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a b s t r a c t

The D7 degeneration of the Painlevé-III equation has solutions that are rational functions of x1/3
for certain parameter values. We apply the isomonodromy method to obtain a Riemann–Hilbert
representation of these solutions. We demonstrate the utility of this representation by analyzing
rigorously the behavior of the solutions in the large parameter limit.
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1. Introduction

The six Painlevé equations were discovered more than a cen-
ury ago by Paul Painlevé in his classification of all second-order
irst-degree ordinary differential equations algebraic in the un-
nown function, rational in its first derivative, and analytic in
he independent variable having the Painlevé property that all
olutions are meromorphic away from certain fixed singularities
hose locations are fully determined from the equation itself.

t turned out that all such equations could be reduced either to
reviously known (linear) equations or to one of the equations
sually denoted PI, PII, PIII, PIV, PV, and PVI. See [1, Ch. XIV].
ll of these equations except for PI involve one or more free
arameters. As a consequence of the Painlevé property, solutions
f these equations may be regarded as new special functions,
nd they occur in many applications. Although typical solutions
f Painlevé equations are highly-transcendental functions (in-
eed, they are typically called Painlevé transcendents), all of the
quations except for PI also admit, for certain parameter values,
olutions in terms of elementary functions or classical linear
pecial functions (e.g., Airy, Bessel, etc.). The parameter values for
hese solutions are related by a certain finitely-generated group

✩ R.J. Buckingham was supported by National Science Foundation, United
tates of America grant DMS-2108019. P.D. Miller was supported by National
cience Foundation, United States of America grants DMS-1812625 and DMS-
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ction, and the group acts on the solutions via Bäcklund trans-
ormations that preserve the functional character of the solution
rational, algebraic, etc.).

From the very beginning, the Painlevé equations were recog-
ized by R. Fuchs and Garnier as isomonodromic deformations
f certain second-order linear equations (see also [2]). It is con-
enient to work at the level of first-order systems instead, in
hich case each Painlevé equation can be recognized as the
ompatibility condition for a certain Lax pair of linear equa-
ions for an auxiliary 2 × 2 matrix-valued unknown Ψ. The
nverse problem of constructing Ψ from its monodromy data can
e usefully formulated as a matrix Riemann–Hilbert problem.
he aforementioned group actions reappear in this context as
chlesinger transformations, linear gauge transformations acting
n the matrix unknown that preserve the form of the Lax pair
s well as the essential monodromy data, affecting only formal
onodromy exponents at various singular points. This means

hat the Riemann–Hilbert representation of the whole family
f special solutions can be obtained once it is known for just
ne particular choice of parameters and solution, usually called
he seed solution. Generally the monodromy data for a given
olution cannot be obtained explicitly; however in the case of
lementary-function solutions the direct problem for the Lax pair
an frequently be solved in terms of classical special functions
n which case the monodromy data can be found by applying
nown connection formulæ. The isomonodromy method has been
uccessfully applied to rational solutions of

• The PII equation [3–6]. Here if one uses the Jimbo–Miwa [7]
Lax pair for the PII equation, the direct problem for the
seed solution is solved in terms of Airy functions. There
is another approach for analyzing directly the Yablonskii–
Vorob’ev polynomials that can be used to construct the
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Fig. 1. Complex zeros of the Ohyama polynomials Pn(Z). Left: n = 5. Center: n = 10. Right: n = 20. See also Fig. 8.
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rational solutions based on a Hankel determinant repre-
sentation [8]; this was shown in [9] to be equivalent to
the isomonodromy approach in the alternate setting of the
Flaschka–Newell Lax pair.

• The PIII equation (nondegenerate D6 type) [10,11]. The di-
rect problem for the seed solution is solved in terms of
confluent hypergeometric functions (Whittaker functions).

• The PIV equation [12]. In this problem there are two distinct
families of rational solutions; the direct problem for the so-
called generalized Hermite rational solutions is solved in
terms of elementary functions while that for the so-called
generalized Okamoto rational solutions is solved in terms
of Airy functions. The generalized Hermite solutions can be
analyzed by means of a Hankel determinant representation
similarly to the PII case; see [13]. Yet another approach in
this case exploits a connection with the spectral theory of
quantum oscillators in quartic potentials; see [14,15].

he goal of this paper is to show that the isomonodromy method
pplies equally well to the algebraic solutions of the D7 degenera-
ion of the PIII equation. These are not rational solutions, although
hey are rational functions of the cube root of the independent
ariable.

.1. PIII D7 equation and its algebraic solutions

The Painlevé-III equation of D7 type has the form

′′
=

(u′)2

u
−

u′

x
+

αu2
+ β

x
+

δ

u
, u = u(x), ′

=
d
dx

, αδ ̸= 0.

(1)

See [16–18] for background. This equation is a degenerate case of
the general (D6) Painlevé-III equation

u′′ =
(u′)2

u
−

u′

x
+

αu2
+ β

x
+ γ u3

+
δ

u
(2)

in which γ = 0. Applying an arbitrary homogeneous scaling
(u, x) ↦→ (cu, cx), c > 0 to the setting described in [19, §32.9(i)],
when α > 0, β = 2n with n ∈ Z, and δ = −1, the D7 Eq. (1)
has a solution that is a rational function of x1/3. When n = 0,
hat solution is u(x) = α−1/3x1/3. To match the notation in [20]
n which much of our work is based, for the rest of this paper we
ake

= 8, β = 2n, δ = −1, for n ∈ Z, (3)

n which case the indicated solution for n = 0 is u(x) = 1
2x

1/3.
If one fixes the parameters (3) and substitutes the formal

xpression u =
1x1/3v(x1/3) with v(Z) = 1+ v Z−1

+ v Z−2
+· · ·
2 1 2

2

into (1), then one obtains a systematic recurrence to determine
the coefficients vj in order that never requires division by zero.
Hence all coefficients are uniquely determined by the value of n
(and in fact the coefficients of all odd powers of Z vanish), so the
solution rational in Z := x1/3 is unique for given n. We denote this
solution by u = un(x). By the argument above, for fixed n ∈ Z,
n(x) has the asymptotic behavior

n(x) = 1
2x

1/3(1+ O(x−1/3)), x → ∞. (4)

his function can also be defined directly as a ratio of certain
olynomials in Z . Namely, for n ∈ Z, n ≥ 0, define the Ohyama
olynomials [21,22] via the recurrence relation
√
3ZPn+1(Z)Pn−1(Z) = −

1
3
Pn(Z)P ′′

n (Z)+
1
3
P ′

n(Z)
2

−
1
3Z

Pn(Z)P ′

n(Z)+ 2(3Z2
− n)Pn(Z)2,

P0(Z) := 1, P1(Z) := 3Z2.

(5)

(Note that in the notation of [21], Pn(Z) = Rn(
√
3Z).) Then

un(x) =
Pn+1(x1/3)Pn−1(x1/3)

2
√
3Pn(x1/3)2

, n ∈ Z, n > 0. (6)

This representation is consistent with the fact that all poles not
at the origin of solutions of (1) are double poles. As shown in [21,
Sec. 3] and Fig. 1, when displayed in the Z-plane, the poles
nd zeros of un(x) for integers n > 0 form an approximately
rystalline pattern confined within two quasi-triangular regions
orming a ‘‘bow-tie’’ shape. One can also deduce from u0(x) =
1
2x

1/3 and the Bäcklund transformations (134)–(135) (see also [21,
Eqn. 3.4]) that

Z ↦→ Z∗
H⇒ un ↦→ u∗n and Z ↦→ −Z H⇒ un ↦→ −un,

for all n ∈ Z. (7)

Moreover, it is easy to see that u−n(x) = iun(ix) modulo x ↦→ e2π ix.

1.2. Lax pair

In [20], Eq. (1) is written in the form (α = −8ϵ, β = 2ab,
δ = b2)

u′′ =
(u′)2

u
−

u′

x
+

−8ϵu2
+ 2ab

x
+

b2

u
, u = u(x). (8)

The authors of [20] introduce the following linear equations on
an unknown Ψ = Ψ(λ, x):
Ψλ = Λ(λ, x)Ψ and Ψx = X(λ, x)Ψ (9)
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here the coefficient matrices are defined by

(λ, x) := −ixσ3 −
ia
2λ

σ3 −
x
λ
J(x)+

ix
2λ2K(x) and

(λ, x) := −iλσ3 +
ia
2x

σ3 − J(x)−
i
2λ

K(x). (10)

ere

(x) :=
ϵx

4u(x)

[
0 p(x)

q(x) 0

]
and

(x) :=
u(x)
x

[
ϵ eiϕ(x)

−e−iϕ(x)
−ϵ

]
, (11)

nd σ3 is the third Pauli matrix as defined in (24). The compat-
bility condition of the overdetermined system (9) is Λx − Xλ +

Λ,X] = 0, which upon separating out the coefficients of λ−1 and
λ−2 amounts to the following system of equations:

u′(x)−
u(x)
x

−
x
2

[
p(x)e−iϕ(x)

+ q(x)eiϕ(x)
]
= 0,

(12)

−
ϵx2p′(x)
4u(x)

+
ϵx2p(x)u′(x)

4u(x)2
−

ϵxp(x)
2u(x)

+
iϵaxp(x)
2u(x)

− 2u(x)eiϕ(x) = 0,

(13)

−
1
2
u(x)ϕ′(x)eiϕ(x) +

1
2
iu′(x)eiϕ(x) −

i
2x

u(x)eiϕ(x) −
iϵ2

2
xp(x) = 0,

(14)

−
ϵx2q′(x)
4u(x)

+
ϵx2q(x)u′(x)

4u(x)2
−

ϵxq(x)
2u(x)

−
iϵaxq(x)
2u(x)

− 2u(x)e−iϕ(x)
= 0,

(15)

−
1
2
u(x)ϕ′(x)e−iϕ(x)

−
1
2
iu′(x)e−iϕ(x)

+
i
2x

u(x)e−iϕ(x)
+

iϵ2

2
xq(x) = 0.

(16)

We eliminate p(x) and q(x) explicitly using (14) and (16):

p(x) =
1
ϵ2

[
iu(x)ϕ′(x)eiϕ(x)

x
+

u′(x)eiϕ(x)

x
−

u(x)eiϕ(x)

x2

]
=

1
ϵ2

d
dx

(
u(x)eiϕ(x)

x

)
,

q(x) =
1
ϵ2

[
−

iu(x)ϕ′(x)e−iϕ(x)

x
+

u′(x)e−iϕ(x)

x
−

u(x)e−iϕ(x)

x2

]
=

1
ϵ2

d
dx

(
u(x)e−iϕ(x)

x

)
.

(17)

hen (12) becomes(
1−

1
ϵ2

)(
u′(x)−

u(x)
x

)
= 0, (18)

and the sum and difference of (13) and (15) become, respectively,

− 8ϵu(x)3 − u(x)u′(x)+ xu′(x)2 − 2au(x)2ϕ′(x)

+ xu(x)2ϕ′(x)2 − xu(x)u′′(x) = 0 and (19)

u(x)ϕ′′(x)+ u′(x)ϕ′(x)−
2au′(x)

x
+

2au(x)
x2

= 0. (20)

We note that (20) can be written in the form

d
dx

(
u(x)ϕ′(x)−

2au(x)
x

)
= 0 H⇒ u(x)ϕ′(x) =

2au(x)
x

+ b (21)

here b is an integration constant. Using this to eliminate
(x)ϕ′(x) from (19) gives Eq. (8) on u(x). If we assume that
2
= 1, then (18) places no further conditions on u(x) (otherwise

onditions on the parameters ϵ, a, and b are required so that (8)
dmits a solution of the form u(x) = Ax for A ̸= 0).
3

Using ϵ2
= 1, we note that, in terms of the matrix elements

of J(x) and K(x), the potentials are given by

u(x) = ϵxK11(x) = −ϵxK22(x)

eiϕ(x) = ϵ
K12(x)
K11(x)

= −ϵ
K12(x)
K22(x)

e−iϕ(x)
= −ϵ

K21(x)
K11(x)

= ϵ
K21(x)
K22(x)

p(x) = 4J12(x)K11(x) = −4J12(x)K22(x)
q(x) = 4J21(x)K11(x) = −4J21(x)K22(x).

(22)

The equivalence of the two expressions in each case is guaranteed
from tr(K(x)) = 0, and the compatibility of the expressions for
e±iϕ(x) is implied by det(K(x)) = 0. If we are given the matrices
J(x) (off-diagonal) and K(x) (singular and nondiagonalizable), we
cannot determine the value of ϵ = ±1. However, from (22)
we can see that ϵ ↦→ −ϵ changes the signs of u(x) and e±iϕ(x)

but leaves p(x) and q(x) invariant. It follows that Eqs. (12)–(16)
are invariant under ϵ ↦→ −ϵ, and from (21) we see that the
integration constant b is proportional to ϵ. This is then consistent
with the obvious symmetry of (8): u ↦→ −u, ϵ ↦→ −ϵ, b ↦→ −b.

Therefore, for the rest of this work, we assume without loss of
generality that ϵ = −1 in the parametrization of the matrices J(x)
and K(x) in the Lax pair (9)–(11). Then eliminating u′(x) between
(14) and (16) allows the integration constant b to be expressed
without derivatives as

b = −
2au(x)

x
−

1
2
ixp(x)e−iϕ(x)

+
1
2
ixq(x)eiϕ(x). (23)

.3. Outline of the paper

In Section 2 we show how simultaneous solutions of the Lax
air equations for the simplest algebraic solution of (8), u0(x) =

1
2x

1/3 for ϵ = −1, a = 0, and b = i (matching (1) and (3) for
= 0), can be explicitly obtained in terms of Airy functions.

hen we build canonical bases of simultaneous solutions near
he singular points at λ = 0 and λ = ∞ and apply connection
ormulæ to determine relations among them. Next, in Section 3
e formulate the inverse monodromy problem for the rational
olution un(x) for a = −in and n ∈ Z as a Riemann–Hilbert
roblem. We point out that the problem is solved for n = 0 by the
eed Lax pair solutions constructed in Section 2. We then derive
ifferential equations from its solution in general, recovering the
III (D7) equation in the form (8) for ϵ = −1, a = −in, and b = i
matching (1) and (3) for general n ∈ Z). Next we construct the
solution for n ∈ Z \ {0} by iterated Schlesinger transformations
and hence show that the solutions of (8) are related by Bäcklund
transformations. Since the latter preserve the algebraic character
of the solution, this shows that the Riemann–Hilbert problem
captures the algebraic solutions of (8); we summarize this result
in Theorem 1. We conclude this section by making a convenient
transformation of the Riemann–Hilbert problem that has the ef-
fect of simplifying the data for the problem. Then, in Section 4 we
use the Riemann–Hilbert representation of the algebraic solution
un(x) to consider the asymptotic behavior of the solution for large
n. After some preliminary rescaling of the independent variable x
and the spectral variable λ to balance exponents, we present for
background some formal arguments applying similar scalings to
the PIII (D7) equation itself. This formal approach suggests two
types of approximations: a slowly-varying ‘‘equilibrium’’ approx-
imation and an approximation based on the Weierstraß elliptic
function. Then, we return to the rescaled Riemann–Hilbert prob-
lem and introduce an appropriate g-function via a family of
spectral curves. The family of spectral curves mirrors the family
of formally approximate solutions of the PIII (D7) equation in a
remarkable fashion. Finally, we carry out a rigorous analysis of
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he function un(x) for large n and rescaled x > 0 sufficiently
arge and recover one of the equilibrium solutions predicted by
he formal theory (see Theorem 2). With some extra steps, the
ethod allows this result to be continued to the exterior of the

‘bow-tie’’ domain of the x1/3 plane and hence makes rigorous
ome of the observations made in [21]. See Theorem 3.

.4. Notation

Throughout our paper, square matrices are indicated by bold-
ace capital letters with the exception of the identity I and the
auli matrices:

1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
. (24)

or a function (matrix or scalar-valued) analytic off an oriented
ontour arc, we use subscripts + (resp., -) to indicate boundary
alues at a point of the arc from the left (resp., right).

. The direct monodromy problem for the seed solution

.1. Lax pair for the seed solution

To obtain the algebraic solutions of the Painlevé-III D7 equa-
ion in the form (8), we assume that ϵ = −1, a = −in, and b = i
or n ∈ Z. In the case that n = 0 we have the algebraic solution
(x) =

1
2x

1/3. We call this the seed solution for the algebraic
olution family, and n = 0 is the seed parameter value. Taking
= 0, b = i, and u(x) = 1

2x
1/3 in (21) gives ϕ′(x) = 2ix−1/3 so

that ϕ(x) = 3ix2/3 + ϕ0 where ϕ0 is an integration constant that
we will take to be zero. From (17) and ϵ = −1 we then get

p(x) = −

(
1
x
+

1
3
x−5/3

)
exp(−3x2/3) and

q(x) = −

(
−

1
x
+

1
3
x−5/3

)
exp(3x2/3). (25)

It follows that for the seed solution, the matrices J(x) and K(x) in
(11) are given by

J(x) =

[
0

( 1
6 x

−1
+

1
2 x

−1/3
)
exp(−3x2/3)( 1

6 x
−1

−
1
2 x

−1/3
)
exp(3x2/3) 0

]
,

K(x) =
1
2
x−2/3

[
−1 exp(−3x2/3)

− exp(3x2/3) 1

]
.

(26)

e make a gauge transformation to remove the exponential
actors on the off-diagonal elements of the coefficient matri-
es: Ψ = exp(− 3

2x
2/3σ3)Φ, which implies that also Ψx =

xp(− 3
2x

2/3σ3)(Φx − x−1/3σ3Φ). In terms of Φ then, the (compat-
ble) Lax pair equations for the seed solution read

λ =

(
−ixσ3 −

x
λ

[
0 1

6x
−1

+
1
2x

−1/3

1
6x

−1
−

1
2x

−1/3 0

]
+

ix1/3

4λ2

[
−1 1
−1 1

])
Φ, (27)

x =

(
−iλσ3 −

[
−x−1/3 1

6x
−1

+
1
2x

−1/3

1
6x

−1
−

1
2x

−1/3 x−1/3

]
−

ix−2/3

4λ

[
−1 1
−1 1

])
Φ. (28)

ur strategy to obtain a fundamental simultaneous solution ma-
rix for (27)–(28) is to deal first with Eq. (28). For this purpose, it
s convenient to simplify the latter equation as much as possible.
4

We observe that multiples of the same diagonal coefficient matrix
appear in the terms most singular at λ = ∞ in both Eqs. (27)–
(28), and at the same time the coefficient matrix of the terms
most singular at λ = 0 is nilpotent (that this coefficient matrix is
defective for all x is what distinguishes the D7 Lax pair from the
most general D6 Lax pair given by Jimbo and Miwa [7]) which
is a simplification to be retained. Hence we will remove the
leading terms at λ = ∞ from (28) by introducing the shearing
transformation

λ = X−1Λ, x = X ⇐⇒ Λ = xλ, X = x. (29)

Then the partial derivatives with respect to λ and x transform as
follows:
∂

∂Λ
=

1
X

∂

∂λ
and

∂

∂X
=

∂

∂x
−

Λ

X2

∂

∂λ
. (30)

n terms of the new variables Λ and X , the compatible system
(27)–(28) becomes

ΦΛ =

(
−iσ3 −

X
Λ

[
0 1

6X
−1

+
1
2X

−1/3

1
6X

−1
−

1
2X

−1/3 0

]
+

iX4/3

4Λ2

[
−1 1
−1 1

])
Φ (31)

and

ΦX =

(
X−1/3σ3 −

iX1/3

2Λ

[
−1 1
−1 1

])
Φ. (32)

(We note that the shearing transformation had the added benefit
of removing the off-diagonal terms from the coefficient of λ0

in (32).) To solve (32) for fixed Λ ∈ C, we make a change of
independent variable:

Z = X1/3
H⇒

d
dX

=
1
3
X−2/3 d

dZ
=

1
3
Z−2 d

dZ
. (33)

hen (32) becomes

ΦZ =

(
3Zσ3 −

3iZ3

2Λ

[
−1 1
−1 1

])
Φ. (34)

Introducing the constant gauge transformation

Ω := GΦ, G :=
1
√
2

[
1 −1
1 1

]
(35)

and noting that

Gσ3G−1
= σ1 and G

[
−1 1
−1 1

]
G−1

=

[
0 0
−2 0

]
, (36)

we get a purely off-diagonal system

ΩZ =

(
3Zσ1 −

3iZ3

2Λ

[
0 0
−2 0

])
Ω =

[
0 3Z

3Z + 3iΛ−1Z3 0

]
Ω.

(37)

herefore, denoting by D(Z) and S(Z) the first-row and second-
ow elements respectively of either column of Ω,

Z = (3Z + 3iΛ−1Z3)D and DZ = 3ZS. (38)

Eliminating S using the second equation gives a second-order
equation on D:

Z2DZZ − ZDZ − 4Z4( 94 +
9i
4 Λ−1Z2)D = 0. (39)

Noting the factor in parentheses, it seems like a good idea to
consider the substitution W :=

9
+

9iΛ−1Z2. Then a simple
4 4
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omputation shows that also

d
dZ

=
9iZ
2Λ

d
dW

,
d2

dZ2 =
9i
2Λ

d
dW

−
81Z2

4Λ2

d2

dW 2

H⇒ Z2DZZ − ZDZ = −
81Z4

4Λ2 DWW . (40)

herefore, Eq. (39) in fact becomes

WW +
16Λ2

81
WD = 0 (41)

hich is a scaling of Airy’s equation. Its general solution is

= aAi

((
−

16Λ2

81

)1/3

W

)
+ bBi

((
−

16Λ2

81

)1/3

W

)
(42)

here a, b are independent of W (they may depend on Λ, how-
ever).

If f (ξ ) is any solution of Airy’s equation f ′′(ξ )−ξ f (ξ ) = 0, then
we have

D(Z) = f (ξ ), ξ :=

(
3
2

)2/3

(iΛ)2/3
(
1−

Z2

iΛ

)
, (43)

nd from (38),

(Z) =
DZ (Z)
3Z

= −

(
2
3

)1/3

(iΛ)−1/3f ′(ξ ). (44)

o, if f1(ξ ) and f2(ξ ) form a fundamental pair of solutions of Airy’s
quation f ′′(ξ ) − ξ f (ξ ) = 0, then the general solution of (37)
s Ω = Ω0(Z, Λ)H(Λ) where H(Λ) is an arbitrary matrix-valued
function of Λ only, and where

0(Z, Λ) := ∆(Λ)F(ξ ), ∆(Λ) :=
1
√
2

[
1 0
0 −

( 2
3

)1/3
(iΛ)−1/3

]
,

(ξ ) :=
[
f1(ξ ) f2(ξ )
f ′1(ξ ) f ′2(ξ )

]
, (45)

nd ξ is defined in terms of Z and Λ by (43). (The factor of 1/
√
2

is arbitrary and is chosen for later convenience.)
Using (36) and

Gσ1G−1
= −σ3 and G

[
0 −1
1 0

]
G−1

=

[
0 1
−1 0

]
, (46)

we derive from (31) and (35) that

ΩΛ =

⎡⎢⎣ 1
6Λ

−i−
X2/3

2Λ

−i+
X2/3

2Λ
−

iX4/3

2Λ2 −
1
6Λ

⎤⎥⎦Ω

=

⎡⎢⎣ 1
6Λ

−i−
Z2

2Λ

−i+
Z2

2Λ
−

iZ4

2Λ2 −
1
6Λ

⎤⎥⎦Ω. (47)

ince the systems (37) and (47) are compatible, it is possible to
find H(Λ) so that Ω = Ω0(Z, Λ)H(Λ) solves not only (37) but also
(47). Substituting into the latter shows that H(Λ) must solve the
system

H′(Λ) =

⎛⎜⎝Ω0(Z, Λ)−1

⎡⎢⎣ 1
6Λ

−i−
Z2

2Λ

−i+
Z2

2Λ
−

iZ4

2Λ2 −
1
6Λ

⎤⎥⎦Ω0(Z, Λ)

−Ω0(Z, Λ)−1 ∂Ω0

∂Λ
(Z, Λ)

⎞⎟⎠H(Λ). (48)
5

he matrix coefficient in (48) must be independent of Z , so it may
e computed by setting (say) Z = 0. Differentiating Ω0(0, Λ) with
espect to Λ directly from (45) using ξ = ( 32 )

2/3(iΛ)2/3 when
= 0 and the Airy identity

′(ξ ) =
[
0 1
ξ 0

]
F(ξ ) (49)

hows that the coefficient matrix is a multiple of the identity:

′(Λ) =
1
6Λ

H(Λ) H⇒ H(Λ) = Λ1/6H0 (50)

here H0 is a matrix independent of both Z and Λ. It can be
bsorbed as a change of basis in specifying the fundamental
olutions f1(ξ ) and f2(ξ ) of Airy’s equation.
Inverting the gauge transformations Φ ↦→ Ω and Ψ ↦→ Φ and

restoring the original independent variables by Z = X1/3
= x1/3

and Λ = xλ, the general simultaneous solution matrix of the Lax
pair for the seed solution is:

Ψ(λ, x) = (ixλ)1/6 exp(− 3
2x

2/3σ3)G−1∆(xλ)F(ξ ),

ξ :=
( 3
2

)2/3
(ixλ)2/3

(
1−

x2/3

ixλ

)
, (51)

here F(ξ ) is built from two independent solutions f1(ξ ), f2(ξ ) of
iry’s equation f ′′(ξ )− ξ f (ξ ) = 0 by (45). The extra factor of i1/6
s included at no cost to give the simplification

ixλ)1/6∆(xλ) =
1
√
2

[
1 0
0 −( 23 )

1/3

]
(ixλ)σ3/6. (52)

.2. Three particular simultaneous solutions of the Lax pair for the
eed

We assume here for simplicity that x > 0 and that (ixλ)p =
p(iλ)p for any power p. In particular, ξ is then well-defined as
function on the λ-plane once we select the principal branch

for (iλ)2/3. It has a branch cut emanating vertically upwards from
λ = 0 along the imaginary axis, and it is positive real on the
negative imaginary axis.

We will make use of the fact that for the Airy equation f ′′(ξ )−
f (ξ ) = 0 there are three complementary sectors: 0 ≤ arg(ξ ) ≤

2
3π , − 2

3π ≤ arg(ξ ) ≤ 0, and −
1
3π ≤ arg(−ξ ) ≤ 1

3π , on each of
which there is a basis of solutions with exponential dichotomy
and exhibiting no Stokes phenomenon as ξ → ∞. Those fun-
damental pairs are (Ai(ξ ),Ai(e−2π i/3ξ )), (Ai(ξ ),Ai(e2π i/3ξ )), and
(Ai(e2π i/3ξ ),Ai(e−2π i/3ξ )), respectively.

2.2.1. Solutions near infinity
Here we consider the domain |λ| > 1 and find simultaneous

solutions with no Stokes phenomenon in two complementary
sectors near λ = ∞ and that admit a simple normalization
as λ → ∞ in each of these sectors. To be precise, we take
unbounded domains D±

∞
defined by the conditions |λ| > 1 and

±Re(λ) > 0. By the definition of ξ for x > 0 in terms of
the principal branch of (iλ)2/3, in the limit λ → ∞ from D+

∞
,

arg(iλ) ∈ (0, π ) translates into ξ → ∞ with arg(ξ ) ∈ (0, 2
3π ).

Likewise as λ → ∞ from D−
∞

we have ξ → ∞ with −
2
3π <

rg(ξ ) < 0. Therefore, to avoid Stokes phenomenon, we will take
or f (ξ ) scalar multiples of the solutions from the fundamental
pairs (Ai(ξ ),Ai(e∓2π i/3ξ )) to define simultaneous solutions Ψ =

Ψ±
∞
(λ, x) on the domains D±

∞
respectively.

That is, using (52), we take

Ψ±

∞
(λ, x) := exp(− 3

2x
2/3σ3)G−1 1

√
2

[
1 0
0 −( 23 )

1/3

]
(ixλ)σ3/6

·

[
Ai(ξ ) Ai(e∓2π i/3ξ )

′ ∓2π i/3 ′ ∓2π i/3

][
c±1 0

±

]
(53)
Ai (ξ ) e Ai (e ξ ) 0 c2
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Ψ±

∞
(λ, x) = exp(− 3

2x
2/3σ3)

[ 1
2

1
2

−
1
2

1
2

][
c±1 (ixλ)1/6Ai(ξ ) c±2 (ixλ)1/6Ai(e∓2π i/3ξ )

−c±1 ( 23 )
1/3(ixλ)−1/6Ai′(ξ ) −c±2 ( 23 )

1/3(ixλ)−1/6e∓2π i/3Ai′(e∓2π i/3ξ )

]
(54)

Box I.
Ψ

w
e

a

−

a

w

H
t
p

B

A
x
s
6
t
f

Ψ

or suitable constants c±j , j = 1, 2. This can be equivalently
ritten as Eq. (54) in Box I.
As λ → ∞ from D±

∞
, i.e., with ± arg(ixλ) ∈ [0, π ], we have

→ ∞ with ± arg(ξ ) ∈ [0, 2
3π ], and also e∓2π i/3ξ → ∞ with

∓ arg(e∓2π i/3ξ ) ∈ [0, 2
3π ]. Using the asymptotic formulæ [19,

qns. 9.7.5–6]

i(z) =
exp(− 2

3 z
3/2)

2
√

πz1/4
(1+ O(z−3/2)) and

i′(z) = −
exp(− 2

3 z
3/2)z1/4

2
√

π
(1+ O(z−3/2)), (55)

alid as z → ∞ with | arg(z)| < π (and hence | arg(z3/2)| <
3
2π and | arg(z1/4)| < 1

4π ), along with ξ = ( 32 )
2/3(ixλ)2/3(1 −

2/3(ixλ)−1), we get

ixλ)1/6Ai(ξ ) =
exp( 32x

2/3)
2
√

π
( 23 )

1/6e−ixλ(1+ O(λ−1)) (56)

nd

( 23 )
1/3(ixλ)−1/6Ai′(ξ ) =

exp( 32x
2/3)

2
√

π
( 23 )

1/6e−ixλ(1+ O(λ−1)) (57)

s λ → ∞ in either D+
∞

or D−
∞
. Likewise,

ixλ)1/6Ai(e∓2π i/3ξ ) = e±iπ/6 exp(−
3
2x

2/3)
2
√

π
( 23 )

1/6eixλ(1+ O(λ−1))

(58)

and

− ( 23 )
1/3(ixλ)−1/6e∓2π i/3Ai′(e∓2π i/3ξ )

= e∓5π i/6 exp(−
3
2x

2/3)
2
√

π
( 23 )

1/6eixλ(1+ O(λ−1)) (59)

as λ → ∞ from D±
∞
. Therefore, from (54), we get

Ψ±

∞
(λ, x) =

1
2
√

π
( 23 )

1/6
([

c±1 0
0 −e±iπ/6c±2

]
+ O(λ−1)

)
e−ixλσ3

(60)

n the same limit. Choosing the constants to be
±

1 := 2
√

π ( 32 )
1/6 and c±2 := −e∓iπ/62

√
π ( 32 )

1/6, (61)

he simultaneous solutions Ψ±
∞
(λ, x) are normalized so that

lim
λ→∞

λ∈D±∞

Ψ±

∞
(λ, x)eixλσ3 = I. (62)

ince the coefficient matrices Λ(λ, x) and X(λ, x) have zero trace,
t then follows that det(Ψ±

∞
(λ, x)) = 1.

2.2.2. Solution near zero
When λ is small and arg(ixλ) varies from −π to π , arg(−ξ )

varies from 1
3π to −

1
3π , so to avoid Stokes phenomenon and

aintain exponential dichotomy we use scalar multiples of the
asis elements Ai(e2π i/3ξ ) and Ai(e−2π i/3ξ ). Then, for constants
± we use (52) and hence define a solution in the domain D0
haracterized by |λ| < 1 and arg(ixλ) ∈ (−π, π ) by
6

0(λ, x) := exp(− 3
2x

2/3σ3)G−1 1
√
2

[
1 0
0 −( 23 )

1/3

]
(ixλ)σ3/6

·

[
Ai(e2π i/3ξ ) Ai(e−2π i/3ξ )

e2π i/3Ai′(e2π i/3ξ ) e−2π i/3Ai′(e−2π i/3ξ )

][
c+ 0
0 c−

]
, (63)

hich can be equivalently written as Eq. (64) in Box II. Using
±2π i/3ξ = x2/3( 32 )

2/3e∓iπ/3(ixλ)−1/3(1 − x−2/3(ixλ)), the relevant
expansions we need in this situation are then

(ixλ)1/6Ai(e±2π i/3ξ ) = e±iπ/12 1
2
√

π
x−1/6( 32 )

−1/6(ixλ)1/4

· exp[±ix(ixλ)−1/2
](1+ O(λ1/2)) (65)

nd

( 23 )
1/3(ixλ)−1/6e±2π i/3Ai′(e±2π i/3ξ )

= e±7π i/12 1
2
√

π
x1/6( 32 )

−1/6(ixλ)−1/4

· exp[±ix(ixλ)−1/2
](1+ O(λ1/2))

(66)

s λ → 0 with−π < arg(ixλ) < π . It follows that det(Ψ0(λ, x)) =
1

4π i c
+c−( 23 )

1/3
+ O(λ1/2) in the same limit, so by Abel’s theorem

det(Ψ0(λ, x)) =
1

4π i c
+c−( 23 )

1/3. We complete the definition of
Ψ0(λ, x) by choosing

c+ := 2i
√

π ( 32 )
1/6 and c− := 2

√
π ( 32 )

1/6 (67)

hich guarantees the identity det(Ψ0(λ, x)) = 1. It then follows
that as λ → 0,

Ψ0(λ, x) exp[−ix(ixλ)−1/2σ3] = exp(− 3
2x

2/3σ3)

·

[ 1
2

1
2

−
1
2

1
2

]
xσ3/3e7π iσ3/12

·

(
iλ
x

)σ3/4 [
1+ O(λ1/2) e−2π i/3(1+ O(λ1/2))

e−iπ/3(1+ O(λ1/2)) 1+ O(λ1/2)

]
.

(68)

ere, the symbol O(λ1/2) denotes in each case a (different) quan-
ity having an asymptotic expansion as λ → 0 in positive integer
owers of λ1/2. This implies the existence of the limit

0(x) := lim
λ→0

Ψ0(λ, x) exp[−ix(ixλ)−1/2σ3]E ·

(
iλ
x

)−σ3/4

,

E :=
1
√
2

[
1 eiπ/3

e2π i/3 1

]
. (69)

t this point, we can revisit the expansion of Ψ0(λ, x) exp[−i
(ixλ)−1/2σ3]E · (iλ/x)−σ3/4 as λ → 0, and take advantage of the
tructure of the complete asymptotic expansions [19, Eqns. 9.7.5–
] of which the parentheses in (55) represent just the first explicit
erms to deduce that the half-integer powers all vanish, and in
act we have a full expansion as λ → 0:

0(λ, x) exp[−ix(ixλ)−1/2σ3]E ·

(
iλ
x

)−σ3/4

∼

∞∑
p=0

(
iλ
x

)p

Bp(x).

(70)



R.J. Buckingham and P.D. Miller Physica D 441 (2022) 133493

2

Ψ

T
E
i

o
F

Ψ0(λ, x) = exp(− 3
2x

2/3σ3)
[ 1

2
1
2

−
1
2

1
2

][
c+(ixλ)1/6Ai(e2π i/3ξ ) c−(ixλ)1/6Ai(e−2π i/3ξ )

−c+( 23 )
1/3(ixλ)−1/6e2π i/3Ai′(e2π i/3ξ ) −c−( 23 )

1/3(ixλ)−1/6e−2π i/3Ai′(e−2π i/3ξ )

]
(64)

Box II.
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ξ
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ξ
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F
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Ψ

.3. Jump conditions for the seed

We define (see Fig. 2)

(λ, x) :=

⎧⎨⎩
Ψ+

∞
(λ, x), λ ∈ D+

∞
,

Ψ−
∞
(λ, x), λ ∈ D−

∞
,

Ψ0(λ, x), λ ∈ D0.

(71)

he jump matrices are obtained using the connection identity [19,
qn. 9.2.12] Ai(z)+ e2π i/3Ai(e2π i/3z)+ e−2π i/3Ai(e−2π i/3z) = 0 and
ts derivative Ai′(z)+ e−2π i/3Ai′(e2π i/3z)+ e2π i/3Ai′(e−2π i/3z) = 0.
We will calculate the jump Ψ+(λ, x) = Ψ−(λ, x)V across each arc
f the jump contour as indicated in the right-hand diagram of
ig. 2 (subscripts+ /- indicate boundary values from the left/right

by orientation). Note that since in each domain Ψ(λ, x) is a
simultaneous fundamental solution matrix with unit determinant
for the equations Ψx = XΨ and Ψλ = ΛΨ, each jump matrix V
is a constant matrix with det(V) = 1.

To compute the jump of Ψ(λ, x) across Σ−
∞

as well as C±, we
note that ξ and (ixλ)σ3/6 are both well-defined on these contours.
So, V = Ψ−(λ, x)−1Ψ+(λ, x) = Ψ+

∞
(λ, x)−1Ψ−

∞
(λ, x) satisfies[

Ai(ξ ) −eiπ/6Ai(e2π i/3ξ )
Ai′(ξ ) −eiπ/6e2π i/3Ai′(e2π i/3ξ )

]
=

[
Ai(ξ ) −e−iπ/6Ai(e−2π i/3ξ )
Ai′(ξ ) −e−iπ/6e−2π i/3Ai′(e−2π i/3ξ )

]
V, λ ∈ Σ−

∞
. (72)

Using the connection formulæ to write the second column on
the left-hand side in terms of Ai(ξ ) and Ai′(e−2π i/3ξ ) and their
derivatives yields

V =

[
1 −i
0 1

]
, λ ∈ Σ−

∞
. (73)

Similarly, the jump matrix on C− is V = Ψ−(λ, x)−1Ψ+(λ, x) =
Ψ−

∞
(λ, x)−1Ψ0(λ, x), which satisfies[
iAi(e2π i/3ξ ) Ai(e−2π i/3ξ )

ie2π i/3Ai′(e2π i/3ξ ) e−2π i/3Ai(e−2π i/3ξ )

]
=

[
Ai(ξ ) −eiπ/6Ai(e2π i/3ξ )
Ai′(ξ ) −eiπ/6e2π i/3Ai′(e2π i/3ξ )

]
V, λ ∈ C−. (74)

The same connection formulæ applied to the second column of
the left-hand side then yield

V =

[
0 e−iπ/3

e−2π i/3 e−5iπ/6

]
, λ ∈ C−. (75)

Likewise, the jump matrix on C+ is V = Ψ−(λ, x)−1Ψ+(λ, x) =

Ψ0(λ, x)−1Ψ+
∞
(λ, x), which satisfies[

Ai(ξ ) −e−iπ/6Ai(e−2π i/3ξ )
Ai′(ξ ) −e−iπ/6e−2π i/3Ai′(e−2π i/3ξ )

]
=

[
iAi(e2π i/3ξ ) Ai(e−2π i/3ξ )

ie2π i/3Ai′(e2π i/3ξ ) e−2π i/3Ai(e−2π i/3ξ )

]
V, λ ∈ C+. (76)

Applying the connection formulæ to the first column of the left-
hand side yields

V =

[
e−5π i/6 0
eiπ/3 e5π i/6

]
, λ ∈ C+. (77)
7

Fig. 2. Left: the domains D±
∞

and D0 in the λ-plane. Right: the arcs of the jump
ontour for Ψ(λ, x).

To compute the jump matrices on Σ+

0 and Σ+
∞

we also have to
ake into account the jump conditions satisfied by ξ and (ixλ)σ3/6:[
(ixλ)σ3/6]

+
= eiπσ3/3 [(ixλ)σ3/6]

−
and

+ = e−2π i/3ξ−, λ ∈ Σ+

0 (78)

nd[
(ixλ)σ3/6]

+
= e−iπσ3/3 [(ixλ)σ3/6]

−
and

+ = e2π i/3ξ−, λ ∈ Σ+

∞
. (79)

he difference between these formulæ arises simply from the
pposite orientation of Σ+

0 and Σ+
∞
. So, on Σ+

0 , using (78) on the
eft-hand side of Ψ+(λ, x) = Ψ−(λ, x)V (with Ψ(λ, x) = Ψ0(λ, x)),
e have[
e5π i/6Ai(ξ−) eiπ/3Ai(e2π i/3ξ−)
e5π i/6Ai′(ξ−) eiπ/3e2π i/3Ai′(e2π i/3ξ−)

]
=

[
iAi(e2π i/3ξ−) Ai(e−2π i/3ξ−)

ie2π i/3Ai′(e2π i/3ξ−) e−2π i/3Ai′(e−2π i/3ξ−)

]
V, λ ∈ Σ+

0 .

(80)

pplying the connection formulæ to the first column of the left-
and side gives

=

[
1 e−iπ/6

e−5π i/6 0

]
, λ ∈ Σ+

0 . (81)

inally, on Σ+
∞
, using (79) on the left-hand side of Ψ+(λ, x) =

−(λ, x)V (this time with Ψ+(λ, x) = Ψ
−

∞,+(λ, x) and Ψ−(λ, x) =
+

∞,−(λ, x)), we find[
e−iπ/3Ai(e2π i/3ξ−) e5π i/6Ai(e−2π i/3ξ−)

e−iπ/3e2π i/3Ai′(e2π i/3ξ−) e5π i/6e−2π i/3Ai′(e−2π i/3ξ−)

]
=

[
Ai(ξ−) e5π i/6Ai(e−2π i/3ξ−)
Ai′(ξ−) e5π i/6e−2π i/3Ai′(e−2π i/3ξ−)

]
V, λ ∈ Σ+

∞
. (82)
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sing the connection formulæ on the first column of the left-hand
ide gives

=

[
1 0
i 1

]
, λ ∈ Σ+

∞
. (83)

This completes the computation of the jump matrices for
(λ, x). It is straightforward to verify that the cyclic product of

ump matrices about either of the two self-intersection points of
he jump contour equals I.

3. Riemann-Hilbert representation for the algebraic solutions

3.1. Riemann-Hilbert problem formulation and basic properties

The algebraic solutions of (1) with α = 8, β = 2n ∈ 2Z, and
δ = −1 (or (8) with ϵ = −1, a = −in, and b = i) can be obtained
from the following Riemann–Hilbert problem.

Riemann-Hilbert Problem 1 (Algebraic Solutions of Painlevé-III
D7). Given x > 0 and n ∈ Z, seek a 2 × 2 matrix function
λ ↦→ W(n)(λ, x) with the following properties:

• Analyticity: W(n)(λ, x) is analytic for λ ∈ C \ (Σ−
∞

∪ Σ+
∞

∪

Σ+

0 ∪ C+
∪ C−).

• Jump conditions: W(n)(λ, x) takes continuous boundary values
from each component of its domain of analyticity, and the
boundary values are related by

W(n)
+ (λ, x) = W(n)

− (λ, x) exp[−i(xλ − x(ixλ−)−1/2)σ3](−1)nV
· exp[i(xλ − x(ixλ+)−1/2)σ3],

λ ∈ Σ+

0 ∪ Σ+

∞
,

(84)

and

W(n)
+ (λ, x) = W(n)

− (λ, x) exp[−i(xλ − x(ixλ−)−1/2)σ3]V
· exp[i(xλ − x(ixλ+)−1/2)σ3],

λ ∈ Σ−

∞
∪ C+

∪ C−,

(85)

where the constant matrix V is defined on each arc of the jump
contour by (73), (75), (77), (81), and (83).

• Normalization: W(n)(λ, x)
( iλ

x

)nσ3/2
→ I as λ → ∞.

• Behavior at the origin: the limit

B(n)
0 (x) := lim

λ→0
W(n)(λ, x)E ·

(
iλ
x

)−(−1)nσ3/4

(86)

exists, where E is given by (69).

The following lemma is a consequence of the construction
iven in Section 2.

emma 1. The matrix W(0)(λ, x) defined in terms of Ψ(λ, x) (see
71)) by
(0)(λ, x) := Ψ(λ, x) exp[i(xλ − x(ixλ)−1/2)σ3] (87)

s a solution of Riemann-Hilbert Problem 1 with n = 0.

emma 2. Given x > 0 and n ∈ Z, there is at most one solution of
iemann-Hilbert Problem 1 and any solution has unit determinant.

roof. Suppose there exist two solutions, denoted W(λ) and˜(λ). It follows from the conditions of the problem and Liouville’s
heorem that det(W(λ)) = det(W̃(λ)) ≡ 1. Consider the matrix
(λ) := W(λ)W̃(λ)−1. It similarly follows from the conditions of
he problem that R(λ) is entire and tends to the identity matrix
s λ → ∞, so by Liouville’s theorem again, R(λ) ≡ I. □
8

emma 3. Given x > 0 and n ∈ Z, if the solution W(n)(λ, x) of
iemann-Hilbert Problem 1 exists, then the normalization condition
olds in the stronger sense that there exist coefficient matrices
A(n)
p (x)}∞p=1 such that the complete asymptotic expansion

(n)(λ, x) exp[ix(ixλ)−1/2σ3]

(
iλ
x

)nσ3/2

∼ I+
∞∑
p=1

(
iλ
x

)−p

A(n)
p (x),

λ → ∞ (88)

is uniformly valid with respect to arg(iλ), and the expansion is
differentiable term-by-term with respect to λ and x. Also, the limit in
(86) is the leading term in another complete asymptotic expansion
involving other coefficient matrices {B(n)

p (x)}∞p=0:

W(n)(λ, x)e−ixλσ3E ·

(
iλ
x

)−(−1)nσ3/4

∼

∞∑
p=0

(
iλ
x

)p

B(n)
p (x), λ → 0

(89)

olding uniformly with respect to arg(iλ) and enjoying similar dif-
erentiability properties. Finally, tr(A(n)

1 (x)) = 0 and det(B(n)
0 (x)) =

.

roof. We consider the function λ ↦→ S(λ) defined by

S(n)(λ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W(n)(λ, x) exp[ix(ixλ)−1/2σ3]

(
iλ
x

)nσ3/2

, |λ| > 1,

W(n)(λ, x)e−ixλσ3E ·

(
iλ
x

)−(−1)nσ3/4

, |λ| < 1.

(90)

Then, S(n)(λ) satisfies the conditions of an equivalent Riemann–
Hilbert problem, and it is easy to check that the jump matrices
for S(n)(λ) tend exponentially rapidly to the identity as λ → ∞

in Σ+
∞

∪ Σ−
∞

and as λ → 0 in Σ+

0 . This kind of problem is
amenable to analytic (with respect to x) Fredholm theory applied
to an equivalent singular integral equation, and the result that
S(n)(λ) has asymptotic power series expansions as λ → ∞ and
λ → 0 then follows. That tr(A(n)

1 (x)) = 0 and det(B(n)
0 (x)) = 1 both

hold is a consequence of det(W(n)(λ, x)) = 1 from Lemma 2. □

In the next two subsections we show how and why Riemann-
Hilbert Problem 1 encodes the algebraic solutions u = un(x) of
(8).

3.2. Differential equations satisfied by the solution of Riemann-
Hilbert Problem 1

In this section, we follow the standard dressing approach
(see, e.g., [23, pp. 202–203] for the corresponding calculation
for the D6 problem) to derive the Lax pair for the D7 equa-
tion from Riemann-Hilbert Problem 1. Since this problem is un-
usual in that even and odd n must be handled differently, we
present some details of the calculations. Suppose W(n)(λ, x) solves
Riemann-Hilbert Problem 1, and consider the related matrix

Ψ(n)(λ, x) := W(n)(λ, x) exp[−i(xλ − x(ixλ)−1/2)σ3] (91)

(cf. (87)). It is straightforward to check that Ψ(n)(λ, x) satisfies
jump conditions across each arc of the jump contour that are
independent of both x and λ: Ψ

(n)
+ (λ, x) = Ψ

(n)
− (λ, x)(−1)nV for

λ ∈ Σ+

0 ∪Σ+
∞

and Ψ
(n)
+ (λ, x) = Ψ

(n)
− (λ, x)V for λ ∈ Σ−

∞
∪C+

∪C−.
It follows that the matrices

Λ(n)(λ, x) :=
∂Ψ(n)

(λ, x)Ψ(n)(λ, x)−1 and

∂λ
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(n)(λ, x) :=
∂Ψ(n)

∂x
(λ, x)Ψ(n)(λ, x)−1 (92)

are both analytic for λ ∈ C \ {0}. They can be expressed in terms
of the coefficients {A(n)

p (x)}∞p=1 and {B(n)
p (x)}∞p=0 of Lemma 3 as

follows. First, we write Ψ(n)(λ, x) in terms of W(n)(λ, x) and then
the matrix S(n)(λ, x) defined by (90). Then, assuming that |λ| > 1,
we have

Λ(n)(λ, x) =
∂S(n)

∂λ
(λ, x)S(n)(λ, x)−1

−
n
2λ

S(n)(λ, x)σ3S(n)(λ, x)−1

− ixS(n)(λ, x)σ3S(n)(λ, x)−1

X(n)(λ, x) =
∂S(n)

∂x
(λ, x)S(n)(λ, x)−1

+
n
2x

S(n)(λ, x)σ3S(n)(λ, x)−1

− iλS(n)(λ, x)σ3S(n)(λ, x)−1.

(93)

Using (88) from Lemma 3 (the left-hand side of which is exactly
S(n)(λ, x) for |λ| > 1) then gives

Λ(n)(λ, x) = −ixσ3 −
n
2λ

σ3 −
x2

λ
[A(n)

1 (x), σ3] + O(λ−2), λ → ∞

and

X(n)(λ, x) = −iλσ3 +
n
2x

σ3 − x[A(n)
1 (x), σ3] + O(λ−1), λ → ∞.

(94)

To analyze the same matrices in the limit λ → 0, we use (90)
o obtain, for |λ| < 1,

(n)(λ, x) =
∂S(n)

∂λ
(λ, x)S(n)(λ, x)−1

+
(−1)n

4λ
S(n)(λ, x)σ3S(n)(λ, x)−1

+

(
1
2x

(
iλ
x

)−3/2

S(n)(λ, x)
(
iλ
x

)(−1)nσ3/4

· E−1σ3E ·

(
iλ
x

)−(−1)nσ3/4

S(n)(λ, x)−1

)
,

X(n)(λ, x) =
∂S(n)

∂x
(λ, x)S(n)(λ, x)−1

−
(−1)n

4x
S(n)(λ, x)σ3S(n)(λ, x)−1

+

(
i
2x

(
iλ
x

)−1/2

S(n)(λ, x)
(
iλ
x

)(−1)nσ3/4

· E−1σ3E ·

(
iλ
x

)−(−1)nσ3/4

S(n)(λ, x)−1

)
.

(95)

sing (89) from Lemma 3, the left-hand side of which is exactly
(n)(λ, x) for |λ| < 1, the terms on the first line of each expression
re O(λ−1) and O(1), respectively, as λ → 0. For the terms on the

second line of each, we use the identity

E−1σ3E =

[
0 eiπ/3

e−iπ/3 0

]
. (96)

herefore, using (89) from Lemma 3 again shows that if n is even,

(n)(λ, x) = −e−iπ/3 x
2λ2 B

(n)
0 (x)

[
0 0
1 0

]
B(n)
0 (x)−1

+ O(λ−1)

and

X(n)(λ, x) = e−iπ/3 1
2λ

B(n)
0 (x)

[
0 0
1 0

]
B(n)
0 (x)−1

+ O(1), λ → 0,

(97)
9

while if instead n is odd,

Λ(n)(λ, x) = −eiπ/3 x
2λ2 B

(n)
0 (x)

[
0 1
0 0

]
B(n)
0 (x)−1

+ O(λ−1)

and

X(n)(λ, x) = eiπ/3 1
2λ

B(n)
0 (x)

[
0 1
0 0

]
B(n)
0 (x)−1

+ O(1), λ → 0.

(98)

The Laurent expansions (94) and (97)–(98) then fully deter-
mine the matrices Λ(n)(λ, x) and X(n)(λ, x):

Λ(n)(λ, x) = −ixσ3 −
n
2λ

σ3 −
x
λ
J(n)(x)+

ix
2λ2K

(n)(x),

X(n)(λ, x) = −iλσ3 +
n
2x

σ3 − J(n)(x)−
i
2λ

K(n)(x),
(99)

where

J(n)(x) := x[A(n)
1 (x), σ3] and

K(n)(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
eiπ/6B(n)

0 (x)
[
0 0
1 0

]
B(n)
0 (x)−1, n even,

e5π i/6B(n)
0 (x)

[
0 1
0 0

]
B(n)
0 (x)−1, n odd.

(100)

Since J(n)(x) is an off-diagonal matrix and K(n)(x) is singular and
nondiagonalizable but nonzero, it follows that whenever x is such
that Riemann-Hilbert Problem 1 is solvable, if potentials u =

un(x), e±iϕ
= e±iϕn(x), p = pn(x), and q = qn(x) are defined in

terms of the matrix elements of J = J(n)(x) and K = K(n)(x) by
(22) (taking ϵ = −1 by our convention), then in particular un(x)
is a solution of the Painlevé-III D7 equation in the form (8) for
a = −in and b determined from (21). Using det(B(n)

0 (x)) = 1,
the formula for un(x) in terms of the matrix B(n)

0 (x) obtained from
W(n)(λ, x) by (89) from Lemma 3 is:

n(x) =

{
e−5π i/6xB(n)

0,12(x)B
(n)
0,22(x), n even,

e5π i/6xB(n)
0,11(x)B

(n)
0,21(x), n odd.

(101)

.3. Solution of Riemann-Hilbert Problem 1 by Schlesinger transfor-
ations

.3.1. Schlesinger transformations for the Painlevé-III (D7) Lax pair
Schlesinger transformations for the Lax pair (9) and their

nduced Bäcklund transformations are discussed in [20, Section
.1]. Define a gauge transformation matrix G(λ, x) by

(λ, x) := (iλ)1/2G(x)+ (iλ)−1/2G(x), (102)

here G(x) and G(x) are matrices to be determined so that when
Ψ is a simultaneous fundamental solution matrix of the Lax pair
Eqs. (9), then Ψ̃ := G(λ, x)Ψ is as well, but with a different value
f a and different potentials u(x), p(x), q(x), and ϕ(x). We also want
o normalize G(λ, x) so that det(G(λ, x)) ≡ 1. Clearly, Ψ̃(λ, x) is a
imultaneous fundamental solution matrix of Ψ̃λ = Λ̃(λ, x)Ψ̃ and˜x = X̃(λ, x)Ψ̃, where

(λ, x) := Ψ̃λ(λ, x)Ψ̃(λ, x)−1

=
∂G
∂λ

(λ, x)G(λ, x)−1
+ G(λ, x)Λ(λ, x)G(λ, x)−1 and

X̃(λ, x) := Ψ̃x(λ, x)Ψ̃(λ, x)−1

=
∂G
∂x

(λ, x)G(λ, x)−1
+ G(λ, x)X(λ, x)G(λ, x)−1.

(103)
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riting a = −in for n ∈ C (in general), we want to pick the
coefficients G(x) and G(x) so that the matrices

(λ, x) := −ixσ3 −
n
2λ

σ3 −
x
λ
J(x)+

ix
2λ2K(x) and

(λ, x) := −iλσ3 +
n
2x

σ3 − J(x)−
i
2λ

K(x), (104)

where J(x) is off-diagonal and K(x) is non-diagonalizable with
zero eigenvalues, are transformed into corresponding matrices

Λ(λ, x) := −ixσ3 −
ñ
2λ

σ3 −
x
λ̃
J(x)+

ix
2λ2 K̃(x) and

X(λ, x) := −iλσ3 +
ñ
2x

σ3 − J̃(x)−
i
2λ

K̃(x), (105)

with J̃(x) off-diagonal and K̃(x) non-diagonalizable with zero
eigenvalues, where ñ is another complex parameter. Using (102),
104), and (105), we see that both sides of each of the equations
(equivalent to (103))

λ2(iλ)1/2Λ̃(λ, x)G(λ, x) = λ2(iλ)1/2
∂G
∂λ

(λ, x)

+ λ2(iλ)1/2G(λ, x)Λ(λ, x),

λ(iλ)1/2X̃(λ, x)G(λ, x) = λ(iλ)1/2
∂G
∂x

(λ, x)

+ λ(iλ)1/2G(λ, x)X(λ, x)

(106)

are cubic polynomials in λ. The coefficients of λ3 from both
quations are balanced exactly when

3G(x) = G(x)σ3, (107)

i.e., G(x) is a diagonal matrix. The coefficients of λ2 give the
quations

ĩn
2

σ3G(x)− ix̃J(x)G(x)− ixσ3G(x) =
1
2
iG(x)−

in
2
G(x)σ3

− ixG(x)J(x)− ixG(x)σ3

ĩn
2x

σ3G(x)− ĩJ(x)G(x)− iσ3G(x) = iG
′

(x)+
in
2x

G(x)σ3

− iG(x)J(x)− iG(x)σ3.

(108)

sing the fact that J(x) and J̃(x) are off-diagonal, the diagonal
erms of these equations are equivalent to the equations

(̃n− n)σ3G(x) = −G(x)

−(̃n− n)σ3G(x) = −2xG
′

(x).
(109)

Adding these together yields 2xG
′

(x) = −G(x) which implies that

G(x) = x−1/2G0 (110)

where G0 is a constant diagonal matrix. Then, for x ̸= 0, the first
f these equations is the algebraic relation

ñ− n)σ3G0 = −G0. (111)

Observe that if both diagonal elements of G0 are nonzero, we
rrive at the contradiction that both ñ = n + 1 and ñ = n − 1.

Hence nontrivial solutions for G(x) are: either

G(x) = G
↑

(x) :=
[
0 0
0 x−1/2

]
and ñ = n+ 1 (112)

r

G(x) = G
↓

(x) :=
[
x−1/2 0
0 0

]
and ñ = n− 1. (113)

These are unique up to irrelevant scalings by nonzero constants.
10
At this point, we enforce det(G(λ, x)) = 1, which implies two
alternate forms for the gauge transformation G(λ, x):

G(λ, x) = G↑(λ, x)

=

[
x1/2(iλ)−1/2 B↑(x)(iλ)−1/2

C↑(x)(iλ)−1/2 x−1/2(iλ)1/2 + x−1/2B↑(x)C↑(x)(iλ)−1/2

]
and ñ = n+ 1, or (114)

G(λ, x) = G↓(λ, x)

=

[
x−1/2(iλ)1/2 + x−1/2B↓(x)C↓(x)(iλ)−1/2 B↓(x)(iλ)−1/2

C↓(x)(iλ)−1/2 x1/2(iλ)−1/2

]
and ñ = n− 1. (115)

Using det(G(λ, x)) = 1, we now solve (106) for Λ̃(λ, x), which has
the form of a Laurent polynomial in λ involving powers ranging
from λ0 through λ−3. In order that the coefficient of λ0 is exactly
−ixσ3 as required by the form (105), it is necessary to set

C↑(x) :=
x1/2q(x)
8u(x)

and B↓(x) := −
x1/2p(x)
8u(x)

. (116)

In order that the coefficient of λ−3 vanishes as required by the
form (105) we must then set

B↑(x) = −x1/2eiϕ(x) and C↓(x) = −x1/2e−iϕ(x). (117)

hese relations use our convention of ϵ = −1 in the parametriza-
ion of the matrices J(x) and K(x) in (11). It is then clear that if one
efines matrices J̃(x) and K̃(x) from the coefficients of λ−1 and λ−2

espectively after taking the correct incremented/decremented
alue of ñ in the form of Λ̃(λ, x) in (105), then J̃(x) is indeed an
ff-diagonal matrix, and K̃(x) is a non-diagonalizable matrix with
ero eigenvalues. Finally, we solve (106) for X̃(λ, x) and compare
ith the form given in (105) for the computed coefficients J̃(x)
nd K̃(x). We observe agreement due to the differential equations
n (12)–(16).

For the transformation G↑(λ, x), the transformed coefficients
re

(x) = J↑(x) :=

[
0 2xeiϕ(x)

xeiϕ(x)q(x)2

32u(x)2
+

(n+1)q(x)
8xu(x) −

e−iϕ(x)u(x)
2x2

0

]
(118)

nd

(x) = K↑(x) :=
ibxeiϕ(x)

64u(x)3

[
8u(x)q(x) −64u(x)2

q(x)2 −8u(x)q(x)

]
. (119)

For the transformation G↓(λ, x), the transformed coefficients
are:

J(x) = J↓(x) :=

[
0 −

xe−iϕ(x)p(x)2

32u(x)2
+

(n−1)p(x)
8xu(x) +

eiϕ(x)u(x)
2x2

−2xe−iϕ(x) 0

]
(120)

nd

(x) = K↓(x) :=
ibxe−iϕ(x)

64u(x)3

[
−8u(x)p(x) −p(x)2

64u(x)2 8u(x)p(x)

]
. (121)

In these formulæ, b is the constant expressed in terms of the
potentials via (23) with a = −in.

3.3.2. The induction argument
We now show that given the solution W(n)(λ, x) of Riemann-

Hilbert Problem 1 for some integer n, Schlesinger transformations
can be used to produce the solution for consecutive integers n±1
and generic x > 0.
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he case of n even. Suppose that n is even and that for some
> 0, Riemann-Hilbert Problem 1 has a solution W(n)(λ, x).

et G(n)↑(λ, x) and G(n)↓(λ, x) denote the Schlesinger transforma-
ions associated with the potentials u = un(x), e±iϕ

= e±iϕn(x),
= pn(x), and q = qn(x) for ϵ = −1. We will now show

hat W(n+1)(λ, x) = G(n)↑(λ, x)W(n)(λ, x) and that W(n−1)(λ, x) =
(n)↓(λ, x)W(n)(λ, x). Obviously the transformed matrices are ana-
ytic exactly whereW(n)(λ, x) is, and it is easy to see that the jump
onditions are satisfied in both cases because the Schlesinger
ransformation induces a sign change on the (positive imaginary)
ranch cut of (iλ)±1/2 but otherwise leaves the jump conditions
nvariant. So it remains to check the normalization condition at
= ∞ and the condition at λ = 0.
We start by combining (22) with (100) to get, for n even,

n(x) = ϵeiπ/6xB(n)
0,12(x)B

(n)
0,22(x),

±iϕn(x) = −ϵ

[
B(n)
0,12(x)

B(n)
0,22(x)

]±1

,

pn(x) = −8eiπ/6xA(n)
1,12(x)B

(n)
0,12(x)B

(n)
0,22(x),

qn(x) = 8eiπ/6xA(n)
1,21(x)B

(n)
0,12(x)B

(n)
0,22(x).

(122)

Using these in (116)–(117) and substituting into (114) and (115)
ives

(n)↑(λ, x) =
([

1 0
ϵA(n)

1,21(x) 1

]
+

(
iλ
x

)−1
[
0 ϵB(n)

0,12(x)B
(n)
0,22(x)

−1

0 A(n)
1,21(x)B

(n)
0,12(x)B

(n)
0,22(x)

−1

])(
iλ
x

)−σ3/2

,

(123)

G(n)↓(λ, x) =
([

1 ϵA(n)
1,12(x)

0 1

]
+

(
iλ
x

)−1
[
A(n)
1,12(x)B

(n)
0,22(x)B

(n)
0,12(x)

−1 0
ϵB(n)

0,22(x)B
(n)
0,12(x)

−1 0

])(
iλ
x

)σ3/2

.

(124)

Note that G(n)↑(λ, x) exists unless B(n)
0,22(x) = 0 and that G(n)↓(λ, x)

exists unless B(n)
0,12(x) = 0. Neither of these can hold identically

in x as that would imply via (101) that un(x) ≡ 0, which is
inconsistent with the large-x asymptotic written in (4). Now using
(88) from Lemma 3 gives

G(n)↑(λ, x)W(n)(λ, x) exp[ix(ixλ)−1/2σ3]

(
iλ
x

)(n+1)σ3/2

=

([
1 0

ϵA(n)
1,21(x) 1

]
+ O(λ−1)

)(
iλ
x

)−σ3/2

·

(
I+

(
iλ
x

)−1

A(n)
1 (x)+ O(λ−2)

)(
iλ
x

)σ3/2

=

([
1 0

ϵA(n)
1,21(x) 1

]
+ O(λ−1)

)([
1 0

A(n)
1,21(x) 1

]
+ O(λ−1)

)
= I+ O(λ−1), λ → ∞, and (125)

G(n)↓(λ, x)W(n)(λ, x) exp[ix(ixλ)−1/2σ3]

(
iλ
x

)(n−1)σ3/2

=

([
1 ϵA(n)

1,12(x)
0 1

]
+ O(λ−1)

)(
iλ
x

)σ3/2

·

(
I+

(
iλ
x

)−1

A(n)
1 (x)+ O(λ−2)

)(
iλ
x

)−σ3/2
11
=

([
1 ϵA(n)

1,12(x)
0 1

]
+ O(λ−1)

)([
1 A(n)

1,12(x)
0 1

]
+ O(λ−1)

)
= I+ O(λ−1), λ → ∞, (126)

sing ϵ = −1. Therefore the products G(n)↑(λ, x)W(n)(λ, x) and
(n)↓(λ, x)W(n)(λ, x) behave respectively as the matrix functions
(n+1)(λ, x) andW(n−1)(λ, x) are required to according to Riemann
ilbert Problem 1. On the other hand, using (89) from Lemma 3
or n even gives

(n)↑(λ, x)W(n)(λ, x)e−ixλE ·

(
iλ
x

)σ3/4

=

((
iλ
x

)−1
[
0 ϵB(n)

0,12(x)B
(n)
0,22(x)

−1

0 A(n)
1,21(x)B

(n)
0,12(x)B

(n)
0,22(x)

−1

]
+

[
1 0

ϵA(n)
1,21(x) 1

])

·

(
iλ
x

)−σ3/2 (
B(n)
0 (x)+

(
iλ
x

)
B(n)
1 (x)+ O(λ−2)

)(
iλ
x

)σ3/2

=

((
iλ
x

)−1
[
0 ϵB(n)

0,12(x)B
(n)
0,22(x)

−1

0 A(n)
1,21(x)B

(n)
0,12(x)B

(n)
0,22(x)

−1

]
+

[
1 0

ϵA(n)
1,21(x) 1

])

·

((
iλ
x

)−1 [
0 B(n)

0,12(x)
0 0

]
+

[
B(n)
0,11(x) B(n)

1,12(x)
0 B(n)

0,22(x)

]
+ O(λ)

)
= O(1), λ → 0, and (127)

(n)↓(λ, x)W(n)(λ, x)e−ixλE ·

(
iλ
x

)σ3/4

=

((
iλ
x

)−1
[
A(n)
1,12(x)B

(n)
0,22(x)B

(n)
0,12(x)

−1 0
ϵB(n)

0,22(x)B
(n)
0,12(x)

−1 0

]
+

[
1 ϵA(n)

1,12(x)
0 1

])

·

(
iλ
x

)σ3/2 (
B(n)
0 (x)+

(
iλ
x

)
B(n)
1 (x)+ O(λ−2)

)(
iλ
x

)σ3/2

=

((
iλ
x

)−1
[
A(n)
1,12(x)B

(n)
0,22(x)B

(n)
0,12(x)

−1 0
ϵB(n)

0,22(x)B
(n)
0,12(x)

−1 0

]
+

[
1 ϵA(n)

1,12(x)
0 1

])

·

((
iλ
x

)−1 [0 0
0 B(n)

0,22(x)

]
+

[
0 B(n)

0,12(x)
B(n)
0,21(x) B(n)

1,22(x)

]
+ O(λ)

)
= O(1), λ → 0, (128)

again using ϵ = −1. This proves that G(n)↑(λ, x)W(n)(λ, x) and
(n)↓(λ, x)W(n)(λ, x) behave, respectively, as W(n+1)(λ, x) and
(n−1)(λ, x) are required to according to the conditions of
iemann-Hilbert Problem 1, taking into account that n is even.
Therefore if W(n)(λ, x) is the (unique, by Lemma 2) solution

of Riemann-Hilbert Problem 1 for n even, then W(n+1)(λ, x) :=

G(n)↑(λ, x)W(n)(λ, x) and W(n−1)(λ, x) := G(n)↓(λ, x)W(n)(λ, x) exist
except possibly for isolated values of x > 0 and satisfy all the
conditions of the same problem for n ↦→ n + 1 and n ↦→ n − 1
respectively, so they are the unique solutions of those problems.

The case of n odd. Now suppose that n is odd and that for some
x > 0, Riemann-Hilbert Problem 1 has a solution W(n)(λ, x). Again
let G(n)↑(λ, x) and G(n)↓(λ, x) denote the Schlesinger transforma-
tions associated with the potentials u = un(x), e±iϕ

= e±iϕn(x),
p = pn(x), and q = qn(x) for ϵ = −1. As before, we just have
to check that the transformed matrices G(n)↑(λ, x)W(n)(λ, x) and
(n)↓ (n)
G (λ, x)W (λ, x) behave as required as λ → ∞ and λ → 0.
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ombining (22) with (100) for n odd gives

un(x) = −ϵe5π i/6xB(n)
0,11(x)B

(n)
0,21(x),

e±iϕn(x) = −ϵ

[
B(n)
0,11(x)

B(n)
0,21(x)

]±1

,

pn(x) = 8e5π i/6xA(n)
1,12(x)B

(n)
0,11(x)B

(n)
0,21(x),

qn(x) = −8e5π i/6xA(n)
1,21(x)B

(n)
0,11(x)B

(n)
0,21(x).

(129)

Then using (114)–(117) gives

G(n)↑(λ, x) =
([

1 0
ϵA(n)

1,21(x) 1

]
+

(
iλ
x

)−1
[
0 ϵB(n)

0,11(x)B
(n)
0,21(x)

−1

0 A(n)
1,21(x)B

(n)
0,11(x)B

(n)
0,21(x)

−1

])(
iλ
x

)−σ3/2

(130)

and

G(n)↓(λ, x) =
([

1 ϵA(n)
1,12(x)

0 1

]
+

(
iλ
x

)−1
[
A(n)
1,12(x)B

(n)
0,21(x)B

(n)
0,11(x)

−1 0
ϵB(n)

0,21(x)B
(n)
0,11(x)

−1 0

])(
iλ
x

)σ3/2

.

(131)

n this case G(n)↑(λ, x) exists unless B(n)
0,21(x) = 0 and G(n)↓(λ, x)

xists unless B(n)
0,11(x) = 0; however again neither of these con-

itions can hold identically in x as it would imply un(x) ≡ 0
ia (101) which is inconsistent with (4). Since the Schlesinger
ransformations for n odd agree with those for n even in their
eading terms for large λ, exactly the same calculations (125)–
126) apply for n odd (although the Landau symbols stand for
ifferent expressions in the even and odd cases). Therefore using
= −1, G(n)↑(λ, x)W(n)(λ, x) and G(n)↓(λ, x)W(n)(λ, x) behave

respectively as W(n+1)(λ, x) and W(n−1)(λ, x) are required to in the
limit λ → ∞ according to Riemann-Hilbert Problem 1. Now using
(89) from Lemma 3 for n odd gives

G(n)↑(λ, x)W(n)(λ, x)e−ixλE ·

(
iλ
x

)−σ3/4

=

((
iλ
x

)−1
[
0 ϵB(n)

0,11(x)B
(n)
0,21(x)

−1

0 A(n)
1,21(x)B

(n)
0,11(x)B

(n)
0,21(x)

−1

]
+

[
1 0

ϵA(n)
1,21(x) 1

])

·

(
iλ
x

)−σ3/2 (
B(n)
0 (x)+

(
iλ
x

)
B(n)
1 (x)+ O(λ−2)

)(
iλ
x

)−σ3/2

=

((
iλ
x

)−1
[
0 ϵB(n)

0,11(x)B
(n)
0,21(x)

−1

0 A(n)
1,21(x)B

(n)
0,11(x)B

(n)
0,21(x)

−1

]
+

[
1 0

ϵA(n)
1,21(x) 1

])

·

((
iλ
x

)−1 [
B(n)
0,11(x) 0
0 0

]
+

[
B(n)
1,11(x) B(n)

0,12(x)
B(n)
0,21(x) 0

]
+ O(λ)

)
= O(1), λ → 0, and (132)

G(n)↓(λ, x)W(n)(λ, x)e−ixλE ·

(
iλ
x

)−σ3/4

=

((
iλ
x

)−1
[
A(n)
1,12(x)B

(n)
0,21(x)B

(n)
0,11(x)

−1 0
ϵB(n)

0,21(x)B
(n)
0,11(x)

−1 0

]
+

[
1 ϵA(n)

1,12(x)
0 1

])

·

(
iλ
x

)σ3/2 (
B(n)
0 (x)+

(
iλ
x

)
B(n)
1 (x)+ O(λ2)

)(
iλ
x

)−σ3/2

=

((
iλ
x

)−1
[
A(n)
1,12(x)B

(n)
0,21(x)B

(n)
0,11(x)

−1 0
ϵB(n) (x)B(n) (x)−1 0

]
+

[
1 ϵA(n)

1,12(x)
0 1

])

0,21 0,11 b

12
·

((
iλ
x

)−1 [ 0 0
B(n)
0,21(x) 0

]
+

[
B(n)
0,11(x) 0

B(n)
1,21(x) B(n)

0,22(x)

]
+ O(λ)

)
= O(1), λ → 0, (133)

sing ϵ = −1. So, G(n)↑(λ, x)W(n)(λ, x) and G(n)↓(λ, x)W(n)(λ, x)
espectively behave the same as λ → 0 as W(n+1)(λ, x) and
(n−1)(λ, x). Along with the behavior as λ → ∞ and the an-

lyticity and jump properties, we conclude that W(n+1)(λ, x) :=
(n)↑(λ, x)W(n)(λ, x) and W(n−1)(λ, x) := G(n)↓(λ, x)W(n)(λ, x) both
xist except possibly for isolated values of x > 0 and are the
nique solutions of Riemann-Hilbert Problem 1 for n ↦→ n + 1
nd for n ↦→ n− 1 respectively.
The approach we have taken here to derive the Schlesinger

ransformations and use them to show that Riemann-Hilbert
roblem 1 is generically solvable for adjacent indices if it is
olvable for a given index n is close to the method we used
o come up with the conditions of the Riemann–Hilbert prob-
em to begin with. However, if one simply takes the conditions
f Riemann-Hilbert Problem 1 as given and makes the induc-
ive assumption that the solution exists for a given index n,
hen one can use W(n)(λ, x) as a parametrix for W(n±1)(λ, x) and
ence obtain an equivalent Riemann–Hilbert problem for ma-
rices G(n)↑(λ, x) := W(n+1)(λ, x)W(n)(λ, x)−1 and G(n)↓(λ, x) :=
(n−1)(λ, x)W(n)(λ, x)−1. These Riemann–Hilbert problems are ex-
licitly solvable for generic x > 0 and their solutions yield the
xpected expressions given in (123)–(124) and (130)–(131). This
rgument is more efficient but it does not directly clarify the
rigin of the conditions in Riemann-Hilbert Problem 1 for general
.

.3.3. Bäcklund transformations

Since for any n ∈ Z, J(n+1)(x) = J(n)↑(x), K(n+1)(x) = K(n)↑(x),
(n−1)(x) = J(n)↓(x), and K(n−1)(x) = K(n)↓(x) we derive from (22)
ith ϵ = −1 and (118)–(119) the explicit Bäcklund transforma-
ions

n+1(x) = −
ibnx2eiϕn(x)qn(x)

8un(x)2
, e±iϕn+1(x) =

[
8un(x)
qn(x)

]±1

,

pn+1(x) =
ibnx2e2iϕn(x)qn(x)

un(x)2
,

qn+1(x) =
ibnxeiϕn(x)qn(x)

2un(x)2

·

[
xeiϕn(x)qn(x)2

32un(x)2
+

(n+ 1)qn(x)
8xun(x)

−
e−iϕn(x)un(x)

2x2

]
,

(134)

and using (120)–(121) instead of (118)–(119) we get

un−1(x) =
ibnx2e−iϕn(x)pn(x)

8un(x)2
, e±iϕn−1(x) = −

[
pn(x)
8un(x)

]±1

,

pn−1(x) =
ibnxe−iϕn(x)pn(x)

2un(x)2

·

[
xe−iϕn(x)pn(x)2

32un(x)2
−

(n− 1)pn(x)
8xun(x)

−
eiϕn(x)un(x)

2x2

]
,

qn−1(x) =
ibnx2e−2iϕn(x)pn(x)

un(x)2
. (135)

In these expressions, bn is the constant given, for any n ∈ Z, by

bn =
2inun(x)

x
−

1
2
ixpn(x)e−iϕn(x) +

1
2
ixqn(x)eiϕn(x). (136)

t then follows from (134) that bn+1 = bn and from (135) that
= b as well. Since u (x) = 1x1/3 satisfies (8) with ϵ = −1,
n−1 n 0 2
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= −in for n = 0 and b = b0 = i, it is then clear that the
function un(x) extracted from Riemann-Hilbert Problem 1 using
(101) satisfies (8) with ϵ = −1, a = −in, and b = bn = i for all
∈ Z.
Now, when n = 0, u0(x) is obviously a rational function of x1/3,

hile from (25) we see that
iϕ0(x) exp(3x2/3), e−iϕ0(x) exp(−3x2/3),

0(x) exp(3x2/3), and q0(x) exp(−3x2/3)

re rational in x1/3 as well. It follows inductively from (134) and
135) that for all n ∈ Z,

n(x), eiϕn(x) exp(3x2/3), e−iϕn(x) exp(−3x2/3),

n(x) exp(3x2/3), and qn(x) exp(−3x2/3)

re rational functions of x1/3.
Combining the inductive arguments of Sections 3.2–3.3 with

he base case in Lemma 1 therefore proves the following theorem.

heorem 1. Suppose that Riemann-Hilbert Problem 1 is solvable for
iven n ∈ Z and x > 0. Then the function un(x) defined by (101) is
he unique solution of (8) with ϵ = −1, a = −in, and b = i that is a
ational function of x1/3. Moreover, the solution of Riemann-Hilbert
roblem 1 for given n ∈ Z exists for generic x > 0 and can be
btained by repeated application of the Schlesinger transformations
123)–(124) and (130)–(131).

.4. Change of branch cut

Although the principal branch of (iλ)p for various powers
(cut on the positive imaginary axis) is most convenient for
escribing the canonical solutions in different Stokes sectors at
= 0 and λ = ∞, for subsequent asymptotic analysis in the limit
f large n it will be better to reformulate a version of Riemann-
ilbert Problem 1 involving power functions with branch cuts
n the negative imaginary axis instead. To this end, we start
ith W(n)(λ, x) solving Riemann-Hilbert Problem 1 and, letting
±

0 ⊂ D0 denote the region between C± and the imaginary axis,
e set

(n)(λ, x) := inσ3W(n)(λ, x) exp[−i(xλ − x(ixλ)−1/2)σ3]

·

⎧⎪⎪⎨⎪⎪⎩
exp[(ixλ − x(−ixλ)−1/2)σ3], λ ∈ D+

∞
,

(−1)n exp[(ixλ − x(−ixλ)−1/2)σ3], λ ∈ D−
∞

,

exp[(ixλ − x(−ixλ)−1/2)σ3]e−5π iσ3/6, λ ∈ D+

0 ,

(−1)n(−iσ2) exp[(ixλ − x(−ixλ)−1/2)σ3]eiπσ3/3, λ ∈ D−

0 .

(137)

etting Σ−

0 denote the segment of the imaginary axis between
= 0 and λ = −i, oriented downwards,
(n)
+ (λ, x) = Y(n)

− (λ, x) exp[−(ixλ − x(−ixλ)−1/2)σ3]

·

[
1 0
i 1

]
exp[(ixλ − x(−ixλ)−1/2)σ3], λ ∈ Σ+

∞
,

(138)

(n)
+ (λ, x) = Y(n)

− (λ, x) exp[−(ixλ − x(−ixλ−)−1/2)σ3]

· (−1)n
[
1 −i
0 1

]
exp[(ixλ − x(−ixλ+)−1/2)σ3],

λ ∈ Σ−

∞
, (139)

(n) (n) −1/2

+ (λ, x) = Y− (λ, x) exp[−(ixλ − x(−ixλ) )σ3] i

13
·

[
1 0
i 1

]
exp[(ixλ − x(−ixλ)−1/2)σ3], λ ∈ Σ+

0 ,

(140)

Y(n)
+ (λ, x) = Y(n)

− (λ, x) exp[−(ixλ − x(−ixλ−)−1/2)σ3]

· (−1)niσ1 exp[(ixλ − x(−ixλ+)−1/2)σ3]

= Y(n)(λ, x)e−ixλσ3 (−1)niσ1eixλσ3 , λ ∈ Σ−

0 ,

(141)

Y(n)
+ (λ, x) = Y(n)

− (λ, x) exp[−(ixλ − x(−ixλ)−1/2)σ3]

·

[
1 0
−i 1

]
exp[(ixλ − x(−ixλ)−1/2)σ3], λ ∈ C+,

(142)

Y(n)
+ (λ, x) = Y(n)

− (λ, x) exp[−(ixλ − x(−ixλ)−1/2)σ3]

·

[
1 0
−i 1

]
exp[(ixλ − x(−ixλ)−1/2)σ3], λ ∈ C−.

(143)

Using the identity relating principal branches:

(iλ)p = e±iπp(−iλ)p, ±Im(iλ) > 0, (144)

we see from (88) that regardless of whether λ → ∞ from D+
∞

or
D−
∞
,

Y(n)(λ, x) exp[x(−ixλ)−1/2σ3]

(
−

iλ
x

)nσ3/2

∼ I+
∞∑
p=1

(
−

iλ
x

)−p

(−1)pinσ3A(n)
p (x)i−nσ3 , λ → ∞. (145)

Similarly, using (89), regardless of whether λ → 0 from D+

0 or
D−

0 ,

(n)(λ, x)e−ixλσ3 Ẽ ·

(
−

iλ
x

)−(−1)nσ3/4

∼

∞∑
p=0

(
−

iλ
x

)p

(−1)pinσ3B(n)
p (x)eiπ (−1)nσ3/4, λ → 0, (146)

where

E := e5π iσ3/6E = e−iπσ3/3iσ2Eiσ3 =
1
√
2

[
e5π i/6 e−5π i/6

e−iπ/6 e−5π i/6

]
. (147)

Along with the analyticity of Y(n)(λ, x) for λ ∈ C\ (Σ+
∞
∪Σ−

∞
∪

Σ+

0 ∪Σ−

0 ∪C+
∪C−) and continuity of boundary values implied by

he substitution (137), these conditions amount to an equivalent
iemann–Hilbert problem for the matrix Y(n)(λ, x).

4. Application: asymptotic analysis of the algebraic solution
un(x) for large n

4.1. Rescaling

Note that u ↦→ iu and x ↦→ ix takes a solution of (8) to
solution of the same equation for the same values of b and
, but with a ↦→ −a. Hence it is sufficient to assume that
is a large positive integer. We initially scale the variables in
iemann-Hilbert Problem 1 with n > 0 as

= n3/2y and λ = n−1/2ν. (148)

he two terms in the exponent in the jump matrices then balance
ith the exponent in the normalization condition as λ → ∞,
hich is proportional to n:

−1/2 −1/2
xλ − x(−ixλ) = n(iyν − y(−iyν) ). (149)



R.J. Buckingham and P.D. Miller Physica D 441 (2022) 133493

I
r
d

i

T
r

y

Z

T
Y
c

o

4

t
w
T
(
f

n

T
s
o
u
f
a
y
m
t

4

e

8

F
R
n
w
s
f

o

L

U

S

U

W
g

g

T

t is convenient to further scale the spectral parameter by the
escaled parameter y, to make the dominant term near ∞ in-
ependent of y. Thus for y > 0, we set ν = y−1η and obtain

xλ−x(−ixλ)−1/2
= nΦ(η, y), Φ(η, y) := iη−y(−iη)−1/2. (150)

he quantity iλ/x appearing in the normalization condition then
eads

iλ
x

=
1
n2

iν
y

=
1

n2y2
iη, so

(
−

iλ
x

)nσ3/2

= (ny)−nσ3 (−iη)nσ3/2.

(151)

We define a new unknown that is a function of the variables
, η instead of x, λ by setting
(n)(η, y) := (ny)−nσ3Y(n)(n3/2y, n−1/2y−1η). (152)

hen, after an unimportant rescaling of the jump contour for
(n)(λ, x) to fix it in the η-plane, Z(n)(η, y) satisfies the following
onditions:

• Z(n)(η, y) is analytic for η ∈ C\ (Σ+
∞
∪Σ−

∞
∪Σ+

0 ∪Σ−

0 ∪C+
∪

C−).
• Z(n)(η, y) takes continuous boundary values on the jump

contour related by the jump conditions

Z(n)
+ (η, y) = Z(n)

− (η, y)e−nΦ(η,y)σ3

[
1 0
i 1

]
enΦ(η,y)σ3 , η ∈ Σ+

∞
∪Σ+

0 ,

(153)

Z(n)
+ (η, y) = Z(n)

− (η, y)e−nΦ(η,y)σ3

[
1 0
−i 1

]
enΦ(η,y)σ3 , η ∈ C+

∪C−,

(154)

Z(n)
+ (η, y) = Z(n)

− (η, y)e−nΦ−(η,y)σ3 (−1)n
[
1 −i
0 1

]
enΦ+(η,y)σ3 ,

η ∈ Σ−

∞
, (155)

and

Z(n)
+ (η, y) = Z(n)

− (η, y)e−nΦ−(η,y)σ3 (−1)niσ1enΦ+(η,y)σ3 , η ∈ Σ−

0 .

(156)

• Z(n)(η, y)(−iη)nσ3/2
→ I as η → ∞.

• The limit of Z(n)(η, y)e−inησ3 Ẽ · (−iη)−(−1)nσ3/4 as η → 0
exists. In terms of the leading coefficient in the expansion
(89) (and see also (146)),

lim
η→0

Z(n)(η, y)e−inησ3 Ẽ · (−iη)−(−1)nσ3/4

= (−iny)−nσ3B(n)
0 (n3/2y)(−iny)−(−1)nσ3/2. (157)

This may be regarded as the definition of B(n)
0 (n3/2y) in terms

f Z(n)(η, y).

.2. Aside: scaling formalism

We perturb the basic scaling y = n−3/2x designed to balance
he terms in the exponents in Riemann-Hilbert Problem 1 by
riting x = n3/2(y + n−pz) for some p > 0 to be determined.
hen we also scale u = nqU and consider what the Painlevé-III
D7) equation (8) on u(x) with ϵ = −1, a = −in, and b = i implies
or U = U(z) when y ̸= 0 is a fixed parameter:

q−3+2pU ′′(z) = nq−3+2pU
′(z)2

− nq−3+p U ′(z)

U(z) y+ n−pz f

14
+ n2q−3/2 8U(z)2

y+ n−pz
+ n−1/2 2

y+ n−pz
− n−q 1

U(z)
.

(158)

Because p > 0, the second term on the right-hand side is
negligible compared with the left-hand side and the preceding
term. All remaining terms can be balanced with these by choosing
p = 1 and q =

1
2 . Then (158) becomes

U ′′(z) =
U ′(z)2

U(z)
+

8
y
U(z)2 +

2
y
−

1
U(z)

+ O(n−1). (159)

he approximating equation is obtained by dropping the formally
mall O(n−1) error term. It is an autonomous nonlinear second
rder equation on U(z) with parameter y ̸= 0. It turns out that
nder these scalings, the algebraic solutions un(x) of (8) behave
or large n like one or the other of two types of solutions of the
pproximating equation, depending on the value of the parameter
. Although the motivation comes from the simple scaling for-
alism above, these are correspondences that are proved using

echniques of analysis of Riemann–Hilbert problems.

.2.1. Equilibrium solutions
If U is independent of z, the approximating equation yields

quilibrium solutions solving the cubic equation

U3
+ 2U − y = 0. (160)

or large y, the solutions are U ≈
1
2y

1/3 and U ≈
1
2e

±2π i/3y1/3.
eversing the scalings by U = n−1/2u and y = n−3/2x (neglecting
−1z) the large-y equilibrium solution U ≈

1
2y

1/3 reads u ≈
1
2x

1/3,
hich is exactly the seed solution for n = 0. The three distinct
olutions for large y can coalesce at branch points that can be
ound by equating to zero the discriminant of the cubic (160) with
respect to U , which is −64(27y2 + 4).

4.2.2. Non-equilibrium solutions
Multiplying the approximating equation through by U ′(z)/

U(z)2 we obtain

U ′(z)U ′′(z)
U(z)2

−
U ′(z)3

U(z)3
−

8
y
U ′(z)−

2
y
U ′(z)
U(z)2

+
U ′(z)
U(z)3

= 0 (161)

r, equivalently,

d
dz

[
U ′(z)2

2U(z)2
−

8
y
U(z)+

2
y

1
U(z)

−
1
2

1
U(z)2

]
= 0. (162)

etting E denote the implied integration constant,

′(z)2 =
16
y
U(z)3 + 2EU(z)2 −

4
y
U(z)+ 1. (163)

etting

(z) =
1
4
yW(z)−

1
24

yE, (164)

(z) solves the Weierstraß equationW ′(z)2 = 4W(z)3−g2W(z)−
3 (see [24, Ch. III.5] or [19, Ch. 23]) with invariants

2 =
16
y2

+
E2

3
; g3 = −

16
y2

−
8E
3y2

−
E3

27
. (165)

Therefore, the general solution of the approximating equation can
be written in terms of the Weierstraß elliptic function ℘(z) with
these invariants as

U(z) =
1
4
y℘(z − z0)−

1
24

yE. (166)

he fact that all poles of ℘(z) are double is consistent with the
act that all nonzero poles of solutions of (8) are also double.
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.3. g-function and spectral curves

Returning to the large-n analysis of Z(n)(η, y), we now in-
roduce a g-function η ↦→ g(η, y) with parameter y with the
ollowing properties:

• g is analytic for η ∈ C \ (Σ+
∞
∪ Σ−

∞
∪ Σ0 ∪ C+

∪ C−) and is
bounded for bounded η.

• g takes continuous boundary values on the jump contour
with the property that

η ↦→ F (η, y) :=
(

∂g
∂η

(η, y)−
∂Φ

∂η
(η, y)

)2

(167)

is continuous except at η = 0.
• There is a quantity g0(y) such that g(η, y) = −

1
2 log(−iη)+

g0(y)+ o(1) as η → ∞.
• g(η, y) → 0 as η → 0.
• g is independent of n.

We use such a function g(η, y) to define a new unknown by

M(n)(η, y) := eng0(y)σ3Z(n)(η, y)e−ng(η,y)σ3 . (168)

Then η ↦→ M(n)(η, y) is analytic where Z(n)(η, y) is, satisfies the
implified normalization condition thatM(n)(η, y) → I as η → ∞,
as the property that M(n)(η, y)̃E · (−iη)−(−1)nσ3/4 has a common
imit as η → 0 from D±

0 , and has jump conditions explicitly
elated to those satisfied by Z(n)(η, y) that involve the boundary
alues of g . We will explain these jump conditions later.
But first, we consider the function F (η, y) defined by (167).

Obviously, this function is not only continuous for η ̸= 0, but
t is also analytic for η ∈ C \ {0}. It is therefore determined by its
symptotic behavior as η → 0 and η → ∞. Since then ∂g/∂η has

to have Laurent expansions in both limits in powers of (−iη)1/2
or F to be analytic, we interpret the conditions on g(η, y) near
η = 0,∞ in terms of ∂g/∂η as follows:
∂g
∂η

(η, y)

=

{
−

1
2η + a1(−iη)−3/2

+ a2(−iη)−2
+ O(η−5/2), η → ∞

b1(−iη)−1/2
+ b2 + O(η1/2), η → 0.

(169)

t then follows from (150) and (167) that

F (η, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
−i− 1

2η + O(η−3/2)
)2

= −1+ i
η
+ O(η−2), η → ∞,( 1

2 iy(−iη)−3/2
+ O(η−1/2)

)2
= −

y2
4 (−iη)−3

+ O(η−2), η → 0.

(170)

Therefore, F (η, y) is a Laurent polynomial of the form

F (η, y) = −1+
1
µ

+
c
µ2 −

y2

4µ3 , µ := −iη, (171)

involving an undetermined coefficient c . Writing F (η, y) in the
form F (η, y) = P(−iη, y)(−iη)−3, where P(µ, y) is the cubic
polynomial1

P(µ, y) := −µ3
+ µ2

+ cµ −
y2

4
. (172)

1 Note that this polynomial is closely related to 16
y U3

+ 2EU2
−

4
yU + 1

ppearing in (163). Indeed,

64U3

y3
P
( y
4U

; y
)
=

16
y

U3
−

16c
y2

U2
−

4
y
U + 1,

which matches the target form if we identify the integration constants by
y2E = −8c.
15
We now assume that c is chosen so that P(µ, y) has a double
root µ = d and a simple root µ = s. Expanding P(µ, y) =

−(µ − d)2(µ − s) and matching the coefficients with (172) gives
three equations:

2d+ s = 1, d2 + 2ds = −c, and d2s = −
1
4y

2. (173)

Combining the first equation with the last, one eliminates d and
obtains a cubic equation for s: s(s−1)2 = −y2. Given any solution
of this equation, d and c are determined explicitly from the first
and second equations. It is clear that as long as y > 0, there
exists one real negative root and a complex-conjugate pair of
roots. We select the real solution (a guess based on symmetry to
be justified later); thus s is decreasing from s = 0 as y increases
from y = 0, with asymptotic behavior s = −y2/3(1 + o(1)) as
y → +∞. Then from 2d + s = 1 we have that d is increasing
from d =

1
2 as y increases from y = 0, with asymptotic behavior

=
1
2y

2/3(1+o(1)) as y → +∞. We observe that the discriminant
of the cubic s(s− 1)2 = −y2 with respect to s is

y2(27y2 + 4)3 = 0, (174)

hich should be compared with the discriminant of (160).
Now we discuss the jump conditions satisfied by M(n)(η, y).

hese take the form shown in (153)–(156) with the only change
being that the function Φ(η, y) in the exponents is replaced with
−h(η, y), where

h(η, y) := g(η, y)− Φ(η, y). (175)

The effect of the conjugation of the constant jump matrices in-
volving the exponent h(η, y) depends on the sign of Re(h(η, y)).
Under the assumption that P(µ, y) = −(µ − d)2(µ − s), with
s = s(y) < 0 and d = (1− s)/2 > 0, we have from (167) that

∂h
∂η

(η, y) =
√
F (η, y) = −(η − id)(−iη)−3/2(−iη − s)1/2. (176)

Here, all fractional powers refer to the principal branch, and the
sign of the square root was chosen to match the asymptotic
behavior at η = ∞ according to the definitions of h(η, y), Φ(η, y),
and the large-η behavior of g(η, y). This function is analytic ex-
cept on the negative imaginary axis between η = 0 and η = is
note that the sign changes of the latter two factors cancel for η

urely imaginary with imaginary part less than s).
Integrating using d = (1− s)/2,

(η, y) = (−iη − s+ 1)(−iη − s)1/2(−iη)−1/2

+
1
2
log
(
(−iη − s)1/2 − (−iη)1/2

(−iη − s)1/2 + (−iη)1/2

)
+ C, (177)

here C is an integration constant which we take to be C = 0.
hen one can check that h+(η, y) + h−(η, y) ≡ 0 for η on the
egment between η = 0 and η = is. Also, g(η, y) = h(η, y) +
(η, y), so

(η, y) = (−iη − s+ 1)(−iη − s)1/2(−iη)−1/2

+
1
2
log
(
(−iη − s)1/2 − (−iη)1/2

(−iη − s)1/2 + (−iη)1/2

)
+ iη − y(−iη)−1/2,

(178)

which indeed has the expansion

g(η, y) = −
1
2
log(−iη)+ g0(y)+ O(η−1/2), η → ∞,

0(y) := 1−
3
2
s+

1
2
ln
(
−

1
4
s
)

, s = s(y) < 0. (179)
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lso, using s < 0 and d2s = −
1
4y

2 shows that g(η, y) → 0 as
→ 0; more precisely,

(η, y) = −
1+ 3s
2(−s)1/2

(−iη)1/2 + O(η), η → 0. (180)

Assuming that y > 0 is sufficiently large, Re(h(η, y)) is con-
inuous in η except at η = 0, harmonic except on the negative
maginary segment connecting the origin with η = is, and has
zero level set consisting of that same segment and two curves
manating from η = is into the left and right half-planes and
xtending to ∞. These curves are reflections of each other in the
maginary axis, and all three branches emanating from η = is
re separated by angles of 2π/3 at that junction point. We have
e(h(η, y)) > 0 above the two curves (a region containing the
ositive imaginary axis) and Re(h(η, y)) < 0 below them. See the
eft-hand panel of Fig. 5.

.4. Parametrix construction and error analysis

To make use of this structure, we assume that the jump
ontour is deformed so that η = is is the junction point of C+, C−,
−

0 , and Σ−
∞
, and so that Σ−

0 coincides with the segment joining
= iswith the origin. Then, since the sum of the boundary values
f ∂h/∂η(η, y) vanishes and Re(h(η, y)) = 0 on Σ−

0 , the jump
ondition of M(n)(η, y) on this arc reads

(n)
+ (η, y) = M(n)

− (η, y)
[

0 eiφ

−e−iφ 0

]
,

:=
π

2
+ nπ − in(h+(η, y)+ h−(η, y)) =

π

2
+ nπ, η ∈ Σ−

0 .

(181)

ote φ is a real phase that is constant along Σ−

0 . Because h(η, y)
s analytic on all other arcs of the jump contour except for Σ−

∞
,

long which h+(η, y) − h−(η, y) = −iπ , all other jump matrices
or M(n)(η, y) are exponentially small perturbations of the identity
atrix when n → +∞, estimates that are uniform with respect

o η except in a neighborhood of η = is. Here it is possible to
install a standard Airy parametrix to solve the jump conditions
exactly locally. To construct an outer parametrix, we solve the
jump condition (181) exactly and build in suitable singularities
near the two endpoints of Σ−

0 to allow matching onto the Airy
parametrix at η = is and to match the required behavior of
M(n)(η, y) near the origin.

4.4.1. Outer parametrix
By definition, the outer parametrix is the matrix M̆(n),out(η, y)

with the following properties:

• M̆(n),out(η, y) is analytic for η ∈ C \ Σ−

0 , taking continuous
boundary values from each side except at the endpoints.

• The boundary values are related by the jump condition (181).
• M̆(n),out(η, y) → I as η → ∞.
• M̆(n),out(η, y) = O(1+ |η|−1/4

+ |η − is|−1/4).

We construct M̆(n),out(η, y) explicitly by first removing the phase
factors e±iφ from the jump condition without changing any of the
other conditions; we write M̆(n),out(η, y) = eiφσ3/2N(η, y)e−iφσ3/2

so that (181) for M̆(n),out(η, y) implies

N+(η, y) = N−(η, y)iσ2, η ∈ Σ−

0 . (182)

Next, we diagonalize the jump matrix iσ2 by the substitution
(again, not changing any of the other properties)

N(η, y) =
1
√

[
1 i

]
O(η, y)

1
√

[
1 −i

]
. (183)
2 i 1 2 −i 1 c

16
hen O(η, y) is analytic for η ∈ C\Σ−

0 , takes continuous boundary
alues except at the endpoints where −1/4 power singularities

are admissible, tends to I as η → ∞, and satisfies the diagonal
jump condition O+(η, y) = O−(η, y)iσ3 for η ∈ Σ−

0 (note that the
dependence on y > 0 enters via the moving endpoint η = is).
The unique solution of these conditions is the diagonal matrix

O(η, y) := (−i(η − is))σ3/4(−iη)−σ3/4
=

(
η − is

η

)σ3/4

(184)

where in each case the principal branch power is intended. In-
verting the transformations M̆(n),out(η, y) ↦→ N(η, y) ↦→ O(η, y)
gives the explicit formula for the outer parametrix as

M̆(n),out(η, y)

:= eiφσ3/2 1
√
2

[
1 i
i 1

](
η − is

η

)σ3/4 1
√
2

[
1 −i
−i 1

]
e−iφσ3/2.

(185)

A calculation shows that M̆(n),out(η, y)̃E · (−iη)−(−1)nσ3/4 is an-
alytic at η = 0. Indeed, letting C(n) denote the matrix

C(n)
:=

{
−iσ1, n even,
I, n odd,

(186)

e see that

˘ (n),out(η, y)̃E · (−iη)−(−1)nσ3/4

= eiφσ3/2 1
√
2

[
1 i
i 1

](
η − is

η

)σ3/4

· C(n)
· (−iη)−(−1)nσ3/4e5π iσ3/6e−iφσ3/2

= eiφσ3/2 1
√
2

[
1 i
i 1

]
(−i(η − is))σ3/4(−iη)−σ3/4

· C(n)
· (−iη)−(−1)nσ3/4e5π iσ3/6e−iφσ3/2

= eiφσ3/2 1
√
2

[
1 i
i 1

]
(−i(η − is))σ3/4

· C(n)e5π iσ3/6e−iφσ3/2,

(187)

and having a vertical branch cut emanating downward from η =

is with s < 0, the diagonal matrix (−i(η − is))σ3/4 is analytic at
η = 0. Since C(n) is either diagonal or off-diagonal, we can further
simplify the resulting formula as follows:

M̆(n),out(η, y)̃E · (−iη)−(−1)nσ3/4
= eiφσ3/2 1

√
2

[
1 i
i 1

]
C(n)e5π iσ3/6

· e−iφσ3/2(−i(η − is))−(−1)nσ3/4

=
1
√
2

[
1 1
−1 1

]
e5π iσ3/6

· (−i(η − is))−(−1)nσ3/4,

(188)

here we also used the n-dependent definition of φ in (181). In
articular, this implies that

lim
η→0

M̆(n),out(η, y)̃E · (−iη)−(−1)nσ3/4

=
1
√
2

[
1 1
−1 1

]
e5π iσ3/6(−s)−(−1)nσ3/4. (189)

.4.2. Airy parametrix
Since h+(is, y)+h−(is, y) = 0, h+(η, y)+h−(η, y) is real-valued

nd strictly decreasing in the negative imaginary direction along
−
∞
, and hη(η, y) (hη := ∂h/∂η) is an analytic function on this

ontour arc that vanishes like a square root at η = is, we may
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ntroduce a conformal coordinate η ↦→ W (η) on a neighborhood
is of η = is with the properties that W (is) = 0, W (η) > 0
or η ∈ Σ−

∞
∩ Dis, and W (η) = −(h+(η, y) + h−(η, y))2/3 for

∈ Σ−
∞

∩ Dis. Using h+(η, y) − h−(η, y) = −iπ for η ∈

Σ−
∞
, we see that on C±

∩ Dis, the exponent function 2h(η, y)
is the analytic continuation from Σ−

∞
∩ Dis through D∞

±
∩ Dis

of 2h∓(η, y) = (h+(η, y) + h−(η, y)) ∓ (h+(η, y) − h−(η, y)) =

h+(η, y) + h−(η, y) ± iπ . Rescaling the conformal coordinate by
ζ = n2/3W (η), the jump conditions for M(n)(η, y) within Dis can
be written as follows:

M(n)
+ (η, y) = M(n)

− (η, y)enh−(η,y)σ3

[
(−1)n −i(−1)n

0 (−1)n

]
e−nh+(η,y)σ3

= M(n)
− (η, y)en(h+(η,y)+h−(η,y))σ3/2einπσ3/2

·

[
(−1)n −i(−1)n

0 (−1)n

]
einπσ3/2e−n(h+(η,y)+h−(η,y))σ3/2

= M(n)
− (η, y)

[
1 −i(−1)nen(h+(η,y)+h−(η,y))

0 1

]
= M(n)

− (η, y)
[
1 −i(−1)n exp(−ζ 3/2)
0 1

]
= M(n)

− (η, y)ei(−1)nπσ3/4
[
1 − exp(−ζ 3/2)
0 1

]
· e−i(−1)nπσ3/4, η ∈ Σ−

∞
∩ Dis;

(190)

M(n)
+ (η, y) = M(n)

− (η, y)
[

1 0
−ie−n(h+(η,y)+h−(η,y)) 1

]
= M(n)

− (η, y)
[

1 0
−i(−1)n exp(ζ 3/2) 1

]
= M(n)

− (η, y)ei(−1)nπσ3/4
[

1 0
exp(ζ 3/2) 1

]
e−i(−1)nπσ3/4,

η ∈ C±
∩ Dis; and

(191)

M(n)
+ (η, y) = M(n)

− (η, y)
[

0 i(−1)n
i(−1)n 0

]
= M(n)

− (η, y)ei(−1)nπσ3/4
[

0 1
−1 0

]
e−i(−1)nπσ3/4,

η ∈ Σ−

0 ∩ Dis.

(192)

We deform the contours C± within Dis to lie along the rays
arg(ζ ) = ±2π/3 as shown in the left-hand panel of Fig. 3. Then
one can check that M(η, y)ei(−1)nπσ3/4A(n2/3W (η))−1 is holomor-
phic in Dis, where A(ζ ) is the standard Airy parametrix as defined
(for instance) by the solution of [10, Riemann-Hilbert Problem 4].
Defining a matrix holomorphic in Dis and uniformly bounded as
n → ∞ by

H(η) := ei(−1)nπσ3/4 1
√
2

[
1 i
i 1

](
η − is

η

)σ3/4

W (η)−σ3/4, η ∈ Dis,

(193)

e take as the inner parametrix

˘ (n),in(η, y) := H(η)n−σ3/6A(n2/3W (η))e−i(−1)nπσ3/4, η ∈ Dis.

(194)

hen we can compare the inner and outer parametrices on ∂Dis:

˘ (n),in(η, y)M̆(n),out(η, y)−1
17
= H(η)n−σ3/6A(ζ )
1
√
2

[
1 i
i 1

]
ζ−σ3/4

· nσ3/6H(η)−1, η ∈ ∂Dis,

(195)

where ζ = n2/3W (η) and we used the fact that e−i(−1)nσ3/4eiφσ3/2

s a multiple (by ±1) of the identity. Since ζ is uniformly large
hen η ∈ ∂Dis, we use the large-ζ asymptotic of A(ζ ) (see for

nstance [10, Eqn. (113)]):

(ζ )
1
√
2

[
1 i
i 1

]
ζ−σ3/4

= I+
[
O(ζ−3) O(ζ−1)
O(ζ−2) O(ζ−3)

]
, ζ → ∞,

(196)

hich implies that

sup
∈∂Dis

∥M̆(n),in(η, y)M̆(n),out(η, y)−1
−I∥ = O(n−1), n → ∞. (197)

.4.3. Global parametrix and error estimation
We define a global parametrix for M(η, y) by

˘ (n)(η, y) :=
{
M̆(n),in(η, y), η ∈ Dis

M̆(n),out(η, y), η ∈ C \ Dis.
(198)

he mismatch between the global parametrix and M(n)(η, y) is
efined as

(n)(η, y) := M(n)(η, y)M̆(n)(η, y)−1. (199)

Since the inner parametrix is an exact solution of the jump
conditions for M(n)(η, y) within Dis, D(n)(η, y) may be regarded as
being analytic for η ∈ Dis. Similarly, because the outer parametrix
is an exact solution of the jump condition for M(n)(η, y) on the arc
Σ−

0 , D(n)(η, y) has no jump across this contour either. Therefore
D(n)(η, y) is analytic in the complement of the jump contour
illustrated in the right-hand panel of Fig. 3. On all arcs of the jump
contour except for ∂Dis we have M̆(n)(η, y) = M̆(n),out(η, y), and
he outer parametrix M̆(n),out(η, y) is analytic; therefore on those
rcs,
(n)
+ (η, y)

= D(n)
− (η, y)M̆(n),out(η, y) · [M(n)

− (η, y)−1M(n)
+ (η, y)] · M̆(n),out(η, y)−1.

(200)

ecause Re(h(η, y)) ≥ δ > 0 holds on the parts of C±, Σ+

0 ,
nd Σ+

∞
outside of Dis, while Re(h(η, y)) ≤ −δ < 0 holds on

he part of Σ−
∞

outside of Dis, we have M(n)
− (η, y)−1M(n)

+ (η, y) −
decaying exponentially to zero as n → ∞ on these arcs.
herefore, as the outer parametrix has unit determinant and is
ounded on these contours, uniformly so as n → ∞, we have
(n)
+ (η, y) = D(n)

− (η, y)(I+ exponentially small) as n → ∞, where
he exponentially small term is measured in both L∞ and L2. On
Dis taken with clockwise orientation, we have
(n)
+ (η, y) = D(n)

− (η, y)M̆(n),in(η, y)M̆(n),out(η, y)−1, η ∈ ∂Dis (201)

because M(n)(η, y) has no jump across this contour. Therefore
from (197) it follows that D(n)

+ (η, y) = D(n)
− (η, y)(I+O(n−1)) holds

niformly on ∂Dis as n → ∞. Finally, we note that both factors
n the definition of D(n)(η, y) tend to the identity as η → ∞, so
D(n)(η, y) does as well.

The matrix D(n)(η, y) therefore satisfies the conditions of a
Riemann–Hilbert problem of small-norm type, and the key im-
plication we need of this fact is that D(n)(η, y) is continuous at
η = 0 and D(n)(η, y) = I+O(n−1) holds uniformly in the η-plane,
and in particular in a neighborhood of η = 0.
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Fig. 3. Left: the jump contour near η = is in the ζ -plane. Right: the jump contour for D(n)(η, y).
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.5. Asymptotic formula for un(n3/2y) with y > 0 sufficiently large

According to (157),

−iny)−nσ3B(n)
0 (x)(−iny)−(−1)nσ3/2

= lim
η→0

Z(n)(η, y)e−inησ3 Ẽ · (−iη)−(−1)nσ3/4, x = n3/2y. (202)

Using (168) and (198)–(199) and the fact that η = 0 lies in the
exterior of Dis, this can be written as

(−iny)−nσ3B(n)
0 (x)(−iny)−(−1)nσ3/2

= e−ng0(y)σ3 lim
η→0

D(n)(η, y)M̆(n),out(η, y)

· eng(η,y)σ3e−inησ3 Ẽ · (−iη)−(−1)nσ3/4.

(203)

Taking into account the continuity of D(n)(η, y) at η = 0 and the
behavior of the outer parametrix near η = 0 as given by (189),
we have

(−iny)−nσ3B(n)
0 (x)(−iny)−(−1)nσ3/2

= e−ng0(y)σ3D(n)(0, y)
1
√
2

[
1 1
−1 1

]
e5π iσ3/6(−s)−(−1)nσ3/4

· lim
η→0

(−iη)(−1)nσ3/4̃E−1eng(η,y)σ3e−inησ3 Ẽ · (−iη)−(−1)nσ3/4.

(204)

The conjugating factors in the limit on the last line will produce a
singularity proportional to (−iη)−1/2, so it is necessary to capture
terms proportional to (−iη)1/2 in Ẽ−1eng(η,y)σ3e−inησ3 Ẽ. Obviously
e−inησ3 = I+ O(η), however according to (180),

eng(η,y)σ3 = I− n
1+ 3s
2(−s)1/2

(−iη)1/2σ3 + O(η), η → 0. (205)

Since Ẽ−1σ3̃E = e−5π iσ3/6σ1e5π iσ3/6, it then follows that

(−iη)(−1)nσ3/4̃E−1eng(η,y)σ3e−inησ3 Ẽ · (−iη)−(−1)nσ3/4

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
1 0

−n 1+3s
2(−s)1/2

e5π i/3 1

]
+ O(η1/2), n even[

1 −n 1+3s
2(−s)1/2

e−5π i/3

0 1

]
+ O(η1/2), n odd.

(206)
18
inally, we may take the limit in (204), and we obtain

B(n)
0 (x) = (−iny)nσ3e−ng0(y)σ3D(n)(0, y)

1
√
2

[
1 1
−1 1

]

·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
1 0

−
1
2n(1+ 3s) 1

]
e5π iσ3/6(−s)−σ3/4(−iny)σ3/2, n even[

1 −
1
2n(1+ 3s)

0 1

]
e5π iσ3/6(−s)σ3/4(−iny)−σ3/2, n odd.

(207)

With B(n)
0 (x) computed, we can use (101) to write a formula for

the algebraic solution un(x) of the Painlevé-III (D7) equation (8).
Since the product of second-column (respectively first-column)
elements of B(n)

0 (x) appears in the formula for n even (respectively
n odd), the diagonal prefactors (−iny)nσ3e−ng0(y)σ3 do not play
any role, nor does the term −

1
2n(1 + 3s). Using the fact that

(n)(0, y) = I + O(n−1), the result is that an asymptotic formula
of the same form holds in both cases:

un(x) = n1/2 1
2
(−s)1/2 + O(n−1/2), n → ∞, s = s(y) < 0.

(208)

We may observe from (173) that 1
2 (−s)1/2 = y/(4d) and d2(1 −

d) = −
1
4y

2, from which we can derive the cubic equation[
1
2
(−s)1/2

]3
+ 2

[
1
2
(−s)1/2

]
− y = 0. (209)

Comparing with (160) proves the following. (See the left-hand
anel of Fig. 4.)

heorem 2. There exists yc > 0 such that the following asymptotic
ormula holds:

n(n3/2y) = n1/2U + O(n−1/2), n → ∞, y > yc, (210)

here U = U(y) is the positive real solution of the equilibrium cubic
160), and the error estimate is valid pointwise for y > yc as well
s uniformly for y ≥ yc + δ for any δ > 0.
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Fig. 5. Left: the sign chart of Re(h(η, y)) for y = 0.4. The branch cut of hη(η, y) is shown with an orange line, the points η = is, 0, id are shown with red, black,
nd blue dots respectively, and the region where Re(h(η, y)) < 0 holds is indicated with light blue shading. Center: the same for y = 0.292. Right: the same for
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.6. Transition to elliptic behavior

When y > 0 decreases below the threshold value yc ≈

.29177, a topological change occurs in the structure of the zero
evel curve such that the inequality Re(h(η, y)) > 0 can no longer
e satisfied on Σ+

0 ∪ Σ+
∞
. To study un(x) in this situation, it is

ecessary to dispense with the assumption that the cubic polyno-
ial P(µ, y) defined in (172) has a repeated root. The coefficient c

hen has to be determined instead as a function of y to guarantee
hat an outer parametrix constructed from the elliptic functions of
he Riemann surface w2

= P(µ, y) remains bounded as n → ∞.
his is done by imposing what is frequently called a Boutroux
ondition on P(µ, y). Once this is done, the invariants g2 and
3 of the approximating Weierstraß equation are determined as
unctions of y and a more involved Riemann–Hilbert analysis
an be used to justify the non-equilibrium approximation of
−1/2un(n3/2(y+n−1z)) by the right-hand side of (166). The details
ill not be given here.
The threshold value yc is obtained by requiring that the double

oot d = d(y) > 0 of P(µ, y) lies on the zero level of Re(h(η, y)),
.e., by solving for y the condition Re(h(id(y), y)) = 0. The effect of
sign change on the topology of the level curve Re(h(η, y)) = 0 as
decreases through yc is illustrated in the central and right-hand
anels of Fig. 5.

.7. Analytic continuation for 0 ≤ | arg(y)| ≤ 3π and boundary
urves

While Riemann-Hilbert Problem 1 and the equivalent con-
itions for the matrix Y(n)(λ, x) discussed in Section 3.4 were
19
riginally formulated assuming that x > 0, under a suitable
eformation of the jump contours near the origin they remain
valid description of un(x) for arg(x) ̸= 0. The scalings x = n3/2y
nd λ = n−1/2y−1η introduced in Section 4.1 can also be used,
nd hence it makes sense to analyze the matrix Z(n)(η, y) for
arge n when arg(y) ̸= 0. For this problem, the steepest-descent
irections as η → ∞ are independent of arg(y); however the
teepest-descent directions into the singularity at η = 0 that are
ertical when arg(y) = 0 more generally lie tangent to the rays
ith angles 2 arg(y) (mod π ). So the tangents at the origin of the

ump contour arcs Σ±

0 have to rotate as y moves off the positive
eal axis, in the same direction as arg(y) but twice as much.

Degenerate spectral curves (for which the cubic P(µ, y) has a
epeated root, see Section 4.3) exist for arg(y) ̸= 0. Given the
olution s = s(y) < 0 and d = d(y) > 1

2 of (173) analytic for
y > 0, one simply continues the solution into the complex plane.
Although one cannot generally write h(η, y) in terms of principal
branches as in (177), the formula (176) for hη(η, y) remains valid
under the interpretation that the right-hand side is analytic off
an arc Σ−

0 connecting the origin with η = is, tends to −i as
η → ∞, and its square is equal to the single-valued function
(η− id)2(−iη)−3(−iη− s). Using the condition 2d+ s = 1 in (173)
to eliminate d then shows that hη(η, y) depends on y only through
s; the same condition then guarantees that

L(s) := Re
(∫ i(1−s)/2

is

∂h
∂η

dη
)

(211)

is well defined regardless of the path of integration taken in
the multiply connected domain of analyticity of the integrand.
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opological changes in the level curve Re(h(η, y)) = 0 occur
when y corresponds to a value of s for which L(s) = 0, since
this condition detects the double root η = id = i(1 − s)/2
lying on the same level curve as η = is. For reliable numerical
evaluation of L(s) it is convenient to integrate by parts and obtain
the equivalent formula

L(s) = Re
( ∫ 0

is

[
2+

η − i(1− s)/2
η − is

](
−

η − is
η

)1/2

dη

− i
∫ i(1−s)/2

0

[
2+

η − i(1− s)/2
η − is

](
η − is

η

)1/2

dη
)

(212)

here in each integral the path of integration is a straight line,
nd the fractional powers are principal branches, which are well-
efined and analytic on the paths of integration. The locus L(s) =
in the s-plane is displayed in the left-hand panel of Fig. 6. The
oint of self-intersection is exactly s =

1
3 (corresponding to the

oalescence of η = is and η = id), and L(s) = 0 for all s ∈ [
1
3 , 1].

Since (173) implies that s satisfies the cubic equation s(s −
)2 = −y2, and since we are taking the solution that for large

y > 0 satisfies s = −y2/3(1 + o(1)), upon introducing Y = y1/3
t is straightforward to determine s near Y = ∞ in the complex
lane as an even analytic function of Y with asymptotic behavior
= −Y 2

+O(1) as Y → ∞. The discriminant of the cubic vanishes
f Y = 0 or if Y 6

= −
4
27 , the latter giving six points on the circle

entered at Y = 0 of radius |Y | = 21/3/31/2 at angles arg(Y ) =
π/6,±π/2,±5π/6. Defining s as a function of Y by analytic

continuation in from Y = ∞ of the solution of s(s − 1)2 = −Y 6

along radial paths we expect branch cuts to appear from some of
these branch points, connecting them to the origin with straight
lines. However, this solution is positive real for large imaginary Y
and remains real upon continuation inwards along the imaginary
Y -axis. Moreover it is clear that the strict inequality s > 1 holds
or all nonzero imaginary Y . Now, at a branch point we would
lso have d(s(s − 1)2)/ds = 0 or (3s − 1)(s − 1) = 0, but since
his cannot vanish if s > 1 it follows that the function s = s(Y ) of
nterest cannot be branched at the two purely imaginary branch
oints of the cubic s(s−1)2 = −Y 6. It is, however, branched at the
emaining four branch points, so the domain of analyticity of s(Y )
s the complement of the union of two crossing line segments, one
ith endpoints ±(21/3/31/2)eiπ/6 and the other with endpoints
(21/3/31/2)e5π i/6. These two segments are shown in orange in

he right-hand panel of Fig. 6.
We have already observed that s(Y ) > 1 holds for nonzero

maginary Y , so these points are not on the level curve L(s(Y )) =
. Approaching the origin along the imaginary axis one necessar-
ly arrives at the limiting value of s = 1 consistent with Y = 0.
rom s(s − 1)2 = −Y 6 one then sees from the double factor of
− 1 on the left-hand side that as arg(Y ) increases/decreases by
/3, arg(s − 1) increases/decreases by π , so s(Y ) remains real
s Y moves outwards along the top/bottom edges of the branch
uts in the upper/lower half-plane, and decreases monotonically
rom s = 1 to s =

1
3 at the terminal branch points. These

‘‘outer’’ edges of the branch cuts are therefore points on the level
curve L(s(Y )) = 0. Continuing s(Y ) around any of the branch
oints to the ‘‘inner’’ edge of the branch cut, s remains real but
ecreases further as Y moves along the edge toward the origin,
aking the value s = 0 in the limit. Since s(Y ) < 1

3 along the inner
dges of the branch cuts, these edges are not on the level curve
(s(Y )) = 0. To summarize, the image of the interval 1

3 ≤ s ≤ 1
here L(s) = 0 on the branch s = s(Y ) continued radially from
= ∞ where s(Y ) = −Y 2

+ O(1) consists of the top/bottom
dges of the straight-line branch cuts in the upper/lower half-
lane. The images of the loop joining s =

1 with itself and of
3

20
the two non-real unbounded curves seen in the left-hand panel
of Fig. 6 are easy to compute numerically by evaluation of L(s(Y )).
The result is shown in the right-hand panel of Fig. 6, which should
be compared with Fig. 1 in which Z = n1/2Y . We denote the
pen subset of the Y -plane exterior to the bounded ‘‘bow-tie’’
omponent of the boundary curve by E . Note that E contains
our unbounded arcs of the boundary curve; we will explain the
ignificance of these below.
Given the symmetries in (7), since Z is proportional to Y , it is

ufficient to assume that 0 ≤ arg(Y ) ≤ π/2. To explain how to
eform the jump contour for Z(n)(η, y) as arg(Y ) increases from
ero for Y ∈ E , we first observe that since the jump matrices
n Σ+

0 and C− are inverses we may reverse the orientation of
+

0 and consider it joined with C− as a single contour from
= 0 with a vertical tangent (when arg(Y ) = 0) to the common
ndpoint of C− and Σ−

0 . Then one sees that after reversing the
rientation of Σ+

∞
it may be similarly combined with C+ as a sin-

le contour from η = ∞ in the upper half-plane that terminates
t the common endpoint of C+ and Σ−

0 . We call these combined
ontours C− and C+, respectively. The jump contour for Z(n)(η, y)
s therefore simplified to a union of four arcs: Σ−

∞
∪Σ−

0 ∪C+
∪C−.

For arg(Y ) > 0 small with Y ∈ E , there is an arc joining η = 0
o η = is along which hη(η, y)2 dη2 < 0, and we choose this arc to
e the contour Σ−

0 which is also the branch cut for hη(η, y). Since
η(η, y) has a residue of − 1

2 at η = ∞, integration yields h(η, y)
s the function analytic for η ∈ C \ (Σ−

0 ∪ Σ−
∞
) and we choose

he integration constant so that h+(η, y) + h−(η, y) = 0 for η ∈
−

0 . This implies that also g(0, y) = 0. Moreover, Re(h(η, y)) is
armonic except along Σ−

0 , which is an arc of its zero level curve
lbeit one across which it does not change sign. The topological
onfiguration of the zero level curve of Re(h(η, y)) is common
o all points Y ∈ E lying in the first quadrant and below the
nbounded arc of the boundary curve emanating from the corner
oint Y = 21/33−1/2eiπ/6. The jump contour Σ−

∞
∪Σ−

0 ∪ C+
∪ C−

an be positioned relative to the level curve as illustrated in the
epresentative plot shown in green (and orange, for Σ−

0 ) in panel
3 of Fig. 7.

When Y moves onto the unbounded arc of the boundary curve
from below, the point η = id descends from Re(h(id, y)) > 0 to
the zero level curve Re(h(id, y)) = 0. From the representative plot
in panel 4 of Fig. 7 one sees that the arc Σ−

0 has developed
a corner at η = id. However, this phenomenon has no effect
n the parametrix construction or error analysis, because the
ump matrix for M(n)(η, y) is independent of η on Σ−

0 because
h+(η, y) + h−(η, y) = 0. On the other hand, to move Y into
the region above this ‘‘phantom’’ arc of the boundary curve, it is
convenient to modify M(n)(η, y) as follows. In panel 4 of Fig. 7
one can see that the arc of Σ−

0 joining η = id with η = is
forms part of the boundary of a ‘‘bubble’’ B containing η = 0
on which Re(h(η, y)) ≥ 0 holds (strict inequality except on the
other arc of Σ−

0 joining the origin with η = id). For η ∈ B
we define M̃(n)(η, y) := M(n)(η, y)(−1)niσ1, while in the exterior
of B we set M̃(n)(η, y) := M(n)(η, y). Dropping tildes, the jump
contour for the modified M(n)(η, y) is illustrated with green and
orange arcs in panel 4′ of Fig. 7. One can easily check that on
both arcs of the new version of Σ−

0 , the original jump condition
(n)
+ (η, y) = M(n)

− (η, y)(−1)niσ1 holds. The jump condition on C−

is modified to read

M(n)
+ (η, y) = M(n)

− (η, y)e−nh(η,y)σ3

[
1 −i
0 1

]
enh(η,y)σ3 , η ∈ C−.

(213)
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unction s(Y ).
Fig. 7. Upper left-hand panel: the Y -plane near the upper right-hand corner point indicating values of Y = y1/3 corresponding to sign charts of Re(h(η, y)) in the
remaining panels (with the same annotation scheme as in Fig. 5). Superimposed on plots 2 – 6 are the arcs of the jump contour for M(n)(η, y), with orange for

−

0 (where Re(h(η, y)) vanishes but fails to be harmonic) and green for the remaining arcs that are somewhat arbitrary. Plots 4’ – 6 use a modified version of
(η, y) and jump contour for M(n)(η, y).
c
o
±

ince the property that Re(h(η, y)) is harmonic except on Σ−

0 is a
useful one to maintain, for convenience we redefine h(η, y) by
etting h̃(η, y) := −h(η, y) for η ∈ B and h̃(η, y) := h(η, y)
lsewhere. The condition h+(η, y) + h−(η, y) = 0 on the arc of
−

0 joining η = id with η = is then shows that h̃(η, y) is analytic
across that arc, and dropping tildes, the jump contour for h(η, y)
s once again a subset of that of M(n)(η, y). When we use this
odified form of M(n)(η, y), we need to account for the artificial
hange of sign of h(η, y) by noting that g(η, y) = −h(η, y) +
(η, y) holds for η ∈ B. In particular, the condition g(0) = 0 still
olds. Panels 4′ , 5 , and 6 of Fig. 7 show the jump contour for

the modified matrix M(n)(η, y) on the landscape of the modified
Re(h(η, y)). With this modification, the same proof applicable for
Y below the unbounded arc of the boundary curve also works
mutatis mutandis for Y on and above this curve, with the same
21
resulting asymptotic formula (208) for un(x). Therefore, we have
the following generalization of Theorem 2.

Theorem 3. un(n3/2Y 3) = n1/2U +O(n−1/2) holds uniformly for Y
in compact subsets of E , where U = U(Y ) satisfies 8U3

+2U−Y 3
=

0 and is analytic for Y ∈ E with U ∼
1
2Y as Y → ∞. In

particular, un(n3/2Y 3) is pole- and zero-free on E for n large. The
ompact set C \ E has a ‘‘bow-tie’’ shape with boundary consisting
f two straight line segments joining the pairs ±(21/3/31/2)eiπ/6 and
(21/3/31/2)e5π i/6 and two curved arcs satisfying L(s(Y )) = 0.

The boundary curve is illustrated along with appropriately
scaled zeros of the Ohyama polynomials in Fig. 8, and the accu-
racy of the theorem for positive imaginary values of Y is illus-
trated in the right-hand panel of Fig. 4.
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