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Summary. We present a new phase-field formulation for the formation and propa-
gation of a compaction band in high-porosity rocks. Novel features of the proposed
formulation include (a) the effects of inertia on the rate of development of com-
paction bands, and (b) degradation mechanisms in tension, compression, and shear
appropriate for dynamic strain localization problems where disturbances propagate
in time in a wave-like fashion to induce micro-cracking, grain crushing, and frictional
grain rearrangement in the rock. We also present a robust numerical technique to
handle the spatiotemporal formation and evolution of the compaction band. We val-
idate the model by simulating a benchmark problem involving a V-shape notched
cylindrical specimen of Bentheim sandstone tested in conventional triaxial compres-
sion. The model is shown to reproduce different geometric styles of deformation
that include pure compaction, shear-enhanced compaction, and a combination of
pure and shear-enhanced compaction, where the combination mechanism consists of
a straight primary compaction band surrounded by secondary chevron bands.

Keywords. compaction band, dynamic strain localization, grain crushing,
phase-field, shear band

1 Introduction

Localized deformation bands, including shear bands, dilation bands, com-
paction bands, and mixed-mode bands, are often observed in porous geologic
media both in the laboratory and in the field [55]. They typically occur in
sandstones [12, 86], limestones [16, 61], carbonates [14, 39, 98], and clay rocks
(62, 64]. Compaction bands are narrow zones of intense deformation char-
acterized by little or no shear offset (see Figures 1). Compaction bands are
often oriented perpendicular to the direction of the maximum principal stress
[33, 54, 84], but they can also be enhanced by shearing and develop obliquely
with respect to the maximum principal stress [49, 58, 70]. Field observations
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and laboratory tests in porous rocks indicate that the occurrence of com-
paction bands is usually accompanied by significant permeability reduction,
which plays a critical role in prospecting hydrocarbon reservoirs, CO4 storage,
and hazardous waste disposal [59, 87, 92, 100].

Fig. 1. Geological evidences of (a) shear-enhanced compaction bands [54] and (b)
pure compaction bands [49] from in-situ field-scale observations. Abbreviations:
SECB = shear-enhanced compaction band; PCB = pure compaction band.

Over the last decades, compaction bands in high-porosity rocks have been
the subject of extensive experimental studies [1, 12, 14, 16, 61, 69, 75, 107,
110], field investigations [33, 54, 55, 84], and theoretical and numerical analy-
ses [11, 22, 66, 88, 90, 102]. Insights into the origin of this intriguing deforma-
tion style in rocks have improved significantly through laboratory testing and
field observations. The incipience of a compaction band is well captured by
most theoretical and numerical models, but its evolution beyond the initiation
stage has continued to challenge the theoretical and computational modelers.
Many conventional finite element models lack a characteristic length scale that
inevitably results in spurious mesh dependence. Moreover, recent experimental
observations suggest that the formation of compaction bands is characterized
by two concurrent dissipation mechanisms, namely, plastic deformation and
brittle/ductile fracture. In most models, only plastic dissipation is considered
[2, 23, 42-44, 77]. Discrete element methods (DEM) have been used to model
brittle/ductile fracture as it relates to the development of a compaction band
[32, 48, 78, 85, 104, 113, 116], but they are only appropriate for grain-scale
simulations and have difficulty reproducing macroscopic deformation styles
observed in the field. Meshless methods such as the smoothed particle hydro-
dynamics (SPH) have also been employed to capture the kinematics of shear
bands [45, 46], but not that of compaction bands.

Regularized energy-based numerical methods such as the gradient-enhanced
method and the phase-field approach [28, 56, 64, 80, 81, 112] have offered
appealing alternatives for simulating the failure processes in solid materials
[3, 4, 47, 105, 106, 114, 119]. In particular, the phase-field approach possesses
distinct advantages over other numerical techniques due to its standard vari-
ational form [56, 80] that allows propagation of the discontinuity without re-
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quiring a special band tracing technique [20, 21, 24, 71, 72]. In the phase-field
approach, the discontinuous field such as a fracture or a deformation band is
regularized by a more diffuse damage zone through a phase-field variable d and
an internal length scale ¢, where the latter can also serve to bridge the gap be-
tween the microscopic and macroscopic properties of the material. Moreover,
in the phase-field approach the discontinuous field can be propagated with-
out recourse to ad hoc criteria. Because of these advantages, the phase-field
approach has now been used to address many discontinuous problems in solid
mechanics, as well as to model the failure behavior of solid materials including
concrete [34, 52|, rocks [30, 51, 51, 73, 129], and composites [89, 123].

Early works on phase-field modeling have focused mainly on the simulation
of brittle failure. In 2015, Ambati et al. [5] published one of the first articles
to address ductile failure within the phase-field framework. They initially de-
veloped the framework at infinitesimal strains, but later extended it to finite
strains [6, 10] and combined the formulation with gradient plasticity-damage
theory [83]. Borden et al. [19] proposed a phase-field model to study the effects
of plastic degradation function on ductile fracture. Meanwhile, several phase-
field models with elastoplasticity were also proposed to simulate the brittle-
to-ductile failure phenomena [37, 79, 82, 115, 117] and shear band formation
[9, 118, 122, 124]. In these aforementioned works, only metallic materials were
considered along with deviatoric plasticity [25].

More recent applications of the phase-field theory have focused on the
capture of localized deformation in geologic materials. Choo and co-workers
[35, 36, 50, 51] considered the phase-field evolution of discontinuous media
with pressure-sensitive plasticity to capture a wide range of failure modes
from brittle fracture to ductile flow. Wang et al. [111] derived the driving force
characterizing the phase-field evolution based on the Mohr—Coulomb criterion
for pressure-sensitive materials. You et al. [121] considered the plastic work to
develop a modified phase-field damage model simulating the brittle-to-ductile
failure transition. Hu et al. [60] proposed a hybrid phase-field model based
on an implicit material point method for brittle-ductile fracture transition in
geomaterials. In addition, the phase-field approach has also been coupled with
fluid flow in recent works [103, 120]. However, most of the above works have
focused only on the fracture and shear band formation in geologic media, and
none has addressed the problem of compaction bands.

Most recently, Ip and Borja [64] proposed a phase-field approach for com-
paction band formation and propagation in rocks employing breakage me-
chanics and critical state plasticity. Their approach involves the solution of
an elliptic partial differential equation (PDE) in the context of quasi-static
loading and rate-independent elastoplasticity. They introduced a degradation
function for deformation in compaction and shear to represent pore collapse
mechanisms in both the elastic and plastic responses. We pick up from their
work and present an alternative phase-field approach incorporating dynamic
effects for compaction band formation and propagation in high-porosity rocks.
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Dynamic strain localization involves the solution of a hyperbolic PDE in
which the disturbances propagate in time in a wave-like fashion. The stress
points within the problem domain could experience both compression and
extension as the disturbance propagates, even if the overall response of the
rock is dominated by compressive deformation, making the dynamic solution
distinct from a quasi-static solution. We thus introduce separate degradation
functions in compression, extension, and shear to capture the various deforma-
tion mechanisms leading to the formation and propagation of a deformation
band. We show that the proposed model is equally capable of simulating dif-
ferent patterns and geometric styles of localized deformation, including those
not previously observed in quasi-static simulations of compaction bands.

The structure of presentation is as follows. Section 2 presents the proposed
phase-field formulation. Section 3 develops the numerical solution strategy.
Section 4 solves a benchmark example of compaction band formation in a
sandstone, while Section 5 discusses several other numerical examples. Finally,
Section 6 presents the conclusions derived from this work.

2 Phase-field formulation

This section presents the proposed phase-field theory for a deformation band
in general and compaction band in particular. We first formulate the equations
characterizing the geometry and evolution of the band. Then, we present a
constitutive theory appropriate for characterizing the band formation and
propagation.

2.1 Phase-field characterization of a deformation band

We consider an arbitrary solid body B C R™ in the reference configuration,
where n denotes the spatial dimension. We assume that B contains an internal
discontinuity I" that is approximated by the phase field variable d(x,t) €
[0,1]. Figures 2(a) and 2(b) depict such a prototype discontinuity I in the
form of a deformation band with a diffuse topology and having a thickness of
2¢.

In the phase-field approach [80, 81, 118], the surface of discontinuity may
include fractures (strong discontinuities) and deformation bands (weak dis-
continuities), and is represented by the expression

FB:/FdF:/By(d,Vd)dV, (1)

where v (d, Vd) denotes the discontinuous surface density function, whose
distribution is given in terms of an internal characteristic length ¢ as

1, l 2
d,Vd) = —=d* + -|Vd|~. 2
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Fig. 2. Schematic diagrams of deformation bands: (a) sharp topology of localization
zones and (b) the relevant phase-field regularized deformation bands. Abbreviations:
CB = pure compaction band; SECB = shear-enhanced compaction band.

Let ¥ (g, @) be the total free energy function in B, where € is the infinitesi-
mal strain tensor and « is the vector of strain-like plastic internal variables. In
the presence of a deformation band, the regularized form of ¥, denoted as ¥y,
may be developed by introducing the phase-field variable d and its gradient
Vd as follows (see [28])

¥ (e,,d,Vd) =, (e, a,d) + ¥; (d, Vd)
= / Yo (e, a,d)dV + / ¥ (d,Vd)dV, (3)
B B

where ¥, and ¥; are the total free energies “outside” and “inside” the band,
respectively,

and G, is the fracture energy release rate associated with plastic dissipation
and band “toughness” [57, 91]. The free energy ¥; (d, Vd) represents the en-
ergy that is released as a result of the formation of the deformation band,
while ¥, (g, a, d) is the energy associated with the deformation of the body
as a whole.

Based on the assumption of elastic energy depending only on the elastic
strains and the plastic energy depending only on the plastic strains [40, 76,
130], the free energy density v, can be decomposed into the following form:

Yo (s,a,d) =1, (567d)—|—1/)g (Epvavd) ) (5)

where ¢ and ¢? denote the elastic and plastic parts of 1),, respectively. For
isothermal process, the second law of thermodynamics can then be stated in
the form of the Clausius-Planck inequality [99, 109] as

oe—9L>0. (6)
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The dissipation function can then be written as
DP =4 +4; > 0. (7)

The first term on the right-hand side of (7) represents the plastic dis-
sipation in the bulk volume whereas the second term represents the plastic
dissipation due to the formation and propagation of the deformation band.

2.2 Driving force

In the phase-field formulation, the energetic forces of the constitutive model
drive the evolution of the phase-field variable [5, 82, 111, 112]. For quasi-
brittle materials, the energy balance can be expressed by setting the rate of
band deformation as a function of the power of the driving force [82, 111].

We first quantify the geometry and evolution of the deformation band as
follows. Taking the time-derivative of (1) yields

. 1 . .
FB(d):/ﬁdV:z/dddVJré/VdVddV. (8)
B B B

Noting that . . )
Vd-Vd=V-(Vdd) - (V*d)d, 9)

we can insert this last equation into (8) and use the divergence theorem to

obtain )
I'g(d) = Z/(d— CV2d)ddV +¢ | (Vd-n)ddA. (10)
B B
In the phase-field formulation, the boundary condition on the phase-field
variable takes the form
Vd-n=0 ondB. (11)

Thus, the evolution of the deformation band simplifies to
] 1 .
Fip(d) = ; / (d— 2V2d)ddV . (12)
B

‘We next assume that fB is induced by some net driving force of the form
given by (see [82])

I'p= %/ [H (e,eP, a,d) — R] - ddV (13)
B

Here, H (g, e?, at, d) denotes a driving force responsible for the localiza-
tion of deformation, while R is some viscous resistance of the form

R =(d, (14)

where ( is a viscosity parameter. The strong form of the phase-field evolution
for localized failure at any material point can then be written as
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Cd=H(e,e”,a,d) — (d — 1?°V?d) in B, (15)

subject to the boundary condition given in (11).
Due to the irreversibility of the deformation process, we need to impose
the following constraints on the theory:

d(x,t) € 0,1]
d(xz,t)>0 . (16)
He (e,eP, a,d) > 0

It is worth noting that in high-porosity rocks, the localized failure driving
force H®? is related to both the elastic energetic and plastic deformation states,
whereas the viscous resistance R simply depends on the time derivative of the
phase-field variable d.

2.3 Degradation functions

Because the solutions of hyperbolic equations are “wave-like,” degradation
functions in both compressive and dilative types of deformation must be in-
troduced to accommodate for damage in both modes even if the expected
deformation is mostly compressive. In this work, we utilize the classic degra-
dation functions for opening-mode fractures and enhance the description fur-
ther by introducing another degradation function based on crushing potential
for compressive types of deformation.

The classic degradation functions for opening-mode fractures are of the
following form: For the elastic free energy, we assume small deformation and
isothermal condition and decompose the total strain tensor € additively into
an elastic part € and a plastic part €P. In rate form, we have

& =&+ &b (17)

We evaluate the von Mises equivalent plastic strain as

5 [t
e, = \/g/ VeP : ebdr, (18)
0

and define
P
eq

P
eq,crit

(19)

T =

€

as the normalized cumulative plastic strain, which attains a value 1.0 when
the von Mises strain reaches a threshold value 5§q,crit~ We incorporate r into
the Helmholtz free energy as

¥ =5 (e, d) + 98 (7, e, d) + ¢ (d, Vd) (20)

which leads to elastoplastic coupling on the elastic free energy.
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We consider an elastic degradation function of the form

m

gi(d,r)=(1-d*", (21)

where m € {1,2,3,...} is an exponent that controls the ‘speed’ of localized
failure mechanism [5]. In this work, we take m = 1. We also consider the
following decomposition of the elastic strain tensor into volumetric and devi-
atoric parts,

g€ = 6501 + Efiev ’ (22)

where €, and €§., are the volumetric and deviatoric parts, respectively.
Taking the purely dilatational part wsjl, purely compressive part ¥¢ |, and

mixed tensile/compressive-shear deformation part v, into consideration, the
stored elastic energy density is then written as (see [7, 73]).

VS (e,r,d) = ik (€% r,d) + Ve, (% 1, d) + 05, (€°,7,d) | (23)
where
Yeh (e¢,r,d) = g1 (d, ) I; trt(e€)?
¢§ev (667 ’r7 d) = gl (d’ r) Heegev : Egev ? (24)

e e

Ui (5, dr) = ga(d, 10Tt ()2 4 (1 0) 7t ()2

vol

K¢ and p°© are the elastic bulk and shear moduli of the intact material,
trt(e) = max {0,tr(e)} and tr~(e) = min {0,tr(e)} are adopted to prevent
the interpenetration of failure surfaces in the compressive regions.

The parameter 6 € [0,1] in (24) is the crushing potential introduced by
Ip and Borja [64] to degrade the elastic bulk modulus in compression. This
parameter works in such a way that as d — 1, the degraded elastic bulk
modulus approaches a nonzero value (1 — 6)K°. On the other hand, we note
that the elastic bulk modulus in opening-mode fracture approaches zero as
d — 1. The Cauchy stress tensor o can then be evaluated from the equation

_ 045 Og* el Dol

= =g1(d d,r)g—ol 1—69)—xl 25
o dec gl( ,T’) dee +gl( 7T) dee +( ) dec ( )
where
e+ K* +/.e\2 e_e . =€
o 2 tr (€ ) +p €dev * Edev - (26)

We next turn to the plastic free energy. Employing the same decomposition
of the plastic strain rate into volumetric and deviatoric parts,

ép = é::501 + égev ’ (27)

we can write the plastic energy density ¥ as
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wg = 501 + gQ(d)¢gev ’ (28)
where

t t
P L ep P Lep
vol—/o o: &l dr, wdev_/o 0 €L, dT. (29)

Here, g5 is another degradation function defined by Bourdin et al. [28] of
the form

g2(d) = (1 - d)*. (30)

Note that whereas the degradation function g;(d,r) allows for the ex-
plicit dependence of the phase-field variable d on both the elastic and plas-
tic strain energy densities, the degradation function go(d) does not depend
on the elastic strain and is a function solely of the phase-field variable d.
Moreover, the two degradation functions account for energy dissipation by
both brittle-like microcracking/grain crushing phenomena and plastic-driven
failure/friction/grain arrangement during the deformation band processes, in
agreement with the microscopic observations in the laboratory [1, 53].

Remark. Compared to the formulation by Ip and Borja [64], the degradation
function g, employed in the present formulation is applied directly to the
plastic work, whereas the degradation function used in the formulation of Ip
and Borja is introduced into the evolution of the preconsolidation pressure to
reflect the shift in the void-ratio versus logarithm of pressure curve due to
pore collapse.

2.4 Evolution of the phase-field variable

We derive the evolution of the phase-field variable d from the regularized total
potential energy given by the expression

I =V +T+K-W, (31)
where
Q€:/¢dV:/(¢s+¢g+¢i)dV (32)
B B
is the total free energy,
r-9% / RddV (33)
¢ Js

is the work done by the viscous force R in forming and propagating the band,

K = / 1pv-valV (34)
B2

is the kinetic energy of the system, with p = mass density of the rock and v
= velocity vector, and
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Wz/pg-udV—i—/ t-vdA (35)
B oB

is the external work done by the body force pg and surface traction ¢.
Taking the stationary point of IT, with respect to v, using the divergence
theorem on the surface integral, and localizing yields the overall equilibrium

condition
oIl

ov

where a is the material acceleration. Furthermore, taking the stationary point

of II, with respect to d and localizing gives the evolution condition for the
phase-field variable

8]][ d a{lpo gd

_ = 2_ - — _
oq 0 = GlVd=Ge - 5o =7

=0 = V-.-o+pg=pa, (36)

¢d, (37)
where

O, - )
;; = —2(1 = d)" T [r(PSh + Uhew + 0] — 201 — d)vh,, . (38)

2.5 Plasticity model
Based on thermodynamics, the total stress tensor can be decomposed as
oc=£+x, (39)

where £ is the shift and x denotes the dissipative stress tensors referring
to Ziegler’s orthogonality hypothesis [41, 67, 130]. In our phase-field model
for localized deformation bands in geological media, the shift and dissipative
stress tensors can be written as follows

8’L/chv (€p7 a) 4 awgol (€p7 a)

£ = 9o (d) Paee L), (40)
p p
x = o (4) e (E1:2) y O (00 (a1)

For the dissipative stress space in elastoplasticity, the shift pressure p and
dissipative pressure 7 can be calculated in the following forms to evaluate the
plastic components of the deformation

p=—gu(®), m=—3u(0, (42)

which results in the effective pressure and the deviatoric stress invariant as
follows

P=p+m, (43a)
Q=75(Xx) . (43b)
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where @ is the von Mises dissipative stress and the effective pressure P in
compression is regarded as positive.

In this work, the local yield surface F (7, @) in the dissipative stress space
(7, Q) is adopted as [41]

FQ) =\ T+ 5 -1<0, (49)

where A and B are coefficients defining the shape of the yield surface, which
are given by the expressions [41]

A=(1-7y)P+ %WPC (45a)
B=pu [(1 —a)P+ ;orypc] , (45b)

in which p, v and a are dimensionless material constants. Moreover, in clas-
sical elastoplasticity the shift pressure is rewritten as

L1 po Evol 46
p—§vcexp(/16) (46)
where A, is the plastic compressibility and PY denotes the initial preconsoli-
dation pressure.

In the effective dissipative stress space with an elliptical yield function
F (m,Q), the flow rules of the plastic strain invariants are stated as follows

p_OF (F)OF  (F) =«
EP—)\87 R s B (47a)
Q@ — 'aifﬂa}—fﬁg (47b)

0Q n 0Q n(l+F)B*

where 7 is the plastic viscosity with the specific unit of Pa~!s, and (e) :=
(e + | @) /2 are the Macaulay brackets.

2.6 Localized failure driving forces

Recalling the phase-field evolution of localized failure bands in (15), the lo-
calized failure driving force H®! (e, e, ax, d) is written as

H (e,eP, o, d) = HE (e, r,d) + HP (€P, a0, d) (48)

where H¢ (e°,r,d) and HP (eP, e, d) are the localized failure driving forces due
to microcracking and plastic dissipations, respectively, which are explicitly
calculated as

HE (5, d) = Hfi (€7 7.d) + Hiey (.7, 0)
= ¢ o € . o€
= Ogang{U(E d) et +o(ed) e}

(49)
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and

t
HP (P, o, d) = ’Hﬁ:l (e?, o, d)+HE,, (7, e, d) = / o (e, d): (ég:l +&f,,) dr.
0
(50)

3 Finite element implementation

The standard finite element method is used in this work. The method is com-
bined with a staggered time integration solver, including the explicit central
difference scheme and the forward-difference strategy, to find the stable solu-
tion for the displacement and phase field variables, respectively. The selected
time step is smaller than the critical time step prescribed by the Courant-
Friedrichs-Lewy condition [18, 93]. A novel stress update procedure is also
proposed to simulate the localized failure phenomena.

3.1 Spatiotemporal-discrete scheme

We consider the following interpolations for the displacement and phase-field
variables at any point @ in the element domain

N
u(@,t) =Y NP@u(t), dz,t)=> Niz)d/(t)), (51)
I=1

M-

where u; and d; are nodal displacement and phase-field variables at the Ith
node, respectively; N is the total number of nodes in each element; and N7
and N¢(z) are the standard first-order finite element shape functions for the
displacement and phase-field.

Moreover, the strain vector in Voigt form and the gradient of the phase-
field variable are calculated as

Bi(z)d;(t),  (52)

WE

N
€ (mat) = ZB}L(w)uI(t) ) Vd (:E,t) =
I=1 I=1

where BY and B}i represent the derivative matrices of shape functions for the
displacement fields w and the phase-field d.

The spatiotemporal discrete equations for the dynamic equations of equi-
librium and the phase-field evolution can be obtained from the standard
Galerkin approximation.

Mii = F oy (u) — Fiyg (u,d) | (53)
Cd = (Y (d,Vd,H* (¢,e",a,d))) . (54)

Explicit expressions for the matrices are as follows:
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e Mass matrix:
N€
M=\ [ NTpNedBe, (55)
e=1 Be

where N, is the number of elements in the computational domain and

/\é\ﬁl is the assembly operator.

e Damping matrix:

N,
c=/\ [ NTyNidB°. (56)
e=1 Be
e External force matrix:
N, N¢
Fey () = /\ / NTbdB + /\ / N®Ttdre, (57)
e=1Y5B° e=1"1%¢

where N! is the number of elements where prescribed tractions are applied,
and I'Y denotes the prescribed traction boundary in the e-th element.
e Internal force matrix:

Ne
Fus(wd) = A\ [ [on (@) BETC (o35 + €5)
e=1 N (58)

+91(d,7) 0BT Conelr + (1= 0) BT Corely| aB°,
where C is the stress-strain matrix, which can be decomposed into volu-

metric and deviatoric parts, i.e., Cyo and Cgyey.
e Coupled plastic-failure dissipation matrix:

N,
Y (d.vd ) = A\ [ [(1 — ) o [r (Mo + M) + (M2 + HE)] NzT] a5°
e=1 ¢ ¢

N,
- A / [Nde—EgBBffTVd] aBe
e= Be
1 (59)

For the staggered solver, the displacement fields are computed using the
explicit central-difference integration scheme, while the phase-field evolution
is computed using the explicit forward-difference time-integration strategy.
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3.2 Stress updated procedure

Within the time interval [t,,t,1], we assume that the known variables are
Etot,n, Eny €L, dy, T, We can then calculate the trial volumetric strain tensor
ebn® o1 and the trial deviatoric strain tensor effial . The stress updated
procedure can be summarized as follows.

The volumetric and deviatoric parts of the elastic trial total stress tensor

a’%é‘t‘ﬂn 41 can be first computed as follows

Ufll;)iﬁanrl = g1 (dn,7n) 0Cy0 : <€tgltd11+1 - Eﬁ) +(1-0)Cyar : (Etgltdanrl - Eﬁ)
(60a)

03231n+1 = g1 (dn,mn) Caev : (Etgtaanrl - 52) (60b)

Then, the equivalent stress at t =n + 1 is computed as

. 3 .
trial __ el trial . trial
n+1l — \/2 (Udev,n+1) . (Udev n+1) (61)

Next, the discrete trial yielding condition is given by

. (ﬂ.triall)2 ( triall)2
Fo o) = | EL L
n+1 n+1

where A, 1 and B,,;1 are the yielding shape coefficients at ¢t = n + 1, which
are

: 1
App1=(1-17) Prtzﬂl-all + §'YPC (63a)
: 1
By =p|(1—a) P+ Z0rFe (63b)

Then, considering the Kuhn-Tucker conditions,

AN 2 0) F (O'E/glaanrlv Ufirelsln+1) < 0) A)‘]:( EzﬁfﬂnJrl’o'dlgsanrl) =0
(64)
the classical elastic predictor and plastic corrector, i.e., the return-mapping
algorithm, is adopted to solve the elastoplastic solutions.

If Firial <0, the trial total stress tensor ofi®), | = ot ) +olial s
located in the elastic deformation regime, which indicates oot nt1 = o{gltln 11
On the other hand, if P“al > 0, the trial total stress tensor is not admissible,
and the return-mapping algorithm is needed as a plastic corrector step.

The computational schematic of the volumetric and deviatoric stress com-
ponents in the return mapping algorithm is depicted in Figure 3. Using the
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plastic flow rule of Eqgs. 47a and 47b, the volumetric and deviatoric plastic
strain increments then read

f‘trlal n
R — "“Zml TN, (65)
(]‘ + F ) n+1

<‘F7tzr-&1-a11> Qn—H

Aell = -Ny, (66)
O (L F) Bi
where
3 U&E?n-&-l
Ni= f (67)
2 ||Qiraf|

and the following updated stress states oyol,n+1 and odev,nt+1 read

__trial P
Ovol,nt1 = avol,n+1 — Ao NV (68)

trial

Ovoln+1 — 81 (dru Tn+1) 0Cyor : Aevol (1 - 9) Cyor : Ae

trial ___trial . D
Odev,n+1 = Odev,n+1 AU Ng = Odev,n+1 — 81 (dnv Tﬂ+1) CdeV : Agdev (69)

where
AP
eq,n+1
Tnel =T+ —5 (70)
eq, crit
in which

/2
Aeze)qfﬂ+1 = gAEgev : Aeﬁev : (71)

0t
a7 Ttotn+1
|
1Ac?
i

q Elastic
predictor, ¥ /
’

Flow direction

p

Fig. 3. Schematics of flow directions at different confining pressures (indicated by
the red arrow) and the general return mapping geometric interpretation.
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4 Benchmark problems

To validate our model, we consider the notched Bentheim sandstone specimens
tested in triaxial compression by Vajdova and Wong [110] and Tembe et al.
[107]. The laboratory specimens had a diameter of 18.4 mm and a height of
38.1 mm. For purposes of analysis, we simulated these tests in plane strain
with the geometric configuration shown in Figure 4(a) and the finite element
mesh shown in Figure 4(b). The V-shaped notches in the numerical model
are 2 mm x 2 mm, as shown in Figure 4(c), resulting in an inner width of
18.4 — 2 x 2.0 = 14.4 mm for the numerical model. A total of 8,776 triangular
elements were used in the finite element mesh with Ay, = 0.4 mm.

AAAARN

—_— . |—
|
|
|
o - =903 |2
—_ i -« &
|
|
—_— . —

(@)

Fig. 4. Plane strain compression of notched Bentheim sandstone sample: (a)
schematic diagram, (b) mesh discretization and (c) enlarged zone of V-shape notches.

Based on the literature [64, 107, 108], the following material parameters
were used in the simulations: mass density p = 2,450 kg/m?, Young’s modulus
E = 19.2 GPa, Poisson’s ratio v = 0.268, critical fracture energy release rate
G. = 1.0 J/m?, viscosity coefficient ¢ = 0.1, plastic viscosity 7 = 5.0 x 1073
Pa~!s, plastic compressibility A, = 1.5x1073, and crushing potential # = 0.1.
Also based on the literature [13, 64, 67], the following parameters for the
plasticity model were assumed: PO = 420.0 MPa, eze’% ait = 0.1, p = 1.5,
a = 0.5 and v = 1.0. The computational time step was At = 1.0 x 1077 s and
the length scale parameter was ¢ = 0.6 mm.

The simulations consisted of first applying a confining pressure of 250 MPa
followed by an axial load of 2 pm/s, emulating the loading sequence in the
experiments. The calculated vertical displacement us and phase-field variable
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d are displayed in Figures 5(a) and (b). We observe that the compaction
band first initiates at the tip of the two V-shape notches and propagates
horizontally toward the center. The result is a thin compaction band oriented
perpendicular to the major compressive stress, as shown in Figure 5.
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Fig. 5. Numerical results of compaction bands formation in the notched Bentheim
sandstone sample: (a) vertical displacement field (unit: m), and (b) compaction band
formation.

Figure 6 compares the stress-strain curve for the simulated Bentheim sand-
stone sample with the quasi-static simulation of Ip and Borja [64]. Both simu-
lations employed a plane strain assumption, so the comparison is meaningful.
Six representative points corresponding to the snapshots shown in Figure 5
are labeled in the stress-strain curve shown in Figure 6. Both simulations pre-
dicted an initially hardening response with comparable peak strengths. How-
ever, substantial softening is observed in the current simulation. Compared
with the simulation of Ip and Borja, the current simulation predicts a more
pronounced re-hardening response after the compaction band has formed,
similar to that observed in the laboratory experiments [107, 108]. Because the
laboratory experiments were conducted in triaxial condition whereas the two
simulations were conducted in plane strain condition, the experimental curve
was not superimposed in Figure 6.

Remark. Like the formulation by Ip and Borja [64], the onset of a compaction
band in the present work is determined by the critical energy release rate G.
and not by a softening behavior. There is no bifurcation analysis needed in
either work, so it is possible to form a compaction band even in the hardening
regime.
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Fig. 6. Comparison of the simulated stress-strain response with the simulation result
of Ip and Borja [64] for the Bentheim sandstone sample under a confining pressure
of 250 MPa.

Figure 7 plots the equivalent plastic strain €2 and volumetric plastic strain
P | at three representative simulations stages. Qualitatively, we observe that
the volumetric plastic deformation dominates the compaction band formation,
with the volumetric plastic strain being much more intense.

Figure 8 plots the initial yield stress predicted by the phase-field simu-
lation on the deviatoric stress versus mean normal stress plane against the
experimental data reported by Vajdova and Wong [110] and the results of a
theoretical analysis conducted by Tembe et al. [107] employing linear elastic
fracture mechanics (LEFM). The initial yield stress predicted by the phase-
field simulation lies within the region defined by the experimental and theo-
retical curves. In addition, the inset in Figure 8 also indicates that the failure
initiation pattern during compaction band formation agrees well with both
macroscopic and microscopic observations [107, 110].



Dynamic strain localization into a compaction band

(a/b-2)

p
geq

(a/b-2)

&

p

vol

(a/b-4) (a/b-6)

&by
(a/b-4)

D

p
vol &

£ vol

2.0e-02
0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002

0.0e+00

2.0e-02
0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002

0.0e+00

19

Fig. 7. Equivalent plastic strain €, (top row) and volumetric plastic strain e” |

(bottom row) during the formation of a compaction band.
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Fig. 8. Initial yield stress for the notched Bentheim sandstone samples obtained
from the phase-field simulation, laboratory tests [107, 110] and LEFM theoretical

analysis [107].
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A comparison of ultimate failure patterns obtained from the phase-field
simulation, laboratory experiment [107], and breakage mechanics modeling
[43] is depicted in Figure 9. This result was obtained after conducting mesh
convergence studies with hpyax = 0.2,0.3,0.4, and 0.6 mm, and with the same
characteristic length scale of ¢ = 0.6 mm, which produced nearly identical
solutions. Both the breakage mechanics and phase-field simulation results
compare well with the experimental observations. However, we shall show in
subsequent simulations that the proposed phase-field model can capture not
only the main compaction band straight form but also the shear-enhanced
and secondary deformation bands that form away from the mid-section.

1.0e+00
0.9
0.8
L 0.7
— 0.6
L 05 e
L 04
03 -
02 Y
0.1 A
0.0e+00 Mo mdean s 2

(a) (b) (c)

Fig. 9. Comparison of compaction bands in the notched Bentheim sandstone sample
obtained from: (a) phase-field simulation, (b) experimental observation [107], and
(c) breakage mechanics modeling [43].

The grain crushing potential § was introduced by Ip and Borja [64] to
limit the degradation of the elastic stiffness due to grain crushing during
the formation of a compaction band. To investigate its impact on the phase-
field simulations, four V-shape notched Bentheim sandstone samples were
subjected to plane strain compression under a confining pressure of o3 = 300.0
MPa. The resulting localization patterns and mechanical responses are plotted
in Figures 10(a) and 10(b), respectively. It can be observed that 6 has only a
slight effect on the ultimate compaction band formed (Figure 10a) but has a
more pronounced effect on the softening responses as the compaction bands
propagate (Figure 10Db).
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Fig. 10. Effect of the grain crushing potential § on: (a) compaction band patterns;
and (b) mechanical responses.

In all four simulations, we also note from Figure 10(a) that although the
main compaction bands are straight and thin, they are surrounded by sec-
ondary chevron bands delineated by the light-blue regions. A similar deforma-
tion feature has been reported in the literature using viscoplastic constitutive
modelling of compaction creep tests in porous rocks [96, 97]. This intriguing
deformation style has not been reproduced in the quasi-static simulations of
compaction band formation [64]. This could point to the role of dynamic ef-
fects on the ensuing style of deformation bands observed in the field. Other
factors that could impact the geometric style of compaction bands include
the boundary conditions [97], heterogeneous distribution of porosity [15], rock
anisotropy [98], fluid flow [125, 126], partial saturation [63, 65], and chemical
reaction [27].

5 Numerical simulations

We also conducted a series of hypothetical numerical simulations on Bentheim
sandstone samples to further demonstrate the capability and performance of
the phase-field model. All simulations were conducted under 2D plane strain
condition on a rectangular sample having a width of 50 mm and a height of
100 mm, see Figure 11. The sample was first subjected to a confining stress
and then loaded in the vertical direction by prescribing a vertical displacement
on the top boundary at the rate of 2.0 x 1072 m/s while holding the bottom
boundary fixed along the vertical direction, see Figure 11(a). To trigger strain
localization, we recognize that rock samples are inherently heterogeneous even
at the smaller scale [17, 95], so a weak element was introduced at the center of
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the sample by setting an initial value of d = 0.05 for the phase-field variable,
see Figures 11(b) and 11(c).

100 mm
100 mm

‘Weak point

> o

(@)

Fig. 11. Problem domain and boundaries: (a) geometry and boundary conditions;
(b) unstructured mesh and (c) structured mesh.

Referring to Jacquey and Regenauer-Lieb [68], we assumed the following
values of material parameters in the numerical simulations: mass density p =
2,450 kg/m?, Young’s modulus E = 22.3 GPa, Poisson’s ratio v = 0.17,
critical fracture energy release rate G. = 1.0 J/m?, viscosity coefficient ¢ =
0.1, plastic viscosity n = 5.0 x 1072 Pa~! - s, and plastic compressibility
A, = 2.0x 1073, Initial values of the plastic variables are assumed as: P? = 20
MPa, 55% it = 0.1, 1 =12, a = 0.65 and v = 0.8. In the present numerical
simulations, the computational time step and the internal characteristic length
were taken as At = 1.0 x 1077 s and ¢ = 8 mm, respectively.

5.1 Mesh sensitivity and convergence studies

To demonstrate the robustness of our approach, we study mesh sensitivity
and numerical convergence on dynamic strain localization. Two numerical
samples with the irregular and regular FE meshes (see Figure 11b and Figure
11c) are simulated in 2D plane strain compression tests with o3 = 60 MPa.
The comparisons of localized failure patterns and mechanical responses are
plotted in Figure 12(a) and Figure 12(b), respectively. Figure 12 shows that
the location, orientation, and thickness of compaction bands obtained from
the two models are approximately the same. The mechanical responses of
@ ~ €4 curves in two numerical tests are also similar, which demonstrate the
mesh independence and low mesh sensitivity of our model.
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Fig. 12. Effect of mesh discretization on (a) localized failure patterns and (b) Q ~ eq
curves of two Bentheim sandstone samples in 2D plane strain compression tests with
o3 = 60 MPa.
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Fig. 13. Effect of £/hmax on dynamic strain localization in the numerical tests with
the fixed ¢ = 8 mm: (a) localized failure patterns and (b) @ ~ e, curves.

To study the numerical convergence of finite element solutions, we focus
on two kinds of numerical samples: (i) samples with different h,.x and a fixed
£, and (ii) samples with different £’s and a fixed hyax. The confining pressures
in 2D plane strain tests are kept as o3 = 60 MPa. For the fixed £ = 8 mm,
the localized deformation bands and mechanical responses of three numerical
samples are plotted in Figure 13(a) and Figure 13(b), respectively. The loca-
tion and orientation of pure compaction bands in three Bentheim sandstone
samples are close to each other. The numerical predictions of mechanical re-
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sponses, i.e., @@ ~ g, curves, in three samples are also similar, while we observe
from Figure 13 that the thickness of pure compaction bands increases as the
ratio of £/hmax decreases.

For the fixed hpyax = 1 mm, the localized failure patterns and the relevant
Q ~ &, curves in three numerical samples with various ¢’s are compared in
Figure 14(a) and Figure 14(b), respectively. When A, is fixed at 1 mm, we
observe that £/hmax has slight effects on the predicted compaction bands. The
above comparisons further demonstrate the numerical convergence and mesh
independence of our new phase-field approach for modeling dynamic strain
localization.

For the fixed hpa.x = 1 mm, the localized failure patterns and the relevant
Q@ ~ e, curves in three numerical samples with various ¢’s are compared in
Figure 14(a) and Figure 14(b), respectively. When hmayx is fixed at 1 mm, we
observe that £/hmax has slight effects on the predicted compaction bands. The
above comparisons further demonstrate the numerical convergence and mesh
independence of our new phase-field approach for modeling dynamic strain
localization.
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Fig. 14. Effect of £/hmax on dynamic strain localization in the numerical tests with
a fixed hmax = 1 mm: (a) localized failure patterns and (b) @ ~ e, curves.

5.2 Dynamic strain localization process

To further study the dynamic strain localization process, we look more closely
into the spatiotemporal localization and mechanical responses of the Bentheim
sandstone sample in plane strain compression simulated with o3 = 60 MPa.
Figures 15(a)-(d) show the spatiotemporal distributions of d, ug, €&, and &y,
respectively. During the formation of the localized deformation band, we con-
sider eight representative snapshots in Figures 15(a)-(d) and denote them in
the o1 ~ &1 curve shown in Figure 16(a), and in the ey, ~ €1 curve shown

in Figure 16(b). From Figure 15(a)-(d), we observe that the concentration
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of accumulative equivalent and volumetric plastic strains drive the initiation
and propagation of compaction bands with a maximum value of d = 0.01. The
evolution of compaction bands is represented by snapshots I ~ IV in Figures
16(a) and 16(b). The enlarged zones in g1 ~ &1 and ey, ~ €1 curves indicate
that the slight strain-hardening phenomena occurs during the formation of
compaction bands. When the deviatoric loads increase, the dynamic strain
localization at macro-scale is initiated around the weak point, and propa-
gates towards lateral boundaries normal to the axial direction. The formation
of compaction bands is accompanied with the recognizable strain-hardening
process in the o1 ~ €1 and ey, ~ &1 curves, as shown in Figures 16. Further-
more, when comparing the spatiotemporal distributions of €£, and el |, we
find that the volumetric plastic strain in compression dominates the dynamic
strain localization process.
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Fig. 15. Dynamic strain localization process at o3 = 60 MPa: Snapshots of spa-
tiotemporal distributions of (a) phase-field variable, (b) vertical displacement, (c)
equivalent plastic strain, and (d) volumetric plastic strain.
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Fig. 16. Mechanical responses of dynamic strain localization process at o3 = 60
MPa: (a) axial stress versus axial strain, and (b) volumetric strain versus axial strain.
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Fig. 17. Effect of o3 on the localized deformation band patterns in the plane strain
compression tests.

5.3 Effect of confining pressure

To investigate the effect of confining pressure on the dynamic strain local-
ization and mechanical responses, we simulate six intact Bentheim sandstone
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samples in plane strain compression with different o3. The confining pres-
sure o3 is changed from 10 MPa to 60 MPa in increments of 10 MPa. Figure
17 shows the resulting localized deformation band patterns, suggesting that
the confining pressure plays a critical role in the dynamic strain localization.
Based on the ratio €, /¥ |, dilation shear bands, shear-enhanced compaction
bands, and pure compaction bands can be recognized. When o3 is increased
from 10 MPa to 60 MPa, the localized deformation band pattern first changes
from a dilation shear band with a high orientation angle (Figures 17 a-b) to a
shear-enhanced compaction band with a medium inclination angle (Figures 17
c-d), to a pure compaction band with a low inclination angle (Figures 17 e-f).
The slightly curved shape of shear-enhanced compaction bands is caused by
the combined compressive normal and shear stresses. These results indicate
that our model can capture the transition from dilatant to compactive strain
localization, which agrees with results from breakage mechanics theory [38].
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Fig. 18. Effect of o3 on (a) o1 ~ €1 and (b) Q ~ &1 curves for Bentheim sandstone
specimens in the plane-strain compression tests.

Figure 18(a) shows the relevant macro-mechanical axial stress versus axial
strain curves for these six simulations. Figure 18(b) shows the deviatoric stress
@ = 01 — 03 versus axial strain ¢, at different confining pressures. We observe
from Figure 18(a) that the peak axial stress increases as o3 increases, while
Figure 18(b) shows that the peak deviatoric stress decreases as o3 increases.

At low confining pressures (10 and 20 MPa), the samples attain a peak
stress beyond which strain softening occurs with a significant stress drop dur-
ing the dilation shear band formation. At medium confining pressures (30
and 40 MPa), shear-enhanced compaction bands initiate and propagate, ac-
companied by a slight stress drop at the post-failure stage. At high confining
pressures (50 and 60 MPa), a pure compaction band forms with a monotonic
strain-hardening response. Figure 19 provide the graphic illustration of the
localization patterns over the whole range of loading conditions simulated us-
ing our model. The initial yield stress points of samples at low o3 are located
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in the dilatant regime, while the initial yield stress points at high o3 reside in
the compact regime. Overall, as the confining pressure increases the localized
deformation band pattern transforms from a shear band type with significant
strain softening, to shear-enhanced compaction band with moderate strain
softening, to pure compaction band with pronounced strain hardening.
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Fig. 19. Graphic illustration of the relation between plane-strain compressive load-
ing paths (i.e., gray dash lines) and initial yield surface (i.e., blue solid curve) during
strain localization.

The predicted eyo1 ~ €, curves are plotted in Figure 20. When the de-
formation band changes from a shear-band type to a pure compaction band,
the minimum value of volumetric strain decreases. At the onset of localized
deformation, we observe that the volumetric strain first decreases significantly
due to grain crushing. As ¢, increases and the band propagates, €y,1 decreases
slightly due to pore collapse. At low confining pressures, the sample dilates
at the post-failure stage (see Figure 20) due to grain sliding and rearrange-
ment. However, at high confining pressures the sample compacts, indicating
that pore collapse and porosity reduction continue during the development
of pure compaction bands. All of these observations agree with experimental
observations [1, 107].
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Fig. 20. Effect of 03 on eyo ~ &, curves in the plane strain compression tests.

6 Closure

We have simulated the dynamic formation and propagation of compaction
bands in high-porosity rocks using the phase-field approach. Main ingredi-
ents of the approach include separate degradation mechanisms in compres-
sion, dilation, and shear to accommodate for disturbances that propagate in
a wave-like fashion; and a staggered numerical time-integration strategy em-
ploying the explicit central difference scheme for the displacement field and
the forward-difference scheme for the phase-field variable. We have simulated
the formation of a compaction band in a V-shape notched Bentheim sandstone
sample in plane strain compression and obtained a complex geometric style
consisting of a main pure compaction band and secondary double-chevron
bands propagating away from the main compaction band. This style of defor-
mation is distinct from the style obtained by Ip and Borja [64] from a similar
simulation based on a quasi-static formulation, underscoring the effects of
dynamic strain localization on the ensuing geometric style of localized defor-
mation. We have also investigated the effects of confining pressures, mesh dis-
cretization, mesh sizes and internal characteristic lengths on the numerically
predicted deformation band. A plastic strain-based index is proposed to dif-
ferentiate between shear bands, shear-enhanced compaction bands, and pure
compaction bands. Work is underway to incorporate the effects of anisotropy
and creep [26, 74, 94, 127, 128] on the localization of deformation in rocks.
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