we present the result for the resummation methods discussed in this proceedings.
We compare the analysis from Ref. [14] without the Stefan-Boltzmann correction with the one
from Ref. [7] where the correction is included. As expected the addition of the Stefan-Boltzmann
correction allows the fast convergence at high temperatures and the extrapolated data agrees with
the direct simulation within errors. In the bottom panel we compare Taylor expansion results to
various order. We use two different methods to determine the Taylor expansion: On the one hand
we compute it directly from the up = 0 data. On the other hand we can use the imaginary up data
to measure the Taylor coefficients. For this specific setup the later method results in considerably
larger errors. We assume this is related to the small volume. The errors obtained when using
the imaginary potential are to large for a valuable comparison. For the sufficiently small errors
the Taylor extrapolation from u = 0 agrees with the direct simulation if the NNNLO (up to ﬁ%)
term is included. This means that about one order more of the expansion is required than for the
resummation method where the expansion agrees with the direct method if A4 is included which
only requires the ﬁ% term.
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