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Ne u ral networks havebecome one of the most popula rly used meth- Rece ived 6 June 2020

ods in machine lea rning and artificial inte llige nce. Due to the un i- Accepted 20 April 2023
versa | approxlmatlon theorem,.a neural netyvo rk with one hidde n KEYWORDS

laye r can approximate any continuous function on compact support Empirical processes ; entropy

as long as the number of hidden units is sufficiently large. Statist i- integral
cally, a neural network can be classified into a nonlinear regression
framework. However, if we consider it parametrically, due to the
unidentifia bility of the parameters, it is difficult to derive its asymp-

totic properties. Instead, we consider the estimat io n problem in a
nonparametric regressio n framework and use the results from sie ve

est imation to esta blish the consistency,the ratesofconvergence and

the asymptotic norma lity of the neural network estimators. We also

illustrate the validity of the theo ries via sim ulat ions.

1. Introduction

With the success of machine learning and artificial intelligence in research and indust ry,
neural networks have become popularly used methods nowadays. Many newly developed
machine learning methodsare basedon deep neural networksand have achieved greatclas-
sification and prediction accuracy. We refer interested readers to Goodfellow et al. (2016)
for more background and details. In classical statistical learning theory, the consistency and
the rate of convergence of the empirical risk minimisation principle are of great interest.
Many upper bounds have been established for the empirical risk and the sample com-
plexity based on the growth function and the Vapnik- Chervonenkis dimension (see, e.g.,
Vapnik 1998; Anthony and Bartlett 2009; Devroye et al. 2013). However,few studies have
focused on the asymptotic properties for neural networks. As Thomas J. Sargent said, 'arti-
ficial intelligence is actually statistics, but in a very gorgeous phrase, it is statistics . So
it is natural and worthwhile to explore whether neural networks possess nice asymptotic
properties. As if they do, it may be possible to conduct statistical inference based on neu-
ral networks. Throughout this paper, we will focus on the asymptotic properties of neural
networks with one hidden layer.
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One of the most important properties of neural networks is that they are universal
approximants (Hornik et al. 1989), which means any continuous function on a compact
supportcanbeapproximated arbitrarily well bya neuralnetwork with one hidden layer.So
itseems natural to consider itas anonparametric regression problem and approximate the
underlying function class through a class of neural networks with one hidden layer. Many
otherseries-basedestimators suchassplinesand waveletsalsopossesssimilarapproxima-
tion properties and have been extensivelystudied in the literature. Chen (2007) provides
acomprehensive review for those methods. For nonparametric regression problems, ran-
dom design and fixed design are the two main frameworks. Many existing literature on
neural networks focus on random design (e.g. Chen and White 1999; Gyorfi et al. 2002).
On the other hand, general theories on nonparametric regression under fixed design have
been well studied in van de Geer (2000). Therefore, it is still worthwhile to study neural
networks under fixed design.

Specifically, consider the following nonparametric regression mode 1:

yi = fo(x;) + €,

where Et, . . ., En are i.i.d. random variables defined on a complete probability space (Q,
AJID) with IE[E] = 0, Var[E] = a ? and IE[IEI%I ] < oo forsomeA> 0; xi,.. x» EXC
JRdare vectors of covariates with X being a compact set in JRd and JO is an unknown function
needed to be estimated. Weassume that/ o E /¥, whereFis the classofcontinuous

functions with compact supports. Clearly,fo minimises the population criterion function

—E| L3 0 — feeny?
Qﬂ(f)—E[n;(y, f(x;))]

1 n
= Z(f(xf) — fo(x)* + 0.
i=1

A least squares estimator of the regression function can be obtained by minimising the
empirical squared error loss Q n(f):

n

i = argming- Qu(f) = argming~ 3" — )
i=1
However, if the class of functions /" is too rich, the resulting least squares estimator may
have undesired properties, such as inconsistency (Shen and Wong 1994; Shen 1997; van
de Geer 2000). Instead, we can optimise the squared error loss over some less complex
function space 11, which is an approximation of /* while the approximation error tends
to Oas the sample size increases. In the language of Grenander (1981), such a sequence of
function classes is known as a sieve. More precisely, we consider a sequence of function
classes,

FiF2--FnFn+l--F,

approximating Fin the sense that LJ 1 Fn is dense in F. In other words, for eachf € F,
thereexists 7enf E Fn such that d(f ,renf ) -+ 0 as n -+ oo, where d-( , *) is some pseudo-
metric defined on F. With some abuse of notation, an approximate sieve estimator fn is
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defined to be
Onlfn) *:=inf On<J) ¥ Op(T/m), (1)
JE:Fn
where TJn - 0 as n - oo. We refer interested reader to Chen (2007) for a thorough
discussion on sieve extremum estimators.
Throughout the rest of the paper, we focus on the sieve of neural networks with one
hidden layer and sigmoid activation function. Specifically, we let

Fr, = {ap+ Zaja (ijx + yg,j) :pj € ]Rd,a:j, nj € R,

n d
Z letj| <V for some V;; > 4 and 12}% Z [vijl < M, for some M, > 0} ,
=0 0

@

where rn, Vn,Mn t 0o as n - 0o. For theoretical simplification, we impose bounded-
ness assumption on the weights of the neural networks in F,., which is related to the
£1-regularisation when fitting a neural network. Such a method hasbeen discussed in pre-
vious literatures (e.g. White 1989, 1990). In those papers, the consistency of the neural
network sieve estimators has been established under random designs. However, there are
few results on the asymptotic distribution of the neural network sieve estimators, which
will be established in this paper. In tezm ogt@ pate of convergence, Chen and Shen (1998)
obtained rate of convergence Op(( ﬂj <iH( 21%) for neural network sieve estimators.
- [H2a/d+],

Later on, Chen and White (1999) improved the convergence rate to O p(( m,ﬂ 4CGha /(d+in ),

where a relates to the smoothness of the true function Jo and in their paper, a central
limit theorem for smooth functional of the estimated function is also provided. In Chen
et al. (2001), rate of convergence was also obtained for stationary ,B- m ixing data. One
important characteristic of the aformentioned rate of convergence is that as d - 00, both

rates become Op((y ,n_-)_l_é)_ Similar results can also be found in Barron (1994). It is
well known from Stone (1982) that local smoothing methods suffer from the curse of
dimensionality. But such phenomenon seems to vanish for approximate sieve extremum

estimators based on neural networks. Bauer and Kohler (2019) also developed general the-
ory and conditions to justify that neural networks can be used to circumvent the issue

of curse of dimensionality. Hornik et al. (1989) showed that Un Frn isdense in Funder
thesupnormBut when considering the asymptotic properties of the sieve estimators, we

use the pseudo-norm A/ = a ' I57, £ (x;) (see Proposition 2.1 in the supplementary
material) defined on F and F,°.

With the increasing popularity of deep learning, recent research also starts to focus on
the statistical propert ies of deep neural networks. For example, Schmidt -Hieber (2020)
provided the rate ofconvergence for sparse deep neural network with Rectified Linear Unit
(ReLU) activation function under the assumption that the underlying function is a com-
position of functions in some Holder space. Farrell et al. (2020) and Farrell et al. (2021)
established the rate of convergence for deep neural network estimators when the underly-
ing function belongs to a unit ball in a Sobolev space. It isworth pointing out that in these
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two papers, no restrictions on the boundedness of weights in neural networks are imposed.
Therateofconvergence fordeep ReLUneuralnetworkshasalsobeendevelopedin Fabozzi
et al. (2019) and Kohler and Langer (2021). It is worth mentioning that the results in
Fabozzi et al. (2019) were developed based on the original version of this manuscript on
ArXiv. Webelieve thatthe ultimate goalofdeveloping these theories is to perform statisti-
calinferencebasedon neural networksforreal-world problems and the results discussed in
this paper may provide a starting point for further developments. For instance, Chen and
White (1999) developed asymptotic normality for neural network sieve extremum estima-
tors. However,toapply their result,a calculation ofaseriesof covariance is essential, which
may be hard to accomplish in practice. Recently, Horel and Giesecke (2020) developed a
significancetestbased on neural networks. However, the theories in thatpaperaredifficult
to apply and verify in practice. Using similartechniques to be discussed in this paper, Shen
et al. (2021) developed a goodness-of-fit test based on neural networks.

The remaining paper is organised as follows. In Section 2, we discuss the existence of
neural network sieve estimato rs. The weak consistency and rateof convergence of the neu-
ral network sieve estimators will be established in Sections 3 and 4, respectively. Section 5
focuses on the asymptotic distribution of the neural network sieve estimators. Simulation
results are presented in Section 6.

Notations: Throughout the rest of this paper, bold font alphabetic letters and Greek let-
ters are vectors. C(X) is the set of continuous functions defined on X. The symbol
means'bounded aboveup to a universal constant'and an ~ bnmeans -+ 1 as n -+ oo0.
Fora pseudo-metric space (T, d), N(E, T, d) isits covering number, which is the minimum
number of E-ballsneeded to cover T. Its natural logarithm is the entropy number and is
denoted by H(E, T,d).

2. Existence

A natural question to ask is whether the sieve estimator based on neural networks exists.
Before addressing this question, we first study some properties of Fnre Proposition 2.1
shows that the sigmoid function is a Lipschitz function with Lipschitz constant L = 1/ 4.

Proposition 2.1: A4 sigmoid function a (z) = fiz/ (1t ') is a Lipschizt function on JR with
Lipschitz constant 1/4.

The secondproposition provides an upper bound for the envelopefunction sup jE:F ... Ifl.

Proposition 2.2: For each fixed n,

sup lIf 100 :S Vn.
/E:F.n

Now we quote a general result from White and Wooldridge (1991) for readers who are
not familiarwith the theoriesof sieveextremum estimators. The theorem tells us that under
some mild conditions, there exists a sieve approximate estimator and such an estimator is
also measurable.

Theorem 2.1 (Theorem 2.2 in White and Wooldr idge (1991)): Let (Q, A, IP') be a com-
plete probability space and let (8, p) be a pseudo-metric space. Let {8n} be a sequence
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of compact subsets of €. Let Qn: Q x en-+ 1 be A® B(en)/B(i.)-measurable, and
suppose thatforeachw E Q, On(w,*) is lower semicontinuousonen, n—1,2, Then

foreachn= 1,2, ..., there exists On: Q-+ en, A/ B(en)-measurable such that foreach

wEQ, On(W,0n(w)) = infeEBn On(w,0).

Note that
A e
= ;0 {E)
o ;Uo(xf) + € — f(xi))?
= =3 )~ o) — 22 el —fo) +— -
=1 i=1 i=1

Since the randomness onlycomes from E;'s, it is clear that On isa measurable function and
for a fixed w, On is continuous inf Therefore, to show the existence of the sieve estimator,
it suffices to show that Fr" iscompact in C(X), which is proved in the following lemma.

Lemma 2.1: Let X be a compact subset of d. Then for each fixed n, Frn is a compact set.

Proof: For each fixed n, let Bn = [ao,...,a,"Yo,1,...,yom Y [,...,y ]JT belongto
[- V n Vnl'"+' x [- Mn,Mn1'" (d+]) := e n.Ifnis fixed, en is a bounded closed set and
hence it is a compact set in rn(d+2) +1 Consider a map

H:(Op |- l2) > (Fr, |l - lIn)

Tn

Bni—+ H(Bn) = ao*t Lap ( I J x ¥ Yo,)
=1

Note that F," = H(en)- Therefore, to show that F,"” is a compact set, it suffices to show
that H is a continuous map due to the compactness of en. Let 8 [,n,8,,n E en, then

IIH ( B1,n) - H(B2,n)II
E al" + t&]'a(,y" X,+VJ)')-al"-t a'a(,!"x+ yll

" ;;E[hi"'ﬁ’|+tH"a(,)” x,'H'J;')'afa(,."""+,m1]'
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0.

At b e

a lla(rsmes

< [t l)l'- al"T+ 1y 1o t”r\J1 r/'t_,_[rJ)_ ,Hilr

2
Sen A VIXly))  [ra@d* DO n- 92nl .

Hence, for any E > 0, we choose 8 =E/( (I  V IXily )Jrnd+ 1)),, When 1191,n -
92,1112 < 8, we have
HH (91 ,n)- H(©O2n)lln <p,

which implies that H is a continuous map and hence F7,. is a compact set for each
fixed n. |

Asacorollaryof Lemma 2.1 and Theorem 2.1, we can easily obtain the existence of sieve
estimator.

Corollary 2.1: Based on the notations above, for eachn = 1,2, . . ., there exists fn : Q -
Fr,., A/B(Frn)-measurable such that Q nifn(w)) = infl Efi 0 n(/).

3. Consistency

In this section, we are going to show the consistency of the neural network sieve estimator.
The consistency result leans heavily on the following Uniform Law of Large Numbers.

Lemma 3.1: Under the assumption of
[rmd ¥ 2)* 11V log(Vnfrnd+2)*11=o0m), asn- .
we have

sup [Qu(f) — Qu(H)l L5 0, asn— oo
feF,
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Proof: For any 8§ > 0, we have

P* (Jsup Q) — QulP)I > a)

eF,

n

=P w .’._t Ef- a?- 2!..t E; {f(x.) - fo(x;)) > 8)
Mmn =1 n i=l1

oL gl 7 8)"' PV sup
( n 1=1 2 ET,

=+ ().

E;(j(x;) - fo(x;) "

3)
- =
4

Itfollowsfromthe Weak LawofLarge Numbersthat(I)  0.Now,wearegoingtoevaluate
(11). By using the Markov's inequality, (II) 0 holds if

Fn =1

E*[ sup !._t E(fx;) - fo(x;)) ] 0, asnm  00.
JE:Fran=il
Note that|IE[E] = 0 and eachf E F7" hasits corresponding parameterisation On. Since 9n
isin a compact set, there exists a sequence Onk, Onask 00 with On,k E Q(n(d+Z)+1n
([- Vn VnY"+l X [- Mn,MnY'd 4] | EachOn,kCor responds  to a function fic E Ff . Based
on continuity, we have fic(x) f(x) for each x E X. From Example 2.3.4 in van der

Vaart and Wellner (1996), we know that /7. is P-measurable. Based on symmetrisation
inequality,we have

E* [ sup t E(f(x;)-fo(x;))]  2E.E[sup!_ t Es if (x5) - fo(x)) 1,
fEFrn =1 fE:F,. n=l
where 1,..., n are i.i.d. Rademacher random variables independent of EI, . . . , En- Based
on the Strong Law of Large Num bers, thereexists N1 > 0, such thatforall n 2'.". N1,

1 7 Ef<g? +1, as.
7L

For fixed EL,. .. ,En, I:=221 ;E;(j(x;) - fo(x;)) is a sub-Gaussian process indexed by f E
FrneSuppose that (8, C,,) is the probability space on which 1, ..., 7 are defined and
let Y(fw) = L=?1 ;(W)E;((x;) - fo(x;)) withf E Fr" and w E 8. As we have shown
above, we have fie f and by continuity, Y(’k,w) Y(fw)for any w E 8. This shows
that/Y (f,w),fEF,.} isaseparable sub-Gaussian process. Hence Corollary2.2.8invan
der Vaart and Wellner (1996) implies that there exists a universal constant K and for any

J,' EFrn with n 2. N1,

Eg | sup
feffﬂ
oo logN (%rJ, Fr.,d)
+Kf e U
0

E]Eg[ ;

% ; &i€i(f (x1)) — fo(x1)

L Eiei(fyr (xi) — fo(xi)
n
im1
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E]Eg|:

L Eiei(fy (x1) — fo(x:)
n
im1

|

J
2V .lggN.Q St 1l loo)
x| a |
0 n
where forf,g E Frne
n } 1/2
d(f,g) = E;(i(x;) - 9(x;))

sothat thelast inequality follows by noting that sup <ff, ”ﬂ lg Voand

n y1/2
df.g) Iif-glloo, Ef

We then evaluate these two terms. For the first term, for n N1, by Cauchy- Schwarz

inequality, wehave

2
Ei[ t S,,,<Ji(x3) - /0(x3)) 1 .5 t,/ r t If:(x;) - 70(x3)r

Ja?X1supfi(x) - fo(x)l as.
xEX

By choosing J; = :rcrJo and using the universal approximation theorem introduced by
Hornik et al. (1989), we know that supExX [f;(x;) - fo(xi)l ---+ 0 as n ---+ 0o. Therefore,
for any { > 0, there exists N2 > 0, such that for alln N2,

£:(x3) - fo(x:)I .k
SEE[,(X,) o(x;)I < )

} < { 4as

For the second term, we use the same bound from Theorem 14.5 in Anthony and
Bartlett (2009) as we did in the proof of Lemma 2:

By choosing n N1 vV N2, we get

E¢ H% Z Ei€i(fy (xi) — fo(x)
&4

2 n + I n 2)+1

T = d+2)+1
— Brn,d,'v’,.n [rﬂ( +2) ],
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where Br dVn = (2-JaT'+Tefrn(d+ 2)+ IV / (Vn- 4))'¢d +#4  Let

Brn,dYn = log Brn,d Vn - [rn(dt 2) 1
=[m@d+2)+1 _2alildmd £ +1lV )
og

2[{1 (dr 2) | ]log M@V_-?T%l_]l/ v foralln > Nj v N3,

SR SERRIR P YD 7 e g L T inggpality dhe ollows

n S V.-4 €C Vn- 4'
log§2a2—+12. We also have

H JdT+117.F, N W8 = logh dV.+ [m(d+ 2)+ 1] log-
2 a +l 17

1
:S Bn, ,d,V,. + [rn(d+2)+1]-
17

1
= Br,,,d,Vn (1 + _) :
n
an d hence for all n:::. N1 v N3,

]; g2 1 17F. 1Moo a7

24+
<Bl12 (L ) 12 d 17
r.d 1ol 17
=Bl 1] (1+ % 0 a7+ b . (1+ % 0 di7]

1
B2 §0 70 2am 202v0-1)

g4 tB12 V
~viTndV, n,
which implies that

HC 2 11 Fm>| - lloo) rnd+ 2)+ 11 logr. (d 2Ly
- d17:88 !

n n

~og [rn(d +2) + 1IVIlog(Vn[rn(d + 2) + 1])
n

where the last part follows by noting thatlogy _,~ logVn. Under the assumption given
in the Lemma, there exists N4 > 0, such that for all n ::: N4 wehave

/[m(d +2)+ 1] log(Va[m(d +2)+ 1) ¢
- ’<
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Therefore, by choosing n 2::. N1 VN2 VN3 V N4, we get

Zé,e,(f(xo — fo(xi)

feFr, i—1

E¢ [ sup

j|42§'as,

ie [E [supfEF,. 1% [7 1 3E;(G(x;) - Jo(x;))I] —+ 0 as.. Moreove t, based on what we have
shown, for a sufficiently large n, we have

f . t JE(f(xi) - Jo(x;)) ] S #+l ilnr,Jo - Jolioo

112

-n H2yp + 0, as..
m,d,Vn

+ 42KB

Since

Ec[vo? + 1llm,fo — folloo + 4v/2KB, "%, n7/2V, ]
= Vo2 + 1o — folloo +4v2KB, %, V2V, — 0 < o0,

by using the Generalised Dom inated Convergence Theorem, we know that

E* |:f3up ZGt(f(x!) — fo(xi)) i| = ZEG]E$ |: 31‘;!3 Zs:éx (f(xl) fﬂ(xt)) i| 0,
which completes the proof. [ |

Based on the above lemmas, we are ready to state the theorem on the consistency of
neural network sieve estimato rs.

Theorem 3.1: Under the notation given above, if
[rnd+ 2yt 1JViog(Vn[rnd+2)+ 1] =om), asn--+ oo, 3)
then

P
[Ifn - Jolin—--+0.

Proof: Since Q is continuous at Jo E F and O(fo) = a ? < oo, for any £> 0, we have
inf o s o B B
Fillf—folla=e () — Qulfo) = FIf fﬂ||">e n Z(f( i) — Jo( 1))

Hence, based on Lem ma 1, Lemma 3 and Corollary 2.6 in White and Wooldridge {1991),
we have

p
tfn - Jolin---+o. [
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Remark 3.1: Wediscuss the condition (3) in Theorem 3.1 viasomesimple examples here.
If <x;= 0(1) forj = 1, ..., rn,then Vn = O(rn) and

[rnd ¥ 2)+ VYWV iog(Vnfrnd+ 2)+ 1)) = O logrn)-

T herefore , a possible growth rate for the number of hidden units in a neural network is
™= o((n/log n)'13). On the other hand, if we have a slow growth rate for the number of
hidden units in the neural network, such as ¥n = log Vn, then we have

[rn(d+2) + I]V?!. log(Viu[ran(d +2) + 1]) = O((Vy log Vn)z)-

Hence, a possible growth rate for the upper bound of the weights from the hidden layer to

the output layer is Vn = o(n112 /log n).

4. Rate ofconvergence

To obtain the rateof convergence for neural network sieves, we applyTheorem 3.4.1 in van
der Vaart and Wellner (1996).

Theorem 4.1: Based on the above notations, if
= O (min{ll7;, o — foll2 ra(d + 2) 1og(ra Vi(d + 2)) /. r(d + 2) log n/n}),
then

ifn - folin

dt2) loglmVnd +2 Ta(d +2)logn
= Op (max llir,Jo - folly 24=2HosmInE 2] M})

n n

Proof: Usethe samebound from Theorem 14.5in Anthony and Bartlett (2009), wehave

W(d+2)+1
de[rn(d +2) + 1] (%V,,)Z)r

log N, Fos | - 1) < logN(n, Fr W |l - =
og N(n, Fros | - ln) < log N(m, Frs |l - lloo) < Og( U(Tivn_l)

C
— [rn(d +2) + 1] log fT‘”’

where c¢y,d Vn :a.n_(.d_l_\g_ > €. Then from Lemma 3.8 in Mendelson (2003),
foro <1,

8 5 -
g
f \/logN(n,Fr,,,II-IIn)dns[rn(d+2)+1]”2f Jlog—f";;i"’" dn
0 0
1/2 Cr’,,,d,‘.f'n
S [ra(d +2) +1]'/25, [log 22

= P (8).
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Define h: 8 1+ </Jn(0)/8°= [rn(d + 2)+ 11'¥ @ 9] 10gs."/v" Since for O < 8 < 1 and
l=<=a<2

RG) [ @+ —CHv: 1 8 Cdw Gy

+ Ca)a . o
)T I/~ ((I-a)a I 8 zc,,dv. 2 o .

[,‘ (d + 2)+ f, ' ((I -a)a- ! [ c{;d’v' - j | Og- 112_C)gld")'

<0

s

8 1+ </Jn(0)/8° is decreasing on (0, 00). Let Pn ;S 1!11'r.fo - foll;;-! . Note that

P</In(:n)=Pn[rn(d+2)+ l]llzlggl—12 (PnCr,,,d,Vn)

= [rn(d +2)+ 1]112Pn]log Pn + logC,,,.d,v.
and
. [rn(d +2) + 1]V?2 [rp(d+2) +1]V?2
= < n
log Gy, 4v, =1+ log - < log -
~ log[rVn(d + 2)],
we have
pfi</in (:n);S -V’I’l{} rn(d t 2)p'fi (logpn +log[mVn(d +2)1) ;Sn.
Therefore, for 0 (o n
mtn )1/2)
I(}k?ézl:_ziic;é[}ﬁﬁ(c_f-l:_i)_]_ m(d+ 2)logn

we have P%¢ n(.’l’.i.) ;S ..jn. Based on these observation, Lemma 1, Lemma 2 in the Sup-
plementary Materials and Theorem 3.4.1 in van der Vaart and Wellner (1996) imply
that

Iifn - JI',.f olln

=op max‘ Wl fo - follm rn(d t 2) lognfrnVn(d t 2)] crn(d +n2) logn)).

By using the triangle inequality, we can further get
[Ifn - Jolin :".:: lIf n - rr,Jolin + lirr,Jo - Jolin

= Op max lirr,Jo - Jolin, ™@% 2)logmVnd *2)) g +:) Jogn ).
o

n
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Remark 4.1: Recall that a sufficient condition to ensure consistency is 7n(d + 2)

Vlog[mVn(d + 2)]= o(n ). Under such a condition, rn(d + 2) log[mVn(d + 2)] :sn, the
r ate of convergence can be simplified to

Itfn - blin= Op* max 'lin,Jo - Jolin, 7 nd+n2jhgn ) -

If weassumeJo E F' where F' isthe space of functions with finite firstabsolute moments
ofthe Fourier magnitude distributions, i.e.

F= {t:Rd - R:J(x)=J exp {iaTX} duf{a ), LI 1]

= jmax(lialll, 1)diwJI(a) - S C} , (4)

where /Lfis a complex measure on Rd . I[IL] I denotes the total variation of /Lf, i.e. [u, [(A) =
sup Z... I y,(An) I and the supremum is taken over all measurable partitions {An} | of A.
lialil = f: =1 lailfor a = [al,... ,adjY E Rd. Theorem 3 in Makovoz (1996) shows that
On := llfo- n,Jolin ;Sr-; ~T/( “d). Therefore, if we let d fixed and Pn=0;;-" and Vn =1V
in the proof of Theorem 4.1, On must also satisfy the following inequality:

P<tilon 23S Por P "2 (PiCmd,v ) S In

53 prlogpnt prunlogrn;Sn
141,
= rn rnlogrn;Sn.

d
One poss ible choice of 71 to satisfy such condition is 77 ;.c::: (n /log n)r+a. In such a case, we

obtain
lifr - Jolin= Op = .")7 dddan
( logn

which is the same rate obtained in Chen and Shen (1998). It is interesting to note that in

the case where d = 1, we have llfn - Joli n = O p((n /log n-) 1 13). Such rate is close to the

Op(-n 1%), which is the convergence rate in nonparametric least square problems when
the class of functions considered has bounded variation in R (see Example 9.3.3 in vande
Geer (2000)). As shown in Proposition 3 in the supplementary material, F,. is a class of
functions withbounded variationin R. Therefore, the convergence rateweobtained makes
sense.

5. Asymptotic normality

To establish the asymptotic normality of sieve estimator for neural networks, we follow
the idea in Shen (1997) and start by calculatingthe Gateaux derivative of the empirical
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criterion function On(f) =a ! =7 - fen)

t—0

Q1 ~ fol = lim = [% 504 i) = 1) ~ s = - >0 —fo(x,-))z]

2n
=__ L E:(j(x;) - fo(x;)).

n i=1
Then the remainder of first-order functional Taylor series expansion is
n
Raff - fol= On(p) - Onlifo)- "o [f- fol =L L (@i)- forx)) = lIf - follh-
n =1

As will be seen in the proof of asymptotic normality, the rate of convergence for the

empirical process {n ' 121171 E:(j(x;)- fo(x;)) fe Frn} plays an important role. Here
we establish a lemma, which will be used to find the desired rate of convergence.

Lemma 5.1: Let Xi, . .., Xn be independent random variables with Xi~ Pi. Define the
empirical process {Vn(f)} as

1 H
va(f) = 7 ;j[f(x,-) — P

Let Fn=1f: llflloo .".:: Vn}), € >0and a  supfEFn-n’ 122271 Var[f(X;)l be arbitrary.
Define to by H(to, F n, Il - 4= %1IM , n,a), where 1/IM, n,a) = M2/[2a(l +_)1 .
If

H(w, Fus || - lloo) < Anu™, )

for some O <r <2 and uE (0, al, where a is a small positive number, and there exists a
positive constant Ki = K (v, B), i = 1, 2 such that

2—r

2 2—r r—1
M > KA VI n %D v KA 2a T,
we have

IP* (;sup Ivn(f)l > M) S Sexp{- (1 - E)1/I(M, n,a )}.
EFn

Proof: The proof of the lemma is similar to the proof of Corollary 2.2 in Alexander (1984)
and the proof of Lemma 1 in Shen and Wong (1994). Since H(u,Fn,Il - 1100) S A n-ur for
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some O < r < 2, we have

I(s,t) ZHIU(u, Fnl - lloo) dus2¢-r) '4ast-f
Based on the assumption of
Ant " 2: Hto,J""'m 11 -1y="ifi( M, na ),
0 00 4

we have 7o S | ','4', ) 1/ . Note that ifr(M, n,a) 2: M 2/(4a) if MS 3,Jria/Vn and 2(,Jria +

MVn/3) S 4MVn/3 if M 2: 3,Jria/Vn and hence ifr(M,n,a) 2: 3,JriM/(4Vn). In sum-
mary,

M 2/(4a) if M <3 Jria/Vn,
1/t(M,n,a) 22 3. JriM/(4Vn)  if Mr2: 3 /na/Vi-

Therefore, if M 2: 3,/na/Vn,

2B-3/2J( EM ) < 2% -3/2(2 - 1r)-1Al/2+ 5
- n

64,/n'o
0 s
<2232 — ! (-) AT (—ﬁM)
€
= fre—% 1 111
:K]An n’ ni r M2 r,

where K = 2%3/2(2 — r)_l(%)%_% (%)i’_%. Hence

s kA" ,,%_%1'1;4_72 < M7t
& M > KAFT VIR ity
where K1 = EF . On the other hand, if M < 3,/na/Vn,

2 8E-3/2r (  EM )<29-3/22- r) - LRl f
64./n'0” - w0

1

1
ke 4 g 2N 2
e o L e Bl
< 2-n - 3l b

T Ve i
:KzAn/ M]' rger 2,

where Ky = 2%¢3/2(2 — r)_l(%)%_% (7}‘)%_%. Hence

1

M N
287321 (6;/_ tg) <Mo RAY M tar 1 < M

n)
= Jlfr 2eF 2
< KA, a < Mr

2—r

o M > KAY T,
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2 . .
where K _Kf/ In conclusion, if M 2: K A+ v+ .2 A1/2 2~ then
nl[r+2i \/ }S aT,
E 71’ J( 6Mi" f) <M By Theorem 2.1 in Alexander (1984), we have the desired

reruk ||

As a Corollary to Lemm a 5.1, we can show that the supremum of the empirical process
fn 112 =7 » Ei(j(x;) - fo(xi)) :f E Fr.}converges to O in probabil ity.

Coro llary 5.1: Let Pn satisfy Pnllfn - folln = Op(l) and Fr. bethe class of neural network
sieves as defined in (2). Then under the conditions

€ rn(d + 2)Vnlog[mVn(d + 2)]= om'1*);
(C2) np =2/V = o{l),

we have

n

1
sup i E:G- fo)x;)
11f- folln:S.P;;'VE:F,n

= op{l).

Proof To estab lish the desired result, we apply the truncation device.

JP>*( sul:_ t Ei(j- fo)(x;) M)

lif-folln::".Pn' JEJ"n =1

sz sup

< >M
I ~folla<pn ' fEFm,

1 n
E E fi]I{le;IEVn}(f_fO)(xi)
i=1

+ P> ( sup > M

11f- Jolin.9;: 'V E:F
=)+ 11).

f Ze,nue 1>V f —fo) ()| 2

For (1), we can apply Lemma 6 directly. Note that IEII1f] |:S.V_}if - fo)(x) I:S Vn<Vn +
lifolloo) ;S ¥ since lifolloo < 00 and for O < T/< 1,

& [rnd+ 2+ 11 (Y Ar M

v 4Vl’l-?

logN (TJ,Fr., 11 - lloo) :S log(

S [rn(d + 2)+ 1] (ogCr. ,d Vnt t- 1 )

e (1:1)

1
S2Cr,,dVn -,
T
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elm(d+ +1v:  d
w here C'n,d J, = Vn - 4 an

Cr,av, = [r(d +2) + 1]log C; v, — [ra(d + 2) + 1] ~ ra(d + 2) log[rs Va(d + 2)].

Therefore, Equation (5) in the main text is satisfied with » = 1 and 4n = 2Cr av . Follow-
ing from Lemma 6, for M c2ly v Bauteyclly a I4,we have(l) & se;p{- (I -

m, , n rn, , n
/3 2/3
O C?Z'ﬂ,d,vn Vn
p n1/6 :

ra(d + 2) Vi loglra Va(d + 2]\ 2
N( /4 ) =op(1):

E)i/r(M, n,a)} and hence

%efnﬂedsvﬂ}(f—fo)(xo -

sup
If—foll<on ' feFry

From (C1),

/3 2/3
Col v, Vn
nl/6

For(II), by using the Cauchy- Schwarz inequality, we have

1 n 1/2
= (; ZEEH{IG:'I:-V,.]) Ilf = folln-
i=1

Then it follows from the Markov inequality that

1 n
‘ - D eilljar> v (F — fo) (xi)
im1

172
- 4 = R L
=P (;Zefﬂquﬂ}) pnt 2 MnT 2 | S M2 np, "Bl L5y, ]
—1

o Elle*]

2
S M npn V,‘}

Based on condition (C2), we have (1) - 0, and

sup Z éill{iei1> v (f — o) (xi) | = 0p(1).
W ~foln<n ' feF, | " i
Combining the results we obtained above, we get
sup gl Z &i(f — fo) i) | = 0p(1).
W —~folln=pi feFr




18 (@ X. SHEN ETAL.

Remark 5.1 : Co ndi tion (C2) can be further simplifiedusing the resultsfrom Theorem 4.1.
If

T/n =0 (min{Ilrr,Jo - foll ,rn(d +2) log(tnVn(d t2))/n,rn(d +2)logn/ n}) ,

then

pr" =< max {171, fo = follw /7 (@ + D 108l Vu(d+ D1/, /ra(d+ D logn]n .

It followsfrom condition (Cl) that

pr" < max { Iy, fo — foll s v/ra(d + 2) logn/n .

For simplicity, we assume that [7,','1 x Jru(d ¥ 2)logn/n, which holds for functions hav-

ing finite firstabsolute moments of the Fourier magnitude distributions as discussed at the
end of Section 4.4. Then in this case,

npn_zjVi < rp(d + 2) log n/V,‘l‘,

so that condition (C2) becomes rn(d Y 2) logn/VI-+ 0.

Now we are going to establish the asymptotic normality for neural network estimators.
For/E ffe Frn: 1Iif - Jolin S p,'," }, weconsider a local alternative

Fa()) = (1 = 8,)f + 8a(fo + ), (6)

where O S 8n=TJ! 122 o(-n 112y is chosen such that Pn8n = o(l) andz(x) =1.

Theorem 5.1 (Asymptotic Normality): Suppose that O S T/n = o (-n 1) and conditions
(CI) and(C2) in Corollary 5.1 hold. We further assume that the following two conditions
hold:

(C3) Squef,n:”f_fD"ﬂEp;l ||Rrjn(f) _fn(f)||n = Op(Pnaﬁ);
(C4) SUP/er i fotmspr! ¥ it EiCTRIn() () = Fa(H (X)) = Op(8]),

then
% > [t = fow | & N0,
i=1

Proof The main ideaofthe proofisto usethe functional Taylorseries expansion for On(j)
and then carefully bound each term in the expansion. For any f E ffe Fr, :1uf - Joun S
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Pl
Qu(f) = Qu(fo) + Q5 [f —fol + Rulf —fol
| P 7, s
= ; &= ; €i(f () — fo(xp) + ~ !;(f(xi) — folx)% )
Note that

lfn(f) - Jolin=11(1 - on)}n + Onlfo *+ 1) - Jolin
= 11(1 - On)ifn - Jo)+ Ontll n
S (1-0n)llfn-Joli n + On,
and since On= ofn 'I°), we can know that with probability tending to 1, lifn(f) - Jolin s

p,"i Then replacing/ in (7) by /nand n:,,Jn(f), we get

<r:lnlfn)= LEf— L E:lfu(x;) - fo(x;)) + lifn - foll

n i=1 n i=1

n

Qn(ﬂrjn(ﬂ) — iz i

i=1

Subtracting these two equations yields

<r:Inlfn) =<r:n(n:, Jn(f) LEi (n:,Jn()(x;) - In(x;))

1=1

+ Uifin - Joli n - lirr,fn(f) - JOlin-

g~ DT ) — o) + o) ol

Now note that
IS (F) — foll2 = N7 fu(f) — fu(F) + Fu(F) — foll2
= 7 fu(F) — Fu(F) + (1 = 80) (F — fo) + 8ntll?

§ 1 - On)lifn - Jolin+2(1 - On)%— fo,OnJl + on

+ 201 - On)lin:, Jn(f) - Jn()lnlifn - Jolin
+ 20l Jnf) - fa@ln* lin:, Jn()- failn,

where the last inequality follows from the Cauchy-Schwarzinequality.Since
n n
B ( n,,Jn(f(x;) - Jn(x;)) = LEj( n:,,Jnlf)(xi) - Jnlf)(xi) *In(f)Cxi) - Jn(x;))

=1 =1

= Lei(nmox - mipexiy
1=1
2 l 2 y
- - OnL Eif n(x;) - fo(xi)) -—OnL Ei,
o

n 4 n i=l
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by the definition ofJn, we have
2 .
-Op(8n) S i}%f On(J) - Onlfn) S On(7rr.Jn(J)) - Onlfn)

S - 8n)ltf- Jolih- lfn- Joltn+2(1 - 8n)8n£/,;1— fo,i

+ 2(1 - 8n)llfn - Jolinlin, Jnlf) - Jn(J)lin
- - - - 2
+ 28nli7rrJn(J) - Jn(lin Y lilrJn(J) - Jn(J)lin

- LE;(nJnip(x;) - Jnlp(x;))+ 8n E;(!'nix ;) - Jo(x;))

1=1 1=1

2 n
+-8n LE;+ Op@8)
n i=1

S SAllE - ot 201 - swsnlh - Jol

+ 2(1 - 8n)llfn - Jolinlilr,Jn(J) - In(J)lin
+ 28nll7r; . dn(J)- In(D)ling lin, Jnlf) - Inlplin

t B (IrJn(J)(x;) - In())(x;) ¥ 8n t E; (In(x;) - Jo(x;))

z=1 z=1
2 n
+ =5 Xl:ef +Op(32), ®

=3

where the last inequalityfollows bynoting that (1 - 87)2 - 1 = -28n +8 S 8 . From the
condition (Cl), we can get

[rn(d + 2) + 11V log[rnVn(d + 2) + 1]
S ([rn(d + 2) + 1]Vnlog[mVn(d + 2) + 1])4 = o(n).

Combining with Theorem 2, we obtain that 11f n - Jo11n = Op(1 ) and hence 8,11fn - Jo11 =
op(8;). From condition (C3), we have

2(1-8n) llfn-follnlln Jnlf)-Jn J)1ln .S 2 lifn - Jo lin lln ,J nlf') - Jn (J) lIn
=0p (p;'Pn8) = O p(8 ).
Similarly, since PnSn = o(l), we have
28l J n(J) - JnJ)lin= Op(Sn- Pusn) = Op(sn)
In ] n() - In1f) IR = Op(P#8n) =0 p(8h).

Based on condition (C4), we know that

% ief (Tfa) = FaH)) = Op(3D),
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and from Corollary 5.1, we also have

8nL E: {[n(x;) - fO(x!} =O0p@n-n ')
1=1

It follows from these observations that
p ), e
—2(1 = 8p) (fn —fa.ént) i Y € < O0p(8D) + 05(82) + 0p(3, - m /2,
i=1
which implies that
l n
-1 = 3;1)(fn —fo.t} +- 3 € < Op(6n) + 0p (™) = 0p(n™112).
i=1

By replacing ¢ with - ¢, we can obtain the same result and hence

lthe do

fn- fot)- LE, S (1- 8n)fim- fot)- LE,
=1 =1
Therefore, = Op(”_uz) +3n "fn —Jolln

= op(n_lﬂ).

-1/2

M’-ﬁ) )',z-]

and the desired result follows from the classical Central Limit Theorem. |

gt opmn
=1

);

B

Let us focus on the conditions given in the theorem. Note that if (Cl) holds, we have

rn(d + Z)V;?{ log[r,, Vad +2)] < [ra(d+ 2)]4V§ (log[r,,Vn(d + 2)])4 = o(n),

so it is a sufficient condition to ensure the consistency of the neural network sieve esti-
mator. As in Remark 3.1, we consider some simple scenarios here. If ¥n = O(rn) , then

Tn(d+ 2)Vnlog[rmVn(d + 2)] = O( logTn) so that a possible growth rate for Tn is Tn =
o(n'13/ (log n)2). On the other hand, ifrn = logVn, then Tn(d + 2)Vn log[rnV n(d + 2)] =
O(Vn(log Vn)2) and a possible growth rate for Vn is Vn = o(n "1 /(log n)?). Thus, in both

cases, the growth rate required for the asymptotic normality of neural network sieve esti-
mator is slower than the growth rate required for the consistency as given in Remark 3.1.
One explanation is that due to the Universal Approximation Theorem, a neural network
with one hidden layer can approximate a continuous function on compact support arbi-
trarily well if the number of hidden units is sufficiently large. Therefore, if the number of
hidden units is too large, the neural network sieve estimator ] 7 may be very close tothe

best projector of the true functionJo in F7. so that the error ET Ifn(x;) - fo(x;)]could

becloseto zero, resulting a small variation. Byallowing slower growth rateofthe number of
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hidden units can increasethe variations of I: =7 | [fin(x;) - fo(xi)], which makes the asymp-
totic normality more reasonable. On the otherhand,condition (C3) and condition (C4) are
similar conditions as in Shen (1997), which are known for conditions on approximation
error. These conditions indicate that the approximation rate of a single layer neural net-
work cannot be too slow, otherwise it may require a huge number of samples to reach the
desired approximation error. Therefore, the conditions in the theorem can be considered
as a trade-offbetween bias and variance.

Theorem 5.1 can be used directly for hypothesis testing of neural network with one
hidden layer if we know the variance of the random error a 2 In practice, this is rarely
the case. To perform hypothesis testing when a 2

estimator of @ and usea 'plug-in' test statistic. A natural estimator for a Zis

52— 15" (n—hued) = @ (7).
i=1

We then need to establish the asymptotic normality for the statistic a'.J nL=71 [fn(x;) -
Jo(x;)].
Theorem 5.2 (Asymptotic Normality for Plug-in Statistic): Suppose that Jo E C(X),

is unknown, it is natural to find a good

where X C 1lld is a compact set and O 'S T/n = ofn V). Then under the conditions as stated
in Theorem 5.1, we have

n

O-n\  [In(Xi) - fo(x;)] .1 N, 1).

Proof: Note that

A, = onifn) = t (>1- fux)r = t (to(x;) Ve fuX)r

t=1 t=1

In 2 In
=" ) - foc)” - TLE; ) - foi +- LTt

nooEl nooE=l |

=l B % e - o) + 1ifn - Joln
&=l t=I

Based on the rate of convergence of }n we obtained in Theorem 4.1 and condition (CI), we
know that

lvn - .,0[ =0, (max ¢lIn,,Jo - foll , 11 =10 .
Under (C3), IIrr,,Jo - foll = o(po)=o(-n "1%)and under (C1), we have

_LCI’ld+ Lbeg ﬂs o(l %;4_;9&).

_ (logn) 112
- 0o n34 - o(n ),
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which implies that Iifn - foll = op(-:n 112). Moreover, by the same arguments as in the
proof of Theorem 5.1, we can show that

2” !--:Ei (fn(XZ) -fO(X,')) -— Op(n_ 1/2 )
=1

Therefore
1 n
fy=-3¢ -172
Qn(fn) = — €; +0p(” )

Based on the Weak Law of Large Numbers, we know that Y4 [:=7 1B/~ a 2+ op(1).
Therefore ,

62 = Qu(fa) = 02 4 0,(1),

and it follows from the Slutsky's Theorem and Theorem 5.1in the main text, we obtain

1 [ a 1 B d
&n\/ﬁ E [fn(xi) _fﬂ(xi)] = &_nO'_ﬁ Z I:fn(xf) —fg(x,v)] B N(O, 1). ]

i=1

6. Simulation studies

In this section, simulations were conducted to check the validity of the theoretical results
obtained in the previous sections. The consistency of the neural network sieve estimators
was examined under various simulation scenarios. Finally, we evaluated the asymptotic
normality of the neural network sieve estimators . For illustration purpose, we only include
the simulations where the dimension of the covariates is 1. More simulations for the
multivariate cases are given in the supplementary materials.

6.1. Consistency forneural network sieve estimators

In this simulation, we are going to check the consistency result from Section 3 and the
validity of the assumption made in Theorem 3.1. Based on our construction of the neural
network sieve estimators, in each sieve space I'77, there isa constraint on the 11 norm for
a:I: :0lads vn. so finding the nearly optimal function in F7,, for Qnlf) is in fact a
constrained optimisation problem. A classical way to conduct thisoptimisation isthrough
introducing a Lagrange multiplier for each constraint. Nevertheless, it is usually hard to
find an explicit connection between the Lagrange multiplier and the upper bound in the
inequalityconstraint. Instead, we use the subgradient method as discussed in section 7 in
Boyd and Mutapcic (2008). The basicidea isto update the parameter ao, . . . ,ar,, through

O.';(k+1] :a,(k) —3kg(k), iZO"“’TH’

whereOK >0isa stepsize and 0K is chosen to be 0.1/ log(e + k) throughout the simulation,
which is known as a nonsummable diminishing step size rule.gCk § 1 subgradient of the
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objective or the constraint function Zj O lal - i

au (k) Qn (f)

ita<k .M

it L 1aj

4=0

1e specifically, we take

Vn

Byh Y oimo logl if Z lajl > va,

3=0

Table 1. Comparison of errors /Ifn - foll and theleast square errorsOn( fin) after20,000iterationsunder

different sample sizes.

Neural network Sine Piecewise continuous
Sample sizes lIifn- foll Q,,(fn) [Ifn - foll Qn(fn) lIfn- foll Q n(fn)
50 3.33E-2 0.519 6.04E- 2 0.513 6.20E- 1 1.124
100 2.79E-2 0.552 3.04E-2 0.587 3.20E- 1 0.920
200 6.0SE- 3 0.500 1.05E-2 0.501 2.51E-1 0.786
500 8.1SE-3 0.484 1.19E- 2 0.499 3.26E- 1 0.769
1000 3.02E-3 0.475 1.54E-2 0.480 298E-2 0.489
2000 2.88E-3 0.500 9.72E-3 0.506 1.69E- 2 0.515

True Function vs Fitted Functions

True Function vs Fitted Functions

5

Figure 1. Comparison of the truefunction and thefitted functionfor threedifferent types of non-linear
functions.The top panel shows the scenariowhen the truefunctionisa single layer neural network; the
middle panel showsthe scenario when the true function isa sine function, and the bottom panel shows
the scenario when the true function is a conti nuousfunction having a non-differentiable point. As we
canseefromallthecases,the fitt ed curve becomes closerto the truthasthe sample size increases.
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Figure 2. Normal Q-Q plot for n- ]12L :Z [fn(x1) - fo(x1)l various sample sizes. Thetrue function fo is
a single-layerneural network with two hidden units asdefined in (10).

The updating equations of y 1, ...y "™, Yo,1, ..., Yo,r,, remain the same as those in the
classical gradient descent algorithm.
We simulated the response through the following model:

v =fox)t B, i=1...,n 9)

where the total sample size n varies from 50 to 2000, xt -. xn ~ iid. NV (0, 1),
E1,-..,En ™~ 1.1.d.N(0,0.7% For the truefunctionJo(x),weconsidered the following three
functions:

(1) A neural network with a single hidden layer and two hiddenunits:
fo(x;) = -1-a2x; ¥1) *a (- x; +1).

(2) A trigonometric function:
fo(x) =sin( ;x)"‘l cos( X+1) (11)

(3) A continuous function havinga non-differential point

—2x if x »:0

e \/E(x—%) ifx > 0, (12)



26 @ X. SHEN ETAL.

SampleSl:tes SO Sampte Sh:e* 100 Sample Slli:e* 200

e
—

p—

1

T T T
P 3 . ) 3 LRI

Tt.o ttt:leflQupntIM Quvdes ThtorriolllQt,1"1111H

Sa,npit SIU « 300 sami:,1, Slh* -WO mpS.stzes 500

Tt Qominy
4- hr—l-
1

o o

I

ll‘ i' 4

A( T T T T T
. 2 . 3 2 B E - [ 1 2 3

Theofelical OuaMIN Ouamfn TIMCAtic:al Q 11an i lu

Figure 3. Normal Q- Q plot for-n /2 I: 41 [fn(x1) - fo(x1)lvarioussamplesizes. Thetruefunctionfois
a trigonometricfunction as defined in (11).

We then trained a neural network using the subgradient method mentioned above and
set the number of iterations used for fitting as 20,000. We chose the growth rate on the
numberof hidden units 7» = n’71 # and the upper bound for.f.; norm of the weights and bias
from the hidden layer to the output layer ¥z = 10n'1% Such choice satisfies the condition
mentioned in Remark 3.1 and hence satisfies the condition in Theorem 3.1. We compared
the errors 1If n - fo 1l and the least square errors Onifin) under different sample sizes. The
results are summarised in Table 1.

As we can see from Table 1, the errors lIf n - foll overall has a decreasing pattern as
the sample size increases. There are some cases where the error becomes a little bit larger
when the sample sizes increases (e.g. the errors using 500 samples in all scenarios is larger
than those errors using 200 sample). One explanation is that the number of hidden units
increasesfrom 3 (for 200samples) to 4 (for 500 samples) underour simulation setup, which
adds variation to the estimation performance. Overall, the table shows that the estimated
function]n is indeed consistent in the sense that llfn - folln = o, (/). Figure 1 plots the
fitted functions and the true function, from which we can straightforwardly visualise the
result more and draw the conclusions.

6.2. Asymptotic normality forneural network sieve estimators

The last part of the simulation focuses on the asymptotic normalityderived in Theorem 5.1.
Westillconsidered the sametypesoftruefunctionsasdescribed in Section 6.1 butsampled
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Figure 4. Normal Q- Q plot forz- 142 L :l [fn(x1) - fo(x1)l varioussamplesizes. Thetrue function fo is
a continuous function having a non-differential point as definedin (12).

the random errors from the standard normal distribution. In this simulation, we still used
the subgradientmethod to obtain the fitted model. The numberofiterationsused for fitting
was setat20,000. What isdifferent from Section 6.1 is the growth rates for 7z and V» setin
thissimulation. Asmentioned in Section 5, the growth rates required for asymptotic nor-
mality are slower than those required for consistency. Therefore, we chose 7, = n!/%and
Vn = 10n'1'" Such choicesatisfies the condition (Cl)inTheorem 5.1.To getthe normal

Q- Q plot for-n 112 =7 1 Ifn(Xi) - fo(xi)], we repeated the simulation 200 times.
Figures 2 to 4 are the normal Q- Q plots under different nonlinear functions and vari-
ous sample sizes. From the figures, we found that the statistic# 112 &9 Ifn(Xi) - fo(xi)]

fit the normal distribution pretty well under all simulation scenarios. It is also worth to
note that the Q- Q plots looks similar under all simulation scenarios. This is what we

would expect since the limiting distribution for the statistic# 12E) Ifn(Xi) - fo(xi)]
is /V (0, 1) under all scenarios. Another implication we can obtain from the Q-Q plots
is that the statistic-n 1171 =7 Ifn( Xi) - fo(xi )] is robust to the choice offo. Therefore, as
long as the true function Jo is continuous, N(O, 1) is a good asymptotic distribution for
» 121 0= [fn(xi) - Jo(xi)], which facilitates hypothesis testing.

Besides the Q- Q plots, we also conducted the normality tests to check whether- 1’
=7 1 [fn(Xi) - fo(xi)] follows the standard normal distribution. Specifically, we used the
Shapiro- Wilks test and the Kolmogorov- Smim ov test to perform the normality test.
Table 2 summarises the p-values for both normality tests. As we observed from Table 2, in
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Table 2. Summary of results from the Shapiro- Wilks test and the Kolmogorov- Smirnov test. We use
'NN', "'TRI'and 'ND' to denote a neural network described in (10), a tigonometric function described
in (11) and a continuous function having a non-differential pointdescribed in (12), respectively.

Shapiro- Wilkstest Kolmogorov- Smirnovtest

Sample sizes NN TRI ND NN TRI ND

50 0.878 0.884 0.881 0.584 0.597 0.595
100 0.098 0.095 0.095 0.472 0.508 0.484
200 0.940 0.944 0.944 0.731 0.719 0.708
300 0.884 0.888 0.872 0.976 0.986 0.973
400 0.514 0.525 0.513 0.670 0.754 0.708
500 0.768 0.778 0.768 0.733 0.769 0.733

all cases, we failed to reject that-n /2 I:Zi [ n(x;) - J (x;)] follows the standard normal
distribution.

7. Discussion

We have investigated the asymptotic properties, including the consistency, rate of conver-
gence and asymptotic normality for neural network sieve estimators with one hidden layer.
While in practice, the number of hidden unites is often chosen ad hoc, it is important to
note that the conditions in the theorems provide theoretical guidelines on choosing the
number of hidden units for a neural network with one hidden layer to achieve the desired
statistical properties. The validity of the conditions made in the theorems has also been
checked through simulation results. Theorems 5.1and 5.2depend on the knowledge of the
underlying function Jo, which is typically unknown in practice. Therefore, if we assumeJo
has some certain form, the resultscan be applied and served as preliminary work for con-

ducting hypothesis testing on Ho : Jo = ho for a fixed funct ion 40.0n the other hand,since
multiple functions can lead to the same valueof n- ! E? | _fo(x;),thetest may not be power.
The asymptotic normality results are crucial in developing more sophisticated significance
test methods for neural networks (Shen et al. 2022).

The work conducted in this paper mainly focuses on sieve estimators based on neu-
ral networks with one hidden layer and standard sigmoid activation function. The work
presented in this paper can be extended in several ways. The main theorems in this
paper depend heavily on the covering number or the entropy number of the function
class consisting of neural network with one hidden layer. Theorem 14.5 in Anthony and
Bartlett (2009) provides a general upper bound for the covering number of a function class
consisting of deep neural networks with Lipchitz continuous activation functions. There-
fore, it is possible to extend our resultsdiscussed in this paper to a deep neuralnetwork with
Lipchitz continuous activation functions. It is also worthwhile to investigate asymptotic
properties of other commonly used deep learning models such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs).

On the other hand, although homoscedasticity is assumed in the previous discussions,

it can berelaxed to take heteroscedasticity into consideration To see this, if IE[B] =
¢? 2(x;), thenundertheassumptionsthatl | 1:S forsome > Oandl W Bfl i<

00, the proof of Lemma 3.1 can go through. The only modifications to be made are to use

Kolmogorov Strong Law of Large Numbers to show (I) 0 and to change a Zto 2¢?
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later on. Therefore, the consistency result stillholds under heteroskedasticitywith the afor-
mentioned two assumptions satisfied. Moreover, after a clear examination on the proof
of Theorems 4.1, 5.1 and 5.2, it is easy to see that only the consistency part is involved
with heteroskedasticity. Therefore, these results still hold under the aforementioned two
assumptions.

When we train a deep neural network, we usually need to face an overfitting issue. In
practice, regularisationis frequently used toreduce overfitting. Anothernatural extension
of'the work discussed in this paper is to modify the loss function by involving some regu-
larisation terms. By taking regularisation into account, we believe the theories could have
a much broader application in real-world scenarios.
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