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Summary. Various applications in science and engineering involve porous materials
where the fluid erodes the solid either chemically or mechanically and transports the
finer particles through the larger pore spaces of the residual solid. In soil mechanics,
the process is called suffusion. In rocks, erosion is mainly due to chemical dissolution.
Irrespective of the manner in which the solid erodes, the much finer particles mix
with the pure fluid to form a thick fluid whose mass density is greater than that of the
pure fluid but less than that of the intact solid. As the solid loses mass, its porosity
increases and its mechanical properties degrade, thus impacting the deformation and
fluid flow responses of the system. This paper formulates the complex kinematics and
conservation equations governing the solid-fluid interaction with internal erosion. We
use the classic u/p formulation in which u is the displacement of the residual solid
and p is the pressure in the thick fluid. We focus on the case of chemical erosion in
rocks where the eroded particles are so small that the interface between them and
the pure fluid may be neglected. We then present numerical examples demonstrating
the flow and deformation processes in porous materials subjected to internal erosion.

Keywords. Chemical dissolution, internal erosion, poroelasticity, suffusion.

1 Introduction

Internal erosion in geologic materials due to the interaction of pore fluid and
solid grains is a commonly observed phenomenon in many natural processes
and engineering applications [21, 22, 29, 43, 59]. Internal erosion in geologic
materials can be categorized into two common types: suffusion, which is a
type of erosion dominated by physical processes [26, 64], and solid dissolution,
which is a process dominated by chemical reaction [42, 50, 52, 58]. Suffusion
generally takes place in granular materials such as sands, where high-speed
pore fluid flow carries finer particles away through the porous skeleton formed
by coarser particles [46]. Solid dissolution refers to the phenomenon where
reactive pore fluid dissolves soluble constituents in geologic materials through
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chemical reaction. Internal erosion in geologic materials can have both posi-
tive and negative impacts on engineering practices. Richards and Reddy [56]
investigated the causes of dam failures on a kilometer scale and concluded
that for approximately half of cases, failure was associated with soil erosion.
For carbon geological sequestration [35, 44, 54], solid dissolution in the shale
caprock is a key factor that may impair the long-term integrity of the reser-
voir seal. Properly-leveraged internal erosion in geologic materials can also be
beneficial for engineering applications. For instance, in shale gas exploitation,
acids are usually pumped into the reservoir to weaken the rocks and improve
the efficiency of hydraulic fracturing [24, 49, 65, 78].

The work introduced in this paper focuses on coupled fluid flow-solid defor-
mation in rocks considering the effects of internal erosion induced by chemical
reaction. In nature, many rocks are inherently anisotropic. The most prevalent
type of anisotropy in rocks is transverse isotropy arising from a laminated mi-
crostructure. For such rocks, the mechanical response of the solid skeleton, the
constitutive law of pore fluid flow, and their variation under the impact of in-
ternal erosion should follow the symmetry requirement of material transverse
isotropy [32, 33, 84, 86, 87]. In terms of material compositions, natural rocks
are usually heterogeneous and are made up of various constituents, including
chemically stable minerals like quartz, and constituents that are prone to dis-
solve in acidic environment such as carbonate and feldspar [3, 8, 41, 57, 66, 71].
Taking carbon geological sequestration as an example, the increase of acidity
of the reservoir fluid caused by CO2 injection would substantially amplify the
dissolution rate of carbonate minerals [11, 19, 25, 36, 57] and trigger mineral
alteration in aluminosilicate minerals [2, 25].

The transition state theory is usually adopted to characterize the rate of
chemical reaction that leads to solid erosion in natural rocks [53]. The theory
indicates that the dissolution rate of the solid grains is proportional to the area
of the surface between the interacting solid and fluid phases. The solid-fluid
interaction in rocks generally takes place in open microcracks. Therefore, the
reaction area that controls the solid dissolution rate would be proportional
to the density of open microcracks, which can further be associated with
the volumetric strain in the rock specimen [31]. To be more specific, dilative
volumetric strain normally increases the density of open microcracks, while
compressive strain reduces the opening of the cracks, leading to a decrease
of the density of open microcracks. To consider the influence of mechanical
deformation on the rate of chemical reaction, we introduce a phenomenolog-
ical expression for the rate of solid dissolution that asymptotically reaches a
constant maximum value at increasing dilative volumetric strain.

The loss of solid phases induced by chemical reactions would influence both
the mechanical responses of the solid skeleton of the rocks and the behaviors
of the pore fluid flow. For the impact on the mechanical properties, we intro-
duce a damage model where the decrease of the elastic moduli of the solid
skeleton is driven by the amount of dissolved solid. The impact of solid dis-
solution on pore fluid flow involves two competing aspects. On the one hand,
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solid dissolution enlarges the pores and facilitates pore fluid flow [28, 45].
We express the intrinsic permeability tensor as a function of porosity with
a power-law approximation of the Kozeny-Carman equation [15, 37, 40, 73]
with distinct parameters for permeability components along bed-normal and
bed-parallel directions. On the other hand, since the dissolved solid and the
fluid phase together form a thick fluid that permeates through the pore net-
work, the increase of dissolved solid would result in higher viscosity of the
thick fluid, which would impede the pore fluid flow [23, 51]. As a result, the
two competing effects including the increased intrinsic permeability and fluid
viscosity resulting from solid dissolution together determine the manifested
behavior of pore fluid flow.

The novelty of this paper is summarized as follows. We develop a con-
tinuum framework for solid-fluid interaction in transversely isotropic rocks
considering the impact of chemical reaction-induced solid dissolution based
on the work of the Stanford group [82]. A phenomenological expression as-
sociating the rate of solid dissolution with the volumetric strain in the rock
specimen is proposed to reflect the impact of mechanical deformation on the
rate of chemical reactions in rocks. A damage model for elastic moduli is
adopted for solid deformation, and the impact of solid dissolution on the in-
trinsic permeability as well as the viscosity of fluid is properly quantified in the
framework. By treating the mixture of the fluid phase and the dissolved solid
phase as a thick fluid, the framework follows the standard u/p formulation
and can be solved with a standard mixed finite element scheme.

The order of the presentation in this paper is as follows. First we introduce
the kinematics and conservation equations governing the solid-fluid interaction
with internal erosion. Then, we introduce the constitutive theories for both
the solid skeleton and the thick fluid with an emphasis on the impacts of solid
dissolution. Thereafter, we discuss the mixed finite element formulation with
a standard u/p formulation to derive the numerical solutions of the proposed
framework. Lastly, we conduct three numerical examples to demonstrate the
effects of chemical reaction-induced internal erosion on the solid-fluid inter-
action in transversely isotropic rocks in different subsurface systems. As for
general notations and symbols, we denote symmetric identity tensors of ranks
2 and 4 by the symbols 1 and, I respectively. Dot product and inner product
are defined with symbols · and : respectively. Tensorial operators ⊗,⊕ and
	 are defined such that (A ⊗ B)ijkl = AijBkl, (A ⊕ B)ijkl = AjlBik and
(A	B)ijkl = AilBjk.

2 Theory

We consider a mixture of solid and fluid in which the solid mass is decreasing
due to erosion at a rate of ṁs per unit total volume of the mixture. We assume
that the solid may be represented by residual and eroded parts with volume
fractions φsr and φse, respectively, and the fluid has a volume fraction of φf .
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The closure condition on the volume fractions is given by

φsr + φse + φf = 1 . (1)

We let ρsr, ρse, and ρf denote the intrinsic mass densities of the residual solid,
eroded solid, and fluid, respectively. The total mass density of the mixture is
given by

ρ = φsrρsr + φseρse + φfρf . (2)

We note that ρsr may not necessarily be equal to ρse since the pressures in
these two materials are different.

Chemical erosion or weathering typically produces fine-grained sediments
such as clay and silt, which can mix with the pure fluid to form a thick fluid
resembling chocolate milk [30]. Focusing on this type of erosion, the volume
fraction occupied by the eroded solid and pure fluid may be expressed as

φ̃f = φse + φf (3)

and its overall mass density as

ρ̃f =
φseρse + φfρf

φ̃f
= ψseρse + ψfρf , (4)

where
ψse = φse/φ̃f and ψf = φf/φ̃f (5)

are the pore fractions occupied by the eroded solid and pure fluid, respectively.
The pore fractions satisfy the closure condition

ψse + ψf = 1 . (6)

Thus, the total mixture may be considered as consisting of residual solid and
thick fluid whose total mass density is given by

ρ = φsrρsr + φ̃f ρ̃f . (7)

Note that ρ̃f varies with the concentration of the eroded solid.

2.1 Balance of mass

The mass balance for the residual solid is given by the equation

d(φsrρsr)

dt
+ φsrρsr∇ · v = −ṁs, (8)

where v is the velocity of the residual solid, ṁs ≥ 0 is the rate of mass transfer
from the residual solid to the surrounding fluid, and d(·)/dt is the material
time-derivative following the motion of the residual solid.
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Coarse-grained particles such as sand and gravel will generally exhibit a
settling velocity relative to the moving fluid, but Stokes law suggests that
this relative velocity diminishes significantly with decreasing particle sizes.
For very fine particles such as clay, the settling velocity may be neglected and
the eroded solid may be assumed to follow the motion of the fluid. In this
case, the mass balance equations for the fluid and eroded solid take the form

df (φfρf )

dt
+ φfρf∇ · vf = 0, (9a)

df (φseρse)

dt
+ φseρse∇ · vf = ṁs, (9b)

where df (·)/dt is the material time derivative following the motion of the fluid
and vf is the velocity of the fluid.

It is convenient to express the mass balance equations for the fluid following
the motion of the residual solid. The transformation equation is given by

df (·)
dt

=
d(·)
dt

+ ∇(·) · ṽf , (10)

where ṽf = vf − v is the relative velocity of the fluid with respect to the
residual solid.

Furthermore, for barotropic flow the intrinsic pressure pα is related to
the intrinsic mass density ρα in phase α (= sr, se, f) through the functional
relation

pα = pα(ρα) , (11)

so that
dαpα
dt

= p′α(ρα)
dαρα
dt

. (12)

But ρα = Mα/Vα. Differentiating yields

1

ρα

dαρα
dt

= ϑ̇α −
1

Vα

dαVα
dt

, (13)

where

ϑ̇α =
1

ραVα

dαMα

dt
=


−ṁs/ραφ

α α = sr

ṁs/ραφ
α α = se

0 α = f

(14)

is the volumetric strain rate in Vα resulting from mass exchanges (equal to
zero for the pure fluid).

Substituting equation (13) into equation (12) yields

−d
αpα
dt

= ραp
′(ρα)

( 1

Vα

dαVα
dt
− ϑ̇α

)
. (15)

The quantity inside the parentheses is the intrinsic net volumetric strain in
Vα accounting for mass exchanges, from which we identify
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Kα = ραp
′
α(ρα) (16)

as the intrinsic bulk modulus of phase α. Thus,

dρα
dt

=
ρα
Kα

dpα
dt

, (17)

and so the mass balance equations can be written in the alternative forms

dφsr

dt
+
φsr

Ksr

dpsr
dt

+ φsr∇ · v = − ṁ
s

ρsr
, (18a)

dφf

dt
+
φf

Kf

dp

dt
+ φf∇ · v = −∇ · (φf ṽf )− 1

Kf
∇p · (φf ṽf ) , (18b)

dφse

dt
+
φse

Kse

dp

dt
+ φse∇ · v = −∇ · (φseṽf )

− 1

Kse
∇p · (φseṽf ) +

ṁs

ρse
.

(18c)

In these last two equations, we have assumed that pf = pse ≡ p, which is true
if the eroded solid is in a state of suspension within the volume of the pure
fluid.

The mass balance equation for the thick fluid can be obtained by adding
equations (18b) and (18c):

dφ̃f

dt
+
( φf
Kf

+
φse

Kse

)dp
dt

+ φ̃f∇ · v

= −∇ · q −
( ψf
Kf

+
ψse

Kse

)
∇p · q +

ṁs

ρse
,

(19)

where
q = φ̃f ṽf . (20)

is the superficial (Darcy) velocity [4, 5, 17, 67, 83].

2.2 Balance of linear momentum

Adopting once again the three-phase description of the solid-fluid mixture, we
write the linear momentum balance as

∇ · σsr + πsr + φsrρsrg = φsrρsra− ṁsv , (21a)

∇ · σf + πf + φfρfg = φfρfaf , (21b)

∇ · σse + πse + φseρseg = φseρseaf + ṁsvf , (21c)

where σα is the partial Cauchy stress tensor for phase α, πα is the body
force exerted on phase α by the other two phases, g is the gravity acceleration
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vector, a is the material acceleration of the residual solid, and af is the
material acceleration of the fluid and eroded solid. The body forces π satisfy
the closure condition

πsr + πf + πse = 0 . (22)

Adding all three linear momentum equations yields

∇ · σ + ρg = φsrρsra+ φ̃f ρ̃faf + f , (23)

where σ = σsr + σse + σf is the total Cauchy stress tensor and

f = ṁs(vf − v) ≡ ṁs

φ̃f
q (24)

is the equivalent inertia force arising from the mass transfer term. The term
f is typically small, whereas the acceleration terms may be ignored in the
quasi-static regime.

We can add the last two lines of equation (21) and write the result in the
alternative form

∇ · σ̃f + π̃f + φ̃f ρ̃fg = φ̃f ρ̃faf + ṁsvf . (25)

Because the fluid and eroded solid are assumed to move as one body, we can
view the system as a mixture of eroded solid and thick fluid exchanging masses
with each other. We note that σse and σf are both isotropic tensors in the
present formulation.

2.3 Thermodynamics

Having idealized the system as a mixture of residual solid and thick fluid, we
now use the first and second laws of thermodynamics to identify the effective
stress and energy-conjugate pairs. From the first law, we write the following
expression for the rate of change of internal energy for a mixture of solid and
fluid exchanging mass at the rate of ṁs per unit total volume:

ρė = σsr : d+ σ̃f : df +
1

2
ṁs(‖vf‖2 − ‖v‖2) , (26)

where ė is the rate of change of internal energy per unit total mass, and d and
df are the rate of deformation tensors for the residual solid and thick fluid,
respectively. In this equation, we have omitted the non-mechanical powers
produced by the heat supply and heat flux. Recognizing that σ̃f is an isotropic
tensor, we write the rate of change of internal energy in terms of the total
Cauchy stress tensor σ as

ρė = σ : d− pφ̃f∇ · ṽf +
1

2
ṁs(‖vf‖2 − ‖v‖2) . (27)
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We now use the developments presented in Zhao and Borja [82] to de-
velop an expression for the effective Cauchy stress tensor incorporating the
compressibility of the solid phase. To this end, we assume that the Cauchy
effective stress tensor σ′ satisfies the elastic-damage constitutive equation
[60, 61, 70]

σ′ = (1−De)Ce : ε , (28)

where Ce is the elastic moduli tensor (which can be anisotropic), ε is the
small-strain tensor (assumed fully elastic), and De represents damage due
to erosion that can take on values from zero (no erosion) to one (complete
erosion). The rate of change of internal energy then takes the alternative form

ρė = σ′ : d+ θṗ+ χ · ṽf+

1

2
ṁs(‖vf‖2 − ‖v‖2) + ṁsp

( 1

ρsr
− 1

ρse

)
,

(29)

where
σ′ = σ + pb (30)

is the effective stress tensor,

b = 1− (1−De)
1 : Ce

3Ksr
(31)

is the Biot tensor,

θ =
( β

Ksr
+
φf

Kf
+
φse

Kse

)
p , (32)

χ =
[( φf
Kf

+
φse

Kse

)
∇p+ ∇φ̃f

]
p , (33)

and

β =
1

3
1 : b− φ̃f . (34)

The above development follows the same line as the classic flow and deforma-
tion in anisotropic media with mass exchanges taking place between the solid
and fluid.

For purposes of developing constitutive models, the second law, or entropy
inequality, must be satisfied. To this end, we assume the following Helmholtz
free energy density function that is quadratic in the strains (again, neglecting
plasticity), of the form

Ψ =
1

2
(1−De)ε : Ce : ε+ Ψ q(p, ũf ) , (35)

where ũf = uf −u is the relative displacement of the thick fluid with respect
to the residual solid. The Clausius-Duhem inequality then leads to the local
dissipation condition [6]
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D = ρė− Ψ̇ ≥ 0 , (36)

or

D = σ′ : d+ θṗ+ χ · ṽf +
1

2
ṁs(‖vf‖2

− ‖v‖2) + ṁsp
( 1

ρsr
− 1

ρse

)
− Ψ̇ ≥ 0 .

(37)

Imposing the Coleman-Noll [48] relations yields

σ′ = (1−De)Ce : ε , θ =
∂Ψ q

∂p
, χ =

∂Ψ q

∂ũf
, (38)

and the reduced dissipation inequality

D =
1

2
ṁs(‖vf‖2 − ‖v‖2) + ṁsp

( 1

ρsr
− 1

ρse

)
≥ 0 . (39)

Note that (38)1 is the same as (28). Now, assuming ρsr = ρse and noting that
ṁs ≥ 0, the reduced dissipation inequality is satisfied when ‖vf‖ ≥ ‖v‖, or
when the thick fluid is moving faster than the residual solid. Interestingly, this
condition for dissipation is similar to the one developed for double-porosity
media where fluids in the macropores are required to move faster than the
fluids in the micropores, see Borja and Choo [7].

2.4 Constitutive theory

Internal erosion leads to increased porosity, causing the solid to degrade its
resisting capacity. The process is similar to mechanical damage in that the
effective area created by the loss of solid mass is decreased. There is evidence
that in some rocks, the pore spaces created by solid dissolution due to CO2

exposure, for example, are randomly distributed [47].
For a transversely isotropic material, the elastic moduli tensor can be

expressed in terms of five constants as follows

Ce = λ1⊗ 1 + 2µT I + a(1⊗m+m⊗ 1) + bm⊗m
+ (µL − µT )(1⊕m+m⊕ 1 + 1	m+m	 1) , (40)

where λ, µT , µL, a, and b are the elastic constants [68], and

m = n⊗ n (41)

is the microstructure tensor defining the orientation of the plane of isotropy,
and n is the normal vector of the bedding plane. Alternatively, the elastic
constants may be replaced with more physically meaningful quantities such
as E1, E2, ν12, ν23, and G12, where E1 is the Young’s modulus perpendicular
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to the plane of isotropy; E2 is the Young’s modulus on the plane of isotropy;
ν12 and ν23 are Poisson’s ratios; and G12 is the shear modulus [20, 62].

Next, we quantify the evolution of the damage variable De. For a repre-
sentative elementary volume (REV) where the pore spaces are statistically
distributed, the area fraction and volume fraction are equivalent [9], so the
evolution of De may be expressed as

Ḋe =
ṁs

ρsr
. (42)

We remark that the free energy may be enhanced to account for combined
mechanical and erosion-induced damage, but we shall not consider the me-
chanical damage in this work and focus on damage due to erosion.

The constitutive law for the rate of erosion depends on the physical mech-
anisms of the erosion process. For suffusion type of erosion in soil mechanics,
the rate at which the finer particles are removed and transported depends
on the hydraulic gradient and grain size distribution [46, 64]. In this work,
we shall focus on chemical dissolution as the relevant type of erosion. In this
case, the rate of erosion is expressed in terms of the rate of mass lost per unit
volume of the residual solid, µ̇sr, i.e.,

ṁs = µ̇srφ
sr , (43)

where φsr is the volume fraction of the residual solid.
Transition state theory [38, 39, 53] states that the rate of dissolution of

a mineral varies with the surface area of the mineral exposed to chemical
reaction [75, 76]. This suggests that the rate of dissolution may be assumed
to be proportional to the microcrack density, since the higher the microc-
rack density, the more surface area would be exposed to chemical reaction.
Experimental observations from extension tests on clay [69] suggest that the
microcrack density varies with the dilative volumetric strain in an exponential
fashion, increasing asymptotically to a constant value at infinite volumetric
strain. Thus, the constitutive law for µ̇sr may be expressed as an exponential
function of the volumetric strain as follows

µ̇sr = B − (B − C)e−Aεv , (44)

where A, B, and C are nonnegative fitting parameters. Since porous materials
are already “damaged” even before they are stretched, the fitting parameter
C, representing the rate of dissolution at zero volumetric strain, must have
a nonnegative value. Furthermore, the parameter B > C represents the lim-
iting rate of dissolution at infinite volumetric strain. The parameter A > 0
determines the shape of the curve delineating the variation of microcrack den-
sity with volumetric strain, and may be determined from extension tests such
as those conducted by Spyropoulos et al. [69]. Further discussions on this
development may be found in Borja et al. [10].

As for fluid flow, we adopt Darcy’s law, which states that
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q = −κ
µ
· (∇p− ρ̃fg) , (45)

where κ is the intrinsic permeability tensor of the residual solid, µ is the
viscosity of the thick fluid, g is the gravity acceleration constant, and z is the
elevation potential. The ratio k = κ/µ is known as the hydraulic conductivity
(or simply, permeability) of the system. For a transversely isotropic material,
the intrinsic permeability tensor can be expressed as [55, 77, 79, 80]

κ = κ⊥m+ κ‖(1−m) , (46)

where κ⊥ and κ‖ are the components normal to and along the plane of isotropy,
respectively, and m is the microstructure tensor defined in equation (41).

Solid dissolution results in competing effects on the hydraulic conductivity
in that the pore space increase in the solid results in a higher intrinsic per-
meability (assuming the pore spaces are interconnected), but the thickening
of the fluid due to the addition of dissolved solid also increases the overall
viscosity of the fluid. To better quantify the overall effect on the hydraulic
conductivity, we adopt a conventional power-law relationship [14, 27, 85] to
relate the coefficients of the intrinsic permeability to the porosity of the ma-
terial:

κ⊥ ∝ κ⊥0

(
φ̃f

φ̃f0

)n⊥

, κ‖ ∝ κ‖0

(
φ̃f

φ̃f0

)n‖

. (47)

Note that φ̃f0 is the initial porosity while φ̃f is the porosity that evolves with
solid dissolution; and n‖ and n⊥ are the exponential parameters in the power-
law relationships. In this work, we assume n‖ = n⊥ = 3.

For dynamic viscosity µ, we consider the work of Coussot [16], who esti-
mated µ for a mixture of water and suspended solids as

µ = µw

(
1 +

0.75ψse

0.605− ψse
)2
, (48)

where µw is the viscosity of water and ψse is the concentration of eroded solid.
We see that the dynamic viscosity varies nonlinearly with the concentration
ψse. This expression for viscosity is valid for very concentrated solutions, up
to ψse = 0.55 [16].

In view of equations (47) and (48), we derive

κ

µ
= α

κ0

µ0
, (49)

where α is defined as the ratio

α =
( 1

1− ψse
)3/(

1 +
0.75ψse

0.605− ψse
)2
. (50)

The variation of α with ψse is shown in Figure 1. We observe that as ψse

increases, α increases first and then decreases. This means that at the initial
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stage of erosion, the flow is first enhanced by the increase in intrinsic perme-
ability, but as the viscosity of the thick fluid increases with more and more
solid being dissolved, fluid flow becomes more difficult and the flow diminishes.

Fig. 1. Variation of α with solid concentration in the thick fluid.

3 Finite element formulation

We employ the classic u/p formulation for solid-fluid interaction with internal
erosion. The two relevant conservation equations are the balance of linear
momentum and the balance of mass for the whole mixture. Assuming quasi-
static loading, the balance of linear momentum is derived from equation (23)
by omitting the acceleration terms and expressing the body force f in terms
of Darcy flux q as follows,

∇ · (σ′ − pb)− ṁs

φ̃f
q + ρg = 0 . (51)

The balance of mass is derived by adding equations (18a) and (19) and using
the developments in Zhao and Borja [82] to obtain

1

M
dp

dt
+ b : ε̇+ ∇ · q +

(
ψf

Kf
+
ψse

Kse

)
∇p · q

+

(
1

ρsr
− 1

ρse

)
ṁs = 0 , (52)

where
1

M
=

β

Ksr
+
φf

Kf
+
φse

Kse
. (53)
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We note that both σ′ and ṁs can be expressed in terms of u through the
elastic and dissolution constitutive laws, whereas q can be expressed in terms
of p through Darcy’s law. Hence, we recover the u/p formulation in which u
and p are the independent variables.

We now consider a closed domain B̄ denoted as B̄ = B ∪ ∂B, where B is
the open domain and ∂B is its boundary. The boundary ∂B is decomposed
into ∂Bu and ∂Bt where the displacement and traction boundary conditions
are prescribed; and into ∂Bp and ∂Bq where the pressure and flux boundary
conditions are satisfied. The following set relations hold:

∂Bu ∪ ∂Bt = ∂Bp ∪ ∂Bq = ∂B , (54a)

∂Bu ∩ ∂Bt = ∂Bp ∩ ∂Bq = ∅ , (54b)

where ∅ is the null set and the overlines denote a closure. The strong form
(S) of the problem is now stated as follows: Find u and p such that equations
(51) and (52) are satisfied in B, subject to the boundary conditions

u = û on ∂Bu , (55a)

n · σ = t̂ on ∂Bt , (55b)

p = p̂ on ∂Bp, (55c)

−n · q = q̂ on ∂Bq . (55d)

and the initial conditions

u(x, t = 0) = u0(x), p(x, t = 0) = p0(x) . (56)

To develop the weak form (W), we define sets of trial functions

Su = {u|u ∈ H1,u = û on ∂Bu} , (57a)

Sp = {p|p ∈ H1, p = p̂ on ∂Bp} , (57b)

and sets of weighting functions

Vu = {η|η ∈ H1,η = 0 on ∂Bu} , (58a)

Vp = {ϕ|ϕ ∈ H1, ϕ = 0 on ∂Bp} . (58b)

The weak form (W) is then stated as follows: Find {u, p} ∈ Su×Sp such that
for all {η, ϕ} ∈ Vu × Vp,∫

B
∇η : σ dV +

∫
B
∇η · ṁ

s

φ̃f
q dV −

∫
B
ρg · η dV =

∫
∂Bt

t̂ · η dV , (59a)∫
B

[ 1

M
ṗ+ b : ε̇+

( ψf
Kf

+
ψse

Kse

)
∇p · q +

( 1

ρsr
− 1

ρse

)
ṁs
]
ϕdV

=

∫
B
∇ϕ · q dV +

∫
∂Bq

ϕq̂ dA .

(59b)
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For brevity in notation, the quantity (·) at time step tn is denoted as (·)n,
while the quantities without any subscript are evaluated at time step tn+1.

A mixed finite element method similar to those used in multiphysics prob-
lems can be used for the current problem. Let Nu denote the shape function
matrix for the displacement field and B as the strain-displacement transfor-
mation matrix. Similarly, let Np denote the shape function matrix for the
pore pressure field and E the matrix denoting its gradient. In the current for-
mulation, we use the volume fraction at time tn to march the solution in time
(i.e., explicit), which is acceptable since the volume fractions do not change
much. Therefore, the residual form of the weak form can be written as

Ru =

∫
B
BT{σ} dV +

∫
B

NT
u

ṁs

φ̃fn
q dV

−
∫
B

NT
uρg dV −

∫
∂Bt

NT
u t̂ dA , (60)

where {σ} is the Cauchy stress vector in Voigt form, and

Rp =

∫
B

NT
p

[ 1

Mn
(p− pn) + b : (ε− εn)

]
dV

+∆t

∫
B

NT
p

( ψfn
Kf

+
ψsen
Kse

)
∇p · q dV

+

∫
B

NT
p

( 1

ρsr
− 1

ρse

)
ṁsdV −

∫
B

∆tETq dV

−
∫
∂Bq

∆tNT
pq dA . (61)

The residuals defined above are nonlinear with respect to the unknown
vector of nodal displacements d and nodal pressures p. To solve for the un-
known vectors, we employ Newton’s method and write the linearized problem
as [

K11 K12

K21 K22

]{
δd
δp

}
= −

{
Ru

Rp

}
, (62)

where δd, δp indicate incremental nodal displacements and nodal pressures
respectively for one Newton iteration step. The tangent operator may be eval-
uated from the expressions summarized in Appendix A.

Using the developments presented in Zhao and Borja [82], the intrinsic
pressure of the solid phase psr can be expressed as a function of the pore
pressure p and the effective stress σ′. Thus, the mass balance equation of the
solid phase (18a) can be expressed in the alternative form (see [82])

dφsr

dt
+

β

Ksr

dp

dt
−ψ : ε̇+ φsr∇ · v = − ṁ

s

ρsr
, (63)

where
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ψ =
1 : Ce

3Ksr
. (64)

This equation can be solved numerically for φsr as

φsrn+1 = φsrn −
βn+1

Ksr
(pn+1 − pn) +ψ : (εn+1 − εn)

− φsrn+1(εv,n+1 − εv,n)−∆t
ṁs
n+1

ρsr
,

(65)

where

βn+1 =
1

3
1 : b− 1 + φsrn+1, ṁs

n+1 = φsrn+1[B − (B − C)e−Aεv,n+1 ]. (66)

Therefore, the volume fraction of solid can be calculated as

φsrn+1 = a/b, (67)

where

a = φsrn +ψ : (εn+1 − εn)− 1

Ksr

(1

3
1 : b− 1

)
(pn+1 − pn) (68)

and

b = 1 + εv,n+1 − εv,n +
pn+1 − pn

Ksr
+
B − (B − C)e−Aεv,n+1

ρsr
∆t . (69)

The parameters associated with the volume fraction of solid needs to be
updated as

φ̃f = 1− φsr, κ⊥ = κ⊥0

( φ̃f
φ̃f0

)n⊥
, κ‖ = κ‖0

( φ̃f
φ̃f0

)n‖
, (70a)

β =
1

3
1 : b− φ̃f , ψf =

φf

φ̃f
, ψse = 1− ψf . (70b)

The iterative procedure from time step tn to tn+1 is stated as follows

Step 1. Project solution, un and pn, at time step tn over the domain.

Step 2. Compute the parameters using un and pn:

φ̃fn, φsrn , βn, Mn, ψfn, ψsen , κ⊥,n, κ‖,n and µn.

Step 3. Compute un+1 and pn+1 using φ̃fn, φsrn , βn, Mn, ψfn, ψsen ,

κ⊥,n, κ‖,n and µn.
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4 Numerical examples

In this section, we present three numerical examples demonstrating the impact
of internal erosion on the solid-fluid interaction in transversely isotropic porous
rocks. For the first example, we study the 1D Terzaghi consolidation problem
with internal erosion. Next, we consider the reactive fluid injection in a stra-
tum of transversely isotropic porous rock. For the third and final example,
we model and simulate the dissolution of calcarenite and fit the experimen-
tal results using our formulation. In all simulations, we employ equal-order
(bilinear) interpolations on the displacement and pore pressure fields, with a
polynomial pressure projection stabilization [74]. Furthermore, no softening or
strain localization is involved in any of the simulations, so nonlocal stabiliza-
tion schemes such as the gradient-enhanced [10] and phase-field approaches
[34, 72] are not needed in any of the problems solved.

4.1 Benchmark problem: the Terzaghi 1D consolidation

The Terzaghi 1D consolidation [88] is commonly used as a benchmark solution
for more complex problems. The setup consists of a column of fluid-saturated
geologic material subjected to instantaneous compressive load on the top sur-
face, which is held constant with time. The load generates an initially uniform
excess pore pressure distribution, which dissipates with time at a rate that
depends on the spatial distance of the point in the column from the top sur-
face. As the excess pore pressure dissipates, the material compacts and the
height of the column decreases. The process continues until all the excess pore
pressures have dissipated.

In the present example, we add a certain variation to the Terzaghi problem
and include internal erosion in the form of chemical dissolution. We assume
that the initial porosity is uniform at 0.1, which results in a uniform initial rate
of internal erosion. As the material consolidates and the column compacts, the
pore spaces diminish and so does the rate of internal erosion. However, the
degree of consolidation is not uniform across the height, and so the rate of
internal erosion also varies spatially within the column.

For the layout, we consider a rectangular column 0.01 m wide and 0.1
m tall as depicted in Figure 2. The left, right, and bottom boundaries have
no flux while the top surface serves as a drainage boundary. Because this is
a one-dimensional problem, we prescribe the horizontal plane as the plane
of isotropy and only consider flow and deformation in the (cross-anisotropic)
vertical direction. The parameters used in the simulation were obtained from
Zhao and Borja [82] for Tournemire shale and are tabulated in Table 1. The
applied load is taken as ω = 100 MPa.

Figure 3a shows the evolution of porosity of the material. As expected, the
porosity increases with depth at a given time instant. As the fluid is squeezed
out near the drainage boundary, the pores are compressed and the rate of
dissolution decreases. However, farther away from the drainage boundary, the
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Fig. 2. Layout of the configuration for the Terzaghi problem.

Table 1. Parameters used in the simulation of the Terzaghi consolidation problem.

Aniso. Mat. Unit

Elasticity:
λ 4270 MPa
a −1870 MPa
b 5420 -
µT 9360 MPa
µL 6510 MPa
Fluid flow:
κ‖ 1 µD
κ⊥ 0.1 µD
µw 1 cP
Internal erosion:
n⊥ 3 -
n‖ 3 -
A 5000 -
B 1.00 × 10−4 kg/m3/s
C 9.93 × 10−5 kg/m3/s
Ksr 42996.7 MPa
Kf 2000 MPa
Kse 40000 MPa
ρsr 2400 kg/m3

ρse 2000 kg/m3
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excess pore pressure takes longer to dissipate, and so a higher rate of internal
erosion is sustained for a longer period of time.

During the consolidation process the parameter α defined in equation (50)
varies as shown in Figure 3b. As suggested in the figure, when the solid con-
centration in the fluid is low the overall hydraulic conductivity is high due
to the increased intrinsic permeability (α > 1). But as more and more solid
dissolves and mixes with the fluid, the fluid viscosity increases to such a point
that the overall permeability of the material decreases (α < 1). Note that the
amount at which the porosity increases and the amount at which α decreases
are limited by the amount of soluble solid in the material.

Fig. 3. (a) Porosity after 1, 2, 3 days of consolidation for the case B = 1 × 10−4

g/mm3/day; (b) Coefficient α after 1, 2, 3 days of consolidation for the case B =
1 × 10−4 g/mm3/day.

Next, we vary the parameter B and illustrate how it impacts the evolution
of ground settlement and the pore pressure dissipation. Figure 4 shows the
results of the sensitivity analysis. As displayed in Figure 4a, the higher the
value of B, the faster the solid dissolves, resulting in the degradation of stiff-
ness and larger ground settlement. On the other hand, as suggested in Figure
4b, even if the excess pore pressures for all values of B dissipate to zero, the
case with the higher value of B causes more solid to dissolve and the hydraulic
conductivity to decrease, resulting in a slower rate of excess pore pressure dis-
sipation. For reference, the benchmark Terzaghi solution (without erosion) is
also shown in these two figures. In this case, erosion results in greater set-
tlement due to porosity increase, and slower pore pressure dissipation due to
increased viscosity of the fluid.

4.2 Reactive fluid injection into transversely isotropic rock

In shale gas exploitation, reactive fluid such as hydrochloric acid is usually
injected to the reservoir prior to hydraulic fracturing to increase the hydraulic
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Fig. 4. Evolutions of (a) ground settlement and (b) pore pressure at midheight with
time for different values of B.

conductivity as well as reduce the strength and stiffness of the shale rock.
In this example, we conduct a plane strain simulation of the reactive fluid
injection process into a stratum of transversely isotropic porous rock revealing
the impact of internal erosion on the hydromechanical response of the rock.

Fig. 5. Geometry and boundary conditions for the reactive fluid injection problem.

The simulation domain for this problem is a 10m × 10m square region. A
wellbore with a radius of 0.5 m is inserted in the center of the domain. The
injected fluid in the wellbore exerts a perpendicular pressure of 0.5 MPa on
the interior boundary. The outer boundaries of the domain are all imperme-
able and supported with rollers. A diagram of the layout of this example is
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portrayed in Figure 5. The plane of isotropy of the reservoir rock is denoted by
the angle θ = 45◦. The parameters for this example are the same as in the first
example reported in Table 1, except that B = 1.0×10−5 and C = 9.93×10−6

(both in kg/m3/s). We assume that the volume fraction of the solid that is
not soluble is 0.8, which means that the maximum concentration of dissolved
solid in the fluid is 0.5.

To demonstrate the influence of internal erosion on the hydromechanical
response of the rock, the pore pressure contours at a common post-injection
time for cases with and without internal erosion are reported in Figure 6.
As shown in the figure, the fluid flow along the plane of isotropy is more
prominent since the permeability on this plane is higher than in the normal
direction. We also see that the fluid containing dissolved solid finds it more
difficult to permeate into the surrounding rock due to the increased viscosity.

The material in this example is stiffer along the plane of isotropy than
in the direction perpendicular to this plane, so when the pressure inside the
wellbore is applied more stretching is noted in the perpendicular direction.
This induces a dilative volumetric strain along the plane of isotropy, as shown
in Figure 7a, which facilitates internal erosion. The end result is a higher
concentration of dissolved solid on the plane of isotropy, as shown in Figure
7b.

Lastly, Figures 8(a), (b), and (c) show the evolution of solid concentration
ψe with time, and (d) damage due to erosion. Starting near the wellbore, the
zone of erosion propagates mostly in the diagonal direction parallel to the
plane of isotropy. However, the thickness of the zone of erosion also increases
with time, which means that the solid also dissolves in the direction perpen-
dicular to the plane of isotropy. Note that the distribution of damage due to
erosion very much resembles the concentration of dissolved solid.

Fig. 6. Contour of: (a) pore pressure without internal erosion, and (b) pore pressure
considering internal erosion. Both contours taken at t = 1.527 days.
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Fig. 7. Contour of: (a) volumetric strain (color bar ×10−5), and (b) concentration
of dissolved solid. Both contours taken at t = 1.527 days.

Fig. 8. Contour of concentration of dissolved solid: (a) t = 0.317 days, (b) t = 0.623
days, and (c) t = 1.527 days; and (d) damage due to erosion at t = 1.527 days.

4.3 Acidic water-induced weathering of calcarenites

When exposed to water or an acidic environment, carbonatic rocks such as
calcarenites are soluble, and solid dissolution and damage may occur due to
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chemical reaction. Underground cavities and karst caves are the products of
the long-term effects of this process [18].

Ciantia and Hueckel [13] conducted a series of weathering experiments
on submerged stressed calcarenites. As the investigated rock specimen first
underwent solid dissolution, the alteration of mechanical properties of the
specimen was recorded at different reaction times. The experiment showed
that solid dissolution led to stiffness degradation in the rock, and an approx-
imately linear dependence of the stiffness on the porosity was observed. This
phenomenon was explained from the fact that calcarenites are considered as
bonded geomaterials, and solid dissolution compromised the bond which leads
to degradation of the stiffness. To study the mixed effects of saturation and
chemical dissolution, as well as to monitor the process of grain dissolution,
Ciantia et al. [12] conducted additional experiments on calcarenites in water
with different pH. They then analyzed the impact of rate of dissolution on the
hydromechanical behavior of the rock.

Table 2. Parameters used in the simulation of the dissolution of calcarenites.

Iso. Mat. Unit

Elasticity:
λ 70 MPa
a 0 MPa
b 0 -
µT 104 MPa
µL 104 MPa
Fluid flow:
κ‖ 0.1 D
κ⊥ 1 D
µw 1 cP
Internal erosion:
n⊥ 3 -
n‖ 3 -
A 1000 -
B 5.00 × 10−3 kg/m3/s
C 4.97 × 10−3 kg/m3/s
Kse 2200 MPa
Kf 2000 MPa
Ksr 2400 MPa
ρsr 2400 kg/m3

ρse 2000 kg/m3

To simulate the weathering experiments on the calcarenites, we use a 2D
plane strain representation of the sample as depicted in Figure 9. The rect-
angular domain is 38 mm wide and 76 mm tall [12, 13] with the lateral and
bottom boundaries supported on rollers. No flux boundary is applied on the
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lateral and bottom boundaries, and fluid may only drain to the top boundary.
An overburden stress of ω = 1.6 MPa was applied on the top boundary.

The model parameters used in this problem are tabulated in Table 2. The
mechanical properties of the calcarenites were derived from the experiment
on intact calcarenites [13, 63], while the permeability parameter was chosen
from Andriani and Walsh [1]. To fit the experimental curve, the water-induced
dissolution rate was taken as B = 5.0× 10−3 kg/m3/s, while the acidic fluid-
induced dissolution rate was taken as B = 1.0× 10−2 kg/m3/s.

Fig. 9. Layout of the weathering experiment on calcarenites.

Ciantia et al. [12] observed that solid dissolution degraded the stiffness
of the calcarenites by dissolving the bond, gradually converting the rock into
granular soils. Based on this information, we introduce an additional param-
eter ξ representing the volume fraction of the bond in the intact solid, and
modify the damage law as

Ḋe =
ṁs

ξρsr
, (71)

where the parameter ξ is chosen as 0.1 in this example. To validate the damage
and dissolution laws, we replicate the experimental results reported by Ciantia
and Hueckel [13] and plot the evolution of the percentage of dissolved solid
and the stiffness degradation in Figure 10.

In plotting Figure 10a, we should note that the dissolution rate is not uni-
form across the domain because the hydromechanical response of the sample
was solved as a boundary-value problem. Thus, to compare with the exper-
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Fig. 10. Weathering experiment on calcarenites: (a) evolution of the percentage of
dissolved solid, and (b) dependence of stiffness degradation on the dissolution.

imental observations we calculate the volume average of the percentage of
dissolved solid, which is given by the integral

1

V

∫
Ω

∆φse

φsr + φse
dV ,

where φsr + φse is the initial volume fraction of the solid, and V is the total
volume of the sample. In plotting Figure 10b, we load the sample vertically
after dissolution considering the heterogeneous distribution of material stiff-
ness at different reaction times. We then obtain the material stiffness from
the tangent of the vertical stress-vertical strain curve. From Figure 10a, we
find that the calculated rate of dissolution decreases with reaction time, in
agreement with the experiment. The reason for this is because the volume
fraction of the remaining soluble solid decreases with reaction time. On the
other hand, as the sample consolidates and more and more compressive load
is transferred to the solid skeleton, the rate of dissolution also decreases.

To better capture the coupled effect of saturation and chemical dissolution
with different types of fluids, we conduct a dissolution simulation on calcaren-
ites with a loading protocol consisting of four chemo-mechanical loading steps.
The results are shown in Figure 11. In the first step, the rock sample is loaded
without saturation at the value ω = 1.6 MPa (OA). Then, water is added
in the second step (AB) as the sample is loaded further to point B. Dur-
ing this step, the slope of the curve does not change much since the effect
of water-induced dissolution is small compared to the deformation induced
by the mechanical load. For the third step, the sample is allowed to dissolve
from water saturation, causing the vertical strain to increase slightly (BC).
For the fourth step, acid is introduced into the solution at point C, resulting
in the vertical strain to increase at a faster rate (CD). Capturing the faster
rate of dissolution under an acidic environment requires that the dissolution
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Fig. 11. Evolution of the vertical strain at different stages of chemo-mechanical
loading.

rate parameter B be increased from 5×10−3 kg/m3/s for water saturation to
1× 10−2 kg/m3/s for saturation with an acidic solution.

To further elucidate the dissolution process, Figure 12 plots the profiles of
the pore pressure and porosity along the centerline at various reaction times.
During the consolidation process, the pore fluid gradually drains through the
top surface, causing the pore pressure to dissipate with time at a faster rate on
top than at the bottom of the sample. This results in nonuniform distribution
of effective stress and nonuniform dissolution rates across the height of the
sample. From Figure 12b, we see that the dissolution rate at the bottom of the
sample is faster, resulting in increased porosity. This can be explained from
the fact that the lower effective stress at the bottom of the sample results
in smaller compressive volumetric strain, which means that more pore spaces
are left open for the fluid to infiltrate and dissolve the solid. We note that
this simulation assumes that there is continuous supply of reactive agents
that dissolve the solid. Otherwise, the balance of chemical concentration must
be enforced in the model formulation. This latter topic is currently being
incorporated into the mathematical framework.

5 Closure

We have formulated a mathematical framework for solid-fluid interaction in
porous materials with internal erosion based on mixture theory and contin-
uum thermodynamics. The mixture of the pore fluid and dissolved solid was
treated as a thick fluid whose viscosity increases with the concentration of dis-
solved solid. Regarding internal erosion, we considered the case where internal
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Fig. 12. Evolution of: (a) pore pressure, and (b) porosity.

erosion is induced by chemical reaction and proposed a phenomenological ex-
pression for the rate of solid dissolution as a function of the volumetric strain.
A chemical damage variable De was introduced to account for the stiffness
degradation induced by solid dissolution. The classic u/p formulation with
mass exchanges was used to solve the problem.

Three numerical examples were presented to highlight the impact of inter-
nal erosion on the hydromechanical responses of geologic systems undergoing
solid dissolution. The examples include a modified Terzaghi 1D consolida-
tion problem with internal erosion, CO2 injection into a transversely isotropic
rock, and weathering experiment on calcarenites. The results highlighted the
interplay between mechanical deformation, fluid flow, and chemical reaction.
Although not directly addressed in this paper, thermal effects could also play
a significant role in the system response in the sense that the rate of internal
erosion parameters B and C generally depend on temperature and pH. Lastly,
one aspect not considered in this paper is the propagation of fractures induced
by solid dissolution. We are currently working on this topic and will report
progress in future publications.
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Appendix A. Tangent operator

In this appendix, we summarize the expressions for the tangent operators
used with Newton iteration to solve the nonlinear coupled system. Denoting
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the permeability matrix as κ, the submatrix Kij in the tangent matrix for a
Newton-Raphson iteration loop takes the following forms:

K11 =
∂Ru

∂d
=

∫
B

BT ∂{σ′}
∂{ε}

B dV +

∫
B

∂NT
uṁ

s

∂d

q

φ̃fn
dV ,

=

∫
B

BTCeB dV +

∫
B

NT
uφ

sr
n A(B − C) exp(−Aεv)

q

φ̃fn
1TB dV.

(72a)

K12 =
∂Ru

∂p
= −

∫
B

BTbNp dV +

∫
B

∂NT
uṁ

s(vf − v)

∂p
dV ,

=−
∫
B

BTbNp dV +

∫
B

NT
uṁ

sE

φ̃fn
dV ,

(72b)

K21 =
∂Rp

∂d
=

∫
B

NT
pbB dV +

(
1

ρsr
− 1

ρse

)∫
B

∂NT
p ṁ

s

∂d
dV ,

=

∫
B

NT
pbB dV +

(
1

ρsr
− 1

ρse

)∫
B

NT
pφ

sr
n A(B − C) exp(−Aεv)1B dV ,

(72c)

K22 =
∂Rp

∂p
=

∫
B

∆t

µf
EκE dV +

∫
B

1

Mn
NT
pNp dV

+

∫
B

(
ψfn
Kf

+
ψsen
Kse

)
∆tNT

pqE dV −
∫
B

(
ψfn
Kf

+
ψsen
Kse

)
∆t

µn
NT
p∇p · κE dV .

(72d)
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