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IDENTIFIABILITY OF HIDDEN MARKOV MODELS FOR LEARNING TRAJECTORIES
IN COGNITIVE DIAGNOSIS

Ying Liu, Steven Andrew Culpepper and Yuguo Chen
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Hidden Markov models (HMMs) have been applied in various domains, which makes the identifia-
bility issue of HMMs popular among researchers. Classical identifiability conditions shown in previous
studies are too strong for practical analysis. In this paper, we propose generic identifiability conditions for
discrete time HMMs with finite state space. Also, recent studies about cognitive diagnosis models (CDMs)
applied first-order HMMs to track changes in attributes related to learning. However, the application of
CDMs requires a known Q matrix to infer the underlying structure between latent attributes and items, and
the identifiability constraints of themodel parameters should also be specified.We propose generic identifi-
ability constraints for our restricted HMMand then estimate the model parameters, including the Qmatrix,
through a Bayesian framework. We present Monte Carlo simulation results to support our conclusion and
apply the developed model to a real dataset.

Key words: cognitive diagnosis model, DINA model, generic identifiability, hidden Markov model.

Hidden Markov models (HMMs) are widely known for their applications to finance (Sipos, Cef-
fer, & Levendovszky, 2017), signal processing (Crouse, Nowak, & Baraniuk, 1998), sequence
classification (Blasiak & Rangwala, 2011) and many more, partially because HMMs offer infer-
ences about substantively important unobserved states. Recently, HMMs are becoming popular
in psychology and education research to model learning trajectories. In particular, researchers in
education and psychology use restricted HMMs for discrete data in which the emission probabil-
ity, which is the conditional probability of a response given the contemporaneous hidden state, is
formed by a restricted latent class model (RLCM; Xu, 2017). RLCMs are designed for diagnostic
research settings by imposing structure on the emission matrix to infer a collection of underly-
ing skills and attributes. The goal of these applications is to classify respondents according to
substantively important latent attribute profiles. Although several studies developed new methods
for inferring restricted HMM parameters, issues such as model identifiability are important to
examine for restricted HMMs in order to ensure the feasibility of recovering model parameters
and conducting diagnostic inferences. In this paper, we focus on discrete time HMMs.

There has been considerable research on the identifiability of HMMs. For an HMM with
finite observable and hidden states, prior research (Baras & Finesso, 1992, Lemma 1.2.4) pro-
vided an identifiability condition which shows that the distribution of an HMM with r hidden
states and κ observable states can be completely determined if the marginal distribution of 2r
consecutive observed variables is known. Paz (1971) proposed a stronger result in Corollary 3.4:
the marginal distribution of 2r −1 consecutive observed variables uniquely determines the whole
HMM distribution. Bonhomme, Jochmans, and Robin (2016) established identifiability of finite
HMMs, which include finite observed and hidden states, by imposing restrictions on the structure
of the transition and emission matrices, and linked the identifiability problem with the decompo-
sition of a multiway array and simultaneously diagonalizing a collection of matrices. By applying
the uniqueness theorem pointed out by Lathauwer, Moor, and Vandewalle (2004), Bonhomme et
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al. (2016) derived sufficient conditions for this class of finite HMMs to be identifiable up to a
permutation of states. Compared with previous results, the identifiability conditions presented in
Bonhomme et al. (2016) are easier to verify in practice.

The classical model identifiability studied by the above research is referred to as strict identifi-
ability, which guarantees distinct set of parameters correspond to different values for the likelihood
function, but these conditions may be too strong in practice. Allman, Matias, and Rhodes (2009)
defined generic identifiability as “all nonidentifiable parameter choices lie within a proper subva-
riety, and thus form a set of Lebesgue measure zero,” which is enough for practical data analysis
purposes. Petrie (1969) identified conditions that the transition matrix and the emission matrix
should satisfy to ensure the generic identifiability of HMMs with finite observable and hidden
states. Allman et al. (2009) provided a generic identifiable condition for HMMs by applying the
fundamental algebraic result in Kruskal (1977) and demonstrated that an HMM with r hidden
states and κ observable states are generically identifiable if the marginal distribution of 2k + 1

consecutive observed variables is known, where k satisfies

(
k + κ − 1
κ − 1

)
≥ r .

The purpose of our paper is to contribute to the body of research on the identifiability of
HMMs with particular focus on conditions for identifying parameters of restricted HMMs. The
identifiability conditions we propose for restricted HMMs are of interest to wide applications
in psychological and educational studies. The main difference between the conventional (i.e.,
unrestricted) HMMs discussed above and restricted HMMs is that the restricted HMM model
parameters are constrained by a latent binary matrix. Consequently, the parameter space falls into
ameasure zero set with respect to the whole parameter space of an unrestrictedmodel as discussed
in Allman et al. (2009), so identifiability conditions mentioned above for conventional HMMs
cannot be directly applied to our restricted HMMs.

In this paper, we consider both conventional and restricted HMMs with a time-invariant
emission matrix, which governs the probability of observed variables given hidden states. We
propose strict and generic identifiability conditions for conventional HMMswith finite observable
and hidden states by generalizing the result in Bonhomme et al. (2016). For restricted HMMs,
we extend static RLCMs for a single time point by proposing a restricted HMM framework,
which allow us to monitor the learning trajectory and uncover the underlying structure between
items and skills. We propose strict and generic identifiability conditions for model parameters
using both a deterministic inputs, noisy “and” gate (DINA; Haertel, 1989; Junker & Sijtsma,
2001) and the general RLCM (De La Torre, 2011; Henson, Templin, &Willse, 2009; Von Davier,
2008) measurement models. The HMMs discussed in our paper contain finite hidden states, so
the identifiability is defined up to a permutation on the state labels. Furthermore, we also propose
a Bayesian formulation and present an algorithm for inferring parameters for the popular DINA
model restricted HMM (Chen, Culpepper, Wang, & Douglas, 2018).

The remainder of the paper is organized as follows. Section 1 introduces the setup of our two
restricted HMMs. Section 2 describes the identifiability issue and shows the strict and generic
identifiability conditions of our models. Section 3 proposes the Bayesian formulation for our
restricted HMM and provides a summary of the algorithm for posterior inference. Section 4
reports results from a Monte Carlo simulation study demonstrating the accuracy of the proposed
algorithm, and Section 5 includes results from a real data application. Lastly, Sect. 6 summarizes
the contribution and limitations of this paper and proposes several future research topics. Proofs
and other details about the real data are given in Appendices.
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Figure 1.
Embedding the HMM into CDMs with learning trajectories.

1. Models and Applications

1.1. Model Setup

Consider a cognitive diagnosis model that allows attribute profiles to change over time.
We discuss a model for multiple individuals i = 1, . . . , N , and we suppress the i subscript
for individuals in the following discussion to simplify notation. Let α = (α1, . . . ,αT )� be
the learning trajectory of a subject, where αt = (α1t , . . . , αKt )

� represents the corresponding
attribute profile at time t (t = 1, . . . , T ) and αkt = 1 indicates that the subject possesses the k-th
attribute and 0 otherwise. Let Y = (Y1, . . . ,Y T )� denote the binary response data of the subject
over time, where Y t = (Y1t , . . . ,YJt )

� represents the responses of J items from the subject at
time point t and let y = ( y1, . . . , yT )� be a realization of responses Y . Figure 1 presents the
HMM we employ to describe dependence in Y and trace the learning trajectory. Specifically, we
consider designs with data collected over T time points and we model the dependence over time
by introducing a first-order HMM for the association of underlying attributes at each time.

Consider a stationary Markov chain {αt } (t = 1, 2, . . . , T ) on state space {0, 1}K with
K < J , a time-invariant transition matrix ω, and stationary distribution π . For general HMMs,
the responses {Y t } (t = 1, 2, . . . , T ) are assumed to be conditionally independent given αt .We let
B denote the 2J ×2K emission matrix, which contains the emission probabilities P(Y t = yt |αt ),
where the column entries are indexed by αt and rows correspond to response patterns yt .

1.2. Applications

Given attribute profile αt , assuming that the binary responses Y1t , . . . ,YJt are independent
Bernoulli variables with parameter θ j,αt , then the emission probability P(Y t = yt |αt ) is

P(Y t = yt |αt ,�) =
J∏

j=1

θ
y jt
j,αt

(1 − θ j,αt )
1−y jt , (1)

where θ j,αt = P(Y jt = 1|αt ,� j ) is the probability of correctly answering item j at time t for a
subject with attribute profile αt , and � = (�1, . . . ,�J ) represents model parameters which are
fixed over time.

Equation (1) is an unrestricted model that includes 2K latent class response probabilities for
each item. In our application, we instead consider restricted models, which impose some structure
on the θ j,αt ’s.

1.2.1. General Model Chen, Liu, Xu, and Ying (2015) proposed a general alternative repre-
sentation of CDMs

θ j,αt = P(Y jt = 1|αt ,β j ) = �(α∗�
t β j ), (2)
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where�(·) is a cumulative distribution function (CDF), which we assume is a positive and strictly
increasing function in this paper, and

α∗
t =

(
1, α1t , . . . , αKt , α1tα2t , . . . , αK−1,tαKt , . . . ,

K∏
k=1

αkt

)
(3)

is a 2K -dimensional alternative representation of the binary vector αt with all the interactions,
and

α∗�
t β j = β j,0 +

K∑
k=1

β j,kαkt +
∑
k>k′

β j,kk′αktαk′t + . . . + β j,12...K

K∏
k=1

αkt . (4)

Here β j is a sparse vector of coefficients, in which the nonzero elements represent the impact of
latent skills or combinations of skills on the response of item j . The sparsity of β j is represented

by a binary vector γ j ∈ {0, 1}2K , with 1 implying that the corresponding coefficient is nonzero
(active) and 0 implying that the corresponding coefficient is zero (inactive). The intercept β j,0 is
usually assumed to be active.

For the generalmodel,weuseβ J×2K = (β1, . . . ,β J )
� to represent the coefficientmatrix and

� J×2K = (γ 1, . . . , γ J )
� to represent its sparsity. Many popular CDMs can be reparameterized

from the general model. Next, we introduce the DINAmodel (Junker & Sijtsma, 2001) as a special
case of the general model.

1.2.2. DINA Model We introduce a J × K binary matrix, Q = (q1, . . . , q J )
� ∈ {0, 1}J×K ,

which defines the underlying structure between latent skills and items. Here q�
j = (q j1, . . . , q jK )

is the j-th row of the Q matrix and q jk = 1 indicates item j requires the mastery of skill k
and 0 otherwise. In short, RLCMs impose sparsity and are generally more parsimonious than
unrestricted models. In this paper, we deploy the DINA model (Junker & Sijtsma, 2001) with
parameters � j = (q j , s j , g j ). The probability of a correct response is

θ j,αt = P(Y jt = 1|αt , q j , s j , g j ) = (1 − s j )
η j t g

1−η j t
j , (5)

where if let I(·) denote the indicator function, then η j t = I
(
α�
t q j ≥ q�

j q j

)
corresponds to an

“and” logic gate that equals one if the subject mastered the required attributes for item j at time t
and zero if at least one required attribute was not mastered. Additionally, s� = (s1, . . . , sJ ) and
g� = (g1, . . . , gJ ) represent slipping and guessing parameters such that s j = P(Y jt = 0|η j t =
1) and g j = P(Y jt = 1|η j t = 0). Further details about the DINA model are given in Sect. 3.

2. Identifiability

2.1. Identifiable HMMs

As introduced in the previous section, the stationary distribution of attribute profiles is given
by the vector π = (πc)

� ∈ [0, 1]2K with
∑

πc = 1. Transition matrix ω is a 2K × 2K matrix
of first-order transition probabilities between different states. For any time t > 1, let ωc′|c =
P(α�

t υα = c′ | α�
t−1υα = c) denote the (c, c′) element in ω, which represents the probability
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of transitioning from state c to c′ between any two consecutive time points, where the vector
υα = (2K−1, . . . , 1)� is used to create a bijection between the binary attributes αt and integers
c, c′ ∈ {0, . . . , 2K − 1}.

In the context of HMMs, we denote the parameter space of (π ,ω, B) by

�(π ,ω, B) = {(π ,ω, B) : π ∈ �(π),ω ∈ �(ω), B ∈ �(B)}, (6)

where �(π) = {π ∈ [0, 1]2K : ∑c πc = 1}, �(ω) = {ω ∈ [0, 1]2K×2K : ∑c′ ωc′|c = 1, c =
0, . . . , 2K − 1} and �(B) = {B ∈ [0, 1]2J×2K : ∑i Bi j = 1, j = 1, . . . , 2K }.

We next discuss model identifiability by considering two discrete time HMMs parameterized
by two parameter values (π ,ω, B) and (π̄ , ω̄, B̄).

Definition 1. (Strict Identifiability) The parameters (π ,ω, B) ∈ �(π ,ω, B) are identifiable
when

P(Y = y | π ,ω, B) = P(Y = y | π̄ , ω̄, B̄) if and only if (π ,ω, B) ∼ (π̄ , ω̄, B̄),

where (π̄ , ω̄, B̄) is another value from the parameter space �(π ,ω, B) and “∼” means two
parameter values are equivalent up to a permutation of hidden states.

2.2. Generic Identifiability

The identifiability introduced in Definition 1 is referred to as strict identifiability, which
could be too restrictive in practice. A weaker notion of identifiability is referred to as generic
identifiability, which was first introduced in Allman et al. (2009). Generic identifiability allows
the existence of some exceptional values of parameters forwhich strict identifiability does not hold,
however, all non-identifiable parameters should form a Lebesgue measure zero set. Since non-
identifiable parameters live in a set of measure zero, one is unlikely to face identifiability problems
in performing inference. Thus, generic identifiability is generally sufficient for data analysis
purposes. For instance, Allman et al. (2009) showed that the generic identifiability condition
requires a fewer number of consecutive observedvariables to completely determine the distribution
of an HMM in comparison to the strict identifiability condition.

Let 
(π ,ω, B) denote the set of non-identifiable parameters from �(π ,ω, B):


(π ,ω, B) = {(π ,ω, B) : P(Y = y | π ,ω, B) = P(Y = y | π̄ , ω̄, B̄) for some

(π̄ , ω̄, B̄) �∼ (π ,ω, B), (π ,ω, B) ∈ �(π ,ω, B), (π̄ , ω̄, B̄) ∈ �(π ,ω, B)}.
(7)

Based on the definition of generic identifiability, if the non-identifiable parameter set

(π ,ω, B) is of measure zero within parameter space �(π ,ω, B), then we say �(π ,ω, B)

is a generically identifiable parameter space.

Definition 2. (Generic Identifiability) The parameter space �(π ,ω, B) is generically identi-
fiable, if the Lebesgue measure of 
(π ,ω, B) with respect to parameter space �(π ,ω, B) is
zero.
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2.3. Identifiability Conditions

In this section, we discuss identifiability conditions for both conventional HMMs and
restricted HMMs. We start with strict and generic identifiability conditions for conventional
HMMs. Consider the bipartition of the set J = {1, 2, . . . , J } into two disjoint, nonempty subsets
J1 = {1, 2, . . . , K }, J2 = {K + 1, . . . , J }. Then for t = 1, . . . , T , let Y t = (YJ1�

t ,YJ2�
t )�,

where YJ1
t = (Y1t , . . . ,YKt )

� and YJ2
t = (Y(K+1)t , . . . ,YJt )

�. Let BJ1 and BJ2 be the emis-

sion matrices for YJ1
t and YJ2

t , respectively, given values of attribute profile αt , and we have
B = BJ1 	 BJ2 , where 	 represents the Khatri–Rao, column-wise tensor product defined in
Definition 4, Appendix B.

Theorem 1. (Strict Identifiability for HMMs) Any parameter (π ,ω, B) from �(π ,ω, B) in the
HMM is identifiable if rank(ω) = 2K , πc > 0 for all c, and

(a) for T ≥ 3, rank(B) = 2K (Bonhomme et al., 2016);
(b) for T = 2, rank(BJ1) = 2K and rankK (BJ2) ≥ 2.

Note rankK in part (b) of Theorem 1 denotes the Kruskal rank (see Definition 5 in Appendix
C). Proof of part (b) is shown in Appendix C. Based on the above result, we propose generic
identifiability conditions for conventional HMMs up to a permutation of hidden states.

Theorem 2. (Generic Identifiability for HMMs) For an HMM, the parameter space �(π ,ω, B)

is generically identifiable if πc > 0 for all c, and

(a) for T ≥ 3, rank(B) = 2K ;
(b) for T = 2, rank(BJ1) = 2K and rankK (BJ2) ≥ 2.

Proof is found in Appendix A (for part (a)) and C (for part (b)).

Remark 1. For conclusions for T = 2 case in Theorems 1 and 2, we do not require the attribute
profiles sequence to have a stationary distribution. We only need positive initial probabilities for
attribute profiles at time point t = 1. Proof is given in Appendix G.

Theorem 2 provides generic identifiability conditions for unrestricted HMMs. However, The-
orem 2 is not applicable to our setting with a restricted HMM. The parameter space shown in
Eq. (6) corresponds to an unrestricted HMM, whereas in our restricted HMMs, the parameter
space of the emission matrix B is restricted by some binary structures. For the DINA model, B
is restricted by the structure of the Q matrix, while for the general model, B is restricted by the
structure of the � matrix.

2.3.1. GeneralModel Weuseβ J×2K to represent the coefficientmatrix and� J×2K to represent
its sparsity. For a given sparsity structure �, the parameter space of the restricted HMM is

��(π ,β,ω) = {(π ,β,ω) : π ∈ �(π),ω ∈ �(ω),β ∈ ��(β)} , (8)

where��(β) represents the set of coefficientmatrices that only have nonzero elements at positions
where the corresponding elements in � are 1.

The following three conditions are needed in Theorems 3 and 4 for the identifiability of
restricted HMMs:
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(B1) The true sparsity matrix � takes the form of � =
(
D
�′

)
J×2K

after row swapping,

where �′ is a (J − K ) × 2K binary matrix and D is a K × 2K binary matrix with the
following structure

D =

⎛
⎜⎜⎜⎝
1 1 0 . . . 0 . . . 0
1 0 1 . . . 0 . . . 0
...

...
. . .

...

1 0 0 . . . 1 . . . 0

⎞
⎟⎟⎟⎠ .

(B2) For any two attribute profiles, there exists at least one item associated with a row in
�′ such that they have different emission probabilities.

Remark 2. Condition (B1) for � can be interpreted as requiring that the coefficients βk,k are
nonzero for k = 1, . . . , K .

Remark 3. We do not require monotonicity where the attribute profiles are positively correlated
with the probability of a correct response. Enforcingmonotonicity avoids a type of label switching
known as attribute-level switching where the meaning of αk = 0 changes from non-master to
master or vice versa. Accordingly, our theorems establish identifiability up to label switching.

Theorem 3. (Strict Identifiability forRestrictedHMMs) For anHMMwith emissionprobabilities
in matrix B formed by the general model as shown in Eq. (2), the parameter space ��(π ,β,ω)

is identifiable if rank(ω) = 2K , πc > 0 for all c = 0, . . . , 2K − 1, and

(a) for T ≥ 3, condition (B1) is satisfied;
(b) for T = 2, conditions (B1)-(B2) are satisfied.

Proof is shown in Appendix F.

Theorem 4. (Generic Identifiability for Restricted HMMs) For an HMM with emission prob-
abilities in matrix B formed by the general model as shown in Eq. (2), the parameter space
��(π ,β,ω) is generically identifiable if πc > 0 for all c = 0, . . . , 2K − 1, and

(a) for T ≥ 3, condition (B1) is satisfied;
(b) for T = 2, conditions (B1)-(B2) are satisfied.

Proof is shown in Appendix F.

2.3.2. DINA Model We denote the whole parameter space of the restricted HMM by

�(π ,ω, s, g, Q) = {(π ,ω, s, g, Q) : π ∈ �(π), ω ∈ �(ω), s ∈ (0, 1)J ,

g ∈ (0, 1)J , Q ∈ {0, 1}J×K }. (9)

We let 
(π ,ω, s, g, Q) denote the set of non-identifiable parameters from �(π ,ω, s, g, Q):


(π , ω, s, g, Q) = {(π , ω, s, g, Q) : P(Y = y | π , ω, s, g, Q) = P(Y = y | π̄ , ω̄, s̄, ḡ, Q̄)

for some (π̄ , ω̄, s̄, ḡ, Q̄) �∼ (π , ω, s, g, Q),

(π , ω, s, g, Q) ∈ �(π , ω, s, g, Q), (π̄ , ω̄, s̄, ḡ, Q̄) ∈ �(π , ω, s, g, Q)}.
(10)



368 PSYCHOMETRIKA

Similar to Definition 2, if the non-identifiable parameter set 
(π ,ω, s, g, Q) is of mea-
sure zero with respect to parameter space �(π ,ω, s, g, Q), then we say �(π ,ω, s, g, Q) is a
generically identifiable parameter space.

Remark 4. In Eq. (9), we exclude extreme values (0 and 1) for both s and g to make sure that we
always have positive response probabilities, which is also required in Theorem 5.

The following two conditions are needed in Theorems 5 and 6 for identifiability of restricted
HMMs.

(A1) Q matrix takes the following form (after a row permutation):

Q =
(
IK
Q∗

)
J×K

,

where IK represents a K × K identity matrix and Q∗ can be any form except zero rows.
(A2) Q matrix takes the following form (after a row permutation):

Q =
⎛
⎝ IK

IK
Q∗∗

⎞
⎠

J×K

,

where Q∗∗ could be any form except zero rows.

Theorem 5. (Strict Identifiability for Restricted HMMs-DINA) For an HMM with emission
probabilities in matrix B formed by the DINA model as shown in Eq. (5), the parameter space
�(π ,ω, s, g, Q) is identifiable if rank(ω) = 2K , g j �= 1 − s j for all j = 1, . . . , J , πc > 0 for
all c = 0, . . . , 2K − 1, and

(a) for T ≥ 3, condition (A1) is satisfied;
(b) for T = 2, condition (A2) is satisfied.

Proof is found in Appendix B (for part (a)) and D (for part (b)).

Remark 5. Comparedwith the sufficient and necessary condition for the strict identifiability under
the staticDINAmodel (i.e., the casewith T = 1) shown inGu andXu (2021), a common condition
is that the Q matrix should be complete, i.e., the Q matrix contains an identity submatrix IK .
The conditions required for the remaining rows of Q are different between the static DINA and
the restricted HMM formed by the DINA. For example, under the static DINA Q∗ must have
unique columns, whereas the Q∗ matrix for the restricted DINA HMMmust have nonzero rows.

Theorem 6. (Generic Identifiability for Restricted HMMs-DINA) For an HMM with emission
probabilities in matrix B formed by the DINA model as shown in Eq. (5), the parameter space
�(π ,ω, s, g, Q) is generically identifiable if πc > 0 for all c = 0, . . . , 2K − 1, and

(a) for T ≥ 3, condition (A1) is satisfied;
(b) for T = 2, condition (A2) is satisfied.

Proof is found in Appendix B (for part (a)) and D (for part (b)).

Remark 6. Theorems 5 and 6 hold up to label switching of attributes. Conditions (A1) and (A2)
exclude the possibility of zero rows in Q∗ and Q∗∗ so that guessing parameters are identifiable.
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3. Bayesian Formulation for the DINA Model

Following the same setting in Sect. 1.2, suppose there are N subjects, J items, K skills
and T time points. We use subscript i = 1, . . . , N to index subjects, j = 1, . . . , J to index
items, t = 1, . . . , T to index time points, and c = 0, . . . , 2K − 1 to index latent states. Let
αi t denote the attribute profile of subject i at time point t , where αi t = (αi1t , . . . , αi K t )

� and
αi = (αi1, . . . ,αiT )�, and Yi jt denote the response of subject i to item j at time point t . The
likelihood of observing a sample of N responses to J items with T time points is given by

p(Y |Q, s, g,π1,ω) =
N∏
i=1

∑
αi1∈A, αi t∈At+

t=2,...,T

p(Y i |αi , Q, s, g,π1,ω)p(αi1|π1)

×
T∏
t=2

p(αi t |αi,t−1,ω),

where π1 is the initial distribution of attribute profiles,A represents the set of all attribute vectors,
andAt+ represents the set of nondecreasing learning trajectories at time t (Chen, Culpepper,Wang,
& Douglas, 2018). The posterior distribution of the parameters for the restricted HMM is

p(α, Q, s, g,ω,π1|Y) ∝ p(Y |α, Q, s, g,π1,ω)p(α|π1,ω)p(Q)p(π1)p(ω)p(s, g).

We formulate the DINA Bayesian model as follows:

Yi jt |αi t , q j , s j , g j ∼ Bernoulli
(
(1 − s j )

ηi j t g(
1−ηi j t)
j

)
, ηi j t = I

(
α�
i t q j ≥ q�

j q j

)
,

(11)

p (αi |π1,ω) = p (αi1|π1)

T∏
t=2

p
(
αi t |αi,t−1,ω

)

=
⎛
⎝ ∏

αc∈A
π
I(αi1=αc)
1c

⎞
⎠ T∏

t=2

∏
αc∈At−1+

∏
αc′ ∈At+

ω
I(αi t=αc′)I(αi,t−1=αc)
c′|c , (12)

π1 = (
π1,0, . . . , π1,2K−1

) ∼ Dirichlet (δ0) , δ0 = (
δ0,0, . . . , δ0,2K−1

)
, (13)

ωc = (
ω0|c, . . . , ω2K−1|c

) ∼ Dirichlet (δc) , δc = (
δ0|c, . . . , δ2K−1|c

)
, (14)

p
(
s j , g j

) ∝ sαs−1
j

(
1 − s j

)βs−1
g

αg−1
j

(
1 − g j

)βg−1 I (
0 < g j < 1 − s j < 1

)
, (15)

p(Q) ∝ I(Q ∈ Q). (16)

We add restriction ‘g j < 1 − s j ’ in Eq. (15) to avoid the label switching issue for attributes.
Equation (16) shows a uniform prior for the Q matrix in the spaceQ of identifiable models under
the generic identifiability condition given in Conditions (A1) or (A2).

The Gibbs sampling algorithm is implemented to sample from the posterior distribution. Full
conditional distributions of parameters shown above are included in Appendix E. Furthermore,
we apply constrained Gibbs sampling method for the Q matrix, which was discussed in Chen,
Culpepper, Chen, and Douglas (2018). The full sampling steps of all parameters are shown in
Algorithm 1.
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Algorithm 1

1: Initialize with an identifiable Q(0) matrix, attribute profiles α(0), attribute categorical probabilities π
(0)
1 ,

transition matrix ω(0), and other item parameters s(0) and g(0).
2: for r in 1 : R do
3: for all j in 1 : J and k in 1 : K do
4: if q jk is the element in a row vector ek (a 0-1 vector with a single 1 in the k-th position) where there

is only one ek (if T ≥ 3) or two ek ’s (if T = 2) in the current Q then
5: Let q(r)

jk = q(r−1)
jk .

6: else
7: Update q(r)

jk = i (i = 0, 1) with weight proportional to∏N
i=1

∏T
t=1 p(Y i j t |s(r−1)

j , g(r−1)
j ,α

(r−1)
i t , Q(r)

new, q(r)
jk = i, Q(r−1)

old ), where Q(r)
new repre-

sents the entries of current Q that have already been updated, and Q(r−1)
old represents the entries

of current Q that have not been updated.
8: end if
9: end for
10: for i in 1 : N do
11: for t in 1 : T do
12: if t = 1 then
13: Given α

(r−1)
i2 = αc2, update α

(r)
i1 to αl1 with weight proportional to

p(Y i1|αl1, Q(r), s(r−1), g(r−1)) · π1,l · ωc|l .
14: else if 1 < t < T then
15: Given α

(r)
i,t−1 = αc,t−1 and α

(r−1)
i,t+1 = αc′

,t+1, update α
(r)
i t to αlt with weight proportional to

p(Y i t |αlt , Q(r), s(r−1), g(r−1)) · ωl|c · ωc′ |l .
16: else
17: Given α

(r−1)
i,T−1 = αc,T−1, update α

(r)
iT to αlT with weight proportional to

p(Y iT |αlT , Q(r), s(r−1), g(r−1))ωl|c.
18: end if
19: end for
20: end for
21: Update π

(r)
1 |α(r) ∼ Dirichlet (Ñ0 + δ0), where Ñ0 = (Ñ0,1, . . . , Ñ0,2K )� represents the frequen-

cies of each initial attribute pattern αc1, c = 0, . . . , 2K − 1.

22: For c = 0, . . . , 2K −1, updateω
(r)
c |α(r) ∼ Dirichlet (Ñc+δc), where Ñc = (Ñ0|c, . . . , Ñ2K−1|c)�

represents the number of subjects that changed their attribute profiles to αc,t+1 at time t + 1, where
t = 1, . . . , T − 1.

23: For j = 1, . . . , J , update s(r)j , g(r)
j |Y , α(r), Q(r) ∼ Beta(as , bs)Beta(ag, bg)I(0 < g j < 1−s j <

1), i.e., sample s(r)j and g(r)
j independently from Beta(as , bs) and Beta(ag, bg) truncated in the region

0 < g j < 1− s j < 1. Expressions for as , bs , ag and bg are in Equation (12) of Culpepper (2015) (as ,

bs , ag and bg here are corresponding to α̃s , β̃s , α̃g and β̃g in Equation (12)).
24: end for

4. Monte Carlo Simulation Study

4.1. Settings

We next report results from a Monte Carlo experiment to evaluate the performance of Algo-
rithm 1. We conducted the simulation study under different sample size (i.e., N = 500, 1000, and
2000), numbers of attributes (i.e., K = 3, 4, and 5), the length of the time period (i.e., T = 2, 3,
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4, and 5), and correlations among the attributes at the first time point (i.e., ρ = 0, ρ = 0.25 and
0.5).

For the ρ = 0 case, the attribute profile α1 = (α11, . . . , αK1)
� is generated uniformly

from all possible 2K cases. For the ρ > 0 case, the dependence among attribute profiles is
introduced using the method of Chiu, Douglas, and Li (2009). Suppose Z = (Z1, . . . , ZK )�
follows a multivariate normal distribution N (0,�) with unit variance and correlation ρ, where
� = (1 − ρ)IK + ρ1K 1�

K and 1K is a column vector of 1 with length K . Then, the attribute
profile α1 is given by αk1 = I(Zk ≥ �−1( k

K+1 )), k = 1, . . . , K , where � is the cumulative
distribution function of the standard normal distribution.

We let the slipping and guessing parameters be 0.2 and 0.3, respectively. Our true Q has J =
18 items for K = 3, 4 and J = 20 items for K = 5. Also, as discussed in Chen, Culpepper,Wang,
and Douglas (2018), we assume that attributes are non-decreasing over time, so the transition
matrixω is an upper triangularmatrix.We sample the trueω from the prior under the assumption of
non-decreasing learning trajectories. The simulation study specified the true unknown Qmatrices,
QK=3, QK=4 and QK=5, in Eq. (17), which all satisfy the identifiability constraints given in
Conditions (A1) and (A2).

We use a Markov chain of length of 20,000 with a 10,000 burn-in period for K = 3, a chain
of length of 30,000 with a 20,000 burn-in period for K = 4, and a chain of length of 40,000 with
a 30,000 burn-in period for K = 5.

QK=3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 0
1 0 1
0 1 1
1 1 1
1 1 1
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, QK=4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, QK=5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 1
0 1 0 0 1
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 1
1 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

4.2. Results

Werepeated the simulation study 100 times for each setting.Weuse severalmetrics to evaluate
parameter recovery. In particular, we report the average element-wise accuracy rate (EAR) for
Q by comparing the estimated Q̂ and the true Q matrix, where Q̂ is the mode of all samples
after the burn-in period. Furthermore, we compute the average root mean squared error (RMSE)
to assess the accuracy of the estimated transition matrix ω̂, where ω̂ is the mean of all samples
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Table 1.
Summary of simulation performance for restricted HMM.

K T ρ N = 500 N = 1000 N = 2000
Q̂ = Q EAR RMSE Q̂ = Q EAR RMSE Q̂ = Q EAR RMSE

3 2 0.00 99 0.9981 0.0714 100 1.0000 0.0515 100 1.0000 0.0379
3 3 0.00 96 0.9907 0.0622 93 0.9856 0.0562 98 0.9963 0.0320
3 4 0.00 91 0.9826 0.0643 94 0.9883 0.0502 90 0.9815 0.0507
3 5 0.00 95 0.9911 0.0591 87 0.9722 0.0675 85 0.9678 0.0629
4 2 0.00 98 0.9997 0.0912 99 0.9989 0.0743 99 0.9983 0.0585
4 3 0.00 96 0.9944 0.0785 99 0.9982 0.0599 93 0.9885 0.0525
4 4 0.00 94 0.9901 0.0775 97 0.9953 0.0601 94 0.9900 0.0527
4 5 0.00 93 0.9876 0.0785 94 0.9882 0.0626 90 0.9846 0.0579
5 2 0.00 98 0.9976 0.0956 99 0.9993 0.0861 93 0.9922 0.0750
5 3 0.00 95 0.9947 0.0811 93 0.9916 0.0757 97 0.9962 0.0605
5 4 0.00 90 0.9868 0.0796 92 0.9909 0.0734 91 0.9879 0.0631
5 5 0.00 91 0.9902 0.0827 91 0.9892 0.0727 87 0.9819 0.0661
3 2 0.25 94 0.9909 0.1135 97 0.9939 0.0856 94 0.9869 0.0710
3 3 0.25 97 0.9961 0.0834 94 0.9874 0.0699 93 0.9856 0.0577
3 4 0.25 98 0.9972 0.0750 94 0.9844 0.0663 94 0.9893 0.0522
3 5 0.25 100 1.0000 0.0732 97 0.9928 0.0595 95 0.9896 0.0518
4 2 0.25 74 0.9865 0.1301 90 0.9858 0.1142 85 0.9717 0.1036
4 3 0.25 95 0.9908 0.0969 88 0.9796 0.0865 86 0.9757 0.0790
4 4 0.25 88 0.9821 0.0952 88 0.9788 0.0841 82 0.9699 0.0774
4 5 0.25 81 0.9700 0.0991 84 0.9728 0.0889 83 0.9703 0.0787
5 2 0.25 49 0.9783 0.1041 59 0.9540 0.1026 52 0.9409 0.0983
5 3 0.25 71 0.9682 0.0991 70 0.9579 0.0958 56 0.9353 0.0949
5 4 0.25 75 0.9721 0.0978 75 0.9670 0.0917 63 0.9508 0.0894
5 5 0.25 76 0.9707 0.0970 77 0.9698 0.0913 64 0.9498 0.0926
3 2 0.5 84 0.9835 0.1435 95 0.9894 0.1153 88 0.9759 0.0988
3 3 0.5 92 0.9898 0.0912 97 0.9933 0.0781 90 0.9835 0.0651
3 4 0.5 96 0.9907 0.0874 96 0.9911 0.0721 93 0.9876 0.0593
3 5 0.5 91 0.9869 0.0929 94 0.9865 0.0743 91 0.9824 0.0654
4 2 0.5 56 0.9811 0.1399 73 0.9596 0.1364 69 0.9461 0.1281
4 3 0.5 83 0.9788 0.1097 78 0.9610 0.1019 68 0.9421 0.1000
4 4 0.5 82 0.9729 0.1042 77 0.9643 0.0983 78 0.9596 0.0844
4 5 0.5 81 0.9706 0.1040 69 0.9490 0.1039 77 0.9599 0.0879
5 2 0.5 16 0.9602 0.1073 25 0.9393 0.1068 35 0.9184 0.1057
5 3 0.5 57 0.9690 0.1000 67 0.9565 0.0984 51 0.9273 0.1008
5 4 0.5 74 0.9760 0.0978 67 0.9565 0.0975 54 0.9254 0.0990
5 5 0.5 75 0.9740 0.0975 70 0.9590 0.0951 60 0.9452 0.0958

Q̂ = Q indicates the number of times the estimated Q̂ equals to the true Q out of 100 repetitions in each
case; EAR = element-wise accuracy rate, averaged over 100 repetitions; RMSE = root mean squared error
for ω, averaged over 100 repetitions.

after the burn-in period. Simulation results in Table 1 show a good recovery for Q matrix. It also
suggests that for fixed K , the RMSE becomes smaller as the time period gets longer, since we
have more attribute samples for estimating the transition matrix ω; the EARs are high for most
of the settings, especially when ρ = 0; as ρ becomes larger, there is a slight impact on the EAR.
Table 2 shows the average computation time for our simulation study using a MacBook Pro with
2.3 GHz Intel Core i5 processor.
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Table 2.
Computation time (minutes) per replication.

K T N = 500 N = 1000 N = 2000

3 2 4.6 8.6 18.0
3 3 6.0 12.5 25.7
3 4 8.7 17.7 34.5
3 5 10.5 21.8 40.0
4 2 11.4 21.4 38.0
4 3 16.1 28.3 56.9
4 4 20.0 39.5 77.3
4 5 25.0 48.6 94.8
5 2 26.5 47.6 94.1
5 3 39.1 70.5 132.2
5 4 48.8 90.0 174.8
5 5 60.0 111.9 220.3

5. Real Data Analysis

In this section, we apply Algorithm 1 to the Problems in Elementary Probability Theory data
set (Heller & Wickelmaier, 2013).

5.1. Problems in Elementary Probability Theory

This data set contains responses to two sets of J = 12 questions in elementary probability
theory observed before and after some instructions. All 504 participants completed the first set
of questions, but only 345 of them completed the second set of questions, so we have N = 345
and T = 2. We compared models with K = 2, 3, and 4 and set K = 3 based on results for the
log-likelihood from a 10-fold cross-validation method.We ran fiveMarkov chains with K = 3 for
convergence diagnostics of the Markov chain. Figure 2 shows the plot of maximum proportional
scale reduction factor (PSRF) (Brooks & Gelman, 1998) for checking the convergence of Markov
chain with multivariate parameters. The approximate convergence is achieved after 10, 000 iter-
ations since the maximum PSRF remains below 1.1 after that. So we ran 100 Markov chains of
length 20, 000 (with 10, 000 as burn-in) with K = 3 to estimate the parameters, and the results
are shown in Table 3.

Table 3 reports the estimated Q̂ matrix, an expert-specified Q matrix, and item parameters.
Note that we constructed the estimated Q̂ by first finding the posterior mode of Q̂ for each of the
100 repetitions and then selecting the value with the highest log-likelihood.

The estimated Q̂ matrix shares some common interpretation with the expert Q matrix. The
expert Q matrix includes four attributes: (1) calculate the classic probability of an event (pb);
(2) probability of the complement of an event (cp); (3) the union of two disjoint events (un); and
(4) the probability of two independent events (id). By referring to the two problem sets (given in
Appendix H) and the expert Q matrix, we conclude that Attribute 1 in our estimated Q̂ is related
to calculations of classical probability (pb) (Question 1) and the understanding of independence
in probability theory (id) (Questions 4, 10, 11, 12), Attribute 2 represents the mastery of applying
probability models, including probabilities of the union of two disjoint events (un) (Questions 3,
7, 8, 12) and the complement of an event (cp) (Questions 2, 5, 6), and Attribute 3 is related to
problems about a standard deck of cards (Questions 5, 9).
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Figure 2.
The maximum PSRF for Problems in Elementary Probability Theory data.

Table 3.
Estimated Q̂, slipping ŝ j and guessing ĝ j parameters for Problems in Elementary Probability Theory data.

Question Expert Q Q̂ ŝ j ĝ j
pb cp un id A1 A2 A3

1 1 0 0 0 1 0 0 0.041 0.751
2 0 1 0 0 0 1 0 0.014 0.817
3 0 0 1 0 0 1 0 0.032 0.590
4 0 0 0 1 1 0 0 0.030 0.274
5 1 1 0 0 0 0 1 0.079 0.646
6 1 1 0 0 0 1 0 0.029 0.534
7 1 0 1 0 0 1 0 0.031 0.638
8 1 0 1 0 0 1 0 0.027 0.770
9 1 0 0 1 0 0 1 0.029 0.260
10 0 1 0 1 1 0 0 0.114 0.087
11 1 1 0 1 1 0 0 0.219 0.105
12 1 0 1 1 1 1 0 0.109 0.156

The expert Q can be found in Heller and Wickelmaier (2013).

Table 4 shows the estimated transition matrix ω̂ and proportions of each attribute pattern.
Learning trajectories can be inferred by the transition probabilities shown in the table. For example,
the 5-th row of ω̂ shows the probabilities that students who have mastered skill 1 would transfer
to other states next time. Students mastered skill 1 are more likely to master more skills next time
compared with those who mastered skill 2 or 3 only, and the most likely skill to be mastered
next time is skill 2, and then skill 3 in the end. Similarly, we can deduce learning trajectories for
students who mastered only skill 2 or 3 in the beginning.
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Table 4.
Estimated distribution of initial attributes and transition matrix ω for for Problems in Elementary Probability Theory data.

c αc π̂1 ω̂1|c ω̂2|c ω̂3|c ω̂4|c ω̂5|c ω̂6|c ω̂7|c ω̂8|c
0 000 0.089 0.566 0.062 0.109 0.049 0.061 0.035 0.057 0.061
1 001 0.021 0.317 0.000 0.221 0.000 0.180 0.000 0.282
2 010 0.071 0.309 0.196 0.000 0.000 0.289 0.206
3 011 0.076 0.380 0.000 0.000 0.000 0.620
4 100 0.019 0.268 0.192 0.309 0.231
5 101 0.025 0.377 0.000 0.623
6 110 0.145 0.720 0.280
7 111 0.554 1.000

The attributes represented by αc are labeled in the order of A1, A2 and A3. ω̂c′|c refers to the transition
probability from state c to state c′.

6. Discussion

This paper focuses on the identifiability issue of discrete timeHMMswith finite hidden states.
We proposed generic identifiability conditions by generalizing the strict identifiability condition
discussed in Bonhomme et al. (2016), which may be too strong in practical analysis. Then, we
proved the strict and generic identifiability conditions for our restricted HMMs, in which the
emission probability is formed by two kinds of restricted latent class models. Also, we developed
a Bayesian formulation for the restricted HMM where the generic identifiability conditions are
taken into consideration. The simulation results show that our algorithm can efficiently estimate
model parameters under different model settings for restricted HMMs.

In educational studies, researchers usually impose a non-decreasing pattern on the restricted
HMM transition matrix ω. However, this format implies that the last state is an absorbing state,
and only the probability of the last state is nonzero in the stationary distribution, which does not
satisfy our strict and generic identifiability conditions in Theorems 5 and 6. The generic identifi-
ability proposed in our paper is a sufficient condition, so there might exist a weaker condition on
the stationary distribution π which would allow the non-decreasing configuration. Therefore, one
direction for future research would be the derivation of necessary and sufficient generic identifi-
ability conditions for discrete time HMMs. Understanding necessary conditions is more difficult
when using the Kruskal condition (Kruskal, 1977) for the uniqueness of three-way arrays as it
offers a general sufficient condition for establishing uniqueness. Gu and Xu (2021) established
necessary and sufficient conditions for the static DINA model. Future research may be able to
extend their proof technique to understand necessary conditions for restricted HMMs.

In this paper, we assume that the number of attributes, K , is fixed and known. However, the
prior knowledge for K may not be available in some cases. In real data analysis, we chose K
by applying cross-validation. It is also possible to assume that K is an unknown parameter that
needs to be inferred. However, one challenge is that an unknown K implies that the dimensions
of attribute profiles and transition matrix are no longer available. Future research should consider
methods for accurately inferring both Q and K (Chen, Liu, Culpepper, & Chen, 2021).
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Appendix A: Proof of Part (a) of Theorem 2 (T ≥ 3 case)

We start with introducing some basic terminology and facts from algebraic geometry.

Definition 3. (Cox, Little, and O’Shea (2015)) An algebraic variety V is defined as the simulta-
neous zero-set of a finite collection of multivariate polynomials { fi }ni=1 ⊂ C[ x1, . . . , xk] ,

V = V ( f1, . . . , fn) = {a ∈ C
k | fi (a) = 0, 1 ≤ i ≤ n}. (A1)

Here C[ x1, . . . , xk] represents the set of all polynomials in x1, . . . , xk with coefficients in C, and
Ck is the set of k-dimensional complex numbers.

Lemma 1. (Allman et al. (2009)) A variety is all ofCk only when all fi are 0; otherwise, a variety
is called a proper subvariety and must be of dimension less than k, and of Lebesgue measure 0 in
Ck .

Remark 7. In Lemma 1, analogous statements still hold if we replace Ck by Rk .

In order to show generic identifiability of model parameters, we can prove that all nonidentifiable
parameter choices lie within a proper subvariety, and thus form a set of Lebesgue measure zero
based on Lemma 1.

Proposition 1. rank(B) = rank(ω) = 2K if and only if rank(B · ω) = 2K .

Proof. By Sylvester’s rank inequality (Matsaglia & Styan, 1974), we have

rank(B) + rank(ω) − 2K ≤ rank(B · ω) ≤ min{rank(B), rank(ω)},

so the proposition holds. 
�
By Proposition 1 and part (a) of Theorem 1, we only need to show that rank(B · ω) = 2K holds
almost everywhere in �ω,B = {(ω, B) : ω ∈ �(ω), B ∈ �(B) and rank(B) = 2K }.
Let M be a subset of {1, . . . , 2J } with 2K elements, and then, let [B · ω]M denote the minor of a
submatrix in B · ω that corresponds to the rows with indices in M . Let

f (B,ω) =
∑
M

([B · ω]M )2 : �ω,B → R (A2)

denote the summation of all squared minors of order 2K of matrix B · ω.
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Since f (B,ω) is a polynomial function of B and ω, and we know that the rank of B · ω is the
maximal order of a nonzero minor of B · ω, then by Proposition 1, we can write the zero set of
f (B,ω) as:

Z f = {(ω, B) : (ω, B) ∈ �ω,B and f (B,ω) = 0}
= {(ω, B) : (ω, B) ∈ �ω,B and [B · ω]M = 0 for all possible M}
= {(ω, B) : ω ∈ �(ω), B ∈ �(B), rank(B) = 2K and rank(ω) < 2K }.

(A3)

In the following, we will show that f (B,ω) is not a constant zero function.

Proposition 2. If rank(B) = 2K , then there exists some nonsingular ω, such that f (B,ω) �= 0.

Proof. Given a full column rank B, there must exist a nonzero minor of order 2K in B. Without
loss of generality, we assume that the first 2K rows of B, denoted by B∗, satisfy det(B∗) �= 0;
then, det(B∗) is a nonzero minor of order 2K . Let B = (B∗�, B′�)�. In order to show that
f (B,ω) �= 0 for some nonsingular ω, it is enough to show that B · ω has full column rank for
some specific choice of nonsingular ω, since that will establish that some minors of order 2K of
B · ω are nonzero polynomials in the entries of B and ω.
For any nonsingular ω, we have

B · ω =
[
B∗
B′

]
· ω =

[
B∗ · ω

B′ · ω

]
. (A4)

Since det(B∗) is a nonzero minor of B and ω is a nonsingular matrix, then rank(B∗ · ω) = 2K .
Therefore, det(B∗ · ω) is a nonzero minor of B · ω, which implies rank(B · ω) = 2K and
f (B,ω) �= 0. 
�
Therefore, by Lemma 1, the zero set Z f has measure zero within �ω,B . The HMM with T ≥ 3
is generically identified.

Appendix B: Proof of Part (a) of Theorems 5 and 6 (T ≥ 3 case)

We first show that if emission matrix B is identified, then parameters s, g, and Q in a restricted
HMM can also be identified.

Proposition 3. For any B, B′ ∈ �(B), s, s′ ∈ (0, 1)J , g, g′ ∈ (0, 1)J and Q, Q′ ∈ {0, 1}J×K ,
we have

B = B′ if and only if (s, g, Q) = (s′, g′, Q′).

Proof. It suffices to show that given B = B′, we must have (s, g, Q) = (s′, g′, Q′).
For j ∈ {1, 2, . . . , J }, let D j be thematrix such that D j B and D j B′ reduce to the 2×2K matrix of
conditional probabilities for Y j given αt . For instance, the second row of D j B is P(Y j = 1 | αt ):

(g
1−η j0
j (1 − s j )

η j0 , . . . , g
1−η j,2K −1
j (1 − s j )

η j,2K −1),
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whereη jc = I
(
α�
t q j ≥ q�

j q j , α�
t v = c

)
, c = 0, . . . , 2K−1.Note thatη j,2K−1 = η′

j,2K−1
= 1

and the assumption that q j �= 0 and q ′
j �= 0 implies η j0 = η′

j0 = 0. Therefore, D j B = D j B′

implies that g j = g′
j , s j = s′

j . Also, for c ∈ {1, . . . , 2K − 2} we have

g
1−η jc
j (1 − s j )

η jc = g
1−η′

jc
j (1 − s j )

η′
jc ,

and g j �= 1 − s j implies that η jc �= η′
jc is not possible, so q j = q ′

j . 
�
The emission matrix B is of size 2J ×2K , and we use Byt ,αt to denote the element corresponding
to the row with response pattern yt (we refer to it as the yt -th row) and column with attribute
profile αt (we refer to it as the αt -th column), so Byt ,αt is the emission probability

P(Y t = yt |αt , Q, s, g) =
J∏

j=1

θ
y jt
j,αt

[
1 − θ j,αt

]1−y jt , (B1)

where θ j,αt = (1 − s j )η j t g(
1−η j t)
j and η j t = I

(
α�
t q j ≥ q�

j q j

)
.

As mentioned in Sect. 2.3, we have a bipartition of the set J = {1, 2, . . . , J } into two disjoint,
nonempty subsets J1 = {1, 2, . . . , K }, J2 = {K + 1, . . . , J }. Then, let Y t = (YJ1�

t ,YJ2�
t )�,

where YJ1
t = (Y1t , . . . ,YKt )

� and YJ2
t = (Y(K+1)t , . . . ,YJt )

�. Assuming that the Q matrix has
the form shown in condition (A1), let

Q J×K =
(
QJ1

QJ2

)
, (B2)

and without loss of generality, let QJ1 = IK and QJ2 = Q∗. Then, the emission probability can
be decomposed into two parts since the components of Y t are independent given profile αt :

P(Y t = yt |αt , Q, s, g) = P(YJ1
t = yJ1t |αt , QJ1 = IK , s, g) · P(YJ2

t = yJ2t |αt , Q∗, s, g).

(B3)

Similarly, the emission matrix B can also be decomposed into two parts. Let BJ1 be a matrix
of size 2K × 2K , where its yJ1t -th row and αt -th column element is P(YJ1

t = yJ1t |αt , IK , s, g);
and let BJ2 be a matrix of size 2(J−K ) × 2K , where its yJ2t -th row and αt -th column element is
P(YJ2

t = yJ2t |αt , Q∗, s, g). Therefore, the emission matrix B can be decomposed as

B = BJ1 	 BJ2 , (B4)

where 	 represents column-wise tensor product, which is defined next.

Definition 4. (Khatri–Rao product; Khatri and Rao (1968)) GivenmatricesU ∈ Rm1×n and V ∈
Rm2×n with columns u1, . . . , un and v1, . . . , vn , respectively, their Khatri–Rao tensor product is
denoted by U 	 V . The result is a matrix of size (m1m2) × n

U 	 V = [
u1 ⊗ v1 u2 ⊗ v2 · · · un ⊗ vn

]
.
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Remark 8. If u and v are vectors, then the Khatri–Rao product and Kronecker product are iden-
tical, i.e., u 	 v = u ⊗ v.

We can represent BJ1 as the Kronecker product of K 2 × 2 sub-matrices (Chen, Culpepper, &
Liang, 2020)

BJ1 =
K⊗
j=1

[
1 − g j s j
g j 1 − s j

]
:=

K⊗
j=1

BJ1
j . (B5)

Condition ‘g j �= 1 − s j ’ in Theorem 5 implies that rank(BJ1
j ) = 2 for all j . Then, according to

the property of the rank of a Kronecker product, we have rank(BJ1) = ∏K
j=1 rank(B

J1
j ) = 2K ,

which implies that BJ1 is a full rank matrix.
For the decomposition in Eq. (B4), we have

BJ1 	 BJ2 =

⎡
⎢⎢⎢⎣

BJ1 D1(BJ2)

BJ1 D2(BJ2)
...

BJ1 D2J−K (BJ2)

⎤
⎥⎥⎥⎦ , (B6)

where Dk(BJ2) denotes the diagonal matrix with the k-th row of BJ2 lying on its diagonal. Here
D1(BJ2) has full rank since s j , 1 − s j , g j , 1 − g j are nonzero, which implies that

rank(BJ1 D1(BJ2)) = min(rank(D1(BJ2)), rank(BJ1)) = 2K , (B7)

then det(BJ1 D1(BJ2)) is a nonzero minor of BJ1 	 BJ2 with order 2K , so we have

rank(B) = rank(BJ1 	 BJ2) = 2K .

Also πc > 0 for all c in Theorem 5. Therefore, the strict identifiability condition in Theorem 1 is
satisfied, and the restricted HMM with T ≥ 3 is identified. This completes the proof of part (a)
of Theorem 5.
Without the condition ‘g j �= 1 − s j ’, B has full column rank unless there exists at least one j∗,
such that g j∗ = 1− s j∗ . Then, the dimension of this exceptional set is less than the dimension of
�(π ,ω, s, g, Q), hence ofLebesguemeasure zero. Therefore, the generic identifiability condition
in Theorem 2 is satisfied, and the restricted HMM with T ≥ 3 is generically identified. This
completes the proof of part (a) of Theorem 6.

Appendix C: Proof of Part (b) of Theorems 1 and 2 (T = 2 case)

The proof is based on Kruskal (1977) for the uniqueness of three-way arrays and its application
on the identifiability conditions of three-variate latent class models discussed in Allman et al.
(2009).
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We start from representing the marginal distribution of (Y1,Y2)
� as a three-way array by decom-

posing Y2 into two parts as shown in Eq. (B3):

T ( y1, y
J1
2 , yJ22 ) = P(Y1 = y1,Y

J1
2 = yJ12 ,YJ2

2 = yJ22 | π ,ω, B)

=
∑
α2

πα2 P(Y1 = y1,Y
J1
2 = yJ12 ,YJ2

2 = yJ22 | ω, B,α2)

=
∑
α2

πα2 P(Y1 = y1 | ω, B,α2)P(YJ1
2 = yJ12 | ω, B,α2)P(YJ2

2 = yJ22 | ω, B,α2).

(C1)

As shown in Bonhomme et al. (2016), we let A = B · diag(π) · ω · diag(π)−1 denote the
distribution of Y1 given values of α2 (attribute profile at time point 2). Then, the identifiability is
equivalent to the uniqueness of the decomposition of the following tensor (Kruskal, 1977):

T =
∑
α2

πα2 Aα2 	 BJ1
α2

	 BJ2
α2

=
∑
α2

Ãα2 	 BJ1
α2

	 BJ2
α2

, (C2)

where Aα2 , B
J1
α2 , B

J2
α2 are the α2-th column of A, BJ1 , BJ2 , and Ãα2 = πα2 Aα2 .

Next, we give the definition of Kruskal rank and state the theorem in Kruskal (1977) for our
setting.

Definition 5. For a matrix M, the Kruskal rank of M, i.e., rankK (M), is the largest number I
such that every set of I columns in M are linearly independent.

Remark 9. Compared with the rank of a matrix M, we have rankK (M) ≤ rank(M). If M has
full column rank, then the equality holds.

Theorem 7. (Kruskal (1977)) If

rankK ( Ã) + rankK (BJ1) + rankK (BJ2) ≥ 2 · 2K + 2, (C3)

then the tensor decomposition of T is unique up to simultaneous permutation and rescaling of
the rows.

Since π has all positive entries, then we have rankK ( Ã) = rankK (A). Moreover, A, BJ1 and
BJ2 are all stochastic matrices with column sum 1, so the decomposition of the tensor T is unique
up to state label swapping if (C3) in Theorem 7 is satisfied.
Bonhomme et al. (2016) established strict identifiability of HMMs for T > 2. We next establish
sufficient conditions for the identifiability of the restricted HMM with T = 2. Since A = B ·
diag(π) ·ω ·diag(π)−1, the rank conditions on BJ1 andω imply that A also has full column rank
2K . Therefore, given rank(BJ1) = 2K and rankK (BJ2) ≥ 2, the HMM with T = 2 is identified
by Theorem 7. This completes the proof of part (b) of Theorem 1.
Following the similar idea as the proof for Theorem 2 in Appendix A, we need to show that
rank(BJ1) = 2K , rank(BJ2) ≥ 2 and rank(ω) = 2K hold almost everywhere in

�′
ω,B = {(ω, B) : ω ∈ �(ω), B ∈ �(B), rank(BJ1) = 2K and rankK (BJ2) ≥ 2},

which implies that the restricted HMM with T = 2 is generically identified.
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Let f ′(B,ω) = ∑
M ([B · ω]M )2 : �′

ω,B → R, then the zero set of f ′(B,ω) is

Z f ′ = {(ω, B) : (ω, B) ∈ �′
ω,B and f ′(B, ω) = 0}

= {(ω, B) : (ω, B) ∈ �′
ω,B and [B · ω]M = 0 for all possible M}

= {(ω, B) : ω ∈ �(ω), B ∈ �(B), rank(BJ1) = 2K , rankK (BJ2 ) ≥ 2 and rank(ω) < 2K }.
(C4)

As shown in Appendix B, rank(BJ1) = 2K and rankK (BJ2) ≥ 2 imply rank(B) = rank(BJ1 	
BJ2) = 2K . By Proposition 2, we know that f ′(B,ω) is not a zero function. Then, by Lemma 1,
the zero set Z′

f has measure zero within �′
ω,B . So the restricted HMM with T = 2 is generically

identified. This completes the proof of part(b) of Theorem 2.

Appendix D: Proof of Part (b) of Theorems 5 and 6 (T = 2 case)

We first introduce the following two propositions.

Proposition 4. rank(BJ1) = 2K if and only if QJ1 = IK and g j �= 1 − s j for j ∈ {1, . . . , K }.

Proof. According to Eq. (B5), we know that QJ1 = IK and g j �= 1 − s j for j ∈ {1, . . . , K }
imply rank(BJ1) = 2K . On the other hand, rank(BJ1) = 2K implies that the columns of BJ1

are distinct. The α�v = c column of BJ1 is

BJ1
c =

K⊗
j=1

[
(1 − g j )

1−η jc s
η jc
j , g

1−η jc
j (1 − s j )

η jc
]
,

where η jc = I
(
α�
t q j ≥ q�

j q j , α�
t v = c

)
, c = 0, . . . , 2K − 1. Therefore, for k = 1, . . . , K , a

full rank BJ1 implies that BJ1
0 �= BJ1

e�k v
only if there exists at least one row q j in QJ1 satisfying

q j = ek given g j �= 1 − s j . Therefore, we must have QJ1 = IK after a permutation of rows in

QJ1 and g j �= 1 − s j for all j ∈ {1, . . . , K }. 
�

Proposition 5. rankK (BJ2) ≥ 2 if and only if QJ2 contains at least one IK after a row permu-
tation.

Proof. Similar to the proof in Appendix B, we can prove that rankK (BJ2) = 2K ≥ 2 given QJ2

contains at least one IK after a row permutation.
Given rankK (BJ2) ≥ 2, we know that every two columns in BJ2 are linearly independent
according to Definition 5. Assume that for some k ∈ {1, . . . , K }, there does not exist a row in
QJ2 satisfying q j = ek , then we would have BJ2

0 = BJ2

e�k v
, which contradicts with the condition

rankK (BJ2) ≥ 2. Therefore, QJ2 must contain at least one IK after a row permutation. 
�

In Proposition 3, we already showed that if emission matrix B is identified, then parameters s, g
and Q in the restricted HMM can also be identified. Then, by Propositions 4 and 5, conditions
(b) in Theorems 1 and 2 are all satisfied, which proves Theorems 5 and 6 with T = 2.
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Appendix E: Gibbs Sampling Step in Algorithm 1

The full conditional distributions of the parameters are shown as follows. For the attribute profiles
αi t , at time point t = 1, given αi2 = αc2,

P(αi1 = αc′1|Y i , Q, s, g,ω,αi2 = αc2) ∝ p(Y i1|αi1 = αc′1, Q, s, g) · πc′ · ωc|c′ . (E1)

For 1 < t < T , given αi,t−1 = αc,t−1 and αi,t+1 = αc′,t+1,

P(αi t = αlt |Y i , Q, s, g,ω,αc,t−1,αc′
,t+1)

∝ p(Y i |αl , Q, s, g)p(αlt |αc,t−1,ω)p(αc′
,t+1|αlt ,ω)

∝ p(Y i t |αlt , Q, s, g) · ωl|c · ωc′ |l .
(E2)

At time point t = T , given αi,T−1 = αc,T−1,

P(αiT = αlT |Y i , Q, s, g,ω,αc,T−1) ∝ p(Y iT |αlT , Q, s, g) · ωl|c. (E3)

For other parameters, we have

p(π1|α1) ∝
⎛
⎝ N∏

i=1

2K−1∏
l=0

π
I(αi1=αl )
1,l

⎞
⎠ p(π1) ∝

2K−1∏
l=0

π
Ñ0,l+δ0,l−1
1,l , (E4)

p(ω|α) ∝
⎛
⎝2K−1∏

l=0

2K−1∏
c=0

N∏
i=1

T∏
t=2

P(αi t = αc|αi,t−1 = αl ,ωl)

⎞
⎠ p(ω)

∝
2K−1∏
l=0

⎛
⎝2K−1∏

c=0

ω
Ñc|l
c|l

⎞
⎠ p(ωl) ∝

2K−1∏
l=0

2K−1∏
c=0

ω
Ñc|l+δc|l−1
c|l , (E5)

p(Q|Y ,α, s, g,ω) ∝ p(Y |α, s, g, Q) · I(Q ∈ Q). (E6)

Details about some of the prior and posterior distributions of parameters shown above could be
found in Chen, Culpepper, Wang, and Douglas (2018).

Appendix F: Proof of Theorems 3 and 4

Proof. Toprove part (a) of Theorem3,wewill applyTheorem1which requires rank(B) = 2K . In
AppendixB,we decomposematrix B into two parts: B = BJ1	BJ2 . Since emission probabilities
inmatrix B are all positive due to the CDF�(·), then it is sufficient to show that rank(BJ1) = 2K .
With condition (B1), we have D = (1K , IK , 0), which implies a DINA model with K skills, K
items and Q = IK . Then, similar to Eq. (B5), we can rewrite the first part of the emission matrix
BJ1 as

BJ1 =
K⊗
j=1

[
1 − g j s j
g j 1 − s j

]
=

K⊗
j=1

[
1 − �(β j,0) 1 − �(β j,0 + β j, j )

�(β j,0) �(β j,0 + β j, j )

]
:=

K⊗
j=1

BJ1
j . (F1)
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Under condition (B1), we have �(β j,0) �= �(β j,0 + β j, j ), which implies rank(BJ1) =∏K
j=1 rank(B

J1
j ) = 2K , so part (a) of Theorem 3 holds based on part (a) of Theorem 1. Also,

part (a) of Theorem 4 can be proved similarly using the argument above and part (a) of Theorem
2.
To prove part (b) of Theorem 3, we will again apply Theorem 1 which requires rank(BJ1) = 2K

and rankK (BJ2) ≥ 2. According to the proof shown above, we have rank(BJ1) = 2K under
condition (B1). Under condition (B2), we have rankK (BJ2) ≥ 2, so part (b) of Theorem 3 holds
based on part (b) of Theorem 1. Also, by the similar argument and part (b) of Theorem 2, we can
prove that part (b) of Theorem 4 holds under conditions (B1)-(B2). 
�

Appendix G: Proof of Remark 1

We start from representing the marginal distribution of (Y1,Y2)
� as a three-way array by decom-

posing Y1 into two parts as shown in Eq. (B3):

T ( yJ11 , yJ21 , y2) = P(YJ1
1 = yJ11 ,YJ2

1 = yJ21 ,Y2 = y2 | π1,ω, B)

=
∑
α1

π1,α1 P(YJ1
1 = yJ11 ,YJ2

1 = yJ21 ,Y2 = y2 | ω, B,α1)

=
∑
α1

π1,α1 P(YJ1
1 = yJ11 | ω, B,α1)P(YJ2

1 = yJ21 | ω, B,α1)P(Y2 = y2 | ω, B,α1).

(G1)

As shown inBonhommeet al. (2016),we let A∗ = B·ω� denote the distribution ofY 2 givenvalues
of α1 (attribute profile at time point 1). Then, the identifiability is equivalent to the uniqueness of
the decomposition of the following tensor (Kruskal, 1977):

T =
∑
α1

π1,α1B
J1
α1

	 BJ2
α1

	 A∗
α1

=
∑
α1

B̃
J1
α1

	 BJ2
α1

	 A∗
α1

, (G2)

where A∗
α1
, BJ1

α1 , B
J2
α1 are the α1-th column of A∗, BJ1 , BJ2 , and B̃

J1
α1

= π1,α1B
J1
α1 . Since π1 has

all positive entries, then we have rankK (B̃
J1

) = rankK (BJ1). Moreover, A∗, BJ1 and BJ2 are
all stochastic matrices with column sum 1, so by Theorem 7, the decomposition of the tensor T

is unique up to state label swapping if rankK (A∗) + rankK (BJ1) + rankK (B̃
J2

) ≥ 2 · 2K + 2
holds.
We next establish sufficient conditions for the identifiability of the restricted HMM with T = 2.
Since A∗ = B · ω�, the rank conditions on BJ1 and ω imply that A∗ also has full column rank
2K . Therefore, given rank(BJ1) = 2K and rankK (BJ2) ≥ 2, the HMM with T = 2 is strictly
identified by Theorem 7.
Similar to the proof for Theorem 2 in Appendix A, in order to prove that the restricted HMM
with T = 2 is generically identified, we need to show that rank(BJ1) = 2K , rank(BJ2) ≥ 2 and
rank(ω) = 2K hold almost everywhere in

�′
ω,B = {(ω, B) : ω ∈ �(ω), B ∈ �(B), rank(BJ1) = 2K and rankK (BJ2) ≥ 2},

which is already proved in Appendix C.
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Appendix H: Problem set of Elementary Probability Theory

The two sets of questions fromR package pks (Heller &Wickelmaier, 2013) are shown as follows.

6.1. The first set of questions

1. A box contains 30 marbles in the following colors: 8 red, 10 black, 12 yellow. What is
the probability that a randomly drawn marble is yellow?

2. A bag contains 5-cent, 10-cent, and 20-cent coins. The probability of drawing a 5-cent
coin is 0.35, that of drawing a 10-cent coin is 0.25, and that of drawing a 20-cent coin
is 0.40. What is the probability that the coin randomly drawn is not a 5-cent coin?

3. A bag contains 5-cent, 10-cent, and 20-cent coins. The probability of drawing a 5-cent
coin is 0.20, that of drawing a 10-cent coin is 0.45, and that of drawing a 20-cent coin is
0.35. What is the probability that the coin randomly drawn is a 5-cent coin or a 20-cent
coin?

4. In a school, 40% of the pupils are boys and 80% of the pupils are right-handed. Sup-
pose that gender and handedness are independent. What is the probability of randomly
selecting a right-handed boy?

5. Given a standard deck containing 32 different cards, what is the probability of not
drawing a heart?

6. A box contains 20 marbles in the following colors: 4 white, 14 green, 2 red. What is the
probability that a randomly drawn marble is not white?

7. A box contains 10 marbles in the following colors: 2 yellow, 5 blue, 3 red. What is the
probability that a randomly drawn marble is yellow or blue?

8. What is the probability of obtaining an even number by throwing a dice?
9. Given a standard deck containing 32 different cards, what is the probability of drawing

a 4 in a black suit?
10. A box contains marbles that are red or yellow, small or large. The probability of drawing

a red marble is 0.70, the probability of drawing a small marble is 0.40. Suppose that the
color of the marbles is independent of their size. What is the probability of randomly
drawing a small marble that is not red?

11. In a garage there are 50 cars, 20 are black and 10 are diesel powered. Suppose that
the color of the cars is independent of the kind of fuel. What is the probability that a
randomly selected car is not black and it is diesel powered?

12. A box contains 20 marbles, 10 marbles are red, 6 are yellow and 4 are black. 12 marbles
are small and 8 are large. Suppose that the color of the marbles is independent of their
size. What is the probability of randomly drawing a small marble that is yellow or red?

6.2. The Second Set of Questions

1. A box contains 30 marbles in the following colors: 10 red, 14 yellow, 6 green. What is
the probability that a randomly drawn marble is green?

2. A bag contains 5-cent, 10-cent, and 20-cent coins. The probability of drawing a 5-cent
coin is 0.25, that of drawing a 10-cent coin is 0.60, and that of drawing a 20-cent coin
is 0.15. What is the probability that the coin randomly drawn is not a 5-cent coin?

3. A bag contains 5-cent, 10-cent, and 20-cent coins. The probability of drawing a 5-cent
coin is 0.35, that of drawing a 10-cent coin is 0.20, and that of drawing a 20-cent coin is
0.45. What is the probability that the coin randomly drawn is a 5-cent coin or a 20-cent
coin?
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4. In a school, 70%of thepupils are girls and10%of thepupils are left-handed. Suppose that
gender and handedness are independent. What is the probability of randomly selecting
a left-handed girl?

5. Given a standard deck containing 32 different cards, what is the probability of not
drawing a club?

6. A box contains 20 marbles in the following colors: 6 yellow, 10 red, 4 green. What is
the probability that a randomly drawn marble is not yellow?

7. A box contains 10 marbles in the following colors: 5 blue, 3 red, 2 green. What is the
probability that a randomly drawn marble is red or blue?

8. What is the probability of obtaining an odd number by throwing a dice?
9. Given a standard deck containing 32 different cards, what is the probability of drawing

a 10 in a red suit?
10. A box contains marbles that are red or yellow, small or large. The probability of drawing

a green marble is 0.40, the probability of drawing a large marble is 0.20. Suppose that
the color of the marbles is independent of their size. What is the probability of randomly
drawing a large marble that is not green?

11. In a garage there are 50 cars, 15 are white and 20 are diesel powered. Suppose that
the color of the cars is independent of the kind of fuel. What is the probability that a
randomly selected car is not white and it is diesel powered?

12. A box contains 20 marbles, 8 marbles are white, 4 are green and 8 are red. 15 marbles
are small and 5 are large. Suppose that the color of the marbles is independent of their
size. What is the probability of randomly drawing a large marble that is white or green?
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