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ABSTRACT 
Ne u ral networks havebecome one of the most popula rly used meth­ 
ods in machine lea rning and artificial inte llige nce. Due to the un i­ 
ve rsa l approximation theorem, a neural netwo rk with one hidde n 
laye r can approximate any continuous function on compact support 
as long as the number of hidden units is sufficiently large. Statist i­ 
cally, a neural network can be classified into a nonlinear regression 
framework. However, if we consider it parametrically, due to the 
unidentifia bility of the parameters, it is difficult to derive its asymp­ 
totic properties. Instead, we consider the estimat io n problem in a 
nonparametric regressio n framework and use the results from sie ve 
est imation to esta blish the consistency,the ratesofconvergence and 
the asymptotic norma lity of the neural network estimators. We also 
illustrate the validity of the theo ries via sim ulat io ns. 
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1. Introduction 

With the success of machine learning and artificial intelligence in research and indust ry, 
neural networks have become popularly used methods nowadays. Many newly developed 
machine learning methodsare basedon deep neural networksand have achieved greatclas­ 
sification and prediction accuracy. We refer interested readers to Goodfellow et al. (2016) 
for more background and details. In classical statistical learning theory, the consistency and 
the rate of convergence of the empirical risk minimisation principle are of great interest. 
Many upper bounds have been established for the empirical risk and the sample com­ 
plexity based on  the growth function and the Vapnik- Chervonenkis dimension (see, e.g., 
Vapnik 1998; Anthony and Bartlett 2009; Devroye et al. 2013). However,few studies have 
focused on the asymptotic properties for neural networks. As Thomas J. Sargent said, 'arti­ 
ficial intelligence is actually statistics, but  in  a very gorgeous phrase, it is statistics '. So 
it is natural and worthwhile to explore whether neural networks possess nice asymptotic 
properties. As if they do, it may be possible to conduct statistical inference based on neu­ 
ral networks. Throughout this paper, we will focus on the asymptotic properties of neural 
networks with one hidden layer. 
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One of the most important properties of neural networks is that they are universal 
approximants (Hornik et al. 1989), which means any continuous function on a compact 
support can be approximated arbitrarily well bya neuralnetwork with one hidden layer.So 
it seems natural to consider it as a nonparametric regression problem and approximate the 
underlying function class through a class of neural networks with one hidden layer. Many 
other series-basedestimators such as splines and wavelets also possess similar approxima­ 
tion properties and have been extensivelystudied in the literature. Chen (2007) provides 
a comprehensive review for those methods. For nonparametric regression problems, ran­ 
dom design and fixed design are the two main frameworks. Many existing literature on 
neural networks focus on random design (e.g. Chen and White 1999; Gyorfi et al. 2002). 
On the other hand, general theories on nonparametric regression under fixed design have 
been well studied in van de Geer (2000). Therefore, it is still worthwhile to study neural 
networks under fixed design. 

Specifically, consider the following nonparametric regression mode l: 
 

 
where Et, . . . , En are i.i.d. random variables defined on a complete probability space (Q, 
A,IJD) with IE[E] =  0, Var[E] =  a 2  and  IE[IEl2H    ]  <  oo for some A >  0;  xi , ...   ,Xn     E X C 
]Rd are vectors of covariates with X being a compact set in ]Rd and Jo is an unknown function 
needed to be estimated. Weassume that/ 0 E F, whereFis the classofcontinuous 
functions with compact supports. Clearly,f0 minimises the population criterion function 

 

A least squares estimator of the regression function can be obtained by minimising the 
empirical squared error loss Q n(f ): 

 

However, if the class of functions F is too rich, the resulting least squares estimator may 
have undesired properties, such as inconsistency (Shen and Wong 1994; Shen 1997; van 
de Geer 2000). Instead, we can optimise the squared error loss over some less complex 
function space Fn, which is an approximation of F while the approximation error tends 
to Oas the sample size increases. In the language of Grenander (1981), such a sequence of 
function classes is known as a sieve. More precisely, we consider a sequence of function 
classes, 

Fi F2 ·· · Fn Fn+l · ·· F, 
approximating Fin the sense that LJ 1 Fn is dense in F. In other words, for eachf E F, 
thereexists rcnf E Fn such that d(f ,rcnf ) -+ 0 as n -+ oo, where d-( , •) is some pseudo­ 
metric defined on F. With some abuse of notation, an approximate sieve estimator fn is 
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defined to be  
Qnlfn) :'.:= inf Qn<J) + Op(T/n), 

jE:Fn 

 

(1) 

where TJn - 0 as n - oo. We refer interested reader to  Chen  (2007)  for a  thorough  
discussion on sieve extremum estimators. 

Throughout the rest of the paper, we focus on the sieve of neural networks with one 
hidden layer and sigmoid activation function. Specifically, we let 

 

(2) 

where rn,Vn,Mn t oo as n -  oo.  For theoretical simplification, we impose bounded­ 
ness assumption  on  the  weights of the neural networks  in F,., which is  related to  the 
£1-regularisation when fitting a neural network. Such a method hasbeen discussed in pre­ 
vious literatures (e.g. White 1989, 1990). In those papers, the consistency of the neural 
network sieve estimators has been established under random designs. However, there are 
few results on the asymptotic distribution of the neural network sieve estimators, which 
will be established in this paper. In terms of the rate of convergence, Chen and Shen (1998) 
obtained  rate of convergence Op(( n; ) 4  !+l  id for neural network sieve estimators. 

10 <i+i( 2dJ>) 
l+2a/(d+l) 

Later on, Chen and White (1999) improved the convergence rate to O p(( 10;n-)   4 Cl+a / (d+ in ), 

where a relates to the smoothness of the true function Jo and in their paper, a central 
limit theorem for smooth functional of the estimated function is also provided. In Chen  
et al. (2001), rate of convergence was also obtained for stationary ,B- m ixing data. One 
important characteristic of the aformentioned rate of convergence is that as d -   oo, both 
rates become  Op((01 ;n -)  l  f4)_ Similar results can  also be found in  Barron  (1994). It is 
well known from Stone (1982) that local smoothing methods suffer from the curse of 
dimensionality. But such phenomenon seems to vanish for approximate sieve extremum 
estimators based on neural networks. Bauer and Kohler (2019) also developed general the­ 
ory and conditions to justify that neural networks can be used to circumvent the issue 
of curse of dimensionality. Hornik et al. (1989) showed that Un Frn is dense in Funder 
thesup-norm. But when considering the asymptotic properties of the sieve estimators, we 
use the pseudo-norm  11/ 111   =  -n    1   I:=,71  f- (x ;) (see Proposition 2.1 in the supplementary 
material) defined on F and F,•. 

With the increasing popularity of deep learning, recent research also starts to focus on 
the statistical propert ies of deep neural networks. For example, Schmidt -Hieber (2020) 
provided the rate ofconvergence for sparse deep neural network with Rectified Linear Unit 
(ReLU) activation function under the assumption that the underlying function is a com­ 
position of functions in some Holder space. Farrell et al. (2020) and Farrell et al. (2021) 
established the rate of convergence for deep neural network estimators when the underly­ 
ing function belongs to a unit ball in a Sobolev space. It is worth pointing out that in these 
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two papers, no restrictions on the boundedness of weights in neural networks are imposed. 
The rate of convergence for deep ReLU neural networks has also been developed in Fabozzi 
et al. (2019) and Kohler and Langer (2021). It is worth mentioning that the results in 
Fabozzi et al. (2019) were developed based on the original version of this manuscript on 
ArXiv. We believe that the ultimate goalof developing these theories is to perform statisti­ 
cal inferencebasedon neural networksfor real-world problems and the results discussed in 
this paper may provide a starting point for further developments. For instance, Chen and 
White (1999) developed asymptotic normality for neural network sieve extremum estima­ 
tors. However,to apply their result,a calculation of a seriesof covariance is essential, which 
may be hard to accomplish in practice. Recently, Horel and Giesecke (2020) developed a 
significance test based on neural networks. However, the theories in that paper are difficult 
to apply and verify in practice. Using similar techniques to be discussed in this paper, Shen 
et al. (2021) developed a goodness-of-fit test based on neural networks. 

The remaining paper is organised as follows. In Section 2, we discuss the existence of 
neural network sieve estimato rs. The weak consistency and rateof convergence of the neu­ 
ral network sieve estimators will be established in Sections 3 and 4, respectively. Section 5 
focuses on the asymptotic distribution of the neural network sieve estimators. Simulation 
results are presented in Section 6. 

Notations: Throughout the rest of this paper, bold font alphabetic letters and Greek let­ 
ters are vectors. C(X) is the set of continuous functions defined on X. The symbol 
means 'bounded above up to a universal constant' and an ~ bn means -+  1 as n -+ oo. 
For a pseudo-metric space (T, d), N(E,T, d) is its covering number, which is the minimum 
number of E-ballsneeded to cover T. Its natural logarithm is the entropy number and is 
denoted by H(E,T,d). 

 
2. Existe nce 

A natural question to ask is whether the sieve estimator based on neural networks exists. 
Before addressing this question, we first study some properties of Fnr• Proposition 2.1 
shows that the sigmoid function is a Lipschitz function with Lipschitz constant L = 1/ 4. 

Proposition 2.1: A sigmoid function a (z) = fiZ'/ ( 1 + f?') is a Lipschizt function on JR with 
Lipschitz constant 1/4. 

The secondproposition provides an upper bound for the envelopefunction sup1E :F ,,. lf I. 

Proposition 2.2: For each fixed n, 

sup llf lloo :S Vn. 
/ E:F,n 

 
Now we quote a general result from White and Wooldridge (1991) for readers who are 

not familiarwith the theoriesof sieveextremum estimators. The theorem tells us that under 
some mild conditions, there exists a sieve approximate estimator and such an estimator is 
also measurable. 

 
Theorem 2.1 (Theorem 2.2 in White and Wooldr idge (1991)): Let (Q, A, IP') be a com 
plete probability space and let (8, p) be a pseudo-metric space. Let {8n} be a sequence 



 

Tn 

t 
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of compact subsets of e. Let Qn: Q x en-+ i be A® B(en)/B(i.)-measurable, and 
suppose that for each w E Q, Qn(w,•) is lower semicontinuous on en, n = 1, 2,   Then 
for each n = 1, 2, . . ., there exists 0n : Q -+  en,  A/ B(en)-measurable such that for each 
w E Q, Qn(W,0n(w)) = infeEBn Qn(w,0). 

 

Note that 
 

 
Since the randomness onlycomes from E;'s, it is clear that Qn isa measurable function and 
for a fixed w, Qn is continuous inf Therefore, to show the existence of the sieve estimator, 
it suffices to show that Fr" is compact in C(X), which is proved in the following lemma. 

 
Lemma 2.1: Let X be a compact subset of d. Then for each fixed n, Frn is a compact set. 

 

Proof: For each fixed n, let Bn =  [ao,. . . ,a ,",Yo,1, . . . , yo,rn, Y [ , . . . ,y ]T belong to 
[-  V  n, Vnl'"+'  X  [-  Mn, Mn l' " (d+I) :=  e  n. If n is fixed, en   is a bounded closed set and 
hence it is a compact set in rn(d+2)_+l Consider a map 

 
 

Bn i---+  H(Bn) = ao + Lap (rJ x + Yo,j) 
j= I 

 
 

Note that F," = H(en)- Therefore, to show that F," is a compact set, it suffices to show 
that H is a continuous map due to the compactness of en. Let 8 l,n,82,n E en, then 

 
IIH ( B1,n) - H (B2,n)II 

;;E [al'' + 
 

aJ'' a (,J''' x,+ vJ)') - al'' - t aJ'' a(,!''' x,+ yJJ')r 
" ;;E [ lai'' - af  ' I+ tH''a (, )''' x,+rJ;') - aJ'''  a (, !'''"' + ,m1]' 
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' - 

- 

;t [lal1 al''I+t 1aj1'1la(r?'' x, + ,J,?) -a    (r J''x, +,ml+ 
) - a lla (r\ >Tx; + 

2 
C l)] 

J J J 0 ,] 

-<;t [t la/0 - a/''I +   •  t,l(rJ0 r/'')'+Ir,' - r,TI]' 

-< [t la)1' - aJ"I + ( 1  V llxlloo)   tllrJ1
 

2 
:S ( n    (1  V !lxl100   )  ) [r n(d + 1)]1191  , n -   92,n!I  . 

r/'t + lrJ')- ,JJ'lr 

 

H ence, for  any  E  >  0,   we  choose  8 = E/ (  (l V llxi100     )J  rn(d + 1)),.  When  1191,n - 
92,n112 < 8, we have 

 
!1H  (91  , n) -   H (92,n) lln  < E, 

 
which implies that H is a continuous map and hence Fr,. is a compact set for each 
fixed n. ■ 

 
Asa corollary of Lemma 2.1 and Theorem 2.1, we can easily obtain the existence of sieve 

estimator. 
 

Corollary 2.1: Based on the notations above, for each n = 1, 2, . . ., there exists fn : Q - 
Fr,., A/B(Frn)-measurable such that Q nif n(w )) = infJ EFrn   Q  n(/) . 

 
3. Consistency 

In this section, we are going to show the consistency of the neural network sieve estimator. 
The consistency result leans heavily on the following Uniform Law of Large Numbers. 

 
Lemma 3.1: Under the assumption of 

 
[rn(d + 2) + l ]V log(V n[rn(d + 2) + 1] = o(n), as n - 00, 

 
we have 

 

' - 
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VEFrn 

 

Proof: For any 8 > 0, we have 
 

= JP'*( sup !._ t Ef -   a 2  -    2!..t E; {f(x;) -   fo(x;))   >  8) 
n   i=l n i=l 

 
JP' 

( 

 
1- E2; -  a2  
n 1.=1 

>  -8 )+ JPC*' sup 
2 ETFrn 

 
1- E;(j(x;) - fo(x;)) n  

1.=1 
:= (I) + (II). 

Itfollows from the Weak Law of Large Numbers that (I) 0. Now, we are going to evaluate 
(II). By using the Markov's inequality, (II) 0 holds if 

E* [  sup   !._ t E;(f(x;) -   fo(x;)) ] 0, as n oo. 
fE:Frn n =i l 

Note that IE[E] = 0 and eachf E Fr" has its corresponding parameterisation On. Since 9n 
is in a compact set, there exists a sequence Onk, On as k oo with On,k E Q(n(d+Z)+l n 
( [-  V n, VnY"+l  x [-  Mn,MnY"( d  +l )  ).   EachOn,kCor responds to a function fic E  F•r  . Based 
on continuity, we have fic(x) f(x) for each x E X.  From Example 2.3.4 in van der 
Vaart and Wellner (1996), we know that Fr. is P-measurable. Based on symmetrisation 
inequality,we have 

E* [  sup t E;(f (x;) - fo(x;)) ] 2E.,E [ sup !._ t ;E; {f (x;) - fo(x;)) ] , 
fEFrn =i   l fE:F,. n =i I 

where 1, . . . , n are i.i.d. Rademacher random variables independent of EI , . . . , En- Based 
on the Strong Law of Large Num bers, there exists N1 > 0, such that for all n 2'.'. N1, 

1- nL  Ef < a 2 
 
+ 1, a.s. 

n   i= I 

For fixed EI, . . . ,En, I::=? l    ;E;(j(x;) -   fo(x;)) is a  sub-Gaussian process indexed by f  E 
Frn• Suppose that (8 , C, µ,) is the probability space on which 1, . . . , n are defined and 
let Y(f,w) = I::=? 1 ;(w)E;(j(x;) - fo(x;)) withf E Fr" and w E 8. As we have shown 
above, we have fie f and by continuity, Y(/k,w) Y(f,w)for any w E 8. This shows 
that {Y (f ,w ),f E F,.} is a separable sub-Gaussian process. Hence Corollary 2.2.8 in van 
der Vaart and Wellner (1996) implies that there exists a universal constant K and for any 
J; E Frn with n 2'.'. N1, 

 

 
 

logN (½rJ,Fr.,d) 
-    -    -  -   - d17 

n 
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= 

x EX a + 1 

If:(x;) - /o(x;))r 

 
 

 
 
 

 
 

where forf,g E Frn• 

 
dTJ, 

 

n ) 1/2 
d(f,g) E;(j(x;) - g(x;))2 

( 
 

sothat the last inequality follows by noting that sup1<ffn, llfII  
V n and 

 

d(f,g) llf - glloo( 

n ) 1 / 2 
Ef 

 
We then  evaluate  these  two terms. For  the first term, for n N1, by Cauchy- Schwarz 
inequality, we have 

t t,/r ( t 2

 

Ja2+1suplf;(x) -  fo(x)I ,  a.s. 
xEX 

By choosing J; = :rcrJo and using the universal approximation theorem introduced by 
Hornik  et al. (1989), we know that supExX lf;(x;) - fo(xi)I  ---+ 0  as  n  ---+ oo.  Therefore, 
for any { > 0, there exists N2 > 0, such that for all n N2, 

sup [f;(x;) - fo(x;)I  < .k  
By choosing n N1 V N2, we get 

 

For the second term, we use the same bound from Theorem 14.5 in Anthony and 
Bartlett (2009) as we did in the proof of Lemma 2: 

 

logNC :'+l  TJ,Frn• II· lloo)  
n 

Ei [ S,,,<J:(x;) - /o(x;)) ] ,; ( 

00 
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V 

1 

---------d17 :s 8 " 

 

where Bnr ,d,Vn = (2-JaT'+Te[r n(d +  2) +  l ]V   / (Vn -   4)) '•( d  + 2)  +1. Let 

Brn,dYn = log Brn,d,Vn - [rn(d+ 2) + l] 
= [rn(d + 2) + 1      2 a  2 +  l e[rn(d   +  2)  +  l ] V ) 

og  -1 
Vn -   4 

<    2[r  (d+   2)+  l  ] lo [rn(d+    2)  +    l  ]V 
- n g - 4 ' 

n 

wh ere N3 is chosen to satisfy rn(d + 2) + 1 :::_ 2 a  2 +  1. The  last inequality then follows b  notm•  g that V2 -  V   + 4 > 01cor all  V   so that log [r"(d+l)+l]V2   
>  log 2vu--+rli(Vn-   4 )    = 

Y n n - n V,.- 4 a - Vn- 4 
log {2 a 2 + 1). We also have 

 

H( .Ja1T'+117,F,,., III · llloo) =  logB-n,  ,d,V,. +   [rn(d +  2) +  l] log1- 
 

2  a +l 17 
1 

:S Bn, ,d,V,. + [r n(d + 2) + l ]- 
17 

an d hence for all n :::. N1 v N3, 

12 H  112(  1  17,F ,,., II· lloo)  d17 
o 2 a + 1 
<  B l /2 {2v.   (1+ )   1 /2   d  17 

- r,.,d,Vnol 17 

= B!:., ,v,. [ 1  1   (  1  +   ¾y /2 d17 +  1 2v   ,. ( 1  +   ¾y /2 d17] 

:S B!:., ,v. [  2   fo -17  l /  2 d17 + 2 (2V n - 1) ] 

:S 4 r,B:; l/2 V 
-v L. Tn,d,V,. n, 

which implies that 

H c :2+  1  17, Frn> III · lloo) [r n(d +  2) +  l ] log[r.  ( d  t  2  l ) V 

n n 

8 [rn(d + 2) + l]VJlog(Vn[rn(d + 2) + l]) 
n 

where the  last part follows by  noting  that logv 4 ~ logVn. Under the  assumption given 
in the Lemma, there exists N4 > 0, such that for all n :::_ N 4 , we have 

 
[rn(d  +  2) + 1] log(Vn[rn(d +  2) + 1]) { 
  <-. 

n 8 

l ( l 

~ 
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t 

p 

 

Therefore, by choosing n 2::. N1 V N2 V N3 V N4, we get 
 

i .e.  IE   [supfEF,. I¼ L=7  1  ;E;(j(x;) -  Jo(x;))I] ---+  0 a.s .. Moreove    r, b ased   on  what we have 
shown, for a sufficiently large n, we have 

 

IE :f.. ;E;(f (xi) -  Jo(x;)) ] S #+l ilnr,Jo - Jolioo 
 

112 
rn ,d,Vn 

112 vn ---+ 0, as .. 
 

Since 
 

by using the Generalised Dom inated Convergence Theorem, we know that 
 

which completes the proof. ■ 
Based on the above lemmas, we are ready to state the theorem on the consistency of 

neural network sieve estimato rs. 
 

Theorem 3.1: Under the notation given above, if 

[rn(d + 2) + l]V log(Vn [rn(d + 2) + l] = o(n), as n---+ 00, (3) 
 

then 
p 

llfn -  Jolin---+ 0 . 
 

Proof: Since Q is continuous at Jo E F and Q(fo) = a 2 < oo, for any E > 0, we have 
 

Hence, based on Lem ma 1, Lemma 3 and Corollary 2.6 in White and Wooldridge {1991), 
we have 

llfn - Jolin---+ 0. ■ 

+ 4 2 KB -n 
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= max llrr,,Jo -

 

 
Remark 3.1: Wediscuss the condition (3) in Theorem 3.1 via somesimple examples here. 
If <Xj = 0(1) forj = 1, . . . , rn,then Vn = O(rn) and 

[rn(d + 2) + 1)V log(Vn[rn(d + 2) + 1)) = O(r logrn)- 

T herefore , a possible growth rate for the number of hidden units in a neural network is 
Tn = o((n/ log n)113). On the other hand, if we have a slow growth rate for the number of 
hidden units in the neural network, such as rn = log Vn, then we have 

 

Hence, a possible growth rate for the upper bound of the weights from the hidden layer to 
the output layer is Vn = o(n112 / log n). 

 
4. Rate of convergence 

To obtain the rateof convergence for neural network sieves, we applyTheorem 3.4.1 in van 
der Vaart and Wellner (1996). 

 
Theorem 4.1: Based on the above notations, if 

 

then 

llfn - folln 

Op ( follm 
rn(d + 2) log[rnVn(d + 2)) 

n 
 

Proof: Use the same bound from Theorem 14.5 in Anthony and Bartlett (2009), we have 
 

 

where   cn,, ,d Vn  =e [rn ( d:. 1 v1;1 
foro < 1, 

> e. Then from Lemma 3.8 in Mendelson (2003), 
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8- -   -  - - - -2 

- 2   og - 8 - 

112 

Pn 

( 

 
 

Define h: 8 1--+ </Jn(o)/8° = [rn(d + 2) + 1] 11 2 o-1 
l<a<2 

0 J 1ogt,"{v".Since for O < 8 < 1 and 

 h'(;) [,. (d+  
 C,. ,d,v. 1 82 C,.,d,v.I -  1 / 2  C,. ,d,v.) 

 

 2) + I]>/> ( (I -  a )a- Iog   - 
2  c,.,d.v. 1, 

og -- 
1, 

[,.   (d +   2)+ tJ' i' ((I - a ) a- 

< 0, 

 
 

I og   -c,•8.-d,v. i  I -  112 c,.,d,v). 

 
8 1--+ </Jn(o)/8° is decreasing on (0, oo). Let Pn ;S 1!1l'r.fo - f oll;;-1 . Note that 

 

P </Jn (;n) = Pn[rn(d + 2) + 1] 112 log ( PnCr,,,d,Vn) 
 

 
 

and 
 
 
 
 

we have 

= [rn(d + 2) + l ]112PnJlog Pn + logC,,,,d,v. 
 
 

~ log[rnVn(d + 2)], 

 

p'fi</Jn (;n) ;S -v'n{} rn(d + 2)p'fi (logpn + log[rnVn(d + 2)1) ;Sn. 
 

Therefore, for 
P~n<  

mt.n n )1 / 2    (     n   
) 1 / 2 ) , 

I(rn(d + 2) log[rnVn(d + 2)] rn(d + 2) logn 

we have Pn2¢ n( .1..) ;S ..jn. Based on  these observation, Lemma  1,  Lemma  2 in  the Sup­ 
plementary Materials and Theorem 3.4.1 in van der Vaart and  Wellner  (1996)  imply 
that 

llfn - Jl',.f olln 

= Op(maxI l!Jl',.fo -   follm rn(d + 2) logn[rnVn(d + 2)] ,;rn(d +n2) logn )). 

By using the triangle inequality, we can further get 

llfn - Jolin :'.:: llf n - rr,Jolin + lirr,Jo - Jolin 
 

= Op max lirr,Jo - Jolin, 
[ 

rn(d + 2) log[rnVn(d +2)) 
n 

 
 

rn(d +:) logn )). 
 

■ 

0 
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l og 

1+1/ d ) 

r-;; - l / ( d) . 

 

Remark 4.1: Recall that a sufficient condition to ensure consistency is rn(d + 2) 
V log[rnVn(d + 2)] = o(n ). Under such a condition, rn( d + 2) log[rnVn(d + 2)] _:s n, the 
r ate of convergence can be simplified to 

 
llAfn -   Jolin =  Op (

 max { lin,,Jo - Jolin, r  n( d +n2 )  lo g n )) · 

 
If we assumeJo E F where F is the space of functions with finite firstabsolute moments 

of the Fourier magnitude distributions, i.e. 

F = {t: Rd  - R :J (x ) = J exp {iaT x} dµ,f( a ), IIILJ li1 

:= j max(1iall1, 1) d iµ, J l( a ) :S c}, ( 4) 

where /.Lf is a complex measure on Rd . IILJ I denotes the total variation of /.Lf , i.e. [µ, I(A ) = 
sup z:::, 1 l µ,(An) I and the supremum is taken over all measurable partitions {An} 1 of A. 
1iali1 = I:f=1  la i l for   a = [a1, ...  ,adjY E R d. Theorem 3 in Makovoz (1996) shows that 
On :=  llfo-  n,,Jolin ;S 112 2 Therefore, if we let d fixed and Pn = o;;-1  and V n = V 
in the proof of Theorem 4.1, On must also satisfy the following inequality: 

 

P </> ( :n    ) ;S Pnr 12 11 2 ( PnC rnd, ,v ,.) ;S ,In 

=} p rn log pn + p rn log r n ;S n 
1 + 13 

=} rn rnlogr n ;S n. 
 

d 
One poss ible choice of rn to satisfy such condition is rn ;,c::: (n / log n)r+a. In such a case, we 
obtain 

 

A ( n  ) - 4(1+ 1/( 2d)) 
llfn -  Joli n = Op -  - , 

( 1ogn 
 

which is the same rate obtained in Chen and Shen (1998). It is interesting to note that in 
the case where d = 1, we have llfn - Joli n = O p((n / log n-) 113) . Such rate is close to the 
Op(-n 113 ) , which is the convergence rate in nonparametric least square problems when 
the class of functions considered has bounded variation in R (see Example 9.3.3 in van de 
Geer (2000)). As shown in Proposition 3 in the supplementary material, F,. is a class of 
functions with bounded variation in R. Therefore, the convergence rateweobtained makes 
sense. 

 

5. Asymptotic normality 

To establish the asymptotic normality of sieve estimator for neural networks, we follow 
the idea in Shen (1997) and start by calculatingthe Gateaux derivative of the empirical 
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L 

 

criterion function Qn(f) = n-    1 I=::7 1 (y;   -   f (x ;))2, 

 

2 n 
= -- E;(j(x;) - fo(x;)). 

n i= l 

 
Then the remainder of first-order functional Taylor series expansion is 

 
n 

Rn[f  -  fol = Qn(f) -  Qnlfo) -  "n'lJo  [f -  fol = 1-  L,  (j (xi ) -   fo(x;))2 = llf -  folln2 - 
n     i= l 

 
As will  be seen in  the  proof of asymptotic  normality,  the  rate of convergence  for the 
empirical process {-n     112 I=::7 1  E;(j(x ;) -   fo(x;)) :f E  Frn} plays an important role.  Here 
we establish a lemma, which will be used to find the desired rate of convergence. 

 

Lemma 5.1: Let Xi , . . . ,Xn be independent random variables with Xi~ Pi. Define the 
empirical process {Vn(f)} as 

 

 

Let  Fn =if: llflloo .'.:: Vn}, E  > 0 and a supfEFn-n 1 I=::7 1 Var[f(X;)l be arbitrary. 
Define to by H(to, F n, II · 111 00 ) =  ¼1/l(M , n,a), where 1/l(M, n,a) = M2/[2a(l + )l. 
If 

  (5) 
 

for some O < r < 2 and u E (0, al, where a is a small positive number, and there exists a 
positive constant Ki =   Ki  (r , E),  i =  1, 2 such that 

 

 
we have 

 
IP* (;sup lvn(f)I > M) S Sexp{- (1 - E)1/l(M, n,a )}. 

EFn 
 

Proof: The proof of the lemma is similar to the proof of Corollary 2.2 in Alexander (1984) 
and the proof of Lemma 1 in Shen and Wong (1994). Since H(u,Fn,II · lloo) S A n-ur for 
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l t 

t) 

2r 

t) 

 

some O < r < 2, we have 
 

I(s,t) := H112(u, Fn,II · lloo) du S 2(2 - r-) 
 

Based on the assumption of 

 
1 AJ t1- f 

Ant- r 2: H(to,J,r"m 11 · 11 ) = E ifr( M, n,a ), 
0 00 4 

we have to S [';4;)l r/ . Note that ifr(M, n,a) 2: M 2/(4a) if MS 3,Jria/Vn and 2(,Jria + 
MVn/3) S 4MVn/3 if M 2: 3,Jria/Vn and hence ifr(M,n,a) 2: 3,JriM/(4Vn). In sum­ 
mary, 

 
1/t(M,n,a) 2:{ 

Therefore, if M 2: 3,/na/Vn, 

M 2/(4a) 
3,JriM/(4Vn) 

if  M  < 3,Jria/Vn, 
if M 2: 3,/na/Vn· 

 

2E8 -  3/2J (    EM <  29E  - 3/ 2(2 -   r) - l Al /2/-    5: 
64,/n' 0 - n 0 

 

 

where K1 = kF.On the other hand, if M < 3,/na/Vn, 

2  8E -  3/ 2r  (    EM <  2  9E  - 3/ 2( 2-    r )  -  1A   l / 2t -l f 
64,/n' 0 - n 0 
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+ JP>* ( sup 
llf- Jolln.9;;1J E:F,. 

 
 where K = K- ir,/2.   In    conclusion,    if    M 2: K  A +  v;+ •- 2 K An1/ 2   2-,  then 

2 1 n![r+2i  V    2 aT, 
28-E   3/  2 J( 6f4M,i"' t0)   <  M. By  Theorem  2.1  in  Alexander  (1984),  we  have  the  desired 

reruk ■ 
 
 

{-n 

As a Corollary to Lemm a 5.1, we can show that the supremum of the empirical process 
112 I=:7 , Ei(j(x;) - fo(xi)) :f E Fr.}converges to O in probabil ity. 

 

Coro llary 5. 1 : Let Pn satisfy Pnllfn - f o lln = Op(l) and Fr. be the class of neural network 
sieves as defined in (2). Then under the conditions 

 
(Cl) rn(d + 2)Vn log[rnVn(d + 2)] = o(n114 ) ; 
(C2) np -;;2/V = o{l), 

 

we have 
1 n 

sup ,,/ii..L,   ,       E;(j -   fo)(x;)   = op{l). 
llf- fo lln:S.P;;1JE:F,n 

 

Proof To estab lish the desired result, we apply the truncation device. 

JP>* ( su 1:_   t Ei(j -   fo)(x;) M) 
llf - folln::'.Pn1 JEJ",n l= I 

 

:= (I) + (I I) . 

For (I), we can apply Lemma 6 directly. Note that IEll1f1 l :S.V.}if - fo)(x) I :S Vn<Vn + 
llfolloo) ;S V since llfolloo < oo and for O < T/ < 1, 

4e  [rn(d+ 2) + l] (¼Vn)   2)  r  ,(,d  +2)  +1
 

log N (TJ,F r. , ll · lloo) :S log( 
(' ) 

TJ   4 Vn - 1 

:S [rn(d + 2) + l]  (logCr. ,d,Vn+ t-1) 
= Cr,,,d,Vn (1+ t) 

1 
:S 2Cr,,,d,Vn - , 

T/ 
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W here C- rn,d  ,V.,   = e[rn(d+ 2)+1]V; d 
Vn - 4 an 

 
 

 

Therefore, Equation (5) in the main text is satisfied with r = 1 and An = 2Cr d v . Follow­ 
ing from Lemma 6,for M c21 v V   13-n  11  6  v  C  11v a1 1 4, we have (I)  :t:  ·s e; p{-  (1 - 

E)i/r(M, n, a) } and hence 
 
 
 
 
 
 

From (Cl), 

rn, ,  n rn, , n 

 

 
 

For(II), by using the Cauchy- Schwarz inequality, we have 
 

 
Then it follows from the Markov inequality that 

 

 
Based on condition (C2), we have (II) - 0, and 

 

 
Combining the results we obtained above, we get 

 

 

■ 
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Remark 5.1 : Co ndi tion (C2) can be further simplifiedusing the resultsfrom Theorem 4.1. 
If 

 

T/n =0 (min{IIJrr,Jo - foll ,rn(d +2) log(rnVn(d +2))/n,rn(d +2)logn/ n}) , 
 

then 
 

 
It followsfrom condition (Cl) that 

 

For simplicity, we assume that  p;;1  x   Jrn(d +2)logn/n,which holds for functions hav­ 
ing finite first absolute moments of the Fourier magnitude distributions as discussed at the 
end of Section 4.4. Then in this case, 

 

so that condition (C2) becomes rn(d + 2) logn/V!-+ 0. 

 
Now we are going to establish the asymptotic normality for neural network estimators. 

For/ E ff E   Frn : llf -  Jolin S   p;;1 },  we consider a local alternative 
 

 

where O S 8n = TJ! 1 2 = o(-n 

 

 

112) is chosen such that Pn8n = o(l) andt(x) =1. 

(6) 

 

Theorem 5.1 (Asymptotic Normality): Suppose that O S T/n = o (-n 1 ) and conditions 
(Cl) and(C2) in Corollary 5.1 hold. We further assume that the following two conditions 
hold: 

 

 
then 

 

 
Proof  The ma in ideaof the proof is to usethe functional Taylor series expansion for Qn(j) 
and then carefully bound each term in the expansion. For any f  E  ff E  Fr,, : llf -  Jo11n  S 
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n n 

2 - 2 

L 
n 

L L 

 

Pn- 1}, 
 

Note that 
 
 
 
 
 

and since On= o(-n 

 
llfn(f) - Jolin= 11(1 - on)}n + Onlfo + l) - Jolin 

= 11(1 - On)ifn - Jo)+ Ontll n 

S (1 - On )llfn - Joli n + On, 
112 ), we can know that with probability tending to l , lifn(f) - Jolin S 

p;;1•   Then replacing/ in (7) by]n and  n:,,Jn(f), we get 

<r:lnlfn) = LEf - L E;lfn(x;) - fo(x;)) + llfn - foll 
n   i= l n i= l 

 

Subtracting these two equations yields 
n 

<r:lnlfn) = <r:ln(n:,,Jn(f)) + LEi ( n:,,Jn(f)(x;) - ]n(x;)) 
1= 1 

 
 

Now note that 

+ llfn - Joli n - lirr,.fn(f) - Jolin- 

 

 

S    (I    -    On)2llfn -  Jol2in+ 2(1 -   On )Iyrn -   fo,On)l  + on2 

+ 2(1 - On)lln:,,Jn(f) - ]n(f)llnllfn - Jolin 

+ 2onllrrr,J- n(f)  - -fn(f)lln + lln:,,-Jn(f) - -fn(f)ll2n, 
where the last inequality follows from the Cauchy-Schwarzinequality.Since 

n n 

E; (   n:,,Jn(f)(x;) - Jn(x;)) = Ej(  n:,,Jnlf)(xi) - Jnlf)(xi) +Jn(f)Cxi) - Jn(x;)) 
1= 1 1= 1 

= LEi ( n:,,Jn(f)(Xi) - ]nlf)(Xi)) 
1=1 

2 n 2 n 
-  - On Ei{  ]n(x;) -  fo(xi)) - - On Ei , 

n =i           l \ n i=l 
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+ 

+ + 

 

by the definition ofJn, we have 
2 A - A 

- O p(8n) S inf Qn(J) - Qnlfn) S Qn(7rr,Jn(J)) - Qnlfn) 
fE:F,,, 

S   (1   -    8n)2 llAfn -  Joli2n -   llfA   n -  Joli2n+ 2(1 -   8n)8n Iyrn -   fo,L) 

+ 2(1 - 8n)llfn - Jolinlin,Jnlf) - Jn(J)lin 
- - - - 2 

28nli7rr,Jn(J) -  Jn(J)lin 1i1rr,Jn(J ) -  Jn(J)lin 
n n 

- LE;(n,Jnlf)(x;)  -   Jnlf)(x;)) +  8n E; (! n(x ;) - Jo(x;)) 
1=1 1=1 

2 n 
+ - 8n LE;+ Op(8 ) 

n i= l 

S   8n2llAfn -   Joli2n+ 2(1 -   8n)8n Iyrn -  Jo,)
l 

+ 2(1 - 8n)llfn - Jolinli1r,Jn(J) - ]n(J)lin 
- - - - 2 28nll7r,,Jn(J) - Jn(J)lln lin,,Jnlf)  -  Jnlf)lin 

- t E; ( 1r,Jn(J)(x;) - ]n(J)(x;)) + 8n t E; (!n(x;) - Jo(x;)) 
z=l z=l 

 

(8) 
 

where the last inequalityfollows bynoting that (1 - 8n)2 - 1 = -28n +8 S 8 . From the 
condition (Cl), we can get 

[rn(d + 2) + l]V log[rnVn(d + 2) + l ] 
S ([rn(d + 2) + l ]Vn log[rnVn(d + 2) + 1])4 = o(n). 

Combining with Theorem 2, we obtain that llf n - Jo11n = Op(1 ) and hence 8;llfn - Jo11 = 
op(8;). From condition (C3), we have 

 
2(1 - 8n) llfn - fo ll n lln ,J nlf ) - Jn (J) lln .S 2 llfn - Jo lin lln ,J nlf ) - Jn (J) lln 

= Op (p;1Pn8 ) = O p(8 ). 

Similarly, since Pn8n = o(l), we have 
- - 2 2 

28nlln  ,,J  n(J)  -  Jn(J )ll n =  Op(8n · Pn8n) =  Op(8n) 

lln ,,-J  n(J)  - - Jn lf ) ll 2n = Op(Pn248n) = 0 p(82n). 

Based on condition (C4), we know that 
 

+ 
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n n 

) - 

 

and from Corollary 5.1, we also have 

n 
2;;8n "L,    E; 1\[n(x;) -   fo(x;))   = Op(8n · n -  1 / 2 ). 

1= 1 
 

It follows from these observations that 
 

which implies that 
 

By replacing t with - t , we can obtain the same result and hence 
 

f/n -   fo,t ) - LE; S    (1 -   8n) f/n-   fo,t ) - LE; +  8 n lf/n - Jo,i)I 
1=  1 1=  1 

 

Therefore, 

 
fYr" - f0 

 
 

l 
, t - ;; 

 
 
 
 
 

1= 1 

 

E; + 

 
 
op(n- 1 / 2 ), 

and the desired result follows from the classical Central Limit Theorem. ■ 
Let us focus on the conditions given in the theorem. Note that if (Cl) holds, we have 

 

so it is a sufficient condition to ensure the consistency of the neural network sieve esti­ 
mator. As in Remark 3.1, we consider some simple scenarios here. If Vn = O(rn) , then 
Tn(d + 2)Vn log[rnVn(d + 2)] = O( logTn) so that a possible growth rate for Tn is Tn = 
o(n118 / (log n)2). On the other hand, ifrn = logVn, then Tn(d + 2)Vn log[rnV n(d + 2)] = 
O(Vn(log Vn)2) and a possible growth rate for Vn is Vn = o(n 114 /(log n)2) . Thus, in both 
cases, the growth rate required for the asymptotic normality of neural network sieve esti­ 
mator is slower than the growth rate required for the consistency as given in Remark 3.1. 
One explanation is that due to the Universal Approximation Theorem, a neural network 
with one hidden layer can approximate a continuous function on compact support arbi­ 
trarily well if the number of hidden units is sufficiently large. Therefore, if the number of 
hidden units is too large, the  neural network sieve estimator ]n may be very close to the 
best projector of the true functionJo in Fr. so that the error I=:7t   lfn(x;) -   fo(x;) ] could 
becloseto zero, resulting a small variation. Byallowing slower growth rateof the number of 
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In 2 2n I n 

/ 

E; 

 
hidden units can increasethe variations of I:=7 1 [fn(x;) -   fo(xi)], which makes the asymp­ 
totic normality more reasonable. On the otherhand,condition (C3) and condition (C4) are 
similar conditions as in Shen (1997), which are known for conditions on approximation 
error. These conditions indicate that the approximation rate of a single layer neural net­ 
work cannot be too slow, otherwise it may require a huge number of samples to reach the 
desired approximation error. Therefore, the conditions in the theorem can be considered 
as a trade-off between bias and variance. 

Theorem 5.1 can be used directly for hypothesis testing of neural network with one 
hidden layer if we know the variance of the random error a 2. In practice, this is rarely 
the case. To perform hypothesis testing when a 2 is unknown, it is natural to find a good 
estimator of a 2 and use a 'plug-in' test statistic. A natural estimator for a 2 is 

 

We then need to establish the asymptotic normality for the statistic a-.Jn L=7 I [fn(x;) - 
fo(x;)]. 

Theorem 5.2 (Asymptotic Normality for Plug-in Statistic): Suppose that Jo E C(X), 
where X C  llld is a compact set and O _:'S T/n = o(-n  1).  Then under the conditions as stated 
in Theorem 5.1, we have 

n 

O-n\ [Jn(Xi ) - fo(x;)] .i N (0, 1). 

 
Proof: Note that 

a;= Qnlfn) = t (>,i - fn(X;)r = t (to(x ;) + Ej - fn(X;)r 
t= l t= l 

= - L(!n(x;) -   fo(xi))   -   -  LE; (!n(x;) -   fo(xi)) +- LEt 
n i=l n i=l n i=l 

 

=1;; L,   E2i - 2;; ( fn(x;) - fo(Xi)) + llfn - Joli2n 
t= l t=I 

Based on the rate of convergence of }n we obtained in Theorem 4.1 and condition (Cl), we 
know that 

lvn - !o[ =  o;(max { lln,,Jo -  foll , rn(d +:)logn  }) . 
 

Under (C3), llrr,,Jo - foll = o(p o ) = o(-n 

cn(d+    :  )  lo  g    n) .:'S 
112 ) and under (Cl), we have 

1 4 
  

n ;og n )  
 

_ (logn) _ _ 112 
-   o   n 3/ 4 -   o(n ), 

O ( 
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which implies that llfn - foll = op(-n 112). Moreover, by the same arguments as in the 
proof of Theorem 5.1, we can show that 

 
 
 
 

Therefore, 

2;; !--,Ei ( fn(xi) - fo(x;)) -_ 
l= l 

op(n- 1 / 2 ). 

 

 

Based on the Weak Law of Large Numbers, we know that ¼ I:=7 1 E/ = a 2 + op(l ). 
Therefore , 

 

and it follows from the Slutsky's Theorem and Theorem 5.1in the main text, we obtain 
 

 
6. Simulation studies 

In this section, simulations were conducted to check the validity of the theoretical results 
obtained in the previous sections. The consistency of the neural network sieve estimators 
was examined under various simulation scenarios. Finally, we evaluated the asymptotic 
normality of the neural network sieve estimators . For illustration purpose, we only include 
the simulations where the dimension of the covariates is 1. More simulations for the 
multivariate cases are given in the supplementary materials. 

 

6.1. Consistency for neural network sieve estimators 

In this simulation, we are going to check the consistency result from Section 3 and the 
validity of the assumption made in Theorem 3.1. Based on our construction of the neural 
network sieve estimators, in each sieve space Frn, there is a constraint on the l1 norm for 
a: I: :o lad S Vn. So finding the nearly optimal function in Fr,, for Qnlf) is in fact a 
constrained optimisation problem. A classical way to conduct this optimisation is through 
introducing a Lagrange multiplier for each constraint. Nevertheless, it is usually hard to 
find an explicit connection between the Lagrange multiplier and the upper bound in the 
inequalityconstraint. Instead, we use the subgradient method as discussed in section 7 in 
Boyd and Mutapcic (2008). The basic idea is to update the parameter ao, . . . , ar,, through 

 

whereok > 0 is a stepsize and ok is chosen to be 0.1/ log(e + k) throughout the simulation, 
which is known as a nonsummable diminishing step size rule.gCk)   is   a  subgradient of the 
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L 
L 

- • ::  •       .. ...   .,. ,.       .,. ........... 'l'll"lll  f' 
   -- - - -  - -· ---- -  

\''lr.."•'TI.      _ 
- --- 

.. 

 

objective or the constra int function Lj O laj  l -   Vn a t  a <k)  .  Mo    r e  specifically, we take 

Tn 

           if lajl Vn 
j=0 

rn 

    if lajl > Vn, 
j=0 

 

Table 1. Comparison of errors llfn - foII and theleast square errorsQn( fn) after20,000iterationsunder 
different sample sizes. 

Neural network Sine Piecewise continuous 
 

Sample sizes llfn- foll Q,,(fn)  llfn - foll Qn(fn) llfn- foll Q n(fn) 
50 3.33E- 2 0.519  6.04E- 2 0.513 6.20E- 1 1.124 
100 2.79E- 2 0.552  3.04E- 2 0.587 3.20E- 1 0.920 
200 6.0SE- 3 0.500  1.05E- 2 0.501 2.51E- 1 0.786 
500 8.l SE- 3 0.484  1.19E- 2 0.499 3.26E- 1 0.769 
1000 3.02E- 3 0.475  1.54E- 2 0 .480 2.98E - 2 0.489 
2000 2.88E- 3 0.500  9.72E- 3 0.506 1.69E- 2 0.515 

 
 

-2 

 

 
 

Figure 1. Comparison of the truefunction and thefitted functionfor threedifferent types of non-linear 
functions.The top panel shows the scenario when the truefunction isa single layer neural network; the 
middle panel showsthe scenario when the true function isa sine function, and the bottom panel shows 
the scenario when the true function is a conti nuousfunction having a non-differentiable point. As we 
cansee from all the cases, the fitt ed curve becomes closer to the truthas the sample size increases. 
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Figure 2. Normal Q-Q plot for n- 112 L =l [fn(x1) - fo(x1)l various sample sizes. Thetrue function fo is 
a single-layerneural network with two hidden units asdefined in (10). 

 
 

The updating equations of y 1, . . . y '", Yo,1, ... , Yo,r,, remain the same as those in the 
classical gradient descent algorithm. 

We simulated the response through the following model: 

y; =  fo(x;) + E;,       i =  l, . . . , n, (9) 

where the total sample  size  n  varies from  50  to  2000,  Xt,  •..  ,Xn  ~ i.i.d.  N (0, 1), 
E1, • . . , En ~ i.i.d.N(0,0.72

). For the truefunctionJo(x),weconsidered the following three 
functions: 

 

(1) A neural network with a single hidden layer and two hidden units: 

fo(x;) = -1 - a(2x; +1) +a (- x; + 1). 

(2) A trigonometric function: 

fo(x) =sin(; x)+i cos ( x+1) 
(3) A continuous function havinga non-differential  point 

if X  :'.:: 0 

if X   > 0. 

 
 
 
 
 
 

(11) 
 
 
 
 

(12) 

-3 ., ., ., -3 ., ., 

., -1 

,. 
I 

.. _, 
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Figure 3. Normal Q- Q plot for-n  1/  2 I: 1 [fn( x1 ) - fo(x1)l varioussamplesizes. Thetrue function fo is 
a trigonometricfunction as defined in (11). 

 
 

We then trained a neural network using the subgradient method mentioned above and 
set the number of iterations used for fitting as 20,000. We chose the growth rate on the 
numberof hidden units rn = n11 4 and the upper bound for.f.1 norm of the weights and bias 
from the hidden layer to the output layer Vn = 10n114• Such choice satisfies the condition 
mentioned in Remark 3.1 and hence satisfies the condition in  Theorem 3.1.  We compared 
the errors llf n - fo ll and the least square errors Qnifn) under different sample sizes. The 
results are summarised in Table 1. 

As we can see from Table 1, the errors llf n - foll overall has a decreasing pattern as 
the sample size increases. There are some cases where the error becomes a little bit larger 
when the sample sizes increases (e.g. the errors using 500 samples in all scenarios is larger 
than those errors using 200 sample). One explanation is that the number of hidden units 
increasesfrom 3 (for 200samples) to 4 (for 500 samples) underour simulation setup, which 
adds variation to the estimation  performance. Overall, the table shows that the estimated 
function]n is indeed consistent in  the sense that llfn -  f oll n = o;(l). Figure 1  plots  the 
fitted functions and the true function, from which we can straightforwardly visualise the 
result more and draw the conclusions. 

 
6.2. Asymptotic normality forneural network sieve estimators 

The last part of the simulation focuses on the asymptotic normalityderived in Theorem 5.1. 
We still considered the same types of true functionsas described in Section 6.1 but sampled 
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Figure 4.  Normal Q- Q plot forn- 112   L =l [fn( x1)    -    fo(x1)l varioussamplesizes. Thetrue function fo is 
a continuous function having a non-differential point as definedin (12). 

 
 

the random errors from the standard normal distribution. In this simulation, we still used 
the subgradient method to obtain the fitted model. The numberofiterationsused for fitting 
was set at 20,000. What isdifferent from Section 6.1 is the growth rates for rn and Vn set in 
this simulation. As mentioned in Section 5, the growth rates required for asymptotic nor­ 
mality are slower than those required for consistency. Therefore, we chose rn = n118 and 
Vn = 10n1110. Such choice satisfies the condition (Cl) inTheorem 5.1. To get the normal 

Q- Q plot for-n 112 I=:7 1 lfn(Xi) - fo(xi)], we repeated the simulation 200 times. 
Figures 2 to 4 are the  normal Q- Q plots under different nonlinear functions and vari­ 

ous sample sizes. From the figures, we found that the statistic-n   112 I=:?t  lfn(Xi) -   fo(xi ) ] 
fit    the     normal distribution  pretty well under all simulation  scenarios. It  is also worth  to 
note that the Q- Q plots looks similar under all simulation  scenarios. This is what we 
would expect since the limiting distribution for the statistic-n  112 I=:?t  lfn(Xi) -   fo(xi ) ] 
is N (0, 1) under all scenarios. Another implication we can obtain from the Q- Q plots 
is that the statistic -n 11 2 I: =? i lf n( Xi ) - fo(xi )] is robust to the choice offo. Therefore, as 
long as the true function Jo is continuous, N(O,1) is a good asymptotic distribution for 
-n   112 I: ?l= [fn(xi) -  Jo(xi)], which facilitates hypothesis testing. 

Besides the Q- Q plots, we also conducted the normality tests to check whether-n  11  2 

I:=7    1  [fn(Xi) -    fo(xi)]  follows the  standard normal distribution. Specifically, we used the 
Shapiro- Wilks test and the Kolmogorov- Smim ov test to perform the normality test. 
Table 2 summarises the p-values for both normality tests. As we observed from Table 2, in 
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Table 2. Summary of results from the Shapiro- Wilks test and the Kolmogorov- Smirnov test. We use 
'NN', 'TRI' and 'ND' to denote a neural network described in (10), a trigonometric function described 
in (11) and a continuous function having a non-differential point described in (12), respectively. 

 Shapiro- Wilkstest   Kolmogorov- Smirnovtest  

Sample sizes NN TRI ND NN TRI ND 

50 0.878 0.884 0.881 0.584 0.597 0.595 
100 0.098 0.095 0.095 0.472 0.508 0.484 
200 0.940 0.944 0.944 0.731 0.719 0.708 
300 0.884 0.888 0.872 0.976 0.986 0.973 
400 0.514 0.525 0.513 0.670 0.754 0.708 
500 0.768 0.778 0.768 0.733 0.769 0.733 

 
 

all cases, we failed to reject that-n 
distribution. 

112  I:=7i   lf n(x;) -  J0 (x ;) ] follows the standard normal 

 
7. Discussion 

We have investigated the asymptotic properties, including the consistency, rate of conver­ 
gence and asymptotic normality for neural network sieve estimators with one hidden layer. 
While in practice, the number of hidden unites is often chosen ad hoc, it is important to 
note that the conditions in the theorems provide theoretical guidelines on choosing the 
number of hidden units for a neural network with one hidden layer to achieve the desired 
statistical properties. The validity of the conditions made in the theorems has also been 
checked through simulation results. Theorems 5.1and 5.2depend on the knowledge of the 
underlying function Jo, which is typically unknown in practice. Therefore, if we assumeJo 
has some certain form, the resultscan be applied and served as preliminary work for con­ 
ducting hypothesis testing on Ho : Jo = ho for a fixed funct ion ho.On the other hand,since 
multiple functions can lead to the same valueof n- 1  I=:?   1 _fo(x;),thetest may not be power. 
The asymptotic normality results are crucial in developing more sophisticated significance 
test methods for neural networks (Shen et al. 2022). 

The work conducted in this paper mainly focuses on sieve estimators based on  neu­ 
ral networks with one hidden layer and standard sigmoid activation function. The work 
presented in this paper can be extended in several ways. The  main  theorems  in  this 
paper depend heavily on the covering number or the entropy number of the  function 
class consisting of neural network with one hidden layer. Theorem 14.5 in Anthony and 
Bartlett (2009) provides a general upper bound for the covering number of a function class 
consisting of deep neural networks with Lipchitz continuous activation functions. There­ 
fore, it is possible to extend our resultsdiscussed in this paper to a deep neuralnetwork with 
Lipchitz continuous activation functions. It is also worthwhile to investigate asymptotic 
properties of other commonly used deep learning models such as convolutional neural 
networks (CNNs) and recurrent neural networks (RNNs). 

On the other hand, although homoscedasticity is assumed in the previous discussions, 
it  can  be relaxed  to  take heteroscedasticity into consideration.  To see this, if lE[E1]  = 

¢ 2   2 (x;), then under theassumptionsthat1 0    1 :S    for some > 0andLi  Var[     Ef l/  i2  < 
oo, the proof of Lemma 3.1 can go through. The only modifications to be made are to use 

Kolmogorov Strong Law of Large Numbers to show (I) 0 and  to change a 2 to 2¢ 2 



JOURNAL OFNONPARAMETRIC STATISTICS (9 29 
 

 

later on. Therefore, the consistency result stillholds under heteroskedasticitywith the afor­ 
mentioned two assumptions satisfied. Moreover, after a clear examination on the  proof 
of Theorems 4.1, 5.1 and 5.2, it is easy to see that only the consistency part is involved 
with heteroskedasticity. Therefore, these results still hold under the aforementioned two 
assumptions. 

When we train a deep neural network, we usually need to face an overfitting issue. In 
practice, regularisation is frequently used to reduce overfitting. Another natural extension 
of the work discussed in this paper is to modify the loss function by involving some regu­ 
larisation terms. By taking regularisation into account, we believe the theories could have 
a much broader application in real-world scenarios. 
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