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Abstract In this work, we build a unifying framework to interpolate between
density-driven and geometry-based algorithms for data clustering and, specifically,
to connect the mean shift algorithm with spectral clustering at discrete and con-
tinuum levels. We seek this connection through the introduction of Fokker–Planck
equations on data graphs. Besides introducing new forms of mean shift algorithms
on graphs, we provide new theoretical insights on the behavior of the family of
diffusion maps in the large sample limit as well as provide new connections between
diffusion maps and mean shift dynamics on a fixed graph. Several numerical
examples illustrate our theoretical findings and highlight the benefits of interpolating
density-driven and geometry-based clustering algorithms.

1 Introduction

In this work we establish new connections between two popular but seemingly
unrelated families of methodologies used in unsupervised learning. The first family
that we consider is density based and includes mode seeking clustering approaches
such as the mean shift algorithm introduced in [15] and reviewed in [9], while the
second family is based on spectral geometric ideas applied to graph settings and
includes methodologies such as Laplacian eigenmaps [3] and spectral clustering
[32]. After discussing the mean shift algorithm in Euclidean space and reviewing
a family of spectral methods for clustering on graphs, we seek these connections
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in two different ways. First, motivated by some heuristics at the continuum level
(i.e., infinite data setting level), we take a suitable dynamic perspective and
introduce appropriate interpolating Fokker–Planck equations on data graphs. This
construction is inspired by the variational formulation in the Wasserstein space
of Fokker–Planck equations at the continuum level and utilizes recent geometric
formulations of PDEs on graphs. Second, we revisit the diffusion maps from [12]
(with an extended range for the parameter indexing the family) and in particular
show that, when parameterized conveniently and in the large data limit, the family
of diffusion maps is closely related to the same family of continuum dynamics
motivating our Fokker–Planck interpolations on graphs. At the finite data level, we
show that by taking an extreme value of the parameter indexing the diffusion maps
we can retrieve a specific graph version of the mean shift algorithm introduced
in [25]. Our new theoretical insights are accompanied by extensive numerical
examples aimed at illustrating the benefits of interpolating density and geometry-
driven clustering algorithms.

To begin our discussion, let us recall that unsupervised learning is one of the
fundamental settings in machine learning where the goal is to find structure in a data
set X without the aid of any labels associated with the data. For example, if the data
setX consisted of images of animals, a standard task in unsupervised learning would
be to recognize the structure of groups in X without using information of the actual
classes that may be represented in the data set (e.g., {dog, olinguito, caterpillar,
. . . }); in the literature, this task is known as data clustering and will be our main
focus in this chapter. Other unsupervised learning tasks include dimensionality
reduction [41] and anomaly detection [22], among others.

When clusters are geometrically simple, for example, when they are dense sets of
points separated in space, elementary clustering methods, like k-means or k-median
clustering, are sufficient to identify the clusters. However, in practice, clusters are
often geometrically complex due to the natural variations that objects belonging to
the cluster may have and also due to invariances that some object classes posses.
To handle such data sets, there is a large class of clustering algorithms, including
the ones that will be explored in this chapter, which are described as two-step
procedures consisting of an embedding step and an actual clustering step where
a more standard, typically simple, clustering method is used on the embedded data.
In mathematical terms, in the first step, the goal is to construct a map

� : X → Y

between the data points in X and a space Y (e.g., Y = R
k for some small k, or in

general a metric space) to “disentangle” the original data as much as possible, and
in the second step, the actual clustering is obtained by running a simple clustering
algorithm such as K-means (if the set Y is the Euclidean space, for example). While
both steps are important and need careful consideration, it is in the first step, and
specifically in the choice of �, that most clustering algorithms differ from each
other. For example, as we will see in Sect. 1.1, in some version of mean shift, � is
induced by gradient ascent dynamics of a density estimator starting at the different
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data points (when the data points are assumed to lie in Euclidean space), whereas in
spectral methods for clustering in graph-based settings the map � is typically built
using the low-lying spectrum of a suitable graph Laplacian. At its heart, different
choices of � capture different heuristic interpretations of the loosely defined notion
of “data cluster.” Some constructions have a density-driven flavor (e.g., mean shift),
while others are inspired by geometric considerations (e.g., spectral clustering). The
notions of density-based and geometry-based algorithms, however, are not mono-
lithic, and each individual algorithm has nuances and drawbacks that are important
to take into account when deciding whether to use it or not in a given situation;
in our numerical experiments, we will provide a series of examples that highlight
some of the qualitative weaknesses of different clustering algorithms, density or
geometry driven. Our main aim is to introduce a new mathematical framework to
interpolate between these two seemingly unrelated families of clustering algorithms
and to provide new insights for existing interpolations like diffusion maps.

In the rest of this introduction, we present some background material that is used
in the remainder.

1.1 Mean Shift-Based Methods

LetX = {x1, . . . , xn} be a data set inRd . One heuristic way to define data “clusters”
is to describe them as regions in space of high concentration of points separated by
areas of low density. One algorithm that uses this heuristic definition is the mean
shift algorithm; see [9]. In essence, mean shift is a hill climbing scheme that seeks
the local modes of a density estimator constructed from the observed data in an
attempt to identify data clusters.

To make the discussion more precise, let us first describe the setting where the
points x1, . . . , xn are obtained by sampling a probability distribution supported on
the whole Rd with (unknown) smooth enough density ρ : Rd → R. The first step
in mean shift is to build an estimator for ρ of the form:

ρ̂(x) := 1

nδd

n∑

i=1

κ

( |x − xi |
δ

)
,

where κ : R+ → R+ is an appropriately normalized kernel, and δ > 0 is
a suitable bandwidth; for simplicity, we can take the standard Gaussian kernel
κ(s) = 1√

2π
exp−s2/2. Then, for every point xi , one considers the iterations:

xi(t + 1) = xi(t) + ∇ log ρ̂(xi(t)) (1.1)

starting at time t = 0 with xi(0) = xi . Each data point xi is then mapped to its
associated xi(T ) for some user-specified T , implicitly defining in this way a map
� as described in the introduction. It is important to notice that mean shift is, in
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the way introduced above, a monotonic scheme, i.e., ρ̂(xi(t)) is non-decreasing as a
function of t ∈ N. In [8], this is shown to be a consequence of a deeper property that
in particular relates mean shift with the expectation-maximization algorithm applied
to a closely related problem. The namemean shift originates from the fact that iterate
xi(t+1) in (1.1) coincides with the mean of some distribution that is centered around
the iterate xi(t), and thus (1.1) can be described as a “mean shifting” scheme.

We now introduce the continuum analogue of the mean shift algorithm (1.1).
Namely, (1.1) can be seen as the iterates of the Euler scheme, for time step h = 1 of
the following ODE system:

{
ẋi (t) = ∇ log ρ̂(xi(t)), t > 0

xi(0) = xi.
(1.2)

In the remainder, we will abuse the terminology slightly and refer to the above
continuous time dynamics as mean shift. We note that the ρ̂ is monotonically
increasing along the trajectories of (1.2).

To utilize the mean shift dynamics for clustering, for some prespecified time
T > 0 (that at least theoretically can be taken to be infinity under mild conditions
on ρ), we consider the embedding map:

�MS(xi) := xi(T ), xi ∈ X .

When the number of data points n inX is large, and the bandwidth h is small enough
(but not too small), one can heuristically expect that the gradient lines of the density
estimator ρ̂ resemble those of the true density ρ; see for example [2]. In particular,
with an appropriate tuning of bandwidth δ as a function of n, and with a large value
of T defining the time horizon for the dynamics, one can expect �MS to send the
original data points to a set of points that are close to the local modes of the density
ρ. In short, mean shift is expected to cluster the original data set by assigning points
to the same cluster if they belong to the same basin of attraction of the gradient
ascent dynamics for the density ρ.

If the density ρ is supported on a manifold, M, embedded in R
d , and that

information is available, one can consider mean shift dynamics restricted to the
manifold. Indeed, to define manifold mean shift, we just need to consider the flow
ODE (1.2), where ∇ is replaced by the gradient on M, which for manifolds in R

d

is just the projection of ∇ to the tangent space TxM. We notice that this extends to
manifolds with boundary where at boundary point x ∈ ∂M one is projecting to the
interior half-space T in

x M. We denote the projection to the tangent space (interior
tangent space at the boundary) by PTM and write the resulting ODE as

{
ẋi (t) = PTM∇ log(ρ̂)(xi(t)), t > 0

xi(0) = xi ∈ M.
(1.3)
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1.1.1 Lifting the Dynamics to the Wasserstein Space

Looking forward to our discussion in subsequent sections where we introduce mean
shift algorithms on graphs, it is convenient to rewrite (1.2) in an alternative way
using dynamics in the Wasserstein space P2(R

d). As it turns out, the ODE (1.2) is
closely related to an ODE in P2(R

d) (i.e., the space of Borel probability measures
over Rd with finite second moments). Precisely, we consider

∂tμt + div(∇ log(ρ̂)μt ) = 0, t > 0, (1.4)

with initial datum μ0 = δxi
; equation (1.4) must be interpreted in the weak sense

(see Chapter 8.1. in [1]). Indeed, when μ0 = δxi
, it is straightforward to see that

the solution to (1.4) is given by μt = δxi(t), where xi(·) solves the ODE (1.2) in
the base space Rd . What is more, in the same way that (1.2) can be understood as
the gradient descent dynamics for − log(ρ̂) in the base space R

d , it is possible to
interpret (1.4) directly as the gradient flow of the potential energy:

E(μ) := −
∫

Rd

log(ρ̂(x))dμ(x), μ ∈ P2(R
d) (1.5)

with respect to the Wasserstein metric dW , which in dynamic form reads

d2
W(ν, ν̃) = inf

t∈[0,1]�→(νt , �Vt )

∫ 1

0

∫

Rd

| �Vt |2 dνtdt, (1.6)

where the infimum is taken over all solutions (νt , �Vt ) to the continuity equation

∂tνt + div(νt
�Vt ) = 0,

with ν0 = ν and ν1 = ν̃.
The previous discussion suggests the following alternative definition for the

embedding map associated with mean shift:

�MS(xi) := μi,T ∈ P2(R
d),

where in order to obtain μi,T , we consider the gradient flow dynamics E in the
Wasserstein space initialized at the point μ0 = δxi

(i.e., Eq. (1.4)). While this new
interpretation may seem superfluous at first sight given that μi,T = δxi(T ), we will
later see that working in the space of probability measures is convenient, as this
alternative representation motivates new versions of mean shift algorithms for data
clustering on structures such as weighted graphs; see Sect. 2.2.
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1.2 Spectral Methods

Let us now discuss another family of algorithms used in unsupervised learning
that are based on ideas from spectral geometry. The input in these algorithms is
a collection of edge weights w describing the similarities between data points in X ;
we let n = |X |. For simplicity, we assume that the weight function w : X ×X → R

is symmetric and that all its entries are non-negative. We further assume that the
weighted graph G = (X , w) is connected in the sense that for every x, x′ ∈ X there
exists a path x0, . . . , xm ∈ X with x0 = x, xm = x′ and w(xl, xl+1) > 0 for every
l = 0, . . . , m − 1. At this stage, we do not assume any specific geometric structure
in the data set X or on the weight function w (in Sect. 4, however, we focus our
discussion on proximity graphs).

Let us now give the definition of well-known graph analogues of gradient,
divergence, and Laplacian operators. To a function φ : X → R, we associate a
discrete gradient, a function of the form ∇Gφ : X × X → R defined by

∇Gφ(x, x′) := φ(x′) − φ(x).

Given a function U : X ×X → R (i.e., a discrete vector field), we define its discrete
divergence as the function divGU : X → R given by

divG U(x) := 1

2

∑

x′
(U(x′, x) − U(x, x′))w(x, x′).

With these definitions, we can now introduce the unnormalized Laplacian associ-
ated with the graph G as the operator 
G : L2(X ) → L2(X ) defined according
to


G := divG ◦ ∇G

or more explicitly as


Gu(xi) =
∑

j

(u(xi) − u(xj ))w(xi, xj ), xi ∈ X , u ∈ L2(X ). (1.7)

From the representation 
G = divG ◦ ∇G , it is straightforward to verify that

G is a self-adjoint and positive semi-definite operator with respect to the L2(X )

inner product (i.e., the Euclidean inner product in R
n after identifying real-valued

functions onX withRn). It can also be shown that
G has zero as an eigenvalue with
multiplicity equal to the number of connected components of G (in this case 1 by
assumption); see [45]. Moreover, even when the multiplicity of the zero eigenvalue
is uninformative about the group structure of the data set, the low-lying spectrum
of 
G still carries important geometric information for clustering. In particular,

G’s small eigenvalues and their corresponding eigenvectors contain information
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on bottlenecks in G and on the corresponding regions that are separated by them; the
connection between the spectrum of 
G and the bottlenecks in G is expressed more
precisely with the relationship between Cheeger constants and Fiedler eigenvalues;
see [45]. With this motivation in mind, [3] introduced a nonlinear transformation of
the data points known as Laplacian eigenmap:

xi ∈ X �−→
⎛

⎜⎝
φ1(xi)

...

φk(xi)

⎞

⎟⎠ ∈ R
k,

where φ1, . . . , φk are the eigenvectors corresponding to the first k eigenvalues of

G . The above Laplacian eigenmap and other similar transformations serve as the
embedding map in the first step in most spectral methods for partitioning and data
clustering. Said clustering algorithms have a rich history, and related ideas have been
present in the literature for decades, see [32, 35, 45] and the references within. For
example, some versions of spectral clustering consider a conformal transformation
of the Laplacian eigenmap in which coordinates in the embedding space are rescaled
differently according to corresponding eigenvalues and the choice of a timescale
parameter. More precisely, one may consider

�̂SC(xi) :=
⎛

⎜⎝
e−T λ1φ1(xi)

...

e−T λkφk(xi)

⎞

⎟⎠ ∈ R
k, xi ∈ X ,

for some T > 0, where in the above λl represents the eigenvalue corresponding to
the eigenvector φl . In Sect. 2, we provide a dynamic interpretation of the map �̂SC .

Remark 1.1 There are several other ways in the literature to construct the embed-
ding maps � from graph Laplacian eigenvectors. In [32], for example, an extra
normalization step across eigenvectors is considered for each data point. By
introducing this extra normalization step, one effectively maps the data points into
the unit sphere in Euclidean space. The work [34] argues in favor of this type of
normalization and proposes the use of an angular version of k-means clustering
on the embedded data set. The work [17] also analyzes the geometric structure
of spectral embeddings, both at the data level and at the continuum population
level. The normalization step in [32] can also be motivated from a robustness to
outliers perspective if one insists on running k-means with the �2 metric and not
with for example the �1 metric. As discussed in the introduction, constructing a
data embedding is only part of the full clustering problem. What metric and what
clustering method should be used on the embedded data are important practical
and theoretical questions. In subsequent sections, our embedded data points will
have the form of probability vectors. Several metrics could then be used to cluster
the embedded data points (T V,L2,W2, etc), each with its own advantages and
disadvantages (theoretical or computational). The emphasis of our discussion in the
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rest of the chapter, however, will be on the embedding maps themselves. We leave
the analysis of the effect of different metrics used to cluster the embedded data for
future work.

1.2.1 Normalized Versions of the Graph Laplacian

Different versions of graph Laplacians can be constructed to include additional
information about vertex degrees as well as to normalize the size of eigenvalues.
We distinguish between two ways to normalize the graph Laplacian 
G . One is
based on reweighing operators and the other on renormalizing edge weights.

Operator-Based Renormalizations To start, we first write the graph Laplacian 
G
in matrix form. For that purpose, let W = [w(xi, xj )]i,j be the matrix of weights,
and let

d(xi) =
∑

xj 
=xi

w(xi, xj ) (1.8)

be the weighted degrees; in the remainder, we may also use the notation di = d(xi)

whenever no confusion arises from doing so. Let D = diag(d1, . . . , dn) be the
diagonal matrix of degrees. The Laplacian 
G can then be written in matrix form as


G = D − W. (1.9)

In terms of this matrix representation, the normalized graph Laplacian, as introduced
in [45], can be written as

L = D− 1
2 
GD− 1

2 = I − D− 1
2 WD− 1

2 . (1.10)

Notice that the matrixL is symmetric and positive semi-definite as it follows directly
from the same properties for 
G . The random-walk graph Laplacian, on the other
hand, is given by

Lrw = D−1
G = I − D−1W. (1.11)

Remark 1.2 It is straightforward to show that the matrix Lrw is similar to the
matrix L, and thus the random-walk Laplacian has the same eigenvalues as the
normalized graph Laplacian. Moreover, if we explicitly use the representation
LrwT = D1/2LD−1/2, where LrwT

is the transpose of Lrw, we can see that if ũ

is an eigenvector of L with eigenvalue λ, then φ = D1/2φ̃ is an eigenvector of LrwT

with eigenvalue λ. In particular, since L is symmetric, we can find a collection of
vectors φ1, . . . , φn ∈ R

n that form an orthonormal basis (with respect to the inner
product 〈D−1·, ·〉) for Rn and where each of the φl is an eigenvector for LrwT

.
We use the above observation in Sect. 1.2.2 and later at the beginning of Sect. 2.
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Edge Weight Renormalizations Here, the idea is to adjust the weights of the graph
G = (X , w) and use one of the Laplacian normalizations introduced before on the
new graph. One of the most popular families of graph Laplacian normalizations
based on edge reweighing was introduced in [12] and includes the generators for
the so-called diffusion maps which we now discuss.

For a given choice of parameter α ∈ (−∞, 1], we construct new edge weights,
wα(x, y), as follows:

wα(x, y) := w(x, y)

d(x)αd(y)α
,

where recall d is the weighted vertex degree. On the new graph (X , wα), one can
consider all forms of graph Laplacian discussed earlier. In the sequel, however, we
follow [12] and restrict our attention to the reweighed random-walk Laplacian which
in matrix form can be written as

Lrw
α = I − D−1

α Wα,

where Wα is the matrix of edge weights of the new graph and Dα its associated
degree matrix, i.e., dα(x) = ∑

y 
=x wα(x, y). We note that the weight matrix Wα is
still symmetric.

Let Qrw
α be the weighted diffusion rate matrix

Qrw
α := −CαLrw

α ,

where Cα is a positive constant that we introduce for modeling purposes. In
particular, in Sect. 4, we will see that, in the context of proximity graphs on
data sampled from a distribution on a manifold M, by choosing the constant Cα

appropriately, we can ensure a desirable behavior of Qrw
α as the number of data

points in X grows. Notice that we may alternatively write Qrw
α as a function:

Qrw
α (x, y) := Cα

⎧
⎨

⎩

wα(x,y)∑
z 
=x wα(x,z)

if x 
= y,

−1 if x = y.
(1.12)

Remark 1.3 In this chapter, we consider the range α ∈ (−∞, 1] and not [0, 1]
as usually done in the literature. One important point that we stress throughout the
chapter is that by considering the interval (−∞, 1], we obtain an actual interpolation
between density-based (in the form of some version of mean shift) and geometry-
driven clustering algorithms.
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1.2.2 More General Spectral Embeddings

Following Remark 1.2, for a given α ∈ (−∞, 1], we consider an orthonormal basis
(relative to the inner product 〈D−1

α ·, ·〉) φ1, . . . , φn of eigenvectors of LrwT

α with
corresponding eigenvalues λ1 � λ2 � · · · � λn and define

�̂ ′
α(xi) :=

⎛

⎜⎝
e−T λ1 φ̃1(xi)

...

e−T λk φ̃k(xi)

⎞

⎟⎠ ∈ R
k, xi ∈ X , (1.13)

where, in the above, φ̃l = D
−1/2
α φl . We can see that the map �̂ ′

α has the same form
as the map �̂SC at the beginning of Sect. 1.2. In Sect. 2, we provide a more dynamic
interpretation of the map �̂ ′

α .

1.3 Outline

Having discussed the mean shift algorithm in Euclidean setting (or in general on
a submanifold M of Rd ), as well as some spectral methods for clustering in the
graph setting, in what follows we attempt to build bridges between geometry-based
and density-driven clustering algorithms. Our first step is to introduce general data
embedding maps � associated with the dynamics induced by arbitrary rate matrices
on X . We will then define data graph analogues of mean shift dynamics. We do
this in Sect. 2 where we define a new version of mean shift on graphs inspired
by the discussion in Sect. 1.1.1 and review other versions of mean shift on graphs
such as Quickshift [44] and KNF [25]. In Sect. 3.1, we discuss two versions of
Fokker–Planck equations on graphs which serve as interpolating dynamics between
geometry- and density-driven dynamics for clustering on data graphs. One version
is based on a direct interpolation between diffusion and mean shift (the latter
one as defined in Sect. 2.2.1) and is inspired by Fokker–Planck equations at the
continuum level. The second version is an extended version of the diffusion maps
from [12] obtained by appropriate reweighing and normalization of the data graph.
In Sect. 3.2, we show that the KNF mean shift dynamics can be seen as a particular
case of the family of diffusion maps when the parameter indexing this family is sent
to negative infinity. This result is our first concrete connection between mean shift
algorithms and spectral methods for clustering. In Sect. 4, we study the continuum
limits of the Fokker–Planck equations introduced in Sect. 3 when the graph of
interest is a proximity graph. This analysis will allow us to provide further insights
into diffusion maps, mean shift, and spectral clustering. In Sect. 5, we present
a series of numerical experiments aimed at illustrating some of our theoretical
insights.
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2 Mean Shift and Fokker–Planck Dynamics on Graphs

Consider a weighted graph G = (X , w) as in Sect. (1.2). Let P(X ) denote the set
of probability measures on X which we identify with n-dimensional vectors. All of
the dynamics we consider can be written as (continuous time) Markov chains on
graphs.

Definition 2.1 A continuous time Markov chain u : [0, T ] → P(X ) is a solution
to the ordinary differential equation

{
∂tut (y) = ∑

x∈X ut (x)Q(x, y), t > 0

u0 = u0,
(2.1)

where u0 ∈ P(X ) and Q : X × X → R is a transition rate matrix Q; that is, Q

satisfies Q(x, y) � 0 for y 
= x and Q(x, x) = − ∑
y 
=x Q(x, y).

Notice that in terms of matrix exponentials, the solution to (2.1) can be written
as

ut (y) =
∑

x∈X
u0(x)(etQ)(x, y).

Remark 2.2 The operation on the right-hand side of the first equation in (2.1) can
be interpreted as a matrix multiplication of the form utQ, where ut is interpreted
as a row vector. Alternatively, we can use the transpose of Q and write QT ut if we
interpret ut as a column vector.

Remark 2.3 (Conservation of Mass and Positivity) For any transition rate matrix,
we have

∑

x∈X
Q(x, y) = 0, ∀y ∈ X ,

which ensures that
∑

x ut (x) = ∑
x u0(x) = 1 for all t � 0. Note that, in practice,

this is often accomplished by specifying the off-diagonal entries of the transition rate
matrix, Q(x, y) for x 
= y, and then setting the diagonal entries to equal opposite
the associated diagonal degree matrix, d(x, x) = ∑

y 
=x Q(x, y). Likewise, for any
transition rate matrix, the fact that Q(x, y) � 0 for y 
= x ensures that if u0(x) � 0,
then ut (x) � 0 for all t � 0.

Remark 2.4 Notice that Q = −
G , where we recall 
G is defined in (1.7), is
indeed a rate matrix and thus induces evolution equations in P(X ). Likewise, the
weighted diffusion rate matrix Qrw

α from (1.12) is a rate matrix as introduced in
Definition 2.1.

For a general rate matrix Q, we define the data embedding map:
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�̂Q(xi) := ui,T ,Q ∈ P(X), xi ∈ X , (2.2)

where ui,T ,Q represents the solution of (2.1) when the initial condition u0 ∈ P(X )

is defined by u0(x) = 1 for x = xi and u0(x) = 0 otherwise. In the sequel, and
specifically in our numerics section, we will use the L2(X ) metric between the
points �̂Q(xi) in order to build clusters through K-means regardless of the rate
matrix Q that we use to construct the embedding �̂Q. Remember that by L2(X )

distance we mean the quantity:

∑

x′
(ui,T ,Q(x′) − uj,T ,Q(x′))2.

In the next subsections, we discuss some specifics of the choice Q = Qrw
α and

then introduce two classes of rate matrices Q that give meaning to the idea of mean
shift on graphs.

2.1 Dynamic Interpretation of Spectral Embeddings

When we take Q = Qrw
α , we abuse notation slightly and write �̂α instead of �̂Qrw

α

and ui,T ,α instead of ui,T ,Qrw
α
. In the next proposition, we make the connection

between the embedding map �̂α and the spectral embedding �̂ ′
α from (1.13)

explicit.

Proposition 2.5 For every α ∈ (−∞, 1], we can write

ui,T ,α(x) =
n∑

l=1

e−T λl
φl(xi)

(dα(xi))1/2
φl(x), ∀x ∈ X ,

where the φ1, . . . , φn form an orthonormal basis for R
n (with respect to the inner

product 〈D−1
α ·, ·〉) and each φl is an eigenvector of LrwT

α with eigenvalue λl . In
other words, the coordinates of the vector �̂ ′

α(xi) correspond to the representation
of �̂α(xi) in the basis φ1, . . . , φn.

Proof This follows from a simple application of the spectral theorem using
Remark 1.2. ��
Remark 2.6 An alternative way to compare the points �̂α(xi) and �̂α(xj ) is to
compute their weighted distance:

∑

x′

(
ui,T ,Q(x′)√

dα(x′)
− uj,T ,Q(x′)√

dα(x′)

)2

.
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This construction is introduced in [12] and is referred to as diffusion distance. It is
worth mentioning that, as pointed out in [12], the diffusion distance between �̂α(xi)

and �̂α(xj ) coincides with the Euclidean distance between �̂ ′
α(xi) and �̂ ′

α(xj )

when k = n. Notice that the diffusion metric is conformal to the L2(X ) metric.

Remark 2.7 We remark that the embedding maps �̂SC and �̂Q for Q = −
G are
connected in a similar way as the maps �̂ ′

α and �̂α are. Indeed, if we let φ1, . . . , φn

be an orthonormal basis for L2(X ) consisting of eigenvectors of 
G (remember
that 
G is positive semi-definite with respect to L2(X )), then the coordinates of
�̂SC(xi) are precisely the coordinates of the representation of ui,T ,Q in the basis
φ1, . . . , φn.

2.2 The Mean Shift Algorithm on Graphs

In the next two subsections, we discuss two different ways to introduce mean shift
on G = (X , w). In both cases, we define an associated rate matrix Q.

2.2.1 Mean Shift on Graphs as Inspired by Wasserstein Gradient Flows

The discussion in Sect. 1.1.1 shows that the mean shift dynamics can be viewed
as a gradient flow in the spaces of probability measures endowed with Wasserstein
metric. Recent works [14, 29] provide a way to consider Wasserstein type gradient
flows which are restricted to graphs. This allows one to take advantage of the
information about the geometry of data that their initial distribution provides. More
importantly, for our considerations, it allows one to combine the mean shift and
spectral methods.

The notion of Wasserstein metric on graphs introduced by Maas [29] provides
the desired framework. Here, we will consider the upwind variant of the Wasserstein
geometry on graphs introduced in [14] since it avoids the problems that the metric
of [29] has when dealing with the continuity equations on graphs, see Remark 1.2
in [14].

In particular, we actually consider a quasi-metric on P(X ) (and not a metric)
defined by

d̂2
W(v, ṽ) := inf

t∈[0,1]�→(vt ,Vt )

∫ 1

0

∑

x,y

|Vt (x, y)+|2 vt (x, y)w(x, y)dt,

where the infimum is taken over all solutions (vt , Vt ) to the discrete continuity
equation:

∂tvt + divG(vt · Vt ) = 0,
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with v0 = v and v1 = ṽ and where Vt is anti-symmetric for all t . In the above, the
constant Cms > 0 is introduced for modeling purposes and will become relevant in
Sect. 4. We use the upwinding interpolation [11, 14]:

vt (x, y) :=
{

vt (x) if Vt (x, y) � 0,

vt (y) if Vt (x, x) < 0
(2.3)

and interpret the discrete vector field vt · Vt as the elementwise product of vt and
Vt . Finally, we use a+ to denote the positive part of the number a.

Next, we consider the general potential energy:

Ê(u) := −
∑

x∈X
B(x)u(x), u ∈ P(X ),

for some B : X → R. This energy serves as an analogue of (1.5).
Following the analysis and geometric interpretation in [14], it is possible to show

that the gradient flow of Ê with respect to the quasi-metric d̂W takes the form:

∂tut (y) =
∑

x∈X
ut (x)QB(x, y), (2.4)

where QB is the rate matrix defined by

QB(x, y) :=
{

(B(y) − B(x))+w(x, y), for x 
= y,

− ∑
z 
=x(B(z) − B(x))+w(x, z), for x = y.

(2.5)

In Sect. 4.1, we explore the connection between the graph mean shift dynam-
ics (2.4) and the mean shift dynamics on an m-dimensional submanifold of Rd as
introduced in Sect. 1.4. This is done in the context of proximity graphs over a data
set X = {x1, . . . , xn} obtained by sampling a distribution with density ρ on M. In
particular, we formally show that the graph mean shift dynamics converges to the
continuum one if

B(x) = − Cms

ρ(x)
, x ∈ M.

In practice, however, since ρ is in general unavailable, ρ above can be replaced
with a density estimator ρ̂. Given such an estimator ρ̂ (which in principle can
be considered on general graphs, not just ones embedded in R

d ), we define the
transition kernel for the graph mean shift dynamics as

Qms(x, y) := Cms

⎧
⎨

⎩

(
− 1

ρ̂(y)
+ 1

ρ̂(x)

)

+ w(x, y), for x 
= y,

− ∑
z 
=x

(
− 1

ρ̂(z)
+ 1

ρ̂(x)

)

+ w(x, z), for x = y,
(2.6)
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where the constant Cms > 0 just sets the timescale. It will be specified in Sect. 4.1
so that the equation has the desired limit as n → ∞. For data in R

d , it is natural
to consider a kernel density estimator ρ̂. In particular, in all of our experiments, we
consider the following kernel density estimator:

ρ̂δ(x) := 1

n

∑

y∈X
ψδ(x − y), ψδ(x) = 1

(2π)m/2δm
e−|x|2/(2δ2). (2.7)

For an abstract graph G (i.e., X is not necessarily a subset of Euclidean space), one
can consider the degree of the graph at each x ∈ X as a substitute for ρ̂ in the above
expressions.

From the previous discussion and in direct analogy with the discussion in
Sect. 1.1.1, we introduce the data embedding map:

�̂ms(xi) := ui,T ,Qms ∈ P(X ). (2.8)

Remark 2.8 The quasi-metric d̂W and the geometry of the PDEs on graphs that it
induces have been studied in [14]. One important point made in that paper (see
Remark 1.2. in [14]) is that the support of the solution to the induced equations may
change and move as time increases. For us, this property is essential as we initialize
our graph mean shift dynamics at Diracs located at each of the data points.

We now provide a couple of illustrations comparing the mean shift dynam-
ics (1.2) and the graph mean shift dynamics defined by (2.6). We consider data
on manifold M = [0, 4] × {0, 0.7}. The measure ρ has uniform density on the two
line segments. We consider 280 data points sampled from ρ, Fig. 1, and sampled
from ρ with Gaussian noise of variance 0.1 in vertical direction, Fig. 3a.

We compare the dynamics onM for different bandwidths δ of the kernel density
estimator. In particular, we consider a value of δ that is small enough for the strips
to be seen as separate and a value of delta that is large enough for the strips to be
considered together, Fig. 2. For large δ, we see rather different behavior of the two
dynamics. The standard mean shift quickly mixes the data from the two lines and
the information about the two clusters is lost. On the other hand, while the driving

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

Fig. 1 Initial data for the experiments below. There are 280 points sampled from a uniform
distribution on two line segments
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(a)Mean shift at intermediate time
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(b)Mean shift at long time
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(c) Graph mean shift at long
time. Brightness indicates
mass.
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(d) Mean shift at t = 0. Ar-
rows represent velocity
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(e)Mean shift at intermediate time
0 0.5 1 1.5 2 2.5 3 3.5 4
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(f) Graph mean shift at long time

Fig. 2 We compare the dynamics for the mean shift (1.2) and graph mean shift (2.4)–(2.6). The
top row shows the dynamics for δ = 1

4 bandwidth of the KDE. Both approaches give similar
results. The stripes evolve independently and there are spurious local maxima due to randomness.
The bottom row shows the dynamics for a larger δ = 1√

2
. The KDE has a unique maximum. Mean

shift quickly mixes the stripes into one, which then collapses to a point. On the other hand, since
graph mean shift dynamics is constrained to the sample points the stripes do not mix and a single
mode is identified in each stripe. (a) Mean shift at intermediate time . (b) Mean shift at long time.
(c) Graph mean shift at long time. Brightness indicates mass. (d) Mean shift at t = 0. Arrows
represent velocity. (e) Mean shift at intermediate time. (f) Graph mean shift at long time
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(a) t = 0

0 0.5 1 1.5 2 2.5 3 3.5 4

0
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(b) t = ∞

Fig. 3 Graph mean shift for δ = 1√
2
. If noise is added to the data above, most of the dynamics

behave as before. The exception is shown. The graph mean shift does not reach the modes as on
Fig. 2f. Namely due to geometric roughness of the data the dynamics gets trapped at blue points.
(a) t = 0. (b) t = ∞

force is the same, in the graph mean shift the dynamics is restricted to the data, thus
preventing the mixing. In particular, separate modes are identified in each clump.

We note that this desirable behavior is somewhat fragile when noise is present,
Fig. 3b. In particular, the roughness of the boundary prevents the mass to reach the
mode. We will discuss later that this is mitigated by adding a bit of diffusion to the
dynamics, see Sect. 5.2.6.
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2.2.2 Quickshift and KNF

There are some alternative definitions of mean shift on graphs that are popular
in the literature. One such algorithm is Quickshift [44], which is similar to an
earlier algorithm by Koontz, Narendra, and Fukunaga [25]. Both algorithms can be
described as hill climbing iterative algorithms for the maximization of a potential
function B̂.

Let B̂ : X → R be the potential for which we want to define “gradient ascent
dynamics” along the graph (X , w). Let D̂(x, y) � 0 be a notion of “distance”
between points x and y which is typically defined through the weights w. Both the
Quickshift and KNF algorithms have a Markov chain interpretation that we describe
in a general form that allows for the (unlikely) existence of non-unique maximizers
of B̂ : X → R around a given node x ∈ X . To describe the associated rate matrices,
let us define for every x ∈ X the sets

MQS,x :=
{
y ∈ X : y maximizes:

1

D̂(x, y)
1
B̂(y)>B̂(x)

}

and

MKNF,x :=
{

y ∈ X : y maximizes:
(B̂(y) − B̂(x))+

D̂(x, y)
1
D̂(x,y)<r

}
.

The Quickshift and KNF algorithms are then the paths in the Markov chains with
rate matrices:

QQS(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1
�MQS,x

if y ∈ MQS,x,

−1 if y = x,

0 otherwise,

(2.9)

QKNF (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1
�MKNF,x

if y ∈ MKNF,x,

−1 if y = x,

0 otherwise,

(2.10)

respectively. In Sect. 3.2, we establish a connection between the family of rate
matrices Qrw

α and QKNF .
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3 Fokker–Planck Equations on Graphs

3.1 Fokker–Planck Equations on Graphs via Interpolation

The first type of interpolation between density- and geometry-driven clustering
algorithms that we discuss in this chapter is based on a direct interpolation of the
rate matrices Qms and Qrw

1 . Namely, for β ∈ [0, 1], we consider

Qβ := βQms + (1 − β)Qrw
1 . (3.1)

It is straightforward to see that the resulting Qβ continues to be a rate matrix and as
such it induces dynamics in the space P(X ). We can then use the framework from
Sect. 2 and abuse notation slightly to write �̂β instead of �̂Qβ as well as ui,T ,β

instead of ui,T ,Qβ .
The choice of rate matrix Qβ is motivated by the Fokker–Planck equation:

∂tft = βdiv(∇φft ) + (1 − β)
ft

on a submanifold M of Rd , which in the context of Sect. 4 can be proved to be a
formal continuum limit of the evolution induced by Qβ as the number of data points
grows. On the other hand, we notice that when we take β = 1 in Qβ , we recover the
mean shift dynamics from Sect. 2.2.1. If on the contrary we set β = 0, we obtain the
dynamics induced by the rate matrix Qrw

1 , which, at least in the context of Sect. 4,
can be shown to be connected in the large sample limit to the heat equation on a
manifold M where the data density plays no role.

3.2 Fokker–Planck Equation on Graphs via Reweighing and
Connections to Graph Mean Shift

Another interpolation between density-driven and geometry-based clustering
dynamics is induced by the family of rate matrices {Qrw

α }α∈(−∞,1]. Indeed, in
Sect. 4.2, we prove that in the proximity graph setting, the discrete dynamics
associated with the rate matrices Qrw

α are closely related, in the large data limit, to
the same family of Fokker–Planck equations at the continuum level mentioned in
Sect. 3.1. What is more, without taking a large sample limit, we see that the family
{Qrw

α }α∈(−∞,1] interpolates between Qrw
1 and a rate matrix inducing graph mean

shift dynamics, only that this time the version of mean shift that is meaningful is a
particular case of the KNF formulation from Sect. 2.2.2. We prove this in the next
proposition.

Proposition 3.1 Let (X , w) be an arbitrary weighted graph satisfying the condi-
tions at the beginning of Sect. 1.2. Set Cα = 1 for every α ∈ (−∞, 1]. Then,
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lim
α→−∞ Qrw

α = Qrw−∞, (3.2)

where

Qrw−∞(x, y) := −1y=x +
⎧
⎨

⎩

w(x,y)∑
z∈MKNF,x

w(x,z)
if y ∈ MKNF,x

0 otherwise,
(3.3)

where in the definition of MKNF,x we are using B̂(z) = d(z), D̂(x, y) = 1 if
w(x, y) > 0 and D̂(x, y) = ∞ if w(x, y) = 0, and r > 1.

We notice that this is essentially the KNF rate matrix defined in (2.10) with only
a difference in the way ties are broken when the maximum of d around a point is
not unique. This distinction is mostly irrelevant since generically we may expect no
ties. On the other hand, if for some reason there are ties but the non-zero weights in
the graph are equal, then the two tie-breaking rules coincide.

Proof As the cases are analogous, let us consider only the case y 
= x. Note that

Qrw
α (x, y) = wα(x, y)∑

z 
=x wα(x, z)
= w(x, y)d(x)−αd(y)−α

∑
z 
=x w(x, z)d(x)−αd(z)−α

= w(x, y)d(y)−α

∑
z 
=x w(x, z)d(z)−α

.

If y 
∈ MKNF,x , consider z ∈ MKNF,x . Then,

Qrw
α (x, y) � w(x, y)

w(x, z)

(
d(y)

d(z)

)−α

→ 0 as α → −∞.

If y ∈ MKNF,x , then

Qrw
α (x, y) = w(x, y)

∑
z 
=x w(x, z)

(
d(z)
d(y)

)−α
→ w(x, y)∑

z∈MKNF,x
w(x, z)

as α → −∞.

��

4 Continuum Limits of Fokker–Planck Equations on Graphs
and Implications

In this section, we further study the Fokker–Planck equations introduced in Sect. 3
and discuss their connection with Fokker–Planck equations at the continuum level.
For such connection to be possible, we impose additional assumptions on the
graph G = (X , w). In particular, we assume that G is a proximity graph on
X = {x1, . . . , xn}, where the xi are assumed to be i.i.d. samples from a distribution
on a smooth compact m-dimensional manifold without boundary M embedded in
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R
d and having density ρ : M → R with respect to the volume form on M. By

proximity graph, we mean that the weights w(xi, xj ) are defined according to

w(x, y) := ηε(|x − y|), ηε(r) = 1

εm
η

( r

ε

)
, (4.1)

where ε > 0 is a bandwidth appropriately scaled with the number of samples n, η
is a function η : [0,∞) → [0,∞) with compact support, and |x − y| denotes the
Euclidean distance between x and y.

4.1 Continuum Limit of Mean Shift Dynamics on Graphs

In order to formally derive the large sample limit of equation (2.4), we study the
action of Qms on a smooth function u : M → R. That is, we compute

∑

x∈X
u(x)Qms(x, y) = −Cms

∑

x∈X

[
(B(x) − B(y))+ u(y) − (B(x) − B(y))−u(x)

]
w(x, y)

as n → ∞ and ε → 0 at a slow enough rate. Since our goal below is to deduce
formal continuum limits, we will assume that M is flat. We note that when M
is a smooth manifold, the deflection of the manifold from the tangent space is at
most quadratic, and thus the error introduced is small when ε is small. In this way,
we can avoid using the notation and constructions from differential geometry as
well as some approximation arguments that obscure the reason why the limit holds.
Providing a rigorous argument for the convergence of the dynamics remains an open
problem.

In what follows, we use ρn = 1
n

∑
x∈X δx to denote the empirical distribution on

the data points; here, we use the notation ρn to highlight the connection between the
data points and the density function ρ. We also consider the constants

Cms = 1

nε2ση′
, ση′ = 1

2m

∫

Rm

|z|2η(|z|)dz,

and assume that the potential B is a C3(M) function. With the above definitions,
we can explicitly write

−
∑

x∈X
u(x)Qms(x, y) = 1

nεm+2ση′

∑

x∈X

[
(B(x) − B(y))+ u(y) − (B(x) − B(y))−u(x)

]

× η

( |x − y|
ε

)
(4.2)

and using the smoothness of u and B equate the above to
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= 1

εm+2ση′

∫

M
[
(B(x) − B(y))+ u(y) − (B(x) − B(y))−u(x)

]
η

( |x − y|
ε

)
ρn(x)dx

= 1

εm+2ση′

∫

M
[
(B(x) − B(y))+ (u(y) − u(x))

+ (
(B(x) − B(y))+ − (B(x) − B(y))−

)
u(x)

]
η

( |x − y|
ε

)
ρn(x)dx

= 1

εm+2ση′

∫

M
[
(B(x) − B(y))+ (u(y) − u(x)) + (B(x) − B(y)) u(x)

]
η

×
( |x − y|

ε

)
ρn(x)dx

≈ 1

εm+2ση′

∫

M
[
(B(x) − B(y))+ 〈∇u(y), y − x〉 + 〈∇B(y), x − y〉u(x)

]
η

×
( |x − y|

ε

)
ρn(x)dx

+ 1

2εm+2ση′

∫

M

[
(B(x) − B(y))+ 〈D2u(y)(x − y), y − x〉

+〈D2B(y)(x − y), x − y〉u(x)
]
η

( |x − y|
ε

)
ρn(x)dx

=: A1 + A2 + A3 + A4.

Next, we analyze each of the terms A1, A2, A3, and A4. For A1, we see that

A1 ≈ 1

εm+2ση′

∫

M
(B(x) − B(y))+ 〈∇u(y), y − x〉η

( |x − y|
ε

)
ρ(x)dx

≈ − 1

εm+2ση′

∫

〈x−y,∇B(y)〉�0
〈∇u(y), x − y〉〈x − y, ∇B(y)〉η

( |x − y|
ε

)
ρ(x)dx

≈ − ρ(y)

εm+2ση′

∫

〈x−y,∇B(y)〉�0
〈∇u(y), x − y〉〈x − y, ∇B(y)〉η

( |x − y|
ε

)
dx

= −ρ(y)

ση′

∫

〈z,v〉�0
〈v′, z〉〈z, v〉η(|z|)dz,

(4.3)

where v = ∇B(y) and v′ = ∇u(y); notice that in the first line we have replaced the
empirical measure ρn with the measure ρ(x)dx (introducing some estimation error)
and in the second line we have considered a Taylor expansion of B around y. On
the other hand, notice that

∫

〈z,v〉�0
〈v′, z〉〈z, v〉η(|z|)dz = 〈Sv, v′〉,
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where S is a rank one symmetric matrix which can be written as S = aζ ⊗ ζ for
some vector ζ and some scalar a. Now, a〈ζ, v〉2 is equal to

〈Sv, v〉 =
∫

〈z,v〉�0
〈v, z〉2η(|z|)dz = |v|2 1

2m

m∑

l=1

∫
〈el, z〉2η(|z|)dz

= |v|2 1

2m

∫
|z|2η(|z|)dz = ση′ |v|2.

The above computation shows that ζ can be taken to be v, and a = σ ′
η

|v|2 . Thus,

A1 ≈ −ρ(y) 〈∇u(y),∇B(y)〉 . (4.4)

Regarding A2, we have

A2 ≈ 1

εm+2ση′

∫

M
〈∇B(y), x − y〉u(x)η

( |x − y|
ε

)
ρ(x)dx,

introducing an estimation error to replace the integration with respect to the
empirical measure with integration with respect to the measure ρ(x)dx. We can
further decompose the computation introducing an approximation error:

A2 ≈ A21 + A22 + A23,

where

A21 := 1

εm+2ση′

∫

M
〈∇B(y), x − y〉〈∇u(y), x − y〉η

( |x − y|
ε

)
ρ(y)dx,

A22 := 1

εm+2ση′

∫

M
〈∇B(y), x − y〉u(y)η

( |x − y|
ε

)
ρ(y)dx,

A23 := 1

εm+2ση′

∫

M
〈∇B(y), x − y〉〈∇ρ(y), x − y〉u(y)η

( |x − y|
ε

)
dx.

By symmetry, the term A22 is seen to be equal to zero. On the other hand, the
terms A21 and A23 are computed similarly to the second expression in (4.3) only
that in this case there is no sign constraint in the integral. From a simple change of
variables, we can see that for arbitrary vectors v and v′, we have

∫

〈z,v〉�0
〈v′, z〉〈z, v〉η(|z|)dz =

∫

〈z,v〉�0
〈v′, z〉〈z, v〉η(|z|)dz.
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In particular,

∫
〈v′, z〉〈z, v〉η(|z|)dz = 2

∫

〈z,v〉�0
〈v′, z〉〈z, v〉η(|z|)dz = 2σ ′

η〈v, v′〉,

and thus

A21 = 2ρ(y)〈∇B(y),∇u(y)〉, A23 = 2u(y)〈∇B(y),∇ρ(y)〉.

In summary,

A2 ≈ 2ρ(y)〈∇B(y),∇u(y)〉 + 2u(y)〈∇B(y),∇ρ(y)〉. (4.5)

It is straightforward to see that A3 = O(ε) and so for our computation we can
treat A3 as zero:

A3 ≈ 0. (4.6)

For the final term A4, we start by introducing an estimation error to write

A4 ≈ 1

2εm+2ση′

∫

M
〈D2B(y)(y − x), x − y〉u(x)η

( |x − y|
ε

)
ρ(x)dx.

We can further replace the term u(x) with u(y) (and ρ(x) with ρ(y)) in the formula
above. This replacement introduces an O(ε) term that we can ignore. It follows that

A4 ≈ u(y)ρ(y)
1

2εm+2ση′

∫

M
〈D2B(y)(x − y), x − y〉η

( |x − y|
ε

)
dx

= u(y)ρ(y)
1

2ση′

∫
〈D2B(y)z, z〉η(|z|)dz

= u(y)ρ(y)
B(y).

Combining the above estimate with (4.4), (4.5), and (4.6), we see that

∑

x∈X
u(x)Qms(x, y) ≈ − (ρ(y) 〈∇u(y),∇B(y)〉 + 2u(y)〈∇B(y),∇ρ(y)〉

+u(y)ρ(y)
B(y))

= − 1

ρ
div

(
uρ2∇B

)
.

Note that the graph dynamics takes place on the provided data points, that is, on
P(X ) ⊂ P(M). As n → ∞, P(X ) approximates P(M). This partly explains
that had we carried out the argument above in the full manifold setting the resulting
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dynamics would be restricted to the manifold and in particular both the divergence
and the gradient above would take place on M. That is, for data on a manifold,

∑

x∈X
u(x)Qms(x, y) ≈ − 1

ρ
divM

(
uρ2∇MB

)
.

Remark 4.1 Notice that with the choice B(x) := log(ρ(x)), the above becomes

− 1

ρ
divM (uρ∇Mρ) ,

whereas with the choice B(x) = − 1
ρ(x)

, we get

− 1

ρ
divM (uρ∇M log(ρ)) .

The above analysis suggests that the formal continuum limit of the evolution (2.4)
when B = − 1

ρ
is the PDE:

∂tut = − 1

ρ
divM(utρ∇M log(ρ)).

Notice, however, that the solution ut of the above equation must be interpreted as a
“density” with respect to the measure ρ(x)dV olM (ρ(x)dx in the flat case). Thus,
in terms of “densities” with respect to dV olM, we obtain

∂tft = −divM(ft∇M log(ρ)),

where ft := utρ. We recognize this latter equation as the PDE describing the mean
shift dynamics (1.3).

4.2 Continuum Limits of Fokker–Planck Equations on Graphs

In this section, we formally derive the large sample limit of the two types of Fokker–
Planck equations on G that we consider in this chapter, i.e., Eq. (2.1) whenQ = Qrw

α

(for α ∈ (−∞, 1]) and when Q = Qβ (for β ∈ [0, 1]).
We start our computations by pointing out that after appropriate scaling and under

some regularity conditions on the density ρ, the diffusion operator Lrw
α converges

toward the differential operator:

Lαv := − 1

ρ2(1−α)
divM(ρ2(1−α)∇Mv). (4.7)
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To be precise, if we set

Cα = 1

σηε2
, ση :=

∫

Rm

|z|2η(|z|)dz
/ ∫

Rm

η(|z|)dz,

then, for all smooth v : M → R, we have

−
∑

y∈X
Qrw

α (x, y)v(y) = Cα

∑

y

Lrw
α (x, y)v(y) → Lαv(x),

as n → ∞ and ε → 0 at a slow enough rate. This type of pointwise consistency
result can be found in [37] and [12]. Furthermore, eigenvalues and eigenvectors of

the graph Laplacians converge as n → ∞ and ε → 0 (with ε �
(
ln n
n

)1/d
) to

eigenvalues and eigenfunctions of the corresponding Laplacian on M, see [18]. If
M is a manifold with boundary, then the continuum Laplacian is considered with
no-flux boundary conditions. We note that the results from [18] are only stated for
the case α = 0, i.e., for the standard random-walk Laplacian, but the proof in [18]
adapts to all α ∈ (−∞, 1] assuming that the density ρ is smooth enough and is
bounded away from zero and infinity.

Now, to understand the large sample limit of the dynamics (2.1) when Q = Qrw
α ,

we actually need to study the expression:

∑

x∈X
u(x)Qrw

α (x, y), y ∈ X , (4.8)

which in matrix form can be written as QrwT

α u provided we view u as a column
vector. For that purpose, we consider two smooth test functions g and h on M. By
definition of transpose,

1

n

n∑

i=1

h(xi)(Q
rwT

α g)(xi) = 1

n

n∑

i=1

g(xi)(Q
rw
α h)(xi). (4.9)

At the continuum level, the definition of Lα and integration by parts provide that

∫

M
h(x)

1

ρ(x)
divM

(
ρ2(1−α)∇M

(
g

ρ1−2α

))
ρ(x)dV olM(x)

= −
∫

M
g(x)Lαh(x)ρ(x)dV olM(x)

By the convergence of Qrw
α toward −Lα as n → ∞, we can conclude that right-

hand sides converge, and thus the left-hand sides do too; notice that the ρ(x)dx

on both sides appear because in both sums in (4.9) the points xi are distributed
according to ρ. From this computation, we can identify the limit of (4.8) as
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1

ρ(y)
divM

(
ρ2(1−α)∇M

(
u

ρ1−2α

))
.

In turn, we obtain the formal continuum limit of the dynamics (2.1) whenQ = Qrw
α :

∂tut = 1

ρ
divM

(
ρ2(1−α)∇M

(
ut

ρ1−2α

))
,

where ut represents the density with respect to ρ(x)dx. If we consider

ft (x) := ut (x)ρ(x), (4.10)

that is, ft is a probability density w.r.t. dx, we see it satisfies

∂tft=divM
(

ρ2(1−α)∇M
(

ft

ρ2(1−α)

))
=
Mft − 2(1 − α)divM(ft∇M log(ρ)),

(4.11)

where the last equality follows from an application of the product rule to the term

∇M
(

f

ρ2(1−α)

)
. Notice that after considering a time change t ← t

3−2α , we can

rewrite Eq. (4.11) as

∂tft = (1 − βα)
Mft − βαdivM(ft∇M log(ρ)), (4.12)

where βα = (2 − 2α)/(3 − 2α) ∈ [0, 1].
Using the above analysis and Remark 4.1, we can also conclude that the (formal)

large sample limit of equation (2.1) with Q = Qβ and potential B = − 1
ρ
is given

by

∂tft = (1 − β)
Mft − βdivM(ft∇M log(ρ)), (4.13)

that is, the same continuum limit as for the Fokker–Planck equations constructed
using the rate matrix Qα for α such that β = βα .

Remark 4.2 Notice that when β = 1, Eq. (4.13) reduces to the heat equation onM
where no role is played by ρ. In this case, clustering is determined completely by
the geometric structure of M. On the other hand, when β = 0, Eq. (4.13) reduces
to mean shift dynamics onM as discussed in Sect. 1.1.

Remark 4.3 Several works in the literature have established precise connections
between operators such as graph Laplacians built from random data and analogous
differential operators defined at the continuum level on smooth compact manifolds
without boundary. For pointwise consistency results, we refer the reader to [37, 21,
20, 4, 40, 19]. For spectral convergence results, we refer the reader to [46] where the
regime n → ∞ and ε constant has been studied. Works that have studied regimes
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where ε is allowed to decay to zero (where one recovers differential operators and
not integral operators) include [36, 5, 16, 28, 6, 13, 48]. Recent work [10] considers
the spectral convergence of Lα with self-tuned bandwidths and includes the α < 0
range. The work [7] provides regularity estimates of graph Laplacian eigenvectors.

The case of manifolds with boundary has been studied in papers like [43, 39,
28, 18]. It is important to highlight that the specific computations presented in our
Sect. 4.1 would have to be modified to take into account the effect of the boundary,
in particular on the kernel density estimate. However, we remark that the tools
and analysis from the papers mentioned above can be used to generalize these
computations.

Remark 4.4 A connection between Fokker–Planck equations at the continuum level
and the graph dynamics induced by Qrw

α when α = 1/2 was explicitly mentioned
in [31]. To establish an explicit link between mean shift and spectral clustering,
however, we need to consider the range (−∞, 1] for α. In the diffusion maps
literature, the interval [0, 1] is considered as natural range for α, but the analysis
presented in this section explains why (−∞, 1] is in fact a more natural choice.

Remark 4.5 Besides the Fokker–Planck interpolations considered in Sect. 3.1,
another family of data embeddings that are used to interpolate geometry-based and
density-driven clustering algorithms is based on the path-based metrics studied in
[26, 27].

4.3 The Witten Laplacian and Some Implications for Data
Clustering

In the previous section, we presented a (formal) connection between Fokker–Planck
equations on proximity graphs and Fokker–Planck equations on manifolds. In this
section, we use this connection to illustrate why the Fokker–Planck interpolation is
expected to produce better clusters in settings like the blue sky problem discussed
in our numerical experiments in Sect. 5.2.6 where both pure mean shift and pure
spectral clustering perform poorly. For simplicity, we only consider the Euclidean
setting.

We start by noticing that Eq. (4.13) can be rewritten as

∂t f̃t = −
�f̃t , (4.14)

after considering the transformation:

f = exp

(
−1 − β

2β
�

)
f̃ , � := − log(ρ).
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In the above, the operator 
� is the Witten Laplacian (see [47] and [30]) associated

with the potential 1−β
2 � which is defined as


�v := −β2
v + (1 − β)2

4
|∇�|2v − β(1 − β)

2
(
�)v. (4.15)

From the above, we conclude that the Fokker–Planck dynamics (4.13) can be
analyzed by studying the dynamics (4.14). In turn, some special properties of the
Witten Laplacian 
� that we review next allow us to use tools from spectral theory
to study equation (4.14) and in turn also the type of data embedding induced by our
Fokker–Planck equations on graphs.

To begin, notice that


� =
(

−βdiv + (1 − β)

2
∇�

) (
β∇ + (1 − β)

2
∇�

)
. (4.16)

From the above, we see that 〈
�f, g〉L2(M) can be written as

〈
�g, h〉L2(M) =
∫

M

〈
β∇g + g

(1 − β)

2
∇�, β∇h + h

(1 − β)

2
∇�

〉
dx,

from where we conclude that 〈
�f, g〉L2(M) is a quadratic form with associated
Dirichlet energy:

D(f ) :=
∫

M

∣∣∣∣∇f + f
(1 − β)

2
∇�

∣∣∣∣
2

dx. (4.17)

When M is compact, it is straightforward to show that there exists an orthonormal
basis {�k}k∈N for L2(M) consisting of eigenfunctions of 
� with corresponding
eigenvalues 0 = λ1 < λ2 � λ2 � . . . that can be characterized using the Courant–
Fisher minmax principle. Using the spectral theorem, we can then represent a
solution to (4.14) as

f̃t =
∞∑

k=1

e−tλk 〈f̃0, �k〉L2(M)�k

and conclude that the dynamics (4.14) are strongly influenced by the eigenfunctions
with smallest eigenvalues.

We now explain the implication of the above discussion on data clustering.
Suppose that we consider a data distribution in R

2 as the one considered in
Sect. 5.2.6 modeling the blue sky problem, so that in particular it has product
structure, i.e., ρ(x, y) = ρ1(x)ρ2(y). In this case, we can use the additive structure
of the potential � = − log(ρ(x, y)) = − log(ρ1(x))− log(ρ2(y)) =: �1(x)+�2(y)

to conclude that the set of eigenvalues of 
� and a corresponding orthonormal basis
of eigenfunctions can be obtained from
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λ1,i + λ2,j , �1,i (x)�2,j (y),

where (λ1,i , �1,i ) are the eigenpairs for the 1D Witten Laplacian 
�1 and
(λ2,j , �2,j ) are the eigenpairs for 
�2 . In particular, the first non-trivial
eigenvalue of 
� and its corresponding eigenfunction (which will be the effective
discriminators of the two desired clusters if λ3 is considerably larger than λ2) are
either λ1,2 and �1,2(x)�2,1(y) or λ2,2 and �1,1(x)�2,2(y). This discussion captures
the competition between a horizontal and a vertical partitioning of the data in the
context of the blue sky problem from Sect. 5.2.6. While we are not able to retrieve
the desired horizontal partitioning by setting β = 0 or β = 1, we can identify the
correct clusters by setting β strictly between zero and one (closer to one than to
zero). We notice that the results from [30] can be used to obtain precise quantitative
information on the small eigenvalues of the 1D Witten Laplacians 
�1 and 
�2

when β is close to one (i.e., the diffusion term is small), which we can use to
determine whether λ2,2 < λ1,2 or vice versa.

5 Numerical Examples

We now turn to the details of our numerical method and examples illustrating
its properties. We begin, in Sect. 5.1, by describing the details of our numerical
approach. We provide Algorithm 5.1 for its practical implementation.

In Sect. 5.2, we consider several numerical examples, beginning with examples
in one spatial dimension. In Fig. 4, we illustrate how the graph dynamics for
the transition rate matrices Qβ and Qrw

α can be visualized as the evolution of a
continuum density, and in Fig. 5, we illustrate the good agreement between the
graph dynamics and the dynamics of the corresponding continuum Fokker–Planck
equation. In Fig. 6, we show how the clustering performance of our method depends
on the balance between drift and diffusion (β), the time of clustering (t), and the
number of clusters (k); we also illustrate the benefits and limitations of using the
energy of the k-means clustering to identify the number of clusters. In Fig. 7, we
consider the role of the kernel density estimate in clustering dynamics, showing
how adding diffusion to mean shift dynamics can help the dynamics overcome
spurious local minimizers in the kernel density estimate, leading to better clustering
performance. In Fig. 8, we illustrate the interplay between the underlying data
distribution and the balance between drift and diffusion (β) .

Next, we consider several examples in two dimensions. In Figs. 10 and 11, we
consider a model of the blue sky problem, in which data points are distributed
over two elongated clusters that are separated by a narrow low-density region. We
illustrate how diffusion dominant dynamics prefer to cluster based on the geometry
of the data, leading to poor performance. Similarly, pure mean shift dynamics can
exhibit poor clustering due to local maxima in the kernel density estimate. By
interpolating between the two extremes, we observe robust clustering performance,
for a wide range of graph connectivity (ε). Finally, in Figs. 12 and 13, we consider an
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example in which three blobs are connected by two bridges: one wide, low-density
bridge and another narrow, high-density bridge. This example is constructed so that
there is no correct clustering into two clusters. Instead, a geometry-based clustering
method would prefer to cut the thin bridge, and a density-based clustering method
would prefer to cut the wide bridge. We show how varying the balance between drift
and diffusion in our method (β) allows our method to cut either bridge.

5.1 Numerical Method

For our numerical experiments, we consider a domain � ⊆ R
d and a density ρ :

� → [0,+∞) normalized so that
∫
�

ρ = 1. All PDEs on � will be considered
with no-flux boundary conditions, as the solutions of the graph-based equations
converge to the solutions of PDE with no-flux boundary conditions (observed in
[12] and rigorously proved in [18] for Laplacians).

We draw n samples {xi}ni=1 from ρ on �. These samples are the nodes of our
weighted graph, and for all simulations, the weights on the graph are given by a
Gaussian weight function

w(xi, xj ) = ϕε(|xi − yj |), ϕε(a) = e−a2/2ε2

(2πε2)d/2
, a ∈ R. (5.1)

In our one-dimensional simulations, we take the graph bandwidth parameter ε to be

ε = √
2max

i
min
j :j 
=i

|xi − xj |; (5.2)

that is, ε equals the maximum distance to the closest node. We note that even in
higher dimensions, the ε above scales as (ln n/n)1/d with the number of nodes n.
This has been identified as the threshold, in terms of n, at which the graph Laplacian
is spectrally consistent with the manifold Laplacian [18]. In Fig. 11, we illustrate
how the choice of ε impacts dynamics and, ultimately, clustering performance.

With this graphical structure, we now recall the weighted diffusion transition
rate matrix Qrw

α , for α ∈ (−∞, 1], as in Eq. (1.12), with the constant Cα = ((3 −
2α)ε2)−1,

Qrw
α (x, y) := 1

(3 − 2α)ε2

⎧
⎨

⎩

wα(x,y)∑
z 
=x wα(x,z)

if x 
= y,

−1 if x = y,
(5.3)

wα(x, y) := w(x, y)

d(x)αd(y)α
, d(xi) =

∑

xj 
=xi

w(xi, xj ). (5.4)
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Similarly, we recall the transition rate matrix Qβ , for β ∈ [0, 1], as in Eq. (3.1),
with the constant Cms = (ε2n)−1,

Qβ := βQms + (1 − β)Qrw
1 , (5.5)

Qms(x, y) := 1

ε2n

⎧
⎨

⎩

(
− 1

ρ̂δ(y)
+ 1

ρ̂δ(x)

)

+ w(x, y), for x 
= y,

− ∑
z 
=x

(
− 1

ρ̂δ(z)
+ 1

ρ̂δ(x)

)

+ w(x, z), for x = y,
(5.6)

ρ̂δ(x) := 1

n

∑

y∈X
ϕδ(x − y). (5.7)

Unless otherwise specified, we take the bandwidth δ in our kernel density estimate
for our one-dimensional examples to be

δ = √
2

( |�|
n

)0.5

. (5.8)

With these transition rate matrices in hand, we may now consider solutions ut

of (2.1) when Q = Qrw
α or when Q = Qβ . We solve the ordinary differential equa-

tions describing the graph dynamics by directly computing the matrix exponential
etQ in each case; see Definition 2.1. Following the discussion in Sect. 4.2, we know
that for each of these dynamics, as n → +∞ and ε, δ → 0 (at an n dependent
rate that is not too fast), the measures

∑n
j=1 ut (xj )δxj

are expected to converge to
solutions ft of the following Fokker–Planck equation:

∂tft = (1 − β)
ft − βdiv(ft∇ log(ρ)), (5.9)

where for the Qrw
α dynamics, we take

β = βα = (2 − 2α)/(3 − 2α) (5.10)

The steady state of the equation is the corresponding Maxwellian distribution

cρ,β ρβ/(1−β)(x), (5.11)

where cρ,β > 0 is a normalizing constant chosen so that the distribution integrates
to one over �. Note that, if d(xi) represents the degrees of the graph vertices, as in
Eq. (1.8), then the function ut (xi)d(xi) likewise converges to ft (x) as the number of
nodes in our sample n → +∞. Consequently, when comparing our graph dynamics
to the PDE dynamics, we will often plot ut (xi)d(xi) and ft (x).

Finally, we use the embedding maps �̂α and �̂β from Sects. 2.1 and 3.1 to
cluster the nodes. In particular, we apply k-means to the vectors {�̂α(xi)}ni=1

and {�̂β(xi)}ni=1, obtaining in this way a series of maps from nodes {xi}ni=1 to
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cluster centers {lm}km=1. Nodes mapped to the same cluster center are identified as
belonging to the same cluster. While we will not discuss at any depth the methods
to select the best number of clusters, we note that a number of methods to do so
(in particular the elbow method and the gap statistics [38]) rely on the value of the
k-means energy,

Ek = 1

n

n∑

i=1

min
m=1,...k

|�(xi) − lj |2, (5.12)

for each relevant �. Note that Ek always decreases with k. While a large decrease
in the energy as k increases is indicative of the improved approximation of data
by cluster centers, the size of the jumps is truly telling only if we compare it with
the relevant model for the data considered, see [38] and discussion in Sect. 5.2.3.
For ease of visualization, in our numerical examples, we will plot the normalized
k-means energy, which is rescaled so that energy of a single cluster equals one,

Enorm
k = Ek/E1. (5.13)

All of our simulations are conducted in Python, using the Numpy, SciPy, Sci kit-
learn, and MatPlotLib libraries [42, 24, 23, 33]. In particular, we use the Sci kit-learn
implementation of k-means to cluster the embedding maps.

Algorithm 1 Dynamic clustering algorithm for Qβ or Qrw
α

Input: {xi}ni=1, ε, δ, t , k
Q = Qβ or Q = Qrw

α

�̂Q(xi) = (etQ)(i,j=1,...n) for i = 1, . . . , n
lm = Kmeans.fit(�̂Q(x1), . . . , �̂Q(xn)) with nclusters = k

5.2 Simulations

We now turn to simulations of the graph dynamics, PDE dynamics, and clustering.

5.2.1 Graph Dynamics as Density Dynamics

In Fig. 4, we illustrate how the dynamics on a graph can be visualized as the
evolution of a density on the underlying domain � = [−1.5, 1.5]. The right column
of Fig. 4 illustrates two choices of data density (blue line),

ρtwo bump(x) = 4cϕ0.5(x + 0.5) + cϕ0.25(x − 1.25)
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Fig. 4 Illustration of the graph dynamics ut for Qβ , β = 0.25, from initial condition δxi
, xi =

−0.1, for two choices of data density: ρtwo bump (top) and ρuniform (bottom). The first three
columns show the evolution of ut (x)d(x) at times t = 0.1, 0.5, and 8.0, with the color of the
markers representing the value of ut (xi)d(xi) at each node. The last column depicts the data density
(blue line) from which the nodes of the graph {xi}ni=1 (black markers) are sampled, as well as the
steady state of the dynamics (thick black line)

and ρuniform(x) = 1

3
, x ∈ R. (5.14)

The constant c > 0 is chosen so that the integral of both densities over the domain
equals one. We sample the nodes of the graph {xi}ni=1 (black markers) from each
density, with n = 147 nodes sampled for ρtwo bump and n = 140 nodes sampled
for ρuniform. The first three columns show the evolution of the graph dynamics
ut (x)d(x) from Eq. (2.1) for Q = Qβ with β = 0.25 and initial condition δxi

,
xi = −0.1, where the top row corresponds to the graph arising from ρtwo bump
and the bottom row corresponds to the graph arising from ρuniform. The color of
the markers represents the value of ut (xi)d(xi) at each node. We observe in both
rows that ut (x)d(x) approaches the steady state of the corresponding continuum
PDE (5.11), depicted in a thick black line in the fourth column.

The fact that d(x)ut (x) appears more jagged in the bottom row compared to the
top row is due to the smaller value of ε in the graph weight matrix: see Eqs. (5.1–
5.2). Since our sample of the data density in the top row has an isolated node at
xi = 1.44, this leads to a significantly larger value of ε in the simulations on the top
row (ε = 0.13), compared to the bottom row (ε = 0.03).

5.2.2 Comparison of Graph Dynamics and PDE Dynamics

In Fig. 5, we compare the graph dynamics to the corresponding Fokker–Planck
equation (5.9). We consider the data density given by ρtwo bump and initial
condition δxi

, for xi = −0.1. The graphs are built from n = 625 samples of the
data density, and solutions are plotted at times t = 0.5, 1.0, 8.0.
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Fig. 5 Comparison of the graph dynamics for Qβ (top) and Qα (middle) with the PDE dynamics
(bottom). The data density is ρtwo bump, and the initial data is δxi

for xi = −0.1. The graphs are
built from n = 625 samples of the data density. The steady states are obtained from equation (5.15)
for the graph dynamics and equation (5.11) for the finite difference dynamics

The top row illustrates the graph dynamics ut (x)d(x) arising from the transition
rate matrix Qβ , for β = 0, 0.25, 0.5, 0.75. The middle row illustrates ut (x)d(x)

arising from Qrw
α for α = 1.0, 0.83, 0.5,−0.5. (The values of α are chosen

to give the same balance between drift and diffusion as in the top row; see
equation (5.10).) The last row shows a finite difference approximation of the
Fokker–Planck equation (5.9). We compute solutions of the PDEs using a semi-
discrete, upwinding finite difference scheme on a one-dimensional grid, with 200
spatial gridpoints and continuous time. This reduces the PDEs to a system of ODEs,
which we then solve using the SciPy odeint method.

The steady states we plot for the graph dynamics are given by the following
equation:

cn,δ,β(ρ̂γ (x))β/(1−β), ρ̂γ (x) = 1

n

∑

y∈X
ψγ (x − y), ψγ (x) = 1

(2π)1/2γ
e−|x|2/(2γ 2),

(5.15)
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where cn,δ,β is a normalizing constant chosen, so the steady state integrates to one
over �. For the Qβ dynamics, we choose the standard deviation γ = δ, and for the
Qrw

α dynamics, we choose γ = ε. Recall that ρ̂δ is the kernel density estimator used
in the construction of the transition matrix Qβ ; see Eq. (2.7). The steady states for
the PDE dynamics are given by Eq. (5.11).

Interestingly, even though there is no explicit kernel density estimate of the
data in the construction of the transition rate matrix Qrw

α , the above simulations
demonstrate better agreement of these dynamics as t → +∞ with the steady state
arising from a kernel density estimate (5.15) than with the steady state arising
directly from the data density (5.11). This can be seen by observing the good
agreement at time t = 8.0 with the solid black line shown in the middle row,
rather than the solid black line shown in the bottom row. This suggests that the
Qrw

α operator effectively takes a KDE of the data density with bandwidth ε > 0,
corresponding to the scaling of the weight matrix on the graph.

5.2.3 Clustering Dynamics

In Fig. 6, we illustrate how the graph dynamics ut of the transition rate matrix Qβ

can be used for clustering. The underlying data density is ρtwo bump, from which
we choose n = 204 samples. We consider β = 0.25, 0.9, and 1.0, corresponding to
the three columns of the figure. The top portion of the figure shows the results of the
k-means clustering algorithm for k = 2, 3, 4. Each plot depicts the data samples at
times t = 10−1, 1, 10, coloring the samples according to which cluster they belong.
The top right panel on the figure shows the data distribution and the kernel density
estimate of the data distribution, which is used to construct the transition rate matrix
Qβ . The bottom of the figure shows the value of the k-means energy Ek (5.13) for
each clustering normalized so that k = 1 clustering (all nodes in a single cluster)
has energy E1 = 1.

For all β and k, there is poor clustering behavior early in time, t = 0.1,
suggesting that the Fokker–Planck dynamics have not had time to effectively mix
within clusters. This can be seen by comparing the colors of the nodes to the data
distribution displayed on the right: a correct clustering should identify one cluster
for the large bump and another cluster for the small bump. This can also be seen
by considering the k-means energy, which is largest at t = 0.1, and shows little
variation for different choices of k.

On the other hand, we observe the best clustering performance for β = 0.9
and time t = 10. Examining the colors of the nodes for k = 2 reveals that the
correct clusters are found. Furthermore, this clustering remains fairly stable as k is
increased. This can also be seen in the k-means energy, which shows a substantial
decrease from k = 1 to k = 2, but remains stable for k = 3, 4, suggesting that two
clusters are the correct number of clusters.

While β = 0.25 and β = 1 do not offer good clustering performance, they
do shed light on key properties of our method, once time is sufficiently large to
have allowed the dynamics to effectively mix, t = 10. For example, when β =
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Fig. 6 Clustering performance of the graph dynamics for the transition rate matrix Qβ . The top
portion of the figure shows the results of the k-means clustering algorithm for k = 2, 3, 4 (rows)
and β = 0.25, 0.9, 1.0 (columns). The color of a node indicates the cluster to which it belongs. On
the top right, we show the data density from which n = 204 nodes are sampled and the KDE of
the data density used to construct Qβ . The bottom of the figure shows the value of the normalized
k-means energy

0.25, diffusion dominates the dynamics, so that the density of the data distribution
does not play a strong role in clustering. In fact, we see that the clusters are almost
entirely driven by the geometry of the data distribution, which is fairly uniform on
the domain: when k = 2, the clusters are essentially even halves of the domain;
when k = 3, they are even thirds; and when k = 4, they are even quarters. The lack
of awareness of density when β = 0.25 inhibits correct cluster identification.

We observe the opposite problem when β = 1. In this case, the dynamics
are driven entirely by density, with no diffusion. However, the density driving the
dynamics is not the exact data density, but the kernel density estimate. Due to noise
in the KDE, an artificial local minimum appears near x = −0.75, causing k = 2 to
cluster the nodes to the left and right of this local minimum and causing k = 3 to
cluster the nodes into three even groups, separated by the two local minima of the
KDE. Unlike in the case β = 0.9, when β = 1.0, there is no diffusion to help the
dynamics overcome spurious local minima in the KDE, leading to inferior clustering
performance.

We close by considering the role of the k-means energies in identifying the
correct number of clusters. First, consider the case of a uniform data distribution.
In this case, the k-means energy for k = 2 would be 1

4 and for k = 3 would be 1
9 .
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Consequently, while the correct number of clusters for the uniform data distribution
is one, the k-means energy still drops significantly as k is increased. For this reason,
we caution that looking for the largest drop of the energy alone is not a good criterion
for determining the correct number of clusters. Determining the correct number of
clusters remains an active area of research, including, for example, the study of gap
statistics [38], in which the energy is compared to the energy one would have if the
data were uniform.

5.2.4 Effect of the Kernel Density Estimate on Clustering

Figure 7 illustrates the effect that the bandwidth δ of the kernel density estimate of
the data distribution has on clustering, see Eq. (2.7). The data distribution is given
by a piecewise constant function, shown in the rightmost column. The number of
samples chosen is n = 680, and the clustering is performed at time t = 30. The
graph connectivity parameter ε is chosen as in Eq. (5.2), equaling 0.015. The top
two rows show clustering performance for Qβ for β = 0.25, 0.9, 1, and the bottom
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Fig. 7 Effect of the bandwidth of the kernel density estimator on clustering, for n = 676 samples
clustered at time t = 30. First two rows show the clustering with Qβ , (5.5) for KDE bandwidths
δ = 0.2 and δ = 0.015, while the third shows the dynamics of Qrw

α , (5.3). The first three columns
show clustering performance for different balances of drift and diffusion, and the fourth column
shows the data distribution and kernel density estimate. Note that, since no explicit kernel density
estimate is used in the construction of Qrw

α , none is shown in the third row. The colors of the
samples indicate the clusters to which they belong, and the height of the samples in each frame
indicates the value of the normalized k-means energy (5.12). The top row of markers in each frame
corresponds to a single cluster (k = 1), the next one represents two clusters (k = 2), then three and
four clusters
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row shows clustering performance for Qrw
α for α = 0.83,−3.5,−50, where the

values of α are chosen to give a comparable balance between drift and diffusion at
the level of the continuum PDE; see Eqs. (5.9–5.10).

The first three columns show the clustering results for β = 0.25, 0.90, 1.00. The
color of a marker indicates the cluster to which it belongs, and the height of the
marker in the frame represents the value of the normalized k-means energy (5.13).
Since the normalized k-means energy is decreasing in k, the top row of markers
in each frame corresponds to a single cluster (k = 1), the next one represents two
clusters (k = 2), then three and four clusters.

In the top row, the bandwidth of the kernel density estimate used to construct
Qβ is δ = 0.20, and in the middle row, δ = 0.015. The effect of the bandwidth
on the kernel density estimate can be seen in the rightmost column: the larger value
of δ in the top row leads to a more accurate estimator of the data density than the
smaller value of δ in the middle row. As no explicit kernel density estimate is used
to construct the transition rate matrix Qrw

α , no estimator is shown in the rightmost
column of the bottom row. However, our previous numerical simulations in Fig. 5
suggest that the dynamics of Qrw

α most closely match the continuum Fokker–Planck
equation with a steady state induced by a kernel density estimate with bandwidth
δ = ε (5.15). This is the motivation behind our choice of δ = 0.015 = ε in
the second row, since it provides the closest comparison between the clustering
dynamics of Qβ and Qrw

α . Finally, we note that the choice of δ we suggest in
Eq. (5.8) would lead to the choice δ = 0.07, which is between the values considered
in the top and middle rows of the figure, and leads to very similar performance for
β < 1.

In the top row, when the bandwidth in the KDE is large, we observe good
clustering performance for β = 0.9 and 1.0 and k = 2. On the other hand, β = 0.25
performs poorly, since the large amount of diffusion causes the dynamics to ignore
the changes in relative density and cluster based on the fairly uniform geometry
of the sampling. In the middle row, when the bandwidth in the KDE is small,
we still observe good performance for β = 0.9, though β = 1.0 clusters poorly:
without diffusion, the dynamics cluster based on spurious local maxima. As before,
β = 0.25 identifies incorrect clusters, since it lacks information about density.
Finally, as we expected, the clustering performance in the bottom row is similar
to the middle row, due to the fact that the bandwidth in the middle row was chosen
to match the bandwidth of the implicit kernel density estimate which appears to
drive the dynamics of Qrw

α . Note that, for the bottom row, the only way to increase
the bandwidth of the implicit kernel density estimate would be to increase the graph
connectivity parameter ε, which, for compactly supported graph weights, would
lead to a more densely connected graph and thus higher computational cost.

5.2.5 Effect of Data Distribution on Clustering

Figure 8 illustrates the effect that different choices in data distribution have on the
clustering method based on Qβ , for n = 160 nodes and at time t = 30. Each row
considers a different data distribution: ρtwobump (see Eq. (5.14)) and
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Fig. 8 Illustration of the effect that different choices of data distribution have on the clustering
method based on Qβ for n = 160 samples at time t = 30. The first three columns illustrate
different choices of β, where the color of a marker indicates the cluster it belongs to for k = 1, 2, 3,
and the height of the marker in the frame represents the value of the normalized k-means energy

ρdeep valley(x) = 7c0ϕ0.5(x + 0.5) + 3c0ϕ0.15(x − 1.25),

ρthree bump(x) = c1ϕ0.1(x − 0.5) + c1ϕ0.1(x − 1.1) + 4c1ϕ0.4(x + 1),

where c0, c1 > 0 are normalizing constants chosen, so the densities integrate to one
on� = [−1.5, 1.5]. The right column shows the data density, the sample of n = 160
nodes, and the kernel density estimate used to construct the transition rate matrix
Qβ . The first three columns show the clustering results for β = 0.25, 0.90, 1.00.
The color of a marker indicates the cluster to which it belongs for k = 1, 2, 3, and
the height of the marker in the frame represents the value of the normalized k-means
energy (5.13).

In the top row, for ρtwo bump, we observe good clustering performance for all
β � 0.9 and poor performance for β = 0.25: due to the good behavior of the KDE
for this data distribution, problems do not arise as β → 1, and as usual, β = 0.25
suffers due to the dominance of diffusion. In the middle row, for ρdeep valley,
we again observe good performance for all β � 0.9, and we even observe good
performance for β = 0.25 when k = 2. This is due to the sparse sampling at
the deep valley, which leads to a change in the geometry of the nodes: a gap
that even diffusion dominant dynamics can detect. Finally, in the bottom row, for
ρthree mountains, we observe good performance for β � 0.9. Again, β = 0.25 is
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Fig. 9 Graph dynamics of Qβ on ρblue sky for n = 965 samples for β = 0.20 (top) and β = 0.95
(bottom). The initial condition is δxi ,yi

for (xi , yi ) = (−0.26,−0.29). In the first three columns,
the dots represent the locations of the samples, and the colors of the markers represent the value of
ut (xi)d(xi). In the fourth column, we plot the steady state of the corresponding continuum PDE
(5.15)

able to capture some correct information when k = 2, due to the sparsity of the data
near the left valley, but it fails at the most relevant k = 3.

5.2.6 Blue Sky Problem

In Fig. 9, we consider the graph dynamics of Qβ on a two-dimensional data
distribution inspired by the blue sky problem from image analysis, for n = 965
samples on the domain � = [−1.5, 1.5] × [−1, 1]. We choose ε = 0.04 and
δ = 0.10, in order to optimize agreement between the discrete dynamics and the
steady state of the continuum PDE (5.15).

In simple terms, the blue sky problem can be described as a setting in which data
points are distributed over two elongated clusters that are separated by a narrow
low-density region. For concreteness, we model this with a density of the form:

ρblue sky(x, y) = ϕ1.0(x) ∗ (ϕ0.09(y − 0.32) + ϕ0.09(y + 0.32)).

In the top row, we choose β = 0.20, and in the bottom row, we choose β = 0.95. In
both cases, we choose the initial condition for the dynamics to be δxi ,yi

for (xi, yi) =
(−0.26,−0.29). As in Fig. 4, the markers in the first four columns represent the
locations of the samples, which form the nodes of our graph, and the colors of the
markers represent the value of ut (xi)d(xi) at each node. In the rightmost column,
we plot the steady state of the continuum PDE (5.15). We observe good agreement
between the graph dynamics and the steady state by time t = 10.0. In the case
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Fig. 10 Illustration of the clustering behavior of Qβ on ρblue sky for n = 965 samples at time
t = 10. The first three rows show the clustering behavior for k = 2, 3, 4, with each node colored
according to which cluster it belongs. The fourth row shows the normalized k-means energy for
each number of clusters k

β = 0.95, the diffuse profile of the steady state illustrates that there is significant
diffusion, in spite of the fact that β is close to one.

In Fig. 10, we show the clustering behavior of Qβ on ρblue sky for n = 965
samples at time t = 10. The columns correspond to β = 0.2, 0.95, 1.0. The first
three rows show the clustering behavior for k = 2, 3, 4, with each node colored
according to which cluster it belongs. In the fourth row, we show the normalized
k-means energy for each choice of β.

We observe the best clustering performance for β = 0.95 and k = 2.
Furthermore, in this case, the plot of the normalized k-means energy indicates that
higher values of k do not lead to significant decreases of the energy, providing
further evidence that k = 2 is the correct number of clusters. The clustering
performance deteriorates for both β = 0.2 and β = 1.0. In the case of β = 0.2,
diffusion dominates and the clustering is based on the geometry of the sample
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Fig. 11 For the same data distribution as in Fig. 10, we investigate how the clustering behavior of
Qβ depends on the graph connectivity length scale ε for β = 0.20, 0.95, 1.00

points, preferring to cluster by slicing the sample points evenly in two pieces via the
shortest cut through the data set. In the case of β = 1.0, we expect that inaccuracies
in the kernel density estimation lead to spurious local minima, and in the absence
of diffusion to help overcome these local minima, incorrect clusters are found.
Note that simply increasing the bandwidth δ of kernel density estimate in this case
would not necessarily improve performance for β = 1.0, since for a large enough
bandwidth, the two lines would merge into one line.

Finally, in Fig. 11, we investigate how the clustering behavior of Qβ for
ρblue sky depends on the graph connectivity ε; see Eq. (5.1). The columns
correspond to β = 0.20, 0.95, 1.00 and the rows correspond to ε =
0.01, 0.03, [0.04, 0.11], and 0.12. We note that for a wide range of ε, the diffusion-
dominated regime β = 0.2 prefers to make shorter cuts even over parts of the
domain where data are dense, which is undesirable for the data considered. On the
other hand, the pure mean shift suffers, as in other examples, from the tendency to
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Fig. 12 Illustration of graph dynamics of Qβ on ρthree blobs for n = 966 samples, with β = 0.7
and initial condition δxi ,yi

for (xi , yi ) = (0.07, 0.10). The markers in the first three columns
represent the locations of the samples, and the colors of the markers represent the value of
ut (xi)d(xi). In the right column, we plot the steady state of the corresponding continuum PDE
(5.15)

identify spurious local maxima of KDE as clusters. We observe the best clustering
performance over the wide range of ε for β = 0.95. Considered together with other
experiments, this suggests that adding even a small amount of diffusion goes a long
way toward correct clustering.

5.2.7 Density vs. Geometry

In Fig. 12, we consider the graph dynamics of Qβ on a two-dimensional data
distribution chosen to illustrate how the competing effects of density and geometry
depend on the parameter β. We choose n = 966 samples, ε = 0.07, and δ = 0.05,
in order to optimize agreement between the discrete dynamics and the continuum
steady state.

The data density, which we refer to as ρthree blobs, is given by a piecewise
constant function that is equal to height one on the three circles of radius 0.25,
as well as on the wide rectangle [0.25, 0.75] × [−0.125, 0.125] on the top. On
the narrow rectangle [−0.75, 0.25] × [−0.04, 0.04] on the bottom, the piecewise
constant function has height four. Finally, the data density is multiplied by a
normalizing constant so that it integrates to one over the domain � = [−1.5, 1.5]×
[−1, 1].

In Fig. 12, we choose β = 0.7 and initial condition for the dynamics to be δxi ,yi

for (xi, yi) = (0.07, 0.10). The locations of the markers represent the samples from
the data distribution, and the colors of the markers represent the value of ut (xi)d(xi)

at each node. In the right column, we plot the steady state of the corresponding
continuum PDE (5.15). We observe good agreement with the graph dynamics and
the steady state by time t = 10.

In Fig. 13, we show the clustering behavior of the Qβ on ρthree blobs for n =
966 samples at time t = 10. The two columns correspond to β = 0.7 and 0.75. The
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Fig. 13 Illustration of the
clustering behavior of the Qβ

on ρthree blobs for n = 966
samples at time t = 10. The
first three rows show the
clustering behavior for
k = 2, 3, 4, with each node
colored according to which
cluster it belongs. In the
fourth row, we show the
normalized k-means energy
for each choice of k.
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first three rows show the clustering behavior for k = 2, 3, 4, with each node colored
according to which cluster it belongs. In the fourth row, we show the normalized
k-means energy for each choice of k.

This simulation provides an example of a data distribution where there is no
single “correct” choice of clustering for k = 2: a “good” clustering algorithm might
seek to cut either the thin, high density rectangle on the bottom or the wide, low
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density rectangle on the top. For small values of β � 0.7, diffusion dominates, and
the clusters are chosen based on the geometry of the data, preferring to cut the thin,
high density rectangle. For large values of β � 0.75, density dominates, and the
clustering prefers to cut the wide, low density rectangle. For intermediate values of
β, there is a phase transition for which the clustering becomes unstable.
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