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ABSTRACT: Complex coacervate droplets formed by the liquid—liquid phase separation of polyelectrolyte solutions capture
several important features of membraneless organelles including their ability to accumulate guest molecules and to provide distinct
microenvironments. Here, we examine how polyions in complex coacervates can influence localized guest molecules, leading to a
shifted protonation state of the guest molecule in response to its electrostatic environment. A fluorescent ratiometric pH indicator
dye was used as a model guest molecule able to report its protonation state in the coacervate phase. Experimentally observed
differences in dye-reported local apparent pH inside versus outside of coacervate droplets were largest for polyion pairs having lower
salt stabilities and/or larger polyion length mismatch, which we attribute to the relative concentration of open sites on polyions
within the coacervates based on theoretical calculations. Using the transfer matrix method, we confirmed that theoretical phase
diagrams and critical salt stabilities generated for each polyion pair were consistent with experimental turbidity measurements and
estimated the amount of available binding sites on polyions for guest molecules. We conclude that dye molecules likely experience an
effective pK, shift due to interactions with coacervate polyions rather than reporting directly on local proton concentrations. Such a
local pK, shift can also be anticipated for other guest molecules having protonatable groups, including, for example, many
metabolites, ligands, and/or drug molecules that partition into coacervates or membraneless organelles based on ion pairing
interactions.

Bl INTRODUCTION thermodynamics depending on the composition of their
coacervate microenvironments.'”'>'¥'%'?" Coacervate micro-
environments are sensitive to their molecular composition,
which in turn depends on the identity, charge density, and
length of the polyelectrolytes as well as the ionic strength of
the solution.”" "> How to leverage this tunability of coacervate
microenvironments to control the chemical state and function
of accumulated guest molecules is not yet well understood.
In general, a higher charge density and greater number of
charged monomeric units (length) per polyelectrolyte provide
more distinct phase compositions and hence can be expected
to provide more distinct microenvironments. For example, the
total polyelectrolyte content in coacervate phase increases with

Complex coacervates formed by oppositely charged aqueous
(bio)polymers undergoing liquid—liquid phase separation
provide a different chemical and physical microenvironment
from the continuous dilute phase due to their much higher
polymer concentration.' ™ Partitioning of guest molecules into
the polyelectrolyte-rich coacervate phase enables coacervate
droplets to function as microcompartments and is important to
their use as models for intracellular membraneless organ-
elles.”” The droplet and continuous phases have different
media effects that can include viscosity, solvent polarity, and
availability of interactions with molecular components of the
phase such as the abundant polymer species in the coacervate

phase.”® Many types of guest molecules have been

accumulated in coacervates, including organic dyes,” small Received: March 29, 2023
molecule cofactors and metabolites,” ™ nucleic acids,'*™** and Revised:  June S, 2023
proteins.">~"” In some cases, changes in guest molecule

structure and/or function due to encapsulation within
coacervates have been reported; for example, RNAs exhibit
different ribozyme kinetics, folding, and duplex dissociation
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increasing polyelectrolyte length.””*' Most studies are

performed using either matched polyelectrolyte lengths
(same number of monomeric repeats) or uncontrolled lengths.
Although few systematic studies of length-asymmetric
polyelectrolyte systems have been performed, coacervate
rheological properties and phase diazgrams appear to be
dominated by the shorter polymers.”**’ In prior studies of
length-dependent compartmentalization by coacervates formed
from oppositely charged homopeptides, we found that local
apparent pH inside versus outside coacervate droplets differed
by as much as ~0.5 pH units. This was done using the
ratiometric pH indicator dye, S-(and 6)-carboxy SNARF-1
(SNARF), which has dual fluorescence emission peaks that
change depending on the dye’s protonation state and is
commonly used to determine local pH in microenvironments
where direct pH measurements are impossible or impractical
(e.g, intracellularly).”* Within our small sample size of six
peptide-based coacervate systems, the difference in local
apparent pH inside vs outside was largest for mismatched
polypeptide lengths (SI Figure 5d in ref 12).

Changes in indicator pK, due to the local microenvironment
are not uncommon and often cannot be readily distinguished
from changes in local pH.”>*® Recent studies have shown
polyelectrolytes in solution by themselves can modulate local
apparent pH in bulk solution when polyelectrolytes are
covalently attached to enzymes allowing enzymatic reactions
at otherwise unfavorable pH.”’ ™ The side chains of weak
acid/weak base polyelectrolytes exhibit pK, shifts due to
complexation.”’ ~** For example, recent work from Schlenoff
and co-workers,”' in qualitative agreement with theory by
Knoerdel et al.,** reports pK, shifts of up to 3.6 pH units for
synthetic polyelectrolytes in solid complexes. Microenviron-
ments in proteins, e.g.,, in enzyme active sites, can also induce
substantial pK, changes of amino acids.*>*® Polyelectrolyte gels
exhibit similar behaviors, altering the local apparent pH by
coupling to local molecular interactions.”” Within complex
coacervates, the locally high concentration of charged groups
of polyelectrolytes can be expected to influence the
interactions among molecules, potentially altering proton
and/or ion distribution around them, influencing protonation
states. Changes in either the true pH or the pK, of guest
molecules are both potentially significant microenvironmental
effects that could alter the chemistry of guest molecules present
in a membraneless compartment, such as a complex coacervate
or intracellular biocondensate. Decoupling these effects of local
electrostatics influencing apparent pH and/or pK, of molecules
in coacervates is challenging experimentally; however, it is
feasible in theory and computer simulations.

Coe1rse—grained21’38_41 and atomistic simulations,* along
with theoretical polymer physics,"””** can provide useful
insights that help interpret experimental coacervation results.
A wide variety of approaches have been used to model polymer
complexation, such as polymer field theory,”"** ™" scaling
arguments,”’ ~>° liquid state theories,”’ " ion pairing mod-
els,*™ and coarse-grained simulation.”’*®*>** These models
build on classic Voorn—Overbeek theory,””°*®” which
captures the essential competition between mixing entropy
(via the Flory—Huggins theory of polymer mixing®®) and
electrostatic attraction (via the Debye—Hiickel free energy of
charge interactions®”””). However, we require a method that
accurately models this physical competition in coacervation
and resolves the local electrostatic environment around a
polyelectrolyte charge that governs the “apparent pH”. We use

a recently developed the transfer matrix model of complex
coacervation because it specifically considers the local pairing
between ions in coacervate forming systems and thus captures
a local electrostatic environment while also providing phase
diagram predictions.”" This theory is successful at modeling
coacervate phase behavior,”" including how it is affected by
several molecular features, such as multivalent ions,’”
sequence-defined polyelectrolytes’’ and polyampholytes,”
pH,** chain stiffness,”* crowding due to neutral polymers,
and the self-assembly of coacervate-forming block copolyelec-
trolytes.”*

Here, we experimentally and theoretically demonstrate how
interactions between a guest molecule and polyion binding
sites within complex coacervates can shift the protonation state
of the guest molecule in a coacervate-dependent manner.
Experimental model systems of coacervates composed of
polylysine (polyK) and polyaspartate (polyD) with a range of
lengths including symmetric and asymmetric polyion lengths
were chosen due to their chemical simplicity and their
chemical similarity to phase separating proteins in cells.'” A
transfer matrix approach was employed to generate phase
diagrams and predict changes in the protonation state for a
small anionic guest molecule. This approach allowed us to
evaluate the impact of varying the length of polycationic and
polyanionic species on the availability of cationic binding sites
for the guest molecule. Experimentally, the use of a fluorescent
ratiometric pH indicator (SNARF) as the guest molecule
provided a means to determine its protonation state inside the
coacervates. Results from theory and experiment showed good
agreement for the impact of different polyion length pairings
on the phase behavior and guest protonation state. Theoretical
calculations demonstrated this relationship further by testing
various sizes and charges of guest molecules. This work
provides a mechanistic understanding for the observed changes
in apparent local pH within coacervate droplets and points to
scenarios where the effect of electrostatic interactions between
guest molecules and the component polyions can be expected
to have the largest impact on guest protonation states (or other
charge equilibria). Coacervate microenvironment-mediated
changes in guest molecules are of interest for controlling
reactivity in artificial cells and can be expected to play a role in
the biochemistry of intracellular membraneless organelles.

B METHODS

Chemicals and Sample Preparation. Poly(L-lysine
hydrochloride) (PolyK, Kn, degree of polymerization n = 10
and 30 (K10 and K30, respectively)) and poly(L-aspartic acid
sodium salt) (PolyD, Dm, degree of polymerization m = S, 10,
30, and 100 (DS, D10, D30, and D100, respectively)) were
purchased from Alamanda Polymers and were used without
further purification. Peptide stock solutions were prepared by
dissolving them in HPLC water followed by pH adjustment to
pH 8.2 + 0.1 by 1 M NaOH with peptide concentrations from
50 to 300 mM in monomeric concentrations depending on the
lengths of polypeptides. The ratiometric pH indicator dye $-
(and 6)-carboxy SNARF-1 (C-SNARF-1 or SNARF, CAS No.
126208-12-6) was purchased from ThermoFisher Scientific
and dissolved in HPLC water to 2.5 mM. Aliquots of SNARF
stock solution were mixed with coacervate samples to be 25
uM in final concentration. The coacervate with SONARF
samples was prepared by mixing stock solutions in this order
allowing a homogeneous partitioning of SNARF in coacervate
droplets: water, salt buffers, Tris buffer (pH 8.1 + 0.1 of 10
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mM in final concentration), polyD (10 mM in monomeric
concentration), SNARF, and polyK (10 mM in monomeric
concentration). Samples with “no added salt” contain only the
salts coming as counterions for polypeptides, while low and
high salt samples have an additional 15 mM KCl or 150 mM
KCl with 0.5 mM MgCl, in final concentration, respectively.

Turbidity Measurement. 100 4L of coacervate samples in
each salt concentration was prepared in each well of a Corning
96 well special optics plate. Absorbance spectra for each well
were recorded from 300 to 1000 nm using a Tecan M1000 Pro
microplate reader. The UV—vis absorbance value at 500 nm is
used to calculate turbidity of coacervate samples using the
formula turbidity (%) = 10 ~ AbS0 mmcoscemare + AbSs00 mmstutie) * The
turbidity fitting method is based on the method described in
previous work.'> Turbidity curves as a function of KCI
concentration were fit to the modified Hill equation (eq 6),
using weighted fitting by IgorPro Ver. 6.37 software. The
fitting parameter S, , is the concentration of K* at the half-year
maximum that states the transition salt concentration of
coacervate formation (Table S1). The fitting parameter T,
indicates the maximum turbidity at 0 mM KCI, which was
determined from the fit. The fitted value of n ranged from 4.7
to 17.6 according to the steepness of the curve. In deriving eq
6, the minimum value of the turbidity was set to zero, which is
consistent with all of the data.

1
([K*1/S, )" + 1

max

(6)

Local Apparent pH Measurement. Local apparent pH
measurement was performed as described in our previous
work."” For the calibration curves, emission spectra of SNARF
from 560 to 700 nm in various pH solutions were measured by
a Jobin Yvon Horiba FL3-21 fluorometer with 5 nm slit size, 5
average scan, and 543 nm excitation. The pH of calibration
solution was adjusted by addition of NaOH or HCI solutions
and measured by a Mettler Toledo Ultra Micro ISM electrode
(micro pH probe). For coacervate samples, we measured the
SNARF emission curves in coacervate droplets in/out by
lambda scan using an Olympus Fluoroview 1000 confocal
microscope simultaneously (Figure S1). Excitation was
provided by a 543 nm laser with varied intensity and gain to
prevent saturation of the SNARF emission: 35—50% laser
intensity and 500—600 V gain. An RP 20/80 filter was utilized.
The lambda scan was collected with a 5 nm step size and 10
nm bandwidth. Ten ROIs per image were collected to estimate
the local apparent pH of coacervate droplets from three or
more independent samples. We then measured the pH of
supernatant phase by a micro pH probe after 2 h of
equilibration and 15 min of centrifugation. We validated the
calibration by comparing the dilute phase pH by electrode to
the estimated apparent pH of dilute phase by confocal
microscopy (Figure S2). We performed control experiments
showing Tris buffer, MgCl,, or initial pH of samples does not
alter the local apparent pH trends in Figures S3—SS5.

Theoretical Models for Polyelectrolyte Liquid—Liquid
Phase Separation. We model polyelectrolyte coacervation in
the pH range where both polyelectrolytes are fully charged by
using the transfer matrix model. The transfer matrix approach
accounts for charge correlations in polyelectrolyte solutions via
“ion pairing” or polymer connectivity arguments.”" This is
motivated by simulation models, which exhibit pair correlation
functions with features that are primarily governed by spatially

adjacent neighbors.”® We account for the high salt and polymer
concentrations necessary for coacervation by mapping the
complicated three-dimensional structure of a coacervate
system into a simplified adsorption model shown in Figure
1a.*""%7> The test polyelectrolyte chain is treated as a series of

A

Figure 1. Schematic describing the transfer matrix model of
polyelectrolyte coacervates. (A) Coacervate-forming polyelectrolyte
solution consisting of polycations (orange), polyanions (blue), cations
(teal), and anions (yellow). In the transfer matrix model we consider
test polymers, such as the boxed polycation, which are mapped to a
one-dimensional adsorption model shown in panel (B). In this
representation, the adsorption sites can have states denoted as S, P,
P’, or 0. The transfer matrix formalism systematically builds up the
partition function on a monomer-by-monomer basis (indicated by the
red arrow), accounting for the contributions of each possible state to a
single-chain interaction free energy.

adsorption sites that can adsorb oppositely charged species.
Each adsorption site can enter into one of four states
depending on whether the adsorbed species is the oppositely
charged salt ion (S), polyelectrolyte (P or P’), or if the site is
vacant (0). Figure 1b illustrates these four states as well as the
difference between the initial adsorbed polyelectrolyte charge
(P’) and subsequent sequentially adsorbed polyelectrolyte
charges (P). We denote the state of adsorption site i as 5; = {S,
P, P/, 0.

We define the transfer matrix as the Boltzmann factors
associated with the energetic contributions from pairs of
adjacent monomer sites with states s;,; and s; (eq 1).

SS Sp SP° SO A
M PS PP PP PO 0 E_ 2E_ 0
% |p'S PP PP PO| |[B_ B_ B_ B

0S OP 0P 00 D D D D
(1)
The first form of the matrix depicts the pairs of states for each
matrix element with the i + 1 state, followed by the i state. We
define A_ = exp(fus_) = Agps_, B_ = exp(Bup_) = Bypp_, and
D = exp(—€) = 1. The last term is dependent on €, which is
the energetic penalty incurred when site i + 1 is unpaired and
thus has an adsorption state of 0. The A and B_ are
exponential factors related to the salt and polymer species

chemical potentials, respectively. They carry a subscript “—” to
denote that these terms apply to the species adsorbing to the
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test chain polycation chain are negatively charged. The E
term is written as E_ = (Np_ — 2)/Np_, which deviates from
the value E_ = 1 used in our prior work®*”" to account for the
probability of reaching the end of the adsorbed polyanion
chain; this is non-negligible when we consider short adsorbing
chains.

Using the grand canonical ensemble and M,

5.5 as defined

above, we can demonstrate that the partition function for a

polycation of length Np, E, (Np), used to describe this
3

adsorption model is in eq 2.

E‘int,+(1\]I’) = Z Z Z Z MSN,SN_IMSN_I,SN_ZMSN_z,SN_3Eint,+(llsl)

SN SN-1 SN-2 SN-3
()

Bin+(1ls;) is the partition function for the end of the
polycation test chain which is given by the vector (eq 3).

E‘int,+(llsl) = \_130 =[A_ 0, B, D]T (3)

We can write the recursive partition function equation more
compactly using ¥, and ¥T = [1,1,1,1] to give eq 4.

o T -
B+ (Np) = lIllMl\rP“Po (4)

Here, M"™ indicates the Np, multiplication of matrix M,
reflecting the degree of polymerization of the polyelectrolyte.
The transfer matrix formalism used to define =, ,(Np)
accounts for the interaction of a test chain with the adsorbing
species of opposite charge. We can incorporate this into the
overall free energy density for a coacervate-forming solution of
polyelectrolytes (eq S).

7: ¢p+ ¢P—
— = In + —In + In
L o T8 WZ¢ 4,
P
- D Sint+ — T M S -
N, 2N,_

3

+ A, + P, )+ D 4,

a=+,—

+ Sy, — by + g, — b T+ 1 (dy, + )

()
The first three terms account for the configurational entropy of
mixing, and the next two terms are the interaction free energies
as determined by transfer matrix theory. The subsequent terms
(terms six and seven) depict the charged particle hard-sphere
packing penalty and an electroneutrality constraint, respec-
tively. The final term consists of a y contribution to account for
the polyelectrolyte solvophobicity.

This free energy expression accounts for two-body pairwise
interactions via both the transfer matrix calculations and the y
contributions to the free energy. While the transfer matrix
calculations account for some local correlations that represent
higher-order charged interactions, we also include a phenom-
enological cubic term to represent the higher-order excluded
volume repulsions between charged species.”””" This excluded
volume term accounts for the packing free energy at high
volume fractions, which is significant for coacervates where the
volume of solute species can be as high as 10—30%.” The
electroneutrality term is needed to maintain electroneutrality
in our Monte Carlo (MC) scheme (described later) and
penalizes systems that deviate from electroneutrality in each

phase. We use a large constant {,, = 50.0 to strongly penalize
these deviations. We calculated the phase boundaries in this
model by starting the calculation with two identical system
compositions. We then move a random amount of each species
(anion, cation, polyanion, polycation, or water) from one
system to the other, maintaining the initial composition of the
two systems combined. The new free energy density for each
box is calculated and compared to the previous system free
energy AF = F,,, — Fq. The new systems are either accepted
or rejected based on the Metropolis criterion, pacc = min[1,
exp(—pAF)]. This MC-based scheme has the advantage of
efficiently evaluating phase behavior in multicomponent
systems, but deviations in the location of the phase boundaries
can occur due to the stochastic nature of these calculations.
This is addressed in part by including a prefactor to the free
energy AF — C,AF, where Cj is increased until the minimum
free energy state is found.

For this paper, we perform these calculations with a variety
of parameters; we vary the lengths of the polyelectrolytes by
keeping the polyanion length at one of two values (Np— = 10,
30) and varying the polycation length Np, = S, 7, 10, 30, 100 to
represent the various lengths of the polyK and polyD
polypeptides considered in experiment. We use several
parameters established in our prior work,’* assuming that the
positive and negative polyelectrolyte parameters are equivalent:
Ay = 41.0, By = 244, £ = 19.0, and A = 0.6875.

Local Apparent pH Calculation Using Computational
Models. We use transfer matrix theory to predict the observed
apparent pH difference, ApH,, between the supernatant and
coacervate phases of a coacervate-forming system. The ApH,
reflects the local change in the equilibrium charge state of dye
molecules used to measure pH in the two phases; in
experiment, this dye is SNARF-1, but for geometric parameters
in the theory we will occasionally use values associated with
rthodamine B, a dye molecule in the same family.”*”> To
understand how the charge state of the dye molecules is
affected by the coacervate environment, we consider the
physical system in Figure 2. The dye is modeled as having two
different off-chain charge states: A, which has a charge of zp,. =
—2, and B, which has a charge of zp,, = —3 with an energy of
equilibrium associated with charge states A and B defined as

a) b)
@'\.B. ® ]
(=== — GE=E=

®

P S 0
Figure 2. Schematic illustrating our model for SNARF protonation—
deprotonation and apparent pH in the presence of coacervate-forming
polyelectrolytes. Our three-state model considers that the dye
molecule (pink) exists in a pH-dependent equilibrium between
different protonation states away from the polyelectrolytes (a,
between states A and B). The two states exhibit different fluorescence
spectra, which is the typical behavior of this dye when it is used to
report pH. However, in a coacervate the dye can adsorb to a
polyelectrolyte monomer in state S or 0 (b, state C) where it remains
in the highly charged state due to the favorable electrostatic
interactions with the polyelectrolyte species. This adsorption affects
the equilibrium of the two protonation states, which is observed as a
shift in the effective pH.
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Figure 3. Model polypeptide system and coacervate characterization. (A) In experiments, we form complex coacervates from a series of poly(L-
lysine) (polyK) and poly(L-aspartic acid) (polyD), with n and m monomeric units, respectively. Specific chains and lengths are written as Kn and
Dm in our notation, and visual representations will model monomers of polyK and polyD as orange and blue circles, respectively. (B) Coacervate
formation is characterized by turbidity, which is also apparent visually; the turbid solution on the left is forming a coacervate, which is seen in
corresponding micrographs that show the coacervate droplets, and the solution on the right is transparent and thus a single miscible phase. Images
correspond to the samples of 1 mM K10 and 1 mM D10 in 10 mM Tris (pH 8.2) and in 15 mM KCl with 0.5 mM MgCl, (left, turbid) or 600 mM
KCl with 0.5 mM MgCl, (right, clear). Black and white squares (0.5 X 0.5 cm?) at the backgrounds are used to ease the visual comparison of the

turbidity of solution.

AE,. We also consider there to be a single “ion-paired” state C,
which has a charge of zp,, = —3. We assume that there is a
significant electrostatic benefit of being in this highly charged
state next to the oppositely charged chain, precluding the
possibility of an zp,, = —2 state on the chain. The equilibrium
among A, B, and C in Figure 2 is affected by the local charge
environment in the coacervate and supernatant phases, namely,
the likelihood of the dye adsorbing to the polymer chain
altering the probability that the dye is in the zp, = —2 versus
Zpye = —3 charge states. To model how the coacervate versus
supernatant environments affect this equilibrium, we treat the
dye as a sixth component to the system but one that does not
affect the coacervate phase equilibrium. Upon determining this
equilibrium state, we consider that the dye can adsorb to the
test chain in the sites unoccupied by the adsorbed polymer or
salt. This means that if the state of an adsorption site is 0, a dye
molecule can be adsorbed, and a dye molecule cannot be
adsorbed if the state of the site is S, P, or P’. The volume
available to the unabsorbed dye is defined by the volume
fraction ¢,:

_ 103 d1ln E‘int,P+ o
Np, O, Np, 0 P+
(7)

Here, the second term is the product of the fraction of
unoccupied sites on the polyelectrolyte chain (in parentheses)
and the volume fraction of the chain itself. We subtract from
one because we want to determine the volume of everything
except the unoccupied sites, which is where the dye would
adsorb. For our results, we use = p, for the lowest salt

¢p_ 0ln :‘int,P+

concentration for each system, corresponding to the salt
condition where the most phase separation occurs. The system
depicted in Figure 2 also has an energy of interaction term that
describes the pairing interaction between the dye and the
adsorption site. This is an attractive Coulombic energy
contribution, €, that depends on the interaction distance
between the center of the dye molecule and the center of the
adsorption site. We describe the distance of interaction, o,,, by
eq 8.

Opnt = Opy T ODye (8)
The attractive ion pairing energy, €, is given by

2
ZDyeZp+¢

€ =
4me ey Oy (9)
Here, zp,, is the charge valency of the dye in state C, zp, is the
charge valency of the adsorption site, ¢* is the elementary
charge, €, is the permittivity of free space, and W is the
dielectric constant of the solvent. In our system, we use the
dielectric constant of water for the solvent, €y = 78.5, and use
bulk densities to estimate the interaction length scales op,. =
9.11 A and op, = 5.26 A. We use ¢, and ¢, to calculate the
ratio between the amount of dye in charge states B, f5, and C,
fc, to the amount of dye in charge state A, f,, in the coacervate
phase. This ratio is given by eq 10.

htfe| _drQ-de
fA ¢u (10)

coac
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Figure 4. Comparison of experiments and theoretical calculations for complex coacervation behavior as a function of salt concentration. (A) and
(B) quantify this turbidity over several lengths of polyK and polyD as a function of salt concentration. Adapted with permission from ref 12.
Copyright 2020 Springer Nature. K10/D30, K10/D100, K30/D10, and K30/D100 are newly included here. In general, phase separation is no
longer observed (i.e., turbidity is 0%) above a salt resistance S,,,, and this occurs at an increasing salt concentration as polyD and/or polyK
increases in length. (C) and (D) show this same trend using the transfer matrix theory, which shows similar values of S, , as in the experiment for
the quantity @ which serves as a proxy for turbidity in our model and is a function of the difference in water concentration A¢yy in the coacervate

versus supernatant phases.

The factor of 3 in the state C Boltzmann factor e 3/
corresponds to the three adsorption sites that can bind to
dye of valency zp, = —3. AE, accounts for the energy
difference between the B and C states and the A states, which
is related to the bare equilibrium constant between the —2 and
—3 charged states. Using this, we more simply define the ratio
between fj and f, in the supernatant phase to be eq 11.

S| _ o
=e

A

sup (11)

We use the preceding two equations to calculate the ApH,
using eqs 12 and 13.

[fg;rfc] o
APH — _ln A coac

' A
fa
sup

(12)

(13)

AE, is present in both the coacervate and supernatant
equations; therefore, the result does not depend on its value.
The addition of e is a phenomenological term that shifts
the graph vertically and may be attributed to dielectric or
solubility differences between the two phases not taken into
account in this minimalist model. We keep this parameter
constant at fE, = 1.65 for all conditions we consider. Using the
methods described in this section, we investigated the effects of
mismatched chain lengths on coacervation.

B RESULTS AND DISCUSSION

Phase Diagram of Length Mismatch Polyelectrolyte
Coacervation. We first characterize the polypeptide systems
that we will use in this paper to relate the experimental
observations and theoretical predictions of phase behavior and
provide context for understanding the local electrostatic
environment within the coacervate droplets. Figure 3a shows
our experimental system, a set of polylysine (polyK)/
polyaspartate (polyD) polypeptide pairs with varying polyK
and polyD lengths (denoted as Kn and Dm, where n and m are
the degrees of polymerization for each polypeptide). The
ability to form a coacervate phase is experimentally determined
by turbidity measurements and optical microscopy, as shown
in Figure 3b, which compares a turbid coacervate suspension,
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Figure S. Theoretical phase diagrams for polypeptide coacervates. The full phase diagram, on the salt volume fraction ¢g versus polymer volume
fraction ¢p plane, for K10 (A) and K30 (B) for several polyD lengths each. Both volume fractions and corresponding salt concentrations are
plotted, allowing us to make predictions for the polymer concentration in the coacervate phase for use in modeling the apparent pH. Representative

tie lines are denoted, illustrating the partitioning of salt in each phase.

where microscale coacervate droplets scatter light to make the
solution cloudy (left images), with a clear peptide solution that
has not undergone phase separation (right image). Complex
coacervation is sensitive to the solution ionic strength. Figures
4a and 4b plot the turbidity of Kn + Dm solutions with several
chain lengths as a function of increasing solution ionic strength
(as added KCl). In Figures 4a and 4b, K10 and K30,
respectively, are combined with DS, D10, D30, and D100.
These measurements are performed at a fixed polymer
concentration (10 mM in monomeric concentration for each
PolyK and PolyD) and a stoichiometric 1:1 K:D monomer
ratio, where the extent of coacervation is expected to be
maximum.”’ These turbidity measurements were used to
quantify the salt concentration where turbidity is at 50% from
the parameter from turbidity curves fitting (S;/,, Table S1),
which is obtained from eq 6 in Figures 4a,b and is a useful
proxy for the strength of coacervation. Salt resistance increases
with the lengths of Kn and Dm chains, consistent with previous
experimental and theoretical efforts.'*”’

To demonstrate that theory can help us understand the
electrostatic environment within a coacervate, we show that
our transfer matrix method yields phase behavior consistent
with the experimental data in Figures 4a,b. As described in the
Methods section, we use a Monte Carlo algorithm and the free
energy in eq 5 to find the coexisting coacervate and
supernatant phase compositions. We run these calculations
starting at a low polymer concentration ¢, = 0.01 and then
systematically increase the salt concentration ¢s. A system
undergoing phase separation will equilibrate to two phases a
and S with significantly different values of ¢% # ¢%; however,
with increasing salt concentration, these values become
increasingly close. We approximately relate this to turbidity
by quantifying the difference in the water concentrations
between the two phases % — ¢y = Aghy, as the concentration
of water will be the primary factor in the refractive index
differences between the phases that are responsible for turbid
coacervates. We choose to use a value

_ 2
a=100% x (1 — e %) that maps the compositional
difference to the scale of the optical measurement using an
empirical parameter A = 5000. This is a nonrigorous

mapping,”®’” but it is motivated by the relationships between
dielectric constant mismatch and turbidity in the light
scattering literature and reaches the appropriate limits of
A¢pyw — 0 and Ay — oo as 0% and 100% turbidity,
respectively. The results are plotted in Figures 4c and 4d for
the K10 and K30 series, respectively, showing that our model
can indeed exhibit phase behavior consistent with the
experiments in Figures 4a and 4b. Similar to the experimental
data, an increase in the length of either the polyK or the polyD
leads to an increase in the salt resistivity. It is not prudent to
make a quantitative comparison between these plots, however,
due to (1) the empirical mapping between turbidity and Ay,
and (2) the need to parametrize the relationship between the
molar concentration of salt and polymer in the experiment
versus the volume fractions of the same species in theory.
Nevertheless, these results establish a qualitative consistency
between the experimental peptide-based coacervate system and
the transfer matrix model.

The qualitative agreement between salt stability behaviors
observed in experiment and theory, shown in Figure 4, allows
us to predict full coacervation phase diagrams as a function of
length mismatch in polypeptide pairs (Figure S). It is
experimentally impractical to obtain these phase diagrams
due to the technical challenges involved with measuring the
polymer and salt concentrations in both the coacervate and
dilute phases for small sample volumes. However, the
thermodynamic predictions from our theoretical model allow
us to determine the conditions in the polymer-rich coacervate
and polymer-dilute supernatant relevant to our experimental
measurements of their local electrostatic environments. We
plot phase diagrams in Figures 5a and Sb for K10 and K30,
respectively, as calculated using the transfer matrix model. For
both polycation lengths, we see that the two-phase coexistence
region expands with a concomitant increase in polyanion
length. We break down each term in eq 5 in the Supporting
Information (Figure S6) to illustrate the principal contribu-
tions to phase separation and to show that the polyanion and
polycation lengths affect phase separation via their mixing
entropy terms. We indicate in Figure 5 the conditions where
we performed the salt stability calculations in Figure 4 and
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note that the dramatic decrease in a corresponds to the
binodal curve that demarcates the phase coexistence; this again
moves to higher salt concentration with increasing polyanion
and polycation length. Notably, the critical salt concentration
of coacervation appears to be more sensitive to the length of
the shorter polyelectrolyte. For example, the coexistence region
for K10/D100 in Figure Sa is significantly smaller than the
coexistence region for K30/D30 in Figure 5b, with the increase
in the polyK length from 10 to 30 being more important for
the phase behavior than the decrease in the polyD length from
100 to 30. These trends are broadly expected based on the
increasing importance of the translational entropy at small
chain lengths, which has been seen in the experimental and
theoretical literature as phase diagrams exhibiting chain-length-
dependent effects for small chains <50 monomeric units
long.*>*"** Also consistent with prior literature is the
prediction that the tie lines connecting two coexisting states
exhibit negative slopes, indicating preferential salt partitioning
into the supernatant phase. While we do not quantify salt
partitioning in this study, the negative slope of the tie lines is
consistent with experimental phase diagrams of coacervation
including those formed by polypeptides (ie, polyK and
polyglutamic acids).”"**

Despite several points of qualitative agreement between the
experiment and theory, we do note that this thermodynamic
model does not account for specific chemical group effects.
Our model would predict the same phase diagrams for
symmetric polyelectrolyte pairs K10/D30 and K30/D10;
however, we note that the experimental salt stability behaviors
of K10/D30 and K30/D10 are different (Figure 4ab and
Table S1). We attribute this disparity to chemical differences
not considered in our theoretical model, such as differences in
charge solvation or specific ion effects, which would require
more detailed molecular simulation or extensive parametriza-
tion to account for this non-negligible experimental observa-
tion. Nevertheless, by integrating our theoretical model with
fluorescence measurements, we do not need this level of
chemical detail to obtain insights into how different length
pairs of polyK and polyD affect the local electrostatic
environment within the coacervate phase.

Local Apparent pH of Coacervates by Length-
Mismatched Polyelectrolyte Pairs. To investigate the
coacervate microenvironment as a function of polyK and
polyD length, we used S-(and 6)-carboxy SNARF-1 (SNARF),
which is a widely used ratiometric pH indicator that is less
sensitive to different levels of partitioning to measure local pH
in cells”® or polymer microspheres’” and on charged surface
nanoparticles.”” The local apparent pH of both the coacervate
phase and dilute phases can be estimated by the ratio of the
fluorescence intensity of dual emission peaks corresponding to
protonated and deprotonated statues of SNARF (see more
details in the Methods section, Figure 6a). The equilibrium
between these states is sensitive to the local electrostatic
environment; for example, if SNARF localized near an
oppositely charged polyelectrolyte within a coacervate is
more deprotonated than in dilute solution, the local apparent
pH of that microenvironment will be reported as more basic
(Figure 6b). We previously observed that for coacervates
composed of polyK and polyD, SNARF indeed reports a more
basic environment than the coexisting supernatant phase. This
is ostensibly due to differences in the local electrostatic
environment, in particular when SNARF is localized near the
oppositely charged polyelectrolyte as indicated in Figure 6b.

We consider the hypothesis that strong electrostatic inter-
actions of the dye with charged monomers affect the
protonation equilibrium of SNARF that is interpreted as a
change in the apparent pH.

We use the molecular weights (lengths) of the coacervate-
forming polyelectrolyte species as a parameter to vary the
physical state of the coacervate and thus indirectly probe the
local electrostatics responsible for the apparent pH change.
Previous work by some of the authors has demonstrated, in
certain cases, that a significant physical change can be induced
that leads to large apparent pH shifts. In Figure 7a, we plot the
apparent pH shifts for several combinations of polyK and
polyD lengths; as a reference, we directly measure the pH of
the dilute phase (open circles) and compare them with the
ratiometric pH from SNARF (blue, open squares). There is
agreement between these two measurements, confirming the
ability of SNARF to accurately measure the apparent pH. We
also plot the apparent pH of the polymer-dense coacervate
droplets (red, filled squares), which for several situations
exhibit significant deviations from the apparent pH of the
dilute phase. The extent of these deviations depends on the
specific combination of chain lengths of the polypeptides, and
so we plot in Figure 7b the difference between the dilute and
coacervate phase apparent pH values (ApH, = pH. — pH,)
versus a metric describing the chain length disparity
AN = (Np, — Np_)/(Np, + Np_) and generally increases
(decreases) with the length of the polyK (polyD). For both
the K10 and K30 series, we observe a monotonic increase in
ApH, with AN, which for a given polyK is associated with a
decrease in the chain length of the polyD. This means that
deviations from the dilute solution pH are exacerbated when
the length of the polyD becomes small. Similarly, the K10
series exhibits a larger ApH, than that of the K30 series, such
that this is true for the polyK as well.

We use our theoretical transfer matrix model, described in
detail in the Methods section, to suggest a mechanism for this
behavior consistent with the experimental data. The ApH,
represents how the equilibrium between the two protonation
states is affected by the surrounding electrostatic environment.
Taking the pH, as a reference for the protonation equilibrium
in dilute solution, we assume that the highly charged,
deprotonated state of SNARF is stabilized when it is adjacent
to a polyelectrolyte of the opposite charge. In the Methods
section, we describe how we quantify the equilibrium between
a “free” SNARF molecule far away from the polyelectrolyte and
a “paired” SNARF molecule that is localized near these same
chains. In the coacervate phase, the finite concentration of the
polycation leads to an abundance of available pairing locations
for SNARF, which appears more basic due to the consequent
stabilization of the deprotonated state. In Figure 7c, we plot
the results of these calculations for mismatched chain lengths
on the same ApH, versus AN plot considered in Figure 7b.
This is done for two situations: one in which the SNARF
molecule can be in either —2 or —3 charge states (filled
symbols) and one in which it can be in either —1 or —2 charge
states (open symbols). These situations represent different
options for how SNARF interacts with the polycation; the —1/
—2 version assumes that the polycation interacts with the
overall charge on the dye molecule, while the —2/—3 version
assumes that the polycation interacts with the side of the
molecule with negatively charged moieties and the positively
charged (imine) group does not participate. The magnitude of
the ApH, shift in the experiment appears to be more
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consistent with the second option, though both situations
show similar trends.

Our theoretical argument suggests that there are two
features affecting the ApH, shift: (1) the fraction of paired
versus open sites on the polycation and (2) the concentration
of the polycation itself. These are accounted for in the
parenthetical factor and ¢y, factor, respectively, in eq 7, and
we argue that through both of these mechanisms the apparent
pH shift is almost entirely attributable to the concentration of
the coacervate phase. This is shown to be plausible in the
experiment, which shows a shift in the dye pK, in the presence
of pure polycation (K10, Figure S7). To demonstrate this
relationship, we plot ApH, versus ¢p, in Figure 8 for the
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Figure 8. Theoretical prediction for the apparent ApH, of coacervate
droplets versus the coacervate polycation density ¢bp, for several
lengths of polyK and polyD as well as salt concentrations. We plot
both different lengths of polyK and polyD (distinguishing K10, filled
circles, and K30, open squares) and salt concentrations (with different
colors corresponding to low, medium, and high salt concentrations).
A detailed accounting and discussion of the specific length and salt
conditions is included in the Supporting Information (Table S2). All
of these conditions exhibit a collapse to a single curve, demonstrating
that polycation density ¢y, is the primary determinant of the apparent
pH shift and leading us to attribute this shift to the local
concentrations of polycation sites that can stabilize the negatively
charged dye in its deprotonated state.

theoretical predictions for several combinations of chain length
and salt concentration. We briefly note that we did not
consider salt concentration in the experiments but can
straightforwardly include in our theory to show that ApH,
increases with salt concentration and supports the generality of
our conclusions. Indeed, all these systems exhibit a near
collapse onto a single curve. Some subtle differences are
apparent, with K10 points being slightly higher than K30
points, but the collapse is excellent over essentially the entire
parameter space we consider. We note that this connects
something we can measure experimentally (the ApH, shift) to
something that is difficult to measure directly (the concen-
tration ¢bp, in the coacervate phase) and that an increase in the
former corresponds to a decrease in the latter. The
consequences of this are 2-fold: First, any probe-based measure
of local pH may not be measured by pH but rather the
specifics of its interaction with the dense, polyelectrolyte-rich
milieu of the coacervate phase. Indeed, we contend that the
apparent shift in pH (ApH,) is better thought of as a shift in
the pK, of SNAREF, as our model did not require that the actual
pH (i, the concentration of H+ ions) is changing. Second,
while a quantitative connection would require parametrization
and/or calibration, pH probes may be a useful way to report
on phase composition through this pK, shift in situations
where the polymer concentration is otherwise inaccessible.
Effect of Dye Size and Charge on ApH, Shift. We
demonstrated that in a dense coacervate phase the
protonation—deprotonation equilibrium of the pH-sensitive
dye SNARF can be affected by strong electrostatic interactions
with the oppositely charged polyelectrolyte species. This serves
as a proxy for coacervate concentration, but we also expect this
effect to be generalizable to other dyes and sensitive to the
strength of the electrostatic attractions between the poly-
electrolyte and dye species. While this is challenging to
systematically adjust in an experiment, without the complicat-
ing effects of solvation due to changes in chemistry, we can
consider how changes in the dye affect theoretical predictions.
Dye electrostatic effects enter in two places in our formalism.
First, the attractive Coulomb energy given in eq 9 is a function
of both the valency of the charge zp, and the interaction
distance between the two species o, Second, there is a
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Figure 9. Theoretical prediction of the shift in apparent pH for guest molecules of different charge valencies. The apparent shift in pH AApH, is
normalized to a reference at the smallest value of AN and is plotted for the K10 (A) and K30 (B) series. Purple symbols are the apparent pH
difference values shown in Figure 7, using the charge valencies —2 to —3. In general, an increase in the valency corresponds to larger shifts in the
apparent pH, which we attribute to the larger electrostatic stabilization of the guest molecule by the oppositely charged polyelectrolyte in the

coacervate.
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Figure 10. Theoretical prediction for the shift in apparent pH for guest molecules of different relative molecular size y. The apparent shift in pH
AApH, is normalized to a reference at the smallest value of AN and is plotted for the K10 (A) and K30 (B) series. Black symbols are the apparent
pH difference values shown in Figure 7, with the size chosen by SNARF-1 that serves as the reference (so 7 = 1). In general, a decrease in the
valency corresponds to larger shifts in the apparent pH due to the stronger electrostatic interactions with the guest molecule and the oppositely

charged polyelectrolyte in the coacervate.

valency-dependent prefactor in eq 10 that accounts for the
simultaneous binding of the dye to multiple connected
polyelectrolyte monomers, which using typical ion pairing
arguments effectively increases the valency of the polymer to
match the valency of the SNARF molecule.

We have been focusing on the specific valency of the pH-
sensitive dye SNARF (z4,, = —2 versus zq, = —3), but other
pH-sensitive dyes could be selected that are in equilibrium
between states of different valencies. We can include this more
general case by modifying eqs 9 and 10, through both the value
of gpy. and the prefactor in the Boltzmann factor in eq 10.
Because we assume that a small amount of dye does not affect
the equilibrium phase behavior of coacervates, we can
immediately calculate the ApH, as a function of AN for
several different sets of valencies for both the K10 and K30
series (in Figures 9a and 9b, respectively). We normalize these
trends to facilitate comparison between the different situations
by normalizing to the leftmost point (ApH, .¢) in each series
to obtain AApH, = ApH, — ApH,,.. We justify this
comparison by noting that the vertical shift of the overall
curve of ApH, versus AN is set primarily by a phenomeno-
logical energy parameter PE. that accounts for solubility
differences that are dye-specific. We observe that for increasing
valency both series exhibit a much more pronounced shift
AApH, that we attribute to the increased stabilization of the
more highly charged polycation-bound state. Interestingly, in
the limit in which the change in valency goes between z4,. = 0
and z4y, = —1, there is very little shift in the apparent pH. This
provides the straightforward prediction that the sensitivity of a
dye such as SNARF to the electrostatic environment will
depend on its net charge.

This effect is also apparent when the size of the charge rp,, is
changed. This similarly changes the electrostatic ion pairing
energy in eq 9, but this time through modification of the
interaction distance in the denominator. In Figures 9a and 9b
we show how the AApH, versus AN plots are affected by the
relative size y = Opy, /Opyeo Where opy. is the reference size
used for SNARF. For both K10 (Figure 9a) and K30 (Figure
9b), there is a monotonic increase in the pH shift with a
decreasing relative size. This is fully consistent with our
predictions for valency, as a decrease in size increases the
pairing energy at contact between the two charged species. In

contrast, large dyes (y = 3) show significantly less pH shift, as
the chain—dye contact energy is weak in this case.

B CONCLUSION

We used a combination of experiment and theory to
understand how the local electrostatic environment within
polyelectrolyte coacervates can govern the behavior of pH-
sensitive dye molecules. By tuning the length of oppositely
charged polypeptide chains, polyK and polyD, we can change
the density of the coacervate phase and show that there is an
apparent shift in the ratiometric pH indicator SNARF. We see
a correlation between the strength of phase separation, as
determined from turbidity measurements, and the apparent pH
shift. To understand this phenomenon, we establish qualitative
agreement between experimental salt resistance and the
transfer matrix theory of coacervation. This allows us to
predict the composition and thermodynamics of the dense
coacervate phase, which we then use to develop a three-state
model of protonation—deprotonation equilibria in a pH-
sensitive dye such as SNARF-1. In addition to protonated and
deprotonated states, we consider a state where the charged dye
is “paired” with and then stabilized by the oppositely charged
polyelectrolyte. This biases the SNARF molecule toward the
more highly charged state. This simple model can reproduce
the behaviors observed in the experiment, with qualitative
agreement between the apparent pH shift and the length
mismatch of the polypeptide chains.

Using experiment and theory, we demonstrate that pH-
sensitive dyes such as SNARF can register significant shifts in
pH in a coacervate phase, but this represents a shift in the pK,
induced by the local electrostatic environment. Instead, the
fluorescence of SNARF is determined almost completely by
the concentration of oppositely charged polypeptides that can
electrostatically stabilize the highly charged state. We also
predict that the extent of this effect can be significantly affected
by the features of the dye, such as the valency and size, which
determine the strength of the polyelectrolyte—dye Coulomb
attractions. Such an understanding can inform efforts to
minimize this effect, for example, by considering less-charged
molecules as indicators of the local microenvironment. It can
also point to scenarios where larger impacts can be anticipated;
for example, guest molecules having higher total charge and
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charge densities particularly for complex coacervates having
high densities of oppositely charged polyions are more likely to
experience changes in their charge equilibria.

By comparing the apparent pH values reported by guest
molecules between coacervate and dilute phases, we can begin
to understand the local electrostatics of molecules sequestered
in the coacervate phase. Similar cases can be found in the
literature where pH-sensitive dyes were used to sense local
interactions between protein—ligand on supported li?id
bilayers or between small molecules and lipid layers.*"**
Agreement between experimental observations and theoretical
calculations suggests that this effect is general when small
molecules accumulate in dense coacervate phases. Small
molecules would experience different local electrostatic
environments as they actively interact with polyelectrolytes
in coacervates, which may affect their state or function. In this
case, the protonation state was ]é)erturbed, but in general guest
molecules such as metabolites,* drugs.,84 or metal ions® may
have other functional properties affected by local electrostatics
within phase separating compartments. This would also have
important ramifications for systems, such as biomolecular
condensates, where biological function may be sensitive to
electrostatics in phase-separating regions analogous to the
coacervates considered in this paper.
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