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We calculate a resummed equation of state with lattice QCD simulations at imaginary chemical

potentials, generalizing the scheme introduced in our previous work to the case of non-zero µS ,

and focusing on the line of strangeness neutrality. We present results up to µB/T ≤ 3.5 on the

strangeness neutral line 〈S〉 = 0 in the temperature range 130 MeV≤ T ≤ 280 MeV. We also

extrapolate the finite baryon density equation of state to small non-zero values of the strangeness-

to-baryon ratio R = 〈S〉/〈B〉. We perform a continuum extrapolation using lattice simulations

of the 4stout-improved staggered action with 8, 10, 12 and 16 time slices. Finally we test the

resummation scheme in a small volume by comparison with direct simulations.
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Figure 1: (Ref. [12, 14]) The extrapolation of χB
1

to finite baryon chemical potential on a lattice of size
48

3 × 12.

1. Analytic continuation and the equation of state

The equation of state at vanishing baryon chemical potential µB is known from lattice QCD

simulations in the continuum limit (Refs. [1–3]) up to high enough temperatures to be matched to

perturbative results (Refs. [4–6]).

To extend the equation of state to finite chemical potentials it is common to use a Taylor

expansion in the chemical potentials for the pressure:

p̂ =
p

T4
(T, µ̂B, µ̂S) =

∑

i jk

1

i! j!
χBSi, j (T) µ̂iB µ̂

j

S
, (1)

with

χBSij =
∂i+j p̂

∂i µ̂B∂ j µ̂S
(2)

and the dimensionless chemical potentials are µ̂i =
µi

T
. It is possible to include the charge chemical

potential µQ in the expansion, however in this proceedings µQ = 0 leading to χQ
1
= 0.5χB

1
. The

influence of tuning this relation to χQ
1
= 0.4χB

1
is shown to be small in Ref. [7]. The expansion

coefficients χBS
ij

are interesting lattice observables with a variety of applications. They are known

up to the fourth order derivatives in the continuum limit (Refs. [8–11]) and up to 8th order at finite

lattice spacing (Refs. [11–13]).

If one computes the Taylor expansion of χB
1

up to the third order and to µB/T ' (2 − 2.5) it

shows undesirable properties for temperatures slightly above the crossover transition as shown in

Figure 1. In Ref. [14] this behavior has been reproduced in a simple toy model for truncation of the

Taylor expansion but vanishes for the infinite Taylor series.

2. Rescaling and expansion - the analysis

In Ref. [14] we introduced a resummed extrapolation method that avoids the undesired behavior

of the equation of state discussed above for the case of µS = µQ = 0. We now aim to improve

this scheme to achieve results which match the overall strangeness neutrality present in heavy ion

collision experiments. This means enforcing the conditions µQ = 0 and χS
1
= 0, yielding a relation

between µS and µB:
dµS

dµB
= −
χBS

11

χS
2

.

2
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Figure 4: (Ref. [7]) The expansion results for the shift proxy of cB
1

from equation 4.
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Figure 5: (Ref. [7]) Results for nB

T 3
and p

T 4
at various real chemical potentials along the strangeness neutral

line.

The results of this analysis are shown in figure 4. We make a fit to calculate derivatives and

constrain it with results from the hadron resonance gas at low temperature, which are also shown in

figure 4 and smoothly fit to our data points.

Now we can compute several observables for the equation of state. As an example we show
nB

T 3
and p

T 4
in figure 5.

3. Beyond strangeness neutrality

In addition to having results along the strangeness neutral line, we also investigate how the

equation of state can be extrapolated to small values of the strangeness density, slightly off the

χS
1
= 0 line. Therefore we need to repeat the analysis discussed in the previous section for two more

observables, that allow us access to the strangeness derivatives as well as the mixed derivatives for

µ̂B and µ̂S . We are using the quantities χS
2

and µS

µB
leading to the lambda coefficients λSS and λBS

which are shown in figure 6.
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Figure 6: (Ref. [7]) Results of the shift analysis for χS
2

and µS

µB
.

Let us denote the value of the dimensionless strange quark chemical potential that solves χS
1
= 0

at fixed T and µ̂B as µ̂?
S
. Still considering a fixed µ̂B and T , but changing µ̂S slightly from the

strangeness neutral choice by a small amount:

∆µ̂S ≡ µ̂S − µ̂?S, (5)

the dimensionless strangeness and baryon densities become:

χS
1
(µ̂S) ≈ χ

S
2
(µ̂?S)∆µ̂S (6)

χB
1
(µ̂S) ≈ χ

B
1
(µ̂?S) + χ

BS
11

(µ̂?S)∆µ̂S, (7)

where we only kept the linear leading order terms in ∆µ̂S . Now, we will express thermodynamic

quantities in terms of the strangeness-to-baryon fraction:

R =
χS

1

χB
1

=

χS
2
(µ̂?

S
)∆µ̂S

χB
1
(µ̂?

S
)∆µ̂S + χ

BS
11

(µ̂?
S
)
. (8)

Inverting this equation we get:

∆µ̂S =
R χ̂B

1
(µ̂?

S
)

χS
2
(µ̂?

S
) − RχBS

11
(µ̂?

S
)
. (9)

This quantity is shown for µ̂B = 2 as a function of temperature for various values of R in figure 7.

Substituting Eq.(9) into Eq.(7) we obtain (to leading order in R):

χB
1
(T, µ̂B, R)

χB
1
(T, µ̂B, R = 0)

≈ 1 + R
χBS

11
(T, µ̂B, R = 0)

χS
2
(T, µ̂B, R = 0)

, (10)

where all quantities on the right hand side are along the strangeness neutral line. We show the

results of a leading order (in R) extrapolation of the dimensionless baryon density as a function of

T at µ̂B = 2 for several values of R in the left hand side of figure 8.

At the strangeness neutral line the O(R) correction of the pressure vanishes. The leading order

correction gives:

p̂(T, µ̂B, R) ≈ p̂(T, µ̂B, R) +
1

2

d
2 p̂

dR2
(T, µ̂B) R2, (11)

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
5
0

Resummed lattice QCD equation of state at finite baryon density Jana N. Guenther

-0.4

-0.2

 0

 0.2

 0.4

 120  140  160  180  200  220  240  260  280

∆
µ

S
 (

µ
B
/T

 =
 2

, 
T

)

T [MeV]

R = 0.50
R = 0.25
R = 0.10
R = -0.10
R = -0.25
R = -0.50

Figure 7: (Ref. [7]) Shift of the strangeness chemical potential as a function of the temperature at µ̂B = 2,
at various values of the strangeness-to-baryon ratio R = χS

1
/χB

1
. The solid lines show the exact solution

of 0.4χB
1
= χS

1
in the hadron resonance (HRG) model, while the dashed lines show the evaluation of the

approximation of Eq. (9) in the HRG model.
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Figure 8: (Ref. [7]) Left: The dimensionless baryon density as a function of the temperature at µ̂B = 2, for
various values of the strangeness-to-baryon ratio R = χS

1
/χB

1
. Right: The leading order Taylor coefficient

of the pressure in the strangeness-to-baryon ratio R on the strangeness neutral line as a function of the
temperature for several fixed values of µ̂B.

where
d

2 p̂

dR2
=

χB
1
(T, µ̂B, R = 0)

[

χS
2
(T, µ̂B, R = 0) − Rχ11

BS(T, µ̂B, R = 0)
]2
. (12)

We show the results of a leading order (in R) extrapolation of the dimensionless pressure as a

function of T at µ̂B = 2 for several values of R in the right hand side of figure 8.

4. Cross-check

In Ref. [16] we present a study of the equation of state of a quark gluon plasma at high

temperatures and densities from direct lattice simulations by employing reweighting techniques.

While large lattices as discussed throughout the rest of this proceedings are currently out of reach,
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