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Summary. We formulate a time-dependent damage theory for rocks subjected to
mechanical deformation and solid dissolution. The constitutive description is in-
spired by the transition state theory, which states that the rate of dissolution is a
function of the reactive surface area measured through the crack density in the vol-
ume. We use a gradient-enhanced damage framework in which damage depends on
the deformation of the material as well as on the amount of solid mass dissolved over
time. The gradient-enhanced formulation is characterized by a three-field variational
formulation with the solid displacement, nonlocal equivalent strain, and nonlocal
rate of solid dissolution as the basic state variables. Traditionally, time-independent
damage theories have only allowed damage to increase with increasing external load.
In the proposed framework, the degree of damage may increase due to solid disso-
lution even when the external load is held fixed. In this way, solid dissolution is
viewed as a process that is responsible for bringing about rate-dependent effects
such as creep and stress-relaxation, which are two common features of geomaterial
behavior.
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age, solid dissolution

1 Introduction

We present a mathematical framework for damage in solids that accommo-
dates both mechanical deformation and chemical reaction. Solid deformation
results in mechanical damage in which the solid body loses a portion of its full
capacity to resist a given load. Chemical reaction results in solid dissolution,
which occurs in rocks, for example, when fluids such as fresh water and/or su-
percritical CO2 are injected into a fracture [35], causing minerals such as salt,
calcite, and sodium bicarbonate to dissolve. We note that whereas mechanical
damage is mass-conserving, chemical damage causes the solid volume to lose
mass, resulting in a porosity increase.
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In rocks, dissolution of minerals triggered by CO2 injection can alter
the overall porosity and intrinsic permeability of the material [1, 103]. For
a carbonate-rich formation, facilitated dissolution of carbonate minerals en-
larges pores, increases porosity, and creates preferential flow paths [36, 40, 58,
85, 86]. CO2 also dissolves aluminosilicate minerals, and their secondary prod-
uct can re-precipitate once the brine is over-saturated [31]. In shale, constant
exposure to a large amount of CO2 typically results in damage in the form
of degradation of stiffness and strength as revealed in the results of a variety
of laboratory tests, including Brazilian split test [34], uniaxial compression
tests [37, 65, 66, 92, 94], uniaxial tension tests [3], and triaxial compression
test [3].

Apart from the actions of CO2 and fresh water on rocks, another exam-
ple of chemical damage is calcium leaching in cementitious materials when
exposed to hydrochloric acid solution. In general, chemical damage is depen-
dent on the solvent concentration [52, 57, 92], and could occur once a certain
value of the volumetric expansive strain is exceeded [92]. Solid dissolution is
also dependent on the reaction area or crack density, so that evolution laws
based on the volumetric strain have been traditionally used to capture the me-
chanical behavior of concrete under coupled axial loading and sulfate attack
[60, 76, 91].

Fluids have more difficulty invading the pores of rock or concrete because of
the very small size of the pores and low bulk permeability of the matrix [4, 38,
69]. But with open and connected fractures and microcracks, the accessibility
of the solid matrix to host fluids is greatly enhanced, promoting dissolution
due to increased specific surface area that is exposed to chemical reaction
[41, 48]. Thus, it can be expected that solid dissolution is more likely to occur
in regions where the fracture density is high than in regions where the fracture
density is low [2, 6].

Continuum damage mechanics has long been used in engineering research
to model the initiation, propagation, and fracture of materials [73, 74, 79, 82].
The theory has been applied to both brittle materials such concrete [68] as well
as to more ductile and weaker materials such as salt rock [81, 90]. Experiments
have shown that a zone consisting of numerous microcracks develops when a
load is applied on the material [70]. The density of the microcracks increases
with increasing load, resulting in a reduced effective area available for resisting
the load. Damage theory has now been successfully combined with plasticity
[8, 9, 87] and poromechanics [63] to address both isotropic and anisotropic
damage [47]. Oftentimes, the principles of thermodynamics have been used
to develop combination theories [77]. As for the numerical implementation
of the continuum damage theory, an implicit gradient method for damage is
especially suited for simulating microcracking in rock or concrete [73], as well
as for capturing the heterogeneous distribution of the microcrack density.

In this paper we present a novel framework for damage mechanics in solids
experiencing both mechanical and chemical damage. Key features of the for-
mulation include a multiplicative application of damage formula for mechan-
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ical and chemical damage and a three-field gradient-enhanced formulation
to regularize an ill-posed problem. Inspired by the transition state theory
for chemical damage, microcracks are assumed to open when the dilatational
strain reaches a certain threshold value, with the rate of solid dissolution satu-
rating to an asymptotic value at infinite dilatational strain. Conservation laws
for mass and momentum are written to include the rate of loss of mass, which
is factored into the finite element formulation. Traditionally, damage theories
have only allowed damage to increase with increasing external load. A nov-
elty of the proposed framework is that localized damage can now increase even
with a fixed external load due to solid dissolution. This allows rate-dependent
effects induced by solid dissolution, such as creep and stress relaxation, to be
simulated without using any rate-dependent constitutive theory [13, 24, 93].

The order of presentation is as follows. Section 2 formulates the combined
mechanical and chemical damage problem. Section 3 introduces a three-field
set of gradient-enhanced variational equations for subsequent finite element
implementation. Section 4 presents some results of numerical simulations in-
cluding the dissolution of clay minerals in a heterogeneous shale rock. As for
notations, scalar quantities are denoted in lightfaced symbols; vectors, tensors,
and matrices are written in boldfaced notation.

2 Theory

This section presents the mathematical formulation of the combined theory
of mechanical and chemical damage. All throughout the presentation, the
material is assumed to be isotropic and the deformation is infinitesimal.

2.1 Conservation laws

We recall the mass and momentum balance for a solid that is losing mass at the
rate of ṁ < 0 per unit total volume of the solid in the current configuration.
The law of conservation of mass in Eulerian form is given by

dρ

dt
+ ρdiv v = ṁ , (1)

where d(·)/dt is the material time derivative following the motion of the solid,
ρ is the overall mass density of the solid in the current configuration (mass
of solid divided by total volume in current configuration), and v is the solid
velocity. For a rock containing soluble minerals α = 1, 2, . . . , N , the rate of
dissolution per unit total volume of the rock is given by

ṁ =
N∑
α=1

µ̇αφ
α , (2)
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where µ̇α is the rate of dissolution of mineral α per unit current volume of the
same mineral, and φα = dV α/dV is the volume fraction of the rock mineral.
In Lagrangian form, the mass balance equation is given by

dρ0

dt
= ṁ0 , (3)

where ρ0 = ρJ , J is the Jacobian of the motion, and ṁ0 is the pull-back rate
of dissolution, which is given by

ṁ0 = ṁJ =
N∑
α=1

µ̇αφ
α
0 , (4)

with φα0 = Jφα = dV α/dV0 being the pull-back volume fraction of mineral α.
Note that dρ0/dt = 0 if the solid mass is conserved.

The term ṁ carries over to the momentum balance equation in the follow-
ing manner. In Eulerian form, the linear momentum balance is given by [15]

∇ · σ + ρg = ṁv + ρa , (5)

where σ is the Cauchy stress tensor, ∇·( ) is the Eulerian divergence operator,
g is the gravity acceleration vector, and a is the material acceleration. In
Lagrangian form, the balance of linear momentum is given by

∇X · P + ρ0g = ṁ0v + ρ0a , (6)

where P is the first Piola-Kirchhoff stress tensor and ∇X ·( ) is the Lagrangian
divergence operator. For quasi-static loading, a = 0.

2.2 Combined mechanical and chemical damage

A typical rock sample consists of minerals and organic materials with varying
degrees of solubility. Calcite, for example, is soluble when exposed to CO2,
but quartz is relatively insoluble. However, for calcite to dissolve it must be
exposed to a reactive fluid such as CO2. This is facilitated by mechanical
damage in the form of microcracks. The more microcracks there are in the
rock, the more calcites the fluid will dissolve. Thus, two types of damage may
arise: chemical damage leading to porosity increase, and mechanical damage
due to solid deformation. Herein we consider an elastic-damage constitutive
law of the form

σ = (1−Dm)(1−Dc)Ce : ε , (7)

where Ce is a rank-four tensor of elastic moduli, ε is the infinitesimal strain
tensor, Dm is a mechanical damage variable induced by the solid deformation,
and Dc is a chemical damage variable induced by the solid dissolution.

The rationale behind the above constitutive framework is that σ′ =
σ/(1 − Dc) would be the intrinsic Cauchy stress of the undeformed solid
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in the presence of the void spaces created by the dissolved solid. Therefore,
σ′′ = σ′/(1−Dm) ≡ Ce : ε must be the intrinsic stress in the deformed solid
in the presence of the void spaces created by the dissolved solid. Both Dm and
Dc in Equation (7) can range from zero to one, although Dc may be limited
to a smaller number depending on the amount of soluble minerals in the rock.

Expanding Equation (7) yields

σ = (1−D)Ce : ε , (8)

where
D = Dm +Dc −DmDc . (9)

If both Dm and Dc are small, their product term may be ignored and the
linearized damage variable takes the form

D = Dm +Dc . (10)

Because we shall consider the entire range of values of the damage variable,
we consider the fully nonlinear damage Equation (9).

2.3 Mechanical damage

For mechanical damage, we consider the standard framework described in [51,
73] in which the damage variable Dm varies with some internal strain history
variable κ according to the equation first proposed by Mazars and Pijaudier-
Cabot [68] of the form

Dm(κ) = 1− κ0

κ

(
(1− a) + ae−b∆κ

)
, (11)

where ∆κ = κ−κ0 ≥ 0, κ0 is an initial threshold value of κ above which dam-
age starts to occur, and a and b are material parameters. The monotonically
increasing κ defines the maximum value attained by a nonlocal equivalent
strain measure ε̄eq, whose local value εeq is taken to be of the form proposed
by de Vree et al. [26] as

εeq =
k − 1

2k(1− 2ν)
I1 +

1

2k

√
(k − 1)2

(1− 2ν)2
I2
1 +

2k

(1 + ν)2
J2 , (12)

where I1 = tr(ε) and J2 = 3tr(ε · ε) − tr2(ε) are the invariants of the strain
tensor ε, ν is the Poisson’s ratio, and k is a parameter that accounts for non-
identical responses of the material in tension and compression. The nonlocal
equivalent strain is then evaluated according to the equation [75]

ε̄eq =
1

B

∫
B
g(ξ)εeq(x+ ξ) dV ,

1

B

∫
B
g(ξ) dV = 1 , (13)

where g(ξ) is a weight function similar to the kernels used in SPH [27, 28, 32,
33] and B is the domain of nonlocality (could be the entire domain, see [72]).
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The strain variables ε̄eq and κ are related by the Karush-Kuhn-Tucker condi-
tions [14]

κ̇ ≥ 0 , ε̄eq − κ ≤ 0 , κ̇(ε̄eq − κ) = 0 . (14)

Using the Taylor series expansion for εeq about point x and re-arranging yields
the following gradient-enhanced form for the equivalent strain [73]

ε̄eq − `21∇2ε̄eq = εeq , (15)

where ∇2 is the Laplacian operator and `1 is a length scale parameter.

2.4 Chemical damage

For chemical damage, the rate of change of Dc may be linked directly to the
rate of change of solid mass ṁ through the equation

Ḋc = − ṁ
ρs

= − µ̇s
ρs
φs , (16)

where ρs is the intrinsic mass density of the solid (mass of solid divided by
volume of the solid), which should not be confused with the overall mass
density ρ (mass of solid divided by the total volume of the material, including
the pore spaces), and µ̇s < 0 is the rate of dissolution of the solid per unit
volume of the solid. The underlying assumption here is that the area fraction
and volume fraction are statistically equivalent from the point of view of
a representative elementary volume. For a rock with soluble minerals α =
1, . . . , N ,

Ḋc = −
N∑
α=1

µ̇α
ρα
φα , (17)

where µ̇α, ρα, and φα are the rate of dissolution, intrinsic mass density, and
volume fraction of mineral α, respectively.

Integrating Equation (16) yields

Dc = −
∫
t

µ̇s
ρs
φsdt . (18)

On the other hand, integrating Equation (17) for a heterogeneous rock with
soluble minerals α = 1, . . . , N yields

Dc = −
N∑
α=1

∫
t

µ̇α
ρα
φα dt . (19)

The above expressions for Dc represent the cumulative pore spaces per unit
volume created by the dissolved minerals. Theoretically, Dc can range from
zero to one, but it could also be a small number depending on the amount of
soluble mineral in the rock and/or the amount of reactive species in the fluid.
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Solid dissolution is enhanced when the erosive fluid invades the pore spaces
through the microcracks within the solid matrix. In rocks, the rate of dissolu-
tion of mineral α is often modeled with the transition state theory [55, 56, 71],
which states that

µ̇α = Aαk0e
−EA/RT

∏
i

ani
i f(∆G) , (20)

where Aα is the reactive surface area of mineral α, k0 is a kinetic reaction
rate constant, EA is the apparent activation energy, R is the universal gas
constant, T is temperature, ani

i is the activity of aqueous species raised to
the exponent ni, and f(∆G) is a function of the thermodynamic potential or
driving force. The variable related to mechanical deformation is the reactive
surface area Aα of mineral α, which is linked to the microcrack density γc in
that the higher the microcrack density, the larger the reactive surface area.

Spyropoulos et al. [83] conducted extension experiments on clay and
showed that the crack density γc increases with the dilative volumetric strain
εv in a manner shown in Figure 1. The relationship in Figure 1 can be repre-
sented by a three-parameter exponential function of the form

γc = C − (C −B)e−Aεv , (21)

where B, C, and A > 0 are fitting parameters. This equation predicts that
the crack density is equal to B when εv = 0 and is equal to C when εv →∞.
Assuming the reactive surface area Aα is proportional to the crack density γc,
one can construct a similar exponential function for Aα with the same shape
as the crack density function γc and insert it into Equation (20) to obtain an
expression for the rate of mineral dissolution as an exponential function of εv.

We now assume that µ̇s varies exponentially with εv through the three-
parameter exponential function

µ̇s = µ̇f − (µ̇f − µ̇i)e−Aεv , (22)

where µ̇f < 0, µ̇i < 0, and A > 0 are fitting parameters. Equation (22)
predicts a rate of change of solid mass equal to µ̇i when εv = 0 and µ̇f when
εv →∞. Equivalently, we can make the substitution

µ̇f − µ̇i = µ̇fe
Aε0 , (23)

in which case, Equation (22) becomes

µ̇s = µ̇f

[
1− e−A(εv−ε0)

]
. (24)

In this new equation, ε0 takes the role of the third parameter replacing µ̇i.
The choice between Equations (22) and (24) for the dissolution law de-

pends on the nature of the exponential function. Equation (22) assumes that
there is an initial crack density at the volumetrically undeformed state that
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Fig. 1. Variation of crack density with dilative volumetric strain from extension
experiments conducted on clay. Best-fit curve gives ε0 ≈ −1 × 10−6 and A = 40.
After Spyropoulos et al. [83].

allows the erosive fluid to invade the pore spaces and dissolve the solid. On
the other hand, Equation (24) assumes that the solid can only dissolve when
the dilative volumetric strain exceeds a critical value ε0. Note from Equation
(23) that

ε0 =
1

A
ln
(

1− µ̇i
µ̇f

)
< 0 , (25)

which means that ε0 must be compressive if we use the dissolution law of the
form given by Equation (22). Because Equation (24) imposes no restriction on
the sign of ε0 while capturing the same exponential variation, we shall adopt
this dissolution law in subsequent formulation.

We now consider the condition εv > ε0 and denote the volumetric over-
strain as ∆εv = εv − ε0 > 0. Expanding the dissolution law (24) using the
Taylor series yields

µ̇s = µ̇f

[
1− e−A∆εv

]
= µ̇f

[
A∆εv −

1

2!
(A∆εv)

2 + . . .
]
. (26)

If ∆εv is small, the second-order terms may be ignored, and one arrives at
the linear equation

µ̇s ≈ Aµ̇f (εv − ε0) = fεv + g , (27)

where f = Aµ̇f and g = −fε0. This equation agrees with the linear constitu-
tive law for solid dissolution proposed by Hueckel and Hu [44].

Extending the formulation to the nonlocal regime, we now let

µ̇s(x) = µ̇fλ(x) , λ(x) = 1− e−A∆εv(x) . (28)
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The nonlocal counterpart of µ̇s is obtained by writing λ(x) as

λ̄(x) =
1

B′

∫
B′
g(ξ)λ(x+ ξ) dV (29)

and taking the nonlocal version as

˙̄µs(x) = µ̇f λ̄(x) , (30)

where B′ is the domain of nonlocality, herein taken as the entire domain B.
This yields the nonlocal rate of dissolution ˙̄m given by

˙̄m = µ̇fφ
sλ̄(x) . (31)

If a rock contains multiple soluble minerals α = 1, . . . , N , then

˙̄m(x) =
( N∑
α=1

µ̇αfφ
α
)
λ̄(x) , (32)

where µ̇αf is the maximum rate of dissolution of mineral α per unit volume
of the same mineral. Regardless of whether the rock contains one or multiple
soluble minerals, we see that the nonlocality is factored out of the individual
mineral properties through the term λ̄(x).

Using the Taylor series expansion for λ once again, a gradient-enhanced
form is obtained as

λ̄− `22∇2λ̄ = λ , (33)

where `2 is another length scale parameter. The nonlocal rate ˙̄m may then be
used in lieu of ṁ in equation (16). In this case, the damage variable Dc at time
t ∈ [tn, tn+], assuming the intrinsic solid mass density ρs remains constant,
now takes the form (for α = s)

Dc(t) = Dc,n +
|µ̇f |λ̄
ρs

∫ t

tn

φs dt , (34)

where Dc,n is the value of Dc at time tn and λ̄ is the nonlocal value of λ
in the time interval [tn, tn+1]. The time-evolution Dc then requires the time-
evolution of φs.

We note that Ḋc = φ̇s for a rock with one soluble solid. Thus, using the
nonlocal version of µ̇s in Equation (16), we obtain

φ̇s =
˙̄µs
ρs
φs . (35)

Integrating over the time interval t ∈ [tn, tn+1] and assuming that |µ̇f | remains
constant within this interval yields

φs(t) = φsn exp
[
− |µ̇f |

ρs
λ̄
(
t− tn

)]
. (36)
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Substituting this expression into Equation (34) and integrating analytically
yields

Dc(t) = Dc,n +
(
φsn − φs(t)

)
. (37)

This equation states that the increase in chemical damage Dc is equal to the
reduction in the volume fraction φs.

A similar evolution may be written for a rock with multiple soluble min-
erals as follows:

φα(t) = φαn exp
[
− |µ̇αf |

ρα
λ̄
(
t− tn

)]
, (38)

for α = 1, . . . , N , assuming the |µ̇αf |’s are constant within the time interval.
Integrating Equation (19) incrementally yields

Dc(t) = Dc,n +
N∑
α=1

(
φαn − φα(t)

)
. (39)

In this case, the increase in chemical damage is equal to the sum of the re-
ductions in the volume fractions of all soluble minerals in the rock.

2.5 Implications for the stress-strain responses

Because the damage parameter Dc(t) depends on time, the classic elastic-
damage formulation is now endowed with rate-dependent effects. We illustrate
this feature with the following simple stress-point simulation.

We consider a rock sample under triaxial loading with σa as the axial
stress and σr as the radial stress. We assume that this sample is subjected
to isochoric deformation with εr = −εa/2, where εr and εa are the radial
and axial strains, respectively. The stress-strain relation reduces to the scalar
equation

σa − σr = 3µe(1−D)εa , (40)

where µe is the un-degraded elastic shear modulus and D = (1 −Dc(t))(1 −
Dm) is the time-dependent damage parameter.

According to Equation (12), the equivalent strain εeq is a function of J2

alone, and takes the simple form

εeq =
3

2
√
k(1 + ν)

εa . (41)

When εeq ≥ κ0, the mechanical damage in Equation (11) reduces to the form

Dm(εeq) = 1− κ0

εeq

[
(1− a) + ae−b(εeq−κo)

]
, (42)

which means that Dm is also a nonlinear function of εa. On the other hand,
the chemical damage parameter Dc(t) is given by Equation (37) for a rock
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Fig. 2. Triaxial stress-strain curves at different axial strain rates for a rock sample
subjected to isochoric deformation. Solid dissolution leads to rate-dependent stress-
strain responses. Stress difference = σa − σr.

with one soluble solid, and by Equation (39) for a rock with multiple soluble
solids. But εv = 0 from the assumption of isochoric deformation. Therefore,
Equation (22) yields µ̇s = µ̇i = constant, and Dc becomes an exponential
function of t. In short, the damage parameter D becomes a nonlinear function
of both εa and t, i.e., D = D(εa, t).

Figure 2 shows the stress-strain plots generated from the stress-point sim-
ulations assuming the following material parameters: µe = 12, 500 N/mm2,
ν = 0.2, k = 10, a = 1, b = 400, ρs = 2.4 × 10−6 kg/mm3, φs0 = 0.8, and
|µ̇i| = 1.5× 10−7 kg/mm3/day. The simulation assumes that there is already
a network of connected micro-fractures that allows the fluid to dissolve the
solid at time t = 0. The axial strain εa is then prescribed at different rates
allowing solid dissolution while the sample is being deformed. The limiting
condition of ε̇a →∞ corresponds to instantaneous deformation that does not
leave time for the solid to dissolve. As expected, the sample gains strength
with increasing strain rate. Note that with a finite strain rate, the elastic
modulus degrades even before the stress-strain curve reaches its peak.

2.6 Summary of material parameters

Apart from the elastic constants E and ν, the material parameters required
by the mechanical component of the model include the threshold value κ0

signaling the initiation of mechanical damage, constants a and b defining the
exponential decay of strength in the softening range, and the parameter k that
differentiates between the tensile and compressive strength of the material.
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The parameters of the proposed solid-dissolution model include ε0, A, and the
rates of mineral dissolution µ̇αf for α = 1, . . . , N . The first two parameters
are related to mechanical deformation and may be inferred from the curve
generated from extension experiments such as the one shown in Figure 1. The
value of ε0 may be inferred from the εv-intercept of the crack density-dilative
volumetric strain curve. The value of A may be inferred from the shape of the
same experimental curve fitted with an exponential function, and may depend
on the ductility or brittleness of the rock: the more brittle the rock, the larger
the value of A.

The value of |µ̇αf | depends on the properties of the mineral and the erosive
fluid, as well as on temperature, pH, and other environmental factors [12]. As
a general rule, this parameter increases with increasing temperature and/or
decreasing pH. Because numerous factors enter into the transition state the-
ory, significant uncertainties exist in calculating the absolute reaction rate
constants [84]. Given that the focus of the paper is to establish a link between
solid dissolution and mechanical deformation, we shall assume that the tem-
perature, pH, and other environmental factors are fixed for now and take the
value of |µ̇αf | as constant for the specific soluble material of interest.

3 Finite element formulation

The finite element formulation for the boundary-value problem relies on a
three-field u/ε̄eq/λ̄ variational formulation. The strong form (S) can be stated
as follows. Let B define the domain of the problem and let ∂Bu and ∂Bt denote
the Dirichlet and Neumann boundaries, respectively. Ignoring the inertia load,
we want to find u, ε̄eq, and λ̄ such that

∇ · σ + ρg = ṁv

ε̄eq − `21∇2ε̄eq = εeq

λ̄− `22∇2λ̄ = λ

 in B , (43)

where v = u̇ is the solid velocity. The boundary conditions are

u = ũ on ∂Bu
n · σ = t on ∂Bt
∇ε̄eq · n = 0 on ∂B

∇λ̄ · n = 0 on ∂B


, (44)

where ũ and t are the prescribed displacement and traction vectors, respec-
tively. For very slow processes (such as stress relaxation and creep processes),
the momentum term ṁv in the equilibrium equation may be ignored.

The weak form (W) of the boundary-value problem can be stated as fol-
lows. Let S = {u |u ∈ H1,u = ũ on ∂Bu} denote the set of trial functions
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for u and V = {η |η ∈ H1,η = 0 on ∂Bu} the corresponding set of weighting
functions. Further, let C0 denote the set of continuous functions. We want to
find u ∈ S, ε̄eq ∈ C0, and λ̄ ∈ C0 such that for all η ∈ V , φ ∈ C0 and ϕ ∈ C0,
the following variational equations are satisfied:

Equilibrium:∫
B
∇sη : σ dV +

∫
B
η · ṁv dV =

∫
B
η · ρg dV +

∫
∂B
η · t dA ; (45)

Mechanical damage:∫
B

(φε̄eq + `21∇φ · ∇ε̄eq) dV =

∫
B
φεeq dV ; (46)

Chemical damage: ∫
B

(ϕλ̄+ `22∇ϕ · ∇λ̄) dV =

∫
B
ϕλ dV . (47)

Note that the mass dissolution term is written on the left-hand side of the
equilibrium equation since the solid velocity field is unknown.

Mixed finite elements similar to those used in multiphysics problems may
be used for the present problem. For the equilibrium condition, the finite
element equation in residual form may be written as

R1 =

∫
Ω

BTσ̂ dV +

∫
Ω

NTṁv dV −
∫
Ω

NTρg dV −
∫
∂Ω

NTt dA , (48)

where N is the shape function matrix for the displacement field, B is the
strain-displacement transformation matrix, and σ̂ is the Cauchy stress vector
in Voigt form, an implicit function of the solid displacement vector d as well
as the damage variables Dm and Dc.

For the gradient enhancements, we select the same interpolation functions
for φ, ϕ, ε̄eq, and λ̄, herein represented by the shape function matrix Ñ with

gradient E = ∇Ñ . The mechanical damage enhancement in residual form is
given by

R2 =
(∫

Ω

ÑTÑ dV +

∫
Ω

ET`21E dV
)
e−

∫
Ω

ÑTεeq dV , (49)

where e is the vector of nodal values of ε̄eq. The chemical damage enhancement
takes a similar form:

R3 =
(∫

Ω

ÑTÑ dV +

∫
Ω

ET`22E dV
)
l−
∫
Ω

ÑTλ dV , (50)

where l is the vector of nodal values of λ̄. The solutions d∗, e∗, and l∗ satisfy
the conditions Ri = 0 for i = 1, 2, 3, and are obtained iteratively via Newton’s
method (see Appendix A).
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4 Numerical examples

For the numerical examples presented in this section, the effects of gravity
were ignored. The focus of the studies was on the impact of dissolution dam-
age on the mechanical behavior of the rock. The first example validates the
constitutive model against the experimental data on creep of a limestone in-
duced by solid dissolution. The next three examples present boundary-value
problems that investigate the sensitivity of the finite element solutions to mesh
refinement and to variations in material properties. The fifth example utilizes
the reported solubility properties of kaolinite taken from the literature and
investigates the combined effects of mechanical and chemical damage around
a crack tip in a clay rock due to the injection of an erosive fluid.

For the simulation of boundary-value problems, both creep and relaxation
tests were conducted on structures of different configurations. Equal-order in-
terpolations of the type Q1P1P1, similar to those used in poromechanics but
with no stabilization [16, 22, 23, 95, 96, 99], were used for these problems.
No oscillations were observed in all the examples despite the lack of stabiliza-
tion [19, 20, 89, 98], which could be attributed to the fact that none of the
diagonal block matrices in the tangent operator is zero (see Appendix A).

4.1 Dissolution of a limestone

There have been a few chemo-mechanical laboratory studies conducted on
carbonate rocks reported in the literature [58, 67]. In this section, we validate
the chemical damage model using the creep experiment conducted by Le Guen
et al. [58] on Lavoux W520 limestone subjected to CO2 exposure.

The experiment consisted of a cylindrical sample of limestone having a
diameter of 23 mm and a height of 48 mm. The creep response of this sample
is shown in Figure 3. The sample was first stabilized under a fixed axial
stress of σa = −16.3 MPa and a fixed radial stress of σr = −11.6 MPa (both
compressive) in the absence of fluid. During this time, no noticeable axial creep
strain was observed in the sample (see the nearly horizontal line up to time
of around 44 days in Figure 3). Afterwards, CO2 saline solution was injected
into the sample at a pressure of pf = 7.9 MPa to induce solid dissolution on
the rock. Continuous supply of fluid was maintained to ensure that reactive
agents were available throughout the duration of the experiment .

To obtain the mechanical deformation response, the Terzaghi effective
stress equation was employed in the simulation, which is given by the equa-
tions

σ′a = σa + pf , σ′r = σr + pf , (51)

where the continuum mechanics convention for the normal stresses was em-
ployed. Strictly speaking, one must introduce the Biot coefficient into the
above equations [17], but nevertheless, we employed the Terzaghi effective
stress equation since this is what the authors used in their paper [58]. This
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results in an axial effective stress of σ′a = −8.8 MPa and a radial effective
stress of σr = −3.7 MPa.

For a given Young’s modulus E and Poisson’s ratio ν, Hooke’s law with
damage reads

(1−D)εa =
1

E

[
σa − ν(σr + σr)

]
(1−D)εr =

1

E

[
σr − ν(σa + σr)

]
 , (52)

which gives
εr
εa

=
σr − ν(σr + σa)

σa − ν(σr + σr)
≡ β . (53)

The volumetric strain is then given by

εv = εa + 2εr = (1 + 2β)εr . (54)

This expression can be inserted into the chemical damage evolution law, yield-
ing

Ḋc = ξφs
µ̇f
ρs

[
1− e−A(εv−ε0)

]
, (55)

where ξ is the percentage of soluble solid in the rock. Assuming the effective
stresses are fixed, the rock does not undergo mechanical damage, and so D =
Dc and the axial strain becomes

εa =
1

(1−Dc)E
(σa − 2νσr) . (56)

The simulation was conducted at the stress-point level utilizing the ma-
terial parameters listed in Table 1. The values of the elasticity parameters E
and ν were taken from MatWeb [7]. Ciantia et al. [25] observed that the disso-
lution of solid reduces the stiffness by dissolving the bonds between the solid
grains, thereby converting the rock into granular soils. Based on their study,
we assume that this bond constitutes the soluble component and represents
10% of the total volume of the solid (i.e., ξ = 0.1).

Using the parameters of the model, we fit the experiment data with the
simulation curve as shown in Figure 3. From the initial condition up to 44
days, the axial strain is unchanged since the rock is in a stabilization state.
After 44 days, CO2 was injected and the material undergoes solid dissolution.
Because of porosity increase, the stiffness of the sample degrades and the
rock undergoes creep deformation. According to the trend in the slope of the
curve, the axial creep deformation gradually ceases as the rock compacts and
the soluble material runs out. We recall that the dissolution rate decreases
with larger compression according to the exponential law. Le Guen et al. [58]
did not measure the creep radial deformation, so we were unable to validate
this component of the model.
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Table 1. Parameters used in the simulation of creep test induced by solid dissolution
on Lavoux Limestone.

Symbol Value Unit

E 40,000 N/mm2

ν 0.3 –
κ0 1.2× 10−4 –
a 1.0 –
b 70 –

k 10 –
A 40 –
ε0 −1.7× 10−2 –
|µ̇f | 1.4× 10−7 kg/mm3/day
ρs 2.4× 10−6 kg/mm3
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Time, days

0.0

A
xi
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tr
ai
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-0.8
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100 200 300
-1.2

-0.4

Fig. 3. Creep of limestone induced by solid dissolution. Experimental data after Le
Guen et al. [58].

4.2 Three-point beam load relaxation test

The three point bending test has been commonly used as a benchmark prob-
lem in various damage models and fracture simulations [62, 78]. The problem
consists of a 2000× 200× 50 beam with a 20× 100× 50 notch (all dimensions
in mm) below the center, as shown in Figure 4. The mesh configurations are
shown in Figure 5. The material properties used for the simulations are tabu-
lated in Table 2. In this table, we assume that there is only one soluble solid
and that the initial value of φs is 50%, which means that only half of the solid
volume is soluble.
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Fig. 4. Layout of the three-point beam. All dimensions in mm.

The beam is completely restrained in all directions on one end and fixed
only in the vertical (i.e., in the direction of loading) and out-of plane directions
on the other end. A downward displacement of 0.5 mm that increases linearly
with time over a period of 0.5 days is applied at the top of the beam, after
which it is held fixed. The simulations show how the damage zone continues to
grow in the absence of any additional displacement due to the time-dependent
damage induced by solid dissolution. The bending simulations are carried out
on three different meshes with varying degrees of refinement to demonstrate
the mesh insensitivity of the solution.

Fig. 5. Different mesh refinements: coarse, medium, and fine (from top to bottom).

Plots of the damage zone are reported in Figure 6 at t = 0.5 days and
t = 10 days. The individual contributions of chemical and mechanical damage
are shown separately, along with the combined total damage. Since the damage
mainly occurs in the middle of the beam, we only show the result in the
middle 200×200 area. From the presented results, it can be observed that the
damage zone continues to propagate even after the displacement is held fixed
due to the effects of chemical dissolution. The mechanical damage continues to
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Table 2. Parameters used in the three-point beam load relaxation simulations.

Symbol Value Unit

E 30,000 N/mm2

ν 0.2 –
κ0 1.2× 10−4 –
a 1.0 –
b 385 –
k 10 –

`1 5 mm
`2 5 mm
A 200 –
ε0 1.0× 10−5 –
|µ̇f | 2× 10−6 kg/mm3/day
ρs 2.4× 10−6 kg/mm3

1.0

0.8

0.6

0.4

0.2

0.0

(a) (b) (c)

Fig. 6. Contours of damage for three-point beam load relaxation test at t = 0.5 days
and t = 10 days using the medium mesh: (a) damage due to solid dissolution Dc;
(b) mechanical damage Dm; and (c) total damage D. Color bar is damage variable.

increase as well, due to the nature of the coupled system. Note that dissolution
damage does not develop until t = 0.5 days when the threshold value of
the dilatational strain has been reached for the first time. Also note that
mechanical damage increases as well after t = 0.5 days, suggesting coupling
effects between mechanical and chemically induced deformations.

Figure 7 plots the time variation of the reactive force at the top of the beam
where the downward displacement is applied. As shown in this figure, the slope
of the curve begins to deviate from a straight line purely due to mechanical
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Fig. 7. Upward force reaction in the middle of the beam where the downward
displacement u was prescribed versus time showing convergence of the solution as
the mesh is refined.

damage up until the end of the loading phase. When the displacement is
held constant, combined mechanical and chemical damage ensues. It can be
observed that the damage due to dissolution reduces the reactive force almost
by a half as time goes on. Furthermore, the mesh insensitivity of the solution
is clearly displayed as the results of the medium and fine meshes are nearly
the same. The coarse mesh follows a similar pattern, but it is too coarse to
be acceptable for this particular problem. In the next section, we will conduct
studies investigating the impacts of the parameters A, ε0, `1, and `2 on the
system response.

4.3 Three-point beam creep test

We conduct another set of simulations on a mesh of the same configuration
(medium mesh in Figure 5) to further highlight the time-dependent damage
formulation presented in this paper. As opposed to the previous section, a
distributed downward line load of intensity 19.5 N/mm is applied linearly
over a period of 4.5 days in place of a displacement in the middle of the
beam, and is held fixed to allow the beam to creep at this load. The material
parameters are given in Table 3. The initial value of φs is assumed to be
30%. Damage is shown to continue to propagate due to solid dissolution. The
evolution of damage is shown in Figure 8.

We next conduct sensitivity analyses on the model parameters A, ε0, `1,
and `2 to investigate the effect of each of them on damage propagation. As
expected, the parameter A depicts the rate of creep deformation, with lower
values appearing to take longer time to reach the final deformed state, as
shown in Figure 9a. As for the strain threshold ε0, there is little variation in
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Table 3. Parameters used in the three-point beam creep simulations.

Symbol Value Unit

E 30,000 N/mm2

ν 0.2 –
κ0 1.2× 10−4 –
a 1.0 –
b 70 –
k 10 –

`1 5 mm
`2 5 mm
A 500 –
ε0 1.0× 10−5 –
|µ̇f | 0.3× 10−6 kg/mm3/day
ρs 2.4× 10−6 kg/mm3
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0.6

0.4

0.2

0.0

(a) (b) (c)

Fig. 8. Contours of damage for three-point beam creep test at t = 4.5 days and
t = 15 days using the medium mesh: (a) damage due to solid dissolution Dc; (b)
mechanical damage Dm; and (c) total damage D. Color bar is damage variable.

the results shown in Figure 9b. At t = 4.5 days, the largest threshold value
plotted has already been reached (ε0 = 1 × 10−5); therefore, it is expected
that other smaller thresholds would have also been reached at this same time.
If the threshold strain value was not reached when the loading was held fixed,
the material would experience no creep-induced damage, and the curve would
continue as a straight horizontal line (constant displacement). Physically, this
corresponds to the dilatational strains being insufficient to allow penetration
of damage-inducing fluids. The slight variation in the plots is due to the
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Fig. 9. Vertical displacement in the middle of the beam (where the downward
vertical line load was prescribed) versus time: Influence on creep displacement of:
(a) exponent coefficient A, and (b) threshold dilatational strain ε0.

nearly insignificant effects of points near the damage zone considered to have
reached the volumetric strain threshold, and thus contributing minimally to
the propagation of damage.

Lastly, the effects of the variations in each of the length scales are pic-
tured in Figure 10 showing how each affects the displacement evolution in the
mechanical loading and chemical dissolution phases, respectively. The figure
suggests that `1 is more influential than `2. This is because the chemical dam-
age is harder to trigger due to the threshold ε0, so the zone associated with
chemical damage tends to be smaller. In general, appropriate length scales
should be chosen to maintain stability of the solution while avoiding excessive
diffusion.

Remark. It must be noted that solid dissolution could also take place on
the surface of an intact solid, although this process is expected to take much
longer than if the solid was highly fractured due to the smaller specific surface
exposed to chemical attack. Surface erosion/dissolution is not considered in
this paper, see Reference [59].

4.4 Shearing and bending of an L-beam

We again apply the model to another configuration and observe how the me-
chanical and chemical damage evolve in a combined shearing-bending con-
dition. The layout and boundary conditions are shown in Figure 11. The
material properties used for this simulation are tabulated in Table 4, and the
initial volume fraction of the soluble solid is once again assumed to be 50%.
The evolution of damage is shown in Figure 12.
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Fig. 10. Vertical displacement in the middle of the beam (where the downward
vertical line load was prescribed) versus time: Influence of: (a) length scale `1 when
`2 = 5, and (b) length scale `2 when `1 = 5. Values of ` in mm.

As expected, the damage zone continues to propagate well after the dis-
placement u is held fixed. A similar phenomenon to the previous examples
is observed, where even the mechanical damage continues to increase in the
dissolution phase, with solid dissolution being the driving force for the dam-
age propagation. However, in contrast to the previous example, note that the
zone of localized dissolution damage is thin and suggests that a phase-field
approach may have to be employed to regularize this type of damage, at least
for this example. In Figure 13, we notice that the reactive force begins to de-
crease before t = 0.25 days due to mechanical damage. After around t = 0.80
days, the reactive force decreases drastically due to chemical damage. The
result is consistent with the observations from the previous examples.

4.5 Dissolution of kaolinite around a crack tip

In this final example, we illustrate how chemical reaction induced by a pres-
surized fluid can influence the mechanical behavior of a fractured rock, as
solid dissolution has been established to be a critical factor in the creep of
soft rocks [64]. The example seeks to simulate the hydraulic fracturing process
[43] as well as CO2 sequestration [10, 21, 39, 54]. There are existing discrete
[50, 53] and continuum [29, 88] models to simulate these processes, and here
we show how the model proposed in this paper can be applied to model this
type of problems.

The configuration of the rock volume simulated in this example is shown
in Figure 14. The volume consists of a 500 × 500 × 50 block (all dimensions
in mm) with an angled crack 200 mm long and 34 mm wide, and restrained
in all directions at both the upper and lower left ends. The existing crack
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Fig. 11. Layout of the 500 × 500 L-beam. Upward displacement u is prescribed at
the horizontal end. Beam is fixed at the base. All dimensions in mm.

Table 4. Parameters used in the L-beam load relaxation simulations.

Symbol Value Unit

E 30,000 N/mm2

ν 0.2 –
κ0 1.7× 10−4 –
a 0.98 –
b 405 –
k 10 –

`1 5 mm
`2 5 mm
A 200 –
ε0 1.0× 10−5 –
|µ̇f | 4.5× 10−6 kg/mm3/day
ρs 2.4× 10−6 kg/mm3

is representative of expected field conditions [49, 61, 100, 102]. Mechanical
properties of the rock used for this simulation are similar to those of low-grade
oil shale samples from the Western US [30], and are shown in Table 5. Shale is
an extremely heterogeneous sedimentary rock with significant components of
clay, and here we assume that the crack has intersected the clay subdomain.
An erosive chemical with a known pH is injected so that the crack surface
is filled with the fluid. The fluid is assumed to exert pressure perpendicular
to the crack surface. The results demonstrate the mechanical behavior of the
rock during injection, as well as the long-term behavior after injection.

The material parameters for the solid dissolution model is obtained as
follows. Assuming the crack density-volumetric strain plot shown in Figure 1
is true for this material, we figure the value of the threshold volumetric strain
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Fig. 12. Contours of damage for L-beam load relaxation test at t = 1 day and
t = 10 days: (a) damage due to solid dissolution Dc; (b) mechanical damage Dm;
and (c) total damage D. Color bar is damage variable.
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Fig. 13. Downward force reaction at the end where the prescribed displacement u
was applied for the L-beam shearing-bending test.

for clay to be ε0 ≈ −1× 10−6, which is slightly on the compressive side. This
means that it is possible for the erosive fluid to permeate the pore spaces
of the clay rock even at zero volumetric strain. Further, we figure the value
of the exponential coefficient as A ≈ 40 from the shape of the curve shown
in Figure 1. Assuming the clay to be composed of kaolinite minerals, the
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Fig. 14. Layout of the 500 × 500 rock volume with a crack filled with pressurized
fluid. All dimensions in mm.

dissolution rates were measured by Cama et al. [18] and ranged as a function
of temperature and fluid composition from 8± 1× 10−15 mol/m2/s (at 25◦C
and pH = 4.5) to 1.5± 0.2× 10−11 mol/m2/s (at 70◦C and pH = 0.5). Cama
et al. [18] measured these dissolution rates from input solutions at specific pH
by mixing HClO4 and double deionized water.

The specific kaolinite sample used in the experiment by Cama et al. [18]
was the KGa-2 (Warren county, Georgia), an international reference sample
of the Clay Mineral Society Source Clay Repository that was supplied by the
Yale Peabody Museum. This sample was an almost pure kaolinite, containing
more than 96 percent by weight of Al2Si2O5(OH)4. From the National Li-
brary of Medicine website (https://pubchem.ncbi.nlm.nih.gov), we find that
the molecular formula Al2Si2O5(OH)4 is kaolin with a molar mass of 258
g/mol. The specific surface area of an acid-activated kaolinite was reported
by Bhattacharyya and Gupta [11] as 16 m2/g. Given that the intrinsic mass
density of kaolinite is 2.65 g/cm3 [42], we calculate the solid dissolution rates
from dimensional analysis as follows:

|µ̇f | =
dim mol

mm2 · s
× g

mol
× mm2

g
× g

mm3
=

g

mm3 · s
.

Using consistent units, we obtain |µ̇f | ≈ 8.7 × 10−8 kg/m3/s at 25◦C and
pH = 4.5; and |µ̇f | ≈ 1.6 × 10−4 kg/m3/s at 70◦C and pH = 0.5. We take
these rates as the rates at which the kaolinite is dissolved per unit current
volume of kaolinite present in the rock. Note that the dissolution rate at the
higher temperature and lower pH is four orders of magnitude higher than the
dissolution rate at the lower temperature and higher pH.

The increase in the width of the crack is recorded against time, as shown
in Figure 15. In these simulations, we assumed that the volume fraction of
kaolinite in the rock is 50%. During the injection process, the fluid is injected
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Table 5. Parameters used in the kaolinite dissolution example.

Symbol Value Unit

E 16,000 N/mm2

ν 0.2 –
κ0 5× 10−4 –
a 1.0 –
b 300 –
k 10 –

`1 5 mm
`2 5 mm
A 40 –
ε0 −1× 10−6 –
ρs 2.65× 10−6 kg/mm3

uniformly so that the pressure on the crack surface increases linearly with
time. The fluid usually generates a slow reaction from the rock [5], so the
chemical dissolution during the injection process is ignored. After injection,
the pressure on the crack surface is held constant and chemical dissolution
begins. Figure 15 shows the calculated creep behavior due to the dissolution
of kaolinite. We observe that the time scales predicted by the two dissolution
processes are four orders of magnitude different reflecting the four orders
of magnitude difference in dissolution rates of the mineral at the two test
conditions.

The damage contour is plotted in Figure 16. We observe a similar phe-
nomenon to the previous numerical examples in that the total damage in-
creases due to chemical dissolution, which intensifies mechanical damage due
to chemical weakening when the rock is exposed to the erosive fluid. Note
that chemical damage is generally smaller than mechanical damage, so we
have reduced the color bar for chemical damage for better visualization. Still,
one can think of the solid dissolution near the tip of the crack as effectively
leading to crack-tip blunting, which could further influence the mechanical
damage evolution.

We emphasize that the gradient enhancement employed in this work is
meant to regularize a diffuse damage zone in isotropic solids, and not a narrow
zone of localized damage. Work is currently underway to investigate how the
proposed dissolution law can be extended to anisotropic materials [46, 80, 97,
101], as well as cast the model within the framework of phase-field analysis
(see [45]) to better capture the kinematics and propagation of a narrow zone
of localized damage.

5 Closure

We have formulated a mathematical framework that accommodates combined
chemical and mechanical damage to take place on materials such as concrete
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Fig. 15. Variation of crack width with time for the kaolinite dissolution example.
Dissolution rates for kaolinite were derived from Cama et al. [18].
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Fig. 16. Contours of mechanical damage (left) and chemical damage (right) at
t = 2 × 103 s for the kaolinite dissolution example with T = 70◦C and pH = 0.5.
Note that the color bar for chemical damage has been reduced since it is smaller
than the mechanical damage.

and rock that are infiltrated by an erosive fluid. Chemical damage is in the
form of solid dissolution that is directly linked to the mass conservation law,
which reduces the effective loading area of the material. This type of dam-
age is then combined with mechanical damage in a multiplicative manner.
Both types of damage were treated nonlocally using the gradient-enhanced
formulation, leading to three-field variational equations.

Single-phase mechanical and dissolution models have been adopted for
this work, leaving room for extension to multi-phase scenarios including the
transport of dissolved solid by a moving fluid. However, the formulation is
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sufficiently general to accommodate more complicated mechanical and disso-
lution constitutive laws, including combined elastoplastic-damage [9] as well
as mechanistically-based and experimentally validated solid dissolution laws.
Apart from an ongoing work casting the model within the phase-field frame-
work, we are also exploring the transport of dissolved solid by a moving fluid.
The latter problem could have implications for similar applications in geome-
chanics and geotechnical engineering such as the modeling of suffusion and/or
infiltration problems in soil mechanics.
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Appendix A. Linearized system

This Appendix describes how the three-field finite element equations are
solved by Newton-Raphson iteration. First, we let

R(D) =

R1

R2

R3

 , D =

D1

D2

D3

 =

de
l

 . (57)

The aim is to find the solution D∗ such that R(D∗) = 0. This requires that
we evaluate the tangent operator K = R′(D), which has the following block
structure:

K =

K11 K12 K13

K21 K22 K23

K31 K32 K33

 . (58)

Before evaluating each of the submatrices of the tangent operator K, we
first recall the following format of the algorithm: we are given the converged
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solution Dn at time tn and the trial values Dtr
n+1 = Dn + ∆Dk at the kth

iteration of the Newton-Raphson loop. Thus, we can evaluate the trial value

ε̄tr
eq = Ñetr

n+1 . (59)

This results in the discrete loading/unloading conditions

κ =

{
ε̄eq , if ε̄tr

eq > κn ,
κn , otherwise .

(60)

The derivative of the mechanical damage variable then takes either of the
forms

D′m(κ) =

{
D′m(ε̄eq) if ε̄tr

eq > κn ,

0 , otherwise .
(61)

This means that Dm varies with the unknown nodal vector e only when the
material is loading; otherwise, it is constant. Furthermore, differentiating (36)
and (37)

D′c(λ̄) = φsn
|µ̇f |
ρs

∆t exp
(
− |µ̇f |

ρs
λ̄∆t

)
, (62)

where ∆t = t − tn, which implies that Dc varies with the unknown nodal
vector l.

We now summarize the submatrices of the tangent operator K. For the
first row block, and ignoring the ṁv-term for slow dissolution processes, we
have

K11 =
∂R1

∂D1
=

∫
Ω

(1−Dc)(1−Dm)BTCeB dV , (63)

where Ce is the matrix form of the elasticity tensor Ce. Furthermore, letting
bT = BTσ̂/(1−D), we have

K12 =
∂R1

∂D2
= −

∫
Ω

(1−Dc)D
′
m(κ)bTÑ dV (64)

and

K13 =
∂R1

∂D3
= −

∫
Ω

(1−Dm)D′c(λ̄)bTÑ dV . (65)

For the second row block, we note that the local equivalent strain εeq varies
with the full strain tensor ε so that one can obtain the 6× 1 column vector

δ =
∂εeq

∂ε̂
, (66)

where ε̂ is the full strain tensor in Voigt form. Thus, we get

K21 =
∂R2

∂D1
= −

∫
Ω

ÑTδTB dV . (67)

Furthermore,
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K22 =

∫
Ω

ÑTÑ dV +

∫
Ω

ET`21E dV (68)

and K23 = 0.
For the third row block, we note that the local value of λ varies with the

full strain tensor ε through the volumetric component εv so that one can
obtain the 6× 1 column vector

θ = λ′(εv)1 , (69)

where 1 is the Kronecker delta tensor in Voigt form. Thus,

K31 =
∂R3

∂D1
= −

∫
Ω

ÑTθTB dV . (70)

Lastly, K32 = 0 and

K33 =

∫
Ω

ÑTÑ dV +

∫
Ω

ET`22E dV . (71)

The tangent operator K is not symmetric.
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