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1. Introduction

The six Painlevé equations were discovered more than a cen-
tury ago by Paul Painlevé in his classification of all second-order
first-degree ordinary differential equations algebraic in the un-
known function, rational in its first derivative, and analytic in
the independent variable having the Painlevé property that all
solutions are meromorphic away from certain fixed singularities
whose locations are fully determined from the equation itself.
It turned out that all such equations could be reduced either to
previously known (linear) equations or to one of the equations
usually denoted PI, PII, PIII, PIV, PV, and PVL See [1, Ch. XIV].
All of these equations except for PI involve one or more free
parameters. As a consequence of the Painlevé property, solutions
of these equations may be regarded as new special functions,
and they occur in many applications. Although typical solutions
of Painlevé equations are highly-transcendental functions (in-
deed, they are typically called Painlevé transcendents), all of the
equations except for PI also admit, for certain parameter values,
solutions in terms of elementary functions or classical linear
special functions (e.g., Airy, Bessel, etc.). The parameter values for
these solutions are related by a certain finitely-generated group
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action, and the group acts on the solutions via Backlund trans-
formations that preserve the functional character of the solution
(rational, algebraic, etc.).

From the very beginning, the Painlevé equations were recog-
nized by R. Fuchs and Garnier as isomonodromic deformations
of certain second-order linear equations (see also [2]). It is con-
venient to work at the level of first-order systems instead, in
which case each Painlevé equation can be recognized as the
compatibility condition for a certain Lax pair of linear equa-
tions for an auxiliary 2 x 2 matrix-valued unknown . The
inverse problem of constructing ¥ from its monodromy data can
be usefully formulated as a matrix Riemann-Hilbert problem.
The aforementioned group actions reappear in this context as
Schlesinger transformations, linear gauge transformations acting
on the matrix unknown that preserve the form of the Lax pair
as well as the essential monodromy data, affecting only formal
monodromy exponents at various singular points. This means
that the Riemann-Hilbert representation of the whole family
of special solutions can be obtained once it is known for just
one particular choice of parameters and solution, usually called
the seed solution. Generally the monodromy data for a given
solution cannot be obtained explicitly; however in the case of
elementary-function solutions the direct problem for the Lax pair
can frequently be solved in terms of classical special functions
in which case the monodromy data can be found by applying
known connection formule. The isomonodromy method has been
successfully applied to rational solutions of

e The PII equation [3-6]. Here if one uses the Jimbo-Miwa [7]
Lax pair for the PII equation, the direct problem for the
seed solution is solved in terms of Airy functions. There
is another approach for analyzing directly the Yablonskii-
Vorob’ev polynomials that can be used to construct the
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Fig. 1. Complex zeros of the Ohyama polynomials P,(Z). Left: n = 5. Center: n = 10. Right: n = 20. See also Fig. 8.

rational solutions based on a Hankel determinant repre-
sentation [8]; this was shown in [9] to be equivalent to
the isomonodromy approach in the alternate setting of the
Flaschka-Newell Lax pair.

e The PIII equation (nondegenerate Dg type) [10,11]. The di-
rect problem for the seed solution is solved in terms of
confluent hypergeometric functions (Whittaker functions).

e The PIV equation [12]. In this problem there are two distinct
families of rational solutions; the direct problem for the so-
called generalized Hermite rational solutions is solved in
terms of elementary functions while that for the so-called
generalized Okamoto rational solutions is solved in terms
of Airy functions. The generalized Hermite solutions can be
analyzed by means of a Hankel determinant representation
similarly to the PII case; see [13]. Yet another approach in
this case exploits a connection with the spectral theory of
quantum oscillators in quartic potentials; see [14,15].

The goal of this paper is to show that the isomonodromy method
applies equally well to the algebraic solutions of the D; degenera-
tion of the PIII equation. These are not rational solutions, although
they are rational functions of the cube root of the independent
variable.

1.1. PIlI D; equation and its algebraic solutions

The Painlevé-III equation of D; type has the form

/\2 / 2 ) d

" (u) _U+M+i’ u:u(x), /:7’ (15750
u bY bY u dx

(1)

See [16-18] for background. This equation is a degenerate case of
the general (Dg) Painlevé-IIl equation

u? U a4+ 8
u”zu_i_i_iﬁ_i_ylﬁ_’_, (2)
u X X u
in which y = 0. Applying an arbitrary homogeneous scaling

(u, x) — (cu, cx), c > 0 to the setting described in [19, §32.9(i)],
when o > 0, 8 = 2n withn € Z, and § = —1, the D; Eq. (1)
has a solution that is a rational function of x'/3. When n = 0,
that solution is u(x) = «~1/3x!/3, To match the notation in [20]
on which much of our work is based, for the rest of this paper we
take

a=8, pB=2n 46=-1, forn e Z, (3)

in which case the indicated solution for n = 0 is u(x) = 3x'/3.
If one fixes the parameters (3) and substitutes the formal
expression u = 1x'3v(x'3) with v(Z) = 1+ v1Z7 + 0,272 + - --

into (1), then one obtains a systematic recurrence to determine
the coefficients v; in order that never requires division by zero.
Hence all coefficients are uniquely determined by the value of n
(and in fact the coefficients of all odd powers of Z vanish), so the
solution rational in Z := x!/3 is unique for given n. We denote this
solution by u = u,(x). By the argument above, for fixed n € Z,
u,(x) has the asymptotic behavior

un(x) = 2x'3(1 4 o(x~173)),

3 X — 00. (4)

This function can also be defined directly as a ratio of certain
polynomials in Z. Namely, for n € Z, n > 0, define the Ohyama
polynomials [21,22] via the recurrence relation

2V/32Pp 1 ()P 1(2) = —%Pn(Z)P:(Z) + %P,Q(Z)z
- %Pn(Z)P,;(Z) +20322 —npyzt,
Po(Z) =1, Py(Z) = 3Z°.
(Note that in the notation of [21], P.(Z) = Ra(~/3Z).) Then
Up(x) = Prs1(XP)Pu (411 nez, n>0. (6)

24/3P,(x1/3)

This representation is consistent with the fact that all poles not
at the origin of solutions of (1) are double poles. As shown in [21,
Sec. 3] and Fig. 1, when displayed in the Z-plane, the poles
and zeros of u,(x) for integers n > 0 form an approximately
crystalline pattern confined within two quasi-triangular regions
forming a “bow-tie” shape. One can also deduce from ugp(x) =
1x17 and the Bicklund transformations (134)-(135) (see also [21,
Eqn. 3.4]) that

Z—Z7Z" = up—>u;, and Z+> —Z = Up > —Uy,
for all n € Z. (7)

Moreover, it is easy to see that u_,(x) = iu,(ix) modulo x > e27ix.

1.2. Lax pair
In [20], Eq. (1) is written in the form (¢« = —8¢, B = 2ab,
5§ =b?)
u? v —8eu’+2ab b
u”:g——jti—i-—, u = u(x). (8)
u X X u

The authors of [20] introduce the following linear equations on
an unknown ¥ = ¥(A, x):

¥, =AML, Xx)¥ and ¥, = X(A, X)¥ 9)



RJ. Buckingham and P.D. Miller

where the coefficient matrices are defined by

A %) = —ixos = 503 = %_l(x) + 2%1((;() and

X(h, ) = —iros + %03 ~ ) - %K(x). (10)
Here

0= 4o [q&) pg"} and

K(x) := @ [_efw) ei_«’(ex)} ’ (11)

and o3 is the third Pauli matrix as defined in (24). The compat-
ibility condition of the overdetermined system (9) is Ay — X; +
[A, X] = 0, which upon separating out the coefficients of A~! and
22 amounts to the following system of equations:

/ u(x) x -~ _
U(X)—T—E[P() Y+ gx)e™] = o,
(12)
2./ 2 / .
_€Xp (x)  ex px)u'(x) _ exp(x)  ieaxp(x) _ 2u(x)ei“’(") _o.
4u(x) 4u(x)? 2u(x) 2u(x)
(13)
1 ) 1. ) i ) je?
- iu(x)ga/(x)e“’)(") + 51u’(x)e“"(x) — —u(x)e) — —xp(x) =0,
(14)
B ex’q(x)  ex*q(x)u'(x) 3 exq(x) B ieaxq(x)  u(e W = 0,
4u(x) 4u(x)? 2u(x) 2u(x)
(15)
— Lo 0e ) - Liwoe 0 1 Lue 9+ g =
(16)
We eliminate p(x) and q(x) explicitly using (14) and (16):
p(x) = lz |:iu(x)go’(x)ei‘/’(") N U (x)ele®) B u(x)(;i”("):|
€ X X X
1.d [(u(x)e™
T e2dx X ’ (17)
1 iu(x)@’ (x)e™ ™ y(x)e~vW  y(x)eie®
4 == |- + "
€ X X X

_1d (u(x)e W
T e2dx X ’

Then (12) becomes

(l — 12) (u’(x) — @) =0, (18)
€ X

and the sum and difference of (13) and (15) become, respectively,

— 8eu(x)® — u(x)u'(x) + xu'(x)* — 2au(x)*¢’(x)
+ xu(x)*¢'(x)* — xu(x)u"(x) =0 and (19)
" Lo 2au'(x) = 2au(x)
u(x)p" (x) + u'(x)e'(x) — — 2 = 0. (20)

We note that (20) can be written in the form

5 (w000 = 222 —0 — w25

dx X

where b is an integration constant. Using this to eliminate
u(x)e’(x) from (19) gives Eq. (8) on u(x). If we assume that
€% = 1, then (18) places no further conditions on u(x) (otherwise
conditions on the parameters ¢, a, and b are required so that (8)
admits a solution of the form u(x) = Ax for A # 0).

+b (21)
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Using €2 = 1, we note that, in terms of the matrix elements
of J(x) and K(x), the potentials are given by
u(x) = exKq1(x) = —exKp(x)
ew(x) —c K]Z(x) — ¢ Klz(x)
Ki1(x) Ky (x)
amivl) _€K21( x) _ EKZl(X) (22)
Ki1(x) Koa(x)
p(x) = A12(x)K11(x) = —4J12(%)K22(x)
q(x) = 421 (x)K11(x) = —4f21(%)Kz(X).

The equivalence of the two expressions in each case is guaranteed
from tr(K(x)) = 0, and the compatibility of the expressions for
et#™ is implied by det(K(x)) = 0. If we are given the matrices
J(x) (off-diagonal) and K(x) (singular and nondiagonalizable), we
cannot determine the value of ¢ = =+1. However, from (22)
we can see that € > —e changes the signs of u(x) and e*i*®)
but leaves p(x) and q(x) invariant. It follows that Eqs. (12)-(16)
are invariant under ¢ — —¢, and from (21) we see that the
integration constant b is proportional to €. This is then consistent
with the obvious symmetry of (8): u — —u, € — —¢, b— —b.

Therefore, for the rest of this work, we assume without loss of
generality that ¢ = —1 in the parametrization of the matrices J(x)
and K(x) in the Lax pair (9)-(11). Then eliminating u’(x) between
(14) and (16) allows the integration constant b to be expressed
without derivatives as

2au(x 1 ) 1 .
®) Eixp(x)e_"”(") + Eixq(x)e“”("). (23)

b=—

1.3. Outline of the paper

In Section 2 we show how simultaneous solutions of the Lax
pair equations for the simplest algebraic solution of (8), ug(x) =
3x'3 for e = —1,a = 0, and b = i (matching (1) and (3) for
n = 0), can be explicitly obtained in terms of Airy functions.
Then we build canonical bases of simultaneous solutions near
the singular points at A = 0 and A = oo and apply connection
formula to determine relations among them. Next, in Section 3
we formulate the inverse monodromy problem for the rational
solution uy(x) for a = —in and n € Z as a Riemann-Hilbert
problem. We point out that the problem is solved for n = 0 by the
seed Lax pair solutions constructed in Section 2. We then derive
differential equations from its solution in general, recovering the
PIII (D7) equation in the form (8) fore = —1,a = —in,and b =i
(matching (1) and (3) for general n € Z). Next we construct the
solution for n € Z \ {0} by iterated Schlesinger transformations
and hence show that the solutions of (8) are related by Backlund
transformations. Since the latter preserve the algebraic character
of the solution, this shows that the Riemann-Hilbert problem
captures the algebraic solutions of (8); we summarize this result
in Theorem 1. We conclude this section by making a convenient
transformation of the Riemann-Hilbert problem that has the ef-
fect of simplifying the data for the problem. Then, in Section 4 we
use the Riemann-Hilbert representation of the algebraic solution
uny(x) to consider the asymptotic behavior of the solution for large
n. After some preliminary rescaling of the independent variable x
and the spectral variable A to balance exponents, we present for
background some formal arguments applying similar scalings to
the PIII (D;) equation itself. This formal approach suggests two
types of approximations: a slowly-varying “equilibrium” approx-
imation and an approximation based on the Weierstralk elliptic
function. Then, we return to the rescaled Riemann-Hilbert prob-
lem and introduce an appropriate g-function via a family of
spectral curves. The family of spectral curves mirrors the family
of formally approximate solutions of the PIII (D7) equation in a
remarkable fashion. Finally, we carry out a rigorous analysis of
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the function u,(x) for large n and rescaled x > 0 sufficiently
large and recover one of the equilibrium solutions predicted by
the formal theory (see Theorem 2). With some extra steps, the
method allows this result to be continued to the exterior of the
“bow-tie” domain of the x'/3 plane and hence makes rigorous
some of the observations made in [21]. See Theorem 3.

1.4. Notation

Throughout our paper, square matrices are indicated by bold-
face capital letters with the exception of the identity I and the
Pauli matrices:

01 = I:? é] . 0y = I:(l) 61] s 03 = |:g) _0]] . (24)

For a function (matrix or scalar-valued) analytic off an oriented
contour arc, we use subscripts + (resp., -) to indicate boundary
values at a point of the arc from the left (resp., right).

2. The direct monodromy problem for the seed solution
2.1. Lax pair for the seed solution

To obtain the algebraic solutions of the Painlevé-IIl D; equa-
tion in the form (8), we assume that ¢ = —1,a = —in,and b =i
for n € Z. In the case that n = 0 we have the algebraic solution
u(x) = 3x'3. We call this the seed solution for the algebraic
solution family, and n = 0 is the seed parameter value. Taking
a=0,b =i andux) = 1x"* in (21) gives ¢'(x) = 2ix~'/? so
that ¢(x) = 3ix*/> + ¢, where ¢y is an integration constant that
we will take to be zero. From (17) and € = —1 we then get

1 1
plx) = — (; + §X’5/3> exp(—3x*/3) and

qx) = — (—% + ;xsﬁ) exp(3x%/3). (25)

It follows that for the seed solution, the matrices J(x) and K(x) in

(11) are given by
1) 0 (gx7 "+ 3x713) exp(—3x*/3)
X) = ,
(gx ' = 3x713) exp(3x?/3) 0

K(x) = lx—2/3 -1 exp(—3x%/3) .
2 — exp(3x*/3) 1

(26)

We make a gauge transformation to remove the exponential
factors on the off-diagonal elements of the coefficient matri-
ces: ¥ = exp(—3x*303)®, which implies that also ¥, =
exp(—3x*303)(®x — x~303®). In terms of @ then, the (compat-
ible) Lax pair equations for the seed solution read

. x 0 1y=1 4 1y-1/3
‘Iﬁ:(—lXG3—|:1 1113 02

A EX 2X

ix'? -1 1
s ])e @7)

o — (—iron — _x-13 %x*1+%x*]/3
x = 3 %x*] _ %x71/3 x-173

—2/3
- IXT [_} }D . (28)

Our strategy to obtain a fundamental simultaneous solution ma-
trix for (27)-(28) is to deal first with Eq. (28). For this purpose, it
is convenient to simplify the latter equation as much as possible.
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We observe that multiples of the same diagonal coefficient matrix
appear in the terms most singular at A = oo in both Egs. (27)-
(28), and at the same time the coefficient matrix of the terms
most singular at A = 0 is nilpotent (that this coefficient matrix is
defective for all x is what distinguishes the D; Lax pair from the
most general Dg Lax pair given by Jimbo and Miwa [7]) which
is a simplification to be retained. Hence we will remove the
leading terms at A = oo from (28) by introducing the shearing
transformation

A=XTA, x=X & A=x\, X=x. (29)
Then the partial derivatives with respect to A and x transform as
follows:

ad 10 9 B A9
—=—-—and —=————. (30)
oA X 0A 0X  9x  XZ2aA

In terms of the new variables A and X, the compatible system
(27)-(28) becomes

X 0 X4 Ix713
<I’A=<_103_|:1 -1 _ 1y- 6 2
AlgX T —3x713 0
ix4/3 -1 1
+oT [_1 1]) o (31)
and
X3 r-1 1
(I)X = (X_1/3O’3 - A |:—] 1]) P, (32)

(We note that the shearing transformation had the added benefit
of removing the off-diagonal terms from the coefficient of A°
in (32).) To solve (32) for fixed A € C, we make a change of
independent variable:

d 1 d 1 d
z=x" — =X ==z 33
— X 3 @ 3 @ (33)
Then (32) becomes
3iz3 -1 1
Introducing the constant gauge transformation
1 {1 -1
and noting that
-1 -1 1., _|0 O
GosG™ =o0; and G [_1 1 G = 2 ol (36)

we get a purely off-diagonal system

3370 o 0 37
Q= (3201 34 [—2 OD Q= [32 +3ia'22 o |
(37)

Therefore, denoting by D(Z) and S(Z) the first-row and second-
row elements respectively of either column of ©,

S; =(3Z +3iA7'Z*)D and D; = 3Z5. (38)

Eliminating S using the second equation gives a second-order
equation on D:

Z°Dg — ZD; — 42%(5 + § A7 Z)D = 0. (39)

Noting the factor in parentheses, it seems like a good idea to
consider the substitution W := 2 + %A~1Z% Then a simple
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computation shows that also
d 9z d d? 9 d 8172 d?
24 dW 4A2 dW?

dz ~ 2Adw’ dzz

5 81z4
= Z'Dyz =Dz = =~ 5 Dww.  (40)
Therefore, Eq. (39) in fact becomes
16 A2
Dww + ——WD =0 (41)

which is a scaling of Airy’s equation. Its general solution is

_ 1642\"? _ 1642\"?
D =ahi | (——; W) +oBi | (= w (42)

where a, b are independent of W (they may depend on A, how-
ever).

If f(&¢) is any solution of Airy’s equation f”(§)—£&f(&) = 0, then
we have

3 23 72
D(Z)=f(§), &:= (5> (ia)*? (1—5), (43)
and from (38),
D2y (2\" i
S@) == ——(3) (iA)73f(E). (44)

So, if f1(£) and f,(&) form a fundamental pair of solutions of Airy’s
equation f”(¢) — &f(§) = 0, then the general solution of (37)
is @ = Qo(Z, A)H(A) where H(A) is an arbitrary matrix-valued
function of A only, and where

Q(Z, A) = A(AF(E), AA):=—

R £
F(&) = [f{(s) fz’@)]’ (45)

and ¢ is defined in terms of Z and A by (43). (The factor of 1/ﬁ
is arbitrary and is chosen for later convenience.)
Using (36) and

GoiG ' =03 and G [‘]) _01] G'= [_0] (1)} , (46)
we derive from (31) and (35) that
r 1 ] X2/3
- it
A 24
Q= Xz§3 ix4/3 1 Q
L oA T e 64
B 1 i zZ?
- 2 i 24| (47)
"' 2A 242 Tea

Since the systems (37) and (47) are compatible, it is possible to
find H(A) so that @ = Q¢(Z, A)H(A) solves not only (37) but also
(47). Substituting into the latter shows that H(A) must solve the
system

1 .72
— _1_7

H(4) = | 20(Z, )" o 24 [0z, 4)
24 242 64

0

— (2, A)-lﬁ(z, A) | H(A). (48)
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The matrix coefficient in (48) must be independent of Z, so it may
be computed by setting (say) Z = 0. Differentiating £4(0, A) with
respect to A directly from (45) using & = (2)3(i4)*® when
Z = 0 and the Airy identity

F(£) = [g }J (&) (49)

shows that the coefficient matrix is a multiple of the identity:
1
H(A) = aH(A) — H(A) = AY°H, (50)

where Hp is a matrix independent of both Z and A. It can be
absorbed as a change of basis in specifying the fundamental
solutions f1(£) and f>(£) of Airy’s equation.

Inverting the gauge transformations & — Q and ¥ — & and
restoring the original independent variables by Z = X1/3 = x1/3
and A = xA, the general simultaneous solution matrix of the Lax
pair for the seed solution is:

(1, x) = (ix1)"/® exp(—3x*%03)G™ T A(XA)F(E),

2/3
. 2/3 . X
§i=(3)7 (xay”? (1 - W) : (51)
where F(&) is built from two independent solutions f;(§), f>(§) of

Airy’s equation f”(&) — £f(£) = 0 by (45). The extra factor of i1/
is included at no cost to give the simplification

(ix\) o A(xA) = 1 [1 0)]/3] (ixA)73/8. (52)

il ¢

2.2. Three particular simultaneous solutions of the Lax pair for the
seed

We assume here for simplicity that x > 0 and that (ixA)’ =
xP(iA)P for any power p. In particular, £ is then well-defined as
a function on the A-plane once we select the principal branch
for (ix)?/3. It has a branch cut emanating vertically upwards from
A = 0 along the imaginary axis, and it is positive real on the
negative imaginary axis.

We will make use of the fact that for the Airy equation f”(§)—
Ef(&) = 0 there are three complementary sectors: 0 < arg(§) <
tw, —%m < arg(§) < 0,and —37 < arg(—£) < 1m, on each of
which there is a basis of solutions with exponential dichotomy
and exhibiting no Stokes phenomenon as & — oo. Those fun-
damental pairs are (Ai(£), Ai(e™271/3¢)), (Ai(£), Ai(e?"/3¢)), and
(Ai(e*™/3g), Ai(e—271/3¢)), respectively.

2.2.1. Solutions near infinity

Here we consider the domain |A| > 1 and find simultaneous
solutions with no Stokes phenomenon in two complementary
sectors near A = oo and that admit a simple normalization
as A — oo in each of these sectors. To be precise, we take
unbounded domains foo defined by the conditions |A| > 1 and
+Re(A) > 0. By the definition of & for x > 0 in terms of
the principal branch of (ix)*3, in the limit A — oo from D,
arg(id) € (0, ) translates into & — oo with arg(¢) € (0, %n).
Likewise as A — oo from D_, we have £ — oo with —%71 <
arg(&) < 0. Therefore, to avoid Stokes phenomenon, we will take
for f(&) scalar multiples of the solutions from the fundamental
pairs (Ai(£), Ai(eT27/3¢)) to define simultaneous solutions ¥ =
¥ (1, x) on the domains DZ respectively.

That is, using (52), we take

v (), x) = exp(—%x2/3a3)G’1% [(1) _(%1/3] (ixA)73/6
Ai(§) Ai(eF2mi3g) ¢t 0
[ [t &] o

e;Zﬂi/3Ai/(e:F2ﬂi/3€) 0 C;:
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¢y (ix1)'/0Ai(€)

1 1
n _3x23, 2 2
W (A, X) = exp(—3x )[ ’ E] [ i (3)13(ixa)"1/0AT (£)

—c (%)1/3(1)0\) 1/66422711/3Ai/(eq:27ri/3§)

¢ (ixA)/CAi(e T3¢ ) ]

Box I.

for suitable constants cji, j =
written as Eq. (54) in Box L.

As A — oo from D%, i.e., with farg(ixA) € [0, 7], we have
£ — oo with j:arg(&) € [0, 2], and also eT*"/3¢ — oo with
Farg(e¥?/3&) e [0, 27]. Using the asymptotic formulae [19,
Eqns. 9.7.5-6]

1, 2. This can be equivalently

. exp(—32%/?2) _

Ai(z) = 2mz1/4 — 214+ 0(z?)) and

oo exp(— 23214 s

Al(z) = — 2ﬁ (1+ 0(z~%2)), (55)

valid as z — oo with |arg(z)] < & (and hence |arg(z>/?)] <

37 and |arg(z'/*)| < im), along with & = (3)3(ix0)*3(1 —

x23(1xa)~1), we get

3,2/3
(ix) VoAi(E) = %(%)“ﬁe-iWHowl» (56)
and
3,2/3)
~) Gy oA () = PR } (2)/%e (1 4+ 0(7")) (57)

as 1 — oo in either DX, or D. Likewise,

_342/3
. e eX X ;
(iX}»)l/GAi(e:ﬂmBé) — eiln/ﬁ%(%)uﬁewk(] + O(A—1))
(58)
and
_ (%)l/3(ix)\')—1/6eq:2ni/3Ai/(e$2ni/3§)
6 exp(—2x%/3) 4 ~
:eﬂ“/ﬁizﬁ (2)/5e*(1+ 07 ")) (59)

as A — oo from DZ . Therefore, from (54), we get

\Ilfo()\, X) = 1 ( )1/6 <|:Cit ;ti?z/s iil + (’)(A—l)> e~ ixAo3
273 0 —e oy
(60)
in the same limit. Choosing the constants to be
¢t = 2/mR) and o = —ePT 2R,

the simultaneous solutions \Poio(k, x) are normalized so that

(61)

lim T (4, x)e™3 =T, (62)

reDZ,

Since the coefficient matrices A(A, x) and X(X, x) have zero trace,
it then follows that det(®E (%, x)) = 1.

2.2.2. Solution near zero

When A is small and arg(ixA) varies from —m to m, arg(—¢&)
varies from %n to —%n, so to avoid Stokes phenomenon and
maintain exponential dichotomy we use scalar multiples of the
basis elements Ai(e?"/3g) and Ai(e=2"/3¢). Then, for constants
c* we use (52) and hence define a solution in the domain Dy

characterized by |A| < 1 and arg(ixA) € (—m, ) by

To(h, X) = exp(—3x*03)G™

. |: Ai(EZHi/3€_—)

1
T
o 27i/3 i
efz’g}g?\i/(e*i?”é)] |:CO Co_il, (63)

which can be equivalently written as Eq. (64) in Box II. Using
eF2mBE = x2/3(3)23e¥/3(ix1)~1/3(1 — x7?/3(ix1)), the relevant
expansions we need in this situation are then

ez”i/3Ai/(eZ”i/3§‘)

(iX)\.)l/GAi(eiZﬂi/3f;:) — eﬂ:ir{/lZ X_l/G(%)_UG(iX)\.)]/Al

27

- exp[ix(ixr)~21(1 + oA ?)) (65)
and
—(%)1/3(ixk)_1/6612”i/3Ai’(eﬂ”i/3§)
i 1 — : -
— o7 /122ﬁx1/6(%) 1/6(1}(” 1/4 (66)
- exp[=ix(ixr)~21(1 + o(r1?))

asir— 0 with —m < arg(ixA) < m. It follows that det(¥qo(A, X)) =
=ctc™(2)"2 + O(1"?) in the same limit, so by Abel’s theorem
det(To(A, x)) = g=ctc™(3)"3. We complete the definition of

Wy (A, x) by choosing

ct=2ivm($)* and ¢ =27(3)°

which guarantees the identity det(¥o(A, x)) = 1. It then follows
that as A — 0,

(67)

1/2

(A, x) exp[—ix(ix1) 03] = exp(—3x*03)

1

1
) |: 2, %} x03/3aTrios/12

2 2

T 1400172

\x e "3(14 0(r12))
Here, the symbol ©(11/2) denotes in each case a (different) quan-

tity having an asymptotic expansion as A — 0 in positive integer
powers of 1172, This implies the existence of the limit

(68)

672ﬂi/3(1 +O()»1/2))
1+0(0'"?)

in) e
Bo(x) := llm Wo( A, x) exp[—ix(ix1)~%03]E - (x) ,

) 1 1 e17'[/31
E:= E @27i/3 1 |-

At this point, we can revisit the expansion of ¥y(A, x)exp[—i
x(ixA)"1203]E - (ir/x)"°3/% as . — 0, and take advantage of the
structure of the complete asymptotic expansions [ 19, Eqns. 9.7.5-
6] of which the parentheses in (55) represent just the first explicit
terms to deduce that the half-integer powers all vanish, and in
fact we have a full expansion as A — 0:

—o3/4 o] . p
12 i\ > N ix
Wo(A, x) exp[—ix(ix\)” /“o3]E - ( " ) Z ( " ) B,(x

p=0

(69)

(70)
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1
Wo(A, x) = exp(—%xzﬂag) |: 2

N[—=
[ IR

] [ ct(ixr) /e Ai(e?1/3¢)

—C+(%)I/B(ixk)_1/682ni/3Ai,(82”i/3§)

c~(ixA) /8 Ai(e~21/3g)
—C_( % )1/3(ix)\.)_1/66_2ﬂi/3Ai/(e_2ﬂi/3§)

Box II.

2.3. Jump conditions for the seed

We define (see Fig. 2)
W (A, x),
T (A, X),
Wo(A, X),

L e DY,
L eDg, (71)
A€ Do.

WA, Xx) =

The jump matrices are obtained using the connection identity [19,
Eqn. 9.2.12] Ai(z) + e?"/3Ai(e*"/3z) + e~271/3Ai(e¥"/3z) = 0 and
its derivative Ai'(z) + e~27/3Ai'(e271/37) 4 e271/3Ai (e —271/3z) = 0.
We will calculate the jump ¥ (A, x) = ¥_(A, x)V across each arc
of the jump contour as indicated in the right-hand diagram of
Fig. 2 (subscripts + /- indicate boundary values from the left/right
by orientation). Note that since in each domain ¥(A,x) is a
simultaneous fundamental solution matrix with unit determinant
for the equations ¥, = X¥ and ¥; = AW, each jump matrix V
is a constant matrix with det(V) = 1.

To compute the jump of ®¥(A, x) across X as well as Cc*, we
note that £ and (ixA )°3/® are both well-defined on these contours.
So, V=®_(%x) 1w, (A x) =TI (A, x) ¥ (A, x) satisfies

AI(E) _ein/SAi(eZTri/?:i;)
Al/(S) _ein/ﬁeZni/3Ai/(e2ni/3E)
_ [ Ai) —e"/5pi(e2m13¢) -
= I:Ai/(f) _e—iﬂ/Se—Zni/BAi/(e—Zﬂi/3$)i| V., rel. (72)

Using the connection formule to write the second column on
the left-hand side in terms of Ai(£) and Ai'(e=?*/3£) and their
derivatives yields

1
v-)

Similarly, the jump matrix on C~ is V. = w_(A, x)"'W_ (A, x) =
W (A, x)"1W(1, x), which satisfies
iAi(e2”1/3§) Ai(e—Zni/3%-)
iez”i/3Ai’(e2”i/3§) e‘z”i/3Ai(e‘2”i/3"§)
_eirr/GAi(eZJTi/?:s)
_ein/GeZni/3Ai/(eZni/3s)

_]‘} . rexg. (73)

_ | AiG)
T AI(E)
The same connection formula applied to the second column of
the left-hand side then yield

]v, reC. (74)

0 e in/3 _
V= |:e2”i p o o /6], rec . (75)

Likewise, the jump matrix on C* is V = w_(A, x)" ¥ (A, x) =
Wo(A, x)" 1w (A, x), which satisfies

AI(E) —e‘i”/SAi(e‘z”iBE)
Al/(S) _e—in/Ge—Zni/3Ai/(e—2ni/3%~)
iAi(ezm/B%-) Ai(e—2n1/3s) +
= [iezniﬁAi/(ezni/aE) e 2713 pj(e~271/3¢) V., reC". (76)

Applying the connection formula to the first column of the left-
hand side yields

e—Sni/G 0
V= [ ein3 osmife | AECT (77)

Fig. 2. Left: the domains Di and Dy in the A-plane. Right: the arcs of the jump
contour for w(A, x).

To compute the jump matrices on EJ and X'} we also have to
take into account the jump conditions satisfied by & and (ixx)?3/6:

[(ix2)/°], = o33 [(ix2)/°]_  and

E,=ePe . Lexy (78)
and
[(ixk)”3/6]+ =e "3 [(ixA)/°]_ and

£, =ePe | rexf. (79)

The difference between these formule arises simply from the

opposite orientation of X" and X}. So, on X, using (78) on the

left-hand side of ¥ (X, x) = ¥_(A, x)V (with T(X, x) = T((A, X)),

we have

|:e5ni/6Ai(E_) ein/3Ai(e27ri/3%—_) ]
eSﬂi/GAi/(fj_) eizr/3e2rri/3Ai/(e27ri/3é_-_)

|: iAi(e2ﬂi/3%~_) Ai(e—2ni/3%—_)
ieZni/3Ai/(e2ni/3%—_) e—2ni/3Ai/(e—2ni/3s_

)]v, re xS

(80)

Applying the connection formula to the first column of the left-
hand side gives

1 e—in/6

V= |:e—5ni/6 0

Finally, on X, using (79) on the left-hand side of ¥, (), x) =
W_(A, x)V (this time with ¥ (A, x) = ¥, . (A, x) and ¥_(A, x) =
wl (X x)), we find
e—in/BAi(eZHi/?:s_)
e—in/3e2ni/3Ai/(eZ7ri/3£_~_)

_ [Ai@_)

] . e X, (81)

eSni/GAi(e—Zni/_?:g_ )
eSni/Ge—eriBAi/(e—27ri/3%-_ )

eSni/GAi(e—Zniﬁé—_ )
eSni/Se—Zni/3Ai/(e—2ni/3s_ )

+
AT(E) ]v, re Xt (82)
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Using the connection formula on the first column of the left-hand
side gives
_|1 o0 +
V_|:i 1], re X (83)
This completes the computation of the jump matrices for
(A, x). It is straightforward to verify that the cyclic product of

jump matrices about either of the two self-intersection points of
the jump contour equals I.

3. Riemann-Hilbert representation for the algebraic solutions
3.1. Riemann-Hilbert problem formulation and basic properties

The algebraic solutions of (1) with « = 8, 8 = 2n € 2Z, and
8 = —1(or (8)with € = —1,a = —in, and b = i) can be obtained
from the following Riemann-Hilbert problem.

Riemann-Hilbert Problem 1 (Algebraic Solutions of Painlevé-III
D7). Given x > 0 and n € Z, seek a 2 x 2 matrix function
A — W), x) with the following properties:
e Analyticity: W(), x) is analytic for » € C\ (XL U XL U
rfuctuc).
o Jump conditions: W(™(A, x) takes continuous boundary values

from each component of its domain of analyticity, and the
boundary values are related by

W0, x) = W0, x) expl—i(xh — x(ixi_)"2)a3](—1)"V

- expli(xx — x(ixA4)"?)os],

rexXfuxt,
(84)
and
W1, x) = WP, x) exp[—i(xh — x(ixA_)~"2)a3]V
- expli(xr — x(ixr4)~ V)03, (85)

rex uctuc,
where the constant matrix V is defined on each arc of the jump
contour by (73), (75), (77), (81), and (83).
Normalization: W™(A, x) (%)"03/2 — Tas A — oo.
Behavior at the origin: the limit

o\ (- es/4
B))(x) == lim W™, X)E - (7) (86)
— X

exists, where E is given by (69).

The following lemma is a consequence of the construction
given in Section 2.

Lemma 1. The matrix WO(, x) defined in terms of W(A, x) (see
(71)) by

WO, x) == B(A, x) expli(xr — x(ixA)""?)o3] (87)

is a solution of Riemann-Hilbert Problem 1 with n = 0.

Lemma 2. Given x > 0 and n € Z, there is at most one solution of
Riemann-Hilbert Problem 1 and any solution has unit determinant.

Proof. Suppose there exist two solutions, denoted W(1) and
W(). It follows from the conditions of the problem and Liouville’s
theorem that det(W(A)) = det(W(1)) = 1. Consider the matrix
R(A) := W(L)W(A)~ L. It similarly follows from the conditions of
the problem that R(A) is entire and tends to the identity matrix
as A — oo, so by Liouville’s theorem again, R(A) =1 O
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Lemma 3. Given x > 0 and n € Z, if the solution W™(X, x) of
Riemann-Hilbert Problem 1 exists, then the normalization condition
holds in the stronger sense that there exist coefficient matrices
{AE,")(X)};O: 1 such that the complete asymptotic expansion

) o 1 ix nos/2 [e9) ix —p -
, o3\ — ~ - s
W2, x) exp[ix(ixi) ] I+ Z AV (x)
X S\« L

A — 00 (88)

is uniformly valid with respect to arg(iA), and the expansion is
differentiable term-by-term with respect to A and x. Also, the limit in
(86) is the leading term in another complete asymptotic expansion

involving other coefficient matrices {BE,”)(X) gio:

X

n) —ixAo ir e o (i (1)
W, x)e MeE .- (= ~2 (o) B a0

p=0
(89)

holding uniformly with respect to arggik) and enjoying similar dif-
ferentiability properties. Finally, tr(A}"(x)) = 0 and det(B{"(x)) =
1.

Proof. We consider the function A +— S()) defined by

ix no3/2
WM, x) explix(ixr)~"?o3] (X) . Al > 1,

sW(1) = L\ (-4
W(n)()\., X)e—ix)»o'g,E . <7> ,

Al < 1.
X

(90)

Then, S™(1) satisfies the conditions of an equivalent Riemann-
Hilbert problem, and it is easy to check that the jump matrices
for S™() tend exponentially rapidly to the identity as A — oo
in XX U X and as A — 0 in X. This kind of problem is
amenable to analytic (with respect to x) Fredholm theory applied
to an equivalent singular integral equation, and the result that
S™M()) has asymptotic power series expansions as A — oo and
A — 0 then follows. That tr(A!”(x)) = 0 and det(BJ"(x)) = 1 both
hold is a consequence of det(W™(A, x)) = 1 from Lemma 2. O

In the next two subsections we show how and why Riemann-
Hilbert Problem 1 encodes the algebraic solutions u = u,(x) of

(8).

3.2. Differential equations satisfied by the solution of Riemann-
Hilbert Problem 1

In this section, we follow the standard dressing approach
(see, e.g., [23, pp. 202-203] for the corresponding calculation
for the Dg problem) to derive the Lax pair for the D; equa-
tion from Riemann-Hilbert Problem 1. Since this problem is un-
usual in that even and odd n must be handled differently, we
present some details of the calculations. Suppose W(™(A, x) solves
Riemann-Hilbert Problem 1, and consider the related matrix

T, x) .= WML, x) exp[—i(xA — x(ixA)"1?)o3] (91)

(cf. (87)). It is straightforward to check that ¥(W(1, x) satisfies
jump conditions across each arc of the jump contour that are
independent of both x and A: \Il(f:)(k, X) = \Il(_”)()\, x)(—1)"V for
re ZFuxtand ¥, x) = (4, 0V for x € T UCTUC.
It follows that the matrices

(n)
AP, x) = %(A, ™A, x)"! and
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awm
XM(A, x) = —X(A, )M, x)7! (92)
are both analytic for A e C\ {0}. They can be expressed in terms
of the coefficients {A) (x)} °, and {BJ"(x X)}o2, of Lemma 3 as
follows. First, we wrlte W (n)( (A, x) in terms of W(™(A, x) and then
the matrix S™(A, x) defined by (90). Then, assuming that |A| > 1,

we have

astm n

AW, x) = T(A, x)SM(A, x)71 — is"ﬂ(x, x)o3S™M(x, x)7!
— ixSM(x, x)o3S™M (A, x)71
astm n

X0, %) = (3, )8, )71+ oS3, X)0sS™ (2, 1)

— iaSM(, x)o3S™(, x) 7.
(93)

Using (88) from Lemma 3 (the left-hand side of which is exactly
SM(x, x) for |A| > 1) then gives

ADR, x) = —ixos — %ag - ﬁ[A (X, 03] + O072), A = o0
and
X0, x) = —iros + %03 — XAV(x), 03] + OO, A — .
(94)

To analyze the same matrices in the limit A — 0, we use (90)
to obtain, for |A| < 1,

AY(}, x) = oS (h, x)S™(h, x) 7 + Sl S™(, X)o3S™M(x, x)7!
K=y ) ’ a0 , X)03 ,
1 /ix —3/2 Py (—1)03/4
(ale) "o (2
2x \ x X
i\ (14
.E'o3E - —) s,
X
asm —1)"
X000 = 2200800, 07 = S 00 090,500, 17

ox 4x

i i\ 12 in (=1)"o3/4
() ()
2x X

)\‘ 1)"0’3/4
;> SO x)7 1.

Using (89) from Lemma 3, the left-hand side of which is exactly
SM(x, x) for |A| < 1, the terms on the first line of each expression
are O(A~") and O(1), respectively, as A — 0. For the terms on the
second line of each, we use the identity

-E” G3E

/—\

(95)

_ 0 ein/3
E 'o3E = |:e_i”/3 0 i| . (96)

Therefore, using (89) from Lemma 3 again shows that if n is even,

o X
AT, ) = —e 7B [(1’ 8} B0 + 0

and

o 1
X0, ) = e Bx )[(1) 8] B ()™ +0(1), 10,
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while if instead n is odd,

AP, x) = —€"/? 2;‘ZB“( )[g (1)] By (x)™' +00.7")

and
) i3 1om [0 1] omy, -1
XM, x)=e ﬁBO (x) 0 0 B, (x)"" 4+ 0(1), A»—0.
(98)

The Laurent expansions (94) and (97)-(98) then fully deter-
mine the matrices AM™(A, x) and XM™(A, x):

n
A, —ixo3 — —03 — — X e ,

(1. x) = —ixay 7 J()+2k2 x) .
xm A, X) = —ik e — Ty 7]((") ,

(120 = —ikers + 53 = () — S K(x)
where
JMx) == x[A(x), 03] and

e‘”/GBg”)(x) [(1) S}Bé")(x)”, n even,

K™(x) = (100)

Sni/GB(”)
e By (%) [0 0

1
0 }Bg”(x)—k n odd.

Since J™(x) is an off-diagonal matrix and K™(x) is singular and
nondiagonalizable but nonzero, it follows that whenever x is such
that Riemann-Hilbert Problem 1 is solvable, if potentials u =
up(x), e = et p = p.(x), and ¢ = qu(x) are defined in
terms of the matrix elements of ] = J™(x) and K = K™(x) by
(22) (taking € = —1 by our convention), then in particular u,(x)
is a solution of the Painlevé-IIl D; equation in the form (8) for
a = —in and b determined from (21). Using clet(BE)”)(x)) =1,
the formula for u,(x) in terms of the matrix BE)")(X) obtained from
W®(A, x) by (89) from Lemma 3 is:

n even,
n odd.

757r1/6xB(n) ( )BE) )ZZ(X)

UnlX) =
1000 = | esnio B0 (B ).

(101)

3.3. Solution of Riemann-Hilbert Problem 1 by Schlesinger transfor-
mations

3.3.1. Schlesinger transformations for the Painlevé-III (D;) Lax pair

Schlesinger transformations for the Lax pair (9) and their
induced Backlund transformations are discussed in [20, Section
6.1]. Define a gauge transformation matrix G(A, x) by

G(X, x) = (ir)2G(x) + (ir)V2G(x), (102)

where G(x) and G(x) are matrices to be determined so that when
¥ is a simultaneous fundamental solution matrix of the Lax pair
Egs. (9), then ¥ := G(A, x)® is as well, but with a different value
of a and different potentials u(x), p(x), q(x), and ¢(x). We also want
to normalize G(\, x) so that det(G(), x)) = 1. Clearly, T, ) isa
simultaneous fundamental solution matrix of &; = A(A, x)\IJ and
T, = X(A x)¥, where

A(r, x) == T, (A, X)T(A, x)7!
_0G »
3 =" — (A, x)G(A, )™ + G(A,
X(A, x) = Ty(h, X)T(A, X))
3G

= — (A, X)G(A, x)™

X)A(%, X)G(x, x)"! and

T+ G, X)X(A, X)G(A, x)71.
(103)
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Writing a = —in for n € C (in general), we want to pick the
coefficients G(x) and G(x) so that the matrices

X ix

. n
A(X, x) == —ixo3 — 503 - XJ(X) + ﬁl((x) and

. n i
X(}\., X) = _1)\.0'3 + ﬂo':; —_'(X) — ﬁK(X)’ (104)

where J(x) is off-diagonal and K(x) is non-diagonalizable with
zero eigenvalues, are transformed into corresponding matrices
K(x)

A(n, x) = —ixo3 — 103 — ﬁtf(x) + X and

2. A 222
i~

— —K(x),

ZA()

~ n ~
X(A, x) ;== —iho3 + 2—}(03 —Jx) (105)
with T(x) off-diagonal and iz(x) non-diagonalizable with zero
eigenvalues, where 7 is another complex parameter. Using (102),
(104), and (105), we see that both sides of each of the equations
(equivalent to (103))

A(0V2A (A, X)G(A, x) = Az(ik)1/2g—§(k, x)

2750 11/2
+ A°(iA) <G, x)A(X, x), (106)

AR Y2X(L, X)G(A, x) = A(ik)l/zz—g(k, X)
+ AINY26(0, x)X(A, X)

are cubic polynomials in A. The coefficients of A3 from both

equations are balanced exactly when
93G(x) = G(X)o3, (107)

i.e., G(x) is a diagonal matrix. The coefficients of A% give the
equations

_§03E(x) — iXJ(x)G(x) — ixo3G(x) = %ié(x) _ %”a(x)@
— IXG(X)J(x) — iXG(X)o3
in .

03G(x) — J(*)G(x) — io3G(x) = iG (x) + iﬂa(x)03
2x 2%

— iG(X)(x) — iG(x)o3.
(108)

Using the fact that J(x) and J(x) are off-diagonal, the diagonal
terms of these equations are equivalent to the equations

1 — n)o3G(x) = —G(x

(~ )037( ) (7), (109)
—(n — n)os3G(x) = —2xG (x).
Adding these together yields 2xG (x) = —G(x) which implies that

G(x) = x"?Gy (110)

where Gy is a constant diagonal matrix. Then, for x £ 0, the first
of these equations is the algebraic relation

(71 — n)o3Gy = —Gg. (111)

Observe that if both diagonal elements of G, are nonzero, we
arrive at the contradiction that both@ =n+1landn =n— 1.
Hence nontrivial solutions for G(x) are: either

G(x) = ET(x) = |:g Xq/z} and i=n+1 (112)
or
G(x) = El(x) = |:X(;/2 8} and i=n-—1. (113)

These are unique up to irrelevant scalings by nonzero constants.

10

J0 =% := [xeiwww
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At this point, we enforce det(G(A, x)) = 1, which implies two
alternate forms for the gauge transformation G(X, x):
G(1, x) = GT (A, x)
Xl/Z(i)\')—l/Z
L)

andn=n+1,or

B (x)(in)~1/2
x~12(i0)V2 4 x~ 12BN (x)C M (x)(in)~1/?

(114)

G(r, x) = GY(), x)

[V + x 2B (x)CH (x)(in) 12
= CHe(in) =172

andn=n-1.

BY(x)(ir)~'/2
Xl/z(i)\.)_l/z

(115)

Using det(G(%, x)) = 1, we now solve (106) for A(A, x), which has
the form of a Laurent polynomial in A involving powers ranging
from A° through A 3. In order that the coefficient of A° is exactly
—ixo3 as required by the form (105), it is necessary to set
x'2q(x) x'2p(x)

8u(x) Su(x) *
In order that the coefficient of A~3 vanishes as required by the
form (105) we must then set

BY(x) = —x1/2e*® and  CY(x) = —x"/2e ¥,

ctx) = and BY(x) = —

(116)

(117)

These relations use our convention of € = —1 in the parametriza-
tion of the matrices J(x) and K(x) in (11). It is then clear that if one
defines matrices J(x) and K(x) from the coefficients of A~! and 12
respectively after taking the correct incremented/decremented
value of 7 in the form o[j{(k, x) in (105), then J(x) is indeed an
off-diagonal matrix, and K(x) is a non-diagonalizable matrix with
zero eigenvalues. Finally, we solve (106) for X(A, x) and compare
with_the form given in (105) for the computed coefficients J(x)
and K(x). We observe agreement due to the differential equations
in (12)-(16).

For the transformation G'(A, x), the transformed coefficients
are

0 2xelv®
(n+1)q(x) e~ ey 0 (1 18)

32u(x)2 Bxu(x) 22
and
~ ibxe™ [8u(x)g(x) —64u(x)>
Kx) = K'(x) = : 119
(%) (x) 64u(x)3 [ q(x)? —8u(x)q(x)] (119)
For the transformation G*(A,x), the transformed coefficients
are:
~ xe WWp? | (n—)px) | €Wy
J(x) =) (x) :=|: 0‘ BT T IR :|
_2xe—i¢kx) 0
(120)
and
- ibxe ™) [_gux)p(x)  —p(x)>?
Koo = KV = e - 121
) = K') = g [ 64u(x)’ SU(X)P(X)] a2y

In these formula, b is the constant expressed in terms of the
potentials via (23) with a = —in.

3.3.2. The induction argument

We now show that given the solution W™(X, x) of Riemann-
Hilbert Problem 1 for some integer n, Schlesinger transformations
can be used to produce the solution for consecutive integers n+ 1
and generic x > 0.
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The case of n even. Suppose that n is even and that for some
x > 0, Riemann-Hilbert Problem 1 has a solution W(™(x, x).
Let GMT(4, x) and G™*(A, x) denote the Schlesinger transforma-
tions associated with the potentials u = uy,(x), e™¢ = e*iwn(X),
p = pa(x), and q gn(x) for € —1. We will now show
that WHD(x, x) = GMT(A, x)WM(A, x) and that W= D(A, x)
G (1, x)W(A, x). Obviously the transformed matrices are ana-
lytic exactly where W((4, x) is, and it is easy to see that the jump
conditions are satisfied in both cases because the Schlesinger
transformation induces a sign change on the (positive imaginary)
branch cut of (ix)*'/? but otherwise leaves the jump conditions
invariant. So it remains to check the normalization condition at
A = oo and the condition at A = 0.
We start by combining (22) with (100) to get, for n even,

Un(x) = ee‘”/GxBO”)lz(x)BEf)zz(x),
(n) +1
etiont _ _ | Bo12®)
BY'), (%) (122)
Pa(x) = —8e"/5xA™) (X)BL" ()BT, (X),
) = 86 /SXA (OB, (VB (1)

Using these in (116)-(117) and substituting into (114) and (115)
gives

) 0
@69 (a0 ]

1
n)
21
< )‘> Bg)nlz(x)Bo 22(9‘)71
X 0 A121(x) 012(X)Bo 22( X)”

(n)} _ 1 GA(’:’) (X)
(I

. -1 _ . 03/2
() (AT 0B 0BG, 0 (i)
X €By ), (X)BY (%)™ 0 X '

(124)

e

(123)

Note that G (A, x) exists unless Bglzz( ) = 0 and that G™¥(, x)

exists unless Bgfu( ) = 0. Neither of these can hold identically
in x as that would imply via (101) that u,(x) = 0, which is
inconsistent with the large-x asymptotic written in (4). Now using
(88) from Lemma 3 gives

ix (n+1)o3/2
G, )W, x) explix(ixd )™ 203] <;>

M1 07 ) (i) T
(-eA%’f%](x) 1 Hoe )> (f)
LN =1 Lo\ 03/2
: <]1+ (&) AP(x) + o(r%) <9>
X X

(air o) (o o)
AP ) 1] AN ) 1

=I+01™ ), and (125)

A — 00,

A n—1)o3/2
G, X)W, x) explix(ixr)™2o3] ('X>

(1 Al ) (M)
(o ] re0m) ()

. -1 . —o3/2
. <H+ (ﬁ) Ag”’(x)+o(xz)> (&>

X X
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(n) (n)
- (B “‘Llu(")} +o(r1)> ([5 A1.112(X)] + o(xh)

(126)

using ¢ = —1. Therefore the products G™T(x, x)W™(x, x) and
G (A, x)WM(A, x) behave respectively as the matrix functions
WD, x) and W= 1(, x) are required to according to Riemann-
Hilbert Problem 1. On the other hand, using (89) from Lemma 3
for n even gives

X

( ) eBM (0B, (0! +[ 2 0}
0 Al%l )Bgl)lz( )Bg%z(Xr €A} (%) 1
i —03/2 . o3/2
(2] oG]0
X X X
(& GBO 12( )ngz( )~ +|: 1 0:|
X 0 Aln;1 )Bgllz( )ngz(xrl EA(E](X) 1

o Byn(] 4 | Bon() B0
( 0102 :|+|: 0 BBZZ(X) + O(A)
=0(1), A—0,

(127)

A o3/4
GMT (L, X)W, x)e ™ E - (1 )

and

ir 03/4
G(””(A,x)w (A, x)e e IXAE (X)
_ (1) AT, (0B, (B0~ 0
x B (0BJ 1,007 0]

(M)G3/2 (B(”)(x)—i- <L> B(n)(x)+
X 0 x )1

& A(1n12 i‘))Bo 22(( BE)n)u( )7t o
n n —
X L GBO 2(X)By, 12( X! 0_

0 0 B,®
( + + O(X\)
( 30"22( )] [ngl(x) B, (x)
—0(1), A—0, (128)
again using € = —1. This proves that G™(x, x)W(A, x) and

G (A, x)WM(A, x) behave, respectively, as W™(x, x) and
Wr=1(), x) are required to according to the conditions of
Riemann-Hilbert Problem 1, taking into account that n is even.
Therefore if W™W(x, x) is the (unique, by Lemma 2) solution
of Riemann-Hilbert Problem 1 for n even, then W D(A, x) =
G (L, x)WM(, x) and W= D(x, x) := GV (&, x)WM(A, x) exist
except possibly for isolated values of x > 0 and satisfy all the
conditions of the same problem forn > n+1andn +— n—1
respectively, so they are the unique solutions of those problems.

The case of n odd. Now suppose that n is odd and that for some
x > 0, Riemann-Hilbert Problem 1 has a solution W(™(4, x). Again
let G™T(x, x) and G™* (A, x) denote the Schlesinger transforma-
tions associated with the potentials u = u,(x), et = et
p = pa(x), and g = qn(x) for € —1. As before, we just have
to check that the transformed matrices G™T(X, x)W((4, x) and
G (A, x)WM(A, x) behave as required as A — oo and A — 0.
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Combining (22) with (100) for n odd gives

n(x) = —ee5™/OxBL") (X)BY, (),

(n +1
i) _ _ |:Bo 11(X)i| ,

38"21()() (129)
pu(x) = SGSHi/GXA(lnu(X)BE)nl1(X)Bo 21(%),
qn(x) = SeSHI/SXA{];l( )BEJH)H( )BE) )21( )-

Then using (114)-(117) gives

1 0
G(")T A X) = <|: ]
%) Al (x) 1
+ (A) 0 BB, 007! (k>/
x 0 A" (xBY (B (x)7! X

(130)

and

(n)
G, x) = ([(1) EA1,112(X)]

() AT 0BG 0BG ) 0 (1)
x By (x)BY ) (x)7! 0 X '
(131)

In this case GMT(A, x) exists unless Bg";](x) = 0 and G™¥(, x)
exists unless Bg")“( ) = 0; however again neither of these con-
ditions can hold identically in x as it would imply u,(x) = 0
via (101) which is inconsistent with (4). Since the Schlesinger
transformations for n odd agree with those for n even in their
leading terms for large A, exactly the same calculations (125)-
(126) apply for n odd (although the Landau symbols stand for
different expressions in the even and odd cases). Therefore using
e = —1, G, x)WM(A, x) and GMY(A, x)WM(X, x) behave
respectively as W™D(, x) and W"=1(), x) are required to in the
limit A — oo according to Riemann-Hilbert Problem 1. Now using
(89) from Lemma 3 for n odd gives

1)\' —o3/4
G, x) WM, x)e ™ *E - ( >
X
i\ [0 B B, ] 1 0
- (L) €By 11(%)Bg 51 (X) +[ o ]
- n
x) |0 AT B (OBL, (%) |7 LA 1
ir —03/2 ix ix —03/2
: <—) (Bi)m(x) + ( )B““( X)+ o(xﬂ) (—)
X X X
(k) 0 B (0B (9!
X 10 A(&( )ngn( X)B 021(X ]_

i\ B0 0], (B BYL(0
((x) R Bl o | 7OV

o(1), A—0,

and

A —o3/4
G (0, X)W (1, x)e E - <lx>

(& B A(1n12( )Bﬁ)nzﬂx)Bg,l)]1(")71 0 + 1 GA(‘IT’I?IZ(X)
X By, (BY (0™ 0| o 1
. 03/2 . —03/2
(“) (Bé”)(xw(“) B{(x) + 0 (AZ)) (“) 3
X X X

(k) Aa"n((n))ag"ﬂgg)sé'fi]<x>” 0 +[1 eA‘f?iz(x>]
X €By21(X)Bg 1, ()" 0 0 1
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iA\'T o 0 B, (%) 0
A= n 3 . )
((x) [Bé,&(x) O]{Bﬁﬂ(x) B0 | O
=0(1), A»—0, (133)

using € = —1. So, GMT(A, x)WM(A, x) and G™¥ (X, x)WI(A, x)
respectively behave the same as A — 0 as W™tD(x, x) and
W=1(x, x). Along with the behavior as A — oo and the an-
alyticity and jump properties, we conclude that WtD(x, x) :=
G (A, x)WM(A, x) and W—D(, x) := G (A, x)WM(x, x) both
exist except possibly for isolated values of x > 0 and are the
unique solutions of Riemann-Hilbert Problem 1 forn — n + 1
and for n — n — 1 respectively.

The approach we have taken here to derive the Schlesinger
transformations and use them to show that Riemann-Hilbert
Problem 1 is generically solvable for adjacent indices if it is
solvable for a given index n is close to the method we used
to come up with the conditions of the Riemann-Hilbert prob-
lem to begin with. However, if one simply takes the conditions
of Riemann-Hilbert Problem 1 as given and makes the induc-
tive assumption that the solution exists for a given index n,
then one can use WW(A, x) as a parametrix for W™(, x) and
hence obtain an equivalent Riemann-Hilbert problem for ma-
trices GMT(x,x) = WD x)WM(A, %)~ and GV (A, x) =
W=D, )W, x)~1. These Riemann-Hilbert problems are ex-
plicitly solvable for generic x > 0 and their solutions yield the
expected expressions given in (123)-(124) and (130)-(131). This
argument is more efficient but it does not directly clarify the
origin of the conditions in Riemann-Hilbert Problem 1 for general
n.

3.3.3. Bdcklund transformations

Since for any n € Z, J"U(x) = J™W(x), K"tD(x) = KM (x),
J=U(x) = J™(x), and K"~ D(x) = KM (x) we derive from (22)
with € = —1 and (118)-(119) the explicit Bicklund transforma-
tions

ib x2el¢n®) 4 3 1
Unt1(x) = _DnX e Z(In(x)’ etionld) — |:un(X)j| ,
8u,(x) qn(x)
ibpx2e?in®q, (x)
Pri1(X) = ——————,
Un(x) (134)
(x) = ibpxen®g, (x)
qn+1(X) = 2 (%)
xe Mg, (x)? (4 1)ga(x) e Wup(x)
32up(x)? 8xun(x) 2x2 ’
and using (120)-(121) instead of (118)-(119) we get
ibpXPe U Wpa(x) pax) T
Up1(X) = ——(————, eIV =— ,
8y (x)? 8y (x)
(x) = ibpyxe~#n®p, (x)
Pn—1 - zu“(x)z
xe Wp,(x)?  (n— Dpa(x)  e¥uy(x)
32up(x)? 8xUn(x) 2x2 ’
ibyx?e~2en®p (x
Gnoa(x) = ———— Pulx) (135)

Un(x)?
In these expressions, b, is the constant given, for any n € Z, by

2inu,(x) 1

) 1 .
b, = - Eixpn(x)e_“""(") + Eixq,,(x)e“”"("). (136)

X
It then follows from (134) that b,,; = b, and from (135) that
bn—1 = by as well. Since ug(x) = 1x'/? satisfies (8) with € = —1,
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a = —inforn = 0and b = by = |, it is then clear that the
function u,(x) extracted from Riemann-Hilbert Problem 1 using
(101) satisfies (8) with e = —1, a = —in, and b = b,, = i for all
nez.

Now, when n = 0, ug(x) is obviously a rational function of x'/3,
while from (25) we see that

e exp(3x*/3), e 0™ exp(—3x*/3),

po(x) exp(3x*?), and qo(x) exp(—3x*")

are rational in x!/3 as well. It follows inductively from (134) and
(135) that for all n € Z,

un(x), €™ exp(3x*3), e ™ exp(—3x*3),
Pn(x)exp(3x*?), and gu(x) exp(—3x*"3)

are rational functions of x!/3.

Combining the inductive arguments of Sections 3.2-3.3 with
the base case in Lemma 1 therefore proves the following theorem.

Theorem 1. Suppose that Riemann-Hilbert Problem 1 is solvable for
given n € Z and x > 0. Then the function u,(x) defined by (101) is
the unique solution of (8) withe = —1,a = —in, and b = i that is a
rational function of x'/3. Moreover, the solution of Riemann-Hilbert
Problem 1 for given n € Z exists for generic x > 0 and can be
obtained by repeated application of the Schlesinger transformations
(123)-(124) and (130)-(131).

3.4. Change of branch cut

Although the principal branch of (iA)P for various powers
p (cut on the positive imaginary axis) is most convenient for
describing the canonical solutions in different Stokes sectors at
A = 0and A = oo, for subsequent asymptotic analysis in the limit
of large n it will be better to reformulate a version of Riemann-
Hilbert Problem 1 involving power functions with branch cuts
on the negative imaginary axis instead. To this end, we start
with W™(A, x) solving Riemann-Hilbert Problem 1 and, letting
DOi C Dy denote the region between C* and the imaginary axis,
we set

Y, x) == "W, x) exp[—i(xA — x(ixA)”V?)os3]

exp[(ixA — x(—ixA)~12)o3], »e DL,
(=1)" expl(ixr — x(—ixr)~1?)o3], L eDy,
exp[(ixA — x(—ixA)"1/?)o3]e™>7i03/6, L eDf,
(—1)*(—ioy) exp[(ixr — x(—ixA)"/?)o3]e™3/3, L €Dy .

(137)

Letting X, denote the segment of the imaginary axis between
A =0 and A = —i, oriented downwards,

Y& (1, %) = YP(, x) exp[—(ixh — x(—ixA)~/*)o3]

1 0 . e
. [i 1] exp[(ixa — x(—ixx)"?)o3], re XTI,

(138)
YO0, %) = YP(1, x) expl[—(ixh — x(—ixA_)""?)o3]
(=1 |:(l) _]1} expl(ixr — x(—ixr )" V)03,
he s, (139)

YO0, x) = YO0, x) exp[—(ixh — x(—ixA)~"/?)o3]
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. [} (1)] expl(ixx — x(—ixA)"?)o3], A e I,

(140)
YV, x) = YO(1, x) exp[—(ixh — x(—ixr_)"1/2
W(r, x) = Y (1, %) exp[—(ixk — x(—ixi_)""?)os]
(—1)"oy expl(ixr — x(—ixA,)"?)os] (141)
= Y(x, x)e M3 (—1)"io1e™3, d e 3y,
Y00, x) = YP(0, x) exp[—(ixh — x(—ixA)~V?)o3]
. [_11 (1)] expl(ixr — x(—ixA)"YHo3], A eCt,
(142)
YV, x) = YO(1, x) exp[—(ixh — x(—ixr)~ /2
+ (A, x) =Y0 (A, pl—(ixA — x(—ixA)~/)os]
. [_11 (1)] expl(ixr — x(—ixA) " "%)o3], AeC.
(143)
Using the identity relating principal branches:
(AP = eF™P(—ir), +Im(ir) > 0, (144)

we see from (88) that regardless of whether A — oo from DY or
D,

ix no3/2
Y™(a, x) explx(—ixr)~?03] (—;)

[ee) . —p
A
~11+§ (—;> (—1PIAN)IT3, A — oo, (145)
p=1

Similarly, using (89), regardless of whether A — 0 from Dar or

Dy,
L\ —(-1)'o3/4
Y (), x)e M3E . <—&>
X
=iy
~> (—) (=PI BP(x)e™ D4 4 0, (146)
X
p=0
where
~ . ) 1 57i/6  a—57i/6
E := e793/6F = e "93/3j5,Ei” = ﬁ |:eei7-r/6 25711/6] . (147)

Along with the analyticity of Y™ (1, x) for A € C\ (XL U X U
Egr UX, UCTUC™) and continuity of boundary values implied by
the substitution (137), these conditions amount to an equivalent
Riemann-Hilbert problem for the matrix Y((2, x).

4. Application: asymptotic analysis of the algebraic solution
u,(x) for large n

4.1. Rescaling

Note that u — iu and x +— ix takes a solution of (8) to
a solution of the same equation for the same values of b and
€, but with a +— —a. Hence it is sufficient to assume that
n is a large positive integer. We initially scale the variables in
Riemann-Hilbert Problem 1 with n > 0 as

x=n*?y and A =n""%v. (148)

The two terms in the exponent in the jump matrices then balance
with the exponent in the normalization condition as A — oo,
which is proportional to n:

ixa — x(—ixA)" V2 = n(iyv — y(—iyv)"?). (149)
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It is convenient to further scale the spectral parameter by the
rescaled parameter y, to make the dominant term near oo in-
dependent of y. Thus for y > 0, we set v = y~ !5 and obtain

®(n,y) = in—y(—in)~2. (150)

The quantity iA/x appearing in the normalization condition then
reads

ixA —x(—ixA)"V?2 = nd(n, y),

iA

i 11 no3/2
— = = 50 (_7) = (ny) "3 (—in)"/2.

= —in,
n2y2 n

X ny X

(151)
We define a new unknown that is a function of the variables

y, n instead of x, A by setting
Z(n, y) = (ny) "YW (P Py, nm 2y ), (152)

Then, after an unimportant rescaling of the jump contour for
Y™(A, x) to fix it in the n-plane, ZM(y, y) satisfies the following
conditions:

e ZM(n,y) is analytic for n € C\(ZLUXY UXfUX, UCTU
Cc).

e Z(n,y) takes continuous boundary values on the jump
contour related by the jump conditions

_ |1 O
20, ) =201, y)e ”‘”"’W[i 1]6"%’””3’ ne LUz],

(153)

1

220, y) =20, y)e "0 [_.

, (1)] ePUNIs e CtUCT,

(154)

Z0(n,y) = 22(n, y)e "3 (—1)" [}) ‘1‘] e P+,

neXx,, (155)

and

ZP(n,y) =20, y)e " (1)o7 e 3
(156)

o ZM(n, y)(—in)"3/? — T as n — oc.

e The limit of ZM(y, y)e ™9E . (—in)~-V'3/4 as  — 0
exists. In terms of the leading coefficient in the expansion
(89) (and see also (146)),

lim Z(n)(n y)e*imvﬂsE . (_in)*(*l)"03/4
n—0 ’

(—iny) "B (n*/ 2y )(—iny) V"2, (157)

This may be regarded as the definition of BJ"(n3/2
of ZM(n, y).

y) in terms

4.2. Aside: scaling formalism

We perturb the basic scaling y = n~>/2x designed to balance
the terms in the exponents in Riemann-Hilbert Problem 1 by
writing x = n3?(y 4+ n~Pz) for some p > 0 to be determined.
Then we also scale u = n?U and consider what the Painlevé-III
(D7) equation (8) on u(x) with e = —1, a = —in, and b = i implies
for U = U(z) when y # 0 is a fixed parameter:

U'z)? U'(z)

nq—3+2pU//(Z) — nq—3+2p
U(z) y+nPz

_ a3+
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b 8U@ 2 1
y+nPrz y+nPz U(z)
(158)

Because p > 0, the second term on the right-hand side is
negligible compared with the left-hand side and the preceding
term. All remaining terms can be balanced with these by choosing
p=1and q= 1. Then (158) becomes

U(z)? 8 21

2 -1
UG + yU(z) + ) U@ +0(n"").
The approximating equation is obtained by dropping the formally
small ©(n~!) error term. It is an autonomous nonlinear second
order equation on U(z) with parameter y # 0. It turns out that
under these scalings, the algebraic solutions u,(x) of (8) behave
for large n like one or the other of two types of solutions of the
approximating equation, depending on the value of the parameter
y. Although the motivation comes from the simple scaling for-
malism above, these are correspondences that are proved using
techniques of analysis of Riemann-Hilbert problems.

U//(Z) —

(159)

4.2.1. Equilibrium solutions
If U is independent of z, the approximating equation yields
equilibrium solutions solving the cubic equation

8U3+2U —y=0. (160)

For large y, the solutions are U ~ jy'/® and U ~ Je*271/3y1/3,
Reversing the scalings by U = n~/2u and y = n~3/2x (neglecting
n~'z) the large-y equilibrium solution U ~ 1y'/? reads u ~ 1x'/3,
which is exactly the seed solution for n = 0. The three distinct
solutions for large y can coalesce at branch points that can be
found by equating to zero the discriminant of the cubic (160) with

respect to U, which is —64(27y? + 4).

4.2.2. Non-equilibrium solutions
Multiplying the approximating equation through by U’(z)/
U(z)* we obtain

U'(z)U"(z) U'(z)® 8 , 2U'(z) U'(2)
— —-U - = =0 161

Uer U@y O yuer ey (e
or, equivalently,
d [U@zP 8 2 1 11
— --u - =0 162
dz [2U(z)2 YOI T 2uer (162)
Letting E denote the implied integration constant,

16 4

U'(z) = 7U(z)3 + 2EU(z)* — ;U(z) + 1. (163)
Setting
U(z) ]w() LEY (164)

z)= - z)— —

4y 24y ’

W(z) solves the Weierstra equation W'(z)? = 4W(z)* —g,W(z)—
g3 (see [24, Ch. IIL.5] or [19, Ch. 23]) with invariants

E? E3

—; —_—— = — = (165)
Therefore, the general solution of the approximating equation can
be written in terms of the Weierstraf$ elliptic function g(z) with
these invariants as

! E
24y'

The fact that all poles of g(z) are double is consistent with the
fact that all nonzero poles of solutions of (8) are also double.

1
Ulz) = Zyp(z - 20) (166)
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4.3. g-function and spectral curves

Returning to the large-n analysis of Z(™(n,y), we now in-
troduce a g-function n — g(n,y) with parameter y with the
following properties:

e gisanalyticforn e C\ (XL U X UX,UCtUC™)and is
bounded for bounded 7.

e g takes continuous boundary values on the jump contour
with the property that

9 RYe) 2
0> F(n.y) = (—g(n,y) - —(n,y)) (167)

an an
is continuous except at n = 0.
e There is a quantity go(y) such that g(n,y) = —% log(—in) +
go(y) +o(1) as n — oo.
e g(n,y)—> 0asn— 0.
e g is independent of n.

We use such a function g(n, y) to define a new unknown by
M(”)(n,y) — engo(y)ffsz(n)(n’y)e—ﬂg(n,y)%' (168)

Then n — M®(y, y) is analytic where Z" (5, y) is, satisfies the
simplified normalization condition that M™(n, y) — Tasn — oo,
has the property that M (5, y)E - (—in)~(~1"93/4 has a common
limit as » — 0 from Doi, and has jump conditions explicitly
related to those satisfied by Z™(x, y) that involve the boundary
values of g. We will explain these jump conditions later.

But first, we consider the function F(n,y) defined by (167).
Obviously, this function is not only continuous for n # 0, but
it is also analytic for n € C\ {0}. It is therefore determined by its
asymptotic behavior as » — 0 and n — oo. Since then dg/dn has
to have Laurent expansions in both limits in powers of (—in)!/?
for F to be analytic, we interpret the conditions on g(, y) near
n = 0, oo in terms of dg/dn as follows:

g
%(TIJ’)
_ A e b a7 00, g o0
bi(—in)~% + by + O(n'/?), n— 0.
(169)
It then follows from (150) and (167) that
2
L1 -3
(<i= & +om2)
=-1+140mn2
Fny)={ S THRROW D =)
(3iy(—in) =2 + 0(n~"72))
2.
= —yj(—ln)_3 +0(n7?), n— 0.
Therefore, F(n, y) is a Laurent polynomial of the form
F(n,y) = 1—1———i—i ﬁ = —i (171)
nﬂy - Mz 4/1,3, /’L T 77y

involving an undetermined coefficient c¢. Writing F(n, y) in the
form F(n,y) P(—in, y)(—in)~3, where P(u,y) is the cubic
polynomial’

2

y
P(u,y) = =1+ p? +cpu — T

(172)
1 Note that this polynomial is closely related to %U3 + 2EU? — §U +1
appearing in (163). Indeed,
64U° 16 16 4
- P(L;y>:—U3——CU2—7U+1,
y:  \4U y ¥ y

which matches the target form if we identify the integration constants by
2
y°E = —8c.
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We now assume that c is chosen so that P(u,y) has a double
root 4 = d and a simple root u s. Expanding P(u,y) =
—( — d)*(u — s) and matching the coefficients with (172) gives
three equations:

2d+s=1, d*+2ds=—c, and d’s=—1y" (173)
Combining the first equation with the last, one eliminates d and
obtains a cubic equation for s: s(s—1)? = —y?. Given any solution
of this equation, d and c are determined explicitly from the first
and second equations. It is clear that as long as y > 0, there
exists one real negative root and a complex-conjugate pair of
roots. We select the real solution (a guess based on symmetry to
be justified later); thus s is decreasing from s = 0 as y increases
from y = 0, with asymptotic behavior s = —y?3(1 + o(1)) as
y — 4o0. Then from 2d + s = 1 we have that d is increasing
from d = % as y increases from y = 0, with asymptotic behavior
d = 3y*3(1+0(1)) asy — +oc. We observe that the discriminant
of the cubic s(s — 1)> = —y? with respect to s is
y*(27y* +4)* =0, (174)
which should be compared with the discriminant of (160).

Now we discuss the jump conditions satisfied by M™(5, y).
These take the form shown in (153)-(156) with the only change
being that the function @(n, y) in the exponents is replaced with
—h(n, y), where

h(n,y) :=gn.y) — @, y). (175)

The effect of the conjugation of the constant jump matrices in-
volving the exponent h(7, y) depends on the sign of Re(h(n, y)).

Under the assumption that P(u,y) = —(u — d)?(u — s), with
s=5)<0andd=(1-s5)/2 > 0, we have from (167) that

oh . L .

—(n.y) =VF(n.y) = —(n — id)(—in)*(=in —5)"/>.  (176)

an

Here, all fractional powers refer to the principal branch, and the
sign of the square root was chosen to match the asymptotic
behavior at n = co according to the definitions of h(n, y), ®(n, y),
and the large-n behavior of g(n, y). This function is analytic ex-
cept on the negative imaginary axis between n = 0 and n = is
(note that the sign changes of the latter two factors cancel for n
purely imaginary with imaginary part less than s).
Integrating using d = (1 —s5)/2,

h(n,y) = (—in —s + 1)(—in —s)"/*(—in)~"/2
1 ((in = )2 — (—in)"2
Tale ((—in —S g (—in)”z) e

where C is an integration constant which we take to be C = 0.
Then one can check that hy(n,y) + h_(n,y) = 0 for n on the
segment between n = 0 and n = is. Also, g(n,y) = h(n,y) +
¢(n5 y)Y SO

g(n,y) = (=in — s+ 1)(=in — 5)"(=in)~"/?

1 (—in =)' — (=in)'?\ | . 1
—1 —y(— =
+3 0g<(—in—5)1/2+(—in)”2 +in — y(—in)

(177)

(178)
which indeed has the expansion
1 . _
g&n,y)= —3 log(—in) + go¥) + 0(n~"?), n— oo,
y)=1 3s—l—lln ]s s=s(y)<0 (179)
=1-= = —=s, = < 0.
&oly 3 5 2 y
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Also, using s < 0 and d?s =
n — 0; more precisely,

1+ 3s
2(—s)1/?

Assuming that y > 0 is sufficiently large, Re(h(n, y)) is con-
tinuous in n except at n = 0, harmonic except on the negative
imaginary segment connecting the origin with n = is, and has
a zero level set consisting of that same segment and two curves
emanating from n = is into the left and right half-planes and
extending to oco. These curves are reflections of each other in the
imaginary axis, and all three branches emanating from n = is
are separated by angles of 27 /3 at that junction point. We have
Re(h(n,y)) > 0 above the two curves (a region containing the
positive imaginary axis) and Re(h(n, y)) < 0 below them. See the
left-hand panel of Fig. 5.

—1y? shows that g(n,y) — 0 as

gn.y)=— (—in)"?+0(n), n—o0. (180)

4.4. Parametrix construction and error analysis

To make use of this structure, we assume that the jump
contour is deformed so that n = is is the junction point of C*, C~,
Xy, and X, and so that X; coincides with the segment joining
n = is with the origin. Then, since the sum of the boundary values
of dh/dn(n,y) vanishes and Re(h(n,y)) = 0 on X, the jump
condition of M™(#, y) on this arc reads

0 €
MG, y) = M"(n, y) [_e—w 0 ] :

T . T _
¢ = 0l +nm —in(hy(n,y)+h_(n,y)) = 3 +nm, nex;.
(181)

Note ¢ is a real phase that is constant along X . Because h(n, y)
is analytic on all other arcs of the jump contour except for X',
along which hy(n,y) — h_(n,y) = —ir, all other jump matrices
for MM (5, y) are exponentially small perturbations of the identity
matrix when n — 400, estimates that are uniform with respect
to n except in a neighborhood of n = is. Here it is possible to
install a standard Airy parametrix to solve the jump conditions
exactly locally. To construct an outer parametrix, we solve the
jump condition (181) exactly and build in suitable singularities
near the two endpoints of X to allow matching onto the Airy
parametrix at n = is and to match the required behavior of
M®™(1, y) near the origin.

4.4.1. Outer parametrix .
By definition, the outer parametrix is the matrix M™-°%(y, y)
with the following properties:

o MUy y) is analytic for 7 € C\ ¥, taking continuous
boundary values from each side except at the endpoints.

e The boundary values are related by the jump condition (181).

. l\:/l(")"’“t(n,y) —Tasn— oo.
o MW0U(n, y) = O(1 + ||~ "4 + | — is|~/4).

We construct M™-°(, y) explicitly by first removing the phase
factors e*¢ from the jump condition without changing any of the
other conditions; we write M"-%%(p, y) = e?73/2N(n, y)e~1¢3/2
so that (181) for M(™-°U(y y) implies

N.(n,y) = N_(n, y)ioz, (182)

Next, we diagonalize the jump matrix ioy, by the substitution
(again, not changing any of the other properties)

1 11 i 1 1 —i
Sl Joung [l 3]

nex,.

N(n, ) (183)
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Then O(7, y) is analytic for n € C\ X, takes continuous boundary
values except at the endpoints where —1/4 power singularities
are admissible, tends to I as n — oo, and satisfies the diagonal
Jjump condition 04 (n, y) = 0_(n, y)i” for n € X (note that the
dependence on y > 0 enters via the moving endpoint n = is).
The unique solution of these conditions is the diagonal matrix

s o3/4
0(n, y) := (—i(n — is))>/*(=in)~»/* = (L“) (184)

n

where in each case the principal branch power is intended. In-
verting the transformations M™°%(5, y) +— N(1,y) — O(n, )
gives the explicit formula for the outer parametrix as

M™-out(y )

. so\ 03/4 .
= ei¢o.3/2i 1 ! n -5 ! i 1 —1 e_i¢a3/2
' V2L 1\ g N '
(185)

A calculation shows that M™-0ut(y_ )E - (—in)~(~1"03/4 js an-
alytic at n = 0. Indeed, letting C™ denote the matrix

—ioq, n even,
o 186
{]L n odd, 1
we see that
l\“,[(n).out(777 y)i::' . (_in)*(*l)ﬂasm
_ . 4
= ei¢03/2i i <77 _ 1$>U3/
NR ]_ n
.. (_in)7(71)"U3/4e5ﬂi03/ﬁe*i¢‘73/2
, 11 ]
—eitos2_—_ |1 Tl gy ipyoa
Al (187)
. (_in)f(fl)”a3/4e5ﬂi03/6e*i¢f’3/2
, 11 i
= e1¢03/2$ } i (—=i(n — is))g3/4

. (M g57i03/6=iho3/2

and having a vertical branch cut emanating downward from n =
is with s < 0, the diagonal matrix (—i( — is))?3/4 is analytic at
n = 0. Since C™ is either diagonal or off-diagonal, we can further
simplify the resulting formula as follows:
- ~ . n H 1 1 1 i

(n),out L —(—N'o3/4 _ Lipo3/2 " (n) ,57io3 /6
M™%"(n, y)E - (—in) =e ﬁ[i 1]C e

. e_i¢"3/2(—i(n _ is))—(—l)”da/‘l

:i 1 1 @570 /6
ﬁ -1 1
(=i(n — is))" e/,
(188)

where we also used the n-dependent definition of ¢ in (181). In
particular, this implies that

lim M7, ) - (—i) /4

T 11 1 srioes —(~1)"03/4
S IR T S i

4.4.2. Airy parametrix

Since h.(is, y)+h_(is,y) = 0, h.(n,y)+h_(n, y) is real-valued
and strictly decreasing in the negative imaginary direction along
X, and hy(n,y) (h, == 0h/0n) is an analytic function on this
contour arc that vanishes like a square root at n = is, we may

(189)
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introduce a conformal coordinate n — W(n) on a neighborhood
D;s of n = is with the properties that W(is) = 0, W(n) > 0
for n € X N Dy, and W(n) = —(hy(n,y) + h-(n,y))*? for
n € X N D Using hi(n,y) — h_(n,y) —im for n €
¥, we see that on C* N D, the exponent function 2h(7, y)
is the analytic continuation from X N D;; through DY N Dj
of 2hz(n,y) = (hy(n,y) + h-(n,y)) F (hy(n,¥) — h_(n,¥))
hy(n,y) + h_(n,y) £ ixw. Rescaling the conformal coordinate by
¢ = n*2W(»n), the jump conditions for M™(#, y) within Dj; can
be written as follows:
—i(=1)"

M (n,y) = MZ(n, y)e ”)"3[(_(})H 1)

= M®(y, y)e i+ (nyHh-(1)o3 /2 ginmos /2

, [(—1)" —i(=1)"
0 (=1)"

) 1 —i(—=1)remth+ny)+h-(n.y))
—(.y) [o 1 }

—i(—1) _#3/2
(_'”(n,y)[é 1) expl(—¢ )]

i| e h+(n.y)o3

] QinTo3/2 0=l (n.9)+h—(1.9))o3/2

Qil=1)"703/4 1 —exp(—¢3/?)
(77 ye [O 1
. efi(fl)”r[n3/4’ ne 20*0 N Dis;
(190)
- 1 0
M, y) = M"(n, y) [_ie—n(h+(n,y>+h_<n,y» 1]
) 1 0
=M= y) [—i(—U" exp(£>/?) 1]
1 0 i(—1)"
ei(=1)"m03/4 —i(=1)'mo3/4
", ye [exp(;3/2) 1] € :
neC*nD; and
(191)
) _ (n) 0 1(—])”
ei-imassa| O 1| icipnoya  (192)
"(n. y)e } [_1 0} € 7

ne 20_ ﬂDis.

We deform the contours C* within D;; to lie along the rays
arg(¢) = £2m /3 as shown in the left-hand panel of Fig. 3. Then
one can check that M(n, y)el=1"793/4A(n23W(n))~! is holomor-
phic in D;s, where A(¢) is the standard Airy parametrix as defined
(for instance) by the solution of [ 10, Riemann-Hilbert Problem 4].
Defining a matrix holomorphic in D;; and uniformly bounded as
n — oo by

o 171 il/n—is\™"* _
H(n) := e ””“3/45 [i 1}( ; ) W(n)™/*, 1 e Dy,

(193)

we take as the inner parametrix

M(")‘in(n,y) — H(n)n_°3/6A(n2/3W(n))e_i(_l)”””/‘l, n € Djs.

(194)
Then we can compare the inner and outer parametrices on dDj;:

M, y )M (i, y)~!
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o 1T i, o -
= H(n)n a/sA(;)—[i ;]g /4. n7/%H(n)~", n € oD,

V2
(195)

where ¢ = n*3W(#) and we used the fact that e~i(~1)"03/4¢i¢o3/2
is a multiple (by +1) of the identity. Since ¢ is uniformly large
when n € 9dD;;, we use the large-¢ asymptotic of A(¢) (see for
instance [10, Eqn. (113)]):

11 i ( ) o™
AC)— | o3/ =4 33|, ¢ — o0,
(196)
which implies that
sup [M™(n, y)M™- % (n, y) ' 1| = o(n™1), 11— oco. (197)
n€dDjg
4.4.3. Global parametrix and error estimation
We define a global parametrix for M(n, y) by
M®in( y), oy eD
(n) — o ) ’ 15 o 198
0r-9) {Mm)'m‘t(n,y), neC\Dy. (198)
The mismatch between the global parametrix and M™(z, y) is
defined as
", y) =M, yM" (0, y) 7 (199)

Since the inner parametrix is an exact solution of the jump
conditions for M(™(#, y) within Dj;, D'(5, y) may be regarded as
being analytic for € Dj. Similarly, because the outer parametrix
is an exact solution of the jump condition for M (5, y) on the arc
X , D™(5, y) has no jump across this contour either. Therefore
D" (n y) is analytic in the complement of the jump contour
illustrated in the right-hand panel of Fig. 3. On all arcs of the jump
contour except for dDjs we have M")(n y) = M- -out(y. y), and
the outer parametrix M Jout(y ) is analytic; therefore on those
arcs,

D{(n,y)

= D" (n, y)MM(, y) - (M, y) "M (1, y)] - M, )1,
(200)

Because Re(h(n,y)) > & > 0 holds on the parts of C¥, EO+
and X} outside of Di, while Re(h(n,y)) < —§ < 0 holds on
the part of X' outside of Dj;, we have M(_")(r;,y)‘lM@(n,y) —
I decaying exponentially to zero as n — oo on these arcs.
Therefore, as the outer parametrix has unit determinant and is
bounded on these contours, uniformly so as n — oo, we have
Di’f)(n, y) = D(_")(n,y)(]l + exponentially small) as n — oo, where
the exponentially small term is measured in both L* and L%. On
dDjs taken with clockwise orientation, we have

D" (n, y)M™ 0, yIMD-u ()T,

because M™(5, y) has no jump across this contour. Therefore
from (197) it follows that DY’(n, y) = D™(n, y)(1+ O(n~")) holds
uniformly on dD;; as n — oo. Finally, we note that both factors
in the definition of D™(5, y) tend to the identity as n — o0, so
D"(7, y) does as well.

The matrix D™(n, y) therefore satisfies the conditions of a
Riemann-Hilbert problem of small-norm type, and the key im-
plication we need of this fact is that D(™)(y, y) is continuous at
n = 0 and D(n, y) = I+ ©(n~") holds uniformly in the »-plane,
and in particular in a neighborhood of n = 0.

On, y) = n € aD; (201)
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o

Fig. 3. Left: the jump contour near 5 = is in the ¢-plane. Right: the jump contour for D™(1, y).
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4.5. Asymptotic formula for u,(n*’<y) with y > 0 sufficiently large

According to (157),

(—iny) ™" BG (x)(—iny)~~"'o>/2

= lim Z(p, y)e " E - (i) VA x =¥y, (202)
I]*)

Using (168) and (198)-(199) and the fact that n = 0 lies in the
exterior of Dj, this can be written as

(—iny) =" Bg (o) —iny) V"2
= e lim Dy, M0, y) - (203)
. @"8(n.y)o3 g—innos g . (_in)f(ﬁ)"rrs/‘l_
Taking into account the continuity of D(™(z, y) at = 0 and the

behavior of the outer parametrix near n = 0 as given by (189),
we have

(—iny) ™" BG(x)(—iny)~(~"'o>/2

1 ) .
= e*ngo(y)rra])(n)(o,y)E [_11 {| e57io3/6(_g)=(=1'03/4
. lir%(_in)(fl)n@/(ﬁfleng(r],y)ogefinn@i:: ) (—in)’(*””"3/4_
n—
(204)

The conjugating factors in the limit on the last line will produce a
singularity proportional to (—in)”f, So it is necessary to capture
terms proportional to (—in)'/? in E~'e™(1Y)93e~imosE_Qbviously
e~imo3 — T 4+ O(n), however according to (180),

1+3s .
egnylos — 1 _ ,17(_“7)1/2(73 +0(), n—0. (205)
2(—s)1/2
Since E~'03E = e~57193/65,e57193/6 it then follows that
(i)~ o3/ AETenelnVIos g imosE . (_jyy-(-11os/4
1 0 172
1435 57i/3 +0O(n'/°), n even
M=z 1
= (206)

1435 573
|:(1) nz(,sﬂize i|+o(nl/2)’ n odd.
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Finally, we may take the limit in (204), and we obtain

1
BYx) = (—iny) e Um0, y) - [_11 }]

|: 1 Oi| eSnia3/6(_S)—a3/4(_iny)03/2’

. n even
—5n(1+3s) 1

1
|:1 —zn(1+ 35)i| eSTIo3/6(_s)3/A(—iny)~o3/2,  n odd.
0 1
(207)

With Bg")(x) computed, we can use (101) to write a formula for
the algebraic solution u,(x) of the Painlevé-III (D;) equation (8).
Since the product of second-column (respectively first-column)
elements of BE)H)(X) appears in the formula for n even (respectively
n odd), the diagonal prefactors (—iny)**2e—"%0%3 do not play
any role, nor does the term —%n(l + 3s). Using the fact that
D™(0, y) = I+ o(n~1), the result is that an asymptotic formula
of the same form holds in both cases:

1
Un(x) = n”zi(—s)l/2 +0n?), n—o oo, s=sy)<O0.
(208)

We may observe from (173) that 1(—s)"? = y/(4d) and d*(1 —
2d) = —%yz, from which we can derive the cubic equation

8 1(—s)l/2 3+2 1(—5)1/2 —y=0
2 2 ’

Comparing with (160) proves the following. (See the left-hand
panel of Fig. 4.)

(209)

Theorem 2. There exists y. > 0 such that the following asymptotic
formula holds:

un(r*?y) = n'2U + o), n— o0, y>y. (210)
where U = U(y) is the positive real solution of the equilibrium cubic
(160), and the error estimate is valid pointwise for y > y. as well
as uniformly fory > y. + 8 for any § > 0.
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0.1 : ‘
0.7 0.75 0.8 0.85
Y

Fig. 4. Left: comparing n~'"/2u,(n?Y?) for n = 2,5, 10 (pink, purple, blue dotted lines) with U(Y3) (red solid curve) for Y > y.

imaginary parts of the purely imaginary functions plotted on the imaginary Y-axis.
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13, Right: a similar plot but with

0.75 0.75 0.75
05 ¢ 05 . 05 0
025! 025! 025
= = =
g 0 . g 0 . g 0
025! 025 0.5
05 05 05
~0.75 ‘ ‘ ~0.75 ‘ ‘ ~0.75 ‘ ‘
2075 05 025 0 025 05 075 2075 05 -025 0 025 05 075 2075 05 025 0 025 05 075
Re(17) Re(17) Re(17)

Fig. 5. Left: the sign chart of Re(h(n,y)) for y = 0.4. The branch cut of h,(n,y) is shown with an orange line, the points n = is, 0, id are shown with red, black,
and blue dots respectively, and the region where Re(h(n,y)) < 0 holds is indicated with light blue shading. Center: the same for y = 0.292. Right: the same for

y = 0.291. Note that y = 0.291 < y, so Theorem 2 does not apply here.

4.6. Transition to elliptic behavior

When y > 0 decreases below the threshold value y. ~
0.29177, a topological change occurs in the structure of the zero
level curve such that the inequality Re(h(#n,y)) > 0 can no longer
be satisfied on >:0+ U Xt. To study un(x) in this situation, it is
necessary to dispense with the assumption that the cubic polyno-
mial P(u, y) defined in (172) has a repeated root. The coefficient ¢
then has to be determined instead as a function of y to guarantee
that an outer parametrix constructed from the elliptic functions of
the Riemann surface w? = P(yu, y) remains bounded as n — oo.
This is done by imposing what is frequently called a Boutroux
condition on P(u,y). Once this is done, the invariants g, and
g3 of the approximating Weierstrall equation are determined as
functions of y and a more involved Riemann-Hilbert analysis
can be used to justify the non-equilibrium approximation of
n~2u,(n3/(y4+n~"2)) by the right-hand side of (166). The details
will not be given here.

The threshold value y. is obtained by requiring that the double
root d = d(y) > 0 of P(u, y) lies on the zero level of Re(h(n, y)),
i.e., by solving for y the condition Re(h(id(y), y)) = 0. The effect of
a sign change on the topology of the level curve Re(h(n, y)) = 0 as
y decreases through y. is illustrated in the central and right-hand
panels of Fig. 5.

4.7. Analytic continuation for 0 < |arg(y)| < 3w and boundary
curves

While Riemann-Hilbert Problem 1 and the equivalent con-
ditions for the matrix Y™(x, x) discussed in Section 3.4 were
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originally formulated assuming that x > 0, under a suitable
deformation of the jump contours near the origin they remain
a valid description of u,(x) for arg(x) 0. The scalings x = n/%y
and . = n~2y~1y introduced in Section 4.1 can also be used,
and hence it makes sense to analyze the matrix Z(1,y) for
large n when arg(y) # 0. For this problem, the steepest-descent
directions as n — oo are independent of arg(y); however the
steepest-descent directions into the singularity at n = 0 that are
vertical when arg(y) = 0 more generally lie tangent to the rays
with angles 2 arg(y) (mod ). So the tangents at the origin of the
jump contour arcs Eoi have to rotate as y moves off the positive
real axis, in the same direction as arg(y) but twice as much.

Degenerate spectral curves (for which the cubic P(u, y) has a
repeated root, see Section 4.3) exist for arg(y) # 0. Given the
solution s = s(y) < 0 and d = d(y) > % of (173) analytic for
y > 0, one simply continues the solution into the complex plane.
Although one cannot generally write h(#, y) in terms of principal
branches as in (177), the formula (176) for h,(n, y) remains valid
under the interpretation that the right-hand side is analytic off
an arc ¥, connecting the origin with n = is, tends to —i as
n — oo, and its square is equal to the single-valued function
(n —id)*(—in)~3(—in —s). Using the condition 2d+s = 1in (173)
to eliminate d then shows that h, (7, y) depends on y only through
s; the same condition then guarantees that

i1-5/2 g
L(s) := Re (/ — dn)
is 3'7

is well defined regardless of the path of integration taken in
the multiply connected domain of analyticity of the integrand.

(211)
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Topological changes in the level curve Re(h(n,y)) = 0 occur
when y corresponds to a value of s for which L(s) = 0, since
this condition detects the double root n = id = i(1 — s)/2
lying on the same level curve as n = is. For reliable numerical
evaluation of L(s) it is convenient to integrate by parts and obtain
the equivalent formula

I(s) = Re /0 g4 111 =92 (—"_is "
B i n—is 1 !
i(1-s)/2 : -\ 1/2
. n—i(1—s)/21(n—is
_1/0 [2+ n—is ]( n ) dn)

(212)
where in each integral the path of integration is a straight line,
and the fractional powers are principal branches, which are well-
defined and analytic on the paths of integration. The locus L(s) =
0 in the s-plane is displayed in the left-hand panel of Fig. 6. The
point of self-intersection is exactly s = % (corresponding to the
coalescence of n = is and n = id), and L(s) = O for all s € [%, 1].

Since (173) implies that s satisfies the cubic equation s(s —

—y?, and since we are taking the solution that for large
1/3

-1)2 —
y > 0 satisfies s = —y?/3(1 + o(1)), upon introducing Y = y
it is straightforward to determine s near Y = oo in the complex
plane as an even analytic function of Y with asymptotic behavior
s = —Y?+0(1)as Y — oc. The discriminant of the cubic vanishes
if Y =0orif Y = —%, the latter giving six points on the circle
centered at Y = 0 of radius |Y| = 21/3/31/2 at angles arg(Y) =
4+ /6, £m /2, £57 /6. Defining s as a function of Y by analytic
continuation in from Y = oo of the solution of s(s — 1)> = —Y®
along radial paths we expect branch cuts to appear from some of
these branch points, connecting them to the origin with straight
lines. However, this solution is positive real for large imaginary Y
and remains real upon continuation inwards along the imaginary
Y-axis. Moreover it is clear that the strict inequality s > 1 holds
for all nonzero imaginary Y. Now, at a branch point we would
also have d(s(s — 1)?)/ds = 0 or (3s — 1)(s — 1) = 0, but since
this cannot vanish if s > 1 it follows that the function s = s(Y) of
interest cannot be branched at the two purely imaginary branch
points of the cubic s(s—1)> = —Y°®. It is, however, branched at the
remaining four branch points, so the domain of analyticity of s(Y)
is the complement of the union of two crossing line segments, one
with endpoints +(2'/3/31/2)ei"/6 and the other with endpoints
+(21/3/31/2)e571/6 These two segments are shown in orange in
the right-hand panel of Fig. 6.

We have already observed that s(Y) > 1 holds for nonzero
imaginary Y, so these points are not on the level curve L(s(Y))
0. Approaching the origin along the imaginary axis one necessar-
ily arrives at the limiting value of s = 1 consistent with Y = 0.
From s(s — 1)> = —Y® one then sees from the double factor of
s — 1 on the left-hand side that as arg(Y) increases/decreases by
/3, arg(s — 1) increases/decreases by s, so s(Y) remains real
as Y moves outwards along the top/bottom edges of the branch
cuts in the upper/lower half-plane, and decreases monotonically
from s ltos = % at the terminal branch points. These
“outer” edges of the branch cuts are therefore points on the level
curve L(s(Y)) 0. Continuing s(Y) around any of the branch
points to the “inner” edge of the branch cut, s remains real but
decreases further as Y moves along the edge toward the origin,
taking the value s = 0 in the limit. Since s(Y) < % along the inner
edges of the branch cuts, these edges are not on the level curve
L(s(Y)) = 0. To summarize, the image of the interval % <s<1
where L(s) = 0 on the branch s = s(Y) continued radially from
Y = oo where s(Y) = —Y? 4 O(1) consists of the top/bottom
edges of the straight-line branch cuts in the upper/lower half-

plane. The images of the loop joining s = % with itself and of

20
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the two non-real unbounded curves seen in the left-hand panel
of Fig. 6 are easy to compute numerically by evaluation of L(s(Y)).
The result is shown in the right-hand panel of Fig. 6, which should
be compared with Fig. 1 in which Z = n'/?Y. We denote the
open subset of the Y-plane exterior to the bounded “bow-tie”
component of the boundary curve by £. Note that £ contains
four unbounded arcs of the boundary curve; we will explain the
significance of these below.

Given the symmetries in (7), since Z is proportional to Y, it is
sufficient to assume that 0 < arg(Y) < 7 /2. To explain how to
deform the jump contour for Z™(5, y) as arg(Y) increases from
zero for Y € &, we first observe that since the jump matrices
on 20+ and C~ are inverses we may reverse the orientation of
X and consider it joined with C~ as a single contour from
n = 0 with a vertical tangent (when arg(Y) = 0) to the common
endpoint of C~ and X . Then one sees that after reversing the
orientation of X'} it may be similarly combined with C* as a sin-
gle contour from n = oo in the upper half-plane that terminates
at the common endpoint of C* and ;. We call these combined
contours C~ and C™, respectively. The jump contour for Z"(y, y)
is therefore simplified to a union of four arcs: ¥ UX; UCTUC™.

For arg(Y) > 0 small with Y € &, there is an arc joining n = 0
to n = is along which h,(n, y)* dy? < 0, and we choose this arc to
be the contour X;” which is also the branch cut for h, (1, y). Since
h,(n, y) has a residue of —% at n = oo, integration yields h(n, y)
as the function analytic for n € C\ (¥, U X)) and we choose
the integration constant so that h,(n,y) + h_(n,y) = 0 for n €
X, . This implies that also g(0,y) = 0. Moreover, Re(h(n, y)) is
harmonic except along X", which is an arc of its zero level curve
albeit one across which it does not change sign. The topological
configuration of the zero level curve of Re(h(n,y)) is common
to all points Y € & lying in the first quadrant and below the
unbounded arc of the boundary curve emanating from the corner
point Y = 2/3371/2¢1"/6 The jump contour X U X, UCTUC™
can be positioned relative to the level curve as illustrated in the
representative plot shown in green (and orange, for ;) in panel
of Fig. 7.

When Y moves onto the unbounded arc of the boundary curve
from below, the point n = id descends from Re(h(id, y)) > 0 to
the zero level curve Re(h(id, y)) = 0. From the representative plot
in panel of Fig. 7 one sees that the arc X; has developed
a corner at 7 id. However, this phenomenon has no effect
on the parametrix construction or error analysis, because the
jump matrix for M"(5, y) is independent of 5 on X, because
hi(n,y) + h_(n,y) = 0. On the other hand, to move Y into
the region above this “phantom” arc of the boundary curve, it is
convenient to modify M™(#, y) as follows. In panel of Fig. 7
one can see that the arc of X joining n id with n is
forms part of the boundary of a “bubble” B containing n = 0
on which Re(h(n,y)) > 0 holds (strict inequality except on the
other arc of X joining the origin with 5 id). For n € B
we define M™(n, y) := M™(n, y)(—1)"ioq, while in the exterior
of B we set M™(5,y) := M®™(n,y). Dropping tildes, the jump
contour for the modified M™(x, y) is illustrated with green and
orange arcs in panel of Fig. 7. One can easily check that on
both arcs of the new version of X, the original jump condition
M(f:)(n,y) = M(_")(r;,y)(—l)”iol holds. The jump condition on C~
is modified to read

ME(0.) = M7 e [T eoes, e

(213)
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Fig. 6. Left: the boundary curve in the s-plane. Right: the boundary curve in the Y-plane (Y = y'/3); the crossing orange segments form the branch cut for the

function s(Y).
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3 corresponding to sign charts of Re(h(n, y)) in the

remaining panels (with the same annotation scheme as in Fig. 5). Superimposed on plots —@ are the arcs of the jump contour for M™(, y), with orange for

X, (where Re(h(n, y)) vanishes but fails to be harmonic) and green for the remaining arcs that are somewhat arbitrary. Plots —@ use a modified version of

h(n,y) and jump contour for M"(z, y).

Since the property that Re(h(n, y)) is harmonic except on X is a
useful one to maintain, for convenience we redefine h(n, y) by
setting h(n,y) —h(n,y) for n € B and h(n,y) h(n,y)
elsewhere. The condition h(n,y) + h_(n,y) = 0 on the arc of
X, joining n = id with n = is then shows that h(», y) is analytic
across that arc, and dropping tildes, the jump contour for h(n, y)
is once again a subset of that of M™(5, y). When we use this
modified form of M™(y, y), we need to account for the artificial
change of sign of h(n,y) by noting that g(n,y) = —h(n,y) +
@(n,y) holds for n € B. In particular, the condition g(0) = 0 still
holds. Panels m , and @ of Fig. 7 show the jump contour for
the modified matrix M(™(s, y) on the landscape of the modified
Re(h(n, y)). With this modification, the same proof applicable for
Y below the unbounded arc of the boundary curve also works
mutatis mutandis for Y on and above this curve, with the same

21

resulting asymptotic formula (208) for u,(x). Therefore, we have
the following generalization of Theorem 2.

Theorem 3. u,(n%?Y3) = n"2U + o(n~"/?) holds uniformly for Y
in compact subsets of £ where U = U(Y) satisfies 8U3+2U — Y3 =
0 and is analytic for Y € & with U ~ %Y asY — oo In
particular, u,(n®?Y3) is pole- and zero-free on & for n large. The
compact set C\ & has a “bow-tie” shape with boundary consisting
of two straight line segments joining the pairs £(21/3/3/2)e!"/® and
+(21/3/31/2)e571/6 and two curved arcs satisfying L(s(Y)) = 0.

The boundary curve is illustrated along with appropriately
scaled zeros of the Ohyama polynomials in Fig. 8, and the accu-
racy of the theorem for positive imaginary values of Y is illus-
trated in the right-hand panel of Fig. 4.
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