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Spatiotemporal origin of soil water taken up 
by vegetation

Gonzalo Miguez-Macho1 ✉ & Ying Fan2 ✉

Vegetation modulates Earth’s water, energy and carbon cycles. How its functions 
might change in the future largely depends on how it copes with droughts1–4. There is 
evidence that, in places and times of drought, vegetation shifts water uptake to 
deeper soil5–7 and rock8,9 moisture as well as groundwater10–12. Here we differentiate 
and assess plant use of four types of water sources: precipitation in the current month 
(source 1), past precipitation stored in deeper unsaturated soils and/or rocks  
(source 2), past precipitation stored in groundwater (source 3, locally recharged)  
and groundwater from precipitation fallen on uplands via river–groundwater 
convergence toward lowlands (source 4, remotely recharged). We examine global and 
seasonal patterns and drivers in plant uptake of the four sources using inverse 
modelling and isotope-based estimates. We find that (1), globally and annually, 70%  
of plant transpiration relies on source 1, 18% relies on source 2, only 1% relies on source 
3 and 10% relies on source 4; (2) regionally and seasonally, source 1 is only 19% in 
semi-arid, 32% in Mediterranean and 17% in winter-dry tropics in the driest months; 
and (3) at landscape scales, source 2, taken up by deep roots in the deep vadose zone, 
is critical in uplands in dry months, but source 4 is up to 47% in valleys where riparian 
forests and desert oases are found. Because the four sources originate from different 
places and times, move at different spatiotemporal scales and respond with different 
sensitivity to climate and anthropogenic forces, understanding the space and time 
origins of plant water sources can inform ecosystem management and Earth system 
models on the critical hydrological pathways linking precipitation to vegetation.

For land plants to thrive, their root system must take up soil water. 
Precipitation is the ultimate source, but its intermittent nature, with 
dry intervals of varying durations, renders past precipitation stored in 
the substrates essential to plants. Deep-soil water recharged by deep 
infiltration in past wetter periods, and valley groundwater fed by con-
vergence from uplands, can provide vital supplies when rain fails. In 
this study, we asked how much the vegetation on Earth at present relies 
on deep stores of past precipitation. We also asked what drives the 
spatiotemporal patterns of this reliance.

We distinguish four plant water sources (Fig. 1). The immediate 
source is soil water filled by recent rain (for example, within 1 month), 
called source 1 (recent precipitation). Generally, and particularly in dry 
regions and seasons, infiltration reaches only shallow depths, limiting 
the depth and amount of plant water uptake13. In wetter climates and 
times, recent precipitation meets current plant needs, with surplus 
percolating into deeper soils and rock fractures. As the dry season 
extends and shallow soil dries, roots can tap into this deep store9,14–17, 
termed here as source 2 (past precipitation stored in the deep vadose 
zone). The wet season infiltration might also reach the water table, 
locally recharging the groundwater. As soils above dry out, capillary 
rise can supply root uptake9–11,18–20, termed as source 3 (past precipita-
tion stored in locally sourced groundwater). The phreatic groundwater 

also flows downgradient, moving precipitation surplus across space; in 
lowland settings (Fig. 1, left column), the groundwater might originate 
in adjacent uplands12,21, termed here as source 4 (past precipitation from 
uplands). Plant use of sources 2 and 3 implies a temporal carryover of 
past hydrologic surplus to meet present deficit. Plant use of source 4 
implies a spatial carryover of a neighbour’s surplus but also a temporal 
carryover because of the travel time involved. We call sources 2, 3 and 
4 ‘total past-precipitation use’. It is such spatiotemporal carryovers 
of past precipitation that free land plants from complete reliance on 
recent precipitation, ensuring plant survival and continued growth 
through droughts.

We test four hypotheses: globally, vegetation reliance on past pre-
cipitation is widespread, even in humid climates punctuated by 
droughts (H1). Regionally, the degree of this reliance depends on climatic 
water stress, which is highest in seasonally wet–dry climates where wet 
season surplus fills the deep store, and dry season deficit demands it; 
in true aridity, precipitation is insufficient to fill the deep store (H2). At 
the landscape scale, reliance on past precipitation varies with drainage 
position, with upland plants using deep vadose zone store (source 2) 
and lowland plants using shallow groundwater (sources 3 and 4) (H3). 
At the individual plant level, reliance on past precipitation depends on 
growth form, with larger trees more demanding and capable of tapping 
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into deeper stores; it is species specific, with those adapted to season-dry 
climates making the most use of past precipitation (H4).

To test H1 and H2 on global to regional patterns, we simplify the Köp-
pen–Geiger climate classification22 (Supplementary Information 1) into 
13 water stress types in four groups (Supplementary Fig. 1): low water 
stress in moist tropical, temperate and cool climates; high seasonal 

stress in Mediterranean, monsoon and subtropical climates; high per-
ennial stress in arid steppes; and minimum vegetation in deserts. For 
testing H1–H3 (climate and drainage), we use global inverse model-
ling (Supplementary Information 2) corroborated by isotope-based 
estimates (Supplementary Information 3). For testing H4 on growth 
form and species, we use isotope-based estimates (Supplementary 
Information 3).

The natural abundance of stable isotopes of oxygen and hydrogen 
in plant xylem and source waters offers a useful tracer of plant water 
source23–25. We compiled such studies from the literature (Supplemen-
tary Information 3). However, these studies do not report plant water 
use as the four sources defined here but, rather, contributions from 
different soil depths regardless of the time of recharge. Some studies 
include isotopically distinct seasonal precipitation as endmembers, 
which are used to differentiate recent versus past precipitation. Some 
studies differentiate deep soil from groundwater, but the groundwater 
origin (past versus recent and local versus remote recharge) is unclear. 
In our compilation, we recast the uptake depths into the four sources 
aided by information on seasonal isotopic signatures of precipitation 
and soil–water response to precipitation events at different depth 
(inferring infiltration depths). The uncertainties in this recasting (Sup-
plementary Information 3), the scarcity of studies (Extended Data 
Fig. 1), the known discrepancy among different laboratories using 
cryogenic vacuum distillation for water extraction26,27 and sampling 
bias toward dry places and times and better-funded nations demand 
a global modelling approach that is corroborated by isotope estimates 
where and when available.

The time scale that we define as recent precipitation in the model is 1 
month—an arbitrary but useful interval to quantify seasonal dynamics. 
The sampling frequency in isotope studies varies widely, and we follow 
the authors’ broad description of wet versus dry periods.
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Fig. 1 | Schematic of four plant water sources. Lowlands (left) and uplands 
(right) are connected by down-valley flow. Arrow width indicates event 
frequency. Source 1: soil water from recent infiltration. Source 2: deep vadose 
zone water recharged by past rain. Source 3: groundwater locally recharged by 
past rain. Source 4: groundwater remotely recharged by upland rain. Note the 
shallow water table in lowlands and the thick vadose zone in uplands.
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Fig. 2 | Modelled fractional source contributions to transpiration.  
a–c, Annual, global data (a), hemispheric data for February (b) and hemispheric 
data for August (c). Colour scales indicate fraction of annual transpiration 

(dimensionless). Maps are aggregated from a 30′ model grid to 1º × 1ºfor 
display. Higher-resolution maps are in Supplementary Fig. 8.
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Uptake source from inverse modelling
A full model description is provided in Supplementary Informa-
tion 2. In brief, the model adopts a global grid of 30 arcseconds 
(about 1 km) to delineate upland versus lowland within computa-
tion limits, at hourly steps over a 10-year span (2003–2013) resolv-
ing event-to-seasonal dynamics. Our model has four parts: (1) soil 
groundwater hydrology forced by atmosphere-reanalysis and soil 
properties and land topography, giving infiltration, soil water profile 
and water table depth at each hour and grid; (2) ecosystem transpira-
tion from satellite leaf area index and atmosphere-reanalysis, giving 
plant water demand to be met by root uptake; (3) inversion of root 
uptake profile using Ohm’s law, leading to higher uptake from wetter/
shallower soil layers; and (4) computation of the four source contri-
butions to monthly transpiration from the soil water mass balance. 
Tracking lateral flow among grid cells, we separate local (source 3) 
and upland (source 4) groundwater origins. Several previous inverse 
model studies quantified the necessary rooting depth to meet tran-
spiration demands, but they neglected groundwater and did not 
differentiate among sources 2, 3 and 4 (detailed intercomparisons 
in Supplementary Information 2.9).

Model monthly evapotranspiration is compared with observations 
at 103 eddy-covariance flux towers28 (Supplementary Fig. 5) worldwide 

and model river discharge compared to observations at 34 river gauges 
(Supplementary Fig. 6). Without any calibration, the model reproduces 
well the seasonal water balance worldwide. Discrepancies are largely 
due to neglecting anthropogenic activities in the model (irrigation 
and reservoir regulation). Monthly evapotranspiration comparisons 
(Supplementary Table 3, Supplementary Fig. 7) suggest slight model 
underestimation globally or conservative estimates of plant use of 
past precipitation.

To test H1, that vegetation reliance on past precipitation is globally 
prevalent and important, Fig. 2 gives the 10-year mean source contribu-
tion to transpiration. Globally and annually (Fig. 2a), source 1 accounts 
for 70% (s.d. 24%) of transpiration, source 2 for 18% (s.d. 15%), source 3 
for only 1% (s.d. 3%) and source 4 for 10% (s.d. 22%) (that is, groundwater 
use is primarily source 4 recharged in uplands). Seasonally, source 
1 is only 49% in February in the Northern Hemisphere (Fig. 2b) and 
42% in August in the Southern Hemisphere (Fig. 2c). In the southern 
hemispheric dry season, 58% of transpiration is from past precipitation 
(Extended Data Table 1, orange font).

To test H2, that—at regional scales—reliance on past precipitation 
depends on climatic water stress, which is highest in semi-arid and 
season-arid climates, we rank climate types by annual past-precipitation 
use (Extended Data Table 2). The order is arid steppe (BS 53%, bold 
font), summer-dry (Cs 43%, Ds 41% and As 36%), winter-dry (Cw 33%,  
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Fig. 3 | Monthly source contribution to transpiration for the 12 climate 
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are isotope-based estimates for wet and dry periods, showing mean and 1 s.d. 
among individual plants (sample sizes in Table S8). Southern Hemisphere 
results are shifted by 6 months.



Nature  |  Vol 598  |  28 October 2021  |  627

Aw 31% and Am 29%), humid (Af 21%, Cf 20% and Df 17%), cold winter-dry 
and tundra (Dw and ET, both 15%). In the driest month, past precipita-
tion use is much higher (red font), reaching 83% in BS, 68% in Cs, 66% 
in Ds, 53% in As, 80% in Cw, 81% in Aw and 59% in Am. Seasonal shifts 
in plant water source (lines with one standard deviation) are shown in 
Fig. 3 for all climates. Except for the humid Af and Cf climate, a pro-
nounced shift occurs from using recent precipitation in wet months 
to past precipitation in dry months. This shift is widely reported in 
isotope-based studies of individual plants6,7,29, and here we show that 
it may be prevalent at the ecosystem level and worldwide. The large 
spread in model results (among 1-km grid cells) under any given climate 
point to the sub-climate-scale drivers of water source partitioning, 
among which is land drainage.

To test H3, that, at landscape scales—under the same climate—drain-
age position affects source partitioning, we separate model grid cells 
into upland (losing groundwater) versus lowland (gaining groundwater) 
for each month and each water stress group (low, seasonal and high; 
Extended Data Table 3). In all groups, upland plants used more source 
1 (compare green fonts in each group), and lowland plants used more 
source 4 (blue fonts, groundwater sourced remotely), accounting for 
18–29% of annual (blue font) and 36–47% of dry-month uptake (red 
font). This upland–lowland contrast is displayed in the full-resolution 
maps in Supplementary Fig. 8 where the strong hill and valley contrast 
is clearly visible. In dry climates and seasons, topography-driven lateral 
convergence can sustain gallery/riparian forests and desert oases that 
would otherwise not exist.

Uptake source from isotope-based studies
The very limited isotope-based estimates (Extended Data Fig. 1, 
Extended Data Table 4) support the model regarding H1 and H2 on 
global and regional patterns of plant water source partitioning, 
across wet and dry seasons. These estimates plot closely to the model 
mean or within one standard deviation (Fig. 3), the latter reflecting 
the large variation among millions of model grid cells (in drainage, 
soil and vegetation) within each climate. Ranked by dry-season (best 
sampled) values (orange font, Extended Data Table 4), avoiding small 
samples, the highest is Cs, reaching 89 ± 16% (versus 68% in the model 
in the driest month; Extended Data Table 2), BS 85 ± 35% (versus 83% in  
the model), BW 67 ± 23% (not included in the model due to undetectable 
leaf area index by satellites) and Aw 60 ± 39% (versus 81% in the model). 
Globally and over the growing season, the limited isotope results sug-
gest 50 ± 21% (versus 30% in model) plant use of past precipitation. 
The higher isotope values are due to preferential sampling of larger 
plants in drier places and times, biased-low model ET (Table S3, Fig. S7)  
by averaging leaf area index over 1-km grid cells and using monthly 
results, whereas isotope samples are point snapshots. Isotope-based 
results also support the model on H3 (drainage position) (Extended 
Data Table 5); valley plants used more groundwater across all water 
stress groups (blue font).

To test H4 (part 1), that—at the individual plant level—larger plants use 
more past precipitation, we rank the dry-season plant use of past pre-
cipitation by growth form (Extended Data Table 6, orange font). Results 
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weakly support H4; larger woody plants used more past precipitation 
than forbs and grasses. To test H4 (part 2), that taxa adapted to aridity 
use more past precipitation, dry season results are given for the ten 
best observed genera (Extended Data Table 7). The top ranking are 
arid riparian trees (Populus and Tamarix) and those characteristic of 
season-arid (Quercus and Eucalyptus) and arid (Banksia, Artemisia and 
Caragana) climates. The lowest ranking is Ficus in the humid tropics, 
although humid climates are severely undersampled.

Case study of South America and Amazonia
Figure 4 presents modelled spatiotemporal patterns of water source 
partitioning over South America at continent, landscape and hill-valley 
scales in August (dry season). Continental patterns (Fig. 4a, b) reflect 
the climate; ecosystems in the strongly seasonal southeast Amazon 
(5-month dry season) depend the most on source 2. Regional topography 
also matters; the LaPlata valley in Argentina receives river and ground-
water from the Andes, so its ecosystems depend on source 4 (ref. 12) 
(see Supplementary Fig. 8l for details). At the landscape (Fig. 4c, d)  
and hill-valley (Fig. 4e–g) scales, topography dominates the patterns 
in source partitioning30. Upland ecosystems used exclusively sources 
1 and 2 (rain-fed), with source 2 reaching 90% in the late dry season 
(Fig. 4f), but valley ecosystems depended on groundwater (Fig. 4g), 
reaching more than 50% in the driest months.

Our estimate of 30% global annual ecosystem use of past precipita-
tion is substantial, but it fails to convey its disproportionate impor-
tance: it ensures plant survival, continued growth and functioning 
in water-stressed places and times. Semi-arid ecosystems are recog-
nized as key regulators of inter-annual variations in terrestrial carbon 
sink31,32, and here we show that they are particularly well adapted 
to using past precipitation and remote precipitation to overcome 
seasonal and irregular droughts. Our preliminary estimates of space 
and time origins of plant water sources represent only a first step 
in quantifying the global importance of subsurface water storage 
and transport in sustaining land ecosystems, inviting further quan-
tification from both coordinated field measurements of plant water 
sources and more realistic descriptions of hydrologic flow paths in 
Earth system models.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Extended Data Fig. 1 | Isotope-based estimates of fractional contribution to plant xylem water. (a) Source-2 and (b) Source-3+4 (undistinguished isotopically) 
during dry periods (best sampled). Where species are sampled at the same location (dots overlapping), the highest is displayed on the top.



Extended Data Table 1 | Modelled fractional contribution from the four water sources to monthly transpiration as global and 
hemispheric average

Blue fonts indicate values shown in Fig. 2.
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Extended Data Table 2 | Modelled fractional contribution of four water sources to monthly transpiration for the 12 climatic 
types represented in the model, ranked by annual plant uptake of total past precipitation (Source-2+3+4, bold font)

Sample size (Column-1) is the number of 30” model grid cells and area (km2) under each climate.



Extended Data Table 3 | Modelled plant water source by drainage positions, for low, seasonal and perennial water stress 
groups

Coloured fonts indicate values mentioned in the main text.
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Extended Data Table 4 | Isotope-based estimate of vegetation use of past precipitation (past P) (as % xylem water) averaged 
over each climatic water stress class, with propagated error in parentheses

Coloured fonts are mentioned in the main text.



Extended Data Table 5 | Isotope-based estimates of dry period vegetation use of past precipitation along drainage gradient, 
with propagated error in parentheses

Colored fonts are values mentioned in the main text.
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Extended Data Table 6 | Isotope-based estimates of dry season vegetation use of past precipitation for eight growth 
forms with >10 observations, with propagated error term in parentheses; they are loosely ranked by the total plant use of 
past precipitation (orange)



Extended Data Table 7 | Isotope-based estimates of dry season vegetation use of past precipitation for the 10 best sampled 
genera

Ranking is based on total use of past precipitation (orange).
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