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Abstract
ThePainlevé-IVequationhas two families of rational solutions generated, respectively,
by the generalized Hermite polynomials and the generalized Okamoto polynomials.
We apply the isomonodromy method to represent all of these rational solutions by
means of two related Riemann–Hilbert problems, each of which involves two integer-
valued parameters related to the two parameters in the Painlevé-IV equation. We then
use the steepest-descent method to analyze the rational solutions in the limit that at
least one of the parameters is large. Our analysis provides rigorous justification for
formal asymptotic arguments that suggest that in general solutions of Painlevé-IV
with large parameters behave either as an algebraic function or an elliptic function.
Moreover, the results show that the elliptic approximation holds on the union of a
curvilinear rectangle and, in the case of the generalized Okamoto rational solutions,
four curvilinear triangles each ofwhich shares an edgewith the rectangle; the algebraic
approximation is valid in the complementary unbounded domain. We compare the
theoretical predictions for the locations of the poles and zeros with numerical plots of
the actual poles and zeros obtained from the generating polynomials, and find excellent
agreement.
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1 Introduction

1.1 Overview

The Painlevé-IV equation1

u′′ = (u′)2

2u
+ 3

2
u3 + 4xu2 + 2(x2 + 1 − 2�∞)u − 8�2

0

u
,

′ = d

dx
, u : C → C with parameters �0,�∞ ∈ C, (1.1)

1 We use the Jimbo–Miwa notation [40] for the parameters. The parameters (α, β) = (2�∞ − 1,−8�2
0)

are also considered standard and used in many references; see [53, Eqn. 32.2.4].
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for a function u = u(x) is a fundamental equation of mathematical physics with
applications ranging from nonlinear wave equations [6] and quantum gravity [34] to
orthogonal polynomials [28] and random matrix theory [20, 36, 59]. Equation (1.1)
is well known to have a (unique) rational solution if �0 and �∞ belong to certain
real discrete sets described precisely in Sect. 1.2 [37, 43, 52, 54, 57]. These rational
solutions have attracted attention in a wide number of applications including rational-
oscillatory solutions of the defocusing nonlinear Schrödinger equation [22], rational
solutions of the Boussinesq equation [24] and the classical Boussinesq system [25],
rational-logarithmic solutions of the dispersive water wave equation and the modified
Boussinesq equation [27], the point vortex equations with quadrupole background
flow [26], the steady-state distribution of electric charges in a parabolic potential [44],
and rational extensions of the harmonic oscillator and related exceptional orthogonal
polynomials [45]. They also exhibit intriguing patterns of their zeros and poles [15,
21, 23, 46, 47, 54].

There are two distinct families of rational solutions: those that can be expressed via
generalized Hermite polynomials (the gH family), and those that can be expressed via
generalized Okamoto polynomials (the gO family). In the complex x-plane, the zeros
and poles of a gH solution appear to form a quasi-rectangular grid (see Fig. 3). The
aspect ratio of the quasi-rectangle depends on the angle in the real (�0,�∞)-plane,
while the number of zeros and poles grows with |�0| and |�∞|. The gH solutions are
naturally divided into types j = 1, 2, and 3 depending on the angle in the (�0,�∞)-
plane. The microstructure of zeros and poles is different for each type. We label the
gH solutions u[ j]

gH(x; m, n), where m and n are non-negative integers. The zeros and
poles of the gO solutions are more complicated, appearing to form a quasi-rectangle
with quasi-triangles attached to each edge (see Fig. 4). We also (somewhat artificially)
divide the gO solutions into types 1, 2, and 3, and label solutions as u[ j]

gO(x; m, n).
An important difference is that for a given type the gH solutions occupy one sector in
the (�0,�∞)-plane while the gO solutions occupy two opposite sectors. Using our
conventions, for the gO solutions the integers m and n will both be nonnegative in one
of these sectors and both nonpositive in the other.

For either family, if one fixes an angle in the (�0,�∞)-plane and writes T := |�0|
andμ := T −1/2x , the region inwhich zeros and poles lie becomesmore clearly defined
in the μ-plane as T → ∞. In this work, we analytically determine the boundaries
of the quasi-rectangles and (for the gO family) the quasi-triangles in the μ-plane. We
prove that in the exterior of the rectangular and triangular regions, the scaled rational
Painlevé-IV functions T −1/2u[ j]

F (T 1/2μ; m, n) are asymptotically approximated by
algebraic equilibrium solutions of the autonomous approximating equation (derived
in Sect. 1.3) for a function2 Ŭ = Ŭ (ζ )

d2Ŭ

dζ 2
= 1

2Ŭ

(
dŬ

dζ

)2

+ 3

2
Ŭ 3 + 4μŬ 2 + (2μ2 + 4κ)Ŭ − 8

Ŭ
(1.2)

2 Throughout this paper, we use a breve accent to indicate an approximation.
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(see Theorems 1 and 2). Furthermore, for each μ in the rectangular and triangular
domains, we show that, as a function of ζ , T −1/2u[ j]

F (T 1/2μ + T −1/2ζ ; m, n) is
asymptotically approximated by a classical elliptic function solution of (1.2) (see
Theorems 3 and 4). All of these results are new, with the exception of the exterior
asymptotics for the gH family, which were obtained in [15]. Our results assume thatμ
does not lie on the boundaries of the rectangular or triangular regions. We furthermore
exclude the angles ± 1

4π , ±π , and ± 3
4π in the (�0,�∞)-plane, i.e., those angles

for which the zero/pole region collapses to a line segment (for gH solutions) or two
triangles (for gO solutions).

In the remainder of the introduction, we properly define the rational Painlevé-
IV solutions (Sect. 1.2), introduce our scaling conventions and formally derive the
approximating equation (1.2) and describe its solutions (Sect. 1.3), and formulate our
results (Sect. 1.4). To prove our theorems, we first recall in Sect. 2 some symmetries of
(1.1) that allow us to focus on the sectors of parameter space for rational solutions of
type 3 only. Then in Sect. 3 we use the isomonodromy method to derive two versions
of a Riemann–Hilbert problem encoding the gO and gH solutions, respectively; the
reader interested more in the statement of these problems than in their derivation
can find the results in Sect. 3.1. In Sect. 4, we perform the preliminary steps of the
Riemann–Hilbert analysis that are common to both families. In particular, both families
of rational solutions are related to the same spectral curves (see Sects. 4.3–4.4). In
Sects. 5 and 6, we use the steepest descent method to analyze the gO and gH solutions,
respectively, in the exterior of the corresponding zero/pole region. In Sect. 7, we do
the same to study both families within the zero/pole regions. The analysis in Sects. 5–7
produces results that hold under precisely specified conditions that are settled inSect. 8.
In particular, the asymptotic boundaries of the pole/zero regions are determined at this
final stage. In a series of appendices, we display larger versions of certain subplots
from Figs. 3 and 4 (Appendix A), prove a simple result about the vertices of the quasi-
rectangles and quasi-triangles (Appendix B), present a formal asymptotic analysis of
(1.1) near the vertices (Appendix C), give some results on the rational solutions near
the origin (Appendix D), compile the diagrams and tables needed to fill in the details
of the analysis in Sect. 7 (Appendix E), give two “user’s guides” to implementing the
approximations of the rational solutions in their zero/pole regions (Appendix F) and to
computing the boundary curves between the rectangular and triangular regions and the
exterior domain (Appendix G), and briefly discuss an alternate method of analyzing
the rational solutions of types 1 and 2 (Appendix H).

1.2 Rational Solutions of Painlevé-IV

Rational solutions of Painlevé-IV have been studied by many authors, including [2,
3, 21, 23, 37, 43, 52, 54, 57]. See also [61, Sect. 6.1.3] and references therein. One
important fact [37, 43, 52] is that there is at most one rational solution of (1.1) for
given coefficients�2

0 ∈ C and�∞ ∈ C. If�0 = 0, then there are no rational solutions
that do not vanish identically and (1.1) is indeterminate for u(x) ≡ 0, although if one
multiplies through first by u(x) one may consider u(x) ≡ 0 as a rational solution
for �0 = 0 and all �∞ ∈ C. Therefore, we restrict attention to �0 �= 0 for the
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rest of the paper.3 It is also known that the rational solutions come in two families,
one associated with generalized Hermite polynomials and another associated with
generalized Okamoto polynomials.

If thePainlevé-IVequation (1.1) admits a rational solution for a givenvalues of�2
0 ∈

C and�∞ ∈ C, then one can attempt to generate other rational solutions by applying or
iterating elementary Bäcklund transformations [22, 37, 43, 54] such as those described
at the beginning of Sect. 2 (see also Sect. 3.3). These transformations can change
the parameters and when they are determinate, they preserve rationality and hence
produce the rational solution at another point in the parameter space. Therefore, it is not
surprising thatwhen acting on rational solutions, the iteratedBäcklund transformations
induce recurrence relations for certain special polynomial factors (the generalized
Hermite and generalized Okamoto polynomials). Although it is the square �2

0 of the
parameter�0 that appears in (1.1), the effect of Bäcklund transformations on the pair
(�0,�∞) is easiest to understand.

1.2.1 Generalized Hermite Polynomials and Rational Solutions of Painlevé-IV

The generalized Hermite (gH) polynomials {Hm,n(x)}(m,n)∈Z≥0×Z≥0 can be defined
via the recurrence relations [54]

2m Hm+1,n(x)Hm−1,n(x) = Hm,n(x)H
′′
m,n(x) − H ′

m,n(x)
2 + 2m Hm,n(x)

2

2nHm,n+1(x)Hm,n−1(x) = −Hm,n(x)H
′′
m,n(x) + H ′

m,n(x)
2 + 2nHm,n(x)

2
(1.3)

with initial conditions H0,0(x) = H1,0(x) = H0,1(x) = 1 and H1,1(x) = 2x . As
was apparently first shown in [42], the gH polynomials also have expressions as
Wronskians of classical Hermite polynomials; see also [22]. The gH polynomials can
be used to construct rational solutions of (1.1) in the gH family of three distinct types
j = 1, 2, 3. Adapting the notation of [22] to the (�0,�∞) parameter space, we define
three disjoint sets of parameters indexed by pairs of integers as follows:

�
[1]−
gH :=

{
(�0,�∞) = (�

[1]
0,gH(m, n),�[1]

∞,gH(m, n)) : (m, n) ∈ Z≥0 × Z>0

}
�

[2]−
gH :=

{
(�0,�∞) = (�

[2]
0,gH(m, n),�[2]

∞,gH(m, n)) : (m, n) ∈ Z>0 × Z≥0

}
,

�
[3]+
gH :=

{
(�0,�∞) = (�

[3]
0,gH(m, n),�[3]

∞,gH(m, n)) : (m, n) ∈ Z≥0 × Z≥0

}
,

(1.4)
in which the parameters (�[ j]

0,gH(m, n),�[ j]
∞,gH(m, n)) for each type are as indicated

in Table 1.

3 In the literature, the necessary and sufficient condition for existence of a rational solution of (1.1) is
usually phrased as (using our notation) �∞ = 1

2 (M + 1) and either

�2
0 =

[
N − 1

2 (M − 1)
]2

or �2
0 =

[
N − 1

2 M + 1
6

]2
where M and N are arbitrary integers. However, this parametrization incorrectly suggests that when�0 = 0
there is a rational solution exactly when �∞ ∈ Z.
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Table 1 Representation of gH solutions of Painlevé-IV in terms of gH polynomials

Type j �
[ j]
0,gH(m, n) �

[ j]
∞,gH(m, n) τ

[ j]
gH (x; m, n) u[ j]

gH(x; m, n)

1 − 1
2 n 1 + m + 1

2 n
Hm+1,n(x)

Hm,n(x)
2n

Hm,n+1(x)Hm+1,n−1(x)

Hm,n(x)Hm+1,n(x)

2 − 1
2m − 1

2m − n
Hm,n(x)

Hm,n+1(x)
−2m

Hm−1,n+1(x)Hm+1,n(x)

Hm,n(x)Hm,n+1(x)

3 1
2 + 1

2 (m + n) 1
2 + 1

2 (n − m) e−x2 Hm,n+1(x)

Hm+1,n(x)
− Hm,n(x)Hm+1,n+1(x)

Hm,n+1(x)Hm+1,n(x)

In terms of these definitions, the unique rational solution u(x) = u[ j]
gH(x; m, n) of

(1.1) associated to the parameters (�0,�∞) = (�
[ j]
0,gH(m, n),�[ j]

∞,gH(m, n)) can be
written in logarithmic derivative form

u[ j]
gH(x; m, n) = d

dx
log
(
τ

[ j]
gH (x; m, n)

)
(1.5)

for a suitable function τ [ j]
gH (x; m, n) expressed in terms of a ratio of two gH polynomi-

als, or equivalently u[ j]
gH(x; m, n) can be written as a ratio of four gH polynomials, as

shown in Table 1. Hm,n(x) has degree mn, so it follows from (1.5) (and Proposition 4
in Sect. 2) that

u[1]
gH(x; m, n) = n

x
(1 + O(x−2)) = −2�0

x
(1 + O(x−2)), x → ∞, �0 = �

[1]
0,gH(m, n),

u[2]
gH(x; m, n) = −m

x
(1 + O(x−2)) = 2�0

x
(1 + O(x−2)), x → ∞, �0 = �

[2]
0,gH(m, n),

u[3]
gH(x; m, n) = −2x(1 + O(x−2)), x → ∞.

(1.6)
See [15, 21, 54] for more details. The functions u(x) = u[ j]

gH(x; m, n) constitute the
gH family of rational solutions of (1.1).

The parameter pairs in the disjoint union

�gH := �
[1]−
gH 	 �

[2]−
gH 	 �

[3]+
gH (1.7)

are shown as unfilled dots in Fig. 1. Because the Painlevé-IV equation (1.1) only
involves �2

0 while the components of �gH consist of points with a fixed sign of
�0 indicated by the superscript ±, we could in principle also plot the reflections
of all of these points in the vertical �∞-axis. However, there is no need to do so
since each reflected point corresponds to the same solution of (1.1) for the same
effective parameters (�2

0,�∞). Displaying only the points in the three sets (1.4) also
emphasizes that these sets have boundaries that cannot be stepped over; in Sects. 3.3
and 3.6, we will see that at a boundary point any Bäcklund transformation that might
access a “virtual” lattice point beyond the boundary is indeterminate.
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Fig. 1 Unfilled blue/black/green dots: the points in the set �[1]−
gH /�[2]−

gH /�[3]+
gH . Filled blue/black/green

dots: the points in the set �[1]±
gO /�[2]±

gO /�[3]±
gO . Filled red dots: the points of �gO ∩ L . Points in �[ j]±

F for
F = gH or F = gO have ±�0 > 0 (Color figure online)

1.2.2 Generalized Okamoto Polynomials and Rational Solutions of Painlevé-IV

The generalized Okamoto (gO) polynomials {Qm,n(x)}(m,n)∈Z2 can be defined4 by the
recurrence relations [54]

Qm+1,n(x)Qm−1,n(x) = 9
2 [Qm,n(x)Q

′′
m,n(x) − Q′

m,n(x)
2]

+ [2x2 + 3(2m + n − 1)]Qm,n(x)
2

Qm,n+1(x)Qm,n−1(x) = 9
2 [Qm,n(x)Q

′′
m,n(x) − Q′

m,n(x)
2]

+ [2x2 + 3(1 − m − 2n)]Qm,n(x)
2

(1.8)

with the initial conditions Q0,0(x) = Q1,0(x) = Q0,1(x) = 1 and Q1,1(x) = √
2x .

Determinantal representations of the gO polynomials were first obtained in [54], and
in [3] it was shown that the gO polynomials can be expressed asWronskians of certain
classical Hermite polynomials. We emphasize that while the gH polynomials Hm,n(x)
are defined by (1.3) for nonnegative indices m, n only, the gO polynomials Qm,n(x)
are well defined by (1.8) also for negative m and/or n. If both indices are positive,
Qm,n(x) has degree mn + m(m −1)+ n(n −1) which exceeds the degree of Hm,n(x)
by twice the sum of two triangular numbers. From the recurrence relations (1.8), it

4 There are different definitions for the gO polynomials in the literature. Our definition of Qm,n(x) follows
[21] and differs from the original definition in [54].
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Table 2 Representation of gO solutions of Painlevé-IV in terms of gO polynomials

Type j �
[ j]
0,gO(m, n) �

[ j]
∞,gO(m, n) τ

[ j]
gO (x; m, n) u[ j]

gO(x; m, n)

1 1
6 − 1

2 n 1
2 + m + 1

2 n e−
1
3 x2 Qm+1,n(x)

Qm,n(x)
−

√
2

3

Qm,n+1(x)Qm+1,n−1(x)

Qm,n(x)Qm+1,n(x)

2 1
6 − 1

2m 1
2 − 1

2m − n e−
1
3 x2 Qm,n(x)

Qm,n+1(x)
−

√
2

3

Qm−1,n+1(x)Qm+1,n(x)

Qm,n(x)Qm,n+1(x)

3 1
6 + 1

2 (m + n) 1
2 + 1

2 (n − m) e−
1
3 x2 Qm,n+1(x)

Qm+1,n(x)
−

√
2

3

Qm,n(x)Qm+1,n+1(x)

Qm,n+1(x)Qm+1,n(x)

follows easily that [21]

Qm,n(x) = Qn,1−m−n(x) = Q1−m−n,m(x), (m, n) ∈ Z
2.

In particular, gO polynomials with indices of opposite signs can be easily identified
with gO polynomials with either both nonnegative or both nonpositive indices. The
gO polynomials were first studied5 by Noumi and Yamada [54].

In explaining how to construct rational solutions of (1.1) from gO polynomials,
a subdivision of the parameter space into sectors by type j = 1, 2, 3 is somewhat
artificial. Nonetheless we begin by following a similar indexing scheme as for the
components of �gH. First define

�
[1]−
gO =

{
(�0,�∞) = (�

[1]
0,gO(m, n),�[1]

∞,gO(m, n)) : (m, n) ∈ Z>0 × Z>0

}
,

�
[2]−
gO =

{
(�0,�∞) = (�

[2]
0,gO(m, n),�[2]

∞,gO(m, n)) : (m, n) ∈ Z>0 × Z>0

}
,

�
[3]+
gO =

{
(�0,�∞) = (�

[3]
0,gO(m, n),�[3]

∞,gO(m, n)) : (m, n) ∈ Z>0 × Z>0

}
,

(1.9)
in which (�[ j]

0,gO(m, n),�[ j]
∞,gO(m, n) are given in Table 2.

The unique rational solution u(x) = u[ j]
gO(x; m, n) of (1.1) for parameters

(�0,�∞) ∈ �
[1]−
gO 	�

[2]−
gO 	�

[3]+
gO can then be expressed in terms of the gO polyno-

mials either by a logarithmic derivative formula analogous to (1.5), i.e.

u[ j]
gO(x; m, n) = d

dx
log
(
τ

[ j]
gO (x; m, n)

)
, (1.10)

5 Noumi and Yamada derived their results using a symmetric form of Painlevé-IV introduced by Adler [1]
for functions fk (x), k = 0, 1, 2:

f ′
0(x) + f0(x)( f1(x) − f2(x)) = α0

f ′
1(x) + f1(x)( f2(x) − f0(x)) = α1

f ′
2(x) + f2(x)( f0(x) − f1(x)) = α2

where αk are constants satisfying α0 + α1 + α2 = −2 and subject to the constraint that f0(x) + f1(x) +
f2(x) = −2x . For details of the connection with rational solutions, see [23, Eqn. 4.7].
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or directly as a ratio of four polynomials as shown in Table 2.
The division into types j = 1, 2, 3 is artificial for the gO family of rational solutions

because the gO polynomials are defined for arbitrary integer indices. Therefore, each
row in Table 2 actually defines a rational solution of (1.1) at the indicated parameters
for all (m, n) ∈ Z

2. It is easy to see that letting (m, n) range over Z2 in the three
formulæ (�0,�∞) = (�

[ j]
0,gO(m, n),�[ j]

∞,gO(m, n)) produces exactly the same lattice
of parameter values regardless of j = 1, 2, 3, namely

�gO :=
{
(�0,�∞) ∈ C

2 : (�0 + �∞ − 2
3 ,�0 − �∞ + 1

3 ) ∈ Z
2
}
. (1.11)

The points of�gO are shownwith filled dots in Fig. 1.We say that any rational solution
of (1.1) for parameters (�0,�∞) ∈ �gO is a solution in the gO family. It follows from
uniqueness of the rational solution for given (�0,�∞) that there are three different
ways to express every rational solution in the gO family, each in terms of different gO
polynomials. Note that although�gO contains points (�0,�∞)with both signs of�0
for a given value of �∞, no two points of �gO yield the same effective parameters
(�2

0,�∞) of the Painlevé-IV equation (1.1).
The disjoint sets of parameters defined in (1.9) are all contained in �gO but they

do not exhaust it. However, if we define similar sets with negative indices by setting

�
[1]+
gO =

{
(�0,�∞) = (�

[1]
0,gO(m, n),�[1]

∞,gO(m, n)) : (m, n) ∈ Z<0 × Z<0

}
,

�
[2]+
gO =

{
(�0,�∞) = (�

[2]
0,gO(m, n),�[2]

∞,gO(m, n)) : (m, n) ∈ Z<0 × Z<0

}
,

�
[3]−
gO =

{
(�0,�∞) = (�

[3]
0,gO(m, n),�[3]

∞,gO(m, n)) : (m, n) ∈ Z<0 × Z<0

}
,

then the disjoint union �[1]+
gO 	 �

[1]−
gO 	 �

[2]+
gO 	 �

[2]−
gO 	 �

[3]+
gO 	 �

[3]−
gO omits from

�gO only those points for which m = 0 and/or n = 0 in (�[ j]
0,gO(m, n),�[ j]

∞,gO(m, n))
for any j . It is awkward to index them explicitly by integers without overlaps, but
it is easy to see that these are the lattice points of �gO that lie on the union L of
three lines through the point ( 16 ,

1
2 ): �∞ − 1

2 = ±(�0 − 1
6 ) and �0 = 1

6 . The point
(�0,�∞) = ( 16 ,

1
2 ) ∈ �gO gives the parameters for which the Painlevé-IV equation

(1.1) admits the simplest rational solution u(x) = − 2
3 x in the gO family. The lattice

points in �gO ∩ L are shown with red dots in Fig. 1. When (�0,�∞) ∈ �gO ∩ L ,
the rational solution given by any of the formulæ in Table 2 necessarily involves
either Q0,n(x) or Qm,0(x), special cases of Qm,n(x) that are simply called Okamoto
polynomials andwere first studied in [57] (likewise Hn,1(x) = in H1,n(−ix) = Hn(x),
n = 0, 1, 2, . . . , are the classical Hermite polynomials while Hn,0(x) and H0,n(x) are
constants, see [22]).

Unlike for the gH family of rational solutions, boundary points of the sub-lattices
�

[ j]±
gO are in no way special when it comes to the action of Bäcklund transformations.

These transformations can be used to move with full freedom throughout the entire
lattice�gO. See Sects. 3.3 and 3.5 for more details. Even though there is not as much
of a distinction between different components of �gO as in the case of �gH, still we
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follow the literature and say that points of �[ j]±
gO correspond to gO rational solutions

of type j . Rational solutions for points in�gO ∩ L can be considered as being of two
different types simultaneously, or in the case of the intersection point ( 16 ,

1
2 ), three

different types.

Remark 1 The formulæ (1.5) and (1.10) expressingu(x) in termsof logarithmic deriva-
tives of ratios of special polynomials are common in the literature (see, e.g., [22]) and
they lead quickly to the asymptotic relations (1.6) and likewise show that

u(x) = − 2
3 x(1 + O(x−2)), x → ∞,

u(x) a rational solution of (1.1) for (�0,�∞) ∈ �gO. (1.12)

On the other hand, the alternate formulæ for u(x) as ratios of four special polyno-
mials are not as well-known (although, see for example [23]) but can be obtained by
combining the implied large-x asymptotics with the zero and pole locations for ratio-
nal solutions tabulated in [46, Table 2] and the known leading coefficients of the four
polynomial factors. These alternate formulæ can (informally) help explain the patterns
of zeros and poles of rational Painlevé solutions. Each of the four factors corresponds
to a different color of zero or pole in Figs. 3 and 4.

1.2.3 The Total Parameter Space for Rational Solutions of Painlevé-IV

Other than the special case of �0 = 0 which must be handled separately, it is known
that all parameters for which the Painlevé-IV equation (1.1) has a (unique) rational
solution are covered by the parameters for the gH and gO families. Recalling the
definitions (1.7) and (1.11), we summarize the above discussion with the following
Lemma.

Lemma 1 (See [22, 37, 43, 52]) Neglecting the case�0 = 0, the Painlevé-IV equation
in the form (1.1) has a unique rational solution if and only if the parameters satisfy
either (±�0,�∞) ∈ �gH (the generalized Hermite family) or (±�0,�∞) ∈ �gO
(the generalized Okamoto family). Note that �gH ∩ �gO = ∅ and no two points of
�gH 	 �gO yield the same set of effective parameters (�2

0,�∞) of (1.1).

The sets �gH and �gO are shown in Fig. 1.

1.2.4 Observed Properties of Roots of gH and gO Polynomials

From plots [21, 54], one can see that the mn zeros of the gH polynomial Hm,n(x)
are arranged in the complex x-plane in a quasi-rectangular m × n grid. Likewise, if
both m and n are positive, the zeros of the gO polynomial Qm,n(x) are arranged in a
quasi-rectangular m × n grid, two quasi-triangular grids with a base of m − 1 zeros,
and two quasi-triangular grids with a base of n −1 zeros. If both m and n are negative,
then one has instead a |n|×|m| quasi-rectangular grid, two quasi-triangular grids with
a base of |n| zeros, and two quasi-triangular grids with a base of |m| zeros. See Fig. 2.
Note that, despite appearance of a qualitatively similar quasi-rectangular grid of the
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Fig. 2 Left: the roots of H6,4(x) in the complex x-plane. Center: the roots of Q6,4(x) in the complex
x-plane. Right: the roots of Q−4,−6(x) in the complex x-plane

same dimensions in all three cases, in general Hm,n(x) is not a factor of either Qm,n(x)
or Q−n,−m(x).

Since Hm,1(x) is a classical Hermite polynomial of degree m, in this case the roots
are exactly real and the quasi-rectangle degenerates to a line. Likewise for Qm,1(x)
one has a (non-generalized) Okamoto polynomial for which the quasi-rectangle again
degenerates to a line and two of the quasi-triangles degenerate to points, while two
quasi-triangles of base m remain.

Assembling the rational solutions from the gH polynomials using Table 1, one can
easily display the interaction between the poles and zeros contributed by different gH
polynomial factors, and illustrate how the organization of the poles and zeros varies
with the parameters in �gH, as shown in Fig. 3.

The analogous information for the gO case is shown in Fig. 4.

1.3 Scaling Formalism

We consider the parameters�0 and�∞ to be large, of proportional magnitude. There-
fore, we take T > 0 to be a large parameter, andwe assume that for s = sgn(�0) = ±1
and κ ∈ R fixed,

�0 = sT and �∞ = −κT , T > 0, κ ∈ R. (1.13)

With this scaling, we formally analyze the Painlevé-IV equation (1.1) in the limit
T → +∞. To obtain a dominant balance, we will also scale u and x as follows:

u = T 1/2U and, for fixed μ ∈ C, x = T 1/2μ + T −1/2ζ (1.14)

where we viewU and ζ as the new dependent and independent variables, respectively.
Then it is easy to see that the Painlevé-IV equation takes the form

d2U

dζ 2
= 1

2U

(
dU

dζ

)2

+ 3

2
U 3 + 4μU 2 + (2μ2 + 4κ)U − 8

U
+ O(T −1).
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Fig. 3 Representative plots of poles (dots; magenta for residue +1 and gray for residue −1) and zeros
(circles; cyan for positive derivative and blue for negative derivative) of the three types of rational solutions
in the gH family. The large dots in the central plot show the location of the corresponding parameters in the
(�0,�∞)-plane; as in Fig. 1, blue, black, and green dots indicate type-1, type-2, and type-3, respectively.
Selected subplots are reproduced larger in Fig. 33 in Appendix A (Color figure online)

Letting T → ∞, we formally obtain the autonomous equation (1.2) governing an
approximation Ŭ (ζ ) of U (ζ ), in which μ ∈ C and κ ∈ R \ {−1, 1} appear as param-
eters.

1.3.1 Equilibrium Solutions of the Autonomous Approximating Equation and Their
Branch Points

The approximating equation (1.2) has equilibrium solutions Ŭ (ζ ) = U0 (independent
of ζ ) that are roots of the quartic equation

3

2
U 4
0 + 4μU 3

0 + (2μ2 + 4κ)U 2
0 − 8 = 0. (1.15)
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Fig. 4 As in Fig. 3 but for the gO family of rational solutions. Note that rational solutions corresponding
to red dots in the central plot hence have two equivalent representations as functions of different types in
the indexing scheme in Table 2, for instance in the top left subplot, both types 1 and 3. Selected subplots
are reproduced larger in Fig. 34 in Appendix A (Color figure online)

When μ is large, there are four distinct roots which we denote by U0 = U [ j]
0,gH(μ; κ),

j = 1, 2, 3, and U0 = U0,gO(μ; κ). These are all analytic functions of μ large with
asymptotic behavior

U [1]
0,gH(μ; κ) = 2μ−1(1 + O(μ−2)),

U [2]
0,gH(μ; κ) = −2μ−1(1 + O(μ−2)),

U [3]
0,gH(μ; κ) = −2μ(1 + O(μ−2)), and

U0,gO(μ; κ) = − 2
3μ(1 + O(μ−2)), μ → ∞.

(1.16)

If we select any of the equilibria and try to analytically continue the solution to
finite values ofμ, we will only encounter any obstruction at branch points ofU0; these
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are precisely the values of μ for which there are double roots U0 of (1.15). These
points are the solutions of

B(μ; κ) := μ8 − 24(κ2 + 3)μ4 − 64κ(κ + 3)(κ − 3)μ2 − 48(κ2 + 3)2 = 0

for branch points μ of equilibria. (1.17)

The most important properties of the branch points are summarized as follows.

Proposition 1 Let κ ∈ R\{−1, 1}. Then (i) the set of roots of B(μ; κ) = 0 is symmetric
in reflection through the real and imaginary axes, (ii) the eight roots are all simple,
and (iii) each coordinate half-plane (i.e., ±Re(μ) > 0 or ±Im(μ) > 0) contains
exactly three roots forming the vertices of an equilateral triangle.

We give the proof in Appendix B.

1.3.2 Nonequilibrium Solutions of the Autonomous Approximating Equation

More generally we may consider nonequilibrium solutions of the model differential
equation (1.2). Using the integrating factor Ŭ ′(ζ )/Ŭ (ζ ), (1.2) implies

0 = 1

Ŭ

dŬ

dζ

d2Ŭ

dζ 2
− 1

2Ŭ 2

(
dŬ

dζ

)3

− 3

2
Ŭ 2 dŬ

dζ
− 4μŬ

dŬ

dζ
− (2μ2 + 4κ)

dŬ

dζ
+ 8

Ŭ 2

dŬ

dζ

= d

dζ

⎡
⎣ 1

2Ŭ

(
dŬ

dζ

)2

− 1

2
Ŭ 3 − 2μŬ 2 − (2μ2 + 4κ)Ŭ − 8

Ŭ

⎤
⎦ .

Therefore, if E denotes an integration constant, then Ŭ = f (ζ ) is a solution of the
first-order second-degree equation

(
d f

dζ

)2

= P( f ), where

P( f ) = P( f ;μ, κ, E) := f 4 + 4μ f 3 + 4(μ2 + 2κ) f 2 + 2E f + 16.

(1.18)

Since P( f ) is a quartic polynomial, the nonequilibriumsolutions Ŭ = f (ζ ) are clearly
elliptic functions with modulus depending on μ, κ , and E , having two fundamental
periods

Za :=
∮
a

d f√
P( f )

and Zb :=
∮
b

d f√
P( f )

(1.19)

where a and b are independent cycles on the genus-1 Riemann surface of the equation
w2 = P(z), forming a basis for its homology group. In other words, f (ζ + Za) =
f (ζ + Zb) = f (ζ ), and Za and Zb are linearly independent over the real numbers.
It is easy to see that every nonconstant solution (1.18) is an elliptic function with
only simple zeros (with derivative ±4) and at worst simple poles (with residue ±1).
Moreover, every solution has one zero with each sign of derivative and one pole of
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each residue within each period parallelogram. Since (1.18) is a first-order second-
degree autonomous equation, if f (ζ ) denotes the unique solution of the differential
equation (1.18) satisfying the initial conditions f (0) = 0 and f ′(0) = 4, then every
non-constant solution of (1.18) can be written in the form f (ζ − ζ0) for a uniquely
determined constant phase shift ζ0 ∈ C that one may specify modulo integer linear
combinations of the periods Za and Zb.

Remark 2 The quartic polynomial P( f ) = P( f ;μ, κ, E) has been motivated here by
formal asymptotic analysis of the Painlevé-IV equation and hence f plays the role of
the dependent variable. However, as will be seen in Sect. 4.3 it also defines a spectral
curve in which f plays instead the role of a rescaled auxiliary spectral parameter z
from the Lax pair representation of the Painlevé-IV equation, see (4.17). The same
polynomial again appears in the anharmonic quantum oscillator theory of Masoero
and Roffelsen [46, 47], in which the leading term V (λ) in the anharmonic potential is
proportional to λ−2P(λ). Here again the variable λ plays an auxiliary role not directly
tied to an approximate solution of the Painlevé-IV equation.

Remark 3 Constant solutions of (1.18) corresponding to simple roots of P( f ) are
not equilibrium solutions of (1.2). However, the equilibrium condition (1.15) can be
rederived by insisting that P( f ) have a double root f = U0 and hence eliminating E
between P(U0) = 0 and P ′(U0) = 0, leading to

E = −2U 3
0 − 6μU 2

0 − 4(μ2 + 2κ)U0. (1.20)

Another way of putting this is: if U0 = U0(μ; κ) is a function of μ ∈ C and κ ∈
R \ {−1, 1} that solves (1.15), and E is expressed in terms of μ and κ by (1.20), then
P( f ) has a double root that persists over the whole domain of definition of U0(μ; κ),
namely f = U0(μ; κ). With E determined by (1.20), the remaining simple roots solve
a quadratic equation with known coefficients:

f 2 + (4μ + 2γ ) f + 16γ−2 = 0, γ = U0(μ; κ). (1.21)

1.4 Results

Our objective is to use the integrable structure of (1.1) to analytically prove many
of these qualitative observations by computing the leading-order asymptotic behavior
of the rational Painlevé functions built from both the generalized Hermite and the
generalized Okamoto polynomials. Specifically, we use the isomonodromy approach
adapted to a Lax pair representation of (1.1) first found in [40]. An outline of how
this method leads to Riemann–Hilbert representations of all rational solutions of (1.1)
can be found in Sect. 3.4. With these representations in hand, we apply elements
of the Deift–Zhou steepest-descent method [30] (in particular, we use the important
mechanism of the so-called g-function first introduced in [29]). This rigorous method
of asymptotic analysis, carefully adapted to various cases depending on the region of
parameter space illustrated in Fig. 1 and the region of theμ-plane under consideration,
allows the desired asymptotic formulæ to be proved. Families of rational solutions
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to other Painlevé equations have recently been analyzed asymptotically, including
rational solutions of the Painlevé-II equation [7, 18, 19], rational solutions of the
Painlevé-II hierarchy [4], and rational solutions of the Painlevé-III equation [12, 13].
All of these works use some sort of Riemann–Hilbert representation and the steepest-
descent method. However, in the papers [4, 7] the representation used comes from
a Hankel determinant identity and the Fokas-Its-Kitaev theory of pseudo-orthogonal
polynomials [34], while the papers [12, 13, 18, 19] followmore the approach described
in Sect. 3.4. As for the Painlevé-IV equation, the gH family of rational solutions
has been studied in [15] using the Hankel determinant approach, but so far the gO
family has resisted any representation convenient for that method. The isomonodromy
method has been applied to the gO family of rational solutions by Novokshenov
and Shchelkonogov [55], but only in the special case that m = 0, i.e., the rational
solutions u[ j]

gO(x; 0, n) were analyzed for large n. An attempt was made in [56] to use
similar methods for the gH family, but that paper has been shown to contain errors that
invalidate its results. An explicit connection between theHankel determinant approach
and the isomonodromymethod (for a suitable Lax pair) was explained for the Painlevé-
II equation in [50]. We make a similar connection in this paper for the gH family for
Painlevé-IV (see (3.73) in Sect. 3.6). From the point of view of isomonodromy theory,
it seems that it is the absence of nontrivial Stokes phenomenon in the Lax pair that
is correlated with the existence of a Hankel determinant identity suitable for further
asymptotic analysis.

We also want to mention here a third approach available to study the roots of the
gH and gO polynomials themselves. It is possible to encode the condition that a gH or
gO polynomial vanish at a given point in a kind of eigenvalue condition on a quantum
anharmonic oscillator equation in one dimension [46]; see also Remark 2. Thismethod
has been used to obtain detailed information about the roots of the gH polynomials
[47], and work is underway to do the same for the gO polynomials [48].

1.4.1 Boundary Curves

Central to the asymptotic description of rational Painlevé-IV solutions are two partic-
ular families of Jordan curves that we denote ∂EgH(κ) and ∂EgO(κ), respectively, with
the families being parametrized by κ ∈ R \ {−1, 1}. Given κ , the curves ∂EgH(κ) and
∂EgO(κ) are finite unions of analytic arcs that can be described as follows. LetU0(μ; κ)
be a solution of the equilibrium equation (1.15) analytic for μ in some domainD, and
define E = E(μ; κ) in turn by (1.20). Then by Remark 3, for all μ ∈ D the poly-
nomial P( f ) in (1.18) has a double root f = γ (μ; κ) := U0(μ; κ) and two simple
roots, f = α(μ; κ), β(μ; κ) solving the quadratic equation (1.21). It follows that the
equation
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Re

(∫ γ (μ;κ)

α(μ;κ)

√
P( f )

f
d f

)

= Re

(∫ γ (μ;κ)

α(μ;κ)
( f − γ (μ; κ))√( f − α(μ; κ))( f − β(μ; κ))

f
d f

)
= 0

(1.22)

defines an analytic arc (possibly empty) in D. On a given domain D, there may be
up to four analytic equilibria, and each choice of equilibrium (near μ = ∞ these are
distinguished by the asymptotic behavior (1.16)) gives different arcs on D.

In principle, the boundary curves can be expressed via (1.22) as arcs of the indicated
level curve of an explicit multivalued analytic function, because (i) since P( f ) =
( f − γ )2( f − α)( f − β) has a double root, the integral in (1.22) can be evaluated
by quadratures in terms of elementary functions, and (ii) the quartic equation (1.15)
for the double root can be solved by radicals. The resulting formula is unwieldy but
can be used to make plots such as Fig. 5. An explicit implementation of (i) is given in
Appendix G, and a similar formula can be found in [15, Eqn. 18]; that step is the same
for arcs of both curves ∂EgH(κ) and ∂EgO(κ). This method does not clarify which arcs
satisfying (1.22) must be selected, and there are some extraneous arcs generated by
(1.22) that are not contained within either ∂EgH(κ) or ∂EgO(κ), but the fact that the
curves ∂EgH(κ) and ∂EgO(κ) are both obtained from exactly the same equation (1.22)
is worth noting.

A description of ∂EgH(κ) and ∂EgO(κ) that makes precise exactly which arcs pro-
duced by (1.22) are needed in each case will be given in Sect. 8, where it is also shown
that the arcs arise by conformal mapping from the trajectories of a certain rational
quadratic differential (see (8.8) in Sect. 8.2; plots showing a uniform parametrization
of all possible arcs arising from (1.22) are shown in Fig. 29). The curves are then
properly defined as boundaries of domains EgH(κ) and EgO(κ) in Definitions 7 and 8,
respectively, of Sects. 8.5 and 8.8. The most important properties of the Jordan curves
∂EgH(κ) and ∂EgO(κ) are the following.
Proposition 2 The families of curves ∂EgH(κ) and ∂EgO(κ) have the following prop-
erties.

(1) For each κ ∈ R \ {−1, 1}:
(a) ∂EgH(κ) and ∂EgO(κ) are Jordan curves enjoying Schwarz reflection symmetry

in both the real and imaginary axes.
(b) ∂EgH(κ) consists of four analytic arcs joining in pairs the four branch points

B(μ; κ) = 0 lying in the four open quadrants of the μ-plane, traversed in the
direction of increasing arg(μ).

(c) ∂EgO(κ) consists of eight analytic arcs joining in pairs all eight branch points
B(μ; κ) = 0, traversed in the direction of increasing arg(μ).

(d) Except for the four common vertices of ∂EgH(κ) and ∂EgO(κ), ∂EgO(κ) lies in
the exterior of ∂EgH(κ).

(2) The curves in a given family, ∂EF(κ), F = gH, gO, κ ∈ R \ {−1, 1}, are related
to one another by a finite symmetry group of geometric transformations with the
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following three generators:

∂EF(−κ) = i∂EF(κ), (rotation by 1
2π),

∂EF(I ±(κ)) =
√

2

1 ± κ
∂EF(κ), I ±(κ) := −κ ∓ 3

1 ± κ
, (homothetic dilation),

(1.23)
all defined for κ ∈ (−1, 1). In particular, since I + : (−1, 1) → (1,+∞) and I − :
(−1, 1) → (−∞,−1), the curves ∂EF(κ) are determined for all κ ∈ R \ {−1, 1}
as dilations of those curves with κ ∈ (−1, 1). Also, the curves for κ = −3, 0, 3
have additional symmetry, being invariant under rotation about the origin by 1

2π

radians.
(3) Letting EgH(κ) and EgO(κ) denote the exterior of ∂EgH(κ) and ∂EgO(κ), respec-

tively,

(a) for all κ < −1, the equilibrium U [1]
0,gH(μ; κ) is an analytic function of μ ∈

EgH(κ);
(b) for all κ > 1, the equilibrium U [2]

0,gH(μ; κ) is an analytic function of μ ∈
EgH(κ);

(c) for all κ ∈ (−1, 1), the equilibrium U [3]
0,gH(μ; κ) is an analytic function of

μ ∈ EgH(κ);
(d) for all κ ∈ R \ {−1, 1}, the equilibrium U0,gO(μ; κ) is an analytic func-

tion of μ ∈ EgO(κ) that satisfies U0,gO(μ; κ) �= U [1]
0,gH(μ; κ) for κ < −1,

U0,gO(μ; κ) �= U [2]
0,gH(μ; κ) for κ > 1, and U0,gO(μ; κ) �= U [3]

0,gH(μ; κ) for
κ ∈ (−1, 1).

We give the proof in Sect. 8.10. Note that by composing the symmetry generators in
(1.23) or their inverses several other interesting relations emerge. For instance, the
rotation symmetry ∂EF(−κ) = i∂EF(κ) also holds for κ < −1 and κ > 1, trivially
relating the curves for these ranges of κ by inversion of aspect ratio. There is also a
map relating two curves with κ > 1 (or two curves with κ < −1) by a combination
of dilation and rotation, and a pure dilation map relating curves with κ > 1 to curves
with κ < −1. In deriving these implied relations, it is useful to note that the Möbius
transformations I ±(κ) are both involutions of the Riemann sphere: I ±(I ±(κ)) = κ .
Qualitatively, ∂EgH(κ) is a curvilinear rectangle symmetric in reflection through both
real and imaginary axes, while for the same κ , ∂EgO(κ) replaces each edge of ∂EgH(κ)
with two curvilinear edges having a common vertex in the exterior EgH(κ) on the axis
ray bisecting the original edge. See Fig. 5.

1.4.2 Equilibrium Asymptotics of Painlevé-IV Rational Solutions

Our first results assert that the rational solutions are accurately approximated by equi-
librium solutions of the formal approximating equation (1.2) (roots of the quartic
(1.15)), provided that μ lies in the exterior of the relevant Jordan curve. The following
result was first proved in [15] using a Hankel determinant identity and techniques from
the theory of pseudo-orthogonal polynomials. We give a new proof in this paper based
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Fig. 5 The curves ∂EgH(κ) (red) and ∂EgO(κ) (cyan) for six values of κ related by the transformations
generated by (1.23), with insets showing the corresponding rays �∞ = −κ|�0| (black) in the (�0,�∞)

plane divided into sectors with green lines. On the upper right-hand panel are also shown the domains
B� = B�(κ), B� = B�(κ), and B� = B�(κ) defined in Sect. 1.4.3. The curves were plotted using
(1.22) (see also Appendix G) (Color figure online)

on the isomonodromy method. For ρ > 0, set

κ [1]∞ (ρ) := −1 − 2ρ−1 < −1, κ [2]∞ (ρ) := 1 + 2ρ > 1,

and κ [3]∞ (ρ) := 1 − ρ

1 + ρ
∈ (−1, 1).

Theorem 1 (Equilibrium asymptotics of gH rationals) Let ρ > 0 be a fixed rational
aspect ratio, and recall that EgH(κ) denotes the unbounded exterior of the Jordan
curve ∂EgH(κ). Then for j = 1, 2, 3, as m, n → +∞ with n = ρm,

u[ j]
gH(x; m, n)=T 1/2

(
Ŭ +O(T −1)

)
, Ŭ =U [ j]

0,gH (μ; κ) ,
x = T 1/2μ, T = |�[ j]

0,gH(m, n)|,

μ ∈ EgH(κ), κ = −�
[ j]
∞,gH(m, n)

T
→ κ∞ = κ

[ j]∞ (ρ).

(1.24)

In each case (type j = 1, 2, 3), the error estimate holds uniformly for μ in any fixed
closed (possibly unbounded) subset ofEgH(κ∞), and the error tends to zero asμ → ∞.
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The pseudo-orthogonal polynomial method has not yet been successfully applied to
the gO family of rational solutions, but the isomonodromy approach applies just as
well, yielding the following result.

Theorem 2 (Equilibrium asymptotics of gO rationals) Let ρ > 0 be a fixed rational
aspect ratio, and recall that EgO(κ) denotes the unbounded exterior of the Jordan
curve ∂EgO(κ). Then for j = 1, 2, 3, as m, n → ±∞ with n = ρm,

u[ j]
gO(x; m, n) = T 1/2

(
Ŭ + O(T −1)

)
, Ŭ = U0,gO (μ; κ) ,

x = T 1/2μ, T = |�[ j]
0,gO(m, n)|,

μ ∈ EgO(κ), κ = −�
[ j]
∞, gO(m, n)

T
→ κ∞ = ±κ

[ j]∞ (ρ).

(1.25)

In each case (type j = 1, 2, 3), the error estimate holds uniformly for μ in any fixed
closed (possibly unbounded) subset ofEgO(κ∞), and the error tends to zero asμ → ∞.

An elementary corollary of these results is the following, in which F = gH or F = gO,
and type j = 1, 2, 3 is arbitrary.

Corollary 1 (Pole- and zero-free regions for Painlevé-IV rational solutions) Let C ⊂
EF(κ∞) be closed (note that κ∞ is a different function of aspect ratio ρ for different
types j = 1, 2, 3). Then u[ j]

F (x; m, n) has no poles or zeros for μ ∈ C if m, n are
sufficiently large and n = ρm.

Proof For the gO family, the uniform convergence on C to an analytic equilibrium
guaranteed by Theorem 2 proves the absence of poles. Then the argument principle
implies the absence of zeros, since the equilibriumU0,gO(μ; κ) is analytic and bounded
away from zero on C according to (1.15) and the asymptotic U0,gO(μ; κ) ∼ − 2

3μ as
μ → ∞.

For the gH family, the proof is similar, except that the equilibria U [1]
0,gH(μ; κ) and

U [2]
0,gH(μ; κ) vanish as μ → ∞, being proportional to μ−1. In these cases, however,

the fact that the error term vanishes as μ → ∞ shows that the simple zero of the
equilibrium at infinity cannot be perturbed into the finite μ-plane should C be taken
to be unbounded. �	

The fact that the error terms in Theorems 1 and 2 vanish as μ → ∞ follows by
comparing the known large-x asymptotic behavior of the rational solution (see (1.6)
and (1.12)) with the large-μ behavior of the leading terms (see (1.16)). Note that
combining the symmetries (2.2) and (2.3) in Sect. 2 with the fact following from
Proposition 2 that EgH(−κ) = iEgH(κ) and EgO(−κ) = iEgO(κ) holds for all κ ∈ R \
{−1, 1}, formulæ (1.24) and (1.25) for j = 2 follow from the same formulæ with j =
1. For rational functions of types j = 1, 3, the asymptotic formulæ in Theorems 1 and
2 are provedwithout first specifying the domains of validity in Sects. 5–6. The domains
of validity of these formulæ are then obtained in Sects. 8.5 and 8.8 by determining
exactly which arcs generated by (1.22) are relevant. Uniformity of convergence is
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discussed in Sects. 5.6 and 6.6. Based on these intermediate results, the proofs of
Theorems 1 and 2 are completed in Sect. 8.10.

1.4.3 Nonequilibrium Asymptotics of Painlevé-IV Rational Solutions

The interior of ∂EgH(κ) is a domain that we call B�(κ), and according to item (1d)
from Proposition 2 the intersection of EgH(κ)with the interior of ∂EgO(κ) is a disjoint
union of four domains, each of which intersects just one of the four coordinate axes
in the μ-plane. We call the domain intersecting the positive real (resp., imaginary)
axis B�(κ) (resp., B�(κ)). The domain B�(κ) is a curvilinear rectangle, while the
domains B�(κ) and B�(κ) are curvilinear triangles. Note that although Proposition 1
asserts that the vertices of B�(κ) and B�(κ) are those of exact equilateral triangles,
their edges are analytic arcs that neither are straight-line segments, nor are symmetric
under rotation about the center by 2

3π radians. See the upper right-hand panel of Fig. 5.
The remaining two domains are then −B�(κ) and −B�(κ) (reflections through the
origin). We now describe the gH rational solutions of Painlevé-IV for values of x
corresponding to μ ∈ B�(κ) and the gO rational solutions for x corresponding to
μ ∈ B�(κ)∪±B�(κ)∪±B�(κ). In light of Theorems 1–2, this exhausts the complex
μ-plane except for a neighborhood of the curve ∂EgH and (for the gO family only) of
the curve ∂EgO.

Recall the quartic polynomial P( f ) = P( f ;μ, κ, E) defined in (1.18). Given
κ ∈ R \ {−1, 1} and μ ∈ B�(κ)∪B�(κ)∪B�(κ), there is a specific value of E ∈ C

such that the conditions (compare with (1.22))

Re

(∮
a

√
P( f )

f
d f

)
= Re

(∮
b

√
P( f )

f
d f

)
= 0 (1.26)

both hold. The conditions (1.26) also appear in the Masoero–Roffelsen theory of
zeros of gH polynomials, where they serve to define a mapping S (see [47, Eqn.
11]) used to localize the zeros. Note that these integrals are independent of path on the
Riemann surface ofw2 = P(z) because the differential in the integrand,while singular
over z = 0,∞, has purely real residues. Taken together, they are also independent
of specific choice of basis of cycles a and b. The specific value we use is denoted
E = E(μ; κ) and is properly defined in Definition 10 of Sect. 8.9. The most important
properties of E(μ; κ) are the following.

Proposition 3 For each κ ∈ R \ {−1, 1} and μ ∈ B�(κ) ∪ B�(κ) ∪ B�(κ), the
quartic P( f ;μ, κ, E(μ; κ)) satisfies the conditions (1.26). If κ is fixed, the function
μ �→ E is smooth but not analytic on each component of its domain, and it extends
continuously to ∂EgH(κ) ∪ ∂EgO(κ). The functions μ �→ E are related for different κ
by the following symmetries:
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E(μ; I ±(κ)) =
(

2

1 ± κ

)3/2 [
E

(√
1
2 (1 ± κ)μ; κ

)
− 4(κ ∓ 1)

√
1
2 (1 ± κ)μ

]
, I ±(κ) := −κ ∓ 3

1 ± κ
,

(1.27)
E(μ; −κ) = iE(iμ; κ). (1.28)

In particular, the latter symmetry implies that E(−μ; κ) = −E(μ; κ), i.e., E is an
odd function of μ for each κ ∈ R \ {−1, 1}.

The proof is given in Sect. 8.11. Setting E = E(μ; κ) in the differential equation
(1.18), let f (ζ ) = f (ζ ;μ, κ) denote the unique solution of this equation satisfying
f (0) = 0 and f ′(0) = 4. The next results concern the approximation of the rational
Painlevé-IV solutions by suitable phase shifts of the elliptic function f . Define an
exponent by

χ(ζ ) :=
{
1, | f (ζ )| ≤ 1

−1, | f (ζ )| > 1.

The purpose of χ(ζ ) is to allow a streamlined asymptotic description of rational
functions near both zeros and poles.

Theorem 3 (Elliptic asymptotics of gH rationals) Let ρ > 0 be a fixed rational aspect
ratio. Then for j = 1, 2, 3 there is a well-defined family of smooth but not analytic
maps μ �→ ζ0 = ζ

[ j]
0,gH(μ; m, n), B�(κ) → C, such that as m, n → +∞ with

n = ρm,

u[ j]
gH(x; m, n)=T 1/2

(
Ŭχ + O(T −1)

)χ
, Ŭ = f (ζ − ζ0),

x = T 1/2μ + T −1/2ζ, T = |�[ j]
0,gH(m, n)|,

μ ∈ B�(κ), κ = −�
[ j]
∞, gH(m, n)

T
→ κ∞ = κ

[ j]∞ (ρ),

(1.29)

where χ = χ(ζ − ζ0), and where the error estimate holds uniformly for μ in any fixed
compact subset of B�(κ∞) and for ζ bounded. The phase ζ0 is defined implicitly by
(1.31).

Theorem 4 (Elliptic asymptotics of gO rationals) Let ρ > 0 be a fixed ratio-
nal aspect ratio, and let B(κ) denote either B�(κ), ±B�(κ), or ±B�(κ). Then
for j = 1, 2, 3 there is a well-defined family of smooth but not analytic maps
μ �→ ζ0 = ζ

[ j]
0,gO(μ; m, n), B(κ) → C, such that as m, n → ±∞ with n = ρm,

u[ j]
gO(x; m, n)=T 1/2

(
Ŭχ+O(T −1)

)χ
, Ŭ = f (ζ − ζ0),

x = T 1/2μ + T −1/2ζ, T = |�[ j]
0,gO(m, n)|,

μ ∈ B(κ), κ = −�
[ j]
∞,gO(m, n)

T
→ κ∞ = ±κ

[ j]∞ (ρ),

(1.30)
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where χ = χ(ζ − ζ0), and where the error estimate holds uniformly for μ in any fixed
compact subset of B(κ∞) and for ζ bounded. The phase ζ0 is defined implicitly by
(1.31).

Remark 4 The approximation formulæ (1.29) and (1.30) in Theorems 3 and 4, respec-
tively, assert that T −1/2u[ j]

F (x; m, n) and Ŭ areO(T −1)-close as functions with values
on the Riemann sphere. Therefore, in terms of the chordal metric

d(w, z) := 2|w − z|√
1 + |w|2√1 + |z|2

the results can be written without the device of χ(ζ ) as d(T −1/2u[ j]
F (x; m, n), Ŭ ) =

O(T −1).

These results therefore assert the existence of the phase shift ζ0 as a function of μ
and large parameters (m, n) for which the elliptic approximation formally described
in Sect. 1.3.2, but with a specific value E = E(μ; κ) of the integration constant, is
accurate to the indicated order. We will not give formulæ for the phase shift (but see
Appendix D for the special case of μ = 0), because in our proofs of these results
we actually use a different representation of f (ζ − ζ0) in terms of theta functions.
This representation has the advantage of isolating the two different lattices of poles
and zeros of f (ζ − ζ0), allowing for comparison with the roots of the four different
polynomial factors in each exact rational solution according to the representations
shown in the right-most columns of Tables 1 and 2. Specifically, we prove that, for a
suitable canonical homology basis underlying the periods Za and Zb defined in (1.19)
(see Fig. 28 in Sect. 7.6), the leading term f (ζ − ζ0) in Theorems 3 and 4 can be
written as

f (ζ − ζ0) = ψ(μ)
ϑ( 2π iZa

ζ + iξ(μ; m, n) + iz1(μ) + K)ϑ( 2π iZa
ζ + iξ(μ; m, n) + iz2(μ) + K)

ϑ( 2π iZa
ζ + iξ(μ; m, n) + ip1(μ) + K)ϑ( 2π iZa

ζ + iξ(μ; m, n) + ip2(μ) + K) ,
(1.31)

where only the common phase ξ(μ; m, n) contains terms proportional to the large
parameters (m, n),K := iπ(1+ Zb/Za), and ϑ(z) is the Riemann theta function (see
(7.22) in Sect. 7.6) for the homology basis (a, b) of the elliptic curvew2 = P(z). The
latter is an entire function of z with simple zeros only at the points z = K + 2π ik +
2π i�Zb/Za for (k, �) ∈ Z×Z. The bounded and nonvanishing factorψ(μ) (see (7.43)
and (7.49) in Sect. 7.7) and the phases ξ(μ; m, n) (see (7.26) in Sect. 7.6), z1,2(μ),
and p1,2(μ) (see (7.41) and (7.47) in Sect. 7.7) are different for each family and type
of rational solution and, in the case of the gO family, for each of the regions B�(κ),
±B�(κ), and ±B�(κ). While the various ingredients in the formula (1.31) appear
naturally as part of the proof of accuracy, for the reader’s convenience we summarize
in Appendix F how these ingredients are effectively computed for each family (gH or
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gO), type ( j = 1, 2, 3), and region B(κ). Although it is not hard to see that (1.31)
defines an elliptic function of ζ , it is far less obvious that it is a solution of the specific
differential equation (1.18). In fact, our proof derives both the formula (1.31) and
the differential equation (1.18) independently from the same model Riemann–Hilbert
problem.While the knowledge that f (ζ −ζ0) solves (1.18) is satisfying from the point
of view of the formal asymptotic analysis described in Sect. 1.3, the formula (1.31) is
more convenient to use in practice; it is how we made the plots in Figs. 6–12.

The basic asymptotic formulæ (1.29) and (1.30) are established in the form (1.31)
in Sect. 7.7, and are then related to the differential equation (1.18) in Sect. 7.8. The
fact that these formulæ are valid on the indicated domains complementary to EgH(κ)
or EgO(κ) is then shown in Sect. 8.6 (for both families of rational solutions on B�(κ))
and in Sect. 8.9 (for the gO rational solutions on B�(κ) and B�(κ)). The proofs of
Theorems 3 and 4 are completed in Sect. 8.11.

A characteristic feature of the approximation formulæ in Theorems 3 and 4 is
that while the rational function approximated depends on only one variable x =
T 1/2μ + T −1/2ζ , the approximation T 1/2 f (ζ − ζ0) essentially involves μ and ζ as
independent variables, and while it is certainly meromorphic in ζ , it has a nonzero
∂ derivative with respect to μ. This means that for a given value of T −1/2x , the
approximation formula in each of these theorems offers a one-parameter family of
different approximations of the same rational function. Two particularly useful ways
to make use of this freedom are (i) to fix ζ and vary μ within one of the regions
B�(κ) or B�(κ) or B�(κ) or (ii) to fix μ and instead allow ζ to vary in a bounded
set. The approach (i) yields an approximation that is uniformly accurate over a given
compact set in μ that corresponds to a large region of size T 1/2 in the x-plane, but
the approximation fails to be meromorphic in μ (its ∂ derivative is of course exactly
cancelled by that of the error term, although that term is not known in any detail).
On the other hand, the approach (ii) yields an approximation that is an exact elliptic
function, hence meromorphic, but the approximation is only accurate for bounded ζ ,
which corresponds to a small region of size T −1/2 in the x-plane. Putting the two
approaches together, one can think of (μ, ζ ) as coordinates on the complex tangent
bundle over B�(κ), B�(κ), or B�(κ). These two interpretations of the asymptotic
formulæ in Theorems 3 and 4 are consistent with the simple idea that in a given region
the rational Painlevé-IV functions are approximated by an elliptic function whose
modulus and phase shift vary slowly on scales that are large compared to the periods
Za and Zb. This is a familiar notion in the asymptotic analysis of Painlevé equations;
in the setting of large-x asymptotics this goes back to Boutroux [14]. See also [41] for
a recent review. For modulated elliptic approximations in the large-parameter regime,
see [4, 7, 12, 13, 18, 46, 47, 50].

Using the approach (i) allows one to combine the equilibrium asymptotics of Theo-
rems 1–2 with the elliptic asymptotics of Theorems 3–4 and obtain an approximation
Ŭ of U = T −1/2u[ j]

F (T 1/2μ; m, n), defined piecewise in the complex μ-plane, the
accuracy of which is guaranteed for allμ ∈ C except for values near the Jordan curves
∂EgH(κ) and ∂EgO(κ). These approximations are remarkably accurate even for (m, n)
not too large, as can be seen in Figs. 6–8.
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Fig. 6 Quantitative comparison of scaled gH rational solutions U (blue curves) with the leading terms Ŭ
(dashed red curves) in Theorems 1 and 3 for x = T 1/2μ (taking ζ = 0 fixed in the latter case). Axes for top
row of plots: U and Ŭ versus μ. Axes for bottom row of plots: −iU and −iŬ versus −iμ. Dotted vertical
lines indicate the intersection points of ∂EgH(κ) with the coordinate axes, near which neither Theorem 1
nor 3 provides a uniformly accurate approximation (Color figure online)

Fig. 7 Quantitative comparison of scaled gO rational solutions U (blue curves) for positive indices (m, n)
with the leading terms Ŭ (dashed red curves) in Theorems 2 and 4 for x = T 1/2μ (taking ζ = 0 fixed
in the latter case). Axes for top row of plots: U and Ŭ versus μ. Axes for bottom row of plots: −iU and
−iŬ versus −iμ. Dotted vertical lines indicate the intersection points of ∂EgH(κ) and ∂EgO(κ) with the
coordinate axes, near which neither Theorem 2 nor 4 provides a uniformly accurate approximation (Color
figure online)

On the other hand, the approach (ii) allows one to accurately compare U =
T −1/2u[ j]

F (T 1/2μ + T −1/2ζ ; m, n) with an exact elliptic function Ŭ = f (ζ − ζ0)

of ζ , by fixing a pointμ. Theorems 3–4 predict the accuracy of such an approximation
provided that ζ remains bounded. Figure 9 illustrates the nature of convergence to
such an exact elliptic approximation. For given (m, n), the approach (ii) approxima-
tion fails as ζ increases, just as the tangent space fails to approximate a curved base
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Fig. 8 As in Fig. 7 but for negative indices (m, n) (Color figure online)

Fig. 9 Exact elliptic function approximations Ŭ = f (ζ −ζ0) (dashed red curves) and the rational solutions
U they approximate (blue curves) near μ = 1

10 ∈ B�(κ) ∩ R as functions of ζ ∈ R. For all three plots,
κ = 0 (Color figure online)

manifold except near the given base point. For another application of approach (ii),
see Appendix D.

A good application of switching back and forth between the base manifold and its
tangent space at a point is the proof of the following corollary of Theorems 3 and 4
(and of their proof, which specifies the various phases in (1.31)). Note that according
to (1.31), the zeros of f (ζ − ζ0) are given by, for k = 1 or k = 2, the quantization
conditions (the superscript ∗ denotes complex conjugation)

Im(Z∗
b · (ζ + Za

2π (ξ(μ; m, n) + zk(μ))))

Im(Z∗
aZb)

∈ Z and

− Im(Z∗
a · (ζ + Za

2π (ξ(μ; m, n) + zk(μ))))

Im(Z∗
aZb)

∈ Z. (1.32)
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Likewise, the poles of f (ζ − ζ0) are given by, for k = 1 or k = 2, the quantization
conditions

Im(Z∗
b · (ζ + Za

2π (ξ(μ; m, n) + pk(μ))))

Im(Z∗
aZb)

∈ Z and

− Im(Z∗
a · (ζ + Za

2π (ξ(μ; m, n) + pk(μ))))

Im(Z∗
aZb)

∈ Z. (1.33)

The phase ξ(μ; m, n) is given in (7.26) of Sect. 7.6, in which the dependence on the
family (gH or gO), domain B�(κ), B�(κ), or B�(κ), and a sign s (s = −sgn(�0) for
type-1 solutions and s = sgn(�0) for type-3 solutions) enters via the data in Table 6
of that same section. In particular, ξ(μ; m, n) contains terms proportional via T � 1
to real quantities R1 and R2 (see (7.1) in Sect. 7.3) that are essentially the imaginary
parts of the integrals whose real parts vanish in (1.26). The phase shifts zk(μ) and
pk(μ) depend on μ as well as the type of the rational solution. They are written in
Sect. 7.7 for type-1 solutions in (7.47) and for type-3 solutions in (7.41). Define, for
either family F = gH or F = gO, and types j = 1, 2, 3,

Z [ j]
F (m, n) := {μ ∈ C : u[ j]

F (|�[ j]
0,F(m, n)|1/2μ; m, n) = 0}

P [ j]
F (m, n) := {μ ∈ C : u[ j]

F (|�[ j]
0,F(m, n)|1/2μ; m, n) = ∞}

as the sets of rescaled zeros and poles of the indicated rational solution. Likewise, set

Z̆ [ j]
F (m, n) := {μ ∈ C : f (−ζ0) = 0} and P̆ [ j]

F (m, n) := {μ ∈ C : f (−ζ0) = ∞}

where f (ζ − ζ0) is the approximation of the corresponding rational solution via
Theorem 3 or 4. In other words, Z̆ [ j]

F (m, n) (resp., P̆ [ j]
F (m, n)) is the set of all points

μ satisfying both conditions in (1.32) (resp., in (1.33)) with ζ = 0 fixed for either
k = 1 or k = 2 and phases determined for the family, type, and region of interest.

Corollary 2 (Poles and zeros of Painlevé-IV rational solutions) Fix a rational aspect
ratio ρ > 0 and a compact set C within one of the domains B�(κ), B�(κ), or B�(κ)
(the latter two for the gO family only). Then, there is a constant r > 0 (depending on
C and ρ) such that for m, n sufficiently large with n = ρm the following statements
hold with T = |�[ j]

0,F(m, n)|.
• For each point μ̆ ∈ Z̆ [ j]

F (m, n) ∩ C, there is a unique point μ ∈ Z [ j]
F (m, n) that

satisfies |μ− μ̆| ≤ rT −2. Likewise for each point μ ∈ Z [ j]
F (m, n) ∩ C, there is a

unique point μ̆ ∈ Z̆ [ j]
F (m, n) that satisfies |μ̆ − μ| ≤ rT −2.

• For each point μ̆ ∈ P̆ [ j]
F (m, n) ∩ C, there is a unique point μ ∈ P [ j]

F (m, n) that

satisfies |μ− μ̆| ≤ rT −2. Likewise for each point μ ∈ P [ j]
F (m, n) ∩ C, there is a

unique point μ̆ ∈ P̆ [ j]
F (m, n) that satisfies |μ̆ − μ| ≤ rT −2.
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Fig. 10 Quantitative comparison of zeros (circles, cyan for positive derivative and blue for negative deriva-
tive, top two rows of plots) and poles (dots, magenta for positive residue and gray for negative residue,
bottom two rows of plots) of scaled gH rational solutions U with the approximations given according to
Corollary 2 by the intersection points of integer level curves (gray) of the two conditions in (1.32) or (1.33)
plotted in the μ = T −1/2x-plane (Color figure online)

The proof of Corollary 2 is given in Sect. 7.10. The accuracy of approximation of
poles and zeros of the rational Painlevé-IV solutions u[ j]

F (x; m, n) for both families
F = gH and F = gO and types j = 1 and j = 3 is shown in Figs. 10–12 for μ in the
closed first quadrant 0 ≤ arg(μ) ≤ 1

2π . Again, the accuracy is remarkable even for
(m, n) not very large. We do not show analogous plots for type j = 2 since these can
be immediately obtained from (2.2) and Proposition 4 in Sect. 2.

With just a bit more work, the analysis behind Corollary 2 allows one to extract the
asymptotic behavior of the zeros of the special gH and gOpolynomials themselves. For
a uniform treatment of both families of polynomials, set QgH(x; m, n) := Hm,n(x)
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Fig. 11 Quantitative comparison of zeros (circles, cyan for positive derivative and blue for negative deriva-
tive, top two rows of plots) and poles (dots, magenta for positive residue and gray for negative residue,
bottom two rows of plots) of scaled gO rational solutions U with the approximations given according to
Corollary 2 by the intersection points of integer level curves (gray) of the two conditions in (1.32) or (1.33)
plotted in the μ = T −1/2x-plane (Color figure online)

and QgO(x; m, n) := Qm,n(x). Then define

DF(m, n) := {μ ∈ C : QF(|�[1]
0,F(m, n)|1/2μ; m, n) = 0}, F = gH, gO

as the set of all roots of the indicated polynomial, suitably rescaled. Similarly, let
D̆F(m, n) denote the set of values of μ for which both conditions in (1.33) hold with
ζ = 0 fixed for type j = 1 and k = 2. The selection of k = 2 turns out to correspond to
ζ = 0 being a pole of f (ζ − ζ0) of residue −1. The following result was first proved
in the gH case by Masoero and Roffelsen using the theory of a family of quantum
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Fig. 12 As in Fig. 7 but for negative indices (m, n)

oscillators with anharmonic potentials. The same authors are currently working on
an analogous result for the gO polynomials [48]. Our proof is a consequence of the
isomonodromy method and hence applies equally well in the gH and gO cases.

Corollary 3 (Roots of gH and gO polynomials; cf. [47, Theorem 2] for the gH case)Fix
a rational aspect ratio ρ > 0 and a compact set C within one of the domains B�(κ),
B�(κ), or B�(κ) (the latter two for the gO family only). Then, there is a constant
r > 0 (depending on C and ρ) such that for m, n sufficiently large with n = ρm the
following statements hold with T = |�[1]

0,F(m, n)|. For each point μ̆ ∈ D̆F(m, n)∩ C,

there is a unique point μ ∈ DF(m, n) that satisfies |μ − μ̆| ≤ rT −2. Likewise for
each point μ ∈ DF(m, n) ∩ C, there is a unique point μ̆ ∈ D̆F(m, n) that satisfies
|μ̆ − μ| ≤ rT −2.
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The proof is given in Sect. 7.10, and it is based on the fact that, according to Tables 1
and 2, the gH and gO polynomials Hm,n(x) and Qm,n(x) give rise to poles of residue
−1 of u[1]

gH(x; m, n) and u[1]
gO(x; m, n), respectively. Therefore, the accuracy of the

approximation of roots of the gH and gO polynomials given in Corollary 3 can also
be seen in the bottom row of the first two columns of Figs. 10–12.

The σ -form of the Painlevé-IV equation [40, 57] also admits rational solutions,
each of which can be expressed in terms of just one gH or gO polynomial (see, for
example, [23]). Results for the polynomials themselves such as Corollary 3 or the
theorems of Masoero and Roffelsen [47] can therefore be used to write asymptotic
approximations for rational solutions of the σ -Painlevé-IV equation.

1.5 Notation

We define the three Pauli matrices

σ1 :=
(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

It will be convenient to have some compact notation for 2× 2 matrices having certain
structure; thus, given a complex number a we define unit determinant lower triangular,
upper triangular, diagonal, and “twist” matrices by

L(a) :=
(
1 0
a 1

)
, U(a) :=

(
1 a
0 1

)
, D(a) := aσ3 =

(
a 0
0 a−1

)
, T(a) :=

(
0 −a−1

a 0

)
.

(1.34)
In terms of these elementary matrices, we will frequently use the following factoriza-
tions, which assume ad − bc = 1:

(
a b
c d

)
= L(ca−1)D(a)U(ba−1), a �= 0, (“LDU”),

= L(db−1)T(−b−1)L(ab−1), b �= 0, (“LTL”),

= U(bd−1)D(d−1)L(cd−1), d �= 0, (“UDL”),

= U(ac−1)T(c)U(dc−1), c �= 0, (“UTU”).

(1.35)

For a function f defined on the complement of an oriented arc in the complex plane,
we use subscripts “+” (resp., “−”) to denote the boundary value taken at a given point
on the arc from the left (resp., right): f±. We sometimes abbreviate the average and
difference of these boundary values by writing

〈 f 〉 := 1
2 ( f+ + f−) and � f := f+ − f−.

Throughout this paper, we use ∗ to denote complex conjugation, and for a quantity Q
we use a breve (Q̆) to indicate a corresponding approximation. Finally, for expressions
applicable to either family, gH or gO, we frequently use a generic subscript F (for
“family”).
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2 Bäcklund Transformations and Symmetries

Transformations among the rational solutions of (1.1) play a crucial role in our work,
and in this section we briefly describe their most important properties. We refer the
reader to [23, 35, 37, 43, 51] for background and more information. Each of the four
parameter sets �[1]−

gH , �[2]−
gH , �[3]+

gH , and �gO, along with its corresponding rational
solutions of (1.1), can be generated from a “seed” triple (�0,�∞, u(x)) by itera-
tively applying certain Bäcklund transformations in order to increment or decrement
the parameters (�0,�∞) by a basis (over Z) of lattice vectors.6 The basis can be cho-
sen to correspond to integer increments ofm and n. SuchBäcklund transformations are
isomonodromic and they lift to Schlesinger transformations of corresponding simulta-
neous solutions of the Lax pair for Painlevé-IV; see Sect. 3.3 for details. For each type
of rational solution in the gH family, a basic isomonodromic Bäcklund transformation
becomes indeterminate (i.e., producing an identically vanishing denominator) for the
transformed rational solution if it is applied at a lattice point on the boundary of the
parameter sector and would yield transformed parameters one step outside the sector.
For example, at the points (�0,�∞) = ( 12 + 1

2n, 1
2 + 1

2n), n = 0, 1, 2, . . . , that

make up part of the boundary of �[3]+
gH , the isomonodromic Bäcklund transformation

(�0,�∞, u(x)) �→ (�0+ 1
2 ,�∞− 1

2 , u↘(x)) (see (3.49)) is indeterminate as it leads
to negative values of m. The same transformation is however valid at all other points
of �[3]+

gH . The reason this occurs is that the three sets of monodromy data consisting
of Stokes and connection matrices for the three types of gH rational solutions of (1.1)
are all different. This phenomenon does not occur for the gO family, each point of
which yields the same monodromy data (but different again from that of all three gH
types).

Therefore, if it is desired to generate one type of rational solution of (1.1) in the gH
family from another type of solution in the same family, one must apply a Bäcklund
transformation that is not isomonodromic. We will find useful two such transfor-
mations, both of which can correspond to large leaps in the (�0,�∞)-plane rather
than incremental steps, and hence might be thought of as global symmetries of the
Painlevé-IV equation. Firstly, there is an elementary symmetry S� of (1.1)

S�(�0,�∞, u(x)) = (�0,�,�∞,�, u�(x)) := (�0, 1 − �∞, iu(−ix)) (2.1)

due to Boiti and Pempinelli [11]. The action of S� in the parameter space is merely
a reflection through the horizontal line �∞ = 1

2 , which obviously preserves both
lattices �gH and �gO. In particular, note that for either family F = gH or F = gO,

(�0,�∞) = (�
[1]
0,F(m, n),�[1]

∞,F(m, n)) �⇒ (�0,�,�∞,�) = (�
[2]
0,F(n,m),�

[2]
∞,F(n,m))

(�0,�∞) = (�
[3]
0,F(m, n),�[3]

∞,F(m, n)) �⇒ (�0,�,�∞,�) = (�
[3]
0,F(n,m),�

[3]
∞,F(n,m)).

6 The seed triples we use are (− 1
2 ,

3
2 ,

1
x ) for �

[1]−
gH , (− 1

2 ,− 3
2 ,− 1

x ) for �
[2]−
gH , ( 12 ,

1
2 ,−2x) for �[3]+

gH ,

and ( 16 ,
1
2 ,− 2

3 x) for �gO.
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Therefore, as the rational solution of (1.1) for given parameters is unique, (2.1) implies
that

u[2]
F (x; m, n) = iu[1]

F (−ix; n,m)

u[3]
F (x; m, n) = iu[3]

F (−ix; n,m).
(2.2)

Since this shows that the rational solutions u[2]
gH(x; m, n) and u[2]

gO(x; m, n) are trivially

related to u[1]
gH(x; n,m) and u[1]

gO(x; n,m), respectively, it is sufficient to prove results
for the rational solutions of types 1 and 3 in the gH and gO families.

Remark 5 The equilibrium relation (1.15) is invariant under an analogue of the Boiti–
Pempenelli symmetry S� with action S�(κ, μ,U0) �→ (−κ, iμ, iU0). Since the
equilibria as defined for large μ in (1.15)–(1.16) are all distinct, S� acts on them
by

S�U [1]
0,gH(μ; κ) := iU [1]

0,gH(−iμ;−κ) = U [2]
0,gH(μ; κ)

S�U [2]
0,gH(μ; κ) := iU [2]

0,gH(−iμ;−κ) = U [1]
0,gH(μ; κ)

S�U [3]
0,gH(μ; κ) := iU [3]

0,gH(−iμ;−κ) = U [3]
0,gH(μ; κ)

S�U0,gO(μ; κ) := iU0,gO(−iμ;−κ) = U0,gO(μ; κ).

(2.3)

These relations also imply that, for fixed κ ∈ R\{−1, 1}, all four equilibrium branches
are odd functions of μ.

The rational solutions of type 1 and 3 are in turn related by a more complicated
nonisomonodromic Bäcklund transformation that we denote by S�

�
with action

S�
�
(�0,�∞, u(x)) = (�0,��,�∞,��

, u�
�
(x))

:=
(

− 1
2 (�0 + �∞), 3

2�0 − 1
2�∞ + 1,

u′(x)
2u(x)

− 2�0

u(x)
− x − 1

2
u(x)

)
. (2.4)

This is a version of the transformation of Lukashevich [43] and Gromak [37] denoted
by W̃ in [22, Sect. 2] and by T ±

1 in [53, §32.7(iv)]. It is interesting to note that the
induced action on the (�0,�∞)-plane has unit Jacobian; hence, area and orientation
are preserved. In fact, setting

D(31/4) :=
(
31/4 0
0 3−1/4

)
and R(ϕ) :=

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)

(so D(31/4) is the matrix of stretching by 31/4 along the �0 axis and compression by
3−1/4 along the �∞ axis, and R(ϕ) is the matrix of rigid rotation about the origin by
ϕ radians), we have

S�
�

:
[(

�0
�∞

)
−
( 1

6
1
2

)]
�→
(− 1

2
1
2

)
+ D(31/4)−1R( 23π)D(3

1/4)

[(
�0
�∞

)
−
( 1

6
1
2

)]
.
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This shows that S�
�
is an isomorphism of�[3]+

gH onto�[1]−
gH , as well as an isomorphism

of �gO onto itself. For either family F = gH or F = gO,

(�0,�∞) = (�
[3]
0,F(m, n),�[3]

∞,F(m, n)) �⇒
(�0,��,�∞,��

) = (�
[1]
0,F(m, n + 1),�[1]

∞,F(m, n + 1))

so again by uniqueness of the rational solution of (1.1) for given parameters,

u(x) = u[3]
F (x; m, n) �⇒ u�

�
(x) = u[1]

F (x; m, n + 1). (2.5)

Although the rational solutions of types 1 and 3 in each family are therefore related
explicitly by S�

�
, the explicit expression for u�

�
(x) in terms of u(x) written in (2.4) is

not convenient for the study of u�
�
(x) when the parameters are large, even if u(x) is

understoodwith some detail (estimates of derivatives of error termswould be required,
for instance). Therefore, we will not use S�

�
directly; however, we will use it indirectly

to show that onemay extract u(x) and u�
�
(x) from the sameRiemann–Hilbert problem

by formulæ of comparable complexity, neither of which requires differentiation (see
(3.2)).

Another useful but elementary symmetry of (1.1) is the Schwarz symmetry S∗
defined by

S∗(�0,�∞, u(x)) := (�∗
0,�

∗∞, u(x∗)∗),

where ∗ denotes complex conjugation. This symmetry combines with iteration of the
Boiti–Pempinelli symmetry S� to yield the following.

Proposition 4 Every rational solution u(x) of the Painlevé-IV equation (1.1) satisfies

u(−x) = −u(x), u(x∗) = u(x)∗, and u(−x∗) = −u(x)∗. (2.6)

In particular, every rational solution u(x) has either a pole or a zero at x = 0, is real
for real x and imaginary for imaginary x, and is determined by its values in the closed
first quadrant 0 ≤ arg(x) ≤ 1

2π .

Proof Noting that S� is an involution on the parameter space that preserves rationality
of u(x), and using uniqueness of the rational solution for each (�0,�∞) ∈ �gH	�gO
we deduce that every rational solution u(x) of (1.1) is odd: u(−x) = −u(x). On the
other hand, S∗ fixes the (real) parameters (�0,�∞) of any rational solution and
preserves rationality so by uniqueness every rational solution is Schwarz-symmetric:
u(x∗) = u(x)∗; the relation u(−x∗) = −u(x)∗ then follows from odd symmetry. �	

3 Isomonodromy Theory for Rational Solutions of Painlevé-IV

We now use the isomonodromy approach to derive Riemann–Hilbert problems for the
gH and gO rational solutions. We state the Riemann–Hilbert problems in Sect. 3.1.
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The reader who is primarily interested in the asymptotic analysis of these Riemann–
Hilbert problems can proceed directly from the end of Sect. 3.1 to Sect. 4 without loss
of continuity. In Sects. 3.2 and 3.3, we develop the background we will need regarding
the general Painlevé-IV Riemann–Hilbert Problem 1 and associated isomonodromic
Schlesinger transformations. While much of this theory is in the literature (see, for
instance, [33, Sects. 5.1 and 6.3] and [35]), to deal with the rational solutions we will
add some important details by

• implementing the isomonodromy method for resonant Fuchsian singular points
such as for the gH solutions because �0 ∈ 1

2Z;• identifying non-differential formulæ for the solution u(x);
• identifying a formula for the related solution u�

�
(x);

• determining conditionswhere various discrete isomonodromic transformations are
well defined.

Then, in Sects. 3.5 and 3.6 we apply the method described in Sect. 3.4, using the x-
equation in the Lax pair to compute monodromy data and then applying Schlesinger
transformations to prove Theorems 5 and 6 from Sect. 3.1.

3.1 Riemann–Hilbert Representations of Rational Painlevé-IV Solutions

The following Riemann–Hilbert problem associated to general Painlevé-IV functions
can be found, for example, in [33].

Riemann-Hilbert Problem 1 (Painlevé-IV Inverse Monodromy Problem) Fix (�0,

�∞) ∈ C
2. Let Stokes matrices V j,k , ( j, k) = (2, 1), (2, 3), (4, 3), (4, 1), and con-

nection matrices V j , j = 1, . . . , 4 be given, and assume that they all have unit
determinant, that V2,1 and V4,3 are lower triangular and V2,3 and V4,1 are upper
triangular, and that the matrices are related by (3.20). Seek a 2 × 2 matrix function
λ �→ Y(λ; x) with the following properties:

• Analyticity: the function λ �→ Y(λ; x) is analytic for λ ∈ C \ �.
• Jump conditions: Y(λ; x) assumes continuous boundary values on � from each
component ofC\�, except at the origin.Using a subscript+ (resp.,−) to indicate a
boundary value taken from the left (resp., right) by orientation, the boundary values
are related on each arc of � by the jump condition

Y+(λ; x) = Y−(λ; x) exp
((

1
2λ

2 + xλ
)
σ3

)
V exp

(
−
(
1
2λ

2 + xλ
)
σ3

)
where V is the arcwise-constant function defined on � as follows:

V := V j,k, λ ∈ � j,k, ( j, k) = (2, 1), (2, 3), (4, 3), (4, 1),

V := V j , λ ∈ � j , j = 1, . . . , 4,

and

V := V0 = e2π i�0σ3 , λ ∈ �0.
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• Behavior near the origin: Y(λ; x)λ−�0σ3 is bounded as λ → 0.
• Normalization: Y(λ; x)λ�∞σ3 → I as λ → ∞.

From a solution Y(λ; x) of Riemann–Hilbert Problem 1, we can try to define two
matrix functions of x ∈ C by

Y0
0(x) := lim

λ→0
Y(λ; x)λ−�0σ3 and Y∞

1 (x) := lim
λ→∞ λ(Y(λ; x)λ�∞σ3 − I) (3.1)

and related scalar functions given by

u(x) := −2�0
Y 0
0,11(x)Y

0
0,12(x)

Y ∞
1,12(x)

and u�
�
(x) := −2

Y 0
0,21(x)Y

∞
1,12(x)

Y 0
0,11(x)

, (3.2)

wherever these definitions make sense. The following theorem is proved in Sect. 3.5.

Theorem 5 (Riemann–Hilbert representation of gO rational solutions) Fix (�0,�∞)

∈ �gO. Let Stokes matrices V j,k be defined by

V2,1 =
(
1 0
2i 1

)
, V2,3 =

(
1 − 1

2 i
0 1

)
, V4,3 = e2π i�∞

(
1 0
2i 1

)
, and

V4,1 =
(
1 − 1

2 i
0 1

)
, (3.3)

and let connection matrices V j be defined by

V1 =
( 1√

3
− 1

2
2√
3
e
iπ
6 e− iπ

6

)
, V2 =

(
e
iπ
6 1

2
2√
3
e
5iπ
6 1√

3

)
, V3 =

⎛
⎝ 1√

3
e− iπ

3 1
2 e

− 2iπ
3

2√
3
e− iπ

6 e
iπ
6

⎞
⎠ , and

V4 =
(

e− iπ
6 1

2 e
− iπ

3

2√
3
e− 5iπ

6 1√
3
e
iπ
3

)
, (3.4)

which satisfy the consistency conditions (3.20). Then Riemann–Hilbert Problem 1 has
a unique solution for all but finitely many values of x ∈ C, and the functions u(x)
and u�

�
(x) defined by (3.2) are the unique (gO) rational solutions of the Painlevé-IV

equation (1.1) for parameters (�0,�∞) and for (�0,�
�
,�∞,�

�
) ∈ �gO defined in

(2.4), respectively.

Similarly, the following theorem is proved in Sect. 3.6.

Theorem 6 (Riemann–Hilbert representation of gH rational solutions) Fix (�0,�∞)

∈ �
[3]+
gH . Let Stokes matrices V j,k be defined by

V2,1 = V2,3 = V4,1 = I, V4,3 = e2π i�∞I, (3.5)

123



Constructive Approximation

Fig. 13 The oriented contour �
consists of four rays, the
oriented segment �0 = (−1, 0),
and four oriented arcs of the unit
circle in the λ-plane

Fig. 14 The oriented contour
�gH = S1 ∪ �0 ∪ �4,3 and the
jump matrix
Y−(λ; x)−1Y+(λ; x) for gH
rational solutions with
(�0,�∞) ∈ �

[3]+
gH

and let connection matrices V j be defined by

V1 = V3 =
(
1 0
1 1

)
and V2 = V4 =

(
1 0

−1 1

)
, (3.6)

which satisfy the consistency conditions (3.20). Then Riemann–Hilbert Problem 1 has
a unique solution for all but finitely many values of x ∈ C, and the functions u(x)
and u�

�
(x) defined by (3.2) are the unique (gH) rational solutions of the Painlevé-IV

equation (1.1) for parameters (�0,�∞) ∈ �
[3]+
gH and for (�0,��,�∞,��

) ∈ �
[1]−
gH

defined in (2.4), respectively.

Remark 6 Since three of the Stokesmatrices in (3.5) are trivial and since the connection
matrices in (3.6) are either identical or related by matrix inversion on oppositely
oriented arcs of the unit circle |λ| = 1, in the case of gH rationals for (�0,�∞) ∈
�

[3]+
gH we can use a simplified jump contour � = �gH = S1 ∪ �0 ∪ �4,3 and jump

matrix Y−(λ; x)−1Y+(λ; x) as shown in Fig. 14.
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3.2 General IsomonodromyTheory for the Painlevé-IV Equation

We now develop the isomonodromy theory for the Painlevé-IV equation starting from
the Lax pair. For a good overview of this theory, we also refer the reader to [33].

3.2.1 A Lax Pair for Painlevé-IV

If y(x) is a nonzero solution of

y′(x) = −(u(x) + 2x)y(x) (3.7)

and z is defined uniquely in terms of u by

4z(x) = −u′(x) + u(x)2 + 2xu(x) + 4�0, (3.8)

then the differential equations (1.1) and (3.7) for u and y are the compatibility condi-
tions for the Garnier–Jimbo–Miwa Lax pair [33, 40]

�λ = ��, �x = X�, (3.9)

with coefficient matrices

� := λσ3 + �0(x) + λ−1�1(x), �0(x) :=
(

x y(x)
2y(x)−1(z(x) − �0 − �∞) −x

)
,

�1(x) :=
(

�0 − z(x) − 1
2u(x)y(x)

2y(x)−1u(x)−1z(x)(z(x) − 2�0) z(x) − �0

) (3.10)

and

X := λσ3+X0(x), X0(x) :=
(

0 y(x)
2y(x)−1(z(x) − �0 − �∞) 0

)
= �0(x)−xσ3.

(3.11)
Note that λ = 0 is a Fuchsian (regular singular) point for the equation �λ = ��,
with exponents ±�0. The only other singularity of �λ = �� is λ = ∞, an irregular
singular point. Formal expansions of solutions about λ = ∞ include a single-valued
exponential factor and a sub-dominant factor proportional toλ±�∞ .Hence the utility of
the Jimbo–Miwa parameters (�0,�∞) over other parameters common in the literature
such as (α, β) = (2�∞ − 1,−8�2

0) (see [53, Eqn. 32.2.4]) is that they explicitly
encode the formal monodromy about λ = 0 and λ = ∞ in the solution � of the Lax
system (3.9).

3.2.2 The Direct Problem for the Lax Pair

Let u(x) and y(x) solve (1.1) and (3.7) for given parameters �0 and �∞. Then for
generic x ∈ C, the spectral equation �λ = �� has an irregular singular point at
λ = ∞ and a regular singular point at λ = 0 with Frobenius exponents ±�0. The
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irregular singular point has four Stokes sectors that we will label as (following the
subscript notation of [33]):

S1 := {λ ∈ C, λ �= 0, − 1
2π ≤ arg(λ) ≤ 0}

S2 := {λ ∈ C, λ �= 0, 0 ≤ arg(λ) ≤ 1
2π}

S3 := {λ ∈ C, λ �= 0, 1
2π ≤ arg(λ) ≤ π}

S4 := {λ ∈ C, λ �= 0, −π ≤ arg(λ) ≤ − 1
2π}.

Associated with each Stokes sector S j , there is a simultaneous fundamental solution

matrix � = �
(∞)
j (λ, x) of both equations of the Lax pair (3.9) determined by the

normalization condition

�
(∞)
j (λ, x)λ�∞σ3 exp(−( 12λ

2 + xλ)σ3) = I + O(λ−1), λ → ∞, λ ∈ S j ,

j = 1, 2, 3, 4, (3.12)

where the power functions λ±�∞ refer to the principal branches. Applying Abel’s
Theorem to the simultaneous equations (3.9) noting that tr(�) = tr(X) = 0, it follows
that the four solutions satisfy det(�(∞)

j (λ, x)) = 1, j = 1, . . . , 4.
For simultaneous solutions of (3.9) near λ = 0, observe that whenever (�0,�∞) ∈

�gO, the Frobenius exponents ±�0 are unequal mod Z, making the regular singular
point nonresonant and guaranteeing the existence of a basis of convergent Puiseux
series solutions that can be found by themethod of Frobenius. On the other hand, when
(�0,�∞) ∈ �gH, the exponents always differ by integers making the singular point
resonant. In general, the method of Frobenius fails to produce a basis of solutions
near a resonant regular singular point, however we will see that such a basis indeed
exists nonetheless when (�0,�∞) ∈ �gH and the coefficients in the Lax pair refer to
the corresponding rational solution, making the resonant singular point an apparent
singularity. Whether the singularity is nonresonant, or resonant but apparent, there
exists a fundamental simultaneous solution matrix � = �(0)(λ, x) defined for λ on a
neighborhood of λ = 0 with a branch cut on the negative real line omitted, such that

�(0)(λ, x)λ−�0σ3 is analytic at λ = 0 (3.13)

(and hence entire, since there are no other finite singular points) where the power
functions λ±�0 indicate principal branches. In the nonresonant case, �(0)(λ, x) is
unique up to multiplication on the right by a constant invertible diagonal matrix,
while in the resonant but apparent case there is additional freedom that enters via the
ambiguity of adding an arbitrary multiple of the subdominant solution to the dominant
solution. Since Abel’s Theorem implies that �(0)(λ, x) has constant determinant, we
agree to partly resolve the ambiguity in this solution by insisting that det(�(0)(λ, x)) =
1.

The five simultaneous fundamental solutions are necessarily related pairwise on
certain overlap domains by right-multiplication by constant matrices. In particular,
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the following constant matrices are well defined and have unit determinants:

V2,1 := �
(∞)
1 (λ, x)−1�

(∞)
2 (λ, x), arg(λ) = 0, (3.14)

V2,3 := �
(∞)
3 (λ, x)−1�

(∞)
2 (λ, x), arg(λ) = 1

2π, (3.15)

V4,3 := �
(∞)
3 (λ, x)−1�

(∞)
4 (λ, x), arg(−λ) = 0, (3.16)

V4,1 := �
(∞)
1 (λ, x)−1�

(∞)
4 (λ, x), arg(λ) = − 1

2π, (3.17)

V j := �
(∞)
j (λ, x)−1�(0)(λ, x), λ ∈ S j , j = 1, 3, (3.18)

and
V j := �(0)(λ, x)−1�

(∞)
j (λ, x), λ ∈ S j , j = 2, 4. (3.19)

The Stokes matrices V j,k are necessarily triangular (upper for V2,3 and V4,1, lower
for V2,1 and V4,3), and their off-diagonal elements are Stokes multipliers measuring
the Stokes phenomenon associated with the irregular singular point of �λ = ��

at λ = ∞. The remaining four matrices V j are called connection matrices. These
matrices are always related by the following identities:

V2,1 = V1V2, V2,3 = V3V2, V4,1 = V1V4,

V4,3 = V3e
−2π i�0σ3V4, V2,3V

−1
2,1V4,1V

−1
4,3 = e2π i�∞σ3 . (3.20)

Modulo these identities, the Stokes and connectionmatrices constitute themonodromy
data for the solution u(x) of (1.1). It turns out that the monodromy data is the same
for all rational solutions in the gO family, and is the same for each type of rational
solution in the gH family.

Assuming existence of all five particular simultaneous solutions for a given value
of x ∈ C, and assuming that the Fuchsian singularity at λ = 0 is either nonresonant,
or resonant but apparent, the matrix function Y(λ; x) defined as follows:

Y(λ; x) :=
{

�
(∞)
j (λ, x) exp(−( 12λ

2 + xλ)σ3), λ ∈ S j , |λ| > 1, j = 1, 2, 3, 4,

�(0)(λ, x) exp(−( 12λ
2 + xλ)σ3), |λ| < 1,

(3.21)
solves Riemann–Hilbert Problem 1 relative to the jump contour � shown in Fig. 13.

3.2.3 The Inverse Problem for the Lax Pair

We now present several useful facts about Riemann–Hilbert Problem 1.

Proposition 5 The following statements are true:

• Given x ∈ C, every solution of Riemann–Hilbert Problem 1 satisfies det(Y(λ; x))
= 1 for all λ ∈ C \ �.

• There exists at most one solution of Riemann–Hilbert Problem 1 for each x ∈ C.
• Either

– Riemann–Hilbert Problem 1 has no solution for any x ∈ C, or
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– Riemann–Hilbert Problem 1 has a solution for x ∈ C \ D, where D ⊂ C

is a discrete set, for each λ ∈ C \ � the solution is an analytic function of
x ∈ C \ D, and the solution admits an asymptotic expansion to all orders as
λ → ∞ in the sense that

Y(λ; x)λ�∞σ3 ∼ I +
∞∑

k=1

Y∞
k (x)λ−k, λ → ∞, (3.22)

and a convergent expansion in a neighborhood of λ = 0 of the form

Y(λ; x)λ−�0σ3 =
∞∑

k=0

Y0
k(x)λ

k (3.23)

in which all matrix coefficients Y∞
k (x) for k ∈ Z>0 and Y0

k(x) for k ∈ Z≥0
are meromorphic functions of x with poles in D. Both expansions (3.22) and
(3.23) are differentiable term-by-term with respect to both λ and x.

Proof The first and second statements are both simple consequences of Liouville’s
Theorem. In light of the identities (3.20), the third statement is a consequence of
the Analytic Fredholm Theorem applied to a system of singular integral equations
equivalent to Riemann–Hilbert Problem 1. See [33] for details. �	
From the uniqueness, one easily obtains the following.

Corollary 4 Suppose that the arcwise-constant matrix V(λ) satisfies V(λ∗)∗ =
V(λ)−1, where V∗ denotes elementwise complex conjugation. If Riemann–Hilbert
Problem 1 has a solution Y(λ; x) for some x ∈ C, then it does also for x∗, and
Y(λ∗; x∗) = Y(λ; x)∗.

The next result shows that simultaneous differential equations of the form (3.9) can
be deduced directly from the conditions of Riemann–Hilbert Problem 1.

Proposition 6 Suppose that Riemann–Hilbert Problem 1 has a solution for x ∈ C\D,
where D is a discrete set. Then �(λ, x) := Y(λ; x) exp(( 12λ

2 + xλ)σ3) satisfies the
Lax equations

∂�

∂x
(λ, x) = (

λσ3 + [Y∞
1 (x), σ3]

)
�(λ, x) (3.24)

and

∂�

∂λ
(λ, x) =

(
λσ3 + xσ3 + [Y∞

1 (x), σ3] + λ−1�1(x)
)

�(λ, x) (3.25)

for each (λ, x) ∈ (C \ �) × (C \ D), where the coefficient matrix �1(x) has two
equivalent representations:

�1(x) = x[Y∞
1 (x), σ3] + [Y∞

2 (x), σ3] − [Y∞
1 (x), σ3]Y∞

1 (x) − �∞σ3

= �0Y0
0(x)σ3Y

0
0(x)

−1.
(3.26)
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Proof The function �(λ, x) is analytic in both variables (λ, x) exactly whereY(λ; x)
is, and it satisfies jump conditions analogous to those satisfied by Y(λ; x) but with
the exponential factors omitted. These jump conditions are independent of both λ

and x , so the partial derivatives on the left-hand sides of (3.24) and (3.25) satisfy
the same jump conditions as does �(λ, x) itself. Taking into account the classical
nature of the boundary values on the jump contour � and the unit determinant of
�(λ, x) guaranteed by the first property of Proposition 5, it then follows easily that
X(λ, x) := ∂x�(λ, x) · �(λ, x)−1 and �(λ, x) := ∂λ�(λ, x) · �(λ, x)−1 are both
analytic functions of λ ∈ C \ {0} for every x ∈ D. Using (3.22) and its derivatives
with respect to x and λ shows that

X(λ, x) = λσ3 + [Y∞
1 (x), σ3] + O(λ−1), λ → ∞ (3.27)

and

�(λ, x) = λσ3 + xσ3 + [Y∞
1 (x), σ3] + λ−1�1(x) + O(λ−2), λ → ∞ (3.28)

where �1(x) is given by the first line of (3.26). Likewise, using (3.23) and its deriva-
tives with respect to x and λ shows that

X(λ, x) = O(1), λ → 0

and
�(λ, x) = λ−1�0Y0

0(x)σ3Y
0
0(x)

−1 + O(1), λ → 0. (3.29)

Note that det(Y0
0(x)) = 1 according to the first statement of Proposition 5. Hence, by

Liouville’s Theorem, X(λ, x) is a linear function of λ given by the two explicit terms
on the right-hand side of (3.27), while �(λ, x) is a Laurent polynomial of degree
(1, 1) given by the four explicit terms on the right-hand side of (3.28). Comparing the
latter with (3.29) then gives the second equality in (3.26) and completes the proof. �	

Proposition 7 Suppose that Riemann–Hilbert Problem 1 has a solution for x ∈ C\D,
where D is a discrete set. Set

y(x) := −2Y ∞
1,12(x)

z(x) := �0 + �∞ − 2Y ∞
1,12(x)Y

∞
1,21(x) = −2�0Y 0

0,12(x)Y
0
0,21(x)

u(x) := 2Y ∞
1,22(x) − 2x − 2

Y ∞
2,12(x)

Y ∞
1,12(x)

= −2�0
Y 0
0,11(x)Y

0
0,12(x)

Y ∞
1,12(x)

.

(3.30)

The definition of u(x) is determinate if and only if Y ∞
1,12(x) does not vanish identically.

In this case, y(x), z(x), and u(x) are meromorphic on C \ D; more precisely y(x) is
analytic and not identically vanishing, z(x) is analytic, and u(x) has a discrete set
of poles in C \ D corresponding to the necessarily isolated zeros of the analytic
function Y ∞

1,12(x) proportional to y(x). Assuming furthermore that u(x) does not
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vanish identically, the Lax equations (3.24) and (3.25) take exactly the form (3.9)
subject to (3.10)–(3.11). Furthermore, the differential identities

y′ = −(2x + u)y

z′ = (�0 + �∞)u + 4�0
z

u
− uz − 2

z2

u
u′ = 4�0 + 2xu + u2 − 4z

(3.31)

hold for every x ∈ C \D that is not a pole or zero of u(x), and u(x) is a meromorphic
solution of the Painlevé-IV equation in the form (1.1).

Proof The definitions (3.30) amount to nothing more than a parametrization of the
coefficients in the Lax equations (3.24) and (3.25) from Proposition 6, subject to the
condition following from the second line of (3.26) that �1(x) has trace zero and
determinant −�2

0; the alternate forms of z(x) and u(x) then follow from comparing
the two different representations of �1,11(x) and �1,12(x) given on the two lines
of (3.26). The relation between the basic analyticity properties of these functions
and the statement that Y ∞

1,12(x) is an analytic function on C \ D that does not vanish
identically then follow fromProposition 5. The three equations (3.31) are exactly those
arising from the zero-curvature compatibility condition �x − Xλ + [�,X] = 0 upon
separating out the coefficients of the different powers of λ that appear, and these make
sense provided neither y(x) nor u(x) vanishes identically. Finally, elimination of z in
favor of u by using the third equation of (3.31) in the second yields the Painlevé-IV
equation (1.1) on u(x). �	
Remark 7 The formulæ for u(x) given in (3.30) are particularly useful to us because
they do not require differentiation; however a more compact formula obtained by
combining the definition of y(x) in (3.30) with the first differential equation in (3.31)
is simply (see [33, Eqn. 5.1.13])

u(x) = −2x − d

dx
log(Y ∞

1,12(x)).

Note also that up to a constant factor, the alternate representation of u(x) given in
(3.30) (see also (3.2)) is the reciprocal of the formula for extracting the solution of
the Painlevé-III equation from its Riemann–Hilbert problem (see [13, Eqn. 18], which
corrects a corresponding formula in [33, Theorem 5.4]).

An apparently new result that is extremely useful to us is that Riemann–Hilbert
Problem 1 contains also the solution of another Painlevé-IV equation:

Proposition 8 Suppose that �0 �= 0, that Riemann–Hilbert Problem 1 has a solution
for x ∈ C \ D, where D is a discrete set, and that the function u(x) given by (3.30)
is well defined as a meromorphic function on C \D. Let u�

�
(x) be defined in terms of

Y(λ; x) by (3.2). Then u�
�
(x) is a meromorphic solution of the Painlevé-IV equation

(1.1) with modified parameters (�0,��,�∞,��
) given in (2.4), and u�

�
(x) is explicitly

related to u(x) by the Bäcklund transformation indicated also in (2.4). Thus the same
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Riemann–Hilbert problem encodes explicitly a solution (�0,�∞, u(x)) and its image
under the symmetry S�

�
.

Proof Without the hypothesis that�0 �= 0, byProposition7, the functionu(x)givenby
the alternate expression in (3.30) is ameromorphic solution of thePainlevé-IVequation
(1.1). However, since�0 �= 0, it follows easily that (1.1) does not admit the identically
vanishing solution, so it follows in particular that Y 0

0,11(x) does not vanish identically.
Therefore, u�

�
(x) is indeed a meromorphic function, and comparing with the alternate

definitions of z(x) and u(x) in (3.30) one sees that u�
�
(x) = −2z(x)/u(x). Eliminating

z(x) using the last equation in the system (3.31) yields the Bäcklund transformation
formula given in (2.4). It is then straightforward to deduce the Painlevé-IV equation
satisfied by u�

�
(x) from that satisfied by u(x). �	

Corollary 5 Under the same additional conditions as in Corollary 4, it follows that
y(x∗) = y(x)∗, z(x∗) = z(x)∗, u(x∗) = u(x)∗, and u�

�
(x∗) = u�

�
(x)∗.

Remark 8 The Painlevé-IV equation involves the parameter �0 only in the form of
its square �2

0, but the Lax pair and Riemann–Hilbert problem break the symmetry of
�0 �→ −�0. However, symmetry in the Lax pair is easily restored with the use of the
quantity ẑ(x) := z(x)−�0 in place of z(x). Then the matricesX and � are written in
terms of u, y, ẑ,�∞, and�2

0, but�0 alone does not appear. From (3.30) one sees that
the value of�0 is not required to express ẑ(x) in terms of the solution of the Riemann–
Hilbert problem, and making the substitution z(x) = �0 + ẑ(x) shows that the first
order system on y, ẑ, and u implied by (3.31) only involves�0 via its square. Finally,
the substitution Y(λ; x) �→ Y(λ; x) exp(( 12λ

2 + xλ)σ3)iσ1 exp(−( 12λ
2 + xλ)σ3) for

|λ| < 1 gives an equivalent Riemann–Hilbert problem in which �0 is replaced by
−�0, while Y 0

0,11(x)Y
0
0,12(x) �→ −Y 0

0,12(x)Y
0
0,11(x) leaving the alternate expression

for u(x) in (3.30) (see also (3.2)) invariant as well. However, the expression for u�
�
(x)

in (3.2) is not invariant, and indeed the target parameters �2
0,��

and �∞,��
for which

u�
�
(x) solves (1.1) depend on �0 and not its square.

Note that making the substitution �(λ, x) = Y(λ; x) exp(( 12λ
2 + xλ)σ3) with

either the expansion (3.22) or (3.23) into the Lax equation �λ = �� with coefficient
matrix given by (3.10), and separating out the powers of λ yields from each expansion
an infinite hierarchy of algebraic identities such as (from (3.23)):

Y0
1(x) + �0Y0

1(x)σ3 − �1(x)Y0
1(x) + xY0

0(x)σ3 − �0(x)Y0
0(x) = 0. (3.32)

3.3 Isomonodromic Schlesinger Transformations

The parameter lattices�[3]+
gH and�gO are both generated from a given point by linear

combinations over integers of diagonal lattice vectors ( 12 ,± 1
2 ). If we think of fixing

the monodromy data V in Riemann–Hilbert Problem 1 from Sect. 3.1 (up to a sign
for V4,3) and letting the parameters (�0,�∞) vary, then it is possible to explicitly
relate the solutions for two instances of this problem when the parameters differ by
( 12 ,± 1

2 ), via a certain left-multiplier (i.e., gauge transformation of the Lax pair) called
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a Schlesinger transformation. Since the monodromy data are unchanged, these trans-
formations are isomonodromic. When we use formulæ such as (3.2) to extract u(x)
and u�

�
(x) from these related problems, we obtain explicit relations between these

functions for related parameter values, which are isomonodromic Bäcklund transfor-
mations. For more on Schlesinger and Bäcklund transformations for the Painlevé-IV
equation see, for example, [5, 35].

3.3.1 Basic Schlesinger Transformations

Suppose Y(λ; x) is the solution of Riemann–Hilbert Problem 1 for parameters
(�0,�∞). There are four basic transformations T of Y(λ; x) we will develop, all
of which are based on the same kind of gauge transformation formula:

T Y(λ; x) := G(λ; x)Y(λ; x), G(λ; x) = G+(x)λ1/2 + G−(x)λ−1/2, (3.33)

where the power functions refer to the principal branches, cut along λ < 0, and the
matrix coefficients G±(x) are to be determined so that T Y(λ; x) solves a Riemann–
Hilbert problem closely related to Riemann–Hilbert Problem 1. Indeed, from (3.33)
it is straightforward to check that domains of analyticity of Y(λ; x) and T Y(λ; x)
agree, and that the jump conditions are preserved except on �0 and �4,3 where signs
change across the branch cut of λ±1/2 in (3.33). SoG±(x) are to be chosen so that the
conditions specifying the behavior of the solution at λ = ∞ and λ = 0 hold in some
form.

To replace (�0,�∞) by (�0+ 1
2 ,�∞ + 1

2 ), we require thatY↗(λ; x) = T Y(λ; x)
satisfy the conditions

Y↗(λ; x)λ(�∞+ 1
2 )σ3 = I + Y∞↗,1(x)λ

−1 + O(λ−2), λ → ∞
Y↗(λ; x)λ−(�0+ 1

2 )σ3 = Y0↗,0(x) + O(λ), λ → 0
(3.34)

for some matrices Y∞↗,1(x) and Y0↗,0(x). Using the expansions (3.22) and (3.23) it

is straightforward to see that, assuming the matrix element Y 0
0,21(x) in (3.23) is a

meromorphic function that does not vanish identically, these relations will hold if and
only if

G+(x) = G+
↗: =

(
0 0
0 1

)
and

G−(x) = G−
↗(x) :=

(
1 −Y 0

0,21(x)
−1Y 0

0,11(x)
−Y ∞

1,21(x) Y ∞
1,21(x)Y

0
0,21(x)

−1Y 0
0,11(x)

)
, (3.35)

defining T = T↗ as a gauge transformation that exists except at the isolated zeros of
Y 0
0,21(x). Note that, using (3.30), we may write G−

↗(x) in the form

G−
↗(x) =

(
1 1

2u(x)y(x)z(x)−1

(�0 + �∞ − z(x))y(x)−1 1
2 (�0 + �∞ − z(x))u(x)z(x)−1

)
. (3.36)
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It is straightforward to check that subject to (3.35), det(G(λ; x)) = 1, so this trans-
formation preserves determinants. The gauge matrix G(λ; x) in this case is denoted
R3 in [35]. See also [5, Sect. 2.1].

To replace (�0,�∞) by (�0− 1
2 ,�∞ − 1

2 ), we require thatY↙(λ; x) = T Y(λ; x)
satisfy

Y↙(λ; x)λ(�∞− 1
2 )σ3 = I + Y∞↙,1(x)λ

−1 + O(λ−2), λ → ∞
Y↙(λ; x)λ−(�0− 1

2 )σ3 = Y0↙,0(x) + O(λ), λ → 0
(3.37)

for somematricesY∞↙,1(x) andY
0↙,0(x). Again using the expansions (3.22) and (3.23),

assuming now that Y 0
0,12(x) does not vanish identically, the above conditions will hold

if and only if

G+(x) = G+
↙ :=

(
1 0
0 0

)
and

G−(x) = G−
↙(x) :=

(
Y ∞
1,12(x)Y

0
0,12(x)

−1Y 0
0,22(x) −Y ∞

1,12(x)
−Y 0

0,12(x)
−1Y 0

0,22(x) 1

)
, (3.38)

defining T = T↙ as a gauge transformation that exists except at the isolated zeros of
Y 0
0,12(x) and preserves determinants. Using (3.30) we can also write

G−
↙(x) =

(
(z(x) − 2�0)u(x)−1 1

2 y(x)
2(z(x) − 2�0)u(x)−1y(x)−1 1

)
. (3.39)

The gauge matrix G(λ; x) in this case is denoted R4 in [35].
To replace (�0,�∞)with (�0+ 1

2 ,�∞ − 1
2 )we insist thatY↘(λ; x) = T Y(λ; x)

satisfy the conditions

Y↘(λ; x)λ(�∞− 1
2 )σ3 = I + Y∞↘,1(x)λ

−1 + O(λ−2), λ → ∞
Y↘(λ; x)λ−(�0+ 1

2 )σ3 = Y0↘,0(x) + O(λ), λ → 0
(3.40)

for some matrices Y∞↘,1(x) and Y0↘,0(x). Assuming that Y 0
0,11(x) does not vanish

identically, these conditions hold if and only if

G+(x) = G+
↘ :=

(
1 0
0 0

)
and

G−(x) = G−
↘ :=

(
Y ∞
1,12(x)Y

0
0,11(x)

−1Y 0
0,21(x) −Y ∞

1,12(x)
−Y 0

0,11(x)
−1Y 0

0,21(x) 1

)
, (3.41)
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defining T = T↘ as a gauge transformation existing except at the isolated zeros of
Y 0
0,11(x) and preserving determinants. From (3.30) we also have

G−
↘(x) =

(
z(x)u(x)−1 1

2 y(x)
2z(x)u(x)−1y(x)−1 1

)
. (3.42)

The gauge matrix G(λ; x) for this case is denoted R2 in [35].
Finally, to replace (�0,�∞) with (�0 − 1

2 ,�∞ + 1
2 ) we insist that Y↖(λ; x) =

T Y(λ; x) satisfy the conditions

Y↖(λ; x)λ(�∞+ 1
2 )σ3 = I + Y∞↖,1(x)λ

−1 + O(λ−2), λ → ∞
Y↖(λ; x)λ−(�0− 1

2 )σ3 = Y0↖,0(x) + O(λ), λ → 0
(3.43)

for some matrices Y∞↖,1(x) and Y0↖,0(x). Assuming that Y 0
0,22(x) does not vanish

identically, these conditions hold if and only if

G+(x) = G+
↖ =

(
0 0
0 1

)
and

G−(x) = G−
↖(x) =

(
1 −Y 0

0,22(x)
−1Y 0

0,12(x)
−Y ∞

1,21(x) Y ∞
1,21(x)Y

0
0,22(x)

−1Y 0
0,12(x)

)
, (3.44)

defining T = T↖ as a gauge transformation existing except at the isolated zeros of
Y 0
0,22(x) and preserving determinants. From (3.30) we can write

G−
↖(x) =

(
1 1

2u(x)y(x)(z(x) − 2�0)
−1

(�0 + �∞ − z(x))y(x)−1 1
2u(x)(�0 + �∞ − z(x))(z(x) − 2�0)

−1

)
.

(3.45)
The gauge matrix G(λ; x) for this case is denoted R1 in [35].

We have therefore established the following:

Proposition 9 Suppose that Y(λ; x) is the solution of Riemann–Hilbert Problem 1.

• If Y 0
0,21(x) does not vanish identically, then Y↗(λ; x) defined by (3.33) with (3.35)

solves an analogous Riemann–Hilbert problem in which parameters (�0,�∞) are
replaced with (�0 + 1

2 ,�∞ + 1
2 ) and the sign of the matrix V4,3 is changed.

• If Y 0
0,12(x) does not vanish identically, then Y↙(λ; x) defined by (3.33) with (3.38)

solves an analogous Riemann–Hilbert problem in which parameters (�0,�∞) are
replaced by (�0 − 1

2 ,�∞ − 1
2 ) and the sign of the matrix V4,3 is changed.

• If Y 0
0,11(x) does not vanish identically, then Y↘(λ; x) defined by (3.33) with (3.41)

solves an analogous Riemann–Hilbert problem in which parameters (�0,�∞) are
replaced by (�0 + 1

2 ,�∞ − 1
2 ) and the sign of the matrix V4,3 is changed.

• If Y 0
0,22(x) does not vanish identically, then Y↖(λ; x) defined by (3.33) with (3.44)

solves an analogous Riemann–Hilbert problem in which parameters (�0,�∞) are
replaced by (�0 − 1

2 ,�∞ + 1
2 ) and the sign of the matrix V4,3 is changed.
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We can easily give conditions on the parameters (�0,�∞) sufficient to guarantee
existence of the transformation in each case:

Proposition 10 Suppose that Riemann–Hilbert Problem 1 has a solution for x ∈ C\D,
where D is a discrete set.

• The Schlesinger transformations Y(λ; x) �→ Y↗(λ; x) and Y(λ; x) �→ Y↙(λ; x)
are well defined provided that �0(�∞ + �0) �= 0.

• The Schlesinger transformations Y(λ; x) �→ Y↘(λ; x) and Y(λ; x) �→ Y↖(λ; x)
are well defined provided that �0(�∞ − �0) �= 0.

Remark 9 The conditions on (�0,�∞) in Proposition 10 imply the corresponding
conditions on the elements of Y0

0(x) in Proposition 9 but not necessarily vice-versa.
We will encounter a situation in which �∞ = �0 but the Schlesinger transformation
Y(λ; x) �→ Y↘(λ; x) exists nonetheless, because Y 0

0,11(x) does not vanish identically.
The utility of Proposition 10 lies in the simplicity of its conditions,which do not depend
on the choice of solution of Painlevé-IV for the given parameters (�0,�∞).

Proof Suppose first that the transformationY(λ; x) �→ Y↙(λ; x) is undefined. There-
fore, by Proposition 9 Y 0

0,12(x) ≡ 0 on some open subset of (λ, x) ∈ (C\�)×(C\D).
Since det(Y0

0(x)) ≡ 1 by the first statement of Proposition 5 in Sect. 3.2, it then fol-
lows that also Y 0

0,11(x)Y
0
0,22(x) ≡ 1 so the matrix �1(x) as given by the second line

of (3.26) can be written in the form

�1(x) =
(

�0 0
V (x) −�0

)

for some analytic function V (x). Therefore, the Lax equation (3.24) takes the form

∂�

∂x
(λ, x) =

(
λ U (x)

W (x) −λ

)
�(λ, x) (3.46)

for some analytic functions U (x) and W (x), while the Lax equation (3.25) becomes

∂�

∂λ
(λ, x) =

(
λ + x + λ−1�0 U (x)

W (x) + λ−1V (x) −λ − x − λ−1�0

)
�(λ, x). (3.47)

Compatibility of the equations (3.46) and (3.47) implies that either�0 = 0 orU (x) ≡
0. If �0 �= 0, the alternative U (x) ≡ 0 implies, via (3.46) and (3.47) that

�11(λ, x) = c exp( 12λ
2 + xλ)λ�0 ,

where c is a constant that can take different values in each of the five components of
C \ �. Consider letting λ → ∞ in any one of the four unbounded components of
C \�. Then from the normalization condition in Riemann–Hilbert Problem 1 and the
relation �(λ, x) = Y(λ; x) exp(( 12λ

2 + xλ)σ3) we arrive at a contradiction unless
�0 + �∞ = 0.
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Now suppose instead that the Schlesinger transformation Y(λ; x) �→ Y↗(λ; x)
is undefined, which by Proposition 9 means that Y 0

0,21(x) ≡ 0. Following similar
reasoning as above, we then arrive at (3.46) and (3.47) inwhich the coefficientmatrices
are replaced by their transposes; compatibility implies again either�0 = 0 orU (x) ≡
0, which in turn implies that �22(λ, x) = c exp(−( 12λ

2 + xλ))λ−�0 for a different
constant c in each component ofC\�. Once again, consistencywith the normalization
condition inRiemann–Hilbert Problem1 leads to a contradiction unless�0+�∞ = 0.

To obtain the corresponding results for the Schlesinger transformationsY(λ; x) �→
Y↘(λ; x) andY(λ; x) �→ Y↖(λ; x), we can apply similar reasoning as in Remark 8 in
Sect. 3.2 to first replace�0 with−�0 at the cost of essentially swapping the columns of
the matrixY0

0(x). It then follows from the above arguments that these transformations
will be defined unless either �0 = 0 or �∞ − �0 = 0. �	

3.3.2 Corresponding Bäcklund Transformations

Now we suppose that Y(λ; x) solves Riemann–Hilbert Problem 1 and that u(x) given
in terms of the solution by (3.30) is well defined. According to Proposition 7 in
Sect. 3.2, u(x) is a meromorphic solution of the Painlevé-IV equation in the form
(1.1) for parameters (�0,�∞). We now deduce from the Schlesinger transformations
summarized in Proposition 9 the corresponding solutions u↗(x), u↙(x), u↘(x), and
u↖(x) of (1.1) for the modified parameters indicated in Proposition 9.

If Y 0
0,21(x) is not identically zero, then Y↗(λ; x) exists, and it generates a solution

of (1.1) for parameters (�0 + 1
2 ,�∞ + 1

2 ) given by (cf. (3.30))

u↗(x) := −2(�0 + 1
2 )

Y 0↗,0,11(x)Y
0↗,0,12(x)

Y ∞↗,1,12(x)

provided the latter expression is determinate. The formulæ for the matrices Y∞↗,1(x)

and Y0↗,0(x) appearing in (3.34) are

Y∞↗,1(x) = G+
↗Y∞

2 (x)

(
1 0
0 0

)
+ G+

↗Y∞
1 (x)

(
0 0
0 1

)
+ G−

↗(x)Y∞
1 (x)

(
1 0
0 0

)

+G−
↗(x)

(
0 0
0 1

)
,

Y0↗,0(x) = G+
↗Y0

0(x)

(
1 0
0 0

)
+ G−

↗(x)Y0
1(x)

(
1 0
0 0

)
+ G−

↗(x)Y0
0(x)

(
0 0
0 1

)
.

Using (3.35)–(3.36) in these, along with the identity (3.32) to eliminate elements of
the matrixY0

1(x) and the definitions (3.30) as well as the first-order system (3.31), we
may express u↗(x) explicitly in terms of u(x) and u′(x) as:

u↗(x) = 16�2
0 + 8(�0 + �∞)u(x)2 − 4x2u(x)2 − 4xu(x)3 − u(x)4 − 8�0u′(x) + u′(x)2

2u(x)(4�0 + 2xu(x) + u(x)2 − u′(x))
.

(3.48)
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If Y 0
0,12(x) does not vanish identically, we can apply similar reasoning to extract

a solution u↙(x) of Painlevé-IV (1.1) for parameters (�0 − 1
2 ,�∞ − 1

2 ) from u(x).
The starting point is

u↙(x) := −2(�0 − 1
2 )

Y 0↙,0,11(x)Y
0↙,0,12(x)

Y ∞↙,1,12(x)
,

assuming this expression is determinate, where the matrices Y∞↙,1(x) and Y
0↙,0(x) in

(3.37) are given by

Y∞↙,1(x) = G+
↙Y∞

2 (x)

(
0 0
0 1

)
+ G+

↙Y∞
1 (x)

(
1 0
0 0

)
+ G−

↙(x)Y∞
1 (x)

(
0 0
0 1

)

+ G−
↙(x)

(
1 0
0 0

)
,

Y0↙,0(x) = G+
↙Y0

0(x)

(
0 0
0 1

)
+ G−

↙(x)Y0
1(x)

(
0 0
0 1

)
+ G−

↙(x)Y0
0(x)

(
1 0
0 0

)
.

Using (3.38)–(3.39) in these, together with (3.30), (3.31), and (3.32), we find

u↙(x) = 16�2
0 + 8(�0 + �∞ − 1)u(x)2 − 4x2u(x)2 − 4xu(x)3 − u(x)4 + 8�0u′(x) + u′(x)2

2u(x)(4�0 + 2xu(x) + u(x)2 + u′(x))
.

(3.49)
IfY 0

0,11(x) does not vanish identically, thenwe can extract fromY↘(λ; x) a solution

u↘(x) of (1.1) for parameters (�0 + 1
2 ,�∞ − 1

2 ) by starting from the expression

u↘(x) := −2(�0 + 1
2 )

Y 0↘,0,11(x)Y
0↘,0,12(x)

Y ∞↘,1,12(x)

provided it is determinate. The matrices Y∞↘,1(x) and Y0↘,0(x) from (3.40) are given
by

Y∞↘,1(x) = G+
↘Y∞

2 (x)

(
0 0
0 1

)
+ G+

↘Y∞
1 (x)

(
1 0
0 0

)
+ G−

↘(x)Y∞
1 (x)

(
0 0
0 1

)

+ G−
↘(x)

(
1 0
0 0

)
,

Y0↘,0(x) = G+
↘Y0

0(x)

(
1 0
0 0

)
+ G−

↘(x)Y0
1(x)

(
1 0
0 0

)
+ G−

↘(x)Y0
0(x)

(
0 0
0 1

)
.

Recalling (3.41)–(3.42), eliminating the elements of the first column of Y0
1(x) using

(3.32), and then using the definitions (3.30) and the differential equations (3.31), we
obtain

u↘(x) = 16�2
0 + 8(�∞ − �0 − 1)u(x)2 − 4x2u(x)2 − 4xu(x)3 − u(x)4 − 8�0u′(x) + u′(x)2

2u(x)(−4�0 + 2xu(x) + u(x)2 + u′(x))
.

(3.50)
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Finally, if Y 0
0,22(x) does not vanish identically, we can extract from Y↖(λ; x) a

solution u↖(x) of the Painlevé-IV equation (1.1) for parameters (�0 − 1
2 ,�∞ + 1

2 )

in the form

u↖(x) := −2(�0 − 1
2 )

Y 0↖,0,11(x)Y
0↖,0,12(x)

Y ∞↖,1,12(x)

provided it is determinate. Here the matrices Y∞↖,1(x) and Y0↖,0(x) from (3.43) are
given by

Y∞↖,1(x) = G+
↖Y∞

2 (x)

(
1 0
0 0

)
+ G+

↖Y∞
1 (x)

(
0 0
0 1

)
+ G−

↖(x)Y∞
1 (x)

(
1 0
0 0

)

+ G−
↖(x)

(
0 0
0 1

)
,

Y0↖,0(x) = G+
↖Y0

0(x)

(
0 0
0 1

)
+ G−

↖(x)Y0
1(x)

(
0 0
0 1

)
+ G−

↖(x)Y0
0(x)

(
1 0
0 0

)
.

Recalling (3.44)–(3.45), using (3.32) to eliminate the second column of Y0
1(x), and

appealing to the definitions (3.30) and the differential system (3.31) yields

u↖(x) = 16�2
0 + 8(�∞ − �0)u(x)2 − 4x2u(x)2 − 4xu(x)3 − u(x)4 + 8�0u′(x) + u′(x)2

2u(x)(−4�0 + 2xu(x) + u(x)2 − u′(x))
.

(3.51)
Even if the Schlesinger transformation exists and is applied to a solution Y(λ; x)

of Riemann–Hilbert Problem 1 for which u(x) is well defined, the corresponding
Bäcklund transformation formula may be indeterminate. To detect the latter issue, we
may observe first that if �0 �= 0, the Painlevé-IV equation (1.1) does not admit the
vanishing solution u(x) ≡ 0, so the problem reduces question of the existence of
simultaneous solutions u(x) of (1.1) and of the Riccati equation obtained by setting to
zero the other factor in the denominator of each of the formulæ (3.48), (3.49), (3.50),
and (3.51). In each case, this amounts to a condition on the parameters (�0,�∞), as
summarized in the following proposition.

Proposition 11 Let u(x) be a solution of the Painlevé-IV equation (1.1) for parameters
(�0,�∞).

• The Bäcklund transformation (3.48) taking u(x) to u↗(x) solving (1.1) for shifted
parameters (�0 + 1

2 ,�∞ + 1
2 ) is determinate provided that �0(�∞ +�0) �= 0.

• The Bäcklund transformation (3.49) taking u(x) to u↙(x) solving (1.1) for shifted
parameters (�0− 1

2 ,�∞− 1
2 ) is determinate provided that�0(�∞+�0−1) �= 0.

• The Bäcklund transformation (3.50) taking u(x) to u↘(x) solving (1.1) for shifted
parameters (�0+ 1

2 ,�∞− 1
2 ) is determinate provided that�0(�∞−�0−1) �= 0.

• The Bäcklund transformation (3.51) taking u(x) to u↖(x) solving (1.1) for shifted
parameters (�0 − 1

2 ,�∞ + 1
2 ) is determinate provided that �0(�∞ −�0) �= 0.
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As is well-known, the four lines in the parameter space �∞ ± �0 = 0 and �∞ ±
�0 = 1 give precisely the parameter values where the Painlevé-IV equation (1.1)
admits solutions in terms of classical special functions, namely those solving the linear
second-order equation related in the usual way to the Riccati equation consistent with
(1.1).

3.4 The Isomonodromy Approach to Rational Solutions

Our approach to representing the rational solutions of (1.1) in a form convenient for
asymptotic analysis in the limit that the parameters (�0,�∞) are large consists of the
following steps:

(1) Select a family of rational solutions and isolate within that family a distinguished
parameter pair (�0,�∞) and its corresponding unique rational solution to serve
as a “seed”. Using the seed in the matrices defined by (3.10)–(3.11), the Lax pair
equations (3.9) become compatible and admit simultaneous solutions.

(2) Sow the seed, i.e.,

(a) Find simultaneous fundamental solution matrices�(λ, x) of the Lax pair suit-
ably normalized forλ in the different Stokes sectors near each irregular singular
point of the “spectral equation” �λ = �� and in a full neighborhood of each
regular singular point (Fuchsian singularity) of the same equation. Compute
explicitly the constants expressing the columns of each of these fundamental
matrices as suitable linear combinations of the columns of the fundamental
matrices for neighboring regions of the λ-plane (direct monodromy problem).

(b) Use this information to recast the fundamental matrices equivalently in terms
of the solution of a matrix Riemann–Hilbert problem (inverse monodromy
problem).

In this step, we take full advantage of choice of seed solution to simplify the
equation �x = X� and leverage this to obtain simultaneous solutions of (3.9).
This is in contrast to the usual approach in using the Lax pair (3.9) to solve
the initial-value problem for Painlevé equations, where only initial values are
available and therefore one must instead start by solving the more complicated
spectral equation �λ = ��.

(3) Reap the harvest, i.e.,

(a) Apply isomonodromic Schlesinger transformations to increment/decrement
the integer parameters of (�0,�∞), and hence obtain a Riemann–Hilbert
problem for each pair (�0,�∞) in a certain lattice (for which the Schlesinger
transformations are well defined).

(b) Show that the resulting lattice matches the full family of parameters for
the rational solution family from which the seed was selected, and that the
Riemann–Hilbert problem for given parameters in the family encodes a ratio-
nal solution of the Painlevé equation at hand.

This method is general, and it has been applied before to characterize the rational
solutions of the Painlevé-II equation [16, 50], the rational solutions of the Painlevé-III
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equation [13], and the gO rational solutions for the Painlevé-IV equation [55] (although
the Riemann–Hilbert problem reported in that paper differs from the one we shall
develop below). The isomonodromy approach avoids completely the need for special
determinantal representations of rational solutions having suitable analytic structure
as has been used to study the rational solutions of Painlevé-II [7] and the gH rational
solutions of Painlevé-IV [15]. Hence it is useful in the study of rational solutions that
are not known to have such representations, such as the rational solutions of Painlevé-
III and the gO rational solutions of Painlevé-IV. Even though such a determinantal
representation is available for the gH rational solutions, the isomonodromy approach
allows the gH and gO rational solutions of Painlevé-IV to be analyzed more-or-less
on the same footing, which is a main point of our paper.

3.5 Riemann–Hilbert Representation of gO Rationals

Now we carry out the program outlined in Sect. 3.4 to arrive at a Riemann–Hilbert
representation of the rational solutions of the Painlevé-IV equation (1.1) in the gO
family. The procedure begins with the selection of a seed solution for the family,
which we take to correspond to the special point (�0,�∞) = ( 16 ,

1
2 ) ∈ �gO. The

rational solution of (1.1) may be obtained equivalently from any row of Table 2 in
Sect. 1.2 for m = n = 0, which gives simply u(x) = − 2

3 x .

3.5.1 Sowing the Seed: Solving the Direct Monodromy Problem and Formulating the
Inverse Monodromy Problem

The Lax pair equations (3.9) for the seed solution involve �0 = 1
6 , �∞ = 1

2 , u(x) =
− 2

3 x , a nontrivial solution y(x) of the first-order linear equation (3.7) that we take
without loss of generality to be y(x) = exp(− 2

3 x2), and z(x) = 1
4 (−u′(x)+ u(x)2 +

2xu(x)+ 4�0) = 1
3 − 2

9 x2 (see (3.8)). In particular, the x-equation �x = X� in the
Lax pair (3.9) takes the form

�x =
(

λ exp(− 2
3 x2)

(− 2
3 − 4

9 x2) exp( 23 x2) −λ

)
�.

The exponential factors in the coefficient matrix are easily removed with the help of a
gauge transformation: � = exp(− 1

3 x2σ3)�{1}, which leads to the equivalent system

�{1}
x =

(
λ + 2

3 x 1
− 2

3 − 4
9 x2 −λ − 2

3 x

)
�{1}. (3.52)

Using the first equation in this system to explicitly eliminate the second row yields a
closed equation on elements �{1}

1k of the first row:

�
{1}
1k,xx =

(
λ2 + 4

3λx
)
�

{1}
1k , k = 1, 2.
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This is easily transformed into Airy’s equation. Indeed, by a linear transformation
x �→ X for fixed λ we arrive at

�
{1}
1k,X X = X�{1}

1k , k = 1, 2, X := ( 43λ)
1/3(x + 3

4λ). (3.53)

Once the first row is determined, the elements of the second row follow from the
relation

�
{1}
2k = �

{1}
1k,x − (λ + 2

3 x
)
�

{1}
1k , k = 1, 2. (3.54)

Note that in terms of�{1}, the λ-equation in the Lax pair (3.9) for the gO seed solution
takes the form

�
{1}
λ =

(
λ + x + λ−1( 29 x2 − 1

6 ) 1 + 1
3λ

−1x
− 4

9 x2 − 2
3 + λ−1x( 29 − 4

27 x2) −λ − x − λ−1( 29 x2 − 1
6 )

)
�{1}. (3.55)

The above calculations suggest the utility of the independent variables X and� := λ

in place of (x, λ). The differentiation formulæ needed to effect the change of variables
are

∂

∂x
= ( 4

3�
)1/3 ∂

∂X
and

∂

∂λ
= ∂

∂�
+
(

1
3

X

�
+ 3

4

( 4
3�
)1/3) ∂

∂X
. (3.56)

Next, it is convenient to introduce a subsequent gauge transformation in order to arrive
at a X -equation for which the second row can be solved in terms of functions of X
alone (rather than also involving �). Noting that the relation (3.54) implies that also

�
{1}
2k = ( 4

3�
)1/3

�
{1}
1k,X −

(
1
2� + 2

3

( 4
3�
)−1/3

X
)
�

{1}
1k , k = 1, 2,

we introduce the “shearing” transformation

�{1} = S(X ,�)�{2}, S(X ,�) :=
(

1 0

−
(
1
2� + 2

3

( 4
3�
)−1/3

X
) ( 4

3�
)1/3

)
.

(3.57)
After some computation, it then follows from (3.52), (3.56), and (3.57) that

�
{2}
X =

(
0 1
X 0

)
�{2}. (3.58)

Similarly, combining this result with (3.55), (3.56), and (3.57),

�
{2}
� = − 1

6�
�{2}. (3.59)
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After this simplification, it is completely clear that every simultaneous fundamental
solution matrix of (3.58) and (3.59) has the form

�{2} = �−1/6
(

f1(X) f2(X)
f ′
1(X) f ′

2(X)

)
C

whereC is amatrix independent of both X and�with det(C) �= 0 and f j (X), j = 1, 2
form a fundamental pair of solutions of Airy’s equation f ′′(X) = X f (X). Putting the
pieces together we find the following result.

Lemma 2 Fix a fundamental pair f1(·), f2(·) of solutions of Airy’s equation, a simply
connected domain D ⊂ C \ {0} and arbitrary branches of λ4/3 and λ−1/6 analytic on
D. For λ ∈ D and x ∈ C, define the matrix function

F(λ, x) := λ− 1
6 exp(− 1

3 x2σ3)

(
1 0

−λ − 2
3 x ( 43λ)

1
3

)

·
(

f1((
3
4 )

2
3 λ

4
3 (1 + 4

3λ
−1x)) f2((

3
4 )

2
3 λ

4
3 (1 + 4

3λ
−1x))

f ′
1((

3
4 )

2
3 λ

4
3 (1 + 4

3λ
−1x)) f ′

2((
3
4 )

2
3 λ

4
3 (1 + 4

3λ
−1x))

)
. (3.60)

Let�0 = 1
6 ,�∞ = 1

2 , and consider the exact solution u(x) = − 2
3 x of the correspond-

ing Painlevé-IV equation (1.1). If y(x) = exp(− 2
3 x2), then the Lax pair equations (3.9)

are simultaneously solvable for all (λ, x) ∈ D × C, and every simultaneous solution
matrix has the form

�(λ, x) = F(λ, x)C, (λ, x) ∈ D × C, (3.61)

where C is a matrix independent of both x and λ.

Remark 10 In [55, Sect. 3], the authors obtain analogues of these results by a different
method. Namely, they observe that by fixing x = 0, the equation �λ = �� (cf.
(3.9)–(3.10)), which is usually intractable from the point of view of classical special
functions, reduces for the gO seed to a specific confluent hypergeometric equation
solvable in terms of Whittaker functions. For the specific parameters involved, the
Whittaker functions reduce to Airy functions, see [53, Eqn. 13.18.10]. This results in
a computation of the Stokes matrices that agrees with our calculations written in (3.3)
(and derived below) up to a constant diagonal conjugation. No attempt is made in [55]
to calculate any connection matrices.

With this result in hand, we now consider how to choose the matrices C = C(∞)
j ,

j = 1, 2, 3, 4, corresponding to the four solutions � = �
(∞)
j (λ; x) to achieve the

normalization condition (3.12) for each Stokes sector abutting the irregular singular
point at λ = ∞. To make this calculation precise, we interpret all fractional powers of
λ appearing in (3.61) as principal branches: λp = ep log(λ), −π < Im(log(λ)) < π .
This means in particular that λp has in general a different meaning on the common
boundary of S3 and S4, depending onwhich of those two sectors is under consideration.
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For each sector S j in turn, we shall choose first for f1 and f2 a specific fundamental
pair of solutions of f ′′(X) = X f (X) that exhibits no Stokes phenomenon as λ → ∞
in the sector. Then we use well-known asymptotic formulæ for Airy functions of large
argument to determine the corresponding matrix C(∞)

j . Once �
(∞)
j (λ, x) has been

determined for j = 1, . . . , 4, we will build a solution �(0)(λ, x) that satisfies the
condition (3.13).

The Solution9(∞)
1 (�, x)

Ifλ is large in the sector S1, then X defined in (3.53) is also large, and−π
2 ≤ arg(λ) ≤ 0

implies that − 2π
3 − ε ≤ arg(X) ≤ ε holds for every ε > 0 if λ is large enough given

ε. The solutions f1(X) = Ai(X) and f2(X) = Ai(e2iπ/3X) do not exhibit Stokes
phenomenon in this sector as w → ∞ for ε small enough. Using [53, Eqns. 9.7.5 &
9.7.6] and composing with the definition of X in (3.53) gives

f1(X) = exp
(− 1

3 x2
)

2
√
π

( 4
3

) 1
6 λ− 1

3 exp
(− ( 12λ2 + xλ

)) (
1 + ( 2

27 x3 − 1
3 x
)
λ−1 + O(λ−2)

)
,

λ → ∞, λ ∈ S1,

(3.62)

f ′
1(X) = −exp

(− 1
3 x2

)
2
√
π

( 3
4

) 1
6 λ

1
3 exp

(− ( 12λ2 + xλ
)) (

1 + ( 2
27 x3 + 1

3 x
)
λ−1 + O(λ−2)

)
,

λ → ∞, λ ∈ S1,

(3.63)

f2(X) = e− iπ
6
exp

( 1
3 x2

)
2
√
π

( 4
3

) 1
6 λ− 1

3 exp
( 1
2λ

2 + xλ
) (
1 − ( 2

27 x3 + 1
3 x
)
λ−1 + O(λ−2)

)
,

λ → ∞, λ ∈ S1,

and

f ′
2(X) = e− iπ

6
exp

( 1
3 x2

)
2
√
π

( 3
4

) 1
6 λ

1
3 exp

( 1
2λ

2 + xλ
) (
1 − ( 2

27 x3 − 1
3 x
)
λ−1 + O(λ−2)

)
,

λ → ∞, λ ∈ S1.

A straightforward computation then shows that if�(∞)
1 (λ, x) has the form (3.61) with

the above choices for f1(X) and f2(X), and with the constant matrix C = C(∞)
1 , then
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using �∞ = 1
2 ,

�
(∞)
1 (λ, x)λ�∞σ3 exp

(
−
(
1
2λ

2 + xλ
)
σ3

)

=
⎛
⎝ O(λ−1) 1

2
√
π

( 4
3

)1/6
e−iπ/6 + O(λ−1)

− 1√
π

( 4
3

)1/6 + O(λ−1) O(λ−1)

⎞
⎠

· λσ3/2 exp
(
−
(
1
2λ

2 + xλ
)
σ3

)
C(∞)
1 exp

(
−
(
1
2λ

2+xλ
)
σ3

)
λσ3/2,

λ → ∞, λ∈ S1.

Therefore to achieve the desired asymptotic normalization condition (3.12) for j = 1,
we must take

C(∞)
1 :=

(
0 −√

π
( 3
4

)1/6
2
√
π
( 3
4

)1/6
eiπ/6 0

)
.

This completes the determination of the normalized simultaneous fundamental solu-
tion matrix �

(∞)
1 (λ, x).

The Solution9(∞)
2 (�, x)

When λ ∈ S2, we have −ε ≤ arg(X) ≤ 2π
3 + ε as λ → ∞ and hence also w → ∞.

In this case, to avoid Stokes phenomenon we choose solutions f1(X) = Ai(X) and
f2(X) = Ai(e−2iπ/3X). Thus, again composing the definition of X in (3.53) with [53,
Eqns. 9.7.5 & 9.7.6], the expansions (3.62)–(3.63) are also valid as λ → ∞ for λ ∈ S2
and we have

f2(X) = e
iπ
6
exp( 13 x2)

2
√
π

( 4
3

) 1
6 λ− 1

3 exp
( 1
2λ

2 + xλ
) (
1 − ( 2

27 x3 + 1
3 x
)
λ−1 + O(λ−2)

)
,

λ → ∞, λ ∈ S2 (3.64)

and

f ′
2(X) = e

iπ
6
exp

( 1
3 x2

)
2
√
π

( 3
4

) 1
6 λ

1
3 exp

( 1
2λ

2 + xλ
) (
1 − ( 2

27 x3 − 1
3 x
)
λ−1 + O(λ−2)

)
,

λ → ∞, λ ∈ S2. (3.65)
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Taking these choices for f1(X) and f2(X) in (3.61) with � = �
(∞)
2 (λ, x) and C =

C(∞)
2 , for �∞ = 1

2 ,

�
(∞)
2 (λ, x)λ�∞σ3 exp

(
−
(
1
2λ

2 + xλ
)
σ3

)

=
⎛
⎝ O(λ−1) 1

2
√
π

( 4
3

)1/6
eiπ/6 + O(λ−1)

− 1√
π

( 4
3

)1/6 + O(λ−1) O(λ−1)

⎞
⎠

· λσ3/2 exp
(
−
(
1
2λ

2 + xλ
)
σ3

)
C(∞)
2 exp

(
−
(
1
2λ

2+xλ
)
σ3

)
λσ3/2,

λ→∞, λ∈ S2.

Therefore, to achieve the desired normalization condition (3.12) we must take

C(∞)
2 :=

(
0 −√

π
( 3
4

)1/6
2
√
π
( 3
4

)1/6
e−iπ/6 0

)
,

which completes the construction of�(∞)
2 (λ, x). We observe here thatC(∞)

2 = C(∞)∗
1

(element-wise complex conjugation), which is consistent with the fact that for �
(∞)
2

we selected a basis ( f1(X), f2(X))whose elements are the Schwarz reflections of the
basis elements selected to construct �(∞)

1 .

The Solution9(∞)
3 (�, x)

The sector S3 corresponds to 2π
3 − ε ≤ arg(X) ≤ 4π

3 + ε as λ → ∞. We hence
choose the basis f1(X) := Ai(e−2iπ/3X) and f2(X) := Ai(e−4iπ/3X) = Ai(e2iπ/3X)
to avoid Stokes phenomenon. It follows that the expansions (3.64)–(3.65) are also
valid (for f1(X) and f ′

1(X) in place of f2(X) and f ′
2(X) on the left-hand sides) as

λ → ∞ for λ ∈ S3, and that

f2(X) = e
iπ
3
exp

(− 1
3 x2

)
2
√
π

( 4
3

) 1
6 λ− 1

3 exp
(− ( 12λ2 + xλ

)) (
1 + ( 2

27 x3 − 1
3 x
)
λ−1 + O(λ−2)

)
,

λ → ∞, λ ∈ S3

and

f ′
2(X) = −e

iπ
3
exp

(− 1
3 x2

)
2
√
π

( 3
4

) 1
6 λ

1
3 exp

(− ( 12λ2 + xλ
)) (

1 + ( 2
27 x3 + 1

3 x
)
λ−1 + O(λ−2)

)
,

λ → ∞, λ ∈ S3.
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With these choices for f1(X) and f2(X) in (3.61) with � = �
(∞)
3 (λ, x) and C =

C(∞)
3 , we find that

�
(∞)
3 (λ, x)λ�∞σ3 exp

(− ( 12λ2 + xλ
)
σ3
)

=
⎛
⎝ 1

2
√
π

( 4
3

)1/6
eiπ/6 + O(λ−1) O(λ−1)

O(λ−1) 1√
π

( 4
3

)1/6
e−2iπ/3 + O(λ−1)

⎞
⎠

· λ−σ3/2 exp
(( 1

2λ
2 + xλ

)
σ3
)
C(∞)
3 exp

(− ( 12λ2 + xλ
)
σ3
)
λσ3/2, λ → ∞, λ ∈ S3.

Therefore, to achieve the desired normalization condition (3.12) for j = 3 we must
take

C(∞)
3 :=

(
2
√
π
( 3
4

)1/6
e−iπ/6 0

0
√
π
( 3
4

)1/6
e2iπ/3

)
.

This completes the construction of �
(∞)
3 (λ, x).

The Solution9(∞)
4 (�, x)

The sector S4 corresponds to − 4π
3 − ε ≤ arg(X) ≤ − 2π

3 + ε as λ → ∞. We choose
the basis f1(X) := Ai(e2iπ/3X) and f2(X) := Ai(e4iπ/3X) = Ai(e−2iπ/3X) to avoid
Stokes phenomenon. Observing that these basis functions are the Schwarz reflections
of those selected to construct �

(∞)
3 , one can check that taking � = �

(∞)
4 (λ, x) and

C = C(∞)
4 in (3.61), the normalization condition (3.12) holds provided that

C(∞)
4 := C(∞)∗

3 =
(
2
√
π
( 3
4

)1/6
eiπ/6 0

0
√
π
( 3
4

)1/6
e−2iπ/3

)
.

This completes the construction of �
(∞)
4 (λ, x).

The Solution9(0)(�, x).

Finally, we determine the constant matrix C = C(0) in (3.61) so that with � =
�(0)(λ, x) and �0 = 1

6 the condition (3.13) holds. This is possible because the
Fuchsian singularity at λ = 0 of �λ = �� is nonresonant for �0 = 1

6 . For this
calculation we may choose any basis of solutions of Airy’s equation, so we select the
same basis as in the definition of �

(∞)
1 (λ, x), namely f1(X) = Ai(X) and f2(X) =

Ai(e2iπ/3X). This will make it easiest to relate �(0)(λ, x) explicitly to �
(∞)
1 (λ, x).

We begin with the following elementary observation: it can be shown that with the
above definitions,

f̃1(X) := f1(X) − f2(X)
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is a nontrivial solution ofAiry’s equationwhoseTaylor expansion at the origin contains
only terms proportional to X3n+1, n = 0, 1, 2, . . . . Likewise

f̃2(X) := f1(X) − e−2iπ/3 f2(X)

is a nontrivial solution ofAiry’s equationwhoseTaylor expansion at the origin contains
only terms proportional to X3n , n = 0, 1, 2, . . . . Composing with the definition of X
in (3.53) shows that λ−1/3 f̃1(X) and f̃2(X) are both analytic functions of λ at λ = 0.
Taking into account that �0 = 1

6 then shows that �(0)(λ, x)λ−�0σ3 will be analytic
at λ = 0 if we take � = �(0)(λ, x) in the form (3.61) with the above choice of basis
f1(X) and f2(X) and insist that C = C(0) has the form

C(0) :=
(

1 1
−1 eiπ/3

)
D

whereD is any constant invertible diagonal matrix. Modulo the choice ofD, which we
will make concrete below (see (3.66)), this completes the construction of �(0)(λ, x).

The last step of sowing the seed is to formulate the inverse monodromy problem,
which simply amounts to the calculation of the constant matrices relating the five
simultaneous fundamental solution matrices of the Lax pair (3.9). For the Stokes
matrices V2,1, V2,3, V4,3, and V4,1 defined by (3.14)–(3.17), we use the identity
Ai(X) + e2iπ/3Ai(e2iπ/3X) + e−2iπ/3Ai(e−2iπ/3X) = 0 (see [53, Eqn. 9.2.12]) to
explicitly relate the simultaneous solutions�

(∞)
j (λ, x), j = 1, . . . , 4, leading to (3.3)

in which �∞ = 1
2 . The computation of the Stokes matrix V4,3 requires more care

than the others, because one must take into account the jump in the principal branch
of λp across the negative real axis. For the connection matrices defined by (3.18)–
(3.19), first note that since the basis of Airy functions f1(X) and f2(X) in the formula
(3.61) is exactly the same for � = �

(∞)
1 (λ, x) and � = �(0)(λ, x), (3.18) gives

V1 = C(∞)−1
1 C(0). Therefore, choosing without loss of generality that

D :=
(

− 2√
3
( 34 )

1/6√π 0

0 −( 34 )
1/6√π

)
eiπσ3/6 = −( 43 )

1/12√π(( 43 )
1/4eiπ/6)σ3 ,

(3.66)
we obtain the unimodular connection matrix V1 from (3.18), after which it is easiest
to obtain V2, V3, and V4 by combining the Stokes matrices (3.3) with the first three
identities in (3.20). In this way, we obtain the connection matrices given in (3.4). From
these formulæ one can observe that V∗

1 = V−1
2 and V∗

3 = V−1
4 , a useful symmetry in

light of Corollary 4 from Sect. 3.2 that explains our choice of the diagonal constant
matrix D in (3.66).

3.5.2 Reaping the Harvest: Use of Schlesinger Transformations to Span the gO
Parameter Lattice

The above arguments have shown that Riemann–Hilbert Problem 1 obviously has a
solution when (�0,�∞) = ( 16 ,

1
2 ) and the piecewise-constant matrix V is defined
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on the jump contour � in terms of the Stokes matrices (3.3) and the connection
matrices (3.4), namely the solution given by the formula (3.21). One can check that
the function u(x) returned from this solution via the formula (3.30) is well defined
and coincides with the seed u(x) = − 2

3 x from which we began. Noting that the gO
rational solution parameter lattice�gO may bewritten as the set of points (�0,�∞) of
the form (�0,�∞) = ( 16 ,

1
2 )+Z( 12 ,

1
2 )+Z( 12 ,− 1

2 ), none of which satisfy any of the
conditions �0 = 0, �∞ ± �0 = 0, or �∞ ± �0 = 1, arbitrary iterations of the four
Schlesinger transformations developed in Sect. 3.3.1 and their coincident Bäcklund
transformations from Sect. 3.3.2 can be applied to the seed to reach any point of�gO.
Since the only effect on the jump conditions of these Schlesinger transformations is
to change the sign ofV4,3 with each iteration, and since the Bäcklund transformations
obviously map rational solutions to rational solutions, which are necessarily unique
for given parameter values, we have arrived at the Riemann–Hilbert representation of
the gO rational solutions of Painlevé-IV given in Theorem 5 in Sect. 3.5, the proof of
which we now complete.

Proof of Theorem 5 If (�0,�∞) = ( 16 ,
1
2 ), then the statement is truewith u(x) = − 2

3 x
and u�

�
(x) = x−1 − 2

3 x , the latter solving (1.1) for parameters (�0,��,�∞,��
) =

(− 1
3 , 1). By Proposition 10 in Sect. 3.3 we can apply the four Schlesinger transfor-

mations Y(λ; x) �→ Y↗(λ; x), Y(λ; x) �→ Y↙(λ; x), Y(λ; x) �→ Y↘(λ; x), and/or
Y(λ; x) �→ Y↖(λ; x) to increment and/or decrement�0 and�∞ by half-integers iter-
atively to reach any point in �gO (any path from ( 16 ,

1
2 ) to (�0,�∞) ∈ �gO through

�gO suffices, because each path produces a solution of the same Riemann–Hilbert
problem, which must be unique by Proposition 5 from Sect. 3.2). Each step in the lat-
tice introduces a sign change in V4,3, which is automatically taken into account in the
definition (see (3.3)). Next, we observe that the corresponding Bäcklund transforma-
tions u(x) �→ u↗(x), u(x) �→ u↙(x), u(x) �→ u↘(x), and u(x) �→ u↖(x) induced
by the Schlesinger transformations all map rational functions to rational functions. By
uniqueness of rational solutions for Painlevé-IV it follows that u(x) extracted from
Riemann–Hilbert Problem 1 is the unique rational solution of (1.1) with arbitrary
parameters (�0,�∞) ∈ �gO. Since u�

�
(x) is related to the rational function u(x)

by the Bäcklund transformation in (2.4), it is well defined (since u(x) cannot vanish
identically as�0 �= 0 in the gO parameter lattice) and rational. Hence it is the unique
rational solution of (1.1) for parameters (�0,��,�∞,��

) defined by (2.4) (these also lie
in �gO). �	

3.6 Riemann–Hilbert Representation of gH Rationals

It is straightforward to check that if �0 = �∞ = 1
2 in (1.1), then u(x) = −2x is an

exact solution; this corresponds to taking m = n = 0 in the type-3 row of Table 1
in Sect. 1.2. We shall use it as a seed in the same way that u(x) = − 2

3 x was used
in Sect. 3.5 to derive a Riemann–Hilbert representation of the generalized Hermite
rational solutions of Painlevé-IV.
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3.6.1 Sowing the Seed: Solving the Direct Monodromy Problem and Formulating the
Inverse Monodromy Problem

When (�0,�∞, u(x)) = ( 12 ,
1
2 ,−2x), the differential equation (3.7) has the general

solution y(x) = y0, a constant (assumed nonzero), and the quantity z(x) defined in
(3.8) is z(x) ≡ 1. Without loss of generality, we take y0 = 2. Therefore the Lax pair
equations (3.9) take a particularly simple form in this case, because the coefficient
matrices defined generally in (3.10)–(3.11) are now upper triangular:

(�0,�∞, u(x)) = ( 1
2 ,

1
2 ,−2x

)
�⇒ � =

(
λ + x − 1

2λ
−1 2 + 2xλ−1

0 −λ − x + 1
2λ

−1

)
,X =

(
λ 2
0 −λ

)
.

Therefore, the second row elements of a simultaneous matrix solution � satisfy a
compatible first-order scalar system, whose general solution is easily seen to be�2 j =
c exp(−( 12λ

2 + xλ))λ1/2, where c is an integration constant (independent of both x
and λ). Using this result, the first row elements�1 j then satisfy their own compatible
scalar system, which can be solved with the help of an integrating factor proportional
to �2 j . The result of these completely elementary calculations is the following.

Lemma 3 Fix a simply connected domain D ⊂ C \ {0} and a branch of λ1/2 analytic
on D. Let �0 = �∞ = 1

2 , and consider the exact solution u(x) = −2x of the
corresponding Painlevé-IV equation (1.1). If y(x) = 2, then the Lax pair equations
(3.9) are simultaneously solvable for all (λ, x) ∈ D × C, and every simultaneous
solution matrix has the form

�(λ, x) =
(
λ−1/2 exp( 12λ

2 + xλ) −λ−1/2 exp(−( 12λ
2 + xλ))

0 λ1/2 exp(−( 12λ
2 + xλ))

)
C, (λ, x) ∈ D×C,

(3.67)
where C is a matrix independent of both x and λ.

The simplest invertible choice for C is simply C = I. Assuming this and also
taking the principal branch for λ1/2, consider imposing the condition (3.12) in one of
the Stokes sectors near λ = ∞. Using �∞ = 1

2 we find that

C = I �⇒ �(λ, x)λ�∞σ3 exp(−( 12λ
2 + xλ)σ3) =

(
1 −λ−1

0 1

)

which tends to I as λ → ∞ regardless of choice of Stokes sector. Therefore, there is
no Stokes phenomenon about the irregular singular point λ = ∞ in this case, and the
normalized solutions associated with the four Stokes sectors are all the same:

�
(∞)
j (λ, x) = �(∞)(λ, x) :=

(
λ−1/2 exp( 12λ

2 + xλ) −λ−1/2 exp(−( 12λ
2 + xλ))

0 λ1/2 exp(−( 12λ
2 + xλ))

)
,

j = 1, . . . , 4, arg(λ) ∈ (−π, π).

(3.68)
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The Fuchsian singular point λ = 0 is resonant in the case �0 = 1
2 under consid-

eration, but the singularity is also apparent as is clear from the absence of logarithms
in the general solution (3.67). Therefore it is possible to choose the matrix C = C(0)

to define a solution � = �(0)(λ, x) so that the condition (3.13) for �0 = 1
2 holds.

This condition requires analyticity of the following expression, which generally has a
simple pole at λ = 0:

�(0)(λ, x)λ−�0σ3 =
(

C (0)
11 − C (0)

21 0
0 0

)
λ−1 + holomorphic.

Therefore, the only condition imposed on C = C(0) by (3.13) is that C (0)
11 = C (0)

21 .
Comparedwith the nonresonant case discussed in Sect. 3.5.1, the resonant but apparent
case here allows for an additional degree of freedom. It is also convenient to assume
that det(C(0)) = 1 which in turn guarantees that det(�(0)(λ, x)) = 1. Therefore, we

will take C(0) to be a matrix of the form

(
a b
a b + a−1

)
with a �= 0 so that

�(0)(λ, x) =
(
λ−1/2 exp( 12λ

2 + xλ) −λ−1/2 exp(−( 12λ
2 + xλ))

0 λ1/2 exp(−( 12λ
2 + xλ))

)(
a b
a b + a−1

)
.

(3.69)
For convenience we pick a = 1 and b = 0, which completes the construction of the
five canonical simultaneous solutions of the Lax pair for (�0,�∞) = ( 12 ,

1
2 ) and

u(x) = −2x .
It is now straightforward to compute the Stokes matrices for the irregular singular

point at λ = ∞ by using (3.14)–(3.17) and (3.68), and the results are trivial except
for the contribution of the branch cut of λ1/2 along the negative real line, leading
directly to (3.5) in which �∞ = 1

2 . Likewise, we compute the connection matrices
using (3.18)–(3.19), (3.68), and (3.69) with a = 1 and b = 0 to arrive at (3.6).

3.6.2 Reaping the Harvest: Use of Schlesinger Transformations to Span3[3]+
gH

The formula (3.21) clearly gives a solution of Riemann–Hilbert Problem 1 from Sect.
3.1 for (�0,�∞) = ( 12 ,

1
2 ) when the piecewise-constant matrix V is defined on the

jump contour� with the use of the Stokes matrices (3.5) and the connection matrices
(3.6), and this solution returns the rational solution u(x) = −2x of Painlevé-IV that
started the calculation. We also observe that, using (3.69) in (3.21) and referring to
the expansion (3.23), we have

Y0
0(x) =

(
2x −1
1 0

)
for (�0,�∞) = ( 12 ,

1
2 ). (3.70)

The component �[3]+
gH of the gH parameter lattice contains the point (�0,�∞) =

( 12 ,
1
2 ) and can be viewed as the set of points (�0,�∞) of the form (�0,�∞) =

( 12 ,
1
2 ) + Z≥0(

1
2 ,

1
2 ) + Z≥0(

1
2 ,− 1

2 ). Using Proposition 9 from Sect. 3.3, we see from
(3.70) that the only basic Schlesinger transformation that is possibly undefined at
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(�0,�∞) = ( 12 ,
1
2 ) ∈ �

[3]+
gH is Y(λ; x) �→ Y↖(λ; x), and from Proposition 11 (also

from Sect. 3.3) we see that of the three that are certainly defined, only Y(λ; x) �→
Y↗(λ; x) and Y(λ; x) �→ Y↘(λ; x) are guaranteed to give determinate Bäcklund
transformations of u(x). So, from ( 12 ,

1
2 ) ∈ �

[3]+
gH we may certainly step to the nearest

neighbor points (1, 1) and (1, 0) in the same lattice.Without using specific information
such as (3.70), from Propositions 10 and 11, we observe that

• The Schlesinger transformation Y(λ; x) �→ Y↗(λ; x) is defined and yields a
determinate Bäcklund transformation u(x) �→ u↗(x) at each point of �[3]+

gH .
• The Schlesinger transformation Y(λ; x) �→ Y↙(λ; x) is defined at each point of
�

[3]+
gH . Furthermore it is guaranteed to yield a determinateBäcklund transformation

u(x) �→ u↙(x) except possibly at those points of the form (�0,�∞) = ( 12 ,
1
2 )+

Z≥0(
1
2 ,− 1

2 ), which satisfy �∞ + �0 = 1.
• The Schlesinger transformation Y(λ; x) �→ Y↘(λ; x) is defined at each point of
�

[3]+
gH except possibly at those points of the form (�0,�∞) = ( 12 ,

1
2 )+Z≥0(

1
2 ,

1
2 )

where�∞−�0 = 0. The correspondingBäcklund transformation u(x) �→ u↘(x)

is determinate at every point of �
[3]+
gH , including those points at which the

Schlesinger transformation from which it is derived is not guaranteed by Proposi-
tion 10 to be defined.

• The Schlesinger transformation Y(λ; x) �→ Y↖(λ; x) is defined at each point of
�

[3]+
gH except possibly at those points of the form (�0,�∞) = ( 12 ,

1
2 )+Z≥0(

1
2 ,

1
2 )

where�∞−�0 = 0. The correspondingBäcklund transformation u(x) �→ u↖(x)
is guaranteed to be determinate except possibly at the same excluded points.

Therefore, starting from the seed (�0,�∞) = ( 12 ,
1
2 ), we may arrive at an arbitrary

point in �[3]+
gH by iteratively applying Schlesinger transformations resulting in deter-

minate Bäcklund transformations according to the following principles.

• To reach a point of the form (�0,�∞) = (n +1)( 12 ,
1
2 ) ∈ �

[3]+
gH , n = 0, 1, 2, . . . ,

we apply Y(λ; x) �→ Y↗(λ; x) n times.
• To reach any other point of �[3]+

gH , we first step from ( 12 ,
1
2 ) to (1, 0) using

Y(λ; x) �→ Y↘(λ; x). Then we choose any path in �
[3]+
gH from (1, 0) to the

target point that contains only points with �∞ < �0, and iteratively apply the
Schlesinger transformations associated with the steps in the selected path.

We have thus arrived at the Riemann–Hilbert representation in Theorem 6 from Sect.
3.1 of the gH rational solutions of Painlevé-IV for parameters in �[3]+

gH , and via the

non-isomonodromic Bäcklund transformation u(x) �→ u�
�
(x), in �[1]−

gH . The rest of
its proof is nearly the same as the proof in Sect. 3.5 of Theorem 5 except that the
Schlesinger transformation steps should be taken to follow the above principles.

In contrast with the gO case, it is not possible to access the other lattice components
�

[1]−
gH or �[2]−

gH via Schlesinger transformations from the sector �[3]+
gH . Our approach

is to obtain the rational gH solutions of types 1 and 2 from the type 3 function using
the symmetries S�

�
and S� described in Sect. 2. It is possible to directly formulate

a version of Riemann–Hilbert Problem 1 for which the type 1 and type 2 rational
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solutions are encoded as the function u(x), but the results are quite different from
Theorem 6. See Appendix H.

3.6.3 Connection to a Riemann–Hilbert Problem for Pseudo-Orthogonal Polynomials

The simplification observed in Remark 6 in Sect. 3.1 suggests a connection
between the gH rational solutions of Painlevé-IV and pseudo-orthogonal polyno-
mials via the Riemann–Hilbert approach of Fokas, Its, and Kitaev [34]. Setting
W(λ; x) := σ1Y(λ; x)λ−�0σ3σ1 and taking the parameters (�0,�∞) to be given
by (�[3]

0,gH(m, n),�[3]
∞,gH(m, n)) as defined in Table 1 in Sect. 1.2, it is easy to see that

W(λ; x) is analytic for |λ| �= 1, obeys the jump condition

W+(λ; x) = W−(λ; x)

(
1 wM (λ; x)
0 1

)
, |λ| = 1,

wM (λ; x) := λ−M exp(−(λ2 + 2xλ)), M := 2�0, (3.71)

where the jump contour is given counterclockwise orientation, and satisfies the nor-
malization condition

lim
λ→∞W(λ; x)λ−Nσ3 = I, N := �∞ + �0. (3.72)

Noting that M and N are integers, this is the Fokas-Its-Kitaev Riemann–Hilbert prob-
lem. If W(λ; x) exists, then det(W(λ; x)) = 1. It is well-known and easy to see that
solvability requires N ≥ 0, because otherwise the fact that the first column ofW(λ; x)
is entire,which follows from the jumpcondition (3.71), togetherwith the normalization
condition (3.72) implies that the first column ofW vanishes identically by Liouville’s
Theorem; but this is inconsistent with det(W) = 1. If the solution W(λ; x) exists
for N = 0, 1, 2, . . . , the matrix element W11(λ; x) is the monic pseudo-orthogonal
polynomial7 of degree N with respect to the weight wM (λ; x) on the unit circle.
However such a polynomial can only exist if M > 0 because otherwise the weight
is analytic for |λ| < 1 and hence every polynomial is pseudo-orthogonal to every
monomial by Cauchy’s Theorem. Likewise, the matrix element W21(λ; x) is a poly-
nomial in λ of degree at most N −1 in terms of which the matrix element W22(λ; x) is
expressed as a Cauchy integral against the weight; the condition (3.72) then requires
that W22(λ; x) = λ−N +O(λ−(N+1)) as λ → ∞which leads to a contradiction unless
N < M + 1 (in other words, given M = 1, 2, 3, . . . there can only be finitely many
pseudo-orthogonal polynomials of degrees N = 0, 1, . . . , M). In terms of (�0,�∞),
the conditions M = 1, 2, 3, . . . and N = 1, 2, . . . , M correspond precisely to the

7 Pseudo-orthogonality of monic polynomials πm (λ; x) and πn(λ; x) of degrees m and n respectively
means that for some norming constants hn ,∮

|λ|=1
πm (λ; x)πn(λ; x)wM (λ; x) dλ = hnδmn ,

which is not proper orthogonality because the left-hand side does not define a Hermitian inner product.
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points of �[3]+
gH . While W(λ; x) and hence Y(λ; x) can also exist for N = 0 and

M = 1, 2, 3, . . . , these additional values do not yield a solution u(x) of the Painlevé-
IV equation via the formula (3.2) because W(λ; x) is upper-triangular for N = 0, so
Y(λ; x) is lower-triangular, and hence Y ∞

1,12(x) ≡ 0.
In [15], the gH rational solutions of Painlevé-IV were studied by means of another

system of pseudo-orthogonal polynomials obtained by further developing the method
of Bertola and Bothner [7]. It is easy to relate the Riemann–Hilbert representation used
in [15] to the gH Riemann–Hilbert problem for Y(λ; x). Indeed, from the solution
Y(λ; x) of Riemann–Hilbert Problem 1 in the gH type-3 case, set

M(ζ ; y) :=
(
exp

( 1
4 iπ(2�∞ − 1)

)
√
2π

)σ3
i(�∞+�0)σ3σ1Y0

0(iy)
−1Y

(
− i

ζ
; iy
) (

− i
ζ

)�∞σ3

·σ1
(
exp( 14 iπ(2�∞ − 1))√

2π

)−σ3

. (3.73)

It is straightforward to check that M(ζ ; y) solves [15, Riemann–Hilbert Problem 1]
with parametersm = 1−2�∞ and n = �∞+�0, both integers. In light of the variable
transformation λ = −iζ−1, the pseudo-orthogonal polynomials in [15] are related to
the reciprocal pseudo-orthogonal polynomials encoded in the matrix W(λ; x). The
connection between Y(λ; x) and M(ζ ; y) is analogous to an observation made in
[50], namely that the Riemann–Hilbert problem encoding the Yablonskii-Vorob’ev
polynomials found by Bertola and Bothner [7] is explicitly related to the inverse
monodromy problem for the Flaschka-Newell Lax pair for the Painlevé-II rational
solutions built from those polynomials.

Note also that these arguments connecting Riemann–Hilbert Problem 1 in the gH
casewith pseudo-orthogonal polynomials explainwhy Schlesinger transformations do
not allow one to escape from the set�[3]+

gH into any larger lattice spanned by the same
lattice vectors. This is a special phenomenon of the gH rational solutions, since we
have seen that the entire Z×Z gO lattice is accessible by Schlesinger transformations
from any given lattice point.

4 Asymptotic Analysis of Y(�; x) for (20, 2∞) Large: Basic Principles

In light of the explicit and trivial relation (2.2) between u[2]
F (x; m, n) and u[1]

F (x; m, n)
for both families F = gH and F = gO, to prove our results it will be sufficient to
consider only rational solutions of types 1 and 3. Moreover, since (2.5) and (3.2)
together imply that the rational solutions of both types 1 and 3 are simultaneously
encoded in Riemann–Hilbert Problem 1, it is only necessary to study the latter problem
in the situation that the parameters (�0,�∞) correspond to a rational solution of type
3 in either family.

We therefore assume that the parameters (�0,�∞) are large in either �gO ∩
(W [3]+ ∪ W [3]−) or �[3]+

gH for the gO and gH families, respectively. This implies
that, in terms of the parameters T , s, κ from (1.13), T > 0 will be the large parameter
and κ ∈ (−1, 1). For the gO family we allow both signs s = ±1 for �0 to access
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both sectors W [3]±, while for the gH family it is enough to consider only s = 1 since
�

[3]+
gH ⊂ W [3]+. In this section we introduce the basic principles underpinning the

asymptotic analysis of rational Painlevé-IV solutions using Riemann–Hilbert Prob-
lem 1 together with Theorems 5 and 6. We bring the scalings from Sect. 1.3 into
the Riemann–Hilbert problem in Sect. 4.1, introduce the key contour deformations in
Sect. 4.2, and explain the key notion of spectral curves in Sects. 4.3–4.4.

4.1 Scaling of Riemann–Hilbert Problem 1

Recalling the parametrization (1.13) of (�0,�∞) by T , s, κ , it is convenient to intro-
duce the following scalings into the solution Y(λ; x) of Riemann–Hilbert Problem 1:

x = T 1/2X , X = μ + T −1ζ, and λ = 1

2
T 1/2z. (4.1)

WesetM(T ,s,κ)(z; X) := ( 12T 1/2)−κTσ3Y(λ; x), andwewriteM(z) = M(T ,s,κ)(z; X)
whenwewish to suppress the dependence on parameters. Then under the scalings (4.1)
the exponent in the jump conditions of Riemann–Hilbert Problem 1 becomes

λ2 + 2xλ = 2Tφ(z;μ) + ζ z, φ(z;μ) := 1

8
z2 + 1

2
μz, (4.2)

and M(z)z−sTσ3 is bounded as z → 0 while M(z)z−κTσ3 → I as z → ∞. Because
the jump matrices on all arcs of � are all entire functions of λ and are cyclically
consistent at all self-intersection points in C \ {0} due to the consistency relations
(3.20), by elementary substitutions in the four sectors between the circles of radius
|z| = 1

2T 1/2 and |z| = 1wemay simply take the jump contour forM(z) to again be the
original unscaled jump contour �, now in the z-plane. Since the constant pre-factor
( 12T 1/2)−κTσ3 does not affect any jump conditions, the jump matrices for M(z) are
precisely the same as those ofY(λ; x) on the same arcs of� except that the exponents
are replaced in each case according to (4.2), and �0 and �∞ are replaced with sT
and −κT , respectively.

Remark 11 Given a family F = gO or F = gH, the parameters T , s, κ , and the aux-
iliary variable X appearing in M(z) = M(T ,s,κ)(z; X) are naturally related to the
function u(x) = u[3]

F (x; m, n) solving the Painlevé-IV equation (1.1) for parame-

ters (�0,�∞) = (�
[3]
0,F(m, n),�[3]

∞,F(m, n)). To study the function u[3]
gH(x; m, n), we

therefore relate these quantities to the integer parameters (m, n) ∈ Z
2≥0 by

T := 1
2 + 1

2 (m + n), s := +1, κ := −1 + n − m

1 + m + n
,

x =
√
1 + m + n

2
μ +

√
2

1 + m + n
ζ, (4.3)

and observe that as m, n → +∞with n = ρm for a fixed aspect ratio ρ > 0, T → ∞
and κ → (1 − ρ)/(1 + ρ) ∈ (−1, 1). Likewise, to study the function u[3]

gO(x; m, n),
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for integer parameters (m, n) ∈ Z
2
>0 with mn > 0 we use instead

T := | 16 + 1
2 (m + n)|, s := sgn(m + n), κ := − 3 + 3n − 3m

|1 + 3m + 3n| ,

x =
√ |1 + 3m + 3n|

6
μ +

√
6

|1 + 3m + 3n|ζ, (4.4)

and observe that as m, n → ∞ with n = ρm for a fixed aspect ratio ρ > 0, T → ∞
and κ → sgn(m + n)(1 − ρ)/(1 + ρ) ∈ (−1, 1).

However, the function u[1]
F (x; m, n) satisfies (1.1) for different parameters, namely

for (�0,��,�∞,��
) = (�

[1]
0,F(m, n),�[1]

∞,F(m, n)) related to (�0,�∞) via the sym-
metry S�

�
defined in (2.4). Writing (�0,�∞) in terms of the integer indices (m, n)

for this function therefore requires inverting the mapping S�
�

on the parameters as
follows. For the function u�

�
(x) = u[1]

gH(x; m, n), the parameters in Riemann–Hilbert
Problem 1 become

(�0,�∞) = S−1
�
�

◦ (�[1]
0,gH(m, n),�[1]

∞,gH(m, n)) = ( 12m + 1
2n,− 1

2m + 1
2n), (4.5)

yielding for M(z) the parameters

T := 1
2 (m + n), s = +1, κ := m − n

m + n
, (4.6)

in which T → +∞ and κ = (1−ρ)/(1+ρ) ∈ (−1, 1) asm, n → +∞with n = ρm,
while for the function u�

�
(x) = u[1]

gO(x; m, n), we have instead

(�0,�∞) = S−1
�
�

◦ (�[1]
0,gO(m, n),�[1]

∞,gO(m, n)) = (− 1
3 + 1

2m + 1
2n,− 1

2m + 1
2n),
(4.7)

yielding

T := 1
2 |m + n − 2

3 |, s = sgn(m + n), κ := m − n

|m + n − 2
3 |

(4.8)

in which T → +∞ and κ → sgn(m +n)(1−ρ)/(1+ρ) as m, n → ∞ with mn > 0
and n = ρm. We emphasize that in this case, (�0,�∞) are not the parameters in (1.1)
for which the indicated type-1 function satisfies the Painlevé-IV equation, but they are
the parameters in Riemann–Hilbert Problem 1 for which this function is encoded as
u�
�
(x) given by (3.2).
The analysis we present in the rest of this section and in Sects. 5–7 will refer to the

quantities T , s, and κ defined as above depending on which family and type of rational
function is being considered. A remaining issue in interpreting the results of a large-T
asymptotic analysis ofM(z) is that while it is natural in light of the scalings (1.13) to
write x in the form x = T 1/2μ + T −1/2ζ as indicated above for the type-3 rational
solutions, for the type-1 rational functions in the family F we need to use |�[1]

0,F(m, n)|
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in place of |�0| in defining μ and ζ . This amounts to replacing

μ with

√
|�[1]

0,F(m, n)|
|�0| μ and ζ with

√ |�0|
|�[1]

0,F(m, n)|ζ (4.9)

in all final formulæ. Note that using Tables 1 and 2, and taking�0 to be given by (4.5)
or (4.7) respectively,

|�[1]
0,gH(m, n)|

|�0| = n

m + n
and

|�[1]
0,gO(m, n)|

|�0| = n − 1
3

m + n − 2
3

. (4.10)

Equivalently, since �[1]
0,F(m, n) = �0,��, in terms of the parameters s and κ related to

the indices (m, n) for the F = gH and F = gO families by (4.6) and (4.8) respectively,

|�[1]
0,F(m, n)|
|�0| = 1

2
(1 − sκ). (4.11)

4.2 Trivially Equivalent Riemann–Hilbert Problems for M(z)

Here we describe how the jump contour for M(z) = M(T ,s,κ)(z; X) with X = μ +
T −1ζ can be usefully modified beyond mere rescaling, depending on the values of the
parameters s, κ , and μ. Importantly, we will assume that the modified contour, also
denoted �, is independent of both the large parameter T � 1 and the value of ζ .

4.2.1 The gO Case

To study M(z) in the case that the monodromy data corresponds to the family of gO
rational solutions of Painlevé-IV (see Theorem 5 in Sect. 3.1), by a similar argument
using analyticity of jump matrices and cyclic consistency at nonzero self-intersection
points, the jump contour � can be replaced by a qualitatively similar jump contour
consisting of

• an arbitrary Jordan curve C enclosing the origin and divided into arcs � j ,
j = 1, 2, 3, 4 (the indicated sub-arcs are homeomorphic in C \ {0} with the cor-
responding curves on the unit circle shown in Fig. 13),

• an arbitrary simple arc �0 in the interior of C that connects the junction point of
�3 and �4 to the origin, and

• four arbitrary disjoint simple arcs� j,k , unbounded in one direction and connecting
z = ∞ with the junction point of � j and �k such that the approach to z = ∞ is
in the (vertical or horizontal) direction shown in Fig. 13.

In general, the union of�0 and�4,3 should be taken as the branch cut for the functions
z−sTσ3 and z−κTσ3 , and the branches of these functions remain principal for sufficiently
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Fig. 15 Left: the jump contour for the “leftward” deformation of M(z). Right: the jump contour for the
“downward” deformation of M(z)

large |z|. The formula for the jump matrix on each arc of � after the deformation is
exactly the same in each case as before the deformation.

It will be useful to introduce two modifications of the Riemann–Hilbert conditions
forM(z) that do not preserve the topology of �.

Beginning with the jump contour shown in Fig. 13 and referring to the left-hand
panel of Fig. 15 we define a “leftward” deformation of the jump contour forM(z) by
making the following piecewise-analytic substitution in the domains �2,3 and �4,1
exterior to the unit circle in the z-plane (recall the notation (1.34)):

M(z) �→ M(z)U(− 1
2 ie

2Tφ(z;μ)+ζ z), z ∈ �2,3,

M(z) �→ M(z)U( 12 ie
2Tφ(z;μ)+ζ z), z ∈ �4,1,

and elsewhere we leaveM(z) unchanged. This results in the same jump conditions as
indicated in Riemann–Hilbert Problem 1withmonodromy data taken from (3.3)–(3.4)
on the corresponding labeled arcs (but in the z-plane, and with the exponents modified
as indicated in (4.2)), and a new jump condition on the arc labeled�c in the left-hand
panel of Fig. 15, namely

M+(z) = M−(z)e−2π iT κT(2ie−2Tφ(z;μ)−ζ z), z ∈ �c.

Likewise, referring to the right-hand panel of Fig. 15 we can define a “downward”
deformation of the jump contour forM(z) by making the following analytic substitu-
tions in the indicated domains:

M(z) �→ M(z)e2π isTσ3 , z ∈ �0,

M(z) �→ M(z)e2π iT κL(−2ie−2Tφ(z;μ)−ζ z), z ∈ �4,3,

M(z) �→ M(z)L(2ie−2Tφ(z;μ)−ζ z), z ∈ �2,1,
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and
M(z) �→ M(z)e2π iT κ , z ∈ �∞. (4.12)

Once again, the resulting jump conditions on the arcs labeled as in Fig. 13 correspond
to those in Riemann–Hilbert Problem 1 with monodromy data given in (3.3)–(3.4),
except on the arcs �4,3 and �4,1 where we have instead

M+(z) = M−(z)L(2ie−2Tφ(z;μ)−ζ z), z ∈ �4,3,

M+(z) = M−(z)e2π iT κU(− 1
2 ie

2Tφ(z;μ)+ζ z), z ∈ �4,1,

(as the substitution (4.12) effectively moves the scalar factor e−2π iT κ from the jump
across�4,3 to that across�4,1) and there is a new jump condition across the arc labeled
�c in the right-hand panel of Fig. 15 that reads

M+(z) = M−(z)e2π iT κT(−2ie−2Tφ(z;μ)+ζ z), z ∈ �c.

In interpreting the conditions onM(z) as z tends to 0 and ∞, one should now replace
the principal branch power functions z−sTσ3 and z−T κσ3 by branches with arg(z) ∈
(−π

2 ,
3π
2 ).

In the case of both deformations, one can subsequently replace the unit circle
in the z-plane by any Jordan curve enclosing the origin, and employ similar contour
deformations that respect the topology and direction of approach to z = ∞. In the case
of the leftward deformation, the union of the deformations of�0,�c, and�4,3 should
be taken as the branch cut of z−sTσ3 and z−T κσ3 , which should then be interpreted via
arg(z) ∈ (−π, π) near z = ∞. In the case of the downward deformation, the union of
the deformations of �0, �c, and �4,1 form the branch cut of these functions, which
are to be interpreted via arg(z) ∈ (−π

2 ,
3π
2 ) near z = ∞.

4.2.2 The gH Case

When we consider the matrix M(z) connected to the solution of Riemann–Hilbert
Problem 1 with gH monodromy data given in Theorem 6 of Sect. 3.1, there is a
corresponding dramatic simplification of the rescaled jump contour as described in
Remark 6 from the same section. Indeed, the rescaled version of � can be taken to
appear exactly as shown in Fig. 14, but now in the z-plane. Here there will be no
need for deformations that change the topology of the jump contour, but as in the gO
case we may always replace the unit circle in the z-plane with any Jordan curve C
enclosing the origin, and we may replace the contour arcs lying on the negative real
line with arcs still denoted �0 and �4,3 making up any simple curve that connects
z = 0 with z = −∞ and that intersects C only at one point. The branch cuts of
z−sTσ3 and z−κTσ3 are then taken to coincide with the latter curve, and the branches
are chosen to be principal for large |z|.
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4.3 Spectral Curve and g-Function

The analysis in this section applies equally to the matrix M(z) in all configurations
of �, regardless of whether Riemann–Hilbert Problem 1 from Sect. 3.1 describes gO
or gH rational solutions of Painlevé-IV. Indeed, the fact that one can use the same
theory of spectral curves to study both families of rational solutions is one of the
main advantages of putting both families on the same footing via Riemann–Hilbert
Problem 1.

Let g : C \� → C be analytic with continuous boundary values such that g′(z) is
also such a function, and moreover, for some constants g0 and g∞,

g(z) =
{

−s log(z) + g0 + O(z), z → 0,

−κ log(z) + g∞ + O(z−1), z → ∞

�⇒ g′(z) =
{

−sz−1 + O(1), z → 0,

−κz−1 + O(z−2), z → ∞.
(4.13)

Here the branch of log(z) corresponds to the definition of the power functions z−sTσ3

and z−T κσ3 as indicated in Sect. 4.2. We assume that, like the jump contour �, g may
depend parametrically on s, κ , and μ, but not on T � 1 or ζ .

Given such a function, from M(T ,s,κ)(z; X) with X = μ + T −1ζ we define a new
unknown denoted N(z) = N(T ,s,κ)(z;μ, ζ ) by the substitution

N(z) := e−T g∞σ3M(z)eT g(z)σ3, z ∈ C \ �. (4.14)

Note that from (4.13), N(z) → I as z → ∞. The induced jump conditions for N(z)
will involve exponentials on the diagonal elements with exponents ±T�g(z) and on
the off-diagonal elements with exponents ±2T (〈g〉(z)− φ(z;μ))∓ ζ z where�g(z)
and 〈g〉(z) are defined in terms of the boundary values g±(z) taken on an arc of � as
in Sect. 1.5. Assuming that � is partitioned into arcs independent of both T � 1 and
ζ in which either�g(z) = g+(z)− g−(z) or 2(〈g〉(z)−φ(z;μ)) = g+(z)+ g−(z)−
2φ(z;μ) is independent of z, we easily see that the function (g′(z) − φ′(z;μ))2 has
no jump across any of the arcs of � and hence is a function analytic for z ∈ C \ {0}.
To identify this function, we use (4.2) and (4.13) to examine its behavior near z = 0:

(g′(z) − φ′(z;μ))2 = (−sz−1 + O(1))2 = z−2 + O(z−1), z → 0, (4.15)

and near z = ∞:

(g′(z) − φ′(z;μ))2 =
(

−1

4
z − 1

2
μ − κz−1 + O(z−2)

)2

= 1

16
z2 + 1

4
μz +

(
1

4
μ2 + 1

2
κ

)
+ O(z−1), z → ∞. (4.16)
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ByLiouville’s Theorem it therefore follows that if 1
8 E denotes the common coefficient

of z−1 in (4.15) and (4.16), then

(g′(z) − φ′(z;μ))2 = 1

16
z2 + 1

4
μz +

(
1

4
μ2 + 1

2
κ

)
+ 1

8
Ez−1 + z−2

= 1

16z2
P(z),

(4.17)

where P(·) is exactly the same quartic polynomial defined in (1.18). Replacing the
left-hand side by v2, (4.17) is said to define the spectral curve relating (z, v) ∈ C

2.
There are, in principle, five possible configurations for the quartic P(z), only three

of which are consistent with our assumptions:

{31}: Two distinct roots, one of multiplicity 3 and one simple. Suppose that P(z) =
(z −α)3(z − β) for some α �= β. Comparing the coefficients and eliminating
α and β shows that given κ ≈ κ∞ with κ∞ ∈ (−1, 1), μ must be a root of
the 8th degree polynomial (1.17) defining the branch points of equilibrium
solutions U0 (see (1.15) and Proposition 1 in Sect. 1.3; these are precisely the
vertices visible in the plots in Fig. 5 from the same section). Given κ , for each
of these eight points, the values of α, β, and E are uniquely determined.

{211}: Three distinct roots, one double and two simple. Suppose that P(z) = (z −
α)(z −β)(z − γ )2 for distinct values α, β, and γ . Comparing the coefficients
yields the system of equations

α + β + 2γ = −4μ

αβ + 2(α + β)γ + γ 2 = 4(μ2 + 2κ)

2αβγ + (α + β)γ 2 = −2E

αβγ 2 = 16.

(4.18)

Eliminating α and β between the first, second, and fourth equations gives the
following quartic equation for γ :

Q(γ, μ; κ) := γ 4 + 8

3
μγ 3 + 4

3
(μ2 + 2κ)γ 2 − 16

3
= 0. (4.19)

This is precisely the same as the equation (1.15) under the substitution γ �→
U0, and hence the discriminant defining the branch points for γ is (1.17).
From (1.16) we see that there are four distinct values of γ when μ is large,
namely

γ = 2μ−1 + O(μ−2), γ = −2μ−1 + O(μ−2), γ = −2μ + O(1), and

γ = − 2
3μ + O(1), μ → ∞.
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Given μ ∈ C, κ ≈ κ∞ with κ∞ ∈ (−1, 1), and any root γ of (4.19), the
values of E , α, and β (the latter up to permutation) are determined from

E = −16γ−1 + 2μγ 2 + γ 3, αβ = 16γ−2, α + β = −4μ − 2γ. (4.20)

According to Theorems 1–2 in light of Remark 3 from Sect. 1.3, this config-
uration will turn out to be relevant for μ ∈ EF(κ) depending on the family
F = gH or F = gO.

{1111}: Four distinct roots, all simple.Suppose that P(z) = (z−α)(z−β)(z−γ )(z−δ)

for distinct values α, β, γ, δ. This configuration again places no conditions on
μor κ , but now the constant E is also free, and some additional conditions need
to be specified to relate it to μ and κ . These will be the Boutroux conditions
to be introduced in Sect. 4.4 (see also (1.26)). This configuration will turn
out to be relevant for μ in the bounded regions B�(κ), ±B�(κ), ±B�(κ)
introduced in Sect. 1.4.3.

{4}: One root of multiplicity 4. Suppose that P(z) = (z −α)4 for some α. Compar-
ing the coefficients and eliminating α shows easily that this form is consistent
only ifμ4 = 16 and κ = 1

4μ
2. But further eliminatingμ2 = ±4 gives κ = ±1

which is inconsistent in the limit with κ → κ∞ with κ∞ ∈ (−1, 1).
{22}: Two distinct double roots. Suppose that P(z) = (z − α)2(z − β)2 for some

α �= β. Comparing the coefficients then yields, as in the case of a single
root of multiplicity 4, that κ = ±1 which is inconsistent for large T with
κ∞ ∈ (−1, 1).

Therefore, only cases {31}, {211}, and {1111} will be relevant to our study going
forward, and we will say that the spectral curve is of class {31}, {211}, or {1111}.
In any of these cases, we can solve for g′(z) by introducing suitable bounded branch
cuts between pairs of distinct roots of the quartic P(z) and defining a function R(z)
analytic except on these cuts that satisfies

R(z)2 = P(z) and R(z) = z2 + O(z), z → ∞. (4.21)

Then, in order to satisfy the necessary condition g′(z) → 0 as z → ∞ we need to
take the square root in (4.17) precisely as follows:

g′(z) = φ′(z;μ) − 1

4
z−1R(z).

That this formula also gives g′(z) = −sz−1+O(1) as z → 0 then requires in addition
that R(0) = 4s, which we interpret as a condition on how the branch cuts of R(z)must
be placed relative to the origin in order to achieve the correct sign of R(0). When it is
necessary to emphasize the parameter dependence we will write g(z) = g(s,κ)(z;μ)
going forward. It will be convenient to define the related function h(z) = h(s,κ)(z;μ)
by

h(s,κ)(z;μ) := g(s,κ)(z;μ) − φ(z;μ) �⇒ h(s,κ)′(z;μ) = − R(z)

4z
. (4.22)
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Fig. 16 Critical v-trajectories of h′(z)2 dz2 emanating from (for generic μ) simple roots of P(z) for κ = 0
for the gH family. The same topological structure holds for −1 < κ < 1. Counterclockwise from top left:
μ = 1.5i, μ ≈ 1.0253i, μ = 0.5i, μ = 0, μ = 0.5, μ ≈ 1.0253, μ = 1.5, μ = 1.5 + 0.5i, μ = 1.5 + i,
μ = 1.5 + 1.5i, μ = 1 + 1.5i, μ = 0.5 + 1.5i. Inset: Boundary of B�(0) in the μ-plane. The μ-values
corresponding to different trajectory plots are indicated by red dots (Color figure online)

A key role in our analysis will be played by certain trajectories of the quadratic
differential h′(z)2 dz2, and how they depend on μ once the coefficient E is suitably
determined as a function of μ for given κ and the family (gH or gO) of interest.
We will deduce all of the needed properties theoretically below, but it is also easy to
compute them numerically, so as a preview of what will come, we present plots of
the trajectories connected to simple roots of P(z) (as well as trajectories connected to
roots of higher multiplicity when those are also connected to simple roots) in Figs. 16
and 17.
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Fig. 17 Critical v-trajectories of h′(z)2 dz2 emanating from (for generic μ) simple roots of P(z) for κ = 0
for the gO family. The same topological structure holds for −1 < κ < 1. Counterclockwise from top left:
μ ≈ 2.96773i, μ = 2i, μ ≈ 1.0253i, μ = 0.5i, μ = 0, μ = 0.5, μ ≈ 1.0253, μ = 2, μ ≈ 2.96773,
μ = 3 + 0.5i, μ = 3 + i, μ = 3 + 2i, μ = 3 + 3i, μ = 2 + 3i, μ = 1 + 3i, μ = 0.5 + 3i. Inset:
Boundaries of the regions B�(0), ±B�(0), and ±B�(0) in the μ-plane. The μ-values corresponding to
different trajectory plots are indicated by red dots. Note that the μ-values within the quasi-rectangle are the
same as those in Fig. 16, and the corresponding trajectory plots also match exactly. This is one reason why
the gO and gH rational solutions can be treated on the same footing (Color figure online)

4.4 Boutroux Curves

4.4.1 Boutroux Curves of Class {1111}

If the quartic P(z) is in the most general case {1111}, then comparing with (4.22),
the rational equation v2 = h′(z)2 = P(z)/(16z2) defines the spectral curve R as an
elliptic curve (genus 1) parametrized by μ ∈ C, κ ∈ (−1, 1), and E ∈ C (cf. (4.17)).
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We will be interested in spectral curves satisfying the Boutroux conditions (cf. (1.26))

Re

(∮
a
v dz

)
= 0 and Re

(∮
b
v dz

)
= 0 (4.23)

where a and b are representatives of a canonical basis of homology cycles onR chosen
not to pass through any poles of v (at the two points each over z = 0,∞). Note that
although the differential v dz has residues at these four points, they are all purely real
(±1 for the points over z = 0 and ±κ for the points over z = ∞) so the Boutroux
conditions depend only on the homology classes of the cycles a and b. Moreover, since
(a, b) is a basis for the homology group of R, the conditions (4.23) taken together
depend intrinsically on R itself. We will determine E as a function of μ and κ such
that R satisfies (4.23), making it a Boutroux curve.

4.4.2 Continuation of Boutroux Curves

If a homology basis (a, b) is specified on a given curveR, then letting ER := Re(E)
and EI := Im(E), the following functions are locally defined:

fa,b(ER, EI;μ, κ) := Re

(∮
a,b

v dz

)
.

The Boutroux conditions (4.23) then read fa(ER, EI;μ, κ) = fb(ER, EI;μ, κ) = 0.
A direct calculation then shows that

∂ fa,b
∂ER

= 1

4
Re

(∮
a,b

dz

4zv

)
and

∂ fa,b
∂EI

= −1

4
Im

(∮
a,b

dz

4zv

)
.

It follows that the Jacobian of ( fa, fb) with respect to (ER, EI) is

∂( fa, fb)

∂(ER, EI)
= 1

16
Im(ZaZ∗

b), Za :=
∮
a

dz

4zv
Zb :=

∮
b

dz

4zv
.

Since dz/(4zv) is up to scaling the unique nonzero holomorphic differential on the
elliptic curveR, it follows from [31,Corollary 1] that ∂( fa, fb)/∂(ER, EI) is finite and
nonzero wheneverR is a smooth elliptic curve,8 i.e., whenever the quartic polynomial
P(z) is in case {1111}, having four distinct roots. Therefore, starting from a known
solution (ER, EI) = (E#

R, E#
I ) of the Boutroux equations (4.23) for μ = μ# and

−1 < κ < 1 such that R is a nonsingular curve, the Implicit Function Theorem
guarantees that we may uniquely continue this solution along a path in the μ-plane
emanating from μ = μ# untilR degenerates from class {1111} to either class {31} or
{211} under continuation. A spectral curve that lies at the terminal endpoint of such a
maximal path is called a degenerate Boutroux curve.

8 The Jacobian is proportional to the area of a fundamental period parallogram formed by the complex
periods Za,b.
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Fig. 18 Four configurations of branch points and homology cycles for spectral curves with μ = μR and
E = ER real. The canonical a and b cycles (solid black curves) on the sheet of R on which v is a single-
valued analytic function of z with branch cuts (orange) connecting the branch points in pairs, and such that
v ∼ 1

4 z as z → ∞. Part of the a cycle (dashed) is on the other sheet, on which v has the opposite sign. The
red dot is the origin (Color figure online)

4.4.3 Boutroux Curves for� on the Real or Imaginary Axes

Given κ ∈ (−1, 1), we claim that whenever μ = μR ∈ R there is a unique (possibly
degenerate) Boutroux curveR for which E is real, i.e., EI = 0. Indeed, if both μ and
E are real it follows easily that the quartic polynomial P(z) is Schwarz symmetric:
P(z∗) = P(z)∗. Let us assume for the moment that the spectral curve for such μ and
E is of class {1111} so that P(z) has four distinct roots. These roots necessarily come
in complex-conjugate or real pairs.

We first simplify the Boutroux conditions (4.23) under the additional assumption
that there are no real roots, and without loss of generality we let α and β denote the
roots in the upper half-plane, and assume that γ = β∗ and that δ = α∗. We define
v(z) as a function satisfying v2 = P(z)/(16z2) that is analytic apart from z = 0
and a Schwarz-symmetric system of two branch cuts, one of which lies in the upper
half-plane joining α and β, and that satisfies v(z) = 1

4 z + 1
2μR + κz−1 + O(z−2)

as z → ∞. Then we select a homology basis (a, b) compatible with the canonical
intersection condition a ◦ b = 1 that topologically matches the diagram in the upper
left-hand panel of Fig. 18.

Taking a to be Schwarz-symmetric up to orientation we easily see from v(z∗) =
v(z)∗ that

∮
a v dz is purely imaginary, i.e., fa(ER, 0;μR, κ) = 0 holds automatically.

To simplify the remaining Boutroux condition, we first apply Cauchy’s Theorem to
write ∮

b
v(z) dz =

∮
b

[
v(z) − 1

4
z − 1

2
μR

]
dz. (4.24)

The integrand satisfies v(z)− 1
4 z− 1

2μR = κz−1+O(z−2) as z → ∞ and has a simple
pole at z = 0 with real residue, so by enlarging the loop b to consist of a path from
z = −L to z = L indented above the pole at the origin together with a semicircular
path from z = L to z = −L in the upper half-plane, and letting L → +∞ we find
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that

fb(ER, 0;μR, κ) = P.V.
∫
R

[
v(z) − 1

4
z − 1

2
μR

]
dz

= P.V.
∫
R

[√
P(z)

4z
− 1

4
z − 1

2
μR

]
dz

(4.25)

where the positive square root is meant, and the principal value exclusions occur both
at z = 0 and z = ∞.

Next suppose that P(z) has exactly two real roots. Then it follows from the fact
that P(0) = 16 �= 0 that both real roots have the same sign. We define a single-valued
function v(z) by v(z)2 = P(z)/(16z2), v(z) = 1

4 z + 1
2μR + O(z−1) as z → ∞ with

v(z) analytic except for a branch cut chosen to connect the two real roots of P(z)
and another connecting the conjugate pair of roots of P(z), symmetric with respect
to Schwarz reflection, and crossing the real axis vertically at a unique point between
the origin and the real pair of roots. Then we equip R with a canonical homology
basis (a, b) with representatives taken as in the upper right-hand panel of Fig. 18.
Since v(z) = v(z∗)∗ takes imaginary boundary values on the real branch cut [α, β],∮
a v dz is purely imaginary so once again the condition fa(ER, 0;μR, κ) is satisfied
automatically. Again using the identity (4.24), we deform the cycle b partly toward
z = ∞ in the upper half-plane and partly toward the real axis from the upper half-plane.
Using that the residues at z = 0 and z = ∞ are purely real, upon taking the real part of∮
b v dz we deduce the expression on the second line of (4.25) for fb(ER, 0;μR, κ) in
which the square root

√
P(z) is multiplied by the characteristic function ofR\ [α, β],

i.e., the real intervals over which P(z) > 0 holds.
Finally, suppose that P(z) has four real roots. Then since P(0) = 16 > 0 there are

either two roots of each sign, or all roots have the same sign; we take the branch cuts
of v(z) and homology basis representatives as shown in the lower left-hand and lower
right-hand panels of Fig. 18 respectively. In both cases the fact that the boundary values
of v(z) = v(z∗)∗ on the branch cut [α, β] are imaginary implies that the condition
fa(ER, 0;μR, κ) = 0 holds automatically. And in both cases the use of (4.24) admits
a deformation of b toward z = ∞ in the upper half-plane and toward the real axis
elsewhere. Using reality of the residues at z = 0,∞ we arrive again at the expression
in the second line of (4.25) for fb(ER, 0;μR, κ) in which the square root

√
P(z) is

multiplied by the characteristic function of the union of intervals (−∞, α)∪ (β, γ )∪
(δ,+∞), i.e., where P(z) > 0 holds on the real line.

We conclude that in all cases thatR is a class {1111} spectral curve corresponding
to real μ and E , the Boutroux conditions (4.23) are satisfied provided only that E =
ER ∈ R satisfies the real equation

fb(ER, 0;μR, κ) = P.V.
∫
R

[
χP(z)>0(z)

√
P(z)

4z
− 1

4
z − 1

2
μR

]
dz = 0. (4.26)

Considering various limits in which a class {1111} curve degenerates to class {31}
or class {211}, we see that (4.26) is also necessary for the degeneration to satisfy the
Boutroux conditions when P(z) = P(z∗)∗ has fewer than four distinct roots.
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Given κ ∈ (−1, 1) and μ = μR ∈ R, fb(ER, 0;μR, κ) is a continuous function of
ER ∈ R, in which the dependence on E = ER in the integrand enters via P(z) in the
form (1.18). Moreover, it follows from (4.26) that fb(ER, 0;μR, κ) is differentiable
with respect to ER whenever the roots of P are distinct, and that for such ER,

∂ fb
∂ER

(ER, 0;μR, κ) = 1

4

∫
R

χP(z)>0(z)
dz√
P(z)

, (4.27)

where the integral is absolutely convergent and positive. A simple discriminant cal-
culation shows that points E = ER ∈ R for which the polynomial P(z) has fewer
than four distinct roots are isolated. It is then clear that as ER approaches any value
that makes R degenerate, the derivative (4.27) diverges to +∞. Thus for each and
κ ∈ (−1, 1) and μ = μR ∈ R, the function ER �→ fb is continuous and strictly
monotone increasing on R. Moreover, we have the following asymptotic behavior:

fb(ER, 0;μR, κ) = ±C |ER|2/3 + o(|ER|2/3), ER → ±∞,

for all fixed real μR and κ , where the constant C is given by (taking the square roots
to be positive)

C :=
∫ −21/3

−∞

⎛
⎝−

√
w4 + 2w

16w2 − w

4

⎞
⎠ dw +

∫ 0

−21/3

(
−w

4

)
dw

+
∫ +∞

0

⎛
⎝
√
w4 + 2w

16w2 − w

4

⎞
⎠ dw

≈ 1.25203 > 0.

Hence, by strictmonotonicity and the IntermediateValueTheorem, there exists exactly
one root ER = ER(μR, κ) ∈ R for which fb(ER, 0;μR, κ) = 0.

If μ = μR = 0 and also ER = 0, then it is easy to see that for any κ ∈ (−1, 1) the
integrand in (4.26) is odd and hence E = ER = 0 is the unique real solution of the
Boutroux equations (4.23) for μ = 0. In this special case, P(z) = z4 + 8κz2 + 16,
the roots of which satisfy z2 = −4κ ± 4i

√
1 − κ2, forming a complex-conjugate pair

on the circle of radius |z2| = 4. Therefore, the four roots of P(z) form a quartet in
the complex z-plane like in the configuration shown in the upper left-hand panel of
Fig. 18 but with additional reflection symmetry in the imaginary axis, and lying on
the circle of radius |z| = 2. Introducing the parametrization

κ = sin( 12ϕ), ϕ ∈ (−π, π), (4.28)

so that also
√
1 − κ2 = cos( 12ϕ) > 0, the roots of P(z) are exactly z = α, β, γ, δ,

where

α = 2ei� , β = −2e−i� , γ = −2ei� , and δ = 2e−i� ,

� := 1
4 (ϕ + π) ∈ (0, π2 ). (4.29)
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These are arranged in counterclockwise order about the origin.
We can just as easily obtain a unique Boutroux curve with E purely imaginary for

every purely imaginary value ofμ. Letμ = iμI and E = iEI both be purely imaginary.
Then it is clear that the polynomial P(z) has Schwarz reflection symmetry about the
imaginary axis in the z-plane: P(−z∗) = P(z)∗. Following a similar approach as in
the case of μ ∈ R, we find that one of the Boutroux conditions in (4.23) is trivially
satisfied, while the other gives a real relation between μI ∈ R and EI ∈ R that can
be solved uniquely for EI by the Intermediate Value Theorem, yielding a continuous
real map μI �→ EI. Moreover, it is not difficult to check that the Boutroux equations
(4.23) are consistent with the symmetry

(μ, κ, E) �→ (iμ,−κ,−iE) (4.30)

which implies that whenever E = ER(η, κ) ∈ R corresponds to μ = η ∈ R and
κ ∈ (−1, 1), E = −iER(η, κ) corresponds toμ = iη ∈ iR and the opposite parameter
−κ .

4.4.4 Boutroux Domains on the Real and Imaginary Axes

Starting from the real and imaginary axes in theμ-plane, we may now try to follow the
continuation procedure described in Sect. 4.4.2. Hence, for given κ ∈ (−1, 1), each
point μ on the real (resp., imaginary) axis for which the unique Boutroux curve R
with real (resp., imaginary) E is of class {1111} has a simply connected neighborhood
on which is defined a unique solution of the Boutroux equations (4.23) extending the
on-axis curve R. This immediately shows that the nondegenerate Boutroux curves
appear on the axes in open intervals, each of which bisects a simply connected open
region of the μ-plane supporting a smooth solution (Re(μ), Im(μ)) �→ (ER, EI) of
(4.23). We call such a region a Boutroux domain. In particular, the origin μ = 0 is
contained in a Boutroux domain for which E = 0 atμ = 0. The mappingμ �→ E on a
given Boutroux domain is decidedly non-analytic as can be seen by a direct calculation
of the Cauchy-Riemann ∂ derivative of E with respect toμ via implicit differentiation
of (4.23) using a Riemann bilinear identity.

5 Asymptotic Analysis of M(z) for Sufficiently Large |�|: gO Case

In this section, we start to analyze the rational solutions of (1.1) for μ in the exterior
domain. Although in Sect. 1.4 we presented the result for the gH family first, we begin
here with the gO case which is more complicated. Then in Sect. 6 we will re-use much
of this material to study the simpler gH case.

Fix κ∞ ∈ (−1, 1), so that also κ is bounded away from ±1 for T sufficiently large.
To analyze M(z) for large |μ| with −ε < arg(μ) < π

2 + ε for some small ε > 0, it
suffices to take a polynomial P(z) in case {211}, and for the gO case we select the
solution of the quartic (4.19) that satisfies γ = U0,gO(μ; κ) = − 2

3μ + O(μ−1) as
μ → ∞ (see Sect. 1.3).
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Definition 1 Let κ ∈ (−1, 1). We denote by � = �(κ) the Riemann surface of the
quartic (4.19), i.e., the set of ordered pairs (μ, γ ) ∈ C

2 satisfying Q(γ, μ; κ) = 0.

The solution γ = − 2
3μ+ O(μ−1) can be analytically continued to finite values of μ

on� along any path that avoids the branch points solving B(μ; κ) = 0. Corresponding
to the asymptotic γ = − 2

3μ + O(μ−1), from (4.18) we have (breaking permutation
symmetry) α = − 8

3μ + O(1) and β = − 27
2 μ

−3 + O(μ−4) as μ → ∞.

Remark 12 In Sects. 5 and 6 we will set ζ = 0. The parameter ζ is a tool useful for
capturing rapid variations in the rational solutions that do not occur in the exterior
domain studied in Sects. 5 and 6. Dependence on ζ is however useful in the analysis
of rational solutions on Boutroux domains; see Sect. 7.

5.1 Analysis of the Exponent h(z)

The function z �→ h′(z) = h(s,κ)′(z;μ) is well defined for z �= 0 up to a sign, and
moreover the formula  (z) := h′(z)2 = 1

16 z−2P(z) = 1
16 z−2(z − γ )2(z − α)(z − β)

shows that h′(z) is meromorphic on a two-sheeted Riemann surfaceR over the z-plane
having genus zero (a single branch cut connects α and β), with simple poles over z = 0
and triple poles over z = ∞. It is easily checked that since κ ∈ R, the residues at all
four poles are purely real, so sinceR has genus zero it follows that by integration that
Re(h(z)) is single valued onR and harmonic away from the poles. It is determined up
to a real integration constant which we choose so that Re(h(α)) = 0. Then Re(h(z))
takes opposite signs on the two sheets ofR at points corresponding to the same value
of z and so also Re(h(β)) = 0 as α and β are the only two points common to both
sheets.

5.1.1 The Zero-Level Set of Re(h(z))

The zero-level curves of Re(h(z)) effectively lie on the z-plane by choice of integration
constant. To determine their structure, and for other purposes throughout our paper, we
use some theory of trajectories of rational quadratic differentials [39, 60], for which
we give the following definition.

Definition 2 (Trajectories of rational quadratic differentials) Given a rational function
z �→  (z), a maximal smooth curve R # s �→ z(s) ∈ C, |z′(s)| = 1, along which
 (z(s))z′(s)2 < 0 (resp.,  (z(s))z′(s)2 > 0) is called a vertical (resp., horizontal)
trajectory of the quadratic differential  (z) dz2. Vertical (resp., horizontal) trajectories
are mapped by the primitive z �→ w = ∫ z √

 (z′) dz′ to vertical (resp., horizontal)
lines in the w-plane. However these curves are rarely vertical (resp., horizontal) in
the native z-plane, so we will call them v-trajectories (resp., h-trajectories) to avoid
any potential confusion. A trajectory is either a v-trajectory or an h-trajectory. A
trajectory that is neither a closed curve nor terminates in both directions at zeros or
poles of  (z) dz2 is called divergent. A trajectory with either a zero or simple pole
of  (z) as an endpoint, or an unbounded trajectory if  (z) = O(z−3) as z → ∞, is
called critical.
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Someof the level curves therefore coincidewith the three v-trajectories of the quadratic
differential  (z) dz2, that by local analysis emanate from each of the branch points z =
α and z = β at equal angles of 2π

3 . Since all level curves of Re(h(z)) are projections
R → C of v-trajectories of  (z) dz2 on R, and since this function is not identically
constant on R, there can be no divergent v-trajectories on R. Indeed, according to
[60, Theorem 11.1, pg. 48], any such v-trajectory is also “recurrent”, and then by
[60, Corollary (1), pg. 51], the limit set of the recurrent v-trajectory has a non-empty
connected interior, i.e., a domain on R on which Re(h(z)) is necessarily constant,
yielding a contradiction as Re(h(z)) is nonconstant and harmonic on R \ {poles}.
Clearly any divergent v-trajectory of  (z) dz2 on C is the projection underR → C of
a divergent v-trajectory on R, so there can be no such v-trajectories in the complex
z-plane either. In this situation, the Basic Structure Theorem (see [39, pg. 37]) asserts
that the closure Kz of the union of critical v-trajectories, here the three v-trajectories
emanating from each of α and β together with the four v-trajectories emanating from
the double zero z = γ , has an empty interior and divides the z-sphere C into finitely
manydomains, each ofwhich is foliated bynon-critical v-trajectories. Each component
ofC\ Kz has at least one of the critical points z = α, β, γ on its boundary, and on each
component that has either α or β on its boundary the strict inequality |Re(h(z))| > 0
holds. In this paper,wewill refer to the following kinds of domains (see [39,Definitions
3.7–3.10]).

Definition 3 (Circle, end, strip, and ring domains of rational quadratic differentials)
Let  (z) dz2 be a rational quadratic differential. Every double pole z0 of  (z) with
real and positive leading coefficient lies in a circle domain D with the property that
D \ {z0} is foliated by noncritical v-trajectories that are all Jordan curves enclosing
the pole. An end domain is a region mapped conformally by the primitive z �→ w =∫ z √

 (z′) dz′ onto a half-plane with a vertical boundary. A strip domain is a region
mapped conformally by z �→ w onto a vertical strip in the w-plane. Circle, end, and
strip domains are simply connected. A ring domain is a multiply-connected domain
foliated by noncritical v-trajectories that are all Jordan curves and that is mapped
conformally by z �→ ew onto an annulus. The boundary of each circle, end, strip, or
ring domain consists of critical v-trajectories and their endpoints.

Since z = 0 is a simple pole of h′(z) with real residue, the component of C \ Kz

containing the origin is a circle domain D◦ foliated by noncritical v-trajectories that
are all Jordan curves enclosing the origin, and having at least one of α, β, or γ on
its boundary. Under the scaling z = βZ , we find that  (z) dz2 = [(1 − Z)Z−2 +
O(μ−4)] dZ2 where we have used αβγ 2 = 16 (cf. (4.18)) and where the error term is
uniform for bounded Z . The simplifiedquadratic differential has only one critical point,
Z = 1 corresponding to z = β, so the latter critical point alone lies on the boundary of
the circle domain containing the origin in the z-plane. When |μ| is sufficiently large,
this boundary therefore consists of a single v-trajectory that terminates at z = β in both
directions, leaving only one v-trajectory emanating from z = β yet to be accounted
for.

We temporarily make the stronger assumption that 0 < ε ≤ arg(μ) ≤ π
2 − ε; the

weaker assumption that −ε < arg(μ) < π
2 + ε will be restored in Sect. 5.5.1. Then

for |μ| sufficiently large there can be no critical v-trajectory connecting z = γ with

123



Constructive Approximation

either z = α or z = β. Indeed if there were such a v-trajectory, then it would follow
that Re(h(γ )) = 0. However, a calculation shows that

Re(h(γ )) = Re

(∫ γ

α

h′(z) dz

)
= ±Re(μ)Im(μ)√

3
+ o(μ2), μ → ∞, (5.1)

which cannot vanish under the indicated condition on arg(μ). Therefore, the v-
trajectory emanating from z = β that does not return to β either terminates at z = α

or escapes to z = ∞. Likewise, the three v-trajectories emanating from z = α either
return to z = α, terminate at z = β, or escape to z = ∞. All four v-trajectories
emanating from z = γ return to z = γ or escape to z = ∞. We may rule out the
scenarios in which a v-trajectory from z = α or z = γ returns to the same point by
using Teichmüller’s Lemma (see [60, pg. 71]). This is an index identity that applies to
Jordan curvesJ that are the unions of trajectories and junction points that can be poles
or zeros of  (z) and that equates a left-hand side L computed from data involving the
orders of  at the junction points and the interior angles of J at those points with a
right-hand side R computed from the orders of poles and zeros of  (z) in the interior
of J . The precise statement is the following.

Lemma 4 (Teichmüller’s Lemma) Let J be a Jordan curve that is the closure of the
union of finitely many trajectories of a rational quadratic differential  (z) dz2, the
endpoints of each of which are poles or zeros of  (z) forming the vertices of J . Define
indices L and R by

L :=
∑

vertices j

(
1 − θ j

n j + 2

2π

)
(5.2)

where θ j is the interior angle of J at the vertex and n j is the order of the rational
function  (z) at the vertex (positive for zeros, negative for poles), and

R := 2 +
∑

interior points z

n(z) (5.3)

where n(z) is the order of  (z) at a point z (n(z) = 0 if z is not a zero or pole of  (z),
hence the sum is finite). Then L = R.

To apply this result in the present context, note that if J is the closure of a single
trajectory that terminates at the same zero of  (z) in both directions, then L ≤ 0.
Since the only pole of  (z) in the finite z-plane is a double pole at the origin, R ≥ 0
with equality if and only ifJ encloses the origin but none of the zeros of (z). However
this equality forces the closure of J to be the boundary of the circle domain which we
have shown contains z = β but not z = α or z = γ . Therefore, all four v-trajectories
emanating from z = γ escape to z = ∞, and either (a) the remaining v-trajectory
emanating from z = β terminates at z = α leaving two additional v-trajectories
emanating from z = α that must escape to z = ∞ or (b) the remaining v-trajectory
emanating from z = β and all three v-trajectories emanating from z = α escape to
z = ∞. Note that a v-trajectory that escapes to z = ∞ must do so asymptotically in
one of the four directions arg(z) = ±π

4 ,± 3π
4 .
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To determinewhether (a) or (b) holds, and also to determine themanner that the four
v-trajectories emanating from z = γ tend to infinity, let us further restrict attention
to the case that arg(μ) = π

4 . Then rescaling z by z = μZ , we find that  (z) dz2 =
[ 1
16μ

4(Z + 8
3 )(Z + 2

3 )
2Z−1 +O(μ3)] dZ2, where the error term is uniform for Z and

Z−1 bounded. Since arg(μ) = 1
4π implies that μ4 < 0, we see that to leading order

as |μ| → ∞, the v-trajectories are Schwarz symmetric in the Z -plane, and the rays
Z < − 8

3 and Z > 0 are themselves v-trajectories. In the z-plane, this corresponds to
reflection symmetry to leading order about the diagonal Re(z) = Im(z). In the case
that also κ = 0, this symmetry is exact for all |μ| > 0. For |μ| large then, the remaining
v-trajectory emanating from z = β escapes to z = ∞ in the direction arg(z) = π

4 , so
(b) holds.

The same asymptotic symmetry shows that for large |μ| one v-trajectory emanating
from z = α escapes to z = ∞ in the direction arg(z) = − 3π

4 . In the large-|μ| limit
the two other v-trajectories emanating from z = α and escaping to z = ∞ are
reflections of each other through the diagonal and are therefore confined to the two
half-planes separated by that diagonal because v-trajectories cannot intersect. The
last thing to determine is the direction of escape for these two v-trajectories. In fact,
the v-trajectory lying below (resp., above) the diagonal must escape in the direction
arg(z) = −π

4 (resp., arg(z) = 3π
4 ). Indeed, if we suppose to the contrary that the

v-trajectory below the diagonal escapes in the direction arg(z) = − 3π
4 , then applying

Teichmüller’s Lemma on the z-sphere to the curve J made up of this v-trajectory
and the v-trajectory emanating from z = α and trapped along the diagonal in the
direction arg(z) = − 3π

4 with interior angles θ = 2π
3 at α and θ = 0 at ∞, the left-

hand side is L = 1, but as there are no poles or zeros in the interior of J , R = 2, a
contradiction. Likewise, if we suppose that the v-trajectory below the diagonal escapes
in the direction arg(z) = π

4 , then again taking J to consist of the same v-trajectories
making an interior angle of θ = 2π

3 at α and θ = π at ∞, we calculate that L = 3
while again R = 2, again a contradiction (here we need to use the fact that in the
local coordinate k = z−1 at z = ∞,  has a pole of order 6 at k = 0). Therefore
the only remaining direction of approach to infinity for the v-trajectory emanating
from z = α into the half-plane below the diagonal is arg(z) = −π

4 . By reflection
through the diagonal, the v-trajectory exiting α into the half-plane above the diagonal
escapes in the direction arg(z) = 3π

4 . This settles the behavior of the critical v-
trajectories emanating from z = α, β for arg(μ) = π

4 and |μ| large. Similar analysis
applied to the v-trajectories emanating from z = γ , which lies asymptotically on the
diagonal between z = α and z = 0 shows that one v-trajectory escapes in the direction
arg(z) = −π

4 , another escapes in the direction arg(z) = 3π
4 , and the remaining two

escape in the same direction, arg(z) = π
4 , but on either side of the circle domain

containing z = 0 and having z = β on its boundary.
It follows that for large μ with arg(μ) = π

4 there are seven components of C \ Kz :

• One circle domain D◦ containing z = 0 with z = β on its boundary and exclud-
ing z = α, γ . The inequality |Re(h(z))| > 0 holds strictly on the interior and
Re(h(z)) = 0 on the boundary. The boundary ∂D◦ is a Jordan curve.

• Four end domains abutting the point at z = ∞:
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– one bounded by the critical v-trajectories emanating from z = α and escaping
to z = ∞ in the directions arg(z) = 3π

4 and arg(z) = − 3π
4 and containing the

direction arg(−z) = 0 for large z,
– one bounded by the critical v-trajectories emanating from z = α and escaping
to z = ∞ in the directions arg(z) = −π

4 and arg(z) = − 3π
4 and containing

the direction arg(z) = −π
2 for large z,

– one bounded by the two critical v-trajectories emanating from z = γ into the
half-plane above the diagonal and containing the direction arg(z) = π

2 for
large z, and

– one bounded by the two critical v-trajectories emanating from z = γ into the
half-plane below the diagonal and containing the direction arg(z) = 0 for large
z.

The former two end domains are each mapped by an analytic branch of h(z) onto
the open right or left half-plane, and hence |Re(h(z))| > 0 holds strictly on each
while Re(h(z)) = 0 on the boundary. However, the latter two end domains are
each mapped onto a horizontal translation of the left or right half-plane, since
Re(h(γ )) �= 0.

• Two strip domains:

– one with z = α and z = γ on its boundary, foliated by v-trajectories escaping
to z = ∞ in opposite directions arg(z) = −π

4 and arg(z) = 3π
4 , and

– one with z = γ and z = β on its boundary (the latter actually being two
points of the boundary), foliated by v-trajectories escaping in both directions
to z = ∞ in the same direction arg(z) = π

4 and wrapping around the circle
domain.

The strip domains are each mapped by an analytic branch of h(z) to a vertical
strip with the imaginary axis as one boundary. Hence |Re(h(z))| > 0 holds on
the interior of each domain and Re(h(z)) = 0 holds on the part of the boundary
mapped to the imaginary axis.

Therefore, the only components ofC\Kz that might contain points with Re(h(z)) = 0
are the two end domains with z = γ on their boundaries. However, one can see
that neither of these end domains is mapped by h(z) onto a half-plane containing
the imaginary axis, because z = γ is a simple saddle point of Re(h(z)) at which
these end domains dovetail with the two strip domains at a common boundary where
Re(h(z)) �= 0. It finally follows that the zero-level set of Re(h(z)) consists precisely
of the two disjoint components of Kz that contain z = α and z = β respectively.
(The remaining component containing z = γ necessarily lies on a different level of
Re(h(z)).) See Fig. 19.

Having understood the global v-trajectory structure for large |μ| with arg(μ) = π
4 ,

by working on the Riemann surface � of Definition 1 we can analytically continue α,
β, and γ as functions of μ along any path that avoids all eight branch points (roots
μ of B(μ; κ) defined by (1.17)), and these three points will remain distinct. Under
such continuation, the global structure will remain topologically identical as long as
Re(h(γ )) = Re(h(s,κ)(γ ;μ)) �= 0 for γ = U0,gO(μ; κ). Note that while Re(h(z)) is
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Fig. 19 The critical v-trajectories of  (z) dz2 and the seven domains into which they separate the z-sphere.
Left: κ = 0 and μ = 2eiπ/4 (exact symmetry through the diagonal). Right: κ = 0.5 and μ = 1.8eiπ/4.
The closure of the union of the black trajectories is the zero-level set of Re(h(z)) (Color figure online)

only determined up to a sign until a specific branch is selected (see Sect. 5.1.2), the
condition Re(h(γ )) �= 0 is unambiguous.

5.1.2 Defining h(z) as a Single-Valued Function

To properly define h(z) as an analytic function in the z-plane, we first choose branch
cuts for R(z) (defined in terms of the case {211} polynomial P(z) in (4.21)) as illus-
trated in one of the two cases9 shown in Fig. 20.

Then, with R(z) well defined and analytic in the complement of its branch cut, we
obtain h′(z) from (4.22) as a function analytic in the same domain except for a simple
pole at z = 0. We then choose a simple curve �0 in the circle domain D◦ connecting
the origin with z = β and a point z+ ∈ ∂D◦ \ {β} such that for any simple arc L ⊂ D◦
from z+ to β via z = 0,

P.V.
∫

L
h′(z) dz = 0. (5.4)

The existence of such a point follows from the Intermediate Value Theorem. Then:

• In the configuration shown in the left-hand panel of Fig. 20, we choose a con-
tinuation �4,3 of �c tangent to �c at z = α and connecting z = α to z = ∞
in the shaded region with asymptotic angle arg(−z) = 0. Then we define �h as
�h := �0 ∪ �c ∪ �4,3 if s = +1 or �h := �0 ∪ �c ∪ �4,3 ∪ ∂D◦ if s = −1.

• In the configuration shown in the right-hand panel of Fig. 20, we choose a con-
tinuation �4,1 of �c tangent to �c at z = α and connecting z = α to z = ∞ in
the unshaded region with asymptotic angle arg(z) = −π

2 . Then we define �h as
�h := �0 ∪ �c ∪ �4,1 if s = −1 or �h := �0 ∪ �c ∪ �4,1 ∪ ∂D◦ if s = +1.

9 We allow this choice of two alternatives to be able to sidestep difficulties arising from certain unimportant
topological changes in the level set topology; see Sect. 5.5.1 for details.
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Fig. 20 Two ways to choose the branch cuts of R(z) in the z-plane so that h′(z) becomes an analytic
function on the complement leading to Re(h(z)) > 0 (resp., Re(h(z)) < 0) in the unshaded (resp., shaded)
regions, and sgn(Re(h(z))) = s in the circle domain D◦ indicated with stripes. In both cases the orange
arc denoted �c is included in the branch cut, and in the case illustrated in the left-hand (resp., right-hand)
panel the closed component ∂D◦ of the level curve surrounding the origin is also part of the branch cut if
and only if s = −1 (resp., s = +1). The arc �c lies in the interior of the closure of the union of end and
strip domains that abut z = γ , and is tangent to the v-trajectories emanating from α and β as indicated
(Color figure online)

Finally, we define h(z) = h(s,κ)(z;μ) for z ∈ C \ �h by integration of h′(z) from
z = z+ along an arbitrary path in the same domain. Then it follows that Re(h(z)) is
well defined and continuous for z ∈ C \ ({0} ∪ �c), vanishing only along the black
and green curves and elsewhere having the signs shown in Fig. 20. It is harmonic in
the same domain except for the closed curve ∂D◦ (but only if the sign is the same in
the interior and exterior; otherwise it is also harmonic on ∂D◦).

The boundary values h+(z) and h−(z) taken by h(z) = h(s,κ)(z;μ) on the arcs of
its jump contour�h from the left and right, respectively, (according to the orientations
shown in Fig. 21) are related as follows, recalling the notation in Sect. 1.5.

• A residue calculation for the pole of h′(z) at z = 0 shows that

�h(z) = −2π is, z ∈ �0. (5.5)

• The condition (5.4) guarantees that the sum of boundary values taken by h(z)
across �c vanishes at the endpoint z = β. Since R(z) changes sign across �c it
then follows that

〈h〉(z) = 0, z ∈ �c. (5.6)

• Calculating a residue of h′(z) at z = ∞ shows that

– In the configuration shown in the left-hand panel of Fig. 20,

�h(z) = 2π iκ, z ∈ �4,3.
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Fig. 21 Left: the use of the “leftward” deformation of the jump contours for M(z). Right: the use of the
“downward” deformation. The self-intersection points of� lying on C = ∂D◦ are z = β and z = z+. The
sign of Re(h(z)) is indicated by shading as in Fig. 20 (Color figure online)

– In the configuration shown in the right-hand panel of Fig. 20,

�h(z) = −2π iκ, z ∈ �4,1.

• If ∂D◦ ⊂ �h , then R(z) changes sign across ∂D◦ while h(z+) = 0 unambiguously,
so

〈h〉(z) = 0, z ∈ ∂D◦ ⊂ �h . (5.7)

Otherwise, h(z) is analytic on ∂D◦ \ {β}, across which curve Re(h(z)) changes
sign.

5.2 Introduction of g(z) and Steepest Descent

Next, depending upon which of the two configurations of branch cuts is selected, we
choose either the “leftward” or “downward” deformation of the jump contour forM(z)
and lay the jump contour over the sign chart for Re(h(z)) as shown in the two panels
of Fig. 21. In particular, we take the closed contour C ⊂ � to coincide with ∂D◦.

Then, we introduce g(z) = g(s,κ)(z;μ) = φ(z;μ) + h(s,κ)(z;μ) via (4.14), in
which the constant g∞ is determined from the precise definition of h(z); we will
not need to know its exact value. Using (5.5), it is easy to check that N(z) =
N(T ,s,κ)(z;μ, 0) has no jump discontinuity across �0; then since the residue of g′(z)
at z = 0 is −s, the condition thatM(z)z−sTσ3 is bounded near the origin implies that
N(z) has a removable singularity at z = 0 and hence is analytic in the interior of C .
Also N(z) → I as z → ∞. The matrix function z �→ N(z) is analytic except on
the arcs of � \ �0, is normalized to the identity as z → ∞, and is continuous up to
the jump contour in each component of its complement. Using (5.6)–(5.7), the jump
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conditions satisfied by N(z) take the following forms.

N+(z) = N−(z)U(− 1
2 ie

−2T h(z)), z ∈ �2,3.

N+(z) = N−(z)L(2ie2T h(z)), z ∈ �2,1.

In the “leftward” configuration where h(z) has a jump across �4,3,

N+(z) = N−(z)L(2ie−2π iT κe2T 〈h〉(z)), z ∈ �4,3, “leftward” configuration,

while

N+(z) = N−(z)L(2ie2T h(z)), z ∈ �4,3, “downward” configuration.

Similarly,

N+(z) = N−(z)U(− 1
2 ie

−2T h(z)), z ∈ �4,1, “leftward” configuration,

while as there is a jump for h(z) across �4,1 in the “downward” configuration,

N+(z) = N−(z)U(− 1
2 ie

−2π iT κe−2T 〈h〉(z)), z ∈ �4,1, “downward” configuration.

In both configurations h(z) has a jump across �c, and we find that

N+(z) = N−(z)e−2π iT κT(2i), z ∈ �c, “leftward” configuration, (5.8)

while

N+(z) = N−(z)e2π iT κT(−2i), z ∈ �c, “downward” configuration. (5.9)

Remark 13 Note that (5.8)–(5.9) are essentially the same jump condition since in
both cases �c is a contour connecting the same points α and β but with opposite
orientations in the two configurations. Also, the jump matrices in (5.8)–(5.9) both
have unit determinant, because the scalar factor satisfies e2π iT κ = e−2π iT κ since
�∞ = −T κ and 2�∞ ∈ Z holds for (�0,�∞) ∈ �gO.

On the arcs ofC it appears at first that one should get different jump conditions forN(z)
depending on whether or not C ⊂ �h , but if one uses the fact that �g(z) = �h(z)
and observes the dichotomy that either �h(z) = 0 or 〈h〉(z) = 0, one can write the
jump conditions in the same form for both cases:

N+(z) = N−(z)e−T h−(z)σ3Vke
T h+(z)σ3, z ∈ �k, k = 1, 2, 3,

where Vk , k = 1, 2, 3 are the gO connection matrices defined in (3.4).
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To deal with the jump conditions on the arcs of C , we use the following factoriza-
tions, all of which are special cases of (1.35) with two of the three factors combined:

V1 = L(2eiπ/6)

(
1√
3

− 1
2

0
√
3

)
(“L(DU)”)

= L(−2e−iπ/6)

(
1√
3

− 1
2

2 0

)
(“L(TL)”),

(5.10)

V2 =
(√

3 1
2

0 1√
3

)
L(−2e−iπ/6) (“(UD)L”)

=
(

0 1
2−2 1√
3

)
L(2eiπ/6) (“(LT)L”)

=
(

eiπ/6 0
− 2√

3
e−iπ/6 e−iπ/6

)
U( 12 e

−iπ/6) (“(LD)U”)

=
(

eiπ/6
√
3
2 eiπ/6

− 2√
3
e−iπ/6 0

)
U(− 1

2 e
iπ/6) (“(UT)U”),

(5.11)

V3 = U( 12e
−5iπ/6)

(
e−iπ/6 0
2√
3
e−iπ/6 eiπ/6

)
(“U(DL)”)

= U( 12e
−iπ/6)

(
0 −

√
3
2 eiπ/6

2√
3
e−iπ/6 eiπ/6

)
(“U(TU)”).

(5.12)

Based on these, we transform N(z) into O(z) = O(T ,s,κ)(z;μ) by making the fol-
lowing explicit substitutions in the “lens” domains �1 and �2 (in case we are using
the “leftward” configuration) or �2 and �3 (in case we are using the “downward”
configuration) shown in Fig. 22 as well as in the interior of C .

• For the “leftward” configuration:

– If C �⊂ �h (i.e., s = +1), we combine the factorizations on the first lines of
(5.10) and (5.11) to set

O(z) := N(z)L(2eiπ/6e2T h(z)), z ∈ �1,

O(z) := N(z)L(2e−iπ/6e2T h(z)), z ∈ �2,

O(z) := N(z)

(√
3 1

2e
−2T h(z)

0 1√
3

)
, z in the interior of C . (5.13)
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Fig. 22 The “lens” domains� j , j = 1, 2, 3 and their boundaries in the “leftward” configuration (left) and
the “downward” configuration (right). The indicated solid black and orange arcs form the final jump contour
for O(z) (the dashed arcs have been removed by the transformation N(z) �→ O(z)). Shading indicates the
sign of Re(h(z)) as in Figs. 20 and 21 (Color figure online)

– If C ⊂ �h (i.e., s = −1), we combine the factorizations on the second lines
of (5.10) and (5.11) to set

O(z) := N(z)L(−2e−iπ/6e2T h(z)), z ∈ �1,

O(z) := N(z)L(−2eiπ/6e2T h(z)), z ∈ �2,

O(z) := N(z)

(
0 1

2−2 1√
3
e2T h(z)

)
, z in the interior of C . (5.14)

• For the “downward” configuration:

– If C �⊂ �h (i.e., s = −1), we combine the factorizations on the third line of
(5.11) and the first line of (5.12) to set

O(z) := N(z)U(− 1
2e

−iπ/6e−2T h(z)), z ∈ �2,

O(z) := N(z)U( 12e
−5iπ/6e−2T h(z)), z ∈ �3,

O(z) := N(z)

(
eiπ/6 0

− 2√
3
e−iπ/6e2T h(z) e−iπ/6

)
, z in the interior of C .

(5.15)
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– If C ⊂ �h (i.e., s = +1), we combine the factorizations on the fourth line of
(5.11) and the second line of (5.12) to set

O(z) := N(z)U( 12e
iπ/6e−2T h(z)), z ∈ �2,

O(z) := N(z)U( 12e
−iπ/6e−2T h(z)), z ∈ �3,

O(z) := N(z)

(
eiπ/6e−2T h(z)

√
3
2 eiπ/6

− 2√
3
e−iπ/6 0

)
, z in the interior of C .

(5.16)

In all cases, elsewhere that N(z) has a definite value we setO(z) := N(z). Then O(z)
no longer has any jump discontinuity across the arcs of C , and the jump across the
arc of �2,1 common to the boundary of the lens domains �1 and �2 is also removed
in the “leftward” configuration, while the jump across the arc of �2,3 common to
the boundary of the lens domains �2 and �3 is also removed in the “downward”
configuration. The domain of analyticity ofO(z) = O(T ,s,κ)(z;μ) is the complement
of the jump contour shown with solid black and orange curves in the two panels
of Fig. 22, and the jump conditions satisfied by O(z) on the arcs �2,3, �4,3, �4,1,
�c, and the rest of �2,1 (resp., �2,1, �4,3, �4,1, �c, and the rest of �2,3) for the
“leftward” (resp., “downward”) configuration are exactly the same as for N(z). New
jump conditions for O(z) appear on the lens boundaries and on �0:

• For the “leftward” configuration, we have

O+(z) = O−(z)L(2sesiπ/6e2T h(z)), z ∈ ∂�1,

O+(z) = O−(z)L(−2se−siπ/6e2T h(z)), z ∈ ∂�2,
(5.17)

and
O+(z) = O−(z)U( 1

2
√
3

s(e−2T sh+(z) − e−2T sh−(z))),

= O−(z)U(− 1
2 ie

−2π iT κe−2sT 〈h〉(z)), z ∈ �0.
(5.18)

• For the “downward” configuration, we have

O+(z) = O−(z)U(− 1
2 sesiπ/6e−2T h(z)), z ∈ ∂�2,

O+(z) = O−(z)U( 12 se−siπ/6e−2T h(z)), z ∈ ∂�3, (5.19)

and
O+(z) = O−(z)L( 2√

3
s(e−2T sh+(z) − e−2T sh−(z)))

= O−(z)L(−2ie−2π iT κe−2sT 〈h〉(z)), z ∈ �0.
(5.20)

To go from the first to the second line in (5.18) and (5.20), we use the iden-
tity s(e−2T sh+(z) − e−2T sh−(z)) = −i

√
3e−2π iT κe−2T s〈h〉(z) which follows from

h±(z) = 〈h〉(z)± 1
2�h(z), the jump condition (5.5), the parametrization (�0,�∞) =

(sT ,−κT ), and the gO lattice conditions (1.11). As O(z) = N(z) for large |z|, the
normalization condition reads O(z) → I as z → ∞.
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5.3 Parametrix Construction

Comparing the jump contours shown in Fig. 22 with the sign charts for Re(h(z))
shown in Fig. 20, it is now clear that under the working assumption that the sign chart
has the structure established in Sect. 5.1.1 for large μ in the first quadrant, the jump
matrix for O(z) decays exponentially to I as T → +∞ except on the arc �c and
neighborhoods of its endpoints α and β. To deal with these, we construct outer and
inner parametrices for O(z).

5.3.1 Outer Parametrix

The outer parametrix Ŏout(z) is defined by the properties that

• it is analytic for z ∈ C \ �c,
• it takes continuous boundary values on �c except at z = α, β, where negative
one-fourth power singularities are admitted,

• the boundary values satisfy exactly the same jump condition on �c as do those of
O(z), and

• it tends to I as z → ∞.

Since the jump conditions forO(z) on�c match those forN(z) given in (5.8) or (5.9),
by Remark 13 of Sect. 5.2 we may diagonalize the constant jump matrix and hence
see that the unique matrix function satisfying the above conditions can be written in
the same form for both “leftward” and “downward” configurations:

Ŏout(z) = SgO j(z)σ3S−1
gO, SgO :=

( 1
2 e

−2π iT κ − 1
2 e

−2π iT κ

1 1

)
, (5.21)

where j(z) is the unique function analytic for z ∈ C \ �c with the properties that
j(z)4 = (z − α)/(z − β) and j(z) → 1 as z → ∞. By expanding j(z) for large z, it
is easy to see that

Ŏout(z) = I + z−1Ŏout
1 + O(z−2), z → ∞, (5.22)

where

Ŏout
1,12 = 1

8
(β − α)e−2π iT κ . (5.23)

We may also unambiguously evaluate Ŏout(z) at z = 0, because the branch cut �c
for j(z) lies in the exterior of the Jordan curve C enclosing z = 0. From the formula
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(5.21) we get

Ŏout
11 (0)Ŏ

out
12 (0) = 1

8
e−2π iT κ

[
j(0)2 − j(0)−2

]
,

Ŏout
11 (0)

Ŏout
21 (0)

= 1

2
e−2π iT κ j(0) + j(0)−1

j(0) − j(0)−1 = 1

2
e−2π iT κ j(0)2 + j(0)−2 + 2

j(0)2 − j(0)−2 ,

Ŏout
12 (0)

Ŏout
22 (0)

= 1

2
e−2π iT κ j(0) − j(0)−1

j(0) + j(0)−1 = 1

2
e−2π iT κ j(0)2 + j(0)−2 − 2

j(0)2 − j(0)−2 .

(5.24)
To simplify the expressions (5.24) further, note that using the definition of j(z) and
the final identity in (4.18),

(
j(0)2 ± j(0)−2

)2 = j(0)4+ j(0)−4±2 = α

β
+ β

α
±2 = (α ± β)2

αβ
= γ 2(α ± β)2

16
.

(5.25)
Now from the identity j(0)4 = α/β we get the asymptotic expansion j(0)4 = 16

81μ
4+

O(μ3) as μ → ∞ with 0 < arg(μ) < π
2 . From the plots in Fig. 21 or 22 which show

the case of arg(μ) = π
4 , we see that the correct branch of the square root to take to

calculate j(0)2 depends on the configuration:

j(0)2 =
{

4
9μ

2 + O(μ), in the “leftward” configuration

− 4
9μ

2 + O(μ), in the “downward” configuration

in the limit μ → ∞. So, since we also have the asymptotic expansion 1
4γ (α ± β) =

4
9μ

2 + O(μ) as μ → ∞, we find the exact identity

j(0)2 ± j(0)−2 =
{

1
4γ (α ± β), in the “leftward” configuration

− 1
4γ (α ± β), in the “downward” configuration.

(5.26)

Using this result in (5.24) and combining with (5.23) and the identities in (4.18) gives
the following combinations that will be used in Sect. 5.4:

Ŏout
11 (0)Ŏ

out
12 (0)

Ŏout
1,12

=
{

− 1
4γ, in the “leftward” configuration

1
4γ, in the “downward” configuration; (5.27)

Ŏout
1,12 Ŏout

21 (0)

Ŏout
11 (0)

=
{
μ + 1

2γ + 2γ−1, in the “leftward” configuration

μ + 1
2γ − 2γ−1, in the “downward” configuration; (5.28)

Ŏout
1,12 Ŏout

22 (0)

Ŏout
12 (0)

=
{
μ + 1

2γ − 2γ−1, in the “leftward” configuration

μ + 1
2γ + 2γ−1, in the “downward” configuration.

(5.29)
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To finish our discussion of the outer parametrix, we observe that Ŏout(z) has unit
determinant and for z bounded away from z = α and z = β, Ŏout(z) is uniformly
bounded as T → +∞.

5.3.2 Inner Parametrices

Inner parametrices are to be used in place of the outer parametrix in T -independent
neighborhoods Dα and Dβ of z = α and z = β respectively. These are defined in terms
of a 2× 2 matrix function A(ξ) satisfying the following Riemann–Hilbert conditions:

• A(ξ) is analytic in the four sectors complementary to the four rays arg(ξ) = 0,
arg(ξ) = 2π

3 , arg(ξ) = − 2π
3 , and arg(−ξ) = 0.

• A(ξ) takes continuous boundary values from each sector of analyticity on the
union of rays forming the sector boundary. Assuming the four rays are oriented in
the direction away from the origin, the boundary values are related by the jump
conditions

A+(ξ) = A−(ξ)L(i exp(−ξ3/2)), arg(ξ) = 0, (5.30)

A+(ξ) = A−(ξ)U(i exp(ξ3/2)), arg(ξ) = ± 2π
3 , (5.31)

and
A+(ξ) = A−(ξ)T(−i), arg(−ξ) = 0. (5.32)

• A(ξ) is normalized by the condition

A(ξ)
1√
2

(
1 −1
1 1

)
ξ−σ3/4 =

(
1 + O(ξ−3) O(ξ−1)

O(ξ−2) 1 + O(ξ−3)

)
, ξ → ∞. (5.33)

It is well known that there is a unique solution of these conditions, and the matrix
A(ξ) can be explicitly written in terms of the Airy function Ai(·) and its derivative
[53]. We will not need this formula, however. The inner parametrices are defined as
follows. Referring to the appropriate entry of Table 3 corresponding to the disk Dp

(p = α, β) and the “leftward” or “downward” configuration, we first fix the contour
arc associated with arg(W ) = 0 within Dp so that a function W (z) is well defined as
indicated on that arc by taking the 2

3 power of a positive quantity. This function can be
analytically continued to the whole disk as a conformal mapping because h′(z)2 has
simple zeros at z = α, β and 〈h〉(α) = 〈h〉(β) = 0. Once the conformal mapping W
is defined, we fix the remaining arcs of the jump contour within Dp so that they are
mapped by W to the rays indicated in the table.

Next, noting the value of the constant matrix C defined in the same table, we then
define a matrix H(z) by writing the outer parametrix in the form

Ŏout(z) = H(z)W (z)σ3/4
1√
2

(
1 1

−1 1

)
C, z ∈ Dp \ �c. (5.34)

It is easy to see that H(z) has no jump across �c ∩ Dp and that any singularity at
W = 0 is removable. Therefore H(z) is a holomorphic matrix function on Dp with
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Table 3 Data for defining the inner parametrices in Dα and Dβ

p Configuration Conformal
map W :
Dp → C

Ray Preimages in Dp Constant matrix C

arg(W ) Preimage

α “leftward” (−2〈h〉(z))2/3,
continued
from �4,3

0 �4,3 e−iπT κσ32σ3/2

2π
3 �4,1

− 2π
3 �2,3

±π �c

α “downward” (2〈h〉(z))2/3,
continued
from �4,1

0 �4,1 iσ1eiπT κσ32σ3/2

2π
3 �2,1

− 2π
3 �4,3

±π �c

β “leftward” (2s〈h〉(z))2/3,
continued
from �0

0 �0 iσ1iσ3 eiπT κσ32σ3/2

2π
3 ∂�2

− 2π
3 ∂�1

±π �c

β “downward” (2s〈h〉(z))2/3,
continued
from �0

0 �0 iσ3 e−iπT κσ32σ3/2

2π
3 ∂�3

− 2π
3 ∂�2

±π �c

unit determinant, and it follows from the formula (5.21) that the elements ofH(z) are
bounded on Dp uniformly with respect to the large parameter T . UsingH(z) andA(ξ)
we define an inner parametrix on Dp by setting

Ŏin,p(z) := H(z)T −σ3/6A(T 2/3W (z))C, z ∈ Dp \ {arg(W (z)) ∈ {0,± 2π
3 ,±π}}.

(5.35)
Recalling the parametrization (�0,�∞) = (sT ,−sκ) and the gO lattice conditions

(1.11), in all four cases it follows from the sectorial analyticity of A(ξ) and the jump
conditions (5.30)–(5.32) that Ŏin,α(z) (resp., Ŏin,β(z)) is analytic within Dα (resp.,
Dβ ) exactly where O(z) is, and satisfies exactly the same jump conditions. To show
this it is helpful to recall the jump conditions satisfied by h(z) (see (5.5)–(5.7)) and
that, depending on the value of s, analytic continuation of h across C can introduce
a change of sign. Therefore, the inner parametrices are exact local solutions of the
Riemann–Hilbert conditions characterizing O(z). Moreover, it follows from (5.33)
and the fact that z ∈ ∂Dα,β bounds the conformal coordinate W (z) away from zero
that the following estimates hold uniformly with respect to z on the indicated contours:

Ŏin,α(z)Ŏout(z)−1 = I + O(T −1), z ∈ ∂Dα,

Ŏin,β(z)Ŏout(z)−1 = I + O(T −1), z ∈ ∂Dβ.
(5.36)
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5.3.3 Global Parametrix and Error Estimation

The global parametrix for O(z) = O(T ,s,κ)(z;μ) is then defined as follows:

Ŏ(z) :=
{
Ŏin,p(z), z ∈ Dp, p ∈ {α, β},
Ŏout(z), elsewhere that Ŏout(z) is analytic.

(5.37)

The corresponding error in modeling O(z) with the global parametrix is the error
E(z) = E(T ,s,κ)(z;μ) defined by

E(z) := O(z)Ŏ(z)−1. (5.38)

Since bothO(z) and its parametrix satisfy exactly the same jump conditions within Dα

and Dβ , and also along�c, E(z) can be viewed as an analytic function in the complex
z-plane, with only the parts lying outside of the neighborhoods Dα and Dβ of the black
arcs of the jump contour shown in the panels of Fig. 22 in Sect. 5.2 and the boundaries
∂Dα,β of the neighborhoods excluded.We take the latter to have clockwise orientation.
Since Ŏout(z) and its inverse are uniformly bounded for z ∈ C \ (Dα ∪ Dβ) and T
sufficiently large, it is easy to check that due to the exponentially rapid convergence to
the identity of the jumpmatrices forO(z)on the parts of the jumpcontour forE(z) lying
outside the closure of Dα∪ Dβ , we have alsoE+(z) = E−(z)(I+exponentially small)
as T → +∞ on those arcs. For the closed curves ∂Dα,β it is easy to see from (5.36)
that E+(z) = E−(z)(I + O(T −1)) holds uniformly on ∂Dα,β as T → +∞. Since it
also follows from (5.38) that E(z) → I as z → ∞, we may apply small norm theory
in the L2 setting as described, for instance, in [18, Appendix B] to conclude that

E(z) = I + z−1E1 + O(z−2), z → ∞, (5.39)

where E1 = E(T ,s,κ)
1 (μ) = O(T −1) and that E(0) = I + O(T −1) as T → +∞.

5.4 Conditionally Valid Asymptotic Formulæ for the gO Rational Solutions of
Painlevé-IV

Recalling the scaling relationships between x and μ and between λ and z given in
(4.1) (for ζ = 0) we see that for |z| sufficiently large,

Y(λ; x) =
(
1
2T 1/2

)κTσ3
M(z)

=
(
1
2T 1/2

)κTσ3
eT g∞σ3N(z)e−T g(z)σ3

=
(
1
2T 1/2

)κTσ3
eT g∞σ3O(z)e−T g(z)σ3

=
(
1
2T 1/2

)κTσ3
eT g∞σ3E(z)Ŏ(z)e−T g(z)σ3

=
(
1
2T 1/2

)κTσ3
eT g∞σ3E(z)Ŏout(z)e−T g(z)σ3 .

(5.40)
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Nowusing the expansions (5.39), (5.22), and g(z) = −κ log(z)+g∞+g1z−1+O(z−2)

as z → ∞, which implies that also

e−T g(z)σ3 =
(
I − T g1z−1σ3 + O(z−2)

)
· e−T g∞σ3 zT κσ3 , z → ∞,

upon again taking into account the scalingλ = 1
2T 1/2z one sees that thematrix element

Y ∞
1,12(x) defined in (3.1) can be written in the form

Y ∞
1,12(x) = ( 1

4T
)κT

e2T g∞ 1
2T 1/2

(
Ŏout
1,12 + E1,12

)
= ( 1

4T
)κT

e2T g∞ 1
2T 1/2

(
Ŏout
1,12 + O(T −1)

)
, T → +∞.

(5.41)

Now, the first two lines of (5.40) are also valid for |λ| sufficiently small, so using
(4.13), the matrix Y0

0(x) defined in (3.1) can be written as

Y0
0(x) = lim

z→0

(
1
2T 1/2

)κTσ3
eT g∞σ3N(z)e−T g(z)σ3 z−sTσ3

(
1
2T 1/2

)−sTσ3

=
(
1
2T 1/2

)κTσ3
eT g∞σ3N(0)e−T g0σ3

(
1
2T 1/2

)−sTσ3
.

(5.42)

Using (5.13), (5.14), (5.15), and (5.16) in which the exponential factor e±2T h(z) van-
ishes at the origin z = 0 in each case, we have

N(0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(0)D( 1√
3
), in the “leftward” configuration, forC �⊂ �h (i.e.,s = 1)

O(0)T(2), in the “leftward” configuration, for C ⊂ �h (i.e., s = −1)

O(0)D(exp(− iπ
6 )), in the “downward” configuration, for C �⊂ �h (i.e., s = −1)

O(0)T( 2√
3
exp(− iπ

6 )), in the “downward” configuration, for C ⊂ �h (i.e., s = 1),

(5.43)
where we are using the compact notationD(a) and T(a) for diagonal and off-diagonal
matrix factors defined in (1.34).

Then sinceO(0) = E(0)Ŏ(0) = E(0)Ŏout(0) = (I+O(T −1))Ŏout(0) and Ŏout(0)
is bounded,

Y 0
0,11(x)Y

0
0,12(x) =

{( 1
4T
)κT

e2T g∞(Ŏout
11 (0)Ŏ

out
12 (0) + O(T −1)), C �⊂ �h

− ( 14T
)κT

e2T g∞(Ŏout
11 (0)Ŏ

out
12 (0) + O(T −1)), C ⊂ �h .

(5.44)
Therefore, recalling�0 = sT and using the definition (3.2) of u(x), we combine (5.41)
and (5.44)with (5.27) to obtain, for integersm, n such that (�0,�∞) = (�

[3]
0,gO(m, n),
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�
[3]
∞,gO(m, n)),

u[3]
gO(x; m, n) = u(x) = −2sT

Y 0
0,11(x)Y

0
0,12(x)

Y ∞
1,12(x)

= T 1/2(γ + O(T −1))

= |�0|1/2
(

U0,gO(μ; κ) + O(|�0|−1)
)
,

μ = x

|�0|1/2 , κ = −�∞
|�0| .

(5.45)

The fact that the same formula results in all cases comes from the correlation between
s = ±1 and whether or not C ⊂ �h in each configuration.

Likewise, using also the fact that the matrix elements of Ŏout(0) are bounded away
from zero,

Y 0
0,11(x)

Y 0
0,21(x)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( 1
4T
)κT

e2T g∞

(
Ŏout
11 (0)

Ŏout
21 (0)

+ O(T −1)

)
, C �⊂ �h

( 1
4T
)κT

e2T g∞

(
Ŏout
12 (0)

Ŏout
22 (0)

+ O(T −1)

)
, C ⊂ �h .

(5.46)

Therefore, recalling the definition of u�
�
(x) in (3.2) and combining (5.41) and

(5.46) with either (5.28) or (5.29) we obtain, now for integers m, n such that
(�

[1]
0,gO(m, n),�[1]

∞,gO(m, n)) = (�0,��,�∞,��
),

u[1]
gO(x; m, n) = u�

�
(x) = −2

Y 0
0,21(x)Y

∞
1,12(x)

Y 0
0,11(x)

= T 1/2
(
−μ − 1

2γ − 2sγ−1 + O(T −1)
)

= |�0|1/2
(
−μ − 1

2U0,gO(μ; κ) − 2sU0,gO(μ; κ)−1 + O(|�0|−1)
)
,

(5.47)

where μ and κ are exactly as in (5.45). Here, the only evidence of the four-fold origin
of this asymptotic formula is the sign s = ±1.

Now, in both asymptotic formulæ (5.45) and (5.47), γ = U0,gO(μ; κ) is the branch
of the solution of the quartic (4.19) satisfying U0,gO(μ; κ) = − 2

3μ + O(μ−1) as
μ → ∞. However, recalling Remark 11 in Sect. 4.1, the parameters (�0,�∞) ∈ �gO
appearing in these formulæ are those for which u(x) satisfies the Painlevé-IV equation,
while u�

�
(x) solves the Painlevé-IV equation for different parameters (�0,��,�∞,��

);
see (2.4). Since the latter definition implies that |�0,��| = 1

2 |�0|(1−sκ) and1−sκ �= 0
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for κ ∈ (−1, 1), it makes sense to write (5.47) in the form

u[1]
gO(x; m, n) = u�

�
(x) = |�0,��|1/2

· C�
�

(
− μ

C�
�

− 1
2U0,gO

(
μ

C�
�

; κ
)

− 2sU0,gO

(
μ

C�
�

; κ
)−1

+ O(|�0,��|−1)

)
,

i.e., replacingμwithμ/C�
�
and using |�0|1/2 = |�0,��|1/2C�

�
, where nowμ is related

to x differently:

μ := x

|�0,��|1/2 and C�
�

:=
√

2

1 − sκ
. (5.48)

Next, we observe the following.

Lemma 5 Given κ ∈ (−1, 1), suppose that γ = γ (μ) is a solution of the quar-
tic equation (4.19) analytic on a domain D, i.e., μ �→ γ (μ) is analytic on D and
Q(γ (μ), μ; κ) = 0 holds identically on D. Set

γ�
�
(μ) := C�

�

(
− μ

C�
�

− 1
2γ

(
μ

C�
�

)
− 2sγ

(
μ

C�
�

)−1
)
. (5.49)

Then for s = ±1,

Q

(
γ�
�
(μ), μ;−κ + 3s

1 − sκ

)
= 0 (5.50)

holds for μ ∈ C�
�

D (dilation of the domain D by C�
�

defined in (5.48)).

Proof This follows from the identity

Q

(
C�
�
(−μ − 1

2γ − 2sγ−1),C�
�
μ;−κ + 3s

1 − sκ

)

= γ 4 − 4(μ2 + 2κ)γ 2 − 32sμγ − 48

4γ 4(1 − sκ)2
Q(γ, μ; κ).

�	
One can easily check that if γ (μ) = − 2

3μ + O(μ−1) in (5.49), then also γ�
�
(μ) =

− 2
3μ+O(μ−1). Therefore, using Lemma 5 we can finally express (5.47) in the form

u[1]
gO(x; m, n) = u�

�
(x) = |�0,��|1/2

(
U0,gO(μ; κ�

�
) + O(|�0,��|−1)

)
,

μ := x

|�0,��|1/2 , κ�
�

= −�∞,��

|�0,��| , (5.51)

because U0,gO(μ; κ) is a simple root of the quartic (4.19), and

−�∞,��

|�0,��| = −3�0 − �∞ + 2

|�0 + �∞| = −κ + 3s

1 − sκ
+ O(|�0,��|−1).
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According to (2.2), the formula (5.51) immediately gives an asymptotic formula for
the type-2 rational function u[2]

gO(x; m, n).

5.5 Bifurcation Points and Conditions for Validity

The pointwise validity of the asymptotic formulæ (5.45) and (5.51) is guaranteed if
(μ, γ ) is obtained by analytic continuation from a neighborhood of μ = ∞ on the
sheet of � (see Definition 1 at the start of Sect. 5) corresponding for large μ to γ =
U0,gO(μ; κ), throughout which the zero-level set of Re(h(z)) remains topologically
equivalent to that described for large μ in Sect. 5.1.1. Topological changes in the
zero-level set can only occur if upon analytic continuation the double root γ = γ (μ)

of P(z) first moves onto the level set, and when this occurs the level set becomes
connected and equal to Kz (the strip domains disappear).

Definition 4 (Bifurcation points) Given κ ∈ (−1, 1), let (μ, γ ) be a point on �, and
let α and β be determined up to permutation from (μ, γ ) by (4.18). Then (μ, γ ) is a
bifurcation point if the closure Kz of the union of critical v-trajectories of  (z) dz2 =
1
16 z−2(z −γ )2(z −α)(z −β) dz2 is connected. A bifurcation point that is not a branch
point of (4.19) is called a generic bifurcation point.

Some bifurcations are harmless in the sense that they cause the proof to fail only in
one or the other of the two configurations (“leftward” versus “downward”) of branch
cuts and jump contours, while others are catastrophic, signaling a genuine change in
asymptotic behavior of the rational Painlevé-IV solutions. Starting from the represen-
tative pictures of Kz in Fig. 19, the possible generic bifurcations are points (μ, γ )
where:

(i) the v-trajectory emanating from z = α with asymptotic direction arg(z) = −π
4

merges with γ (μ) and the v-trajectory emanating from z = β on the side with
asymptotic direction arg(z) = π

4 + 0,
(ii) the v-trajectory emanating from z = α with asymptotic direction arg(z) = 3π

4
merges with γ (μ) and the v-trajectory emanating from z = β on the side with
asymptotic direction arg(z) = π

4 − 0,
(iii) the v-trajectory emanating from z = α with asymptotic direction arg(z) = −π

4
merges with γ (μ) and ∂D◦,

(iv) the v-trajectory emanating from z = α with asymptotic direction arg(z) = 3π
4

merges with γ (μ) and ∂D◦,
(v) the v-trajectory emanating from z = α with asymptotic direction arg(z) = −π

4
merges with γ (μ) and the v-trajectory emanating from z = β on the side with
asymptotic direction arg(z) = π

4 − 0, and
(vi) the v-trajectory emanating from z = α with asymptotic direction arg(z) = 3π

4
merges with γ (μ) and the v-trajectory emanating from z = β on the side with
asymptotic direction arg(z) = π

4 + 0.
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5.5.1 Harmless Bifurcation Points

Harmless bifurcations are generic bifurcation points when either (i) or (ii) occurs.
These two scenarios occur for large μ in the limits arg(μ) ↓ 0 and arg(μ) ↑ π

2
respectively.

Indeed, the asymptotic behavior ofα,β, and γ for largeμ described at the beginning
of this section shows that as arg(μ) ↓ 0, α and γ approach the negative real z-
axis from below while β approaches the negative real axis from above. Roughly
speaking, the connected component of Kz containing α rotates around the origin in
the clockwise direction while the component containing β rotates around the origin
in the counterclockwise direction, and these trap the component containing γ ; at the
bifurcation point all three components become one with γ on the same level as α and
β. This approach to bifurcation resembles the progression of plots in Fig. 17 moving
down the right-hand side toward the lower right-hand corner, but is less singular as
that sequence of plots arrives at a spectral curve of class {31} (hence a nongeneric
bifurcation point). In the “leftward” configuration shown in the left-hand panel of
Fig. 22 the only arc of the jump contour for O(z) that becomes constrained by this
bifurcation as arg(μ) ↓ 0 is �c; however this arc carries a constant (in z) jump
condition (5.8) whose analytical properties in the limit T → +∞ do not depend on
the sign chart for Re(h(z)). By contrast, in the “downward” configuration shown in
the right-hand panel of Fig. 22, the arcs �2,3 and �2,1 are additional casualties of the
bifurcation as arg(μ) ↓ 0, and unlike �c, these contours carry jump conditions with
exponentials whose rapid decay to zero as T → +∞ is ruined in the limit, near z = γ

at least.
In a similar way, one can see that as arg(μ) ↑ π

2 it is the “downward” configuration
that preserves the required exponential decay in all jump matrices at the bifurcation
point. The corresponding approach to bifurcation is similar to but less singular than
the sequence of plots along the top edge of Fig. 17 moving toward the upper left-
hand corner. We therefore conclude that as a consequence of making the best choice
of contour deformation, the asymptotic formulæ (5.45) and (5.47) remain valid when
either bifurcation (i) or (ii) occurs, and evenbeyond the bifurcation pointwhenγ moves
off the level set once again, which then breaks the other way around the saddle point.
Since for large |μ| these harmless bifurcations occur on the real and imaginary axes, the
latter observation allows us to weaken the assumption ε ≤ arg(μ) ≤ π

2 −ε introduced
before (5.1) in Sect. 5.1.1 to the original assumption that −ε < arg(μ) < π

2 + ε for
some small ε > 0.

5.5.2 Catastrophic Bifurcation Points

The remaining four scenarios for generic bifurcation are catastrophic for the asymp-
totic analysis based on the assumption of a spectral curve of class {211} in that beyond
the bifurcation point it is no longer possible to use either the “leftward” or the “down-
ward” configuration; instead one must try to use a Boutroux curve of class {1111}.
This approach will be detailed in Sect. 7.

However, exactly at a such a generic catastrophic bifurcation point it remains pos-
sible to prove a version of the asymptotic formulæ (5.45) and (5.51) in which only
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the rate of decay of the error terms is slower. We explain the necessary modifications
in the situation that bifurcation (iv) occurs, in which case we select the “downward”
deformation. If (iii) occurs we proceed similarly using instead the “leftward” defor-
mation.

Looking at the right-hand panel of Fig. 22, one can see that the effect of approaching
the indicated catastrophe is that the unshaded region where Re(h(z)) > 0 holds is
pinched to a narrow isthmusnear z = γ in the vicinity of the contours�2,3∪∂�2∪∂�3.
By cyclic consistency of the jump conditions at the self-intersection point of these three
arcs, it is sufficient to assume that it is only ∂�3 that passes right over the saddle point
z = γ , and hence in the limit the strict inequality on the real part of the exponent in the
upper-triangular jump matrix in (5.19) fails at the saddle. To deal with this issue we
install a different kind of inner parametrix in a fixed disk Dγ centered at z = γ by first
defining a conformal mapping on Dγ via the equation W (z)2 = 2(h(z) − h(γ )) and
taking the square root in such a way that ∂�3 is mapped to the real W -axis near the
origin in the direction of increasing W . Then we define a matrix function ξ �→ B(ξ)
that is analytic for ξ ∈ C \ R, that satisfies the jump condition

B+(ξ) = B−(ξ)U(exp(−ξ2)), ξ ∈ R,

and that satisfies the normalization condition B(ξ) → I as ξ → ∞. This triangular
problem with identity normalization is explicitly solved by a Cauchy integral:

B(ξ) = U
(

1

2π i

∫
R

exp(−λ2) dλ

λ − ξ

)
, ξ ∈ C \ R.

Denoting by ω any square root of ω2 = 1
2 se−siπ/6e−2T h(γ ), we finally define an inner

parametrix for O(z) in Dγ by

Ŏin,γ (z) := Ŏout(z)ωσ3B(T 1/2W (z))ω−σ3 , z ∈ Dγ . (5.52)

Then because Ŏout(z) is analytic in Dγ it is straightforward to check that Ŏin,γ (z)
is an exact local solution of the jump conditions for O(z) within Dγ , and because ω
and ω−1 are uniformly bounded since Re(h(γ )) = 0 holds exactly at the catastrophic
value of μ we also find that

Ŏin,γ (z)Ŏout(z)−1 = I + O(T −1/2), T → +∞

holds uniformly for z ∈ ∂Dγ . Modifying the global parametrix defined in (5.37) in
the obvious way and using the fact that neither z = 0 nor z = ∞ are contained in Dγ ,
we draw exactly the same conclusions, namely (5.45) and (5.51) only replacing the
error estimates with their square roots.

If scenario (v) (resp., (vi)) occurs we use the “leftward” (resp., “downward”) defor-
mation and apply a similar procedure to the triangular jump carried by �2,1 (resp.,
�2,3), and we obtain the same result.

The Riemann–Hilbert problem defining the matrix B(ξ) is a special case of the
Fokas-Its-Kitaev problem encoding the Hermite polynomial of degree n [34]; here we
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simply have the n = 0 case. To penetrate beyond the bifurcation point one can increase
the index n in an effort to compensate for the fact that Re(h(γ )) becomes negative,
also making a suitable modification of the outer parametrix. This generalized method
has been successfully used to capture asymptotic behavior slightly beyond a phase
transition boundary; see [8, 9, 19].

Although the proof will only be given in Sect. 8.3, only generic bifurcations (i)–(iv)
actually occur as (μ, γ ) is brought in from μ = ∞ along the designated branch of �
following a path that avoids the eight branch points that satisfy B(μ; κ) = 0. Also,
while we have only introduced the harmless and catastrophic bifurcation points in
the context of the sector −ε < arg(μ) < π

2 + ε, we can easily use the symmetries
(μ, γ ) �→ (−μ,−γ ) and (μ, γ ) �→ (μ∗, γ ∗) of � to extend the definitions to all of
�.

Definition 5 (gO paths) Let κ ∈ (−1, 1). A gO path is an oriented contour P on �
originating at μ = ∞ on the gO sheet γ = U0,gO(μ; κ) = − 2

3μ + O(μ−1) such
that no point or endpoint of P is a branch point (necessarily lying above a solution of
B(μ; κ) = 0), and such that no interior point of P is a catastrophic bifurcation point.

A condition under which the asymptotic formulæ (5.45) and (5.51) are valid can
then be formulated as follows.

Lemma 6 (Pointwise validity of gO exterior asymptotics) Let κ ∈ (−1, 1). Suppose
that μ ∈ C is the sheet projection to C from the Riemann surface � of the endpoint
(μ, γ )of a gO path. If (μ, γ ) is not a catastrophic bifurcation point, then the asymptotic
formula (5.45) is valid with U0,gO(μ; κ) = γ , and (5.51) holds as well with the
indicated rescaling of μ and modification of κ . If (μ, γ ) is a catastrophic bifurcation
point, the same is true but the relative error terms O(|�0|−1) and O(|�0,�

�
|−1) are

replaced with O(|�0|−1/2) and O(|�0,�
�

|−1/2) respectively.

If −ε < arg(μ) < π
2 + ε, then this is a consequence of the steepest-descent analysis

presented above. To extend the result to arbitrary values of arg(μ), we combine the
holomorphic and antiholomorphic symmetries of � with Proposition 4 in Sect. 2. In
particular, the hypotheses hold for sufficiently large |μ|. Also, note that the condition
that the terminal endpoint (μ, γ ) is not a catastrophic bifurcation point is open with
respect to μ.

5.6 Uniformity of Estimates

It is a minor technical matter to strengthen the pointwise convergence result of
Lemma 6 to uniformity on closed subsets of the unbounded region EgO(κ) in the
μ-plane where the hypotheses hold with (μ, γ ) not a catastrophic bifurcation point.
It is not difficult to see that the estimate E+(z) = E−(z)(I+O(T −1)), with the error
term interpreted in the sup-norm sense over the jump contour �E, holds uniformly
on any such closed subset. The analytical issue is that in the small-norm theory of
Riemann–Hilbert problems this error estimate is amplified by the L2(�E) operator
norm of the Cauchy projection operator with respect to �E. That norm generally
depends on the underlying jump contour, and as explained in Sect. 5.3 the contour
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�E in turn varies with μ through h(z) and α, β, γ . The strategy one takes in control-
ling the Cauchy operator norm uniformly is to notice that the local dependence of
�E on μ is artificial. Indeed, by cyclic compatibility of the jump matrices for E(z)
at self-intersection points the jump contour for one value of μ may be deformed into
that for another value of μ sufficiently close, and this deformation will not affect the
uniform estimates on the jump matrix because those estimates are implied by strict
inequalities on the real parts of exponents. So, covering a compact subset of EgO(κ)
with a union of open sets on each of which the jump contour �E can be taken to be
fixed, we extract a finite subcover and take the maximum of a finite number of Cauchy
operator norms to obtain a uniform error estimate. For uniformity as μ → ∞, one has
to first perform a rescaling of the z-plane to fix the roots z = α and z = β in the limit;
however since the Cauchy integral operators commute with scaling it is then easy to
adapt the uniform convergence argument to a neighborhood of μ = ∞. For details of
these arguments in a similar context, see [18, pp. 2519–2520].

This proves the following.

Lemma 7 Let κ ∈ (−1, 1), and suppose that D ⊂ C is an unbounded domain consist-
ing of points μ where the hypotheses of Lemma 6 hold with (μ, γ ) not a catastrophic
bifurcation point. If F ⊂ D is closed, then (5.45) and (5.51) hold uniformly on F.

To complete the proof of Theorem 2 from Sect. 1.4 it therefore remains only to
specify the region in the μ-plane where (5.45) and (5.51) are valid respectively. This
will be done in Sect. 8.8.

6 Asymptotic Analysis of M(z) for Sufficiently Large |�|: gH Case

Now we develop a simplified version of the analysis from Sect. 5 applicable to the gH
family. We take (�0,�∞) ∈ �

[3]+
gH so that s = sgn(�0) = 1 and κ = −�∞/|�0| ∈

(−1, 1), and we assume that for |μ| sufficiently large with −ε < arg(μ) < π
2 + ε

for some small ε > 0, the polynomial P(z) is again in case {211}. However, now
we select the solution of the quartic (4.19) that satisfies γ = U [3]

0,gH(μ; κ) = −2μ +
O(μ−1) as μ → ∞ (see Sect. 1.3.1). Solving for α and β from (4.20) gives (breaking
permutation symmetry) α = (−2κ + 2i

√
1 − κ2)μ−1 + O(μ−2) and β = (−2κ −

2i
√
1 − κ2)μ−1 +O(μ−2) as μ → ∞. Recalling the parametrization of κ by (4.28),

we have α = 2ieiϕ/2μ−1 + O(μ−2) and β = −2ie−iϕ/2μ−1 + O(μ−2) as μ → ∞.

6.1 Analysis of the Exponent h(z)

6.1.1 The Zero-Level Set of Re(h(z))

We remind the reader of the terminology introduced in Sect. 5.1, and of Defini-
tions 2 and 3 in particular. For large |μ|, the quadratic differential  (z) dz2 for
 (z) = 1

16 z−2(z − γ )2(z − α)(z − β) can be written under the rescaling Z = μz as
 (z) dz2 = 1

4 Z−2((Z + 2κ)2 + 4(1 − κ2))(1 + O(μ−1)) dZ2, where the error term
is uniform for bounded Z . Neglecting the error term yields a quadratic differential in
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Fig. 23 For κ = 0 and μ = 1.198 + 0.983i (left) and μ = 0.983 + 1.198i (right) (γ = U [3]
0,gH(μ; κ)

analytically continued from large μ), situations in which Re(h(γ )) has opposite signs. In both cases the
critical v-trajectories divide the plane into four end domains, one strip domain, and one circle domain (Color
figure online)

the Z -plane that has Schwarz symmetry and only two finite critical points; hence both
finite critical points necessarily lie on the boundary of the circle domainD◦ containing
Z = 0. This leading-order model resolves the limiting v-trajectories in the part of the
z-plane that asymptotically contains z = 0, z = α, and z = β, while z = γ is out
of the picture. Restoring the error term, one can show that for large |μ| this structure
is preserved and hence both α and β lie on ∂D◦ while γ ∈ C \ D◦. Therefore, ∂D◦
is the closure of the union of two v-trajectories, each with endpoints z = α, β. From
each of the latter critical points, exactly one additional v-trajectory emanates into the
exterior of ∂D◦, and since there can be no divergent v-trajectories by the same argu-
ment as in Sect. 5.1, these two v-trajectories can either coincide, terminate at z = γ ,
or tend to z = ∞. The scenario of coincidence would imply a closed loop formed of
v-trajectories that can be easily ruled out by Lemma 4 of Sect. 5.1. Without loss of
generality, we assume that Re(h(α)) = 0.

Suppose that Re(h(γ )) �= 0. It then follows that the v-trajectories emanating from
z = α, β into the exterior of the circle domain both tend to z = ∞, and the exterior of
∂D◦ is divided by these trajectories into two disjoint components, exactly one of which
must contain z = γ and the four critical v-trajectories emanating from it. Therefore,
the complement of the closure Kz of the union of critical v-trajectories of  (z) dz2 is
the disjoint union of four end domains, one strip domain, and one circle domain, as
shown in Fig. 23.

One important distinction from the gO case discussed in Sect. 5.1 is that here α and
β lie in the same connected component of Kz , as can be seen in Fig. 23. Moreover α
and β are joined by two v-trajectories, which implies that in this case the component
of Kz containing α and β is a strict subset of the level set Re(h(z)) = 0, because
the component contains only two unbounded arcs while the level set has four arcs
that go to z = ∞ parallel to the four directions arg(z) = ±π

4 ,± 3π
4 . Since the two
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Fig. 24 For the same parameters as in the corresponding panels of Fig. 23, the zero-level set of Re(h(z))
(black and orange curves), the branch cut for h′(z) (orange), and sign of Re(h(z)) (shaded for negative,
unshaded for positive) (Color figure online)

missing unbounded arcs of the level set tend to z = ∞ in different directions distinct
from the direction of the unbounded arcs emanating from α and β and cannot cross
the arcs emanating from z = γ because Re(h(γ )) �= 0 by assumption, it follows that
they are trapped within the end domain opposite γ from z = 0 ⊂ D◦. Since the end
domain does not contain any critical points, the missing unbounded arcs of the level
set actually form the same v-trajectory, which can be seen near the left (resp., bottom)
of the left-hand (resp., right-hand) panel of Fig. 24.

The disjoint union of this v-trajectory with the component of Kz containing α and
β is precisely the level set Re(h(z)) = 0.

Now we consider the possibility that Re(h(γ )) = 0. A calculation parallel to (5.1)
shows that

Re(h(γ )) = Re

(∫ γ

α

h′(z) dz

)
= ±1

2

(
Re(μ)2 − Im(μ)2

)
+ o(μ2), μ → ∞,

so that Re(h(γ )) cannot vanish for large |μ| unless arg(μ) ≈ π
4 ∈ (−ε, π2 + ε). If

Re(h(γ )) = 0, then the topologyof Kz is different. In particular Kz becomes connected
and it now coincides with the level set Re(h(z)) = 0. However we observe that if |μ|
is large, then since γ is large while D◦ is small, the condition Re(h(γ )) = 0 can only
occur without γ lying on ∂D◦. Therefore, the topology of the level set Re(h(z)) = 0
in a neighborhood of the circle domain D◦ is just as if Re(h(γ )) �= 0. We touch on
this observation again later in Sect. 6.5.1.

6.1.2 Defining h(z) as a Single-Valued Function

Given the structure of the level set Re(h(z)) = 0 near D◦ as shown in Fig. 24, we
now explain how to determine h′(z) and then h(z) precisely. Unlike in the gO case
discussed in Sect. 5.1, we can and will take the branch cut�c of R(z) to coincide with
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one of the two v-trajectories connecting α and β; because s = 1, we need to select the
specific v-trajectory to use so that R(0) = 4s = 4. In the special case that κ = 0 and
arg(μ) = π

4 , it is easy to see that for |μ| sufficiently large α, β, and γ all lie on the
diagonal line through the origin, with arg(α) = π

4 and arg(β) = arg(γ ) = − 3π
4 . This

implies that R(z)2 is real for z along the same diagonal line, and since by definition
R(z) = z2+O(z) as z → ∞, R(z) is positive imaginary for arg(z) = π

4 and |z| > |α|.
It then follows that to have R(0) > 0 we must choose�c to lie in the half-plane above
the diagonal line: Im(z) ≥ Re(z). This is the unique v-trajectory on the Jordan curve
∂D◦ that abuts a region exterior to ∂D◦ on which Re(h(z)) > 0, and this topological
characterization of�c is robust as κ and μ vary. The branch cut�c for R(z) is shown
with an orange curve in each panel of Fig. 24. Once R(z) is determined, then so is
h′(z) by (4.22). Accounting for the pole of h′(z) at z = 0, we choose the point z = β

to be the common endpoint of the arcs�0 and�4,3 and then we take the jump contour
for h(z) to be �h := �c ∪ �0 ∪ �4,3. Finally, we define C \ �h # z �→ h(z) by
integration of h′(·) from α to z over any path lying inC\�h . Note that while in the gO
case Re(h(z)) exhibits a jump discontinuity across �c, in this case Re(h(z)) extends
to �c as a continuous function as a consequence of choosing �c as a zero-level curve
of Re(h(z)). The sign of Re(h(z)) is as indicated with shading in Fig. 24.

The analytic function h(z) defined in this way takes continuous boundary values
on �h that are related by (with the orientation of the arcs �0 and �4,3 as indicated in
Fig. 13 from Sect. 3.1)

�h(z) = −2π i, z ∈ �0,

〈h〉(z) = 0, z ∈ �c,

�h(z) = 2π iκ, z ∈ �4,3.

(6.1)

6.2 Introduction of g(z) and Steepest Descent

We proceed to lay the (suitably deformed and fixed in the z-plane) jump contour �gH
from Fig. 14 from Sect. 3.1 over the sign chart of Re(h(z)) as shown in Fig. 25.

In particular, we take �c ⊂ C ⊂ �gH and insist that Re(h(z)) < 0 holds on
C \�c. Then we define g(z) from h(z) by (4.22) and use it to define N(z) fromM(z)
by (4.14). Using (6.1) it is easy to check that this transformation removes the jump
discontinuities from the arcs �0 ∪ �4,3, so that N(z) is analytic for z ∈ C \ C and
N(z) → I as z → ∞. Its jump conditions are

N+(z) = N−(z)
(
eT�h(z) 0
e2T 〈h〉(z) e−T�h(z)

)
, z ∈ �c

and
N+(z) = N−(z)L(e2T h(z)), z ∈ C \ �c. (6.2)
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Fig. 25 For the same parameters as in the corresponding panels of Figs. 23 and 24, the jump contour for
M(z) (Color figure online)

Applying a “UTU” factorization (see (1.35)) the jump matrix on �c can be written in
the form

(
eT�h(z) 0
e2T 〈h〉(z) e−T�h(z)

)
= e−T h−(z)σ3

(
1 0
1 1

)
eT h+(z)σ3

= e−T h−(z)σ3U(1)T(1)U(1)eT h+(z)σ3

= U(e−2T h−(z))T(e2T 〈h〉(z))U(e−2T h+(z))

= U(e−2T h−(z))T(1)U(e−2T h+(z))

where in the last step we used (6.1). Based on this factorization, we introduce lens
domains �+ and �− on the left and right, respectively, of �c as shown in Fig. 26.

Then we define a new unknown matrix O(z) in terms of N(z) by setting

O(z) :=

⎧⎪⎨
⎪⎩
N(z)U(e−2T h(z))−1, z ∈ �+

N(z)U(e−2T h(z)), z ∈ �−

N(z), elsewhere,

and it follows that the three factors in the jump ofN(z) across�c are split into separate
jumps of O(z) across three arcs with the same endpoints:

O+(z) = O−(z)U(e−2T h(z)), z ∈ ∂�±, (6.3)

and

O+(z) = O−(z)T(1), z ∈ �c.
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Fig. 26 For the same parameters as in the corresponding panels of Figs. 23– 25, the “lens” domains
�± and the modified jump contour for O(z) (the dashed arcs have been removed by the transformation
M(z) �→ N(z)) (Color figure online)

6.3 Parametrix Construction

As in Sect. 5.3, we proceed under the working assumption that as (μ, γ ) is analytically
continued on the Riemann surface � of Definition 1 from the start of Sect. 5 from
μ = ∞ along the gH branch γ = U [3]

0,gH(μ; κ), the sign chart of Re(h(z)) near the
jump contour for O(z) retains the same structure as established above for sufficiently
large |μ| in the first quadrant.

6.3.1 Outer Parametrix

Because C \ �c lies in a region where Re(h(z)) < 0 while the lens boundaries ∂�±
both lie in regions where Re(h(z)) > 0, it appears reasonable to neglect the jumps on
these arcs. We therefore define an outer parametrix Ŏout(z) to be analytic except on
�c across which it satisfies the same jump condition as does O(z), and we insist that
Ŏout(z)bebounded except near z = α, βwhere negative one-fourth power divergences
are admitted and that Ŏout(z) → I as z → ∞. Thus, the outer parametrix is explicitly
given by (cf. (5.21))

Ŏout(z) = SgH j(z)σ3S−1
gH, SgH :=

(
1
2 i
1
2 i 1

)
, (6.4)

where the function j(z) is defined exactly as in Sect. 5.3. This formula can be obtained
from (5.21) using a conjugation by a constant diagonal matrix, and therefore it follows
immediately that all four equations in (5.23)–(5.24) are modified only by a common
factor. The identity (5.25) holds exactly as written, but it requires a reinterpretation
because α, β, and γ are different functions of μ in the gH and gO cases. In the gH
case, we have j(0)4 = α/β = −eiϕ + O(μ−1) as μ → ∞. To take the square
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Table 4 Data for defining the inner parametrices in Dα and Dβ

p Conformal map W : Dp → C Ray Preimages in Dp Constant matrix C

arg(W ) Preimage

α (−2h(z))2/3, continued from C \ �c 0 C \ �c eiπσ3/4

2π
3 ∂�−

− 2π
3 ∂�+

±π �c

β (−2h(z))2/3, continued from C \ �c 0 C \ �c e−iπσ3/4

2π
3 ∂�+

− 2π
3 ∂�−

±π �c

root correctly it is easiest to take κ = 0 and arg(μ) = π
4 to arrange α and β along

the diagonal with the branch cut for j(z) lying above the diagonal. Then it is easy
to see that j(0)2 = −ieiϕ/2 + O(μ−1) as μ → ∞. Therefore j(0)2 ± j(0)−2 =
−ieiϕ/2 ± ie−iϕ/2 + O(μ−1) for large μ. Since also from the large-μ expansions of
α, β, and γ in the gH case we have 1

4γ (α ± β) = −ieiϕ/2 ± ie−iϕ/2 + O(μ−1), the
exact identity j(0)2 ± j(0)−2 = 1

4γ (α ± β) holds in place of the more complicated
formula (5.26). It follows that both formulæ (5.27)–(5.28) are valid in the gH case as
well if we take the first line corresponding to the “leftward” configuration.

6.3.2 Inner Parametrices

Fixing disks Dα and Dβ containing z = α and z = β respectively, we can define
conformal maps z �→ W (z) on each as shown in Table 4. Taking the constant matrix
C as given in the same table, we again use the formula (5.34) to define from the
conformalmap W (z) and the outer parametrix (now given by (6.4)) a holomorphic unit
determinant matrixH(z) on each disk. Then we use (5.35) to define inner parametrices
Ŏin,α(z) and Ŏin,β(z) on Dα and Dβ respectively.

Again, these inner parametrices are exact local solutions within Dα and Dβ of
the analyticity and jump conditions to be satisfied by O(z), and it follows from the
construction that the estimates (5.36) are valid in the gH case as well.

6.3.3 Global Parametrix and Error Estimation

We adopt the same definition (5.37) as in the gO case for the global parametrix Ŏ(z)
in terms of the (slightly modified) outer and inner parametrices just described. The
analysis of the error E(z) given by (5.38) outlined at the end of Sect. 5.3 is soft and it
applies equally well in the present context with the same results; the expansion (5.39)
holds with E1 = O(T −1) and E(0) = I + O(T −1).
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6.4 Conditionally Valid Asymptotic Formulæ for the gH Rational Solutions of
Painlevé-IV

The relationship between Y(λ; x) and the product E(z)Ŏout(z) for large λ or large z
is exactly as in the gO case, and hence the formula (5.41) for Y ∞

1,12(x) holds in the

gH case as well. Likewise, the exact formula (5.42) for Y0
0(x) is valid; however in

the gH case there is substantial simplification in expressing N(0) in terms of known
or estimable quantities. Indeed, in place of (5.43) we have simply N(0) = O(0),
and then as in the gO case, O(0) = (I + O(T −1))Ŏout(0). Hence the formula for
Y 0
0,11(x)Y

0
0,12(x)matches the first line of (5.44); combining this with (5.41), using the

first line of (5.27) and taking into account s = 1 in the definition (3.2) we find

u[3]
gH(x; m, n) = u(x) = T 1/2(γ + O(T −1)) = |�0|1/2(U [3]

0,gH(μ; κ) + O(|�0|−1)),

μ := x

|�0|1/2 , κ := − �∞
|�0| . (6.5)

Likewise, the formula for the fractionY 0
0,11(x)/Y 0

0,21(x)matches the first line of (5.46).
Combining this with (5.41) and using the first line of (5.28) in the definition (3.2) gives

u[1]
gH(x; m, n) = u�

�
(x) = T 1/2 (−μ − 1

2γ − 2γ−1 + O(T −1)
)

= |�0|1/2
(
−μ − 1

2U [3]
0,gH(μ; κ) − 2U [3]

0,gH(μ; κ)−1 + O(|�0|−1)
)
.

We can apply Lemma 5 from Sect. 5.4 in the case s = 1 to write this formula in a more
convenient form. Noting that if γ (μ) is the branch of the quartic (4.19) that behaves
like γ (μ) = −2μ + 2κμ−1 + O(μ−3) then the related function γ�

�
(μ) defined by

(5.49) obeys γ�
�
(μ) = 2μ−1 + O(μ−3) as μ → ∞, we arrive at the following:

u[1]
gH(x; m, n) = u�

�
(x) = |�0,��|1/2

(
U [1]
0,gH(μ; κ�

�
) + O(|�0,��|−1)

)
,

μ := x

|�0,��|1/2 , κ�
�

:= −�∞,��

|�0,��| , (6.6)

where γ = U [1]
0,gH(μ; κ) is the solution of the quartic (4.19) with asymptotic behavior

U [1]
0,gH(μ; κ) = 2μ−1 + O(μ−3) as μ → ∞. See Sect. 1.3.

6.5 Bifurcation Points and Conditions for Validity

Looking at the representative plots of Kz in Fig. 23 and recalling Definition 4 of Sect.
5.5, we can describe the possible generic bifurcation scenarios as follows:

(i) γ (μ) merges with one of the two unbounded v-trajectories emanating from z =
α, β from either side, or

(ii) γ (μ) merges with one of the two v-trajectories forming ∂D◦.
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In each of the panels of Fig. 23 two bifurcations described by (i) and one bifurcation
described by (ii) are possible. The two diagrams can be connected through a bifurcation
point where scenario (i) occurs on the unbounded v-trajectory emanating from z = β.

6.5.1 Harmless Bifurcation Points

In the gH setting, harmless bifurcations are generic bifurcation points when scenario
(i) occurs. When μ is large in the first quadrant with γ = U [3]

0,gH(μ; κ), we find such
bifurcation points near arg(μ) = π

4 . In the special case that κ = 0, the bifurcation
occurs exactly for arg(μ) = π

4 provided that |μ| is sufficiently large. In this case, setting
arg(μ) = π

4 gives the exact result that arg(α) = π
4 and arg(γ ) = arg(β) = − 3π

4 ,
and by reflection symmetry in the diagonal one can see that γ is connected to β by a
critical v-trajectory of  (z) dz2. Harmless bifurcation points are not an obstruction to
the steepest descent analysis because the jump contours for O(z) as shown in Fig. 26
are always localized near the circle domainD◦, while any bifurcation where (i) occurs
only affects the topology of the level set Re(h(z)) = 0 outside of some neighborhood
of D◦. Therefore the asymptotic formulæ (6.5) and (6.6) remain valid at and beyond
any harmless bifurcation points.

6.5.2 Catastrophic Bifurcation Points

The bifurcation points corresponding to scenario (ii) are catastrophic for the steepest
descent analysis. Indeed, if (ii) occurs, then the unbounded component of the zero-
level curve of Re(h(z)) not containing either z = α or z = β merges with γ and
the adjacent critical v-trajectory joining α and β and forming part of ∂D◦. Figure 26
shows that when the isthmus pinches off, either ∂�− (left panel) or C \ �c (right
panel) is forced to pass directly over the saddle z = γ , which at the bifurcation
point lies exactly on the zero level of Re(h(z)). According to (6.2) and the fact that
O(z) = N(z) on C \ �c, the latter contour carries the lower-triangular jump matrix
L(e2T h(z)). Likewise, according to (6.3), the contour ∂�− carries the upper-triangular
jump matrix U(e−2T h(z)).

Both of these jump conditions fail to be exponentially small perturbations of the
identity jump near the catastrophic bifurcation point. Once the bifurcation point is
passed, it becomes necessary to use a spectral curve of class {1111}; however just at the
bifurcation point we can reproduce the asymptotic formulæ (6.5) and (6.6) with error
terms replaced by their square roots by suitably modifying the procedure described in
Sect. 5.5. For instance, approaching the bifurcation point from the configuration in the
left panel of Fig. 26, we deal with the upper-triangular jumpmatrix on ∂�− as follows.
First we introduce a conformal mapping near z = γ by W (z)2 = 2(h(z)−h(γ )), then
we set ω = e−T h(γ ) (a number with unit modulus), and then we use B(T 1/2W (z))
and the relevant outer parametrix given by (6.4) to define an inner parametrix in the
disk Dγ exactly by (5.52). The inner and outer parametrices match on ∂Dγ up to
terms of order O(T −1/2), so the desired result follows by small-norm theory. The
same idea from Sect. 5.5 of replacing the degree-zero Hermite polynomial parametrix
by the degree-n Hermite parametrix allows one to penetrate somewhat beyond the
catastrophic bifurcation point, but we will only need the result sketched above.
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Appealing to Proposition 4 in Sect. 2 and the symmetries (μ, γ ) �→ (−μ,−γ )

and (μ, γ ) �→ (μ∗, γ ∗) of � we may extend the steepest-descent results and the
definitions of harmless and catastrophic bifurcation points to allow for arbitrary arg(μ).
By analogy with Definition 5 and Lemma 6 in Sect. 5.5 we then have the following.

Definition 6 (gH paths) Let κ ∈ (−1, 1). A gH path is an oriented contour P on �
originating at μ = ∞ on the gH sheet γ = U [3]

0,gH(μ; κ) = −2μ + O(μ−1) such
that no point or endpoint of P is a branch point (necessarily lying above a solution of
B(μ; κ) = 0), and such that no interior point of P is a catastrophic bifurcation point.

Lemma 8 (Pointwise validity of gH exterior asymptotics) Let κ ∈ (−1, 1). Suppose
that μ ∈ C is the sheet projection to C from � of the endpoint (μ, γ ) of a gH path. If
(μ, γ ) is not a catastrophic bifurcation point, then the asymptotic formula (6.5) is valid
with U [3]

0,gH(μ; κ) = γ , and (6.6) holds as well with γ replaced by γ�
�

and with the
indicated rescaling of μ and modification of κ . If (μ, γ ) is a catastrophic bifurcation
point, the same is true but the relative error terms O(|�0|−1) and O(|�0,��|−1) are
replaced with O(|�0|−1/2) and O(|�0,�

�
|−1/2) respectively.

6.6 Uniformity of Estimates

Exactly the same arguments from Sect. 5.6 apply in the gH case as well to yield the
following analogue of Lemma 7 from Sect. 5.6.

Lemma 9 Let κ ∈ (−1, 1), and suppose that D ⊂ C is an unbounded domain consist-
ing of points μ where the hypotheses of Lemma 8 hold with (μ, γ ) not a catastrophic
bifurcation point. If F ⊂ D is closed, then (6.5) and (6.6) hold uniformly on F.

Combining the asymptotic formulæ (6.5) and (6.6) with the symmetry (2.2) then
proves Theorem 1 of Sect. 1.4 except for the determination of the region of validity
(see Sect. 8.5). But first we study the asymptotic behavior assuming that the spectral
curve is of class {1111} and that μ belongs to a suitable Boutroux domain.

7 Asymptotic Analysis of M(z) in Boutroux Domains for the gO and
gH Cases

Now we turn to the analysis of the rational solutions of (1.1) in the domains where the
solutions have many zeros and poles. Although details are different in several cases
(see Appendix E), still a unified treatment of the gH and gO families is possible. A
readermostly interested in the exterior asymptotics and the boundary curves can safely
skip ahead to Sect. 8, wherein only the arguments in Sect. 8.7 are motivated by Sects.
7.3–7.5.

7.1 Stokes Graphs for Boutroux Spectral Curves of Class {1111} and Abstract
Stokes Graphs for Boutroux Domains

We start by revisiting the relationship between the zero-level curve of Re(h(z)) and the
closure of the union of critical trajectories Kz begun in Sects. 5.1 and 6.1, nowunder the
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assumption that the Riemann surfaceR is a Boutroux curve of class {1111}. From the
formula (z) := h′(z)2 = 1

16 z−2P(z) = 1
16 z−2(z−α)(z−β)(z−γ )(z−δ)we see that

h′(z)may be considered to be a meromorphic function onRwith purely real residues
at the poles over z = 0,∞. Therefore the only possible monodromy of Re(h(z)) on
R arises from the nontrivial homology of R as a curve of genus one. But since R is
Boutroux, there is no such monodromy and therefore Re(h(z)) is determined up to an
integration constant as a single-valued non-constant function on R that is harmonic
away from the poles of h′(z). As in Sect. 5.1, it follows that the quadratic differential
 (z) dz2 has no divergent critical v-trajectories (i.e., v-trajectories having a zero of
 (z) as an endpoint; see Definition 2 in that section). In the current setting we refer
to the closure Kz of the union of the critical v-trajectories of  (z) dz2 as the Stokes
graph of R.

The key feature contributed by the condition that R is Boutroux is that the Stokes
graph of R coincides with the projection from R to the z-plane of the level curve
Re(h(z)) = Re(h(α)) (or = Re(h(β)) = Re(h(γ )) = Re(h(δ)) by the Boutroux
conditions (4.23)). To see this, we argue as follows. Clearly every point on the Stokes
graph ofR is on the level curve. The complement of the Stokes graph is then the disjoint
union of a single circle domainD◦ containing the double pole z = 0 and finitely many
end domains (strip domains and ring domains being excluded because they require
any branch of Re(h(z)) to take different values on different parts of their boundaries);
see Definition 3 from Sect. 5.1. But each end domain is mapped conformally by a
branch of h(z) onto an open right or left half-plane while the circle domain is mapped
conformally by a branch of eh(z) onto the interior or exterior of a circle. Therefore in
the interior of each end domain or circle domain, Re(h(z)) is unequal to its constant
value on the boundary. So there are no points of the level set of Re(h(z)) = Re(h(α))
not contained in the Stokes graph of R.

Since there are no strip domains and  (z) dz2 has a pole of order 6 at z = ∞,
a neighborhood of the point at infinity is covered by the disjoint union of four end
domains and four critical v-trajectories separating them and approaching z = ∞
asymptotically in the diagonal directions arg(z) = ±π

4 ,± 3π
4 . These four are the only

end domains since there are no other poles of (z) dz2 of order greater than two, and the
four end domains are mutually disjoint on the z-sphere (every end domain has exactly
one such pole at a unique point on its boundary on the z-sphere). On the z-sphere the
Stokes graph is therefore a planar graph bounding exactly five faces (four end domains
and one circle domain). The vertices of the graph are the points z = α, β, γ, δ,∞ of
degrees d(α) = d(β) = d(γ ) = d(δ) = 3 and d(∞) = 4. Based on the count of
vertices and their degrees and the fact that z = ∞ is necessarily connected to a finite
vertex, by enumeration it is easy to check that the Stokes graph ofR is connected, and
therefore by Euler’s formula there are exactly 8 edges.

Given the Stokes graph Kz ofR, wemay assume that h′(z) is an analytic function in
C\ Kz by suitably arranging the branch cut locus B of R(z) in the formula (4.22) to lie
within Kz . It then follows by integration along contours inC\(B∪{0})with fixed base
point in the same domain that Re(h(z)) becomes a well-defined single-valued function
of z that is harmonic onC\ (B ∪{0}) and that extends continuously to B. By choice of
base point (integration constant) we may assume that Re(h(z)) = 0 whenever z ∈ Kz ,
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and then the sign of Re(h(z)) will be well defined in each component of C \ Kz . This
essential property of h(z) will play a key role in the steepest descent analysis below.

If we retain only the essential topological information, we associate to the Stokes
graph ofR an abstract Stokes graph. This is a kind of connected planar graph (allowing
for loops) with four vertices of degree 3 representing z = α, β, γ, δ and four special
vertices of degree 1 representing the four diagonal directions at z = ∞. We place
the four latter vertices at the four corners of a bounding square (the edges of which
are not considered as part of the graph) and require that all other edges lie within this
square. Each abstract Stokes graph has exactly 5 faces on the square representing the
four end domains and one circle domain, and by Euler’s formula, there are exactly 8
edges. We identify two abstract Stokes graphs that are related by a homeomorphism
of the bounding square and its interior that fixes the square.

Now suppose that for given κ ∈ (−1, 1), a suitable smooth function μ �→ E is
specified on a Boutroux domain B so that the Boutroux curve R varies with μ ∈ B.
While the Stokes graph of R generally also varies with μ, the abstract Stokes graph
is an invariant, depending only Boutroux domain B and the corresponding solution
μ �→ E of the Boutroux equations (4.23). This also implies that the branch points α,
β, γ , and δ may be consistently labeled on B by labeling them for just one value of
μ ∈ B.

7.2 Hypotheses Concerning Boutroux Domains

Recall from Sect. 4.4 that μ = 0 is contained within a Boutroux domain on which
E = 0 at the origin. Without worrying about its boundary, we denote this domain by
B�, andwe can use the invariance of the abstract Stokes graph forB� to deduce it from
the special point (μ, E) = (0, 0). The Stokes graph Kz for this point is the closure
of the union of the three critical v-trajectories emanating from each of the four zeros
z = α, β, γ, δ of P(z), which are written explicitly in (4.28)–(4.29). Each of these
v-trajectories must either terminate at one of the four zeros (possibly returning to the
same zero a priori, although we will shortly rule that out) or escape to z = ∞ in one
of the four directions arg(z) = ±π

4 ,± 3π
4 . Each of the latter directions accepts exactly

one critical v-trajectory. Also recall that exactly one of the five maximal connected
components of C \ Kz is a circle domain D◦ that has at least one of the four zeros
z = α, β, γ, δ on its boundary ∂D◦, a Jordan curve.

Now observe that if μ = 0 and E = 0, then the quadratic differential  (z) dz2

enjoys Schwarz reflection symmetry in both the real and imaginary z-axes. Since the
group of reflection symmetries acts freely on the four roots of P(z) in this case, all four
branch points lie on the boundary ∂D◦ of the circle domain D◦. Thus, there are four
critical v-trajectories whose closure is ∂D◦, and that connect the four zeros in pairs.
It remains to determine the fate of the remaining critical v-trajectory emanating from
each of the four zeros. By Lemma 4 of Sect. 5.1, none of these can coincide with any
of the others (necessarily forming, with part of ∂D◦, a Jordan curve of v-trajectories
and their endpoints with only regular points in its interior so that referring to (5.2)–
(5.3) L ≤ 0 while R = 2), so all four of them must go to z = ∞. By symmetry,
the v-trajectory emanating from each zero tends to infinity in the same quadrant that
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Fig. 27 Abstract Stokes graphs
for the Boutroux domains B�
(lower left), B� (right), and B�
(top)

contains the zero. This completes the qualitative description of the Stokes graph for
μ = 0 with E = 0 for all κ ∈ (−1, 1). Numerical plots confirm this qualitative
description; see the upper left-hand panel of Fig. 39a or Fig. 41a in Appendix E for
the Stokes graph for μ = 0 and κ = 0. The corresponding abstract Stokes graph for
the whole Boutroux domain B� is shown in the lower left-hand plot in Fig. 27.

We now hypothesize the existence of two additional Boutroux domains of the type
described at the end of Sect. 4.4. These are assumed to be pairwise disjoint and disjoint
from B�, and they are generated by continuation from class {1111} Boutroux curves
based at nonzero points on the positive real and imaginaryμ-axes. We denote them by
B� and B� respectively, and we further hypothesize that the abstract Stokes graphs
for these Boutroux domains are as illustrated in Fig. 27. These hypotheses will be
proved in Sect. 8.9.

The asymptotic approximations for the rational Painlevé-IV functions that we will
obtain in the rest of this section are conditional on the assumption that μ ∈ B� ∪
B� ∪ B� and that the abstract Stokes graphs for the three Boutroux domains are as
hypothesized.

7.3 Basic Setup

To study the rational Painlevé-IV functions on Boutroux domains, for T = |�0| � 1,
s = sgn(�0) = ±1 we represent x in the form (cf. (1.14)) x = T 1/2μ + T −1/2ζ ,
where we assume thatμ ∈ B�∪B�∪B� and s = ±1 (gO case) orμ ∈ B� and s = 1
(gH case), and that ζ ∈ C. Recalling from Remark 11 in Sect. 4.1 that the parameters
�0 and �∞ are associated with the function u(x) = u[3]

F (x; m, n) for F = gH or
F = gO, we have κ := −�∞/T ∈ (−1, 1) differing from a limiting value in the same
interval by O(T −1). The matrix M(z) = M(T ,s,κ)(z; X) = M(T ,s,κ)(z;μ + T −1ζ )
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depends on (μ, ζ ) only through the linear combination X = μ + T −1ζ , but later
(μ, ζ ) will admit interpretation as independent variables.

Indeed, the variables (μ, ζ ) immediately play distinguished roles, as the first step of
our analysis ofM(z) is to make use of the Stokes graph in the z-plane whose abstract
version is determined only by the Boutroux domain containing μ. Examples of actual
Stokes graphs for representative values of μ ∈ B� ∪ B� ∪ B� and κ are shown with
black and orange arcs in the left-hand panels of Figs. 39a–45a that can be found in
Appendix E. In these plots, the union of black and orange arcs form the same Stokes
graph for both signs of s = ±1. However, the orange arcs are distinguished as the
branch cuts for R(z) and hence h′(z), and we choose these to differ for s = 1 and
s = −1 as indicated. As was shown in Sect. 7.1, the assumption that the spectral
curveR is Boutroux and the choice that the branch cuts of h′(z) are arcs of the Stokes
graph together imply that Re(h(z)) = Re(h(s,κ)(z;μ)) is well defined as a continuous
function of z ∈ C \ {0} that is harmonic except on the branch cuts of h′(z) (orange
arcs) and that vanishes exactly on the Stokes graph. Hence it has a well-defined sign on
each connected component of the complement of the Stokes graph, and these signs are
indicated in all plots in Appendix E with white for positive and shading for negative.

Also indicated on the left-hand panels of Figs. 39a–45a are two contours, �1 and
�2 (in some cases �2 is a union of two arcs), and invoking the Boutroux conditions
(4.23) we use these arcs to define two real constants, R1 and R2, by the formula

R j := −i
∫
� j

h′(z) dz = 1

4
i
∫
� j

R(z)

z
dz ∈ R, j = 1, 2. (7.1)

The next step is to place the jump contour � appropriately relative to the Stokes
graph in the z-plane. We use

• In the gO case:

– the basic configuration of � (see Fig. 13 from Sect. 3.1, in the z-plane instead
of the λ-plane) when μ ∈ B�,

– the “leftward” deformation of � (see the left-hand panel of Fig. 15 from
Sect. 4.2) when μ ∈ B�, and

– the “downward” deformation of� (see the right-hand panel of the same figure)
when μ ∈ B�;

• In the gH case: the simplified contour� = �gH described in Remark 6 of Sect. 3.1
(see Fig. 14 from that section, in the z-plane instead of the λ-plane, and denoting
the deformed closed-loop component of �gH by C).

We then arrange the arcs of the jump contour � relative to the Stokes graph as shown
in the right-hand panels of Figs. 39a–45a in Appendix E. In these plots, an arc of �
is frequently split into sub-arcs that belong to different critical v-trajectories in the
Stokes graph, in which case we use superscripts to distinguish the different sub-arcs
that carry the same jump matrix for M(z). In particular for the gO case, subarcs �k

j
of � j , j = 1, 2, 3, 4 will always be placed on ∂D◦ and the arc �c will always be
placed on another arc of the Stokes graph. In both the gO and gH cases, the arcs of
� carrying triangular jump matrices satisfy the principle that those carrying lower-
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triangular (resp., upper-triangular) matrices should be placed such that the possibly
non-strict inequality Re(h(z)) ≤ 0 (resp., Re(h(z)) ≥ 0) holds, in order to avoid
exponential growth of the off-diagonal matrix element. Finally, the arc �0 always
carries a diagonal jump matrix, and it may be placed arbitrarily within the circle
domain D◦ once its endpoints have been fixed by prior considerations (one of the
endpoints is z = 0).

7.4 Steepest Descent

While Re(h(z)) is well defined as a continuous function on the z-plane, h(z) itself
has discontinuities along certain cuts due to the monodromy of Im(h(z)) about (i) the
branch cuts of h′(z) as measured by the real constants R j , j = 1, 2 defined in (7.1),
and (ii) the poles of h′(z) at z = 0 and z = ∞ as measured by the real residues−κ and
−s, respectively. We will explain how we determine one or more purely imaginary
integration constants to fix h(z) later in Sect. 7.5. However, we can say now that h(z)
will certainly be analytic except on somearcs of the jumpcontour� forM(z) as already
determined. Therefore g(z) = g(s,κ)(z;μ) := h(s,κ)(z;μ) + φ(z;μ) is analytic for
z ∈ C \ � so we may use the formula (4.14) to transform M(z) into N(z). Because
M(z) = M(T ,s,κ)(z;μ + T −1ζ ) depends on X = μ + T −1ζ while g is independent
of ζ , we write N(z) = N(T ,s,κ)(z;μ, ζ ) to distinguish the now-independent roles of
the parameters μ ∈ B� ∪ B� ∪ B� and ζ ∈ C.

The jump conditions forM(z) take the form

M+(z) = M−(z) exp
([

1

2
ζ z + Tφ(z;μ)

]
σ3

)
V exp

(
−
[
1

2
ζ z + Tφ(z;μ)

]
σ3

)
,

where V is a different constant matrix on different arcs of �. It then follows that the
corresponding jump condition for N(z) on a given arc A ⊂ � can be written as

N+(z) = N−(z)eζ zσ3/2e−T h−(z)σ3VeT h+(z)σ3e−ζ zσ3/2, z ∈ A ⊂ �.

Here h±(z) denote the boundary values taken on the arc A by h(z). We then transform
N(z) intoO(z) by the following steepest-descent procedure, inwhichwe “open lenses”
of the jump contour about those arcs of � lying on the Stokes graph, with the sole
exception of �c when μ ∈ B� ∪ B�. We first factor the constant “core” jump matrix
V for each such arc A into a product V−V0V+ of three unit-determinant constant
factors using an appropriate choice among the identities (1.35). The factor V+ (resp.,
V−) will be associated with the region of C \ � lying immediately to the left (resp.,
right) of the arc A. We require V± to be lower (upper) triangular if the inequality
Re(h(z)) < 0 (Re(h(z)) > 0) holds on the corresponding region of the z-plane; this
criterion then determines exactly which of the identities (1.35) is to be used in each
case. For the gO family, we will need to apply this procedure to the four “core” jump
matrices V = V j , j = 1, . . . , 4, as defined by (3.4) for which the factorizations in
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(1.35) take the form

V1 = L
(
2 exp

( iπ
6

))
D
(

1√
3

)
U(−

√
3
2 ) (“LDU”)

= L
(
2 exp

(
5iπ
6

))
T(2)L

(
− 2√

3

)
(“LTL”)

= U
(
1
2 exp

(
− 5iπ

6

))
D
(
exp

( iπ
6

))
L
(

2√
3
exp

( iπ
3

))
(“UDL”)

= U
( 1
2 exp

(− iπ
6

))
T
(

2√
3
exp

( iπ
6

))
U
(√

3
2 exp

(− iπ
3

))
(“UTU”),

V2 = V∗−1
1 = L

(
2√
3
exp

( 2iπ
3

))
D
(
exp

( iπ
6

))
U
( 1
2 exp

(− iπ
6

))
(“LDU”)

= L
(

2√
3

)
T(−2)L

(
2 exp

( iπ
6

))
(“LTL”)

= U
(√

3
2

)
D(

√
3)L

(
2 exp

(
5iπ
6

))
(“UDL”)

= U
(√

3
2 exp

(− 2iπ
3

))
T
(

2√
3
exp

(
5iπ
6

))
U
(
1
2 exp

(
− 5iπ

6

))
(“UTU”),

V3 = L
(
2 exp

( iπ
6

))
D
(

1√
3
exp

(− iπ
3

))
U
(√

3
2 exp

(− iπ
3

))
(“LDU”)

= L
(
2 exp

(
5iπ
6

))
T
(
2 exp

(− iπ
3

))
L
(

2√
3
exp

( iπ
3

))
(“LTL”)

= U
(
1
2 exp

(
− 5iπ

6

))
D
(
exp

(− iπ
6

))
L
(

2√
3
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(− iπ
3

))
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( 1
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(− iπ
6

))
T
(

2√
3
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(− iπ
6

))
U
(√

3
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( iπ
3
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V4 = V∗−1
3 = L

(
2√
3
exp

(− 2iπ
3

))
D
(
exp

(− iπ
6

))
U
( 1
2 exp

(− iπ
6

))
(“LDU”)

= L
(

2√
3
exp

( 2iπ
3

))
T
(
2 exp

(− 2iπ
3

))
L
(
2 exp

( iπ
6

))
(“LTL”)

= U
(√

3
2 exp

(− 2iπ
3

))
D
(√

3 exp
(− iπ

3

))
L
(
2 exp

(
5iπ
6

))
(“UDL”)

= U
(√

3
2 exp

( 2iπ
3

))
T
(

2√
3
exp

(
− 5iπ

6

))
U
(
1
2 exp

(
− 5iπ

6

))
(“UTU”).

For the gH family, the only “core” jumpmatrix that requires any factoring is the matrix
L(1) and just the “UTU” factorization suffices:

L(1) = U(1)T(1)U(1).

Now let A+ (resp., A−) denote an arc with the same endpoints and orientation as
A but lying in the region to the left (resp., right) of A; thus A± form a “lens” about
the central arc A. Then, we set

O(z) := N(z)eζ zσ3/2e−T h(z)σ3(V±)∓1eT h(z)σ3e−ζ zσ3/2, for z between A and A±.

Repeating this substitution for each arc A ⊂ �, A �= �c, lying on the Stokes graph
and elsewhere defining O(z) := N(z), we arrive at an equivalent unknown matrix
O(z) = O(T ,s,κ)(z;μ, ζ ). The matrix function z �→ O(z) is analytic except on the
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contour � augmented with the lens boundaries A± and omitting �0 and, in the gH
case, �4,3 (the omitted arcs are removed already by the substitution M(z) �→ N(z)).
Also O(z) satisfies the normalization condition O(z) → I as z → ∞. The jump
conditions for O(z) are illustrated for each case in Figs. 39b–45b in Appendix E, in
which we specify the matrix W for each arc such that Õ+(z) = Õ−(z)W, where

Õ(z) := O(z)eζ zσ3/2e−T h(z)σ3 .

Note thatW is a “core” jump matrix for O(z) on an arc of the modified jump contour
in the same way that V is a “core” jump matrix for N(z) on an arc of �.

Some further simplification of the jump contour for O(z) is easily performed.
Indeed, onemay observe that in any situation that two lenses share a common endpoint
z0 ∈ ∂D◦ that is not one of the four distinguished points z = α, β, γ, δ, the (two or
three) contours approaching z0 either from within or from without D◦ can be fused
together into a single arc across which O(z) experiences no jump at all. One then
checks further that the remaining jumps for O(z) on the two remaining arcs of � that
meet at z0 are consistent.

Example 1 In the configuration for the gO family with μ ∈ B� and s = 1 as depicted
in Fig. 39a of Appendix E, we can regard the jump contour for O(z) as having just
one lens joining the pair of points z = α, β and consisting of

• an arc insideD◦ fromα toβ carrying the “core” jumpmatrixW = U(
√
3
2 exp( iπ3 )),• an arc along ∂D◦ from α to β carrying the “core” jump matrix W =

T( 2√
3
exp(− iπ

6 )), and

• two arcs outside D◦ from an arbitrary point on �2,3 away from ∂D◦ to α and to β
carrying “core” jump matrices W = U( 12 exp(− 5iπ

6 )) and W = U( 12 exp(− iπ
6 ))

respectively.

Completely analogous deformations produce single lenses joining the pairs z = α, δ

and z = γ, δ. With the additional use of jump identities for the function h(z) near the
junction point between �4,3 and �0 (as shown for the case at hand in the left-hand
panel of Fig. 39c), one achieves a similar result and obtains a single lens connecting
z = β, γ , but the simplification occurs only for the matrixO(z) and not also Õ(z), and
it hinges on sT = �0, T κ = −�∞, and the gO lattice conditions (�0,�∞) ∈ �gO
(see (1.11)).

In each case, the fact that such simplification is possible stems from the fact that the
jump conditions of Riemann–Hilbert Problem 1 in Sect. 3.1 are consistent at all self-
intersection points. By analyticity of the exponent function λ2 +2xλ, this consistency
makes the locations of these junction points somewhat arbitrary.

7.5 Specification of h(z)

We now resolve all remaining ambiguity about the function h(z). As mentioned at the
beginning of Sect. 7.4, since h′(z) is well defined with branch cuts on the orange arcs
of the Stokes graph as shown in the left-hand panels of Figs. 39a–45a in Appendix E,

123



Constructive Approximation

all that remains to fully specify h(z) is to complete its jump contour with additional
arcs to handle the monodromy about the poles and then to give values for one or more
integration constants. The real parts of these constants are determined so that the level
set Re(h(z)) = 0 coincides with the Stokes graph. We complete the specification of
h(z) first for the following three gO cases: (a) μ ∈ B� with s = 1, (b) μ ∈ B� with
s = 1, and (c) μ ∈ B� with s = −1. We take additional cuts as shown for cases
(a), (b), and (c) respectively in the left-hand panels of Figs. 39c, 42c, and 45c so that
h(z) is analytic in a simply connected domain �h , and therefore just one integration
constant needs to be determined. We fix it by setting

h(z) =
∫ z

δ

h′(w) dw − 1

2
iR1, z ∈ �h (7.2)

where the value of the integral is independent of any path of integration taken in the
domain�h , andwhere R1 ∈ R is defined in (7.1). Using the fact that h′(z) has residues
of−s and−κ at z = 0 and z = ∞ respectively, and again taking note of (7.1) referring
to the location of the integration contours �1 and �2 as shown on the Stokes graph plots
in the left-hand panels of Figs. 39a–45a, one checks that the function h(z) defined by
(7.2) satisfies the jump conditions on the sum and difference of boundary values as
shown in the left-hand panels of Figs. 39c, 42c, and 45c. To define h(z) in the three
remaining gO cases, (d) μ ∈ B� with s = −1, (e) μ ∈ B� with s = −1, and (f)
μ ∈ B� with s = 1, we note that this requires changing the sign of s from cases (a),
(b), and (c) respectively, which alsomeans that we change the sign of h′(z) in the circle
domain D◦ while leaving h′(z) unchanged in the exterior of D◦. Therefore it seems
natural to also define h(z) by starting with the formula (7.2) and simply changing
the sign of h(z) within D◦. We follow this approach and proceed with the implied
choice of integration constants. Finally, for the only gH case (μ ∈ B� with s = 1),
we simply define h(z) exactly as in gO case (a). It is then straightforward to verify
the jump conditions satisfied by h(z) in these four remaining cases as shown in the
left-hand panels of Figs. 40c, 41c, 43c, and 44c.

In general, the constants R1 and R2 defined by (7.1) are independent. However, if
μ ∈ (B� ∪B�)∩R, then with the indicated choice of integration constant we recover
a Schwarz symmetry: h′(z∗) = h′(z)∗. Considering the difference of loop integrals of
h′(z) around z = 0,∞ computed by residues on one hand and by (7.1) on the other,
this symmetry in turn implies the identity

R2 = 1
2π(1 − κ), μ ∈ B� ∩ R, κ ∈ (−1, 1), (7.3)

and, by a simpler computation,

R2 = 0, μ ∈ B� ∩ R, κ ∈ (−1, 1).

Similarly, ifμ ∈ (B� ∪B�)∩ iR, then h′(−z∗) = h′(z)∗, which implies the identities

R1 = − 1
2π(1 + κ), μ ∈ B� ∩ iR, κ ∈ (−1, 1), and (7.4)

R2 = 0, μ ∈ B� ∩ iR, κ ∈ (−1, 1).
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7.6 Parametrix Construction

We now show how to build an approximation of the matrix function z �→ O(z),
the accuracy of which can be controlled. With h(z) defined precisely as described in
Sect. 7.5, we observe that due to the position of the jump contour for O(z) relative
to the sign chart of Re(h(z)), the jump matrix for O(z) is an exponentially small
perturbation of the identity matrix for T � 1 wherever the jump matrix is upper or
lower triangular.

7.6.1 Outer Parametrix

If we simply neglect these jumps and use known information about the boundary
values of h(z) in the remaining diagonal and off-diagonal jump matrices, we arrive
at a modified Riemann–Hilbert problem for the outer parametrix. More precisely, the
outer parametrix Ŏout(z) is defined as the matrix analytic in the complement of the
jump contour shown in the right-hand panels of Figs. 39(c)–45c in Appendix E, with
the indicated jump matrix on each arc, normalized to the identity as z → ∞, and
continuous up to the jump contour with the exception of the four points z = α, β, γ, δ

at each of which a negative one-fourth root divergence is admitted to account for the
discontinuity of the jump matrix.

While the details are different in each case, the conditions characterizing the outer
parametrix can be easily mapped to a single universal form. Indeed, we will define a
new unknown P̆out(z) in terms of Ŏout(z) in different regions of the z-plane according
to Table 5.

The jump contour for P̆out(z) is a simple curve consisting of three consecutive arcs:
an arc B1 from z = α to z = β, an arc G from z = β to z = γ , and an arc B2 from
z = γ to z = δ. We think of these arcs as two “bands” (B1 and B2) separated by a
“gap” G (see the left-hand panel of Fig. 28). Defining real phasesCG andCB as shown
for each case in Table 6, it is straightforward to check that P̆out(z) is the necessarily
unique solution of the following Riemann–Hilbert problem.

Riemann-Hilbert Problem 2 (Uniformized Outer Parametrix) Let ζ ∈ C and real con-
stants CG and CB be given. Seek a 2 × 2 matrix function z �→ P̆out(z; ζ ) with the
following properties:

• Analyticity: P̆out(z; ζ ) is an analytic function of z in the domain z ∈ C \ (B1 ∪
G ∪ B2).

• Jump conditions: P̆out(z; ζ ) assumes continuous boundary values on its jump
contour from either side except at the four points p = α, β, γ, δ, where (z −
p)1/4P̆out(z; ζ ) is bounded. The boundary values are related on each arc of B1 ∪
G ∪ B2 by the jump conditions

P̆out+ (z; ζ ) = P̆out− (z; ζ )T(−e−ζ z), z ∈ B1, (7.5)

P̆out+ (z; ζ ) = P̆out− (z; ζ )D(eiCG), z ∈ G, and (7.6)

P̆out+ (z; ζ ) = P̆out− (z; ζ )T(−eiCBe−ζ z), z ∈ B2. (7.7)
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)Ŏ

ou
t (

z)
T
(√ 2e

11
iπ
/
12
e−

iT
R
1
/
2
e−

ζ
z )

C
\D

◦
D
(√ 2e

iπ
/
12
ei

T
R
1
/
2
)Ŏ
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Table 6 The phases CG and CB, and the sign ν = ±1

B family s CG (mod 2π) CB (mod 2π) ν

B� gO 1 −2T R2 − π
3 −2T R1 + π

3 1

gH 1 −2T R2 −2T R1 1

gO −1 −2T R2 + π
3 −2T R1 − π

3 −1

B� gO 1 2T R1 − π
3 −T (R1 + R2) + 2π(�∞ + 1

3 ) −1

−1 2T R1 + π
3 −T (R1 + R2) + 2π(�∞ − 1

3 ) 1

B� gO 1 2T R1 + π
3 −T (R1 + R2) − 2π(�∞ + 1

3 ) 1

−1 2T R1 − π
3 −T (R1 + R2) − 2π(�∞ − 1

3 ) −1

• Normalization: P̆out(z; ζ ) → I as z → ∞.

Given existence of a solution ofRiemann–Hilbert Problem2, uniqueness is straight-
forward to establish. This is an algebro-geometric problem that can be solved in terms
of the function theory of the elliptic spectral curveR associated with the quartic poly-
nomial P(z) = (z − α)(z − β)(z − γ )(z − δ) (cf. (1.18)). To develop the solution in
concrete terms, we introduce a branch of

√
P(z) adapted to the jump contour at hand;

let r(z) denote the function analytic for z ∈ C \ B1 ∪ B2 that satisfies r(z)2 = P(z)
and has asymptotic behavior r(z) = z2 + O(z) as z → ∞. Its domain of analyticity
is the complement of the orange arcs in the right-hand panel of Fig. 28. Comparing
with the orange arcs in the left-hand panels of Figs. 39a–45a in Appendix E we may
relate r(z) with R(z) explicitly:

r(z) =
{
νR(z), z ∈ D◦
R(z), z ∈ C \ D◦,

(7.8)

where ν = ±1 is the sign indicated for each case in Table 6. We then define

F(z) := −1

2
ζ z + CG

r(z)

2π

∫
G

ds

r(s)(s − z)
+ CB

r(z)

2π

∫
B2

ds

r+(s)(s − z)
,

z ∈ C \ (B1 ∪ G ∪ B2).

The function F(z) is analytic and bounded on its domain of definition, and its boundary
values satisfy the jump conditions

〈F〉(z) = − 1
2ζ z, z ∈ B1,

�F(z) = iCG, z ∈ G,

〈F〉(z) = − 1
2ζ z + 1

2 iCB, z ∈ B2.

(7.9)

Also, F(z) is analytic for large |z| and has an expansion of the form

F(z) = F1z + F0 + O(z−1), z → ∞, (7.10)
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Fig. 28 Left: topologically accurate representation of the jump contour of Riemann–Hilbert Problem 2 and
of the Abel map a(z). Right: corresponding jump contour for r(z) and for Q̆out(z), and homology cycles a
and b onR

where F1 and F0 are independent of z. We will not need the explicit form of F0, but
F1 is given by

F1 := −1

2
ζ − CG

2π

∫
G

dz

r(z)
− CB

2π

∫
B2

dz

r+(z)
. (7.11)

Then define Q̆out(z) via

Q̆out(z) := eF0σ3 P̆out(z)e−F(z)σ3, z ∈ C \ (B1 ∪ G ∪ B2). (7.12)

Clearly Q̆out(z) is analytic at least for z ∈ C \ (B1 ∪ G ∪ B2), and its boundary values
are continuous except at p = α, β, γ, δ where (z − p)1/4Q̆out(z) is bounded. Using
(7.9) in (7.6), and applyingMorera’s Theorem shows that G may be removed from the
jump contour, i.e., Q̆out(z) is analytic for z ∈ C \ (B1 ∪ B2). Using (7.9) in (7.5) and
(7.7) then shows that Q̆out(z) satisfies jump conditions on B1∪ B2 of a universal form:
Q̆out+ (z) = Q̆out− (z)T(−1), where T(−1) is an elementary “twist” matrix defined in
(1.34). Finally, from the normalization condition on P̆out(z) and the expansion (7.10)
one sees that Q̆out(z)eF1zσ3 → I as z → ∞.

These conditions on Q̆out(z) are standard; for example, they are directly analogous
to conditions defining the function S(λ) in [10, Sect. 4]. We now summarize the
construction of Q̆out(z).

Define a basis of homology cycles a and b as in the right-hand panel of Fig. 28.
The basic normalized holomorphic differential on R is ω(z) dz, where on one sheet
ofRmodeled as two copies of the complex z-plane cut and identified along B1 ∪ B2,

ω(z) := 1

c
· 2π i

r(z)
where c :=

∮
a

ds

r(s)

�⇒
∮
a
ω(z) dz = 2π i. (7.13)

Note that c is a concrete form of the period Za defined in (1.19). A meromorphic
differential on R is �(z) dz, where on the same sheet that (7.13) holds,

�(z) := z2 − 1
2 (α + β + γ + δ)z

r(z)
− Cω(z), C := 1

2π i

∮
a

z2 − 1
2 (α + β + γ + δ)z

r(z)
dz

�⇒
∮
a
�(z) dz = 0. (7.14)
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Note that �(z) dz has double poles at the points over z = ∞ on R, but no residues.
The b-period of the a-normalized holomorphic differential ω(z) dz is

Hω :=
∮
b
ω(z) dz = −2

∫
G
ω(z) dz, (7.15)

and that of the a-normalized meromorphic differential �(z) dz is

H� :=
∮
b
�(z) dz = −2

∫
G
�(z) dz. (7.16)

Here the first formula in each case is a contour integral on the Riemann surface R,
and the second formula is a contour integral over the gap G where the integrand as
defined in (7.13) and (7.14) respectively has a definite value. A fundamental fact of
the theory is that Re(Hω) < 0. Note also that Hω is a concrete version of the period
ratio 2π iZb/Za; see (1.19). The Abel map a(z) is defined by

a(z) :=
∫ z

α

ω(s) ds, z ∈ C \ (B1 ∪ G ∪ B2), (7.17)

where the integral is independent of path taken in the indicated domain, on which
z �→ a(z) is holomorphic. The analogous integral with the meromorphic differential
�(z) dz in place of ω(z) dz is

A(z) :=
∫ z

α

�(s) ds, z ∈ C \ (B1 ∪ G ∪ B2),

again independent of path in the indicated domain (there is no residue at z = ∞) and
defining an analytic function on that domain. Absence of a residue at z = ∞ also
implies existence of the limit

J := lim
z→∞ (z − A(z)) .

It is straightforward to confirm that a(z) and A(z) satisfy the following jump condi-
tions:

〈a〉(z) = 0 and 〈A〉(z) = 0, z ∈ B1,

�a(z) = −2π i and �A(z) = 0, z ∈ G,

〈a〉(z) = − 1
2 Hω and 〈A〉(z) = − 1

2 H�, z ∈ B2.

Note that using (7.13) and (7.15) in (7.11), we can rewrite F1 equivalently in the form

F1 = −ζ

2
− CGc

4π2i

∫
G
ω(z) dz − CBc

4π2i

∫
B2

ω+(z) dz

= −ζ

2
+ CGcHω

8π2i
− CBc

4π
.

(7.18)
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A further useful identity can be found by integrating the differential a(z)�(z) dz
around the boundary of the canonical dissection of R and expressing the integral
alternately via residues at the two poles and via periods occurring on the four edges
of the boundary. The result is that H� defined in (7.16) can be expressed in terms of
c defined in (7.13) as

H� = 4π i

c
. (7.19)

See [31] or [17, Lemma B.1] for details.
The analogue of the function j(z) from Sect. 5.3 is here defined as the unique

function analytic for z ∈ C \ (B1 ∪ B2) satisfying the conditions

j(z)4 := (z − α)(z − γ )

(z − β)(z − δ)
and lim

z→∞ j(z) = 1.

This function satisfies the jump condition j+(z) = −i j−(z) for z ∈ B1 ∪ B2. Further
define

f D(z) := j(z) + j(z)−1

2
, f OD(z) := j(z) − j(z)−1

2i
(7.20)

with jump conditions f D+ (z) = f OD− (z) and f OD+ (z) = − f D− (z) for z ∈ B1 ∪ B2

and large-z asymptotic expansions f D(z) = 1 + O(z−1) and f OD(z) = 1
4 i(α − β +

γ − δ)z−1 +O(z−2). Clearly the product r(z) f D(z) f OD(z) is an entire function with
r(z) f D(z) f OD(z) = O(z) as z → ∞ and hence is a linear function. Let z = z0 denote
the unique root of this function (possibly z0 = ∞ if and only if f OD(z) = O(z−2) as
z → ∞). Explicitly,

r(z) f D(z) f OD(z) = − 1

4i
([α − β + γ − δ]z − [αγ − βδ])

�⇒ z0 := αγ − βδ

α − β + γ − δ
. (7.21)

A direct computation shows that z0 cannot coincidewith any of the roots z = α, β, γ, δ

provided the latter are distinct. Therefore the simple root z0 belongs to exactly one
of the two factors f D(z) or f OD(z). We assume in what follows that f OD(z0) = 0;
the modifications necessary to handle the other case f D(z0) = 0 are explained in [12,
Sect. 4.4.2].

Finally, to construct Q̆out(z) and hence also P̆out(z), we introduce the Riemann
theta function of the elliptic curve R for the homology basis (a, b) defined by

ϑ(z) :=
∑
k∈Z

eHωk2/2ekz . (7.22)

This is an entire function of z that satisfies

ϑ(−z) = ϑ(z), ϑ(z + 2π i) = ϑ(z), ϑ(z + Hω) = e−Hω/2e−zϑ(z) (7.23)
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and has simple zeros only at the points of a Z2-lattice:

ϑ(z) = 0 if and only if z = K + 2π ik + Hω� for k, � ∈ Z, (7.24)

where K = K(Hω) := iπ + 1
2 Hω is one of the zeros. See [53, Chapter 20], which

uses Jacobi’s notation ϑ(z) = θ3(w|τ) = θ3(w, q) where z = 2iw, Hω = 2π iτ , and
q = eiπτ .

The final result is that the matrix elements of Q̆out(z) are

Q̆out
11 (z) := f D(z)

ϑ(a(∞) + a(z0) + K)ϑ(a(z) + a(z0) + K − F1H�)

ϑ(a(∞) + a(z0) + K − F1H�)ϑ(a(z) + a(z0) + K)e
−F1[J+A(z)],

Q̆out
12 (z) := − f OD(z)

ϑ(a(∞) + a(z0) + K)ϑ(a(z) − a(z0) − K + F1H�)

ϑ(a(∞) + a(z0) + K − F1H�)ϑ(a(z) − a(z0) − K)e
−F1[J−A(z)],

Q̆out
21 (z) := f OD(z)

ϑ(a(∞) + a(z0) + K)ϑ(a(z) − a(z0) − K − F1H�)

ϑ(a(∞) + a(z0) + K + F1H�)ϑ(a(z) − a(z0) − K)e
F1[J−A(z)],

Q̆out
22 (z) := f D(z)

ϑ(a(∞) + a(z0) + K)ϑ(a(z) + a(z0) + K + F1H�)

ϑ(a(∞) + a(z0) + K + F1H�)ϑ(a(z) + a(z0) + K)e
F1[J+A(z)].

(7.25)
From (7.12) and (7.25), we then obtain a formula for the solution P̆out(z) of Riemann–
Hilbert Problem 2. Note that the quantity F1H� appearing in the arguments of the theta
functions can be expressed via (7.18)–(7.19) as

F1H� = i�, � := −2πζ

c
− ξ, ξ := CB − CG

Hω

2π i
. (7.26)

The assumption that f D(z) is nonvanishing while f OD(z) = 0 only vanishes at z = z0
tofirst order implies thatϑ(a(z)+a(z0)+K) is nonvanishing (even in the limit z → ∞)
and that the unique simple zero ofϑ(a(z)−a(z0)−K), located at z = z0 byRiemann’s
Theorem, is cancelled by that of f OD(z). Therefore, it is obvious that P̆out(z) exists
if and only if

ϑ(a(∞) + a(z0) + K − i�)ϑ(a(∞) + a(z0) + K + i�) �= 0. (7.27)

Lemma 10 By deforming the arc B1 in the jump contour for P̆out(z) if necessary it can
be arranged that ϑ(a(∞) + a(z0) + K − i�) = 0 if and only if ϑ(a(∞) + a(z0) +
K + i�) = 0.

Proof Since ϑ(−z) = ϑ(z), ϑ(K) = 0, and 2K is a (quasi-)period, it is sufficient
to prove that there are integers Na and Nb such that 2a(∞) + 2a(z0) = 2π iNa +
HωNb. Introducing a second auxiliary copy of the complex z-plane on which the Abel
mapping a(z) is defined with the opposite sign compared to the principal z-plane, we
obtain a two-sheeted model for the Riemann surface R. Denoting by Q+(z) (resp.,
Q−(z)) the point Q ∈ R over z ∈ C on the principal (resp., auxiliary) sheet, we
have therefore extended the Abel mapping toR by the definition ã(Q±(z)) = ±a(z)
(modulo periods).With this notation, wewant to show that ã(Q+(∞))+ ã(Q+(z0))−
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ã(Q−(∞)) − ã(Q−(z0)) = 2π iNa + HωNb. But by the Abel-Jacobi Theorem, this
identity will hold for some integers Na and Nb if there exists a nonzero meromorphic
function k(Q) defined onR with simple poles at the points Q−(∞) and Q−(z0) only
and vanishing at the points Q+(∞) and Q+(z0). Similarly extending the square root
branch r(z) underlying the definition of a(z) to the Riemann surfaceR by r̃(Q±(z)) =
±r(z), we can exhibit this function k(Q) explicitly in the form

k(Q) = [z(Q)2 − z20] − 1
2 (α + β + γ + δ)[z(Q) − z0] − [̃r(Q) − r̃(Q+(z0))]

z(Q) − z0
,

where z(Q) is the coordinate (sheet projection) function satisfying z(Q±(z)) = z
for all z ∈ C. It is easy to verify from this formula that k(Q) has simple poles only
at the points Q = Q−(∞) and Q = Q−(z0), and that k(Q) has a simple zero at
Q = Q+(∞). The fact that k(Q+(z0)) = 0 as well amounts to the condition that the
derivative of the numerator vanishes at Q = Q+(z0), which reads

2z0 − 1
2 (α + β + γ + δ) = r ′(z0).

The squares of both sides of this equation are equal, as can be verified easily using the
definition (7.21) of z0. Since the sign of r ′(z0) can be changed by making a suitable
deformation of the arc B1 in the jump contour for P̆out(z), the proof is finished. As
a side-note, it is not possible that both of the integers Na and Nb are even, as that
would mean that a(∞)+ a(z0) is an integer linear combination of periods, which by
Abel-Jacobi would imply the existence of a nonzero meromorphic function with just
one simple pole at Q = Q−(z0) that vanishes at Q = Q+(∞). But having at most
one simple pole on R, the function is a constant, and vanishing at any point forces it
to vanish identically. �	
If a deformation of B1 is necessary for the result to hold, the original arc B1 can
be easily restored by using the constant jump matrix T(−1) to swap the columns of
Q̆out(z) in between the deformed and original arcs. In light of this result, Riemann–
Hilbert Problem 2 is solvable if d > 0 holds, where (considering the first factor in
(7.27) and using (7.24) and (7.26))

d := inf
(Na,Nb)∈Z2

∣∣∣∣a(∞) + a(z0) + 2π iζ

c
+
[

Na + CB

2π

]
2π i +

[
Nb − CG

2π

]
Hω

∣∣∣∣ .
(7.28)

Here the value of the Abel map a(z0) has to be interpreted relative to the contour arc
B1 deformed as necessary. The quantity d measures the distance to the (common, by
Lemma 10) theta divisor for the two factors in (7.27). It depends on the data (distinct
roots α, β, γ, δ of the quartic P(z), complex constant ζ , and real constants CG and
CB modulo 2π ) in the formulation of Riemann–Hilbert Problem 2. For given data,
the infimum in (7.28) is clearly attained, as the absolute value grows with (Na, Nb)

because Re(Hω) < 0, so it is really a minimum over finitely many lattice points.
Recalling the interpretation of the parameters of Riemann–Hilbert Problem 2 in terms
of the outer parametrix Ŏout(z), we see that for given κ ∈ (−1, 1) and s = ±1, d is a
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function of μ in the Boutroux domain B of interest (which determines a(∞)+ a(z0),
c, Hω, and the constants R1 and R2 appearing in CG and CB, via the roots of P(z)),
ζ ∈ C, and T > 0. In this context, given ε > 0 we set

S(ε) := {μ ∈ B, ζ ∈ C, T > 0 : d ≥ ε} . (7.29)

Since CG and CB are affine linear in T , which does not otherwise appear in the data
for Riemann–Hilbert Problem 2, the set S(ε) contains arbitrarily large values of T .
Expressing Ŏout(z) in terms of P̆out(z) using Table 5 we have the following result.

Proposition 12 The outer parametrix Ŏout(z) exists with det(Ŏout(z)) = 1 if d > 0
holds, in which case for every ρ > 0,

M(ρ) := sup
|z−p|>ρ

p=α,β,γ,δ

‖Ŏout(z)‖ (7.30)

is finite, where ‖ · ‖ denotes any matrix norm. If ζ is bounded, μ lies in a compact
subset of the relevant Boutroux domain, and for some ε > 0, (μ, ζ, T ) ∈ S(ε), then
for every ρ > 0, M(ρ) is uniformly bounded even as T → +∞.

Proof It suffices to replace Ŏout(z) with P̆out(z), because the transformation relating
themgiven in Table 5 always exists, preserves determinants, and is uniformly bounded.
It is easy to check from the conditions of Riemann–Hilbert Problem 2 that if P̆out(z)
exists, it must have unit determinant, and the fact that existence is guaranteed by
the condition d > 0 has already been proven above. That M(ρ) < ∞ for ρ > 0
then follows by the maximum modulus principle. Existence of a uniform bound of
M(ρ) depending only on the compact set containingμ, the bound for ζ , and the value
of ε > 0 is not obvious from the explicit construction of the solution, because the
arguments of the theta functions have real parts proportional to the large parameter
T . However the existence of such a bound can be seen easily from the conditions of
Riemann–Hilbert Problem 2, in which the dependence on T entering through the real
phases CG and CB linear in T is controlled because only the bounded exponentials
eiCG and eiCB appear in the problem. �	

We conclude this discussion of the outer parametrix by giving some formulæ for the
quantities extracted from Ŏout(z) needed to write approximate formulæ for u(x) and
u�
�
(x) in Sect. 7.7. Expanding for large z we obtain the convergent Laurent expansion

Ŏout(z) = I +
∞∑

k=1

z−kŎout
k , (7.31)

in which
Ŏout
1,12 = η P̆out

1,12, P̆out
1,12 := lim

z→∞ z P̆out
12 (z) (7.32)
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where η is determined from the diagonal z-independent conjugation relating Ŏout(z)
and P̆out(z) for large z given in Table 5:

η :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 e

−5iπ/6e−iT R1, μ ∈ B�, gO case, s = 1

−e−iT R1, μ ∈ B�, gH case, s = 1
1
2e

−iπ/6e−iT R1, μ ∈ B�, gO case, s = −1
1
2e

−iπ/2e2π i�∞e−iT R2 , μ ∈ B�, gO case, s = ±1
1
2e

−iπ/2e−2π i�∞e−iT R2 , μ ∈ B�, gO case, s = ±1.

Also, evaluation at z = 0 gives

Ŏout
11 (0)Ŏ

out
12 (0) = νη P̆out

11 (0)P̆out
12 (0) (7.33)

and

Ŏout
21 (0)

Ŏout
11 (0)

= 1

η

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P̆out
21 (0)

P̆out
11 (0)

, ν = 1

P̆out
22 (0)

P̆out
12 (0)

, ν = −1,

where the sign ν = ±1 is as given in Table 6. Using the explicit solution of Riemann–
Hilbert Problem 2, we have

P̆out
1,12 = N (μ)

ϑ(a(∞) − a(z0) − K + i�)

ϑ(a(∞) + a(z0) + K − i�)
e−2F1 J (7.34)

and

P̆out
11 (0) = N11(μ)

ϑ(a(0) + a(z0) + K − i�)

ϑ(a(∞) + a(z0) + K − i�)
e−F1[J+A(0)],

P̆out
12 (0) = N12(μ)

ϑ(a(0) − a(z0) − K + i�)

ϑ(a(∞) + a(z0) + K − i�)
e−F1[J−A(0)],

P̆out
21 (0) = N21(μ)

ϑ(a(0) − a(z0) − K − i�)

ϑ(a(∞) + a(z0) + K + i�)
eF1[J−A(0)],

P̆out
22 (0) = N22(μ)

ϑ(a(0) + a(z0) + K + i�)

ϑ(a(∞) + a(z0) + K + i�)
eF1[J+A(0)],

(7.35)

in which

N (μ) := α − β + γ − δ

4i

ϑ(a(∞) + a(z0) + K)
ϑ(a(∞) − a(z0) − K)e

−2F0 , (7.36)
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and

N11(μ) := f D(0)
ϑ(a(∞) + a(z0) + K)
ϑ(a(0) + a(z0) + K) e

F(0)−F0 ,

N12(μ) := − f OD(0)
ϑ(a(∞) + a(z0) + K)
ϑ(a(0) − a(z0) − K) e

−F(0)−F0 ,

N21(μ) := f OD(0)
ϑ(a(∞) + a(z0) + K)
ϑ(a(0) − a(z0) − K) e

F(0)+F0 ,

N22(μ) := f D(0)
ϑ(a(∞) + a(z0) + K)
ϑ(a(0) + a(z0) + K) e

−F(0)+F0 ,

(7.37)

are all finite and nonzero (all apparent singularities on the parameter space are remov-
able).

7.6.2 Inner Parametrices

The approximation of the jump matrices for O(z) by those of its outer parametrix
Ŏout(z) fails to be uniformly accurate when z is near the four points z = α, β, γ, δ. To
deal with this nonuniformity and also to avoid the problematic divergence of Ŏout(z)
at these four points, we define instead four inner parametrices.

Let Dp, p ∈ {α, β, γ, δ} be fixed small disks in the z-plane with center z = p.
Within each disk we define a conformal map W : Dp → C such that W (p) = 0, as
indicated in Tables 7–13 in Appendix E. It is assumed that certain contour arcs are
first “fused” as indicated in these tables with the “&” notation, and the fact that W (z)
is conformal follows from the explicit formula h′(z)2 = P(z)/(16z2) and the fact that
z = p is in each case a simple root of the polynomial P(z). Then, for z ∈ Dp, we
define a matrix Pp(z) by the formula

Pp(z) := O(z) exp((−T h(z) + 1
2ζ z)σ3)C(z) exp(− 1

2T W (z)3/2σ3), z ∈ Dp,

(7.38)
whereC(z) is a different piecewise-constant matrix function on each disk as indicated
in the same series of tables. It is easy to check thatPp(z) satisfies exactly the same jump
and analyticity conditions as does the matrix A(T 2/3W (z)), where A(ξ) is defined in
Sect. 5.3. If we replace O(z) with Ŏout(z) in (7.38), then we get instead a matrix
function analytic in Dp except where ξ = T 2/3W (z) < 0, across which arc the jump
condition (5.32) is satisfied. It follows that the function

Hp(z) := Ŏout(z) exp((−T h(z) + 1
2 ζ z)σ3)C(z) exp(− 1

2 T W (z)3/2σ3)
1√
2

(
1 −1
1 1

)
W (z)−σ3/4,

z ∈ Dp (7.39)

can be extended to W (z) < 0 from both sides so as to become an analytic function
on Dp (any apparent singularity at z = p is easily seen to be removable due to the
allowed growth condition on Ŏout(z) as z → p). From Tables 7–13 in Appendix E
one can check that the matrix product exp(−T h(z)σ3)C(z) exp(− 1

2T W (z)3/2σ3) is
independent of z on each subdomain of Dp on which C(z) itself is constant, and that
this matrix product is oscillatory and uniformly bounded in T since p ∈ {α, β, γ, δ}
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lies on the Stokes graph so Re(h(p)) = 0 unambiguously. Therefore, if ζ ∈ C is
bounded, μ lies in a given compact subset of the relevant Boutroux domain, and the
parameters satisfy (μ, ζ, T ) ∈ S(ε) for some ε > 0 (see (7.29)), then it follows from
Proposition 12 in Sect. 7.6.1 that Hp(z) is uniformly bounded on Dp independently
of T > 0. We define an inner parametrix for O(z) on Dp by setting

Ŏin,p(z) := Hp(z)T −σ3/6A(T 2/3W (z)) exp( 12T W (z)3/2σ3)C(z)−1

· exp((T h(z) − 1
2ζ z)σ3), z ∈ Dp.

This function satisfies exactly the same analyticity and jump conditions within Dp as
doesO(z) itself. Moreover, by using (7.39) to express Ŏout(z) in terms ofHp(z), from
(5.33) we see that

Ŏin,p(z)Ŏout(z)−1 =Hp(z)T −σ3/6A(T 2/3W (z))
1√
2

(
1 −1
1 1

)
(T W (z))−σ3/4T σ3/6Hp(z)−1

= Hp(z)

(
1 + O(T −2) O(T −1)

O(T −1) 1 + O(T −2)

)
Hp(z)−1

= I + O(T −1), z ∈ ∂Dp,

(7.40)
since W (z) is independent of T and is bounded away from zero on ∂Dp.

7.6.3 Global Parametrix and Error Estimation

The global parametrix forO(z) is defined in terms of the outer and inner parametrices
as

Ŏ(z) :=
{
Ŏin,p(z), z ∈ Dp, p ∈ {α, β, γ, δ},
Ŏout(z), elsewhere that Ŏout(z) is analytic,

which is just the direct analogue of (5.37) in the case of four simple roots of the quartic
P(z). The errormatrixE(z) is then defined in terms ofO(z) and Ŏ(z) by (5.38), exactly
as in the simpler setting considered in Sect. 5.3.3. The analysis of the error described
in Sect. 5.3.3 applies nearly verbatim, with only the additional hypothesis that the
parameters admit a uniform bound for Ŏout(z) when z ∈ C \ (Dα ∪ Dβ ∪ Dγ ∪ Dδ).
However, according to Proposition 12 in Sect. 7.6.1, such a bound is guaranteed by
a uniform upper bound on |ζ |, confinement of μ to a fixed compact subset of the
Boutroux domain of interest, and the condition (μ, ζ, T ) ∈ S(ε) for some ε > 0.
Therefore, under these conditions the expansion (5.39) holds with E1 = O(T −1) and
E(0) = I + O(T −1).
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7.7 Asymptotic Formulæ for the Rational Solutions of Painlevé-IV on Boutroux
Domains

Unraveling the explicit transformations relating Y(λ) and O(z) = E(z)Ŏ(z) and
recalling the definition (3.2) of u(x) gives, for both families F = gH and F = gO,

u[3]
F (x; m, n) = u(x) = T 1/2U [3]

F , U [3]
F = −4s

(E(0)Ŏout(0))11(E(0)Ŏout(0))12
E1,12 + Ŏout

1,12

,

x = T 1/2μ + T −1/2ζ.

Neglecting the small error terms, we therefore define an approximation for U [3]
F by

the formula

Ŭ [3]
F = Ŭ [3]

F (ζ ;μ) := − 4s
Ŏout
11 (0)Ŏ

out
12 (0)

Ŏout
1,12

= − 4sν
P̆out
11 (0)P̆out

12 (0)

P̆out
1,12

,

where in the second line we have used (7.32) and (7.33). Defining complex phase
shifts by

z
[3]
1 := −ia(0) − ia(z0),

z
[3]
2 := ia(0) − ia(z0),

p
[3]
1 := −ia(∞) − ia(z0),

p
[3]
2 := ia(∞) − ia(z0),

(7.41)

we use (7.34)–(7.35) and ϑ(−z) = ϑ(z) to write Ŭ [3]
F (ζ ;μ) in the form

Ŭ [3]
F (ζ ;μ) = ψ

[3]
F (μ)

ϑ(a(0) + a(z0) + K − i�)ϑ(a(0) − a(z0) − K + i�)

ϑ(a(∞) + a(z0) + K − i�)ϑ(a(∞) − a(z0) − K + i�)

= ψ
[3]
F (μ)

ϑ(K − i(� − z
[3]
1 ))ϑ(K − i(� − z

[3]
2 ))

ϑ(K − i(� − p
[3]
1 ))ϑ(K − i(� − p

[3]
2 ))

,

(7.42)
which has the form (1.31) after using (7.26), where

ψ
[3]
F (μ) := −4sν

N11(μ)N12(μ)

N (μ)
.

Note that using (7.8), (7.21), (7.36)–(7.37), and the fact that R(0) = 4s, the factor
ψ

[3]
F (μ) can be simplified to

ψ
[3]
F (μ) = z0

ϑ(a(∞) + a(z0) + K)ϑ(a(∞) − a(z0) − K)
ϑ(a(0) + a(z0) + K)ϑ(a(0) − a(z0) − K) . (7.43)
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It will be shown in Sect. 7.8 that Ŭ [3]
F (ζ ;μ) is an elliptic function of ζ . We will have

U [3]
F = Ŭ [3]

F +O(T −1)where Ŭ [3]
F is bounded and 1/U [3]

F = 1/Ŭ [3]
F +O(T −1)where

1/Ŭ [3]
F is bounded provided that (μ, ζ, T ) ∈ S(ε) with μ in a compact subset of the

relevant Boutroux domain B, and that ζ is bounded (conditions guaranteeing the error
estimates on E(z) according to Proposition 12 of Sect. 7.6.1).

Similarly, for the rational function u�
�
(x) we find that

u[1]
F (x; m, n) = u�

�
(x) = |�0,��|1/2U [1]

F ,

U [1]
F = − T 1/2

|�0,��|1/2
(E(0)Ŏout(0))21(E1,12 + Ŏout

1,12)

(E(0)Ŏout(0))11
.

To introduce the appropriate analogue of Ŭ [3]
F for this case, recall that T = |�0| and

that, according to (2.4), |�0,��| = 1
2 |�0|(1 − sκ) with 1 − sκ �= 0 for κ ∈ (−1, 1).

Therefore, we define

Ŭ [1]
F := −

√
2

1 − sκ

Ŏout
21 (0)Ŏ

out
1,12

Ŏout
11 (0)

, (7.44)

which takes different forms depending on the sign ν = ±1 in Table 6 in Sect. 7.6.1:

Ŭ [1]
F = −

√
2

1 − sκ

P̆out
21 (0)P̆out

1,12

P̆out
11 (0)

= −
√

2

1 − sκ

·N21(μ)N (μ)

N11(μ)

ϑ(a(0) − a(z0) − K − i�)ϑ(a(∞) − a(z0) − K + i�)

ϑ(a(0) + a(z0) + K − i�)ϑ(a(∞) + a(z0) + K + i�)
,

ν = 1; (7.45)

Ŭ [1]
F = −

√
2

1 − sκ

P̆out
22 (0)P̆out

1,12

P̆out
12 (0)

= −
√

2

1 − sκ

·N22(μ)N (μ)

N12(μ)

ϑ(a(0) + a(z0) + K + i�)ϑ(a(∞) − a(z0) − K + i�)

ϑ(a(0) − a(z0) − K + i�)ϑ(a(∞) + a(z0) + K + i�)
,

ν = −1. (7.46)

In both cases, by similar arguments as used above to approximateU [3]
F by Ŭ [3]

F , wewill

have U [1]
F = Ŭ [1]

F +O(T −1) where Ŭ [1]
F is bounded and 1/U [1]

F = 1/Ŭ [1]
F +O(T −1)

where 1/Ŭ [1]
F is bounded, provided that μ lies in a compact subset of B, that ζ is

bounded, and that (μ, ζ, T ) ∈ S(ε). The formulæ (7.45)–(7.46) can be simplified and
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put into a universal form as follows. Defining complex phase shifts by

z
[1]
1 := −iνa(0) + ia(z0),

z
[1]
2 := ia(∞) − ia(z0),

p
[1]
1 := −iνa(0) − ia(z0),

p
[1]
2 := ia(∞) + ia(z0),

(7.47)

using ϑ(−z) = ϑ(z) we can write

Ŭ [1]
F = M

ϑ(νa(0) − a(z0) − K − i�)ϑ(a(∞) − a(z0) − K + i�)

ϑ(νa(0) + a(z0) + K − i�)ϑ(a(∞) + a(z0) + K + i�)

= M
ϑ(K + i(� − z

[1]
1 ))ϑ(K − i(� − z

[1]
2 ))

ϑ(K − i(� − p
[1]
1 ))ϑ(K + i(� − p

[1]
2 ))

,

where, using (7.36)–(7.37),

M := −
√

2

1 − sκ

α − β + γ − δ

4i

ϑ(a(∞) + a(z0) + K)
ϑ(a(∞) − a(z0) − K)

·

⎧⎪⎪⎨
⎪⎪⎩

f OD(0)

f D(0)

ϑ(a(0) + a(z0) + K)
ϑ(a(0) − a(z0) − K) , ν = 1

− f D(0)

f OD(0)

ϑ(a(0) − a(z0) − K)
ϑ(a(0) + a(z0) + K) , ν = −1.

It is straightforward to use the definitions (7.20) and j(z)2(z − β)(z − δ) = r(z) to
confirm the identities

f OD(z)

f D(z)
= i

2r(z) − (z − α)(z − γ ) − (z − β)(z − δ)

(z − α)(z − γ ) − (z − β)(z − δ)
and

f D(z)

f OD(z)
= i

2r(z) + (z − α)(z − γ ) + (z − β)(z − δ)

(z − α)(z − γ ) − (z − β)(z − δ)
.

Therefore, setting z = 0, recalling (7.21) and using r(0) = 4sν we put M in the
universal form

M = −
√

2

1 − sκ

8s − (αγ + βδ)

4z0

ϑ(a(∞) + a(z0) + K)ϑ(νa(0) + a(z0) + K)
ϑ(a(∞) − a(z0) − K)ϑ(νa(0) − a(z0) − K) .

(7.48)
Finally, using the identities in (7.23) and 2K = 2π i + Hω we have

Ŭ [1]
F = ψ

[1]
F

ϑ(K − i(� − z
[1]
1 ))ϑ(K − i(� − z

[1]
2 ))

ϑ(K − i(� − p
[1]
1 ))ϑ(K − i(� − p

[1]
2 ))

, ψ
[1]
F := ei(z

[1]
1 −p[1]

2 )M .

(7.49)
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This also has the form (1.31) except that the theta function has the same parameter as in
the approximation of the type-3 rational solutions of Painlevé-IV whereas we instead
expect to see the theta function for a different elliptic curve associated to the type-1
parameters. This final point will be clarified in Sect. 7.8.3; see (7.66). To use Ŭ [1]

F as an

approximation of U [1]
F = |�0,��|−1/2u[1]

F (x; m, n) = |�[1]
0,F(m, n)|−1/2u[1]

F (x; m, n)
for the type-1 function in the family F = gH or F = gO, the variables and param-
eters in Ŭ [1]

F need to be carefully interpreted. Here we recall Remark 11 of Sect.
4.1, which specifies that the parameters T , s, and κ should be expressed in terms of
the indices (m, n) by (4.6) or (4.8) for the gH and gO families respectively. Also,
the variables μ and ζ should be rescaled by making the replacements (4.9)–(4.10).
Then finally we have a well-defined function Ŭ [1]

F = Ŭ [1]
F (ζ ;μ) where the argu-

ments ζ and μ refer to the variables after the indicated replacements have been made,
and Ŭ [1]

F (ζ ;μ) is an accurate approximation of |�[1]
0,F(m, n)|−1/2u[1]

F (x; m, n) when

x = |�[1]
0,F(m, n)|1/2μ + |�[1]

0,F(m, n)|−1/2ζ .
The original variable μ lies in a Boutroux domain B for κ ∈ (−1, 1), but after

replacing the variables μ and ζ by their rescaled versions the approximation U [1]
F =

Ŭ [1]
F (ζ ;μ)+O(T −1) holds forμ in a homothetic dilation ofB. Moreover, the rescaled

domain should properly be associated to the leading term (see (1.23)) I −s(κ) =
−(κ + 3s)/(1 − sκ) of κ�

�
= −�∞,��

/|�0,��| = −�
[1]
∞,F(m, n)/|�[1]

0,F(m, n)|, as the
latter is the natural value of κ associated to the rational solution u[1]

F (x; m, n) according
to the scalings in (1.13). Note that κ ∈ (−1, 1) implies that |I −s(κ)| > 1. Once the
Boutroux domains B�, B�, and B� have been properly defined for κ ∈ (−1, 1) (see
Sects. 8.6 and 8.9), it will therefore be natural to extend the definition to |κ| > 1 by
suitable dilations in the μ-plane. A synthesized description of these domains is given
in Definition 9 in Sect. 8.9.

7.8 Differential Equations Satisfied by the Approximations

7.8.1 Derivation of the Differential Equation for Ŭ[3]
F (�; �)

We now show that the function Ŭ (ζ ) = Ŭ [3]
F (ζ ;μ) defined by (7.42) satisfies exactly

the differential equation (1.18) in which E depends on μ via the Boutroux conditions
(4.23). Evaluating Ŏout(z) at z = 0 yields a matrix function of ζ that we will write as
Ŏout(0) = Z(ζ ) in this section. Likewise, to emphasize the dependence on ζ in the
expansion coefficients in (7.31) we will write Ŏout

k = Ŏout
k (ζ ).

Fixingμ ∈ B�∪B�∪B�, we observe that thematrixF(ζ ; z) := Ŏout(z)eζ zσ3/2 has
jump matrices that are independent of ζ , so since det(F(ζ ; z)) = 1, F′(ζ ; z)F(ζ ; z)−1

is an entire function of z. Using the convergent Laurent expansion (7.31) and its term-
by-term derivative with respect to ζ shows that in fact this entire function is linear
in z: F′(ζ ; z)F(ζ ; z)−1 = 1

2 zσ3 + 1
2 [Ŏout

1 (ζ ), σ3]. Equivalently, for each z not on the
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jump contour, the outer parametrix satisfies the differential equation

dŎout

dζ
= 1

2
z[σ3, Ŏout] + 1

2
[Ŏout

1 (ζ ), σ3]Ŏout. (7.50)

In particular, upon setting z = 0, Ŏout becomes Z(ζ ), and we deduce that (7.50)
implies that

d

dζ
(Z11(ζ )Z12(ζ )) = −Ŏout

1,12(ζ )(Z11(ζ )Z22(ζ ) + Z12(ζ )Z21(ζ )). (7.51)

Similarly, using again the Laurent expansion (7.31) and taking the terms in (7.50)
proportional to z−1 we find that

dŎout
1,12(ζ )

dζ
= Ŏout

2,12(ζ ) − Ŏout
1,12(ζ )Ŏ

out
1,22(ζ ). (7.52)

Next, we make the following observation: if V(z) is the jump matrix for the outer
parametrix Ŏout(z), then on arcs of the jump contourwhere R(z) is continuouswe have
the form V(z) = D(a) for some constant a �= 0 and therefore V(z)σ3V(z)−1 = σ3,
while on arcs of the jump contour across which R(z) changes sign we have instead
that V(z) = T(ae−ζ z) for some constant a �= 0 and therefore V(z)σ3V(z)−1 = −σ3.
It follows that the matrix function

G(z) := R(z)Ŏout(z)σ3Ŏout(z)−1 (7.53)

is analytic except possibly on the jump contour, on which it is continuous except
possibly for the endpoints of each maximal arc. Those endpoints are the roots of the
quartic polynomial P(z) = R(z)2, and since Ŏout(z) blows up at these points like a
negative one-fourth power while det(Ŏout(z)) = 1, it follows by Morera’s Theorem
that G(z) is an entire function of z. From the asymptotic behavior of the factors (see
(7.31)), it is clear thatG(z) is in fact a quadratic matrix-valued polynomial in z. Using
(7.31) and the expansion R(z) = z2 + 2μz + 4κ +O(z−1) as z → ∞ to calculate the
polynomial part of the right-hand side of (7.53) gives the representation

G(z) = σ3z2 + (2μσ3 + [Ŏout
1 (ζ ), σ3])z + G(0), (7.54)

where

G(0) := 4κσ3 + 2μ[Ŏout
1 (ζ ), σ3] + [σ3, Ŏout

1 (ζ )]Ŏout
1 (ζ ) + [Ŏout

2 (ζ ), σ3]. (7.55)

On the other hand, setting z = 0 on the right-hand side of (7.53) and using R(0) = 4s
gives an equivalent representation for G(0):

G(0) = 4sZ(ζ )σ3Z(ζ )−1. (7.56)
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Comparing the (1, 2)-entry in the equivalent representations (7.55)–(7.56) gives the
identity

Ŏout
2,12(ζ ) − Ŏout

1,12(ζ )Ŏ
out
1,22(ζ ) = 4s Z11(ζ )Z12(ζ ) − 2μŎout

1,12(ζ ).

Using this identity and combining (7.51)–(7.52) with the definition (7.42) shows that

Ŭ ′(ζ ) = Ŭ (ζ )2 + 2μŬ (ζ ) + 4s(Z11(ζ )Z22(ζ ) + Z12(ζ )Z21(ζ ))

= Ŭ (ζ )2 + 2μŬ (ζ ) + G11(0),

where on the second line we used the (1, 1)-entry of (7.56). Therefore also

Ŭ ′(ζ )2 = Ŭ (ζ )4 + 4μŬ (ζ )3 + (4μ2 + 2G11(0))Ŭ (ζ )2

+ 4μG11(0)Ŭ (ζ ) + G11(0)
2

= Ŭ (ζ )4 + 4μŬ (ζ )3 + (4μ2 + 2G11(0))Ŭ (ζ )2

+ 4μG11(0)Ŭ (ζ ) + 16 − G12(0)G21(0),

(7.57)

where in the second equality we used that tr(G(0)) = 0 and det(G(0)) = −16, both
of which follow from (7.56).

Now, since σ 2
3 = I the definition (7.53) shows that G(z)2 is a scalar polyno-

mial, namely G(z)2 = R(z)2I = P(z)I. Squaring (7.54) and taking (without loss of
generality) the (1, 1)-entry gives

P(z) = z4 + 4μz3 + (4μ2 + 2G11(0) − 4Ŏout
1,12(ζ )Ŏ

out
1,21(ζ ))z

2

+ (4μG11(0) + 2Ŏout
1,21(ζ )G12(0) − 2Ŏout

1,12(ζ )G21(0))z + 16.

Substituting z = Ŭ (ζ ) and subtracting from (7.57) gives

Ŭ ′(ζ )2 − P(Ŭ (ζ )) = 4Ŏout
1,12(ζ )Ŏ

out
1,21(ζ )Ŭ (ζ )2

+ 2(Ŏout
1,12(ζ )G21(0) − Ŏout

1,21(ζ )G12(0))Ŭ (ζ )

− G12(0)G21(0).

Recalling the definition (7.42) of Ŭ (ζ ) and using the matrix elements of (7.56) then
shows that the right-hand side vanishes identically in ζ , which completes the proof of
the claim. Hence Ŭ (ζ ) = Ŭ [3]

F (ζ ;μ) can be written in the form f (ζ − ζ0) for some ζ0
independent of ζ , where f (ζ ) is the unique solution of the differential equation (1.18)
satisfying f (0) = 0 and f ′(0) = 4.

7.8.2 Derivation of the Differential Equation for Ŭ[1]
F (�; �)

For convenience, let us relabel the arguments of Ŭ [1]
F as ζ�

�
and μ�

�
. We now show

that Ŭ�
�
(ζ�
�
) = Ŭ [1]

F (ζ�
�

;μ�
�
) is also an elliptic function of its argument ζ�

�
, solving
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a closely related differential equation. To see this, we start from the definition (7.42)
of Ŭ (ζ ) = Ŭ [3]

F (ζ ;μ) and use (7.51) (with det(Z(ζ )) = 1 on the right-hand side to
eliminate Z11(ζ )Z22(ζ )) and (7.52) to find the differential identity

1

2Ŭ (ζ )

dŬ

dζ
(ζ ) − 2s

Ŭ (ζ )
− μ − 1

2
Ŭ (ζ ) = − Z21(ζ )Ŏout

1,12(ζ )

Z11(ζ )
=
√
1 − sκ

2
Ŭ�
�
(ζ�
�
),

(7.58)
where in the second equality we used the definition (7.44). Now, using the fact shown
above that Ŭ (ζ ) satisfies the first-order equation (1.18) and hence (by isolating the
constant E and taking aderivative) the second-order equation (1.2), it is straightforward
to check that Ŭ�

�
also satisfies a related second-order equation:

d2Ŭ�
�

dζ 2
= 1

2Ŭ�
�

(
dŬ�
�

dζ

)2

+ 3

4
(1 − sκ)Ŭ3

�
�

+ 4μ

√
1 − sκ

2
Ŭ2
�
�

+ (2μ2 − 6s − 2κ)Ŭ�
�

−4(1 − sκ)

Ŭ�
�

.

But now recall that Ŭ�
�
should be considered as a function of ζ�

�
=
√

1
2 (1 − sκ)ζ , so

by the chain rule,

d2Ŭ�
�

dζ 2�
�

= 1

2Ŭ�
�

(
dŬ�
�

dζ�
�

)2

+ 3

2
Ŭ 3
�
�

+ 4μ

√
2

1 − sκ
Ŭ 2
�
�

+
(
2μ2 2

1 − sκ
+ 4

[
−κ + 3s

1 − sκ

])
Ŭ�
�

− 8

Ŭ�
�

. (7.59)

The differential equation (7.59) matches exactly the form of (1.2) in which only μ is

replaced with μ�
�
determined by the relation μ =

√
1
2 (1 − sκ)μ�

�
and κ is replaced

with I −s(κ) = −(κ + 3s)/(1 − sκ) defined in (1.23). Therefore, as in Sect. 1.3, this
equation can be integrated up to the form

(
dŬ�
�

dζ�
�

)2

= P�
�
(Ŭ�
�
) := Ŭ 4

�
�

+ 4μ�
�

Ŭ 3
�
�

+ 2(2μ2
�
�

+ 4I −s(κ))Ŭ 2
�
�

+ 2E�
�

Ŭ�
�

+ 16,

(7.60)
which should be compared with (1.18). Here E�

�
is a constant of integration. Solving

for E�
�
, eliminating Ŭ�

�
and its derivative in favor of derivatives of Ŭ (ζ ) using (7.58),

and finally using the differential equations (1.2) and (1.18) satisfied by Ŭ (ζ ) (and the
chain rule again) one finds the explicit relation between E�

�
and E :

E�
�

=
(

2

1 − sκ

)3/2

[E − 4μ(κ + s)] . (7.61)
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Remark 14 Observe that the relation (7.58) expressing Ŭ�
�
explicitly in terms of Ŭ is

a limiting form of the non-isomonodromic Bäcklund transformation (2.4) expressing
u�
�
(x) explicitly in terms of u(x).

7.8.3 Relation Between the Corresponding Spectral Curves

If we use the differential equation (1.18) to eliminate the derivative in (7.58), we obtain
a non-differential relation between Ŭ and Ŭ�

�
:

Ŭ�
�

= −
√

2

1 − sκ

(
1

2
Ŭ + μ + 2s

Ŭ
+ 1

2

w

Ŭ

)
, w2 = P(Ŭ ). (7.62)

Isolating w and squaring leads to the bi-quadratic relation

2

√
1 − sκ

2
Ŭ�
�

Ŭ 2 +
[
4s(1 − sκ) + 4μ

√
1 − sκ

2
Ŭ�
�

+ (1 − sκ)Ŭ 2
�
�

]
Ŭ

+
[
8s

√
1 − sκ

2
Ŭ�
�

+ 8sμ − E

]
= 0,

where we used the fact that Ŭ does not vanish identically to cancel a common factor.

Solving now instead for Ŭ and using (7.61) and μ =
√

1
2 (1 − sκ)μ�

�
, we obtain

Ŭ = −
√
1 − sκ

2

(
1

2
Ŭ�
�

+ μ�
�

+ 2s

Ŭ�
�

+ 1

2

w�
�

Ŭ�
�

)
, w2

�
�

= P�
�
(Ŭ�
�
). (7.63)

Solving (7.63) for w�
�
, eliminating Ŭ�

�
using (7.62) and expressing μ�

�
in terms of μ

gives

w�
�

= − 1

2(1 − sκ)Ŭ2

[
w2 − 3Ŭ4 − 2wŬ2 − 8μŬ3 + 8sw − 4(μ2 + 2κ)Ŭ2 + 16

]
.

(7.64)
Likewise, solving (7.62) for w, eliminating Ŭ using (7.63) and expressing μ in terms
of μ�

�
gives

w = −1 − sκ

8Ŭ2
�
�

[
w2
�
�

− 3Ŭ4
�
�

− 2w�
�

Ŭ2
�
�

− 8μ�
�

Ŭ3
�
�

+ 8sw�
�

− 4(μ2
�
�

+ 2I −s(κ))Ŭ2
�
�

+ 16
]
.

(7.65)
Using s = ±1, it is straightforward to check that the equations (7.62) and (7.64) con-
stitute a birational transformation T : C2 → C

2 with action (Ŭ�
�
, w�
�
) = T (Ŭ , w)

and with explicit inverse given by (7.63) and (7.65). Restricting to the Riemann
surface R shows that T : R → R�

�
and that T −1 : R�

�
→ R. Therefore the

Riemann surfaces R and R�
�
are conformally equivalent. In particular, the pull-back
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under T of the holomorphic differential w−1
�
�

dŬ�
�

on R�
�

is a holomorphic differ-
ential on R: taking the differential of (7.62) and using 2w dw = P ′(Ŭ ) dŬ and
Ŭ P ′(Ŭ ) = w2 + 3Ŭ 4 + 8μŬ 3 + 4(μ2 + 2κ)Ŭ 2 − 16 gives

T ∗ dŬ�
�

w�
�

= −
√

2

1 − sκ

(
1

2
− 2s

Ŭ 2
− w

2Ŭ 2
+ P ′(Ŭ )

4wŬ

)
dŬ

w�
�

=
√

2

1 − sκ

w2 − 3Ŭ 4 − 2wŬ 2 − 8μŬ 3 + 8sw − 4(μ2 + 2κ)Ŭ 2 + 16

4ww�
�

Ŭ 2
dŬ

= −
√
1 − sκ

2

dŬ

w

after comparing with (7.64). (Here the superscript ∗ denotes pull-back instead of
complex conjugation.) Therefore, if (a, b) is a canonical homology basis on R, then
(a�
�
, b�
�
) = (T a, T b) is a canonical homology basis on R�

�
, and the corresponding

theta function parameters are equal:

Hω,��
= 2π i

∮
b�
�

dŬ�
�

w�
�∮

a�
�

dŬ�
�

w�
�

= 2π i

∮
b

dŬ

w∮
a

dŬ

w

= Hω. (7.66)

Likewise, if C denotes any cycle on the Riemann surface R of the equation w2 =
P(Ŭ ), then by integration by parts

∮
C

Ŭ�
�
dŬ = −

∮
C�
�

Ŭ dŬ�
�
,

where C�
�
is the corresponding cycle on the Riemann surfaceR�

�
of w2

�
�

= P�
�
(Ŭ�
�
).

Therefore, using (7.62) and (7.63) we get

−
√

2

1 − sκ

∮
C

(
1

2
Ŭ + μ + 2s

Ŭ
+ 1

2

w

Ŭ

)
dŬ

=
√
1 − sκ

2

∮
C�
�

(
1

2
Ŭ�
�

+ μ�
�

+ 2s

Ŭ�
�

+ 1

2

w�
�

Ŭ�
�

)
dŬ�
�
.

The first two terms in the integrand on each side of this equation contribute nothing by
Cauchy’s Theorem. The third term on each side can only contribute a purely imaginary
quantity as the residue of the pole is real in each case. Therefore, taking the real part
we obtain

√
2

1 − sκ
Re

(∮
C

w

Ŭ
dŬ

)
= −

√
1 − sκ

2
Re

(∮
C�
�

w�
�

Ŭ�
�

dŬ�
�

)
. (7.67)

123



Constructive Approximation

It follows thatRwith parameter E is aBoutroux curve if and only ifR�
�
with parameter

E�
�
is a Boutroux curve. This observation motivates the definition of the parameter E

for |κ| > 1 in terms of that for κ ∈ (−1, 1) using (7.61); see Definition 10 in Sect. 8.9.
Finally, we have shown that, like Ŭ [3]

F (ζ ;μ), Ŭ [1]
F (ζ ;μ) satisfies the differential

equation (1.18) for a value of κ very close (see Remark 15) to its “native” value of
−�

[1]
∞,F(m, n)/|�[1]

0,F(m, n)| with corresponding parameter E = E(μ; κ) chosen so
that the underlying Riemann surface is a Boutroux curve. Hence it can be written in
the form f (ζ − ζ0) for ζ0 independent of ζ , where again f (ζ ) is the unique solution
of (1.18) with f (0) = 0 and f ′(0) = 4. Note that in the gO case, the approximations
defined above for μ ∈ B�(κ) or μ ∈ B�(κ) are easily extended to −μ ∈ B�(κ) and
−μ ∈ B�(κ) by odd reflection: (Ŭ , μ, ζ ) �→ (−Ŭ ,−μ,−ζ ), which is consistent
with the exact symmetry of the rational solutions as indicated in Proposition 4 in
Sect. 2. To get an approximation in the only remaining case of type j = 2, we use
the symmetry (2.2) to express u[2]

F (·; m, n) in terms of u[1]
F (·; n,m), rotating both μ

and ζ by a quarter turn in the complex plane: Ŭ [2]
F (ζ ;μ) := iŬ [1]

F (−iζ ;−iμ). Note
that the approximating differential equation (1.18) is invariant under ( f , ζ, μ, κ) �→
(−i f ,−iζ,−iμ,−κ) given the symmetry (1.28) in Proposition 3 in Sect. 1.4. Hence
the type j = 2 approximation is also an elliptic function of the form f (ζ − ζ0).

Remark 15 A subtle point is that when κ and s are defined by (4.6) or (4.8) as nec-
essary to study u[1]

gH(x; m, n) or u[1]
gO(x; m, n) respectively according to Remark 11

in Sect. 4.1, then the parameter I −s(κ) appearing in the differential equation (7.60)
satisfied by the approximation Ŭ [1]

F (ζ ;μ) is not exactly equal to the value of κ for
which an elliptic function solution of the differential equation (1.18) is asserted in
Theorems 3 and 4 in Sect. 1.4 as a valid approximation. The latter value is the ratio
−�

[1]
∞,F(m, n)/|�[1]

0,F(m, n)|. In fact for the gH case we have s = 1 and taking κ in
terms of m, n from (4.6),

−�
[1]
∞,gH(m, n)

|�[1]
0,gH(m, n)| = I −s(κ) − 2

n

while for the gO case we may take either sign for s and taking κ from (4.8),

−�
[1]
∞,gO(m, n)

|�[1]
0,gO(m, n)| = I −s(κ) − 2s

n − 1
3

.

Arriving at the precise statements in Theorems 3 and 4 respectively therefore involves
an additional approximation in which one elliptic function is exchanged for another
with periods differing byO(n−1)which is equivalent toO(T −1). Since ζ is bounded,
this perturbation can be absorbed into the error terms, although the phase ζ0 generally
needs to be shifted by an amount that does not tend to zero in the limit T → ∞
because it involves terms proportional to T . Note however that the statements of these
two theorems do not precisely specify the value of ζ0. A similar minor discrepancy
arises in the approximation of u[2]

F (x; m, n) because the symmetry κ �→ −κ does not
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exactly correspond to the Boiti-Pempinelli symmetry (see (2.2)). Indeed, the latter is
a reflection through the horizontal line �∞ = 1

2 instead of through �∞ = 0. This
discrepancy is dealt with in exactly the same way.

To complete the proof of Theorems 3 and 4 formulated in Sect. 1.4 assuming the
existence of the hypothetical Boutroux domains B� and B� and under the assertion
that all three domains B�, B�, and B� have the indicated boundaries, it only remains
to note that suitable uniformity of the error estimates follows from similar arguments
as given in Sect. 5.6 and then to explain why the condition that (μ, ζ, T ) ∈ S(ε) for
some ε > 0 can be dropped. This second point will be justified in Sect. 7.10.3.

7.9 Zeros and Poles of the Approximations

The approximations Ŭ [ j]
F (ζ ;μ) of the rational solutions of type j = 1, 3 in the family

F = gH or F = gO vanish whenever

i(� − z
[ j]
1 ) = 2π iNa + HωNb or i(� − z

[ j]
2 ) = 2π iNa + HωNb (7.68)

and blow up whenever

i(� − p
[ j]
1 ) = 2π iNa + HωNb or i(� − p

[ j]
2 ) = 2π iNa + HωNb, (7.69)

where Na and Nb are arbitrary integers.

Lemma 11 For the approximations Ŭ [ j]
F (ζ ;μ), j = 1, 3, no two of the four conditions

in (7.68)–(7.69) can hold simultaneously.

Proof As in the proof of Lemma 10 in Sect. 7.6.1, we use the Abel-Jacobi Theorem.
For j = 3, we notice that taking i times the differences of any two of the phase shifts
in (7.41) gives a difference of Abel maps evaluated at two distinct points of R. The
corresponding conditions will hold simultaneously if and only if there is a nonzero
meromorphic function on R with a simple pole at one of these points and vanishing
at the other point. But having only one simple pole on R, this function must be a
constant, and hence to vanish anywhere it must vanish identically. For j = 1, taking
into account that z0 cannot equal any of the four roots α, β, γ, δ so that 2a(z0) can
be written as a difference of Abel maps of distinct points of R over z0, the same
argument applies to any of the four differences i(z[1]k −p

[1]
� ) for phase shifts defined in

(7.47). For the remaining two differences i(z[1]1 − z
[1]
2 ) = νa(0)− 2a(z0)+ a(∞) and

i(p[1]
1 − p

[1]
2 ) = νa(0)+ 2a(z0)+ a(∞), we note that the proof of Lemma 10 showed

that 2a(∞) + 2a(z0) = 2π iNa + HωNb for some integers Na and Nb. Therefore,
it suffices to prove that neither νa(0) + 3a(∞) nor νa(0) − a(∞) can be an integer
linear combination of 2π i and Hω. For νa(0) − a(∞), the same argument as above
applies. For νa(0) + 3a(∞) we move two of the factors of a(∞) “onto the other
sheet” by using the Abel mapping on the Riemann surface R defined in the proof
of Lemma 10 to write νa(0) + 3a(∞) = ã(Qν(0)) + ã(Q+(∞)) − 2̃a(Q−(∞)).
Thus applying the Abel-Jacobi Theorem it is sufficient to prove that there can be no
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meromorphic function k(Q) on R that does not vanish identically and has only one
double pole at Q−(∞) and simple zeros at Qν(0) and Q+(∞). Using the “coordinate”
meromorphic functions z(Q) and r̃(Q) defined on R as in the proof of Lemma 10,
every nonzero function with a double pole at Q−(∞) and at worst a simple pole at
Q+(∞) is necessarily a nonzero multiple of

k(Q) = z(Q)2 − r̃(Q) + c1z(Q) + c2

for constants c1 and c2. Since z(Qν(0)) = 0 and r̃(Qν(0)) = νr(0) = R(0) = 4s,
enforcing the condition k(Qν(0)) = 0 requires taking c2 = 4s = ±4. Now, the
expansion r(z) = R(z) = z2 + 2μz + 4κ + O(z−1) as z → ∞ implies also that
r̃(Q) = z(Q)2 + 2μz(Q)+ 4κ +O(z(Q)−1) as Q → Q+(∞). Therefore, enforcing
the condition that k(Q) be analytic at Q = Q+(∞) requires taking c1 = 2μ, and then
demanding further that k(Q+(∞)) = 0 requires taking c2 = 4κ . But since κ �= ±1,
this is a contradiction with c2 = 4s = ±4. Hence no such function k(Q) exists, and
the proof is finished. An alternative indirect proof can be based on the differential
equation (1.18) and the results of Sect. 7.8. �	

Using the fact that Re(Hω) < 0 (implying that 2π i and Hω are linearly indepen-
dent over R), we can solve for Na and Nb and hence express these conditions as
“quantization rules”. Thus, Ŭ [ j]

F (ζ ;μ) vanishes if and only if

(
Z

[ j]
1,a = Na ∈ Z and Z

[ j]
1,b = Nb ∈ Z

)
or

(
Z

[ j]
2,a = Na ∈ Z and Z

[ j]
2,b = Nb ∈ Z

)
(7.70)

and blows up if and only if

(
P

[ j]
1,a = Na ∈ Z and P

[ j]
1,b = Nb ∈ Z

)
or

(
P

[ j]
2,a = Na ∈ Z and P

[ j]
2,b = Nb ∈ Z

)
(7.71)

where

Z
[ j]
k,a := Re(H∗

ω(� − z
[ j]
k ))

2πRe(Hω)
and Z

[ j]
k,b := − Im(� − z

[ j]
k )

Re(Hω)
,

P
[ j]
k,a := Re(H∗

ω(� − p
[ j]
k ))

2πRe(Hω)
and P

[ j]
k,b := − Im(� − p

[ j]
k )

Re(Hω)
.

Using (7.26) and expressing c and Hω in terms of the elliptic periods Za,b by c = Za

and Hω = 2π iZb/Za, these expressions are exactly the left-hand sides in (1.32)–
(1.33).

7.10 Residues of the Approximations at theMalgrange Divisor

The goal of this section is explain what happens to the approximations of the rational
functions near points in the parameter space where the approximations fail to exist.
On one hand, this will allow us to explain how Bäcklund transformations can be used
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to circumvent the non-existence issue. On the other hand, we will then be able to
identify zeros of a particular theta-function factor with approximations of zeros of the
gH and gO polynomials themselves and thus prove Corollary 3 of Sect. 1.4 subject to
the hypotheses in Sect. 7.2.

The Malgrange divisor of Riemann–Hilbert Problem 2 in Sect. 7.6.1 is the set of
parameter values for which there is no solution of that problem. By Lemma 10 of the
same section, it is equivalently characterized by either of the conditions ϑ(a(∞) +
a(z0) + K ∓ i�) = 0. According to the formulæ (7.42) and (7.49) and Lemma 11
in Sect. 7.9, the Malgrange divisor gives rise to exactly one simple pole per period
parallelogram in the ζ -plane of each of the elliptic functions Ŭ [3]

F (ζ ;μ) and Ŭ [1]
F (ζ ;μ).

Each of these functions has one additional simple pole (of opposite residue) and two
simple zeros in each parallelogram. From the differential equations (1.18) and (7.60)
satisfied by Ŭ [3]

F (ζ ;μ) and Ŭ [1]
F (ζ ;μ) respectively, it is easy to see that each simple

pole has residue ±1.

7.10.1 Malgrange Residues of Ŭ[3]
F

We now calculate the sign of the residue for the pole of Ŭ [3]
F (ζ ;μ) at the Malgrange

divisor. We do this by applying a homotopy argument: the desired residue is a con-
tinuous function of the parameters in the formula for Ŭ [3]

F (ζ ;μ) such as μ, provided
the spectral curve remains nondegenerate, i.e., of class {1111}. In fact, the formula for
Ŭ [3]
F (ζ ;μ) depends on these parameters through (i) the phase ξ (see (7.26)) and (ii) the

distinct roots α, β, γ , and δ. If the latter parameters are given instead, then Ŭ [3]
F (ζ ;μ)

is determined as an elliptic function of ζ . In other words, neither the explicit formula
for Ŭ [3]

F (ζ ;μ) nor the argument that it satisfies the differential equation (1.18) with
P(z) taken in the form P(z) = (z − α)(z − β)(z − γ )(z − δ) requires the specific
relation between E , μ, and κ determined by the Boutroux conditions (4.23). Indeed,
the latter relation is needed only to control the approximation of the matrix O(z) by
its parametrix Ŏ(z). Therefore, we will write Ŭ [3]

F (ζ ) for Ŭ [3]
F (ζ ;μ) and compute

the desired residue as a continuous function of the parameters ξ , α, β, γ , and δ by
a suitable (generally artificial) homotopy that need not be consistent with varying μ
and solving (4.23) for E . That said, since the residue is either 1 or −1, it will remain
constant along such a homotopy. The homotopy we select is to fix ξ and to deform the
given roots (α, β, γ, δ) to the points (2eiπ/4, 2e3iπ/4, 2e5iπ/4, 2e7iπ/4) without allow-
ing any intermediate degeneration. (Note that the target configuration is the actual root
configuration for μ = 0 and κ = 0, which also yields E = 0; hence it is reachable
by homotopy in μ if initially μ ∈ B�. It is not clear whether it can be reached by
such a homotopy if initially μ ∈ B� ∪ B�, but it is not necessary either.) In the final
configuration we have, from (7.21), that z0 = ∞. By expanding the Abel map a(z0)
for large z0, one sees that as the target configuration is approached in the parameter
space,

z0ϑ(a(∞) − a(z0) − K) → −2π i

c
ϑ ′(K)
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where the constants c and K are determined from the target configuration. Therefore,
from (7.42) and (7.43) we have, in the target configuration

Ŭ [3]
F (ζ ) = −2π i

c

ϑ(2a(∞) + K)ϑ ′(K)
ϑ(a(0) + a(∞) + K)ϑ(a(0) − a(∞) − K)

·ϑ(a(0) + a(∞) + K − i�)ϑ(a(0) − a(∞) − K + i�)

ϑ(2a(∞) + K − i�)ϑ(i� − K) .

Now we compute the residue at a zero of the factor ϑ(2a(∞)+K− i�). Taking into
account (7.26) for the ζ -dependence of�, and evaluating the residue at i� = 2a(∞)

gives

Res
ζ :i�=2a(∞)

Ŭ [3]
F (ζ ) = − ϑ(2a(∞) + K)

ϑ(a(0) + a(∞) + K)ϑ(a(0) − a(∞) − K)

·ϑ(a(0) − a(∞) + K)ϑ(a(0) + a(∞) − K)
ϑ(2a(∞) − K) .

Finally, using (7.23) and K = −K + 2π i + Hω we get

Res
ζ :i�=2a(∞)

Ŭ [3]
F (ζ ) = −e−Hω/2eK = 1

in the target configuration. Applying the homotopy argument then shows that the
residue is also +1 in the arbitrary initial configuration.

7.10.2 Malgrange Residues of Ŭ[1]
F and Ŭ[2]

F

With this result established, we now use the differential relation (7.58) where Ŭ (ζ ) =
Ŭ [3]
F (ζ ) and Ŭ�

�
(ζ�
�
) = Ŭ [1]

F (ζ�
�
) with ζ�

�
=
√

1
2 (1 − sκ)ζ to find that at the simple

poles corresponding to the Malgrange divisor,

Res Ŭ [1]
F (ζ ;μ) = −1.

Finally, it follows directly that the residue of Ŭ [2]
F (ζ ;μ) = iŬ [1]

F (−iζ ;−iμ) at the
Malgrange divisor is

Res Ŭ [2]
F (ζ ;μ) = 1.

7.10.3 Removal of the Condition (�, �, T) ∈ S(�)

The final step in the proof of Theorems 3 and 4 of Sect. 1.4 under the hypotheses
in Sect. 7.2 is to remove the condition that (μ, ζ, T ) ∈ S(ε), which bounds ζ away
from the Malgrange divisor. For each (μ, T ), the Malgrange divisor is a uniform lat-
tice �M in the ζ -plane with lattice vectors determined from μ and κ and an offset
involving T . The lattice �M consists of all poles of the elliptic function Ŭ [1]

F (ζ ) of
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residue −1 (equivalently all poles of the elliptic function Ŭ [3]
F (ζ ) of residue 1). The

poles of Ŭ [1]
F (ζ ) of residue 1 form a lattice �[1]

+ congruent to �M but, by Lemma 11

of Sect. 7.9, having a different offset. Likewise, the poles of Ŭ [3]
F (ζ ) of residue −1

form another congruent lattice �
[3]
− disjoint from �M. Let δ > 0 be sufficiently

small given ε > 0 that a δ-neighborhood of �[1]
+ and �[3]

− is contained within S(ε).
Then u[1]

F (T 1/2μ+T −1/2ζ ; m, n)−1 = T −1/2(Ŭ [1]
F (ζ )−1+O(T −1)) holds uniformly

for bounded ζ in a δ-neighborhood of �[1]
+ and u[3]

F (T 1/2μ + T −1/2ζ ; m, n)−1 =
T −1/2(Ŭ [3]

F (ζ )−1 + O(T −1)) holds uniformly for bounded ζ in a δ-neighborhood

of �[3]
− . Applying a standard perturbation argument based on the Analytic Implicit

Function Theorem, one sees that each point of �[1]
+ attracts exactly one simple

pole of u[1]
F (T 1/2μ + T −1/2ζ ; m, n) and each point of �[3]

− attracts one simple pole

of u[3]
F (T 1/2μ + T −1/2ζ ; m, n), of positive and negative residue, respectively. The

attracted poles lie within a distance of O(T −1) from the corresponding attracting
lattice points in any given bounded region of the ζ -plane. Every pole of the opposite
residue is necessarily attracted to a point of theMalgrange divisor lattice�M, but since
the error terms cannot be controlled near this lattice we cannot say for sure whether
there might be clusters of additional poles attracted to these lattice points as well.
We may calculate the winding number index of the rational solution about a circle of
radius ε centered at a point of �M, but this only shows that any excess poles must be
paired with an equal number of zeros; computing the integral of the rational solution
around this circle and applying the Residue Theorem shows that further there must be
an equal number of excess poles of opposite residues.

Recall that theBoiti-Pempinelli symmetryS� discussed in Sect. 2 yields the identity
u[3]
F (x; m, n) = iu[3]

F (−ix; n,m) (cf. (2.2)). It follows easily that poles of residue ±1

of u[3]
F (·; m, n) correspond under rotation of the argument by π

2 to poles of residue

∓1 of u[3]
F (·; n,m). The poles of u[3](·; m, n) of residue −1 whose isolated images

in the ζ -plane lie close to the lattice �[3]
− are now poles of residue 1 of u[3]

F (·; n,m).
Being as those poles are isolated in the (rotated) ζ -plane, a residue integral calculation
shows that each one must lie close to a lattice point at which the elliptic function
approximation of u[3]

F (·; n,m) has a pole of residue 1. That approximation can be

obtained by a different case of the asymptotic analysis of u[3]
F (·; m, n) in which the

indices (m, n) are permuted, corresponding in the limit to a change of sign of κ∞. But
in the approximation of any rational solution of type 3, poles of the approximating
function of residue 1 form the Malgrange divisor of the corresponding instance of
Riemann–Hilbert Problem 2 from Sect. 7.6.1. This is an indirect proof that in fact each
such pole attracts exactly one pole of the same residue, even though the error has not
been controlled directly near theMalgrange divisor. However, to provide this control is
now easy, since u[3]

F (T 1/2μ+T −1/2ζ ; m, n)−1 and its elliptic function approximation
are both analytic in an ε-neighborhood of�M. Indeed, it follows that the error term is
also analytic on this neighborhood, so applying the maximum modulus principle on
each ε-disk centered at a point of�M proves that the error term is uniformly small on
the disk since it is small on the boundary by the primary estimate valid on S(ε).
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To deal with the function u[1]
F (x; m, n), we compose S� with the symmetry S�

�
also

discussed in Sect. 2, which maps rational solutions of type 1 to solutions of type 3
(cf. (2.5)). It is easy to check that the composite transformation S�

�
◦ S� ◦ S−1

�
�

maps
u[1]
F (x; m, n) to another function of type 1 with different (large) indices, and again the

transformation has the effect of rotation in the complex x-plane that swaps the signs
of the residues without introducing any new poles or removing any preexisting ones.
So the same argument applies again to show that u[1]

F (T 1/2μ + T −1/2ζ ; m, n)−1 =
T −1/2(Ŭ [1]

F (ζ )+O(T −1)) holds uniformly near all poles for ζ bounded, whether they
lie near the Malgrange divisor or not.

At last this completes the proof of Theorems 3 and 4 from Sect. 1.4 conditioned on
the proper identification of the Boutroux domains B�, B�, and B� hypothesized in
Sect. 7.2.

7.10.4 Accurate Approximation of Poles and Zeros of Rational Painlevé-IV Solutions.
Zeros of the gH and gO Polynomials.

We are now also in a position to give the proof of Corollary 2 from Sect. 1.4 under the
hypotheses in Sect. 7.2.

Proof of Corollary 2 Setting ζ = 0, let μ be a value satisfying one of the conditions
in (7.70) or (7.71). Fixing this value of μ, and letting ζ be free, either f (ζ − ζ0) in
the former case or f (ζ − ζ0)

−1 in the latter case has a simple zero at ζ = 0. Putting
an artificial coefficient δ ∈ [0, 1] on the O(T −1) perturbing term in Theorem 3 or 4
of Sect. 1.4, it then follows from the Analytic Implicit Function Theorem that there
is a unique simple zero of either u(x) or its reciprocal that depends on δ and persists
up to δ = 1 when (m, n) are sufficiently large and hence T −1 is sufficiently small.
As an analytic function of δ, this zero obviously satisfies ζ = O(T −1), which under
x = T 1/2μ+ T −1/2ζ can also be interpreted as a perturbation of μ of order O(T −2)

for ζ = 0.
Note that we actually cannot fix a value μ, because the possible values of μ for

ζ = 0 depend strongly on (m, n). But we can always select a sequence of values of
μ depending on (m, n) large and lying within the fixed compact set C and perform
the computation separately for each (m, n). Since by Theorems 3 and 4 the size of the
O(T −1) error term is uniform given C , the proof is complete. �	

The proof of Corollary 3 (also from Sect. 1.4) under the same hypotheses then
follows easily.

Proof of Corollary 3 According to the logarithmic derivative formulæ (1.5) and (1.10)
and the expressions for the type-1 tau functions τ [1]

F (x; m, n) given for families F = gH
and F = gO in Tables 1 and 2 respectively (see Sect. 1.2), the roots of the polynomials
Hm,n(x) and Qm,n(x) are precisely the poles of residue−1 of u[1]

F (x; m, n). According
to Corollary 2, these are approximated by the points in the Malgrange divisor for
Riemann–Hilbert Problem 2 of Sect. 7.6.1, which one can check satisfy (7.71) for
k = 2. �	
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8 Boundary Curves andMaximal Boutroux Domains

In this section, we complete the proofs of the theorems stated in Sect. 1.4 by identifying
for each family of rational solutions the boundaries of the different zero/pole regions
and the exterior region (and showing that they coincide along some arcs).

8.1 Universal Condition for Phase Transitions

Recall from Sects. 5.5 and 6.5 that all possible generic obstructions to the continuation
of asymptotic formulæ for the Painlevé-IV rational solutions from a neighborhood of
μ = ∞ into the finite μ-plane are the generic bifurcation points (see Definition 4 in
Sect. 5.5) captured by conditions of the form Re(h(γ )) = 0, where γ is the double
root of a polynomial P(z) for a spectral curve of class {211}; nongeneric bifurcations
occur at points (μ, γ ) that are branch points of the quartic equation (4.19). Likewise,
the elliptic approximations developed in Sect. 7.7 are valid on Boutroux domains with
certain fixed abstract Stokes graphs, and in Sect. 4.4 it was shown that all boundary
points of anyBoutroux domain correspond to degenerateBoutroux curves. Lettingμ ∈
B approach the boundary, the generic (i.e., corresponding to case {211}) mechanism
of degeneration is that a pair of simple roots of P coalesces into a double root γ and
there remain two distinct simple roots α and β; nongeneric degenerations to case {31}
again correspond to branch points of (4.19). If a is the cycle that encloses the roots that
coalesce into γ , then it is obvious that

∮
a v dz → 0 in the limit, so the only nontrivial

Boutroux condition is the limiting form of Re(
∮
b v dz) = 0, which can also be written

in the form Re(h(γ )) = 0 where h corresponds to the class {211} spectral curve at
the boundary point. It follows that both types of phase transitions are captured by
conditions of the same universal form:

Re

(∫ γ

α

√
(z − α)(z − β)

z − γ

z
dz

)
= 0 (8.1)

in which α, β, and γ depend on μ by (4.18). In particular (μ, γ ) is a point on the
Riemann surface � of Definition 1 from Sect. 5. In this section, we determine all
relevant solutions of (8.1), which are curves in the μ-plane.

8.2 Curves in an Auxiliary Coordinate Plane

We first find a parametrization of all solutions of (8.1), and later we will determine
which solutions are relevant. For given κ ∈ (−1, 1) we therefore consider (μ, γ ) to
lie on any sheet of � = �(κ). Recall that at the beginning of Sect. 5.1 it was shown
that the function z �→ Re(h(z)) is single valued on a two-sheeted Riemann surfaceR
over the z-plane. Upon evaluating at z = γ we obtain a single-valued function on a
two-sheeted covering, denoted Y , of the Riemann surface �.
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8.2.1 Rational Parametrization of 0

In fact, Y can be identified as a two-sheeted covering of the Riemann sphere, because
the quartic (4.19) defining � can be rationally parametrized, as we will now show.
Noting the symmetry Q(−γ,−μ; κ) = Q(γ, μ; κ) of the polynomial in (4.19), we
introduce the invariant quantities p := μγ and q := γ 2 and hence (4.19) becomes a
bi-quadratic equation in (p, q) that can be written in the form

(
1

2
q − 2κ

)2

− (p + q)2 = −4(1 − κ2) < 0. (8.2)

Noting the sign of the right-hand side for κ ∈ (−1, 1),we use a rational parametrization
based on stereographic projection via the identity (at −at−1)2−(at +at−1)2 = −4a2

with a = √
1 − κ2 > 0. Hence we can identify q and p in (8.2) with

p = p(t) = −
√
1 − κ2(t − 3t−1)− 4κ and q = q(t) = 2

√
1 − κ2(t − t−1)+ 4κ.

(8.3)
In particular, μ2 = p2/q is explicitly given by

μ2 = μ2(t) =
√
1 − κ2

2
· (t

2 + 4wt − 3)2

t(t2 + 2wt − 1)
, w := κ√

1 − κ2
. (8.4)

Given t , if μ2 �= 0 then from each choice of the square root to determine μ we
obtain a unique corresponding value of γ from γ = p/μ. Therefore each t ∈ C

generates a symmetric pair of points (μ, γ ) and (−μ,−γ ) on the Riemann surface �
of Definition 1. Conversely, given a point (μ, γ ) ∈ �, we can project to the t-sphere
by the explicit mapping

(μ, γ ) �→ (p = μγ, q = γ 2) �→ t = 2p + 3q − 4κ

4
√
1 − κ2

. (8.5)

Note that κ �→ w is a strictly increasing function of (−1, 1) ontoR. Also representing
κ with the parametrization (4.28) by ϕ ∈ (−π, π) we have simply w = tan( 12ϕ).

8.2.2 Relating the Condition Re(h(�)) = 0 to the v-Trajectories of a Rational
Quadratic Differential

Now, 	(t) := −4(h(γ ) − h(α)) is a multivalued function on Y due to purely real
residues at its poles and the ambiguity of integration contour, but locally it can be
written as

	(t) =
∫ γ (t)

α(t)

√
(z − α(t))(z − β(t))

z − γ (t)

z
dz (8.6)

for some branch of the square root that is continuous along the unspecified path of
integration, and in which α and β are determined up to permutation symmetry in terms
of (μ, γ ) from (4.18), and (μ, γ ) are in turn related by (4.19). Thus after rational
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parametrization and choice of square roots in obtaining (μ, γ ) from (p = μγ, q =
γ 2), α, β, and γ become functions of t . Differentiation with respect to t using the fact
that the integrand vanishes at z = α and z = γ gives

	′(t) = −1

2

∫ γ (t)

α(t)

P2(z; t) dz

z
√
(z − α(t))(z − β(t))

, (8.7)

where P2(·; t) is the quadratic polynomial

P2(z; t) := [
2γ ′(t) + �′(t)

]
z2 − [$′(t) + γ (t)�′(t) + 2�(t)γ ′(t)

]
z

+γ (t)$′(t) + 2$(t)γ ′(t),

in which �(t) := α(t) + β(t) and $(t) := α(t)β(t). Implicit differentiation of the
identity$ = 16γ−2 (cf. (4.20)) proves that P2(0; t) vanishes identically, so P2(z; t)/z
is the linear function

P1(z; t) := P2(z; t)

z
= [

2γ ′(t) + �′(t)
]

z − [$′(t) + γ (t)�′(t) + 2�(t)γ ′(t)
]
.

Now, the derivative with respect to z of (z − α(t))(z − β(t)) is also a linear function
of z, namely 2z − �(t). It turns out that P1(z; t) is proportional to the latter linear
function, and thismakes the integrand in (8.7) the z-derivative of an algebraic function,
allowing the integral to be evaluated explicitly. For this, it is sufficient to check that
the root of P1(z; t) agrees with that of 2z − �(t), i.e., that Z(t) ≡ 0, where

Z(t) := 2($′(t) + γ (t)�′(t) + 2�(t)γ ′(t)) − �(t)(2γ ′(t) + �′(t)).

Eliminating $′(t), �(t), and �′(t) in favor of γ (t) and μ(t) and their derivatives
using (4.20) and implicit differentiation yields

Z(t) = −64γ (t)−3γ ′(t) − 16γ (t)μ′(t) − 16μ(t)γ ′(t) − 12γ (t)γ ′(t) − 16μ(t)μ′(t)

so Z(t) = F ′(t) where F(t) may be taken to be

F(t) := 32γ (t)−2 − 16μ(t)γ (t) − 6γ (t)2 − 8μ(t)2

= − 6

γ (t)2

[
γ (t)4 + 8

3
μ(t)γ (t)3 + 4

3
μ(t)2γ (t)2 − 16

3

]
.

Therefore, using (4.19) we find that in fact F(t) = 16κ , so indeed Z(t) = F ′(t) = 0
holds. Therefore

P1(z; t) = P2(z; t)

z
=
(
γ ′(t) + 1

2
�′(t)

)
(2z − �(t)) = −2μ′(t)(2z − �(t)),
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where in the last equality we have again used implicit differentiation in (4.20). Using
this in (8.7) gives

	′(t) = μ′(t)
∫ γ (t)

α(t)

2z − �(t)√
(z − α(t))(z − β(t))

dz

= 2μ′(t)
∫ γ (t)

α(t)

d

dz

√
(z − α(t))(z − β(t)) dz

= 2μ′(t)
√
(γ (t) − α(t))(γ (t) − β(t)).

Therefore, 	′(t)2 is well defined in terms of μ′(t)2, μ(t), and γ (t) by

	′(t)2 = 4μ′(t)2(γ (t) − α(t))(γ (t) − β(t))

= 4μ′(t)2(γ (t)2 − �(t)γ (t)+ $(t))

= 4μ′(t)2(γ (t)2 + (4μ(t) + 2γ (t))γ (t) + 16γ (t)−2)

= 4μ′(t)2(3γ (t)2 + 4μ(t)γ (t) + 16γ (t)−2),

where on the penultimate line we used (4.20) to eliminate �(t) and $(t). It happens
that 	′(t)2 is actually a rational function of t . To this end, we first express it as a
rational function of p(t) := μ(t)γ (t) and q(t) := γ (t)2:

	′(t)2 = 4μ′(t)2(3q(t) + 4p(t) + 16q(t)−1)

= (2μ(t)μ′(t))2μ(t)−2(3q(t) + 4p(t) + 16q(t)−1)

=
(
d

dt
μ(t)2

)2

μ(t)−2(3q(t) + 4p(t) + 16q(t)−1)

=
(
d

dt

p(t)2

q(t)

)2
q(t)

p(t)2
(3q(t) + 4p(t) + 16q(t)−1)

=
(
2q(t)p′(t) − p(t)q ′(t)

)2
(3q(t)2 + 4p(t)q(t) + 16)

q(t)4
.

Finally, we introduce the rational expressions (8.3) for p and q in terms of t , which
yields

	′(t)2 = (1 − κ2)
(t4 + 6t2 + 8wt − 3)3

t4(t2 + 2wt − 1)4
, w = κ√

1 − κ2
. (8.8)

We therefore conclude that, since Re(h(α)) = 0, the curves on the t-sphere along
which Re(h(γ )) = 0 for any branch γ of the quartic (4.19) are v-trajectories of
a rational quadratic differential 	′(t)2 dt2 (i.e., curves in the t-sphere along which
	′(t)2 dt2 < 0 holds, cf. Definition 2 in Sect. 5.1).
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8.2.3 Critical Points of8′(t)2 dt2 and the Role of the Critical v-Trajectories

At this juncture we once again remind the reader of the material introduced in Sect. 5.1
and of Definitions 2 and 3 in particular. To study the level curves of Re(	) = 0 on
the t-sphere, we recall the fact that Re(	) is a single-valued function on Y that is
non-constant and takes opposite values on the two sheets of Y . Moreover Re(	) is
harmonic on Y except at finitely many isolated singular points; hence by the same
argument as immediately follows Definition 2 in Sect. 5.1 there can be no divergent
v-trajectories on either Y or on the t-sphere (the latter being the projections of the
former), and by the Basic Structure Theorem [39, pg. 37] the closure Kt of the union
of v-trajectories emanating from the zeros of 	′(t)2 divides the t-sphere into a finite
union of end domains, circle domains, ring domains, and strip domains. The immediate
goal is to show that Kt is exactly the zero-level set on the t-sphere of Re(	(t)).

First consider the zeros of 	′(t)2 dt2, i.e., the roots of the polynomial Z(t) :=
t4 +6t2 +8wt −3 that do not coincide with any zeros of the denominator. For realw,
Z(t) has real coefficients and its discriminant is proportional to (w2+1)2 which cannot

vanish for anyw ∈ R. Forw = 0, the roots are an opposite real pair t = ±
√
2
√
3 − 3

and a (purely imaginary) complex conjugate pair t = ±i
√
2
√
3 + 3. Since the roots

must retain Schwarz symmetry and remain distinct asw ∈ R varies, and since no root
can vanish for anyw becauseZ(0) < 0, this basic structure persists for allw ∈ R. We
label the real roots as a(w) < 0 < b(w) and the complex conjugate roots as τ(w) and
τ(w)∗ with Im(τ (w)) > 0. Next consider the finite poles of	′(t)2 dt2, i.e., t = 0 and
the roots ofP(t) := t2+2wt−1 (since	′(t)2 has afinite nonzero limit as t → ∞ there
is also a pole at t = ∞ in the local coordinate 1/t). The roots ofP(t) are t = t±∞(w) :=
−w ± √

w2 + 1, and we compute that Z(t±∞(w)) = 1 + 2w2 ± 2w
√
1 + w2. Since

(1 + 2w2)2 = (2w
√
1 + w2)2 + 1 we have Z(t±∞(w)) > 0, so the poles t = t±∞(w)

therefore lie outside the interval [a(w), b(w)]. Moreover t+∞(w)t−∞(w) = −1, so we
have the strict ordering t−∞(w) < a(w) < 0 < b(w) < t+∞(w). Since this shows
that none of the four distinct roots of Z(t) coincides with a zero of the denominator
of 	′(t)2, these are all third-order zeros of 	′(t)2 dt2. Likewise, the four poles of
	′(t)2 dt2 on the t-sphere are all fourth-order poles.

Upon taking a square root, we see that the four zeros and the four poles of	′(t)2 dt2

on the t-sphere are the only points of nonanalyticity of	′(t) and hence of any branch
of 	(t). The four poles are clearly mapped out of the finite μ-plane by (8.4), while
the four zeros are taken to finite values of μ. We claim that these finite values of μ are
necessarily solutions of the branch point equation B(μ; κ) = 0 (cf. (1.17) in Sect. 1.3).
Indeed, if t corresponds to a point on � that is not a branch point (i.e., γ (t) is not a
double root of (4.19) forμ = μ(t)), then the integral formula (8.6) for	(t) obviously
has an analytic t-derivative determined up to a sign (because γ (t) is distinct from α(t)
and β(t) and the latter are analytic functions of t). Therefore, if Z(t) = 0 making
	′(t) nonanalytic, then (μ(t), γ (t)) is a branch point of � and hence B(μ(t); κ) = 0
for μ(t) = ±√μ2(t) as B(μ; κ) is the discriminant of (4.19).

The condition Z(t) = 0 therefore implies that γ (t) is a double root of (4.19)
for μ = μ(t), and furthermore γ (t) coincides with either α(t) or β(t). From the
formula (8.6) we obtain that Z(t) = 0 implies that Re(	(t)) = 0. Therefore the four
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third-order zeros of 	′(t)2 dt2 are all points on the zero-level set of Re(	(t)), as are
all points on the v-trajectories emanating from these points. Since 	′(t)2 dt2 has no
simple poles to generate any further critical v-trajectories, the closure Kt of the union
of critical v-trajectories is contained within the zero-level set of Re(	(t)).

The complement in the t-sphere of the closure of the union of critical v-trajectories
generally consists of finitely many disjoint end, strip, circle, and ring domains (cf.
Definition 3 in Sect. 5.1). However there cannot be any strip or ring domains because
by definition each such domain supports a single-valued branch of Re(	(t)) taking
distinct values on disjoint components of its boundary, in contradiction to the assertion
that Re(	(t)) = 0 holds unambiguously on all critical v-trajectories. There are no
circle domains either, because	′(t)2 dt2 has no double poles. So all domains are end
domains. By definition, each end domain is mapped by a single-valued analytic branch
of	(t) onto the open right or left half-plane. Therefore there can be no interior points
of any end domain with Re(	(t)) = 0, i.e., there are no components of the zero-level
set of Re(	(t)) not already contained in Kt .

8.2.4 Local Structure of the Critical v-Trajectories

Since the (two real and two complex conjugate) zeros of 	′(t)2 dt2 are triple roots,
there are five critical v-trajectories emanating from each at equal angles of 2π

5 . For
the real zeros we can say more: by Schwarz symmetry there is exactly one of the five
v-trajectories from each of t = a(w) and t = b(w) that is contained in the real line.
Since each of the four poles of 	′(t) dt2 on the t-sphere is of order 4, and since there
are no strip domains in this problem, each pole has a neighborhood that is covered by
the closure of the union of two disjoint end domains, and there are exactly two critical
v-trajectories tending to each pole in opposite directions. Since all four poles lie on
the real equator of the t-sphere, by Schwarz symmetry these two critical v-trajectories
are either contained in the equator or have tangents at the pole that are perpendicular
to the equator.

8.2.5 Global Structure of the Critical v-Trajectories

Since exactly five critical v-trajectories emanate from each of four zeros of	′(t)2 dt2,
the union of these consists of finitely many (≤ 20) analytic arcs. Since there are
no divergent v-trajectories, each arc emanating from a zero terminates at a zero (the
same one in a different direction, or another one) or at one of the poles (either from
within the real t-axis/equator or perpendicular to it). This system of arcs is symmetric
under Schwarz reflection through the real t-axis/equator. Note that 	′(t)2 > 0 for
t < a(w) and t > b(w) while 	′(t)2 < 0 for a(w) < t < b(w). Therefore, the real
intervals (a(w), 0) and (0, b(w)) are both critical v-trajectories and no other critical
v-trajectories can terminate at the pole t = 0. Also, the critical v-trajectories that
terminate at each of the three nonzero poles on the equator have tangents perpendicular
to the equator. Moreover, fixing the positive square root of 	′(t)2 in the interval
b(w) < t < t+∞(w) and integrating from t = b(w) one can easily see that no critical
v-trajectory can cross the real axis in this interval because 	(t) − 	(b(w)) > 0.
Continuing 	(t) around the pole at t = t+∞(w) one can find a point in the interval
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t+∞(w) < t < +∞ at which Re(	(t)) is finite; then by integration along the real
line from this point one sees that Re(	(t)) is strictly monotone with range R on
t+∞(w) < t < +∞ and therefore there is exactly one point t+0 (w) in this interval at
which Re(	(t)) = 0 and hence a critical v-trajectory crosses the real axis exactly
at this point and nowhere else in the interval. Similarly, no critical v-trajectory can
cross the real axis in the interval t−∞(w) < t < a(w) but there is a unique point
t−0 (w) < t−∞(w) such that a critical v-trajectory crosses the interval t < t−∞(w) at
t = t−0 (w) and nowhere else.

Now consider the critical v-trajectories emanating from zeros of	′(t)2 dt2 into the
open upper half-plane/hemisphere. There are two such v-trajectories emanating from
each of the real zeros t = a(w) and t = b(w) (their Schwarz reflections enter the
lower half-plane, and the remaining v-trajectory from each is real), and five emanating
from t = τ(w) which lies in the open upper half-plane, for a grand total of nine arcs.
Exactly one of these arcs terminates on the boundary of the upper hemisphere at each
of the three nonzero poles t = t−∞(w), t = t+∞(w), and t = ∞ lying on the equator.
Exactly two more arcs exit the upper hemisphere by crossing the equator at the points
t = t−0 (w) and t = t+0 (w). Therefore, there remain 9 − 5 = 4 critical v-trajectory
arcs that emanate into the upper hemisphere from one zero and terminate at the same
or another zero of 	′(t)2 dt2. An application of Lemma 4 from Sect. 5.1 shows that
such an arc cannot originate from and return to the same zero without encircling a
pole, hence without exiting the upper hemisphere since the poles lie on the equator.
Therefore the four arcs in question connect the three zeros of 	′(t)2 dt2 in the closed
upper hemisphere in pairs, i.e., there are really just two such critical v-trajectories,
each with two distinct endpoints. It is easy to see that the only possibilities are:

• t = a(w) connected to both t = τ(w) and t = b(w) with different v-trajectories;
• t = b(w) connected to both t = a(w) and t = τ(w) with different v-trajectories;
• t = τ(w) connected to both t = a(w) and t = b(w) with different v-trajectories.

Each of these gives rise to a Jordan curve composed of v-trajectories and their end-
points, but unfortunately applying Lemma 4 to this curve does not rule out any of these
options.

Consider then the special case w = 0. If w = 0, then 	′(t)2 is an even function
of t and this implies that the global structure of the critical v-trajectories is symmetric
with respect to reflection through the origin t �→ −t in addition to the Schwarz
reflection through the real t-axis. One then has a(0) = −b(0), t−0 (0) = −t+0 (0),
and t−∞(0) = −t+∞(0), and the existence of a v-trajectory connecting t = τ(0) with
t = a(0) implies the existence of a v-trajectory connecting t = τ(0) with t = b(0)
and vice-versa. Hence only the third option is possible. Lemma 4 then shows that the
interior angles at the vertices t = a(0), t = τ(0), and t = b(0) of the critical v-
trajectory “triangle” with real leg (a(0), 0)∪ (0, b(0)) are all 2π

5 . Since v-trajectories
cannot cross at regular points, it is easy to see that the remaining v-trajectory entering
the upper hemisphere from t = b(0) terminates at the pole t = t+∞(0), the remaining
v-trajectory entering the upper hemisphere from t = a(0) terminates at the pole
t = t−∞(0) (by symmetry), and two of the three remaining v-trajectories entering the
upper hemisphere from t = τ(0) exit the hemisphere at the points t = t±0 (0) while
the third terminates at the pole t = ∞ on the equator. Applying Schwarz reflection
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Fig. 29 The critical v-trajectories (black) and some noncritical v-trajectories (gray) of	′(t)2 dt2 (numeri-
cally generated) forw = 0 (left panel) andw = 0.2 (right panel). Also shown are the zeros (cyan) and finite
poles (red) of	′(t)2, which together with the black curves form Kt . The pink and blue shaded regions are
S∞ = SgH and S0 = SgO respectively defined in Sect. 8.4 (Color figure online)

to obtain the v-trajectories in the lower hemisphere, the global critical v-trajectory
structure is therefore determined for the special case w = 0.

We next show that the third option persists for all w ∈ R. To do this, we first
observe that the condition that there is no critical v-trajectory connecting a given pair
of zeros of 	′(t)2 dt2, say t = t1(w) and t = t2(w) is open with respect to w ∈ R.
Indeed, let C ⊂ C be a circle in the finite t-plane with t1(w) in its interior and t2(w)
in its exterior, and assume that C consists entirely of points t with 	′(t)2 finite and
nonzero. Let A j (w) denote the finite set of points on C that lie on v-trajectories
emanating from t = t j (w), j = 1, 2. A v-trajectory connects t1(w) and t2(w) if
and only if A1(w) ∩ A2(w) �= ∅. Defining d(w) as the minimum arc length distance
along C between points of A1(w) and A2(w) (and taking d(w) = +∞ if either
A1(w) or A2(w) is empty), we can see that d(w) ≥ 0 and d(w) = 0 if and only if
A1(w) ∩ A2(w) �= ∅. One can also show that d(w) is lower semicontinuous on R,
and therefore the inverse image of d > 0 is open, which proves the observation. Now
consider the open set w ∈ G ⊂ R for which a(w) and b(w) are not connected by a
v-trajectory of	′(t)2 dt2. Consider also the closed setw ∈ F ⊂ R for which there is a
v-trajectory connecting a(w)with τ(w) and another v-trajectory connecting b(w)with
τ(w). An examination of the three options above shows that F = G, as both conditions
correspond to the third option. Moreover w = 0 obviously belongs to F = G, so the
latter is nonempty. Since R is connected, it then follows that F = G = R.

The global structure of critical v-trajectories for 	′(t)2 dt2 is illustrated for two
values of w ∈ R in Fig. 29.

This completes the characterization of all solutions of (8.1) as the locus Kt in the
auxiliary t-sphere.
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8.3 Abstract Stokes Graphs for Degenerate Boutroux Curves

The Stokes graph of a degenerate Boutroux curveR is still defined as the closure Kz of
the union of critical v-trajectories of  (z) dz2 with  (z) := 1

16 z−2P(z) (see Sect. 7.1)
but now the quartic P(z) has fewer than four roots, being in case {31} (two roots, one
being simple) or {211} (three roots, two being simple). In the latter case (of smaller
codimension), Kz connects the double zero z = γ of  (z) dz2 to either the simple zero
z = α or the simple zero z = β (or both). The corresponding abstract Stokes graph
has two vertices of degree 3 (the simple zeros), one vertex of degree 4 (the double
zero), and the four special vertices of degree 1 for the four directions at z = ∞. It is
planar, and has 5 faces just like in the nondegenerate case. By Euler’s formula there
are exactly 7 edges.

Since the degenerate Boutroux curves of class {211} correspond to points on open
critical v-trajectories of 	′(t)2 dt2 in the t-plane, the abstract Stokes graph is an
invariant on each of the two image arcs in the μ-plane of a given critical v-trajectory.
Similarly, the abstract Stokes graph on each image arc is independent of κ ∈ (−1, 1).
Each critical v-trajectory of	′(t)2 dt2 therefore carries a pair of abstract Stokes graphs
for degenerate Boutroux curves of class {211}. These two abstract Stokes graphs are
related by reflection through the origin (this is the symmetry relating (μ, γ ) and
(−μ,−γ ) both of which correspond to the same value of t). We now systematically
determine the abstract Stokes graphs for all critical v-trajectories of 	′(t)2 dt2 in the
t-plane.

We begin by labeling these trajectories as follows: we denote by (t1, t2) the v-
trajectory in the upper half t-plane with endpoints t j , j = 1, 2, and we denote by
(τ, τ ∗)± the v-trajectory joining the indicated points that intersectsR±. It is sufficient
to study these trajectories alone because the set of critical v-trajectories of 	′(t)2 dt2

is Schwarz-symmetric and since t �→ t∗ implies that either (μ, γ ) �→ (μ∗, γ ∗) or
(μ, γ ) �→ (−μ∗,−γ ∗), the quadratic differential  (z) dz2 has reflection symmetry
in either the real or imaginary axis, so the Stokes graphs for t∗ are just the reflections
in the real and imaginary axes of those for t . In particular, if t ∈ R is in the closure
of a critical v-trajectory, then one of its pair of abstract Stokes graphs has to admit
a realization invariant under reflection in the real z-axis. Similarly, since the abstract
Stokes graphs do not depend on κ ∈ (−1, 1), it is sufficient to assume that κ = 0,
in which case the set of critical v-trajectories of 	′(t)2 dt2 is additionally symmetric
in reflection through the imaginary t-axis, as shown in the left-hand panel of Fig. 29.
Therefore, when κ = 0, each Stokes graph for a point −t∗ in the closure of a v-
trajectory is the reflection through the diagonal Im(z) = Re(z) of a Stokes graph for
t .

Assuming κ = 0, the v-trajectory (∞, τ ) lies on the positive imaginary axis in the t-
plane, and furthermore from (8.3)–(8.4) we see that positive imaginary t of sufficiently
large modulus corresponds to positive imaginary values of both μ2 and q = γ 2 but
negative imaginary values of the product p = μγ ; moreover as t = i|t | → ∞we have
μ2 = 1

2 i|t | +O(1), γ 2 = 2i|t | +O(1), and μγ = −i|t | +O(1). From (4.20) we can
then deduce that the simple roots of P(z) are α, β = ±2

√
2eiπ/4|t |−1/2(1+O(t−2))

where the error terms are real and different for each root. Since all roots of P(z) lie
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Fig. 30 The 5 orientations of the “dimer” that unfold a vertex of degree 5. These occur with their reflections
through the origin on the v-trajectories in counterclockwise order around each zero of 	′(t)

exactly on the diagonal and t is imaginary, both opposite Stokes graphs are symmetric
through the diagonal. Using Lemma 4 of Sect. 5.1, one shows that α and β only lie
on the boundary of D◦. It follows that the abstract Stokes graphs for t ∈ (∞, τ ) are
exactly the diagram at the top of Fig. 31 and its opposite.

Moving down the v-trajectory (∞, τ ) we retain symmetry in the diagonal. Upon
arriving at the endpoint t = τ(w) the double root z = γ must collide with exactly one
of the simple roots, so the abstract Stokes graphs for the endpoint t = τ(w) must be
the diagram in the center of the second row in Fig. 31 and its opposite. These graphs
have a vertex of degree 5, which can split into a “dimer molecule” consisting of a pair
of vertices of degrees 3 and 4 joined by one edge. Local analysis shows that near any
zero t of 	′(t), there are 5 possible orientations of the dimer that retain connectivity
of the graph, each of which occurs along precisely one of the 5 v-trajectories that meet
at t . Moreover, rotation about the critical point by an integer multiple of 2π

5 induces a
rotation of the dimer by the same angle; see Fig. 30.

The v-trajectory (τ, τ ∗)+ crosses the positive real axis at a point t > t+∞ which
implies via (8.4) thatμ2 > 0. It follows that at this point the function  (z) is Schwarz-
symmetric, so the Stokes graphs have to be symmetric with respect to reflection in the
real z-axis. This selects exactly one of the dimer orientations and its reflection in the
origin and therefore the abstract Stokes graphs for the v-trajectory (τ, τ ∗)+ are the
right-most diagram in the second row of Fig. 31 and its opposite.

Likewise, since μ2 < 0 when t = b(w), the Stokes graphs for this point have
to be symmetric with respect to reflection in the imaginary axis, and exactly one of
the dimer orientations and its reflection in the origin produce abstract Stokes graphs
admitting a degeneration from class {211} to class {31} that are consistent with this
symmetry. Therefore, these graphs are the second diagram from the right in the third
row of Fig. 31 and its opposite. The degeneration belonging to the point t = b(w)
itself yields the right-most graph in the fourth row of the same figure and its opposite.

Since the graphs for the v-trajectories (τ, b), (t+∞, b), and (0, b) all degenerate into
the {31} graphs for t = b(w), we can obtain the graphs for (t+∞, b) and for (0, b) by
rotating the degenerating dimers in the graphs for (τ, b) through an angle of − 2π

5 and
2π
5 respectively. The abstract Stokes graphs for the v-trajectory (0, b) that arise are
consistent with reflection symmetry in the imaginary axis for the actual Stokes graphs,
as must be so because μ2 < 0 holds for 0 < t < b(w).

Reflecting the abstract Stokes graphs for (τ, τ ∗)+, (τ, b), (t+∞, b), (0, b), and b in
the diagonal Im(z) = Re(z) then produces the abstract Stokes graphs for (τ, τ ∗)−,
(τ, a), (t−∞, a), (a, 0), and a, respectively. This information is summarized in Fig. 31.
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Fig. 31 Abstract Stokes graphs for the critical v-trajectories of	′(t)2 dt2 in the closed upper-half t-plane.
Also shown are the abstract Stokes graphs for the critical points t = a(w), t = b(w), and t = τ(w). The
reflection through the origin of each graph also belongs to the same arc or critical point

8.4 The Domains S0, S∞, and S± in the Auxiliary Plane

Recall that under (8.4) the points on the Riemann surface � of Definition 1 in Sect. 5
that are mapped to μ = ∞ correspond exactly to t = t±∞(w), t = 0, and t = ∞.
It is easy to see by expanding μ2 and q = γ 2 for small t that it is the point t = 0
that is mapped to the point at μ = ∞ on the branch γ = U0,gO(μ; κ) of (4.19) for
which γ = − 2

3μ+O(μ−1) as μ → ∞. Every neighborhood of t = 0 contains parts
of the two critical v-trajectories coinciding with the real intervals a(w) < t < 0 and
0 < t < b(w), and if the neighborhood is sufficiently small these are the only critical
v-trajectories contained. Recall that t−∞(w) < a(w) < 0 < b(w) < t+∞(w) and that
a(w) and b(w) are mapped by μ = ±√μ2(t) to solutions of B(μ; κ) = 0 none of
which can vanish. Then, from (8.4) one sees that the real v-trajectory a(w) < t < 0
is mapped bijectively onto 0 < μ2(a(w)) < μ2 < +∞ while the real v-trajectory
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0 < t < b(w) is mapped bijectively onto −∞ < μ2 < μ2(b(w)) < 0. Upon
taking square roots and recalling the interpretation of critical v-trajectories, we find
that Re(h(U0,gO(μ; κ))) = 0 holds on the four coordinate axes in the μ-plane outside
of the four purely real and purely imaginary solutions of B(μ; κ) = 0. Similarly, by
expanding μ2 and q = γ 2 for large t one sees that t = ∞ is mapped to μ = ∞ on
the branch γ = U [3]

0,gH(μ; κ) of (4.19) for which γ = −2μ + O(μ−1) as μ → ∞,
and that the images of the two critical v-trajectories tending to t = ∞ parallel to the
direction arg(t) = ±π

2 are four unbounded curves in the μ-plane with asymptotic

arguments arg(μ) = ±π
4 ,± 3π

4 along each of which Re(h(U [3]
0,gH(μ; κ))) = 0.

Let us refer to the interior of the closure of the union of the two end domains
abutting the pole at t = 0 (resp., t = t±∞, t = ∞) as S0 (resp., S±, S∞). If we denote
by ∂S the closure in C of the union of critical v-trajectories both of whose endpoints
are zeros of 	′(t)2, then the t-sphere is the disjoint union S0 	 S+ 	 S− 	 S∞ 	 ∂S.
Each of the S j is a domain containing precisely one point that is mapped to μ2 = ∞,
and it is easy to see from (8.4) that

d

dt
μ2(t) =

√
1 − κ2

2
· (t

4 + 6t2 + 8wt − 3)(t2 + 4wt − 3)

t2(t2 + 2wt − 1)2
, (8.9)

and hence the mapping t �→ μ2 is locally univalent near each of these singularities.
Clearly, the only critical points of t �→ μ2 are the four zeros of	′(t)2 and the double
roots satisfying t2 +4wt −3 = 0, all of which are simple critical points. The domains
S∞ and S0 play a distinguished role and are illustrated with red and blue shading
respectively in Fig. 29.

8.5 The Exterior Domain EgH(�) as the Image of S∞

We begin with the following result.

Lemma 12 Let κ ∈ (−1, 1). Then the mapping t �→ μ2 is univalent on S∞.

Proof Suppose that t1 �= t2 are points in S∞ \ {τ(w), τ (w)∗} such that μ2(t1) =
μ2(t2) =: μ̂2. Let $ j denote a path in S∞ from t = ∞ to t j , for j = 1, 2. Then, the
image paths under t �→ μ2 in the μ2-plane both begin at μ2 = ∞ and terminate at the
same point μ̂2. Let μ̂ denote a concrete choice of square root. Assuming without loss
of generality that neither path$ j passes through either of the double roots of t �→ μ2

except perhaps at the terminal endpoint, there arewell-definedpaths Pj on theRiemann
surface � terminating at respective endpoints (μ̂, γ j ) that project to $ j under (8.5).
Both paths Pj originate at μ = ∞ on the sheet of � where γ = −2μ + O(1) as
μ → ∞ (because the paths $ j start at t = ∞). However, they terminate at distinct
points of �, i.e., γ1 �= γ2 although both endpoints correspond to the same value of
μ = μ̂, because otherwise we obtain (p(t1), q(t1)) = (p(t2), q(t2)) from (8.3) which
contradicts the assumption t1 �= t2. Now let

Lm,n := �
[3]
0,gH(m, n)−1/2u[3]

gH(�
[3]
0,gH(m, n)1/2μ̂; m, n)
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be defined in terms of the gH rational solution u[3]
gH(x; m, n) of Painlevé-IV and the

point μ̂ ∈ C.
We claim that P1 and P2 are gH paths (see Definition 6 in Sect. 6.5). To show this,

first note that since $ j , j = 1, 2, lie in the interior of S∞ and the terminal endpoints
are not τ(w) or τ(w)∗, there are no branch points on Pj . Then, we use the fact that
by construction, Kt contains the projections in the t-plane of all possible bifurcation
points on �. So, it suffices to consider intersection points of the projections $1 and
$2 with Kt . Recall that all points of $ j , j = 1, 2, except possibly the terminal
endpoints lie in the interior S∞ whose intersection with Kt consists of exactly the
critical v-trajectories denoted (∞, τ ) and (∞, τ ∗). Comparing the abstract Stokes
graphs worked out in Sect. 8.3 and summarized in Fig. 31 with the discussion in
Sect. 6.5, we see that any bifurcation points on Pj before the terminal endpoint are
necessarily of the harmless variety. Therefore, by Lemma 8 from Sect. 6.5, regardless
of whether or not the endpoint of Pj is a catastrophic bifurcation point (occurring
exactly when $ j terminates on either (τ, τ ∗)+ or (τ, τ ∗)−), we deduce that in the
limit m, n → +∞ with n/m → (1 − κ)/(1 + κ), Lm,n converges to γ j . Since
γ1 �= γ2, this is a contradiction with the assumption that t1 �= t2. Hence t �→ μ2 is
univalent on S∞ \ {τ(w), τ (w)∗}.

To extend the univalence to the points τ(w), τ (w)∗, first we observe that since
Im(τ (w)) > 0, it is impossible to haveμ2(τ (w)) = μ2(τ (w)∗). Indeed, since t �→ μ2

is Schwarz-symmetric, any common image point of t = τ(w), τ (w)∗ would have to
be real, and since t �→ μ2 has degree 4 and t = τ(w), τ (w)∗ are simple critical points
of this mapping, no other solutions t of μ2(t) = μ2(τ (w)) = μ2(τ (w)∗) ∈ R than
the non-real conjugate pair t = τ(w), τ (w)∗ should be possible. However it is easy
to see that any given real number μ2 has at least two real preimages under t �→ μ2.
Therefore μ2(τ (w)) �= μ2(τ (w)∗), and these values form a non-real conjugate pair.
So, if t1 = τ(w) or t1 = τ(w)∗, then to have the same image point in the μ2-plane we
must have t2 �= t1 with t2 ∈ S∞ \ {τ(w), τ (w)∗}. Since we have already shown that
t �→ μ2 is univalent on the latter set, the map is conformal at t2, so if N2 is a small
neighborhoodof t2 in the relative topologyof S∞ then its image in theμ2-plane is either
a full neighborhood of μ2(t2) or it has a boundary curve passing through μ2(t2) with
a well-defined tangent (the latter if and only if t2 is on a smooth boundary arc of S∞).
However, since τ(w), τ (w)∗ are simple critical points of t �→ μ2 and since the interior
angle of ∂S∞ is 4π

5 at t = τ(w), τ (w)∗, so the image of a similar relative neighborhood
N1 of t1 is locally a sector about μ2(t1) = μ2(t2) of opening angle 8π

5 > π . The fact
that these images necessarily overlap at points other than μ2(t1) = μ2(t2) implies the
existence of two points t ′1 �= t ′2 both in S∞ \{τ(w), τ (w)∗}with the same image under
t �→ μ2, which contradicts the already-established univalence on that region. �	
Remark 16 According to (8.9), aside from the four zeros of 	′(t)2, the remaining
critical points of the mapping t �→ μ2 are the two roots of μ2(t), which are simple
critical points and as solutions of t2+4wt −3 = 0 are clearly real for allw ∈ R. Since
the resultant of t2 +4wt −3 and t2 +2wt −1 is proportional by a nonzero constant to
w2 + 1 which cannot vanish for anyw ∈ R, the double roots of μ2(t) cannot coincide
with the poles t±∞(w) for any w ∈ R. By explicit calculation for w = 0 one sees that
the roots of μ2(t) lie one on either side of the interval [t−∞(w), t+∞(w)], and hence the
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same is true for all w ∈ R. Since t−∞(w) < a(w) < 0 < b(w) < t+∞(w), the double
roots of μ2(t) do not lie in S0. By Lemma 12 they also cannot lie in S∞. Therefore
the only critical points of t �→ μ2 that are not in ∂S are one each within S±. Hence it
is impossible for t �→ μ2 to be univalent on S+ or S−. It is also impossible for μ2(t)
to vanish at any point t of S0 or S∞.

Lemma 12 implies in particular that the image of the boundary ∂S∞ in the μ-plane
is a Jordan curve consisting of four arcs connecting the four branch points solving
B(μ; κ) = 0 (see (1.17)) that do not lie on the real or imaginary axes, the latter being
the images of t = τ(w), τ (w)∗ under t �→ μ2 and taking a double-valued square root.
The domain S∞ is mapped onto the exterior of this Jordan curve, on which a function
γ = U [3]

0,gH(μ; κ) is well defined by the composition

μ �→ μ2 �→ t �→ p = μγ �→ γ = μ−1 p, (8.10)

where univalence is used to define the second map, and p = p(t) is defined in (8.3).
Note that U [3]

0,gH(μ; κ) has a continuous extension to the boundary. Again referring to
Definition 6 we can now prove the following.

Lemma 13 Let κ ∈ (−1, 1). If μ2 is in the image of S∞ then there exists γ ∈ C and a
gH path on � with terminal endpoint (μ, γ ) ∈ � that is not a catastrophic bifurcation
point.

Proof By univalence and (8.10) we obtain from μ2 a unique point t ′ ∈ S∞. Letting$
denote any path in S∞ from t = ∞ to t = t ′ the fact that μ2(t) �= 0 for all points of
$ by Remark 16 implies that $ determines a unique image path P on the Riemann
surface � of Definition 1 from Sect. 5 with terminal endpoint (μ,U [3]

0,gH(μ; κ)) ∈ �.
That P is a gH path that does not terminate at a catastrophic bifurcation point follows
from the fact that$ lies within S∞, which contains no points t mapping to any branch
points or catastrophic bifurcation points of � (these occur only on ∂S∞). �	

Combining Lemma 8 from Sect. 6.5 with Lemma 13, the conditional asymptotic
results obtained for the gH rational solutions in Sect. 6 are valid for μ in the image
of S∞. We therefore will relabel S∞ as SgH. This motivates the following definition,
which takes into account the rescaling of μ and transformation of κ needed to write
the asymptotic formula (6.6).

Definition 7 (Exterior domain for the Painlevé-IV gH rationals) If κ ∈ (−1, 1),
EgH(κ) is the image in the μ-plane, under (8.4) followed by a double-valued square
root, of the domain S∞ = SgH. If instead ±κ > 1, then EgH(κ) is defined by homo-
thetic dilation of the definition on (−1, 1):

EgH(κ) :=
√
1 ± κ

2
EgH(I ±(κ)), ±κ > 1,

where the Möbius transformations I + : (1,+∞) → (−1, 1) and I − : (−∞,−1) →
(−1, 1) defined in (1.23) are both involutions (I ±(I ±(κ)) = κ). Note that by
Remark 16, EgH(κ) does not contain the origin for any κ ∈ R \ {−1, 1}.
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8.6 The Boutroux DomainB�(�)

Recall from Sect. 4.4 that the origin μ = 0 is contained in a Boutroux domain B� on
which E = 0 at μ = 0. It follows by the symmetry (4.30) that E(μ;−κ) = iE(iμ; κ)
holds for the family of functions μ �→ E defined by continuation on B� = B�(κ)
for all κ ∈ (−1, 1). Being a topological invariant, the abstract Stokes graph matches
the lower-left panel of Fig. 27 in Sect. 7.2 for all κ ∈ (−1, 1) and all μ ∈ B�(κ).

Lemma 14 Let κ ∈ (−1, 1). The maximal Boutroux domain B�(κ) is precisely
B�(κ) = C \ EgH(κ).
Proof Recall that the boundary of any maximal Boutroux domain B consists of arcs
that are the images in the μ-plane of critical v-trajectories of 	′(t)2 dt2 described in
Sect. 8.2. The relevant arcs that bound B�(κ) are the images of arcs of Kt carrying
abstract Stokes graphs that are {1111} → {211} degenerations of the abstract Stokes
graph of B�(κ). From Fig. 31 we identify the boundary arcs of B�(κ) as the images
of (τ, τ ∗)±, which by Lemma 12 form together with their endpoints the Jordan curve
∂EgH(κ). �	
Thus, for each κ ∈ (−1, 1), ∂B�(κ) = ∂EgH(κ) is a curvilinear rectangle in the μ-
plane. Although the unbounded region EgH(κ) is the image of the unbounded exterior
of the Jordan curve ∂SgH in the t-plane and B�(κ) = C \ EgH(κ), B�(κ) is not the
image of the bounded interiorC\SgH because t �→ μ2 is not univalent there according
to Remark 16.

8.7 Aside: Asymptotic Analysis of gO Rationals at Points of@EgH(�)

Let κ ∈ (−1, 1) and suppose that μ ∈ ∂B�(κ) = ∂EgH(κ) is not one of the four
vertices (solutions μ of B(μ; κ) = 0 that are not on the real or imaginary axes). The
asymptotic behavior of u[3]

gO(x; m, n) can be rigorously analyzed for suchμ as follows.
We start by mimicking the setup in Sects. 7.3–7.5 for the gO case when μ ∈ B� and
for simplicity we assume that s = +1 and set ζ = 0. However, to study μ on the
boundary, we allow two adjacent vertices of the Stokes graph to fuse into a double root
z = γ of P(z). Being asμ ∈ ∂EgH(κ), it follows from Lemma 12 that this double root

is the function γ = U [3]
0,gH(μ; κ), which is well defined on EgH(κ). Mutatis mutandis,

we can still use a subset of the same matrix factorizations, lens deformations, as well
as the diagrams in Appendix E.1 to describe the matrix O(z).

However, the construction of a parametrix forO(z) in this situation is simpler than
that described in Sect. 7.6.We give some details for the case that it is the roots z = γ, δ

shown in the figures in Appendix E.1 that have fused into a double root, also denoted
z = γ . First consider the outer parametrix Ŏout(z). After making the transformation
to P̆out(z) indicated in the first two lines of Table 5 in Sect. 7.6 we find that P̆out(z) has
jumps across just the single band B1 from α to β and the gap G from β to γ (the second
band B2 disappears in the degeneration). As we are taking ζ = 0, the jump across B1
given generally in (7.5) reads simply P̆out+ (z) = P̆out− (z)T(−1). The jump condition
across G simplifies to read simply P̆out+ (z) = P̆out− (z)D(eiπ/3). To see this, one first
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takes the jump condition in the form (7.6) with the real constantCG as given in the first
line of Table 6 in Sect. 7.6, and then observes that in the {211} degeneration at hand,
the integral R2 given by (7.1) can be evaluated explicitly by residues at z = 0,∞:

R2 = π

32

[
32 − 4(α + β)γ + (α + β)2 − 4αβ

]
.

Then, since the spectral curve is of class {211} we use (4.18) and the implied quartic
equation (4.19) on γ to obtain simply R2 = (1 − κ)π . Because s = 1, we have
T = �0 = �

[3]
0,gO(m, n) = 1

6 + 1
2 (m + n) and −κT = �∞ = �

[3]
∞,gO(m, n) =

1
2 + 1

2 (n − m), where we refer to the third line of Table 2 from Sect. 1.2 for the values
of �0 and �∞. Therefore using n ∈ Z we get e−2iT R2e−iπ/3 = eiπ/3.

To solve for P̆out(z), we first use a diagonal conjugation to replace the jump matrix
on G with the identity and that on B1 with T(1) without changing the domain of
analyticity or normalization at z = ∞. To this end, we transform P̆out(z) into Q̆out(z)
via a substitution of the form (7.12) in which we take

F(z) := 1

2
iπ − 1

6
πR0(z)

∫
G

dy

R0(y)(y − z)
, F0 := 1

2
iπ − 1

6
π

∫
G

dy

R0(y)
,

where R0(z) denotes the function analytic for z ∈ C\ B1 with R0(z)2 = (z−α)(z−β)

and R0(z) = z + O(1) as z → ∞. Since F(z) is analytic and uniformly bounded for
z ∈ C \ (B1 ∪ G), across which �F = − 1

3 iπ for z ∈ G and 〈F〉 = 1
2 iπ for z ∈ B1,

and since F(z) → F0 as z → ∞, it follows that Q̆out(z) satisfies exactly the desired
conditions. Moreover, comparing with Sect. 6.3 shows that Q̆out(z) agrees with the
outer parametrix for the gH rationals on the exterior domain as defined explicitly in
(6.4). Unlike in the situation that we consider μ in the interior of B�(κ), the outer
parametrix we have just constructed always exists.

For inner parametrices, we may follow exactly the construction described in Sec-
tion 7.6 with the help of the data in the first two major rows of Table 7 in Appendix E.1
to install Airy parametrices near the simple roots z = α, β of P(z). These have exactly
the samematching properties onto the new outer parametrix as indicated in (7.40), and
themismatches on the disk boundaries near z = α, β contribute terms of orderO(T −1)

to the error at the end. However, we have to install a different type of parametrix near
the double root z = γ . Since this root lies on the level curve Re(h(z)) = 0, we can
start by following the procedure described in Sect. 5.5 and introduce a conformal map
near z = γ to a quadratic exponent by setting W (z)2 = 2(h(z) − h(γ )), taking an
analytic square root so that W (z) > 0 corresponds to the arc�4,1 ⊂ � that originates
at ∞ in the direction arg(z) = −π

2 and terminates at z = γ . We then introduce the
rescaled coordinate ξ := T 1/2e−iπ/4W (z), and after a substitution B(ξ) = O(z)D,
where D is a suitable piecewise-constant unit determinant matrix, we end up with the
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following exact jump conditions near z = γ or ξ = 0:

B+(ξ) = B−(ξ)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L(eiπ/3eiξ
2
), arg(ξ) = π

4 ,

U(eiπ/3e−iξ2), arg(ξ) = −π
4 ,

U(e−iξ2), arg(ξ) = 3π
4 ,

L(eiξ
2
), arg(ξ) = − 3π

4 ,

D(eiπ/3), arg(−ξ) = 0,

inwhich all five rays are taken to be oriented in the direction of increasingRe(ξ). These
jump conditions are solved by the parabolic cylinder function parametrix originally
introduced by Its [38]. Indeed, defining parameters p := 1

6 i and τ := eiπ/3, theymatch
exactly the form of Riemann–Hilbert Problem A.1 in [49, Appendix A]. Adjoining
the normalization condition B(ξ)ξ ipσ3 → I as ξ → ∞ and multiplying on the left
by a holomorphic matrix function designed to give an optimal match with the outer
parametrix (similarly to the construction of Airy parametrices) one obtains an inner
parametrix that solves the jump conditions for O(z) exactly near z = γ and that
matches the outer parametrix on a circle around z = γ with accuracy O(T −1/2),
exactly as in the case of the Hermite polynomial parametrix used in Sect. 5.5 (which
is obviously closely related, having also a quadratic local exponent). In addition to
standard large-variable asymptotic expansions of parabolic cylinder functions, this
estimate relies on the fact that Re(h(γ )) = 0, which holds because the degenerate
spectral curve is Boutroux.

Simple modifications of these steps apply if different pairs of adjacent simple roots
on the Stokes graph for the {1111} spectral curve on B�(κ) fuse into a double root
z = γ , but the fact that the outer parametrix is related by a diagonal factor to that
defined in (6.4) is the same in all cases. The mismatch on the boundary of the disk
centered at z = γ dominates the asymptotic expansion of the error, and by using
the fact that the matrix Q̆out(z) is precisely the outer parametrix for the gH rational
solutions on the exterior domain given by (6.4), we arrive at the following result.

Lemma 15 Fix κ ∈ (−1, 1). Suppose that �[3]
0,gO(m, n) > 0 and that μ̂ is a given

point on ∂B�(κ) = ∂EgH(κ) that is not one of the four corner points. Then

u[3]
gO(�

[3]
0,gO(m, n)1/2μ̂; m, n) = �

[3]
0,gO(m, n)1/2(γ (μ̂) + O(�

[3]
0,gO(m, n)−1/2))

(8.11)
as m, n → ∞ with n/m → (1 − κ)/(1 + κ), where γ (μ) := U [3]

0,gH(μ; κ) is the
function defined on EgH(κ) by (8.10) and extended to ∂EgH(κ) by continuity.

This result is interesting in its own right; it basically says that the gO and gH rational
solutions behave the same along the boundary ∂EgH(κ) = ∂B�(κ) even though they
behave quite differently for large |μ|.

8.8 The Exterior Domain EgO(�) as the Image of S0

Using Lemma 15 we can prove the following analogue of Lemma 12.
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Lemma 16 Let κ ∈ (−1, 1). Then the mapping t �→ μ2 is univalent on S0.

Proof Univalence on S0 \ {a(w), b(w), τ (w), τ (w)∗} is established similarly to the
univalence of the same map on S∞ \ {τ(w), τ (w)∗} in the proof of Lemma 16. Here
we begin with paths $ j in S0 from t = 0 to t j ∈ S0 \ {a(w), b(w), τ (w), τ (w)∗}
for which t1 �= t2 but μ2(t1) = μ2(t2) = μ̂2, and we lift these10 to paths Pj on
the Riemann surface � of Definition 1 from Sect. 5, the endpoints of which have
the form (μ̂, γ j ). The paths Pj originate on � at μ = ∞ on the gO sheet where
γ = U0,gO(μ; κ) = − 2

3μ + O(μ−1) because the paths $ j start at t = 0. However
the endpoints of Pj are distinct, i.e., γ1 �= γ2, because t1 �= t2. We then replace Lm,n

with

Lm,n := �
[3]
0,gO(m, n)−1/2u[3]

gO(�
[3]
0,gO(m, n)1/2μ̂; m, n)

andwe notice that Pj are gO paths (cf. Definition 5 in Sect. 5.5). Indeed, one can easily
verify that the v-trajectories denoted (a, 0) and (0, b) are the only components of Kt

within S0 and these correspond to harmless bifurcation points only for the gO case.
Therefore, by Lemma 6 in Sect. 5.5, Lm,n converges to both γ1 �= γ2 as m, n → ∞
with �[3]

0,gO(m, n) > 0 and the ratio n/m converging to (1 − κ)/(1 + κ). Hence we
arrive at a contradiction with the assertion t1 = t2.

Since μ2(b(w)) < 0 < μ2(a(w)) are real and distinct while μ2(τ (w)) �=
μ2(τ (w)∗) form a conjugate pair, extending the univalence to the points t =
a(w), b(w) follows the same line of reasoning as the extension to t = τ(w), τ (w)∗ in
the proof of Lemma 12 because the interior angles of ∂S0 at t = a(w), b(w) are the
same as the interior angles of ∂S∞ at t = τ(w), τ (w)∗, all four of which are simple
critical points of t �→ μ2.

So the remaining possibility is that t1 = τ(w) or t1 = τ(w)∗, that t2 ∈ S0 \
{a(w), b(w), τ (w), τ (w)∗}, and that μ2(t1) = μ2(t2) = μ̂2. By Remark 16, the map
t �→ μ2 is conformal at t2. Since the interior angle of ∂S0 at t = t1 is 2π

5 and t1
is a simple critical point of t �→ μ2, the image of a relative neighborhood N1 in
S0 of t1 is locally an open sector with vertex μ̂2 and opening angle 4π

5 < π . If
t2 ∈ S0, then the image of a small neighborhood N2 of t2 in S0 is a full neighborhood
of μ̂ in C, and there are points t ′1 �= t ′2 in S0 close to t1 and t2 respectively with
μ2(t ′1) = μ2(t ′2) in contradiction to the established univalence on S0. However, if
t2 ∈ ∂S0 \ {a(w), b(w), τ (w), τ (w)∗}, then it lies on a smooth boundary arc of S0 so
the image of a small neighborhood N2 of t2 in S0 is locally an open half-plane at μ̂2,
which need not intersect the image of N1 at all.

If in fact μ2(N2) ∩ μ2(N1) �= ∅ then the same argument gives a contradiction.
Otherwise, local analysis near t = t1 shows that μ2(N2) ∩ (∂EgH(κ)2 \ {μ̂2}) �= 0,
i.e., there is a point μ̂′ ∈ C with μ̂′2 ∈ μ2(N2) that also lies on a smooth boundary
arc of EgH(κ), and hence there is a preimage t ′1 ∈ ∂S∞ \ {τ(w), τ (w)∗} of μ̂′2. Let t ′2
denote the unique preimage in N2 of μ̂′2, so that t ′2 ∈ S0 \{a(w), b(w), τ (w), τ (w)∗};
in particular t ′1 �= t ′2. We choose a path $ in S0 from t = 0 to t = t ′2 and lift it to a

10 Due to Remark 16 we no longer have to worry about $ j passing through the roots of t �→ μ2 since
these lie in S− and S+.
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gO path P on � with endpoint (μ̂′, γ ′
2). Then Lemma 6 implies that Lm,n → γ ′

2 as

m, n → ∞ with �[3]
0,gO(m, n) > 0 and n/m → (1 − κ)/(1 + κ). On the other hand,

we may apply Lemma 15 to deduce that in the same limit Lm,n → γ ′
1 = U [3]

0,gH(μ̂
′; κ),

and since t ′1 �= t ′2 while μ2(t ′1) = μ2(t ′2) = μ̂′2, we obtain γ ′
1 �= γ ′

2, a contradiction. �	
In particular, the image of ∂S0 in the μ-plane is a Jordan curve consisting of eight

arcs connecting all eight of the solutions of B(μ; κ) = 0, which are the images of
t = a(w), b(w), τ (w), τ (w)∗ under t �→ μ2 after taking square roots. S0 is mapped
onto the exterior of this Jordan curve, a domain on which μ �→ γ = U0,gO(μ; κ)
is well defined by the composition (8.10) (extending continuously to the boundary).
Recalling again Definition 5, by analogy with Lemma 13, we have the following.

Lemma 17 Let κ ∈ (−1, 1). If μ2 is in the image of S0 then there exists γ ∈ C and a
gO path on � with terminal endpoint (μ, γ ) ∈ � that is not a catastrophic bifurcation
point.

Proof The proof is very similar to that of Lemma 13. �	
Combining Lemma 6 from Sect. 5.5 with Lemma 13 from Sect. 8.5 shows that

the conditional asymptotic analysis of the gO rational solutions described in Sect. 5
is valid on the image in the μ-plane of S0. We therefore will relabel S0 as SgO. By
analogy with Definition 7 we make the following definition.

Definition 8 (Exterior domain for the Painlevé-IV gO rationals) If κ ∈ (−1, 1),
EgO(κ) is the image in the μ-plane, under (8.4) followed by a double-valued square
root, of the domain S0 = SgO. If instead±κ > 1, then EgO(κ) is defined by homothetic
dilation of the definition on (−1, 1):

EgO(κ) :=
√
1 ± κ

2
EgO(I ±(κ)), ±κ > 1,

where the Möbius transformations I + : (1,+∞) → (−1, 1) and I − : (−∞,−1) →
(−1, 1) defined in (1.23) are both involutions (I ±(I ±(κ)) = κ). Note that by
Remark 16, EgO(κ) does not contain the origin for any κ ∈ R \ {−1, 1}.

The Jordan curves ∂EgH(κ) and ∂EgO(κ) have the four vertices of ∂EgH(κ) in
common. However, these are the only points of intersection. More precisely:

Lemma 18 For each κ ∈ (−1, 1), all points of ∂EgO(κ) except the four vertices of
∂EgH(κ) = ∂B�(κ) lie in EgH(κ).

Proof Locally near the four vertices the conclusion follows from the fact that t �→ μ2

has simple critical points at the points t = τ(w), τ (w)∗ common to both SgH and SgO
(which are mapped to the squares of the four vertices). Therefore, it is sufficient to
show that no point μ on a smooth arc of ∂EgH(κ) = ∂B�(κ) can lie on any smooth
arc of ∂EgO(κ) or coincide with an image of either t = a(w) or t = b(w) (that are
mapped to the remaining four vertices of ∂EgO(κ)).

123



Constructive Approximation

Ifμ = μ̂ is common to smooth arcs of both ∂EgH(κ) and ∂EgO(κ), then the argument
in the final paragraph of the proof of Lemma 16 applies to yield a contradiction.

On the other hand, if μ = μ̂ is a point on a smooth arc of ∂EgH(κ) that is also
a vertex of ∂EgO(κ) corresponding to either t = a(w) or t = b(w), then because
the exterior domain EgO(κ) is locally a sector at μ̂ of opening angle 8π

5 > π , there
is another nearby point μ̂′ on the same smooth arc of ∂EgH(κ) that also lies within
the exterior domain EgO(κ). So, we can once again apply the argument from the last
paragraph of the proof of Lemma 16 to the point μ̂′ to yield a contradiction. �	

Another observation relates the values of the equilibrium branches γ = γ (μ)

defined on the closures of the exterior domains EgH(κ) and EgO(κ) by (8.10) and
Lemmas 12 and 16 respectively.

Lemma 19 Let κ ∈ (−1, 1). If μ is one of the four vertices of ∂EgH(κ) then

U [3]
0,gH(μ; κ) = U0,gO(μ; κ). If μ is not such a vertex but μ ∈ EgH(κ) ∩ EgO(κ)

then U [3]
0,gH(μ; κ) �= U0,gO(μ; κ).

Proof This follows directly from the definition of these two functions. Using the
univalence of t �→ μ2 on SgH and SgO established by Lemmas 12 and 16 respectively,
the pointμ can be traced back to one point t = tgH ∈ SgH and one point t = tgO ∈ SgO.
We have tgH = tgO if and only if both points are either t = τ(w) or t = τ(w)∗, in
which case μ is one of the four vertices and the equal values of p(tgH) = p(tgO)
defined in (8.3) imply that the corresponding values of γ are equal: γgH = γgO. Of
course if tgH �= tgO but the value of μ is the same, the same argument shows that
γgH �= γgO. �	

8.9 The Boutroux DomainsB�(�) andB�(�)

Lemma 18 shows that the region in between ∂B�(κ) and ∂EgO(κ) is the disjoint union
of four simply connected domains whose boundaries are curvilinear triangles. Each
of these triangles consists of three arcs that are images in the μ-plane of the boundary
arcs of S+ (the triangles having a vertex on the real axis) and S− (the triangles having
a vertex on the imaginary axis). However, it is not accurate to view these domains as
images of S± because t �→ μ2 is not univalent (see Remark 16).

Let B� = B�(κ) (resp., B� = B�(κ)) denote the maximal connected component
ofC\B�(κ) ∪ EgO(κ) that is entirely containedwithin the right half (resp., upper half)
μ-plane, a simply connected domain whose boundary is a curvilinear triangle with
vertices agreeing with those of an equilateral triangle (cf. Proposition 1 in Sect. 1.3),
one vertex of which lies on the positive real (resp., imaginary) axis. See the upper
right-hand panel of Fig. 5 in Sect. 1.4.

Recall from Sect. 4.4 that there is a unique real (resp., imaginary) value of E defined
on the real (resp., imaginary) axis in theμ-plane for which the elliptic Riemann surface
R of the quartic polynomial P(·) defined by (1.18) is a Boutroux curve satisfying the
conditions (4.23). Recall also that each point μ̂ ∈ B�(κ)∩R (resp., μ̂ ∈ B�(κ)∩ iR)
for which the Boutroux curveR specified above is of class {1111} is contained within
a Boutroux domain B̂. The domain B̂ is a complex neighborhood of μ̂ on which
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E = E(μ; κ) is defined as a smooth function of μ such that E(μ̂; κ) is real (resp.,
imaginary) and at each point of which R defined from μ and E(μ; κ) is a Boutroux
curve of class {1111}. Finally, recall from Sect. 7.1 that each such Boutroux domain
carries a well-defined abstract Stokes graph.

Lemma 20 Let κ ∈ (−1, 1). Then B�(κ) and B�(κ) are Boutroux domains with the
abstract Stokes graphs depicted on the right and top panels respectively of Fig. 27 in
Sect. 7.2.

Proof We prove the statement for B�(κ), as the proof for B�(κ) is the same replacing
reflection symmetry in the real axis with reflection symmetry in the imaginary axis.

Regardless of whether the Boutroux curveR for a given μ ∈ B�(κ)∩R is of class
{1111}, since E is real the polynomial P(·) is Schwarz-symmetric, so the Stokes graph
ofR is also symmetric through the real axis. IfR is a degenerate Boutroux curve, then
μ lies on an image arc of one of the v-trajectories in Kt . Clearly it cannot be any of the
v-trajectories forming the boundary of SgH or SgO because those are mapped to points
on ∂EgH(κ) and ∂EgO(κ) respectively. Nor can it be either of the v-trajectories (a, 0)
or (0, b) in the interior of SgO because they are mapped into the exterior of ∂EgO(κ).
So μ would have to be on the image of one of the v-trajectories labeled (∞, τ ) or
(t−∞, a) or (t+∞, b) or their Schwarz reflections in the real t-axis. However, from Fig. 31
explained in Sect. 8.3, we see that none of the abstract Stokes graphs for any of these
arcs is consistent with an actual Stokes graph having reflection symmetry in the real
axis. Therefore the unique Boutroux curve R with E real associated with each point
μ ∈ B�(κ) ∩ R has class {1111}. This implies that there is a well-defined abstract
Stokes graph that is the same for all of these Boutroux curves.

This abstract Stokes graph has to be consistent with an actual Stokes graph having
Schwarz symmetry in the real axis, and it has to be nondegenerate. However, it has to
admit degeneration to one of the opposite abstract Stokes graphs for one of the arcs
(τ, τ ∗)± (class {211}) and to one of the opposite abstract Stokes graphs for the point
t = a (class {31}), because an image of either (τ, τ ∗)+ or (τ, τ ∗)− forms the arc of
∂EgH(κ) containing the left endpoint of B�(κ) ∩ R and an image of t = a is the
right endpoint of B�(κ) ∩ R. Using the abstract Stokes graphs for (τ, τ ∗)± and for
t = a shown in Fig. 31 then determines the abstract Stokes graph for every point of
B�(κ)∩R, as either the diagram on the right in Fig. 27 from Sect. 7.2 or its reflection
through the origin. The parity is then resolved by the observation that when μ is the
right endpoint of B�(κ) ∩ R, the spectral curve is of class {31} so all coefficients
of P(·) are determined uniquely by the value of μ from which one can easily show
that the triple root of P(·) lies to the right of the simple root; this means that it is the
reflection through the origin of the abstract Stokes graph for t = a shown in Fig. 31
that actually appears at the right endpoint of B�(κ) ∩ R.

It remains to show that the Boutroux domain containing B�(κ) ∩ R with the indi-
cated abstract Stokes graph can be extended to all of B�(κ). All boundary points of
the Boutroux domain correspond to degenerate Boutroux curves, moreover, to contin-
uous degenerations of class {1111} curves within the domain. There are four abstract
Stokes graphs corresponding to class {211} degenerations of the abstract Stokes graph
for the Boutroux domain containing B�(κ) ∩ R obtained by fusing pairs of vertices
joined by a common edge, shown in Fig. 32.
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Fig. 32 The four class {211} degenerations of the abstract Stokes graph for the Boutroux domain containing
B�(κ) ∩ R

Only the degeneration shown in the right-most diagramhas no representative (either
under reflection through the origin or through the real axis) in Fig. 31 so this cannot
occur. The other three degenerations, in the order left-to-right in Fig. 32, match

• the reflection through the origin of the abstract Stokes graph shown in Fig. 31 for
(τ, τ ∗)+,

• the reflection through the real axis of the abstract Stokes graph shown in Fig. 31
for (τ, a), and

• the reflection through the origin of the abstract Stokes graph shown in Fig. 31 for
(τ, a).

The indicated arcs are mapped precisely to the three boundary arcs of B�(κ), which
completes the proof. �	
By definition, when κ ∈ (−1, 1) the Boutroux domainsB�(κ),B�(κ), andB�(κ) are
determined by the curves ∂EgH(κ) and ∂EgO(κ). According to Definitions 7 and 8 the
latter curves are also defined for |κ| > 1 by dilations in theμ-plane of the same curves
for κ ∈ (−1, 1). In light of this, and motivated also by the discussion at the end of
Sect. 7.7, we extend the definitions ofB�(κ),B�(κ), andB�(κ) to all κ ∈ R\{−1, 1}
in the natural way.

Definition 9 Given κ ∈ R \ {−1, 1}, let EgH(κ) and EgO(κ) be defined by Definition 7
and 8 respectively. ThenB�(κ) := C\EgH(κ), andB�(κ) andB�(κ) are themaximal
connected components of (C \ EgO(κ)) ∩ EgH(κ) that intersect the positive real and
imaginary axes respectively.

Referring to (7.61) finally motivates the following definition of E = E(μ; κ) for
all κ ∈ R \ {−1, 1}.
Definition 10 (Parameter E = E(μ; κ) for Boutroux curves) If κ ∈ (−1, 1), E =
E(μ; κ) is definedonB�(κ)∪B�(κ)∪B�(κ)byobtaining E on the real and imaginary
axes and continuing the solution of (4.23) to the three domains as explained in Sect. 4.4.
The definition is then extended to μ ∈ (−B�(κ)) ∪ (−B�(κ)) by odd reflection. If
instead ±κ > 1, then E(μ; κ) is defined by

E(μ; κ) :=
(

2

1 ± κ

)3/2 [
E

(√
1
2 (1 ± κ)μ; I ±(κ)

)
− 4(κ ∓ 1)

√
1
2 (1 ± κ)μ

]
,

±κ > 1,
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where the Möbius transformations I + : (1,+∞) → (−1, 1) and I − : (−∞,−1) →
(−1, 1) defined in (1.23) are both involutions (I ±(I ±(κ)) = κ).

The fact that this definition makes sense for κ ∈ (−1, 1) was proved for μ ∈ B�(κ)
in Sect. 8.6 and just above for μ ∈ B�(κ) ∪ B�(κ).

8.10 Proofs of Proposition 2 and Theorems 1 and 2

The most important qualitative properties of ∂EgH(κ) and ∂EgO(κ) are given in Propo-
sition 2 from Sect. 1.4, whose proof we now give.

Proof of Proposition 2 To prove item (1a) in the case κ ∈ (−1, 1), we observe that
according to Definitions 7 and 8 from Sects. 8.5 and 8.8 respectively, ∂EgH(κ) and
∂EgO(κ) are Jordan curves by the fact that ∂SgO and ∂SgH are Jordan curves in the t-
plane and the univalence of themap t �→ μ2 defined by (8.4) established in Lemmas 12
and 16 in Sects. 8.5 and 8.8 respectively. Schwarz reflection symmetry of the preimage
curves ∂SgH and ∂SgO is preserved under t �→ μ2; then the double-valued square root
map μ2 �→ μ yields Schwarz symmetry in both real and imaginary axes for ∂EgO(κ)
and ∂EgH(κ).

Since the images of t = a, b are the four solutions of B(μ; κ) = 0 (cf. (1.17))
on the real and imaginary axes while the images of t = τ, τ ∗ are the four remaining
solutions, and since the image under t �→ μ2 �→ μ of every v-trajectory in Kt of
the rational quadratic differential 	′(t)2 dt2 is an analytic arc, items (1b) and (1c)
are proved for κ ∈ (−1, 1) as well. Finally, item (1d) is proved for κ ∈ (−1, 1) by
Lemma 18 in Sect. 8.8. To prove items (1a)–(1d) for κ > 1 or κ < −1, we just
use Definitions 7 and 8 to relate ∂EgH(κ) and ∂EgO(κ) respectively to corresponding
curves with κ ∈ (−1, 1) by homothetic dilation (and use an easily verified dilation
symmetry of the branch point equation B(μ; κ) = 0).

To prove item (2), we observe that if κ ∈ (−1, 1), the identities ∂EgH(−κ) =
i∂EgH(κ) and ∂EgO(−κ) = i∂EgO(κ) on the first line of (1.23) follow from Defi-
nitions 7 and 8 respectively, because κ �→ −κ is equivalent to w �→ −w. Thus
one sees from (8.8) that the union of v-trajectories of 	′(t)2 dt2 is invariant under
(κ, t) �→ (−κ,−t), so SgO and SgH are reflected through the origin in the t-plane by
κ �→ −κ . But (8.4) shows that (κ, t) �→ (−κ,−t) implies μ2 �→ −μ2, which proves
the identities. The identities on the second line of (1.23) relate curves ∂EgH(κ) and
∂EgO(κ) for ±κ > 0 to the same objects for κ ∈ (−1, 1); they are nothing but the
definitions of ∂EgH(κ) and ∂EgO(κ) for ±κ > 1 given in Definition 7 and 8 respec-
tively, rewritten using the involutive property I ±(I ±(κ)) = κ . A description of other
nontrivial elements of the symmetry group obtained by composing the identities in
(1.23) is given in Sect. 1.4 immediately following the statement of Proposition 2. The
statement that the curves ∂EgH(κ) and ∂EgO(κ) are invariant under rotation by π

2 for
κ = −3, 0, 3 then follows from the identities on the first line of (1.23) for κ = 0 and
the fact that I ±(0) = ±3.

Finally, items (3c) and (3d) for κ ∈ (−1, 1) follow from the composition of maps
written in (8.10) using the univalence asserted by Lemmas 12 and 16 respectively, and
from Lemma 19 in Sect. 8.8. Then, items (3a), (3b), and (3d) for ±κ > 0 follow from
items (3c) and (3d) for κ ∈ (−1, 1) using Lemma 5 in Sect. 5.4. �	
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At last, we can complete the proofs of Theorems 1 and 2 stated in Sect. 1.4.

Proof of Theorem 1 Combining Lemma 8 from Sect. 6.5 with Lemma 13 and Def-
inition 7 from Sect. 8.5 and using �0 = �

[3]
0,gH(m, n), �0,�� = �

[1]
0,gH(m, n),

�∞ = �
[3]
∞,gH(m, n), and �∞,��

= �
[1]
∞,gH(m, n) proves (1.24) for types 1 and 3

in the sense of pointwise convergence. Then since the hypotheses of Lemma 8 hold at
every point of EgH(κ), Lemma 9 from Sect. 6.5 provides uniformity of the estimates
on closed subsets of EgH(κ). The corresponding formula for type 2 follows from (2.2)
and (2.3). �	
Proof of Theorem 2 In a similar way, combining Lemma 6 from Sect. 5.5 with
Lemma 17 and Definition 8 from Sect. 8.8 proves (1.25) for types 1 and 3 in
the pointwise sense for each point μ ∈ EgO(κ), in which �0 = �

[3]
0,gO(m, n),

�0,�� = �
[1]
0,gO(m, n),�∞ = �

[3]
∞,gO(m, n), and�∞,��

= �
[1]
∞,gO(m, n). Then unifor-

mity on closed subsets of EgO(κ) follows from Lemma 7 in Sect. 5.5, and the formula
for type 2 follows from (2.2) and (2.3). �	

8.11 Proofs of Proposition 3 and Theorems 3 and 4

The most important properties of the function E(μ; κ) (see Definition 10 in Sect. 8.9)
are summarized in Proposition 3 from Sect. 1.4, whose proof we now give.

Proof of Proposition 3 That E(μ; κ) satisfies the Boutroux equations (1.26) if κ ∈
(−1, 1) is a direct consequence of the definition. Combining (7.61) with the identity
(7.67) then shows that when the definition of E is extended to ±κ > 1 as indicated in
Definition 10 the same holds for |κ| > 1. For κ ∈ (−1, 1), smoothness on each open
component follows from the Implicit Function Theorem used as described in Sect. 4.4,
and the fact that E extends continuously to the boundary of each component follows
from the fact that the boundaries correspond to degenerate Boutroux curves for which
E is well defined. These properties then directly extend to |κ| > 1 by the definition.
The symmetry (1.27) is just a direct consequence of Definition 10, while (1.28) holds
for κ ∈ (−1, 1) according to (4.30) and then extends to |κ| > 1 again just from the
definition. �	

Now we can give the proof of Theorems 3 and 4 formulated in Sect. 1.4.

Proof of Theorems 3 and 4 Since the Boutroux domains and the function E(μ; κ)
defined on them have been properly specified, the hypotheses formulated in Sect. 7.2
are now rigorously established by independent arguments. Hence the results of Sect. 7
conditioned on those hypotheses all hold on well-defined Boutroux domains.

In particular, the approximations (1.29) and (1.30)with f (ζ−ζ0)written in the form
(1.31) are proved in Sect. 7.7 under a technical condition that is ultimately removed in
Sect. 7.10. The fact that f (ζ − ζ0) is an elliptic function of ζ solving the differential
equation (1.18) is then proved in Sect. 7.8. �	
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Appendix A. Selected Plots of Poles and Zeros

For the reader’s convenience, in this appendix we present larger versions of certain
subplots from Figs. 33 and 34.

Fig. 33 Representative plots of poles (dots; magenta for residue +1 and gray for residue −1) and zeros
(circles; cyan for positive derivative and blue for negative derivative) of the three types of rational solutions
in the gH family. See also Fig. 3 (Color figure online)

Fig. 34 As in Fig. 33 but for the gO family of rational solutions. See also Fig. 4 (Color figure online)
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Appendix B. Branch Points of Equilibria

Recall that Proposition 1 formulated in Sect. 1.3 describes several properties of the
branch points μ satisfying the eighth-degree polynomial equation B(μ; κ) = 0 (see
(1.17)). We now prove this proposition.

Proof of Proposition 1 Since for all κ ∈ Rwehave B(μ; κ) = B(μ∗; κ)∗ = B(−μ; κ)
it is obvious that the set of roots is symmetric in reflection through both the real and
imaginary μ-axes, which proves (i).

The discriminant, i.e., the polynomial resultant of B(·; κ) and B ′(·; κ), whose van-
ishing is equivalent to the existence of non-simple roots of B(·; κ), is proportional to
(κ2 − 1)8(κ2 + 3)2. Hence the condition κ ∈ R \ {−1, 1} implies that all eight roots
of B(μ; κ) = 0 are simple, which proves (ii).

To prove (iii), first observe that B(μ; 1) = (μ2 − 4)3(μ2 + 12), which has a
conjugate pair of simple purely imaginary roots at μ = ±i

√
12 and two triple real

roots at μ = ±2. If we consider κ = 1 + ε for small positive ε, then by symmetry
there will be again a pair of purely imaginary simple roots of B(μ; 1 + ε), and by
appropriate rescaling of μ ∓ 2 with ε one finds that each triple root splits a triad of
three nearby simple roots of the form μ = ±2(1 + e2π ik/3ε2/3(864)1/3 + O(ε)) as
ε ↓ 0, where k = 0,±1. In particular, this shows that for κ just greater than 1, B(μ; κ)
has eight simple roots comprising two opposite purely real and purely imaginary pairs
in addition to a complex quartet of roots symmetric with respect to reflection through
the real and imaginary axes. Since non-simple roots of B(·; κ) can only occur for
real κ = ±1, there can be no collisions of roots of B(·; κ) as κ increases from 1,
and together with the reflection symmetry of the roots in the real and imaginary axes
this implies that for all κ > 1 the roots of B(·; κ) are all simple, with opposite real
and imaginary pairs in addition to a symmetric complex quartet of roots, just as for
κ = 1 + ε with ε > 0 small. If instead we consider −1 < κ < 1, a very similar
argument goes through; now one should replace ε with −ε < 0 small and negative to
perturb from κ = 1 in the negative direction, and the perturbation analysis produces
an extra factor of e2π i/3 on the subleading term μ ≈ ±2 which of course just means
re-indexing k. So we again have the same triads of nearby roots, and since there can be
no non-simple roots of B(·; κ) for −1 < κ < 1 the same picture persists throughout
this interval as well. Finally, we observe that B(μ; κ) = B(iμ;−κ), so the branch
point configuration for κ < −1 follows immediately from that for−κ > 1 by rotation
in the complex μ-plane by π

2 .
It follows in particular that for all κ ∈ R \ {−1, 1}, in each of the four open half-

planes±Re(μ) > 0,±Im(μ) > 0, there is a triad of simple roots of B(·; κ) symmetric
with respect to reflection through the real or imaginary axis bisecting the half-plane in
question, and further characterized by the following additional remarkable property.

Now we show that each of the triads form the vertices of an equilateral triangle.
Any configuration of eight points symmetric with respect to the real and imaginary
axes and consisting of the vertices of two opposite equilateral triangles in the open
right and left half-planes together with a conjugate pair of purely imaginary points
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must be the roots of a polynomial b(μ; c, d, e) of the form

b(μ; c, d, e) := ((μ − c)3 − d3)((μ + c)3 + d3)(μ2 + e2) (B.1)

for real parameters c (the centers of the triangles of vertices in the open right and
left half-planes are μ = ±c), d (the distance from the center of each triangle to
any of its vertices is |d|), and e (the purely imaginary conjugate pair of roots is
μ = ±ie). Equating the coefficients of powers of μ between B(μ; κ) given by (1.17)
and b(μ; c, d, e) given by (B.1), we see that B(μ; κ) can be written in the form
b(μ; c, d, e) provided that e2 = 3c2 (matching the coefficients of μ6) and that after
eliminating e2,

c4 + cd3 = 4(κ2 + 3) (matching the coefficients of μ4), (B.2)

8c6 − 20c3d3 − d6 = −64κ(κ2 − 9) (matching the coefficients of μ2), and

(B.3)

c8 + 2c5d3 + c2d6 = 16(κ2 + 3)2 (matching the constant terms). (B.4)

Obviously (B.2) implies (B.4), so there are only two conditions: (B.2) and (B.3), which
amount to two equations on the two remaining unknowns c and d. We can eliminate
d3 explicitly using (B.2):

d3 = 4(κ2 + 3) − c4

c
. (B.5)

Using this in (B.3) one arrives at an eighth-degree polynomial equation for c. Compar-
ing with (1.17), it is easy to see that the equation on c is exactly B(

√
3ic; κ) = 0. For

all κ ∈ R\{−1, 1}we can therefore determine a unique positive solution c = c(κ) > 0
that corresponds to the unique positive imaginary root of B(·; κ). Therefore, with d3

determined from c(κ) > 0 by (B.5) and with e2 = 3c(κ)2, we have the identity
B(μ; κ) = b(μ; c, d, e) which proves that B(·; κ) has two opposite triads of roots
forming the vertices of equilateral triangles with centers ±c(κ) �= 0, along with the
purely imaginary pair μ = ±ie = ±√

3ic(κ).
We next check that d > 0 (which ensures that the real vertex of each triangle is

further from the origin than the center) and that d < 2c (which ensures that all three
vertices of each triangle lie in the same right or left half-plane as the center). But these
inequalities hold for κ = 1± ε and ε > 0 sufficiently small by the perturbation theory
described above, which in particular localizes the triangles near μ = ±2. Putting
d = 0 into (B.2)–(B.3) and eliminating c yields κ = ±1, so d > 0 for κ = 1 ± ε

with ε > 0 small implies that d > 0 for all κ ∈ (−1, 1) and all κ > 1. Likewise,
putting d = 2c into (B.2)–(B.3) and eliminating c yields again κ = ±1, so d < 2c
for κ = 1 ± ε with ε > 0 small implies that d < 2c holds for all κ ∈ (−1, 1) and all
κ > 1. This finally shows that if κ ∈ (−1, 1) or κ > 1, the roots of B(μ; κ) in the
open right (left) half-plane form the vertices of an equilateral triangle symmetric with
respect to reflection in the real axis and with its real vertex lying to the right (left) of
its center. By B(μ; κ) = B(iμ;−κ) a similar statement governs the roots of B(μ; κ)
in the open upper/lower half-planes for κ < −1.
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Fig. 35 For any configuration of equilateral triangles attached to the edges of a rectangle centered at the
origin, the distance of the extremal vertex of any triangle from the origin is proportional by

√
3 to the

distance of the center of either neighboring triangle to the origin (Color figure online)

For κ ∈ (−1, 1) or κ > 1, the remaining two roots form a purely imaginary pair
μ = ±√

3ic(κ) following from the identity e2 = 3c2. Some simple trigonometry
illustrated in Fig. 35 then shows that the triads of roots in the open upper and lower
half-planes also form the vertices of opposite equilateral triangles with their imaginary
vertices further from the origin than their centers. (Alternatively, the whole argument
of equating B(μ; κ) with b(μ; c, d, e) can be repeated replacing b(μ; c, d, e) with
a polynomial of the form ((μ − ic) + id3)((μ + ic) − id3)(μ2 − e2) for real c, d,
and e, modeling a pair of opposite real roots and two opposite equilateral triangles
of roots in the upper and lower half-planes.) For κ < −1 the rotation symmetry
B(μ; κ) = B(iμ;−κ) shows that the triads of roots in the right/left half-planes form
the vertices of equilateral triangles. This finally proves (iii) and completes the proof
of the proposition. �	

Appendix C. Formal Painlevé-I Approximation Near Branch Points

Suppose that μ is one of the eight branch points solving (1.17), and that U0 is a
corresponding double root of the equilibrium problem (1.15). We wish to examine
solutions of the Painlevé-IV equation (1.1) that are in a sense close to T 1/2U0 for x
close to T 1/2μ, where we recall that the parameters are large in the sense that (1.13)
holds with T � 1 and κ ∈ R \ {−1, 1}. It turns out that the correct scaling is to write

u = T 1/2(U0 + T −2/5h) and x = T 1/2μ + T −3/10z

for new dependent and independent variables h and z, respectively.We substitute these
into (1.1) and use the assumption that U0 is a double root of the equilibrium equation
(1.15) to remove two suites of terms from the resulting equation. The result is the
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formal asymptotic (assuming h and z bounded)

d2h

dz2
= 6(U0 + μ)h2 + 4U0 (U0 + μ) z + 2T −1/5U0 + O(T −2/5), T → ∞.

This is essentially a perturbation of the Painlevé-I equation. Indeed, if we rescale the
variables by

w = d

(
z + T −1/5

2(U0 + μ)

)
and h = cH ,

then if c and d are chosen so that

d5 = 4U0(U0 + μ)2 and c = 4U0(U0 + μ)d−3,

we obtain

H ′′(w) = 6H(w)2 + w + O(T −2/5)

which puts the Painlevé-I approximating equation into canonical form. Note that c and
d are well defined modulo the symmetry (c, d) �→ (e−6π i/5c, e2π i/5d), for which it
suffices to show thatU0 �= 0 andU0+μ �= 0. ButU0 �= 0 follows easily from the fact
that (1.15) has a nonzero constant term. Writing U0 = (U0 +μ)−μ, we can rewrite
(1.15) as a quartic inU0+μwith constant term− 1

2 (μ
4−8κμ2+16). Setting the latter

constant term to zero and eliminating μ between this condition and the branch point
condition B(μ; κ) = 0 (cf. (1.17)) yields the condition that κ should satisfy either
κ = ±1 or 375κ2 + 3721 = 0, neither of which are possible for κ ∈ R \ {−1, 1}.
Hence it also follows that U0 + μ �= 0.

This formal analysis suggests that solutions u(x) of Painlevé-IV for large T = |�0|
and fixed κ = −�∞/T ∈ R \ {−1, 1} can behave like solutions of the Painlevé-
I equation when xT −1/2 is close to one of the eight branch points satisfying (1.17),
provided that alsou ≈ T 1/2U0 for a branching equilibriumU0 in someoverlap domain.
The particular solution(s) of Painlevé-I that would be relevant is not clear from this
formal analysis. However, in [47] one finds the conjecture that for the gH family of
rational solutions one should select a tritronquée solution of Painlevé-I, and in light
of the result of [15] that any poles or zeros of u should be confined to a region that
forms a sector with vertex at a complex branch point μ and opening angle 2π

5 this is
a very reasonable hypothesis. Based on Theorem 2, one should also expect Painlevé-I
tritronquée asymptotics near the branchpoints on the real and imaginary axes for the gO
family of rational solutions. While the proofs of these tritronquée convergence results
have yet to be given, a similar result has been proven rigorously for rational solutions of
the Painlevé-II equation in [19]. Near the remaining branch points the pole-free sector
of the gO rational solutions is smaller, and one can only reasonably anticipate the
appearance of a tronquée solution of Painlevé-I. Such solutions form a one-parameter
family containing the tritronquée solutions as finitely many special cases, so just to
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formulate a precise conjecture one would need to single out a particular tronquée
solution of Painlevé-I. We note that the formal connection between Painlevé-IV and
Painlevé-I is apparently not a direct link in the “coalescence cascade” of Painlevé
equations reported in [53, §32.2(vi)]; in the latter, solutions of Painlevé-IV degenerate
to solutions of the Painlevé-II equation, which in turn can degenerate into solutions of
Painlevé-I. We also note there is a connection between Bäcklund transformations for
the Painlevé-IV equation and the discrete Painlevé-I equation [32, 34].

Appendix D. Rational Painlevé-IV Solutions Near the Origin

By substituting appropriate Taylor or Laurent series into (1.1) one easily sees that
for any solution u(x), all poles must be simple with residue ±1 and for �0 �= 0 all
zeros x = x0 must be simple with u′(x0) = ±4�0. It follows from Proposition 4
in Sect. 2 that only odd powers of x appear in the power series expansion of any
rational solution u(x) about x = 0. This allows one to determine sufficiently many
terms from the four possible leading terms ±x−1 and ±4�0x for given (�0,�∞)

admitting a rational solution to apply the four elementary isomonodromic Bäcklund
transformations u(x) �→ u↗(x), u(x) �→ u↙(x), u(x) �→ u↘(x), and u(x) �→
u↖(x) (see (3.48), (3.49), (3.50), and (3.51) respectively in Sect. 3.3) and deduce the
leading term of the expansion at x = 0 of the image function, also a rational solution
of (1.1) for a nearest-neighbor point in the same parameter lattice (depending on the
family). Therefore, starting from any one point in �gH 	 �gO, one can prove the
following by induction.

Proposition 13 In the limit x → 0, the leading terms of u[ j]
F (x; m, n), F = gH or

F = gO and j = 1, 2, 3, depend only on the type j and the parity of the indices (m, n)
as follows:

u[1]
F (x; m, n) m even m odd

n even −4�[1]
0,F(m, n)x + O(x3) 4�[1]

0,F(m, n)x + O(x3)
n odd x−1 + O(x) −x−1 + O(x)

(D.1)

u[2]
F (x; m, n) m even m odd

n even −4�[2]
0,F(m, n)x + O(x3) −x−1 + O(x)

n odd 4�[2]
0,F(m, n)x + O(x3) x−1 + O(x)

(D.2)

u[3]
F (x; m, n) m even m odd

n even −4�[3]
0,F(m, n)x + O(x3) x−1 + O(x)

n odd −x−1 + O(x) 4�[1]
0,F(m, n)x + O(x3)

(D.3)

Theorems 3 and 4 formulated in Sect. 1.4 assert the accuracy of the approximation of
u[ j]
F (x; m, n) by an elliptic function f (ζ−ζ0) solving the autonomousmodel equation

(1.18); in particular this applies in the special case that μ = 0, which always lies in
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B�(κ) for all parameter values, and that ζ is bounded. In this case, by Proposition 3
in Sect. 1.4, we also have E = 0. Furthermore, taking into account the identities
(7.3) and (7.4) from Sect. 7.5, both of which hold if and only if μ = 0, as well
as the condition that (�0,�∞) ∈ �gH 	 �gO, one can show that the prediction of
Corollary 2 formulated in Sect. 1.4 is exact in this special case. In other words, the
pole or zero of u[ j]

F (x; m, n) that must lie at the origin according to Proposition 4 is
captured exactly by the approximation formulæ of Theorems 3–4. Therefore, in this
case we can determine the phase shift ζ0 explicitly by enforcing the property that
f (ζ − ζ0) have a zero with the same sign of derivative or a pole with the same residue
at ζ = 0 as does the actual rational solution, as described in Proposition 13.

To do this, we first solve (1.18) with μ = 0 and E = 0 subject to f (0) = 0 and
f ′(0) = 4 to obtain f (ζ ) explicitly in terms of Jacobi elliptic functions (comparing
with the notation of [53, Chapter 22] we prefer to write, e.g., sn(z|m) in place of
sn(z, k)wherem = k2), and express its pole and zero lattices in terms of the complete
elliptic integrals of the first kind

K(m) :=
∫ 1

2π

0

dθ√
1 − m sin(θ)

, K
′(m) := K(1 − m).

This calculation depends only on whether κ < −1, κ ∈ (−1, 1), or κ > 1 holds, and
yields the following results.

• If κ < −1 (i.e., for (�0,�∞) ∈ �
[1]−
gH 	 �

[1]−
gO 	 �

[2]+
gO ), then

f (ζ ) = 2m1/4sn
(
2m−1/4ζ

∣∣m) , m := −1+2κ2+2κ
√
κ2 − 1 ∈ (0, 1). (D.4)

It is known that sn(x |m) has zeros at x = 2 jK(m) + 2kiK′(m) and poles at
x = 2 jK(m)+ (2k +1)iK′(m) ( j, k ∈ Z). SinceK(m) andK′(m) are both purely
real, as is the scaling factor 2m−1/4, f (ζ ) has rows of zeros alternating with rows
of poles parallel to the real axis.

• If κ > 1 (i.e., for (�0,�∞) ∈ �
[2]−
gH 	 �

[1]+
gO 	 �

[2]−
gO ), then

f (ζ ) = 2(1−m)1/4sc
(
2(1 − m)−1/4ζ

∣∣m) , m := 2−2κ2+2κ
√
κ2 − 1 ∈ (0, 1).

(D.5)
The function sc(x |m) has zeros at x = 2 jK(m) + 2kiK′(m) and poles at x =
(2 j + 1)K(m)+ 2kiK′(m) ( j, k ∈ Z). Since K(m), K′(m), and the scaling factor
2(1 − m)−1/4 are all purely real, f (ζ ) has columns of zeros alternating with
columns of poles parallel to the imaginary axis.

• If κ ∈ (−1, 1) (i.e., for (�0,�∞) ∈ �
[3]+
gH 	 �

[3]+
gO 	 �

[3]−
gO ), then

f (ζ ) = 2e−iπ/4((1 − m)m)1/4sd
(
2eiπ/4((1 − m)m)−1/4ζ

∣∣m) ,
m := 1

2
− iκ

2
√
1 − κ2

= 1 − m∗. (D.6)
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This is the only case in which the elliptic modulusm is complex, in which case we
use the principal branch square roots to interpret K(m) and K

′(m); therefore as
m∗ = 1−mwe also haveK′(m) = K(m)∗. The elliptic function sd(x |m) has zeros
at x = 2 jK(m) + 2kiK′(m) and poles at x = (2 j + 1)K(m) + (2k + 1)iK′(m)
( j, k ∈ Z). Since arg(K(m) + iK′(m)) = π

4 and arg(−K(m) + iK′(m)) = 3π
4 ,

the zeros and poles of f (ζ ) form a “checkerboard” pattern with respective lattices
spanned by basis vectors parallel to the coordinate axes and shifted by a half-period
in each direction with respect to one another.

In all three cases, the theoretically predicted pattern qualitatively matches what one
sees near the origin in the respective plots shown in Figs. 3 and 4 discussed in Sect. 1.2.

It remains to determine the phase shift ζ0 by ensuring that the correct “sign” of pole
or zero of f (ζ − ζ0) lies at ζ = 0. Here the results depend not only on the sector of
the parameter space shown in Fig. 1 but also on the parity of the indices (m, n) used
to parametrize the allowed values of (�0,�∞). The results are as follows.

• Let κ < −1 and takem ∈ (0, 1) as in (D.4). If (�[1]
0,F(m, n),�[1]

∞,F(m, n)) ∈ �
[1]−
F

(for either family F = gH or F = gO), then ζ0 is given by

ζ0 m even m odd

n even 0
2K(m)

2m−1/4

n odd
iK′(m)
2m−1/4

2K(m) + iK′(m)
2m−1/4

If instead (�[2]
0,gO(m, n),�[2]

∞,gO(m, n)) ∈ �
[2]+
gO , then ζ0 is given by

ζ0 m even m odd

n even
2K(m)

2m−1/4

2K(m) + iK′(m)
2m−1/4

n odd 0
iK′(m)
2m−1/4

• Letκ > 1and takem ∈ (0, 1) as in (D.5). If (�[1]
0,gO(m, n),�[1]

∞,gO(m, n)) ∈ �
[1]+
gO ,

then ζ0 is given by

ζ0 m even m odd

n even
2iK′(m)

2(1 − m)−1/4 0

n odd
K(m) + 2iK′(m)
2(1 − m)−1/4

K(m)

2(1 − m)−1/4
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If instead (�
[2]
0,F(m, n),�[2]

∞,F(m, n)) ∈ �
[2]−
F (for either family F = gH or

F = gO), then ζ0 is given by

ζ0 m even m odd

n even 0
K(m)

2(1 − m)−1/4

n odd
2iK′(m)

2(1 − m)−1/4

K(m) + 2iK′(m)
2(1 − m)−1/4

• Let κ ∈ (−1, 1) and take κ ∈ C as in (D.6). If (�[3]
0,F(m, n),�[3]

∞,F(m, n)) ∈ �
[3]+
F

(for either family F = gH or F = gO), then ζ0 is given by

ζ0 m even m odd

n even
2K(m)

2eiπ/4((1 − m)m)−1/4

−K(m) + iK′(m)
2eiπ/4((1 − m)m)−1/4

n odd
K(m) + iK′(m)

2eiπ/4((1 − m)m)−1/4 0

If instead (�[3]
0,gO(m, n),�[3]

∞,gO(m, n)) ∈ �
[3]−
gO , then ζ0 is given by

ζ0 m even m odd

n even 0
−K(m) + iK′(m)

2eiπ/4((1 − m)m)−1/4

n odd
K(m) + iK′(m)

2eiπ/4((1 − m)m)−1/4

2K(m)

2eiπ/4((1 − m)m)−1/4

These results are consistent in the gH case with [46, Corollary 1], a rigorous result
describing the zeros of Hm,n(x) near the origin as a locally regular latticewith spacings
determined from complete elliptic integrals.

If we use the approach (ii) described in Sect. 1.4 in the discussion following
Remark 4 in which a rational solution of Painlevé-IV is approximated locally near
a given point μ by an exact elliptic function of ζ with a uniform lattice of poles and
zeros, then we can easily use the knowledge of ζ0 detailed above to illustrate the
attraction of the actual poles and zeros to the uniform lattice for the case μ = 0. This
is shown for some gH rational solutions of types 1–3 in Figs. 36, 37, and 38.

These plots show the characteristic feature that since μ is fixed, the approximation
for given ζ improves as the indices (m, n) increase, while for given (m, n) large
it becomes less accurate as |ζ | grows. This is to be expected whether or not the
approximation is exact at ζ = 0.
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Fig. 36 Zeros and poles of u[1]
gH(T

−1/2ζ ; m, n) in the ζ -plane (bold colors) and their large-T elliptic
function approximations (faded colors). Cyan circles: zeros with positive derivative. Blue circles: zeros
with negative derivative. Magenta dots: poles with positive residue. Grey dots: poles with negative residue.
For the point at ζ = 0 which corresponds to x = 0, these match the theoretical predictions of Proposition 13
(Color figure online)

Fig. 37 As in Fig. 36 but for u[2]
gH(T

−1/2ζ ; m, n) (Color figure online)

Fig. 38 As in Figs. 36 and 37 but for u[3]
gH(T

−1/2ζ ; m, n) (Color figure online)

Appendix E. Diagrams and Tables for Steepest-Descent Analysis on
Boutroux Domains

Here we gather z-plane diagrams and tables referred to in Sect. 7. In all plots gray
shading means Re(h(z)) < 0 and white background means Re(h(z)) > 0.

E.1. The gO Case with� ∈ B�(�) and s = 1

Here we use representative values of μ = 0 and κ = 0 (Fig. 39, Table 7).
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Fig. 39 Diagrams for the gO case with μ ∈ B�(κ) and s = 1 (Color figure online)
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Fig. 39 continued

Table 7 Inner parametrix data for the gO case with μ ∈ B�(κ) and s = 1

p Conformal map W : Dp → C Ray Preimages in Dp C(z) in Dp

arg(W ) Preimage Value C Subdomain of Dp

α (2h(z) − 2h(α))2/3, continued from
�1+
2

0 �1+
2 D(

√
3
2 e

5iπ/6) Dα ∩ D◦

2π
3 �1−

2 & �2−
2

− 2π
3 �2+

2 T(
√
2e2iπ/3) Dα \ D◦

±π �2
2

β (2h(z) − 2h(β))2/3, continued from
�1−
3 ; h(β) defined by limit along

�1−
3

0 �1−
3 D(

√
3
2 i) Dβ ∩ D◦

2π
3 �2−

3

− 2π
3 �1+

3 & �2+
3 T(

√
2eiπ/3) Dβ \ D◦

±π �2
3

γ (2h(z) − 2h(γ ))2/3, continued from
�1+
4 ; h(γ ) defined by limit along

�1+
4

0 �1+
4 D(

√
3
2 i) Dγ ∩ D◦

2π
3 �1−

4 & �2−
4

− 2π
3 �2+

4 T(
√
2e2iπ/3) Dγ \ D◦

±π �2
4

δ (2h(z) − 2h(δ))2/3, continued from
�1−
1

0 �1−
1 D(

√
3
2 e

iπ/6) Dδ ∩ D◦

2π
3 �2−

1

− 2π
3 �1+

1 & �2+
1 T(

√
2eiπ/3) Dδ \ D◦

±π �2
1
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E.2. The gH Case with� ∈ B�(�) and s = 1

Here we use representative values of μ = 0 and κ = 0 (Fig. 40, Table 8).

Fig. 40 Diagrams for the (only) gH case with μ ∈ B�(κ) and s = 1 (Color figure online)
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Fig. 40 continued

Table 8 Inner parametrix data for the (only) gH case with μ ∈ B�(κ) and s = 1

p Conformal map W : Dp → C Ray Preimages in Dp C(z) in Dp

arg(W ) Preimage Value C Subdomain of Dp

α (2h(α) − 2h(z))2/3, continued from
C3

0 C3 D(e−iπ/4) Dα

2π
3 C4−

− 2π
3 C4+

±π C4

β (2〈h〉(β) − 2〈h〉(z))2/3, continued
from C5

0 C5 D(eiπ/4) Dβ

2π
3 C4+

− 2π
3 C4−

±π C4

γ (2〈h〉(γ ) − 2〈h〉(z))2/3, continued
from C1

0 C1 D(e−iπ/4) Dγ

2π
3 C2−

− 2π
3 C2+

±π C2

δ (2h(δ) − 2h(z))2/3, continued from
C3

0 C3 D(eiπ/4) Dδ ∩ D◦

2π
3 C2+

− 2π
3 C2−

±π C2
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E.3. The gO Case with� ∈ B�(�) and s = −1

Here we use representative values of μ = 0 and κ = 0 (Fig. 41, Table 9).

Fig. 41 Diagrams for the gO case with μ ∈ B�(κ) and s = −1 (Color figure online)
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Fig. 41 continued

Table 9 Inner parametrix data for the gO case with μ ∈ B�(κ) and s = −1

p Conformal map W : Dp → C Ray Preimages in Dp C(z) in Dp

arg(W ) Preimage Value C Subdomain of Dp

α (2h(z) − 2h(α))2/3, continued from
�1+
2 ; h(α) defined by limit along

�1+
2

0 �1+
2 T(

√
2eiπ/6) Dα ∩ D◦

2π
3 �1−

2 & �2−
2

− 2π
3 �2+

2 T(
√
2eiπ/3) Dα \ D◦

±π �2
2

β (2h(z) − 2h(β))2/3, continued from
�1−
3 ; h(β) defined by limit along

�1−
3

0 �1−
3 T(

√
2i) Dβ ∩ D◦

2π
3 �2−

3

− 2π
3 �1+

3 & �2+
3 T(

√
2e2iπ/3) Dβ \ D◦

±π �2
3

γ (2h(z) − 2h(γ ))2/3, continued from
�1+
4 ; h(γ ) defined by limit along

�1+
4

0 �1+
4 T(

√
2i) Dγ ∩ D◦

2π
3 �1−

4 & �2−
4

− 2π
3 �2+

4 T(
√
2eiπ/3) Dγ \ D◦

±π �2
4

δ (2h(z) − 2h(δ))2/3, continued from
�1−
1 ; h(δ) defined by limit along

�1−
1

0 �1−
1 T(

√
2e5iπ/6) Dδ ∩ D◦

2
3π �2−

1

− 2
3π �1+

1 & �2+
1 T(

√
2e2iπ/3) Dδ \ D◦

±π �2
1
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E.4. The gO Case with� ∈ B�(�) and s = 1

Here we use representative values of μ = 1.3 and κ = 0 (Fig. 42, Table 10).

Fig. 42 Diagrams for the gO case with μ ∈ B�(κ) and s = 1 (Color figure online)
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Fig. 42 continued

Table 10 Inner parametrix data for the gO case with μ ∈ B�(κ) and s = 1

p Conformal map
W : Dp → C

Ray Preimages in Dp C(z) in Dp

arg(W ) Preimage Value C Subdomain of Dp

α (2〈h〉(α) − 2〈h〉(z))2/3,
continued from �4,3

0 �4,3 D( 1√
2
) Dα , left of �4,3 & �c

2π
3 �4,1

− 2π
3 �2,3 e2π i�∞D( 1√

2
) Dα , right of �4,3 & �c

±π �c

β (2〈h〉(z) − 2〈h〉(β))2/3,
continued from �0;
〈h〉(β) defined by limit
along �0

0 �1+
1 , �0, & �1−

2 T(
√

2
3 e

−5iπ/6) Dβ ∩ D◦, left of �0

2π
3 �1+

2 T(
√

2
3 e

−2π i�0−5iπ/6) Dβ ∩ D◦, right of �0

− 2π
3 �1−

1 D( 1√
2
e−2π i�0 ) Dβ \ D◦, left of �c

±π �c D( 1√
2
eiπ/3) Dβ \ D◦, right of �c

γ (2h(z) − 2h(γ ))2/3,
continued from �1+

2

0 �1+
2 D(

√
3
2 e

5iπ/6) Dγ ∩ D◦

2π
3 �1−

2 & �2−
2

− 2π
3 �2+

2 T(
√
2e2iπ/3) Dγ \ D◦

±π �2
2

δ (2h(z) − 2h(δ))2/3,
continued from �1−

1

0 �1−
1 D(

√
3
2 e

iπ/6) Dδ ∩ D◦

2π
3 �2−

1

− 2π
3 �1+

1 & �2+
1 T(

√
2eiπ/3) Dδ \ D◦

±π �2
1
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E.5. The gO Case with� ∈ B�(�) and s = −1

Here we use representative values of μ = 1.3 and κ = 0 (Fig. 43, Table 11).

Fig. 43 Diagrams for the gO case with μ ∈ B�(κ) and s = −1 (Color figure online)
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Fig. 43 continued

Table 11 Inner parametrix data for the gO case with μ ∈ B�(κ) and s = −1

p Conformal map
W : Dp → C

Ray Preimages in Dp C(z) in Dp

arg(W ) Preimage Value C Subdomain of Dp

α (2〈h〉(α) − 2〈h〉(z))2/3,
continued from �4,3

0 �4,3 D( 1√
2
) Dα , left of �4,3 & �c

2π
3 �4,1

− 2π
3 �2,3 e2π i�∞D( 1√

2
) Dα , right of �4,3 & �c

±π �c

β (2〈h〉(β) − 2〈h〉(z))2/3,
continued from �0;
〈h〉(β) defined by limit
along �0

0 �1+
1 , �0, & �1−

2 D( 1√
2
e−iπ/6) Dβ ∩ D◦, left of �0

2π
3 �1+

2 D( 1√
2
e2π i�0−iπ/6) Dβ ∩ D◦, right of �0

− 2π
3 �1−

1 D( 1√
2
e2π i�0 ) Dβ \ D◦, left of �c

±π �c D( 1√
2
e−iπ/3) Dβ \ D◦, right of �c

γ (2h(z) − 2h(γ ))2/3,
continued from �1+

2 ;
h(γ ) defined by limit
along �1+

2

0 �1+
2 T(

√
2eiπ/6) Dγ ∩ D◦

2π
3 �1−

2 & �2−
2

− 2π
3 �2+

2 T(
√
2eiπ/3) Dγ \ D◦

±π �2
2

δ (2h(z) − 2h(δ))2/3,
continued from �1−

1 ;
h(δ) defined by limit
along �1−

1

0 �1−
1 T(

√
2e5iπ/6) Dδ ∩ D◦

2π
3 �2−

1

− 2π
3 �1+

1 & �2+
1 T(

√
2e2iπ/3) Dδ \ D◦

±π �2
1
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E.6. The gO Case with� ∈ B�(�) and s = 1

Here we use representative values of μ = 1.3i and κ = 0 (Fig. 44, Table 12).

Fig. 44 Diagrams for the gO case with μ ∈ B�(κ) and s = 1 (Color figure online)
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Fig. 44 continued

Table 12 Inner parametrix data for the gO case with μ ∈ B�(κ) and s = 1

p Conformal map
W : Dp → C

Ray Preimages in Dp C(z) in Dp

arg(W ) Preimage Value C Subdomain of Dp

α (2〈h〉(z) − 2〈h〉(α))2/3,
continued from �4,1

0 �4,1 T(
√
2i) Dα , left of �4,1 & �c

2π
3 �2,1

− 2π
3 �4,3 e2π i�∞T(

√
2i) Dα , right of �4,1 & �c

±π �c

β (2〈h〉(z) − 2〈h〉(β))2/3,
continued from �0;
〈h〉(β) defined by limit
along �0

0 �2−
2 , �0, & �2+

3 T(
√

2
3 i) Dβ ∩ D◦, left of �0

2π
3 �2−

3 T(
√

2
3 ie

−2π i�0 ) Dβ ∩ D◦, right of �0

− 2π
3 �2+

2 T(
√
2e5iπ/6) Dβ \ D◦, left of �c

±π �c T(
√
2ie−2π i�0 ) Dβ \ D◦, right of �c

γ (2h(z) − 2h(γ ))2/3,
continued from �1−

3 ;
h(γ ) defined by limit
along �1−

3

0 �1−
3 D(

√
3
2 i) Dγ ∩ D◦

2π
3 �2−

3

− 2π
3 �1+

3 & �2+
3 T(

√
2eiπ/3) Dγ \ D◦

±π �2
3

δ (2h(z) − 2h(δ))2/3,
continued from �1+

2 ;
h(δ) defined by limit
along �1+

2

0 �1+
2 D(

√
3
2 e

5iπ/6) Dδ ∩ D◦

2π
3 �1−

2 & �2−
2

− 2π
3 �2+

2 T(
√
2e2iπ/3) Dδ \ D◦

±π �2
2
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E.7. The gO Case with� ∈ B�(�) and s = −1

Here we use representative values of μ = 1.3i and κ = 0 (Fig. 45 and Table 13).

Fig. 45 Diagrams for the gO case with μ ∈ B�(κ) and s = −1 (Color figure online)
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Fig. 45 continued

Table 13 Inner parametrix data for the gO case with μ ∈ B�(κ) and s = −1

p Conformal map
W : Dp → C

Ray Preimages in Dp C(z) in Dp

arg(W ) Preimage Value C Subdomain of Dp

α (2〈h〉(z) − 2〈h〉(α))2/3,
continued from �4,1

0 �4,1 T(
√
2i) Dα , left of �4,1 & �c

2π
3 �2,1

− 2π
3 �4,3 e2π i�∞T(

√
2i) Dα , right of �4,1 & �c

±π �c

β (2〈h〉(β) − 2〈h〉(z))2/3,
continued from �0;
〈h〉(β) defined by limit
along �0

0 �2−
2 , �0, & �2+

3 D( 1√
2
i) Dβ ∩ D◦, left of �0

2π
3 �2−

3 D( 1√
2
ie2π i�0 ) Dβ ∩ D◦, right of �0

− 2π
3 �2+

2 T(
√
2eiπ/6) Dβ \ D◦, left of �c

±π �c T(
√
2ie2π i�0 ) Dβ \ D◦, right of �c

γ (2h(z) − 2h(γ ))2/3,
continued from �1−

3

0 �1−
3 T(

√
2i) Dγ ∩ D◦

2π
3 �2−

3

− 2π
3 �1+

3 & �2+
3 T(

√
2e2iπ/3) Dγ \ D◦

±π �2
3

δ (2h(z) − 2h(δ))2/3,
continued from �1+

2

0 �1+
2 T(

√
2eiπ/6) Dδ ∩ D◦

2π
3 �1−

2 & �2−
2

− 2π
3 �2+

2 T(
√
2eiπ/3) Dδ \ D◦

±π �2
2
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Appendix F. User’s Guide: Approximating Rational Solutions on
Boutroux Domains

The approximation most directly adapted to our analysis of Riemann–Hilbert Prob-
lem 1 in Sect. 3.1 is that of the rational functions u[3]

gO(x; m, n) and u[3]
gH(x; m, n). The

basic approximation formula for these functions reads:

u[3]
F

(
|�[3]

0,F(m, n)|1/2μ + |�[3]
0,F(m, n)|−1/2ζ ; m, n

)
= |�[3]

0,F(m, n)|1/2
(

f (ζ − ζ0)
χ + O

(
|�[3]

0,F(m, n)|−1
))χ

,

f (ζ − ζ0) = Ŭ [3]
F (ζ ;μ) := ψ

[3]
F (μ)

ϑ(K − i(� − z
[3]
1 ))ϑ(K − i(� − z

[3]
2 ))

ϑ(K − i(� − p
[3]
1 ))ϑ(K − i(� − p

[3]
2 ))

.

(F.1)
Assuming that χ = −sgn(ln | f (ζ −ζ0)|), the error term is uniform for bounded ζ and
for μ in a compact subset of the selected Boutroux domain B. Computing the leading
term consists of the following steps.

(1) Define the parameters T > 0, s = ±1, and κ ∈ (−1, 1) in terms of (m, n) by (4.3)
(resp., by (4.4)) for the gH family (resp., for the gO family).

(2) Select a Boutroux domain B = B�(κ), B = B�(κ) (both for the gO family only),
or B = B�(κ), and ensure that μ ∈ B (the boundaries of the domains can be
numerically computed given κ using (1.22); see also Appendix G.

(3) Using numerical root finding and continuationmethods informed by the discussion
in Sect. 4.4, determine the value of E = E(μ; κ) for which the Boutroux equations
(4.23) hold.

(4) With E determined, the polynomial P(z) given by (1.18) is now known. Find its
roots α, β, γ , and δ and order them according to the Stokes graph as illustrated
in Figs. 39a–45a from Appendix E relevant for the family, Boutroux domain, and
sign s under consideration (recall that while these figures are for special cases of
the parameters, the abstract Stokes graph depends only on the selected Boutroux
domain). Then using the contours �1 and �2 and branch cuts for R(z) illustrated
in the same plots, numerically compute the real constants R1 and R2 given by
(7.1) (one can use this computation as an opportunity to verify the accuracy of
the determination of E , which should force the imaginary parts of R1 and R2 to
vanish to machine precision).

(5) Matching the topological representation of a and b cycles shown in Fig. 28 of
Sect. 7.6 with the actual ordering of the points obtained in the previous step, and
using the relationship (7.8), numerically calculate the constant c given in (7.13)
and the constant Hω given in (7.15). Then taking into account the value of z0
given in terms of the well-defined branch points α, β, γ , δ by (7.21), numerically
evaluate the integrals a(0), a(∞), and a(z0) (see (7.17)). Using these, define the
phase shifts z[3]j and p[3]

j , j = 1, 2, by (7.41).
(6) Using Table 6 from Sect. 7.6 to determine the phases CG and CB relevant to the

case at hand (noting also �∞ = −κT ), define the aggregate phase � by (7.26).
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(7) Recalling the definition (7.22) of ϑ(z) given Hω (possibly implementing this def-
inition using built-in function calls to Jacobi theta functions) and using K =
iπ + 1

2 Hω, calculate the complex amplitude factor ψ [3]
F (μ) from (7.43). Then

bring in� and the four phase shifts to finish the rest of the calculation using (F.1).

The other approximation proved by analyzing the same Riemann–Hilbert Problem
applies to the rational functions u[1]

gO(x; m, n) and u[1]
gH(x; m, n), and it reads

u[1]
F

(
|�[1]

0,F(m, n)|1/2μ̂ + |�[1]
0,F(m, n)|−1/2ζ̂ ; m, n

)
= |�[1]

0,F(m, n)|1/2
(

f (ζ − ζ0)
χ + O

(
|�[1]

0,F(m, n)|−1
))χ

,

f (̂ζ − ζ̂0) = Ŭ [1]
F (̂ζ ; μ̂) := ψ

[1]
F (μ̂)

ϑ(K − i(� − z
[1]
1 ))ϑ(K − i(� − z

[1]
2 ))

ϑ(K − i(� − p
[1]
1 ))ϑ(K − i(� − p

[1]
2 ))

.

(F.2)
Again taking χ = −sgn(ln | f (̂ζ − ζ̂0)|), the error term is uniform for bounded ζ̂ and
for μ̂ in a compact subset of the chosen Boutroux domain B. To compute the leading
term, we modify the above steps as follows.

(1) Define the parameters T > 0, s = ±1, and κ ∈ (−1, 1) in terms of (m, n) by (4.6)
(resp., by (4.8)) for the gH family (resp., for the gO family). These are not directly
related to the “native” parameters �[1]

0,F(m, n) and �
[1]
∞,F(m, n), but they are the

correct values to use for the remaining steps of the calculation. From the given
values of the variables ζ̂ and μ̂, define scaled versions needed for the subsequent
steps by setting

ζ :=
√

2

1 − sκ
ζ̂ and μ :=

√
1 − sκ

2
μ̂.

(2) As above.
(3) As above.
(4) As above.
(5) As above, but instead calculate the phase shifts z[1]j and p[1]

j from (7.47).
(6) As above for the indicated parameters.
(7) As above for the indicated parameters, but now define the complex amplitude

ψ
[1]
F (μ̂) = ei(z

[1]
1 −p[1]

2 )M in terms of M given in (7.48), and finish the calculation
using (F.2).

We do not obtain any approximations for the rational solutions u[2]
gO(x; m, n) or

u[2]
gH(x; m, n) directly from analysis of Riemann–Hilbert Problem 1, but we can apply

the exact symmetry (2.2) to obtain the following result.

u[2]
F

(
|�[2]

0,F(m, n)|1/2μ + |�[2]
0,F(m, n)|−1/2ζ ; m, n

)
= |�[2]

0,F(m, n)|1/2
(

f (ζ − ζ0)
χ + O

(
|�[2]

0,F(m, n)|−1
))χ

,

f (ζ − ζ0) = Ŭ [2]
F (ζ ;μ) := iŬ [1]

F (−iζ ;−iμ).
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Taking χ = −sgn(ln | f (ζ − ζ0)|), this formula is also uniformly valid for bounded
ζ and μ in a compact subset of the chosen Boutroux domain B. The leading term can
obviously be computed by adapting the above procedure to variables rotated by −i in
the complex plane.

Appendix G.User’s Guide: Practical Computation of Boundary Curves

In this appendix, we provide further details about how (1.22) can be used practically
to compute the boundary curves. An antiderivative of the integrand in (1.22) is

∫
( f − γ )

√
( f − α)( f − β)

d f

f
= 1

4

√
( f − α)( f − β)(2 f − α − β − 4γ )

− 1

8
((α + β)2 − 4(α + β)γ − 4αβ) log

(
f − α + √

( f − α)( f − β)

f − α − √
( f − α)( f − β)

)

− √
α
√
βγ log

(√
β( f − α) + √

α
√
( f − α)( f − β)√

β( f − α) − √
α
√
( f − α)( f − β)

)
.

Since α and β are the roots of the quadratic (1.21), the identities αβγ 2 = 16 and
α + β = −4μ − 2γ both hold. Using these as well as the quartic equation (1.15)
satisfied by γ = U0, the coefficient of the first logarithm is simply

−1

8
((α + β)2 − 4(α + β)γ − 4αβ) = 4κ ∈ R.

Likewise, the coefficient of the second logarithm is −√
α
√
βγ = ±4 ∈ R. Further-

more, evaluating at the limits of integration f = γ and (by taking a limit) f = α and
taking the real part gives

Re

(∫ γ

α

( f − γ )
√
( f − α)( f − β)

d f

f

)
= −1

4
Re
(√

(γ − α)(γ − β)(α + β + 2γ )
)

+ 4κ log

∣∣∣∣γ − α + √
(γ − α)(γ − β)

γ − α − √
(γ − α)(γ − β)

∣∣∣∣
− √

α
√
βγ log

∣∣∣∣
√
β(γ − α) + √

α
√
(γ − α)(γ − β)√

β(γ − α) − √
α
√
(γ − α)(γ − β)

∣∣∣∣ .
This formula is invariant under permutation of (α, β), and the last termdoes not depend
on the choice of signs in the square roots

√
α and

√
β. Although the whole formula

changes sign if
√
(γ − α)(γ − β) changes sign, this is irrelevant in identifying the zero

set as required in the condition (1.22). At this point, we can use the fact that γ = U0
is a root of the quartic equation (1.15), so it becomes locally one of four functions
of μ parametrized by κ , and then α and β are in turn determined (up to permutation)
as functions of μ with parameter κ via the quadratic equation (1.21). Thus on each
of the four sheets of the solution of (1.15) over a given domain in the μ-plane, the
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condition (1.22) defines a system of arcs that are the zeros of a harmonic function of
μ. By combining the above explicit formula with the well-known explicit solution of
the quartic equation (1.15) for γ = U0 in terms of radicals and the subsequent use of
the quadratic formula to solve (1.21) for α and β one converts (1.22) into an explicit
harmonic function of μ whose zero locus can be found using standard computational
software.

Appendix H. Alternate Approach to Rational Solutions of Types 1 and
2

The basic approach we have followed in this paper is to use the fact that the Painlevé-
IV rational solutions of type 1, which correspond to values of κ outside of the basic
interval (−1, 1), can be extracted via the formula (3.2) for u�

�
(x) from Riemann–

Hilbert Problem 1 in Sect. 3.1 formulated for the rational solutions of type 3, which
correspond instead to κ ∈ (−1, 1). Of course another approach to the rational solutions
of type 1 (and also type 2) is to represent these solutions as u(x) instead of u�

�
(x) in

(3.2) and solve Riemann–Hilbert Problem 1 for parameters covering all lattice points
far from the origin in Fig. 1. The latter approach avoids the complication of the changes
of variables associated with the Bäcklund transformation u(x) �→ u�

�
(x), but it leads

to many additional cases for matrix factorizations and parametrix constructions, as
one must consider spectral curves for κ < −1 and κ > 1, as well as for κ ∈ (−1, 1).

H.1. Monodromy Data for gH Rational Solutions of Types 1 and 2

One further difficulty of this alternate approach in the gH case is that the ratio-
nal solutions for (�0,�∞) ∈ �

[1]−
gH ∪ �

[2]−
gH cannot be obtained from those for

(�0,�∞) ∈ �
[3]+
gH by means of isomonodromic transformations, so to treat these

rational solutions as functions u(x) in Riemann–Hilbert Problem 1 it is necessary to
repeat the procedure of Sect. 3.6 for a seed solution with parameters in �[1]−

gH . Note
that this issue does not arise for the gO solutions as the entire lattice �gO is spanned
by isomonodromic transformations.

Applying the transformation S�
�
to the seed solution u(x) = −2x for (�0,�∞) =

( 12 ,
1
2 ) ∈ �

[3]+
gH , we obtain the solution u(x) = x−1 for parameters (�0,�∞) =

(− 1
2 ,

3
2 ) ∈ �

[1]−
gH . Without loss of generality taking the corresponding solution of

(3.7) to be y(x) = x−1 exp(−x2), and noting that from (3.8) we get z(x) = 1+ 1
2 x−2,

the Lax pair matrix coefficients �0(x), �1(x), and X0(x) defined in (3.10)–(3.11)
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become

�0(x) =
(

x x−1e−x2

ex2(x−1 − 2x) −x

)
,

�1(x) =
(

− 1
2 (1 + x−2) − 1

2 x−2e−x2

ex2(1 + 1
2 x−2) 1

2 (1 + x−2)

)
,

X0(x) = �0(x) − xσ3.

Following the same strategy we have used twice before, we look first for solutions
of �x = X�, and some experimentation shows that a particular solution is given in
closed form by�1 j = x−1 exp(−x2 − xλ) and�2 j = −(2x + 2λ+ x−1) exp(−xλ).
Applying reduction of order to obtain the general solution, and then determining the
dependence of constants of integration on λ so that the other Lax equation �λ = ��

holds, we obtain the following analogue of Lemma 2 and Lemma 3.

Lemma 21 Fix a simply connected domain D ⊂ C\ {0} and a branch of λ1/2 analytic
on D. Let �0 = − 1

2 and �∞ = 3
2 , and consider the exact solution u(x) = x−1 of

the corresponding Painlevé-IV equation (1.1). If y(x) = x−1 exp(−x2), then the Lax
pair equations (3.9) are simultaneously solvable for all (λ, x) ∈ D × (C \ {0}), and
every simultaneous solution matrix has the form

�(λ, x) = λ1/2

x

(
e−x2 1

2λ
−1 − F(x + λ)

−(2x2 + 2xλ + 1) [−(x + 1
2λ

−1) + (2x2 + 2xλ + 1)F(x + λ)]ex2

)

· exp(−( 12λ
2 + xλ)σ3)C, (H.1)

where F(z) := exp(−z2)
∫ z
0 exp(t2) dt denotes Dawson’s integral [53, §7.2(ii)] and

C is a matrix independent of both x and λ.

Absence of logarithms again indicates that although the Fuchsian singularity of �λ =
�� is resonant, it is also apparent, so it is possible to choose C = C(0) to define a
solution for |λ| < 1 to satisfy (3.13). For solutions defined to satisfy (3.12) in the four
Stokes sectors we determine C = C(∞)

j , j = 1, . . . , 4 by asymptotic analysis of the
general solution given in Lemma 21 for large λ. The results are

C(∞)
2 = C(∞)

3 =
(
i
√
π − 1

2
2 0

)
and C(∞)

1 = C(∞)
4 =

(−i
√
π − 1

2
2 0

)
.

Therefore, there is no Stokes phenomenon between sectors S2 and S3 or between S4
and S1 (i.e., upon crossing the imaginary Stokes rays), and the corresponding Stokes
matrices V2,3 = V4,1 = I defined in (3.15) and (3.17) respectively are trivial. On the
other hand, from (3.14) and (3.16) we get

V2,1 =
(

1 0
−4i

√
π 1

)
and V4,3 =

( −1 0
−4i

√
π −1

)
.
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Therefore, unlike the gH rationals in the parameter lattice �
[3]+
gH , the rationals in

the parameter lattice �[1]−
gH have nontrivial Stokes matrices on the real rays. Similar

analysis shows that gH rational solutions in the parameter lattice �[2]−
gH have instead

nontrivial Stokes phenomenon (only) across the imaginary rays.

H.2. Critical v-Trajectories of h′(z)2 dz2 for |�| > 1

The main idea of the asymptotic analysis of Riemann–Hilbert Problem 1 in all cases
is to use the landscape of Re(h(z)) in the z-plane, where as explained in Sect. 4.3 h(z)
is associated to the spectral curve for the polynomial P(z) = P(z;μ, κ, E) defined in
(1.18). The type-1 solutions correspond to values of κ outside of the interval (−1, 1).

Fig. 46 Critical v-trajectories of h′(z)2 dz2 emanating from (for generic μ) simple roots of P(z) for κ = 3
for the gH family. The same topological structure holds for κ > 1. Counterclockwise from top left: μ = 2i,
μ ≈ 1.45i, μ = 0.7i, μ = 0, μ = 0.7, μ ≈ 1.45, μ = 2, μ = 2 + 0.7i, μ = 2 + 1.45i, μ = 2 + 2i,
μ = 1.45 + 2i, μ = 0.7 + 2i. Inset: Boundary of B�(3) in the μ-plane. The μ-values corresponding to
different trajectory plots are indicated by red dots (Color figure online)
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Fig. 47 Critical v-trajectories of h′(z)2 dz2 emanating from simple roots of P(z) for κ = 3 for the gO family
(for nongeneric values of μ on boundary curves we show all critical trajectories). The same topological
structure holds for κ > 1. Counterclockwise from top left: μ ≈ 4.19698i, μ = 3i, μ ≈ 1.45i, μ = 0.7i,
μ = 0, μ = 0.7, μ ≈ 1.45, μ = 3, μ ≈ 4.19698, μ = 4.2 + 0.7i, μ = 4.2 + 1.45i, μ = 4.2 + 3i,
μ = 4.2 + 4.2i, μ = 3 + 4.2i, μ = 1.45 + 4.2i, μ = 0.7 + 4.2i. Inset: Boundaries of the regions B�(3),
±B�(3), and±B�(3) in theμ-plane. Theμ-values corresponding to different trajectory plots are indicated
by red dots

Just to give a flavor of the differences that can arise for |κ| > 1, in Figs. 46 and 47 we
present the analogues of Figs. 16 and 17 in Sect. 4.3 in which we display the critical
v-trajectories of the quadratic differential h′(z)2 dz2 emanating from (generically)
simple roots of the quartic P(z).
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51. Muğan, U., Fokas, A.S.: Schlesinger transformations of Painlevé II-V. J. Math. Phys. 33, 2031–2045

(1992)
52. Murata, Y.: Rational solutions of the second and the fourth Painlevé equations. Funkcial. Ekvac. 28,

1–32 (1985)
53. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.27 of 2020-06-15.

Online companion to [58]
54. Noumi,M.,Yamada,Y.: Symmetries in the fourthPainlevé equation andOkamotopolynomials.Nagoya

Math. J. 153, 53–86 (1999)
55. Yu, V., Novokshenov and A. A. Shchelkonogov,: Double scaling limit in the Painlevé IV equation and

asymptotics of the Okamoto polynomials. Amer. Math. Soc. Trans. 233, 199–210 (2014)
56. Yu, V., Novokshenov and A. A. Shchelkonogov,: Distribution of zeroes to generalized Hermite poly-

nomials. Ufa Math. J. 7, 54–66 (2015)
57. Okamoto, K.: Studies on the Painlevé equations III. Second and fourth Painlevé equations, PII and

PIV. Math. Ann. 275, 221–255 (1986)
58. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (Eds.) NIST Handbook of Mathematical

Functions, Cambridge University Press, New York. Print companion to [53] (2010)

123

http://dlmf.nist.gov/


Constructive Approximation

59. Osipov, V., Sommers, H., Zyczkowski, K.: Random Bures mixed states and the distribution of their
purity. J. Phys. A 43, 055302 (2010)

60. Strebel, K.: Quadratic Differentials. Springer Verlag, Berlin (1984)
61. Van Assche, W.: Orthogonal Polynomials and Painlevé Equations, Australian Mathematical Society

Lecture Series, vol. 27. Cambridge University Press, Cambridge (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Large-Degree Asymptotics of Rational Painlevé-IV Solutions by the Isomonodromy Method
	Abstract
	1 Introduction
	1.1 Overview
	1.2 Rational Solutions of Painlevé-IV
	1.2.1 Generalized Hermite Polynomials and Rational Solutions of Painlevé-IV
	1.2.2 Generalized Okamoto Polynomials and Rational Solutions of Painlevé-IV
	1.2.3 The Total Parameter Space for Rational Solutions of Painlevé-IV
	1.2.4 Observed Properties of Roots of gH and gO Polynomials

	1.3 Scaling Formalism
	1.3.1 Equilibrium Solutions of the Autonomous Approximating Equation and Their Branch Points
	1.3.2 Nonequilibrium Solutions of the Autonomous Approximating Equation

	1.4 Results
	1.4.1 Boundary Curves
	1.4.2 Equilibrium Asymptotics of Painlevé-IV Rational Solutions
	1.4.3 Nonequilibrium Asymptotics of Painlevé-IV Rational Solutions

	1.5 Notation

	2 Bäcklund Transformations and Symmetries
	3 Isomonodromy Theory for Rational Solutions of Painlevé-IV
	3.1 Riemann–Hilbert Representations of Rational Painlevé-IV Solutions
	3.2 General Isomonodromy Theory for the Painlevé-IV Equation
	3.2.1 A Lax Pair for Painlevé-IV
	3.2.2 The Direct Problem for the Lax Pair
	3.2.3 The Inverse Problem for the Lax Pair

	3.3 Isomonodromic Schlesinger Transformations
	3.3.1 Basic Schlesinger Transformations
	3.3.2 Corresponding Bäcklund Transformations

	3.4 The Isomonodromy Approach to Rational Solutions
	3.5 Riemann–Hilbert Representation of gO Rationals
	3.5.1 Sowing the Seed: Solving the Direct Monodromy Problem and Formulating the Inverse Monodromy Problem
	The Solution Ψ(infty)1(λ,x)
	The Solution Ψ(infty)2(λ,x)
	The Solution Ψ(infty)3(λ,x)
	The Solution Ψ(infty)4(λ,x)
	The Solution Ψ(0)(λ,x).
	3.5.2 Reaping the Harvest: Use of Schlesinger Transformations to Span the gO Parameter Lattice

	3.6 Riemann–Hilbert Representation of gH Rationals
	3.6.1 Sowing the Seed: Solving the Direct Monodromy Problem and Formulating the Inverse Monodromy Problem
	3.6.2 Reaping the Harvest: Use of Schlesinger Transformations to Span ΛgH[3]+
	3.6.3 Connection to a Riemann–Hilbert Problem for Pseudo-Orthogonal Polynomials


	4 Asymptotic Analysis of Y(λ;x) for (Θ0,Θinfty) Large: Basic Principles
	4.1 Scaling of Riemann–Hilbert Problem 1
	4.2 Trivially Equivalent Riemann–Hilbert Problems for M(z)
	4.2.1 The gO Case
	4.2.2 The gH Case

	4.3 Spectral Curve and g-Function
	4.4 Boutroux Curves
	4.4.1 Boutroux Curves of Class {1111}
	4.4.2 Continuation of Boutroux Curves
	4.4.3 Boutroux Curves for µ on the Real or Imaginary Axes
	4.4.4 Boutroux Domains on the Real and Imaginary Axes


	5 Asymptotic Analysis of M(z) for Sufficiently Large |µ|: gO Case
	5.1 Analysis of the Exponent h(z)
	5.1.1 The Zero-Level Set of Re(h(z))
	5.1.2 Defining h(z) as a Single-Valued Function

	5.2 Introduction of g(z) and Steepest Descent
	5.3 Parametrix Construction
	5.3.1 Outer Parametrix
	5.3.2 Inner Parametrices
	5.3.3 Global Parametrix and Error Estimation

	5.4 Conditionally Valid Asymptotic Formulæ for the gO Rational Solutions of Painlevé-IV
	5.5 Bifurcation Points and Conditions for Validity
	5.5.1 Harmless Bifurcation Points
	5.5.2 Catastrophic Bifurcation Points

	5.6 Uniformity of Estimates

	6 Asymptotic Analysis of M(z) for Sufficiently Large |µ|: gH Case
	6.1 Analysis of the Exponent h(z)
	6.1.1 The Zero-Level Set of Re(h(z))
	6.1.2 Defining h(z) as a Single-Valued Function

	6.2 Introduction of g(z) and Steepest Descent
	6.3 Parametrix Construction
	6.3.1 Outer Parametrix
	6.3.2 Inner Parametrices
	6.3.3 Global Parametrix and Error Estimation

	6.4 Conditionally Valid Asymptotic Formulæ for the gH Rational Solutions of Painlevé-IV
	6.5 Bifurcation Points and Conditions for Validity
	6.5.1 Harmless Bifurcation Points
	6.5.2 Catastrophic Bifurcation Points

	6.6 Uniformity of Estimates

	7 Asymptotic Analysis of M(z) in Boutroux Domains for the gO and gH Cases
	7.1 Stokes Graphs for Boutroux Spectral Curves of Class {1111} and Abstract Stokes Graphs for Boutroux Domains
	7.2 Hypotheses Concerning Boutroux Domains
	7.3 Basic Setup
	7.4 Steepest Descent
	7.5 Specification of h(z)
	7.6 Parametrix Construction
	7.6.1 Outer Parametrix
	7.6.2 Inner Parametrices
	7.6.3 Global Parametrix and Error Estimation

	7.7 Asymptotic Formulæ for the Rational Solutions of Painlevé-IV on Boutroux Domains
	7.8 Differential Equations Satisfied by the Approximations
	7.8.1 Derivation of the Differential Equation for F[3](ζ;µ)
	7.8.2 Derivation of the Differential Equation for F[1](ζ;µ)
	7.8.3 Relation Between the Corresponding Spectral Curves

	7.9 Zeros and Poles of the Approximations
	7.10  Residues of the Approximations at the Malgrange Divisor
	7.10.1  Malgrange Residues of F[3]
	7.10.2  Malgrange Residues of F[1] and F[2]
	7.10.3  Removal of the Condition (µ,ζ,T)inmathcalS(ε)
	7.10.4  Accurate Approximation of Poles and Zeros of Rational Painlevé-IV Solutions. Zeros of the gH and gO Polynomials.


	8 Boundary Curves and Maximal Boutroux Domains
	8.1 Universal Condition for Phase Transitions
	8.2 Curves in an Auxiliary Coordinate Plane
	8.2.1 Rational Parametrization of Γ
	8.2.2 Relating the Condition Re(h(γ))=0 to the v-Trajectories of a Rational Quadratic Differential
	8.2.3 Critical Points of Φ'(t)2dt2 and the Role of the Critical v-Trajectories
	8.2.4 Local Structure of the Critical v-Trajectories
	8.2.5 Global Structure of the Critical v-Trajectories

	8.3 Abstract Stokes Graphs for Degenerate Boutroux Curves
	8.4 The Domains S0, Sinfty, and Spm in the Auxiliary Plane
	8.5 The Exterior Domain mathcalEgH(κ) as the Image of Sinfty
	8.6 The Boutroux Domain mathcalB(κ)
	8.7 Aside: Asymptotic Analysis of gO Rationals at Points of mathcalEgH(κ)
	8.8 The Exterior Domain mathcalEgO(κ) as the Image of S0
	8.9 The Boutroux Domains mathcalB(κ) and mathcalB(κ)
	8.10  Proofs of Proposition 2 and Theorems 1 and 2
	8.11  Proofs of Proposition 3 and Theorems 3 and 4

	Acknowledgements
	Appendix A. Selected Plots of Poles and Zeros
	Appendix B. Branch Points of Equilibria
	Appendix C. Formal Painlevé-I Approximation Near Branch Points
	Appendix D. Rational Painlevé-IV Solutions Near the Origin
	Appendix E. Diagrams and Tables for Steepest-Descent Analysis on Boutroux Domains
	E.1. The gO Case with µinmathcalB(κ) and s=1
	E.2. The gH Case with µinmathcalB(κ) and s=1
	E.3. The gO Case with µinmathcalB(κ) and s=-1
	E.4. The gO Case with µinmathcalB(κ) and s=1
	E.5. The gO Case with µinmathcalB(κ) and s=-1
	E.6. The gO Case with µinmathcalB(κ) and s=1
	E.7. The gO Case with µinmathcalB(κ) and s=-1

	Appendix F. User's Guide: Approximating Rational Solutions on Boutroux Domains
	Appendix G.User's Guide: Practical Computation of Boundary Curves
	Appendix H. Alternate Approach to Rational Solutions of Types 1 and 2
	H.1. Monodromy Data for gH Rational Solutions of Types 1 and 2
	H.2. Critical v-Trajectories of h'(z)2dz2 for |κ|>1

	References




