
1.  Introduction
Gravity waves (GW) play an essential role in transporting momentum vertically and driving the circulation in 
the middle atmosphere (Fritts & Alexander, 2003). Current global circulation models (GCMs) cannot resolve 
the full spectrum of GWs so that GW influences (GW drags) are parametrized in GCMs. Although the GW drag 
parameterization schemes improve the ability of GCMs to reproduce observations, they still poorly represent GW 
sources, spectra, local variability, and intermittency, which causes deviations between GCMs and the real atmos-
phere (Alexander et al., 2010). Inadequate knowledge of GWs is a key element of this limitation.

Abstract  Mesospheric gravity-wave (GW) phase velocity spectra and total powers at two Antarctic stations, 
Davis and Syowa, were derived using OH airglow data from March to October in 2016. The total powers have 
similar seasonal variation, that is, maxima in winter at both stations. The average powers at both stations in 
winter were not significantly different. However, the power at Davis in September was three times smaller than 
that at Syowa. This lower power at Davis was attributed to GWs with omnidirectional phase velocity. These 
lower GW activities at Davis could be attributed to a longitudinal variation in wave filtering; a stronger wind 
at Davis filtered out more GWs than at Syowa. Also, to explore possible sources in the middle atmosphere, we 
investigated one event, in which GWs with ∼100 ms −1 southeastward phase velocity appeared at Davis on 29 
August. The raytracing method was applied, and its result indicated that those GWs with high southeastward 
phase velocity propagated from ∼45 km altitude or higher over the Southern Ocean. A large residual of the 
non-linear balanced equation was found at 50 km on its ray path. GWs, very likely emitted from a tropospheric 
jet, were also found near the ray path at the termination altitude over the Southern Ocean and possibly appeared 
saturated between 45 and 50 km. Therefore, the OH imager at Davis probably captured GWs generated by a 
spontaneous adjustment in the upper stratosphere and/or secondary GWs produced by the breaking of the GWs 
that have originated from the tropospheric jet.

Plain Language Summary  A gravity wave (GW) is a type of atmospheric wave that transports 
momentum from the Earth’s surface to the edge of the atmosphere where it can drive atmospheric circulations. 
The temporal and spatial variation of GWs is not well understood, and their sources remain unclear. We 
observed GWs at the upper edge of the atmosphere over two Antarctic stations (Syowa and Davis) and 
calculated their phase velocity and total power spectra. The total powers have winter maxima at both stations. 
Although the average powers at both stations in winter were not significantly different, the power at Davis in 
September was three times smaller than that at Syowa. The lower GW activity at Davis could be attributed 
to a stronger wind at Davis, which filtered out more GWs than at Syowa. Also, to explore possible sources 
in the middle atmosphere, we investigated one event at Davis on 29 August 2016. We found that some GWs 
propagated from ∼45 km altitude or higher over the Southern Ocean. Those GWs could be emitted from 
the polar night jet (flow imbalance) and/or secondary GWs produced by the breaking of the GWs that have 
originated from the tropospheric jet.
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Key Points:
•	 �Mesospheric gravity-wave activity at 

two Antarctic stations was larger in 
winter than in spring and fall

•	 �Wave activity at Davis was not 
significantly different with Syowa in 
winter but smaller in fall, which can 
be explained by filtering effect

•	 �We find that GWs at Davis on 29 
August 2016, were very likely 
generated by a spontaneous 
adjustment and/or a tropospheric jet 
wave breaking
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The altitudes at which Ri < 0.25 for the trial GWs, corresponding to the potential start of saturation, are given 
in Table 4. Figure 11 shows the forward raytracing result for the GW with 3-hr ground-based period from 38 km 
altitude. This GW began to be saturated at almost the same point (diamond mark) as the D2 termination (white 
circle) on the horizontal surface although the saturation altitude is ∼3 km higher than the D2 termination altitude. 
Agreement between the D2 termination height and the saturation height is not necessary because the D2 wave 
could have been launched above the backward ray tracing termination height (but not below). Although the GWs 
in cases (1) and (2) launched from similar horizontal positions but with the other parameters also propagated 
in the same direction (i.e., toward Davis), the propagation paths and saturation altitudes varied. The saturation 
altitudes of the GWs with the 3-hr and 29 min (case 1 and 2) ground-based periods were closer to altitudes of 
the D2 path than those for the other ground-based periods. On the other hand, the GWs in the case (3) do not 
meet the shear instability criterion. Therefore, those GWs in AIRS could be saturated assuming that they had 
the southeastward horizontal ground-based phase velocity with the ∼3-hr/∼29 min ground-based period. The 
eastward ground-based velocity is more reasonable than the westward velocity because the phase velocity of a 
GW emitted from a jet is expected to match the phase velocity of a baroclinic wave, that is, eastward (Plougonven 
& Snyder,  2007). Also, Murphy et  al.  (2014) occasionally observed GWs with eastward and 22  ms −1 phase 

Table 4 
Parameters for Gravity-Waves With a 241 km Horizontal Wavelength in the Atmospheric Infrared Sounder Data on 29 August 2016

Ground-based period (hour) Initial altitude Response rate of AIRS kernel (%) Initial amplitude (K)

Bottom height
Initial vertical 

wavelength (km)Ri < 0.25 (km)

Case (1) the direction of the wave is southeast ward, and its phase speed is less than the background wind

    3 36 10 (7, 13) 20 (29, 15) 46 (39, 49) 16

    3 38 10 (7, 13) 20 (29, 15) 48 (41, 59) 16

    3 40 10 (7, 13) 20 (29, 15) 49 (46, 51) 16

    5 36 14 (11, 17) 14 (18, 12) 50 (48, 51) 18

    5 38 16 (13, 19) 13 (15, 11) 51 (51, 53) 19

    5 40 16 (13, 19) 13 (15, 11) 53 (52, 56) 19

Ground-based period (min) Initial altitude Response rate of AIRS kernel (%) Initial amplitude (K)

Bottom height
Initial vertical 

wavelength (km)Ri < 0.25 (km)

(2) the direction is the same as (1) but its phase speed is larger than the background wind

    24 36 8 (7, 10) 24 (27, 21) No (No, No) 24

    24 38 8 (7, 10) 24 (27, 21) No (No, No) 24

    24 40 8 (7, 10) 24 (27, 21) No (No, No) 24

    29 36 10 (7, 13) 20 (29, 15) 44 (38, 61) 16

    29 38 10 (7, 13) 20 (29, 15) 45 (40, 62) 16

    29 40 10 (7, 13) 20 (29, 15) 58 (42, 64) 16

Ground-based period (hour) Initial altitude Response rate of AIRS kernel (%) Initial amplitude (K)

Bottom height
Initial vertical 

wavelength (km)Ri < 0.25 (km)

Case (3) the direction is northwest ward

    10 36 9 (8, 11) 22 (25, 19) 71 (72, 70) 24

    10 38 8 (10, 7) 24 (21, 27) 72 (71, 73) 25

    10 40 8 (10, 7) 24 (21, 27) 73 (72, 73) 25

    Infinity 36 10 (8, 12) 20 (23, 17) 69 (71, 69) 22

    Infinity 38 9 (8, 11) 22 (25, 19) 70 (69, 71) 23

    Infinity 40 9 (8, 11) 22 (25, 19) 71 (72, 70) 23

Note. The initial amplitudes are 2 K (which is observed by AIRS) × the inverse of the response rate of the AIRS vertical kernel (https://datapub.fz-juelich.de/slcs/airs/
gravity_waves/data/kernel.pdf). The values in parentheses are corresponding to the response rate −3% and +3%, respectively.
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lich.de/slcs/airs/gravity_waves/data [Dataset]). The daily average phase velocity spectra data at both stations 
can be obtained at https://doi.org/10.5281/zenodo.7325405 [Dataset]. The MF radar data averaged in winter and 
September can be obtained at https://doi.org/10.5281/zenodo.7325416 [Dataset]. The M-transform program can 
be obtained at http://polaris.nipr.ac.jp/∼airglow/M-transform/ [Software] (Perwitasari et al., 2018).
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