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Abstract

Over the past two decades (2000-2020), volcano infrasound (acoustic waves with frequencies less than 20 Hz propagat-
ing in the atmosphere) has evolved from an area of academic research to a useful monitoring tool. As a result, infrasound
is routinely used by volcano observatories around the world to detect, locate, and characterize volcanic activity. It is par-
ticularly useful in confirming subaerial activity and monitoring remote eruptions, and it has shown promise in forecasting
paroxysmal activity at open-vent systems. Fundamental research on volcano infrasound is providing substantial new insights
on eruption dynamics and volcanic processes and will continue to do so over the next decade. The increased availability of
infrasound sensors will expand observations of varied eruption styles, and the associated increase in data volume will make
machine learning workflows more feasible. More sophisticated modeling will be applied to examine infrasound source and
propagation effects from local to global distances, leading to improved infrasound-derived estimates of eruption properties.
Future work will use infrasound to detect, locate, and characterize moving flows, such as pyroclastic density currents, lahars,
rockfalls, lava flows, and avalanches. Infrasound observations will be further integrated with other data streams, such as
seismic, ground- and satellite-based thermal and visual imagery, geodetic, lightning, and gas data. The volcano infrasound
community should continue efforts to make data and codes accessible and to improve diversity, equity, and inclusion in the
field. In summary, the next decade of volcano infrasound research will continue to advance our understanding of complex
volcano processes through increased data availability, sensor technologies, enhanced modeling capabilities, and novel data
analysis methods that will improve hazard detection and mitigation.
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Introduction

Volcanic activity frequently generates low-frequency
Editorial responsibility: F. Sigmundsson (<20 Hz) acoustic waves in the atmosphere, known as infra-
sound. Analysis of volcano infrasound signals is increasingly
common in both research and monitoring applications, lead-
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articles over the last two decades (2000-2020) have empha-
sized various aspects of the field: Harris and Ripepe (2007)
considered historic infrasound studies and illustrated how
infrasound can be combined with seismic and thermal data;
Fee and Matoza (2013) discussed the range of infrasound
signals from different eruption styles and provided an over-
view of the development of volcano infrasound; Johnson
(2019) reviewed the use of infrasound in local eruption
monitoring; and De Angelis et al. (2019) focused on the use
of linear acoustic theory to estimate eruption source param-
eters. Work on infrasound-based remote eruption detection
and early warning systems is reviewed by Matoza et al.
(2019), Ripepe and Marchetti (2019), Taisne et al. (2019),
and others in the book by Le Pichon et al. (2019). Here, we
highlight promising advances over the past two decades and
speculate on directions during the coming decade for the
field as a whole, including eruption monitoring, source and
propagation physics, instrumentation, and accessibility to
broader research and monitoring communities.

Eruption monitoring

Over the past two decades (2000-2020), infrasound has tran-
sitioned from an exploratory research topic to an established,
valuable, real-time monitoring tool employed by volcano
observatories worldwide. Numerous studies have shown
how infrasound can provide a continuous, detailed record
of explosive and effusive activity (e.g., Ripepe et al. 2002;
Vergniolle & Ripepe 2008; Matoza et al. 2019; Johnson
2019). Infrasound data complement seismic data by provid-
ing unambiguous evidence of surficial or shallow subsurface
activity. Unlike ground- or satellite-based optical sensing,
infrasound recording is not impacted by poor visibility, and
data latency for local installations is usually less than a few
tens of seconds. In its most basic application, infrasound
can be used to detect and locate explosions (e.g., Matoza
et al. 2011, 2017; De Angelis et al. 2012), while more
advanced data processing can characterize diverse erup-
tive activity (Anderson et al. 2018a), discriminate between
closely spaced vents (Ripepe et al. 2007; Fee et al. 2021),
help forecast eruptions (Garcés et al. 1999; Ulivieri et al.
2013; Johnson et al. 2018; Ripepe et al. 2018), and provide
quantitative eruption source parameters (e.g., Vergniolle
& Caplan-Auerbach 2006; Ripepe et al. 2013; Fee et al.
2017). Near-real-time eruption monitoring with infrasound
has been useful at well-monitored volcanoes, including at
Tungurahua (Fee et al. 2010), Etna (Ripepe et al. 2018),
Stromboli (Le Pichon et al. 2021), Kilauea (Patrick et al.
2019), and Sakurajima (Yokoo et al. 2013). Additionally,
infrasound is used extensively by volcano observatories as it
permits monitoring of remote regions and inaccessible areas
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(e.g., Cannata et al. 2013; Nishida & Ichihara 2016; Coombs
et al. 2019; Diaz-Moreno et al. 2020).

Anticipated advances in eruption monitoring using infra-
sound will go beyond simple detection and source locali-
zation by providing detailed insight into eruption dynam-
ics. Estimates of eruption mass and mass flow rate using
infrasound appear possible (Fee et al. 2017), and will likely
become a reality in the next decade, potentially in near-
real-time for large eruptions. Open-vent volcanoes present
a compelling opportunity for eruption forecasting using
infrasound, and the theoretical groundwork has been laid
to track changes in lava lake level (e.g., Johnson et al. 2018;
Watson et al. 2019, 2020; Ishii & Yokoo 2021) and degas-
sing intensity (e.g., Ripepe et al. 2002, 2010a; Petersen &
McNutt 2007). Future work will implement these tools in
near-real-time.

Volcanic sources

Infrasound can be used to quantify eruption parameters
including volumetric and mass flow rates (e.g., Harris et al.
2013; Kim et al. 2015; Fee et al. 2017), directionality of
eruptive blasts (e.g., Kim et al. 2012; Jolly et al. 2017; lezzi
et al. 2019a), and plume height (e.g., Lamb et al. 2015;
Caplan-Auerbach et al. 2010; Ripepe et al. 2013; Perttu
et al. 2020a). Common approximations for volcanic sources
are equivalent monopole, dipole, or quadrupole sources fol-
lowing the canonical work of Woulff & McGetchin (1976),
which was based on the acoustic analogy theory of Lighthill
(1952). These source models have been useful in interpreting
infrasound observations (e.g., Moran et al. 2008; Caplan-
Auerbach et al. 2010; Johnson & Miller 2014; Fee et al.
2017; Yamada et al. 2017); however, they are not always
applicable for the complex dynamics that occur during a
volcanic eruption (cf. Matoza et al. 2009a, 2013). Numerical
simulations (Taddeucci et al. 2014; Cerminara et al. 2016;
Brogi et al. 2018; Watson et al. 2021a) and laboratory stud-
ies (Swanson et al. 2018; Pefia Fernandez et al. 2020) have
examined volcanic jets, which are complex, directional
sources, and provide a first step towards more realistic
source models. Significant advances are likely to come from
adapting and integrating results from modern aeroacoustic
and jet noise studies into the volcano infrasound community
(Matoza et al. 2009a), as well as from combining simulation
and laboratory results with field observations to investigate
infrasound source processes and quantify uncertainties.
Several studies have used infrasound signals to detect
and locate surficial mass movements (a recent review
is provided by Allstadt et al. 2018) such as pyroclastic
density currents (Ripepe et al. 2010b; Delle Donne et al.
2014; Yamasato 1997), rockfalls (Moran et al. 2008; John-
son & Ronan 2015), lahars (Johnson & Palma 2015; Bosa
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et al. 2021), snow and rock avalanches (Marchetti et al.
2015; Toney et al. 2021; Watson et al. 2021b), debris
flows (Marchetti et al. 2019), and lava flows (Garcés et al.
2003). These hazardous flows are spatially distributed,
moving sources that can travel many kilometers and at
fast speeds (> 10 m/s), with lahars, rockfalls, avalanches,
and debris flows having the potential to spontaneously
occur without an associated volcanic eruption. Further
study is needed to accurately model the infrasound gen-
eration from surficial mass movements (cf. Coco et al.
2021; Johnson et al. 2021) so that infrasound observa-
tions can be reliably used to quantitatively constrain
flow properties and improve hazard mitigation efforts.
In tandem, methods to detect potentially weak signals of
surficial mass movements within realistic persistent and
variable background noise must continue to be developed
to achieve robust monitoring capabilities (Sanderson et al.
2021).

Infrasound propagation

Extensive work over the past decade has demonstrated the
significance of wavefield interactions with topography such
as scattering and diffraction (Matoza et al. 2009b; Kim &
Lees 2011, 2014; Lacanna & Ripepe 2013; Kim et al. 2015;
Ishii et al. 2020; Mabher et al. 2021). The availability of low-
cost unmanned aerial vehicles and affordable structure-from-
motion software has allowed more researchers to create
high-resolution digital elevation models (DEMs) of volcanic
edifices, which can be used for modeling infrasound propa-
gation. Incorporating topography can result in improved
source localizations (Fig. 1; Fee et al. 2021), and improved
estimations of volumetric and mass flow rates (Kim et al.
2015; Fee et al. 2017).

Infrasound is typically assumed to propagate linearly.
Volcanic eruptions, however, are violent phenomena and
acoustic waves are likely to behave nonlinearly near the
source (Morrissey & Chouet 1997; Yokoo & Ishihara
2007; Marchetti et al. 2013). Several recent studies have
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Fig. 1 Demonstration of the substantial effect of topography on the
infrasonic wavefield and infrasound-derived locations at Yasur vol-
cano, Vanuatu. A Twelve hours of infrasound data from a station
deployed on the crater rim. Multiple explosions occur every minute.
B Finite-difference time domain (FDTD) simulation snapshot at 3.0 s
from Yasur station YIF6 propagating out across the study region. Red
indicates a positive pressure (compression) while blue indicates a
negative pressure (rarefaction) of the propagating acoustic wave at the
ground surface. Dashed box shows extent of area in C. C 2-D histo-
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grams of 12 h of backprojected infrasound locations with travel times
calculated using simple slant distances (blue colors) versus FDTD
modeling (red colors). The two active vents are indicated by green
circles, and the dashed ellipses represent 98.9% confidence regions.
The FDTD approach detects more events and locates them closer to
both vents in clear clusters, including over 400 events located at a
single grid point near either vent. Elevation contour units are meters.
Modified from Fee et al. (2021)
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demonstrated that neglecting nonlinear effects may result in
inaccurate infrasound-derived estimates of eruption proper-
ties (Anderson 2018; Brogi et al. 2018; Dragoni and Santoro
2020; Mabher et al. 2020; Watson et al. 2021a). For example,
aeroacoustic simulations by Watson et al. (2021a) show that
changes to waveform shape due to nonlinear effects can lead
to underestimation of total erupted volume (Fig. 2). Combin-
ing results from modeling studies with field observations
and laboratory experiments will help to better understand
nonlinear effects, when they should be accounted for, and
how to integrate nonlinear effects into routine data analysis
and monitoring efforts.
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Fig.2 A Comparison of synthetic infrasound signals from 2-D non-
linear aeroacoustic simulations (solid lines) and predictions based on
linear monopole source model (dashed lines) at three different record-
ing distances (blue, 500 m; red, 1000 m; yellow, 1500 m) for a maxi-
mum exit velocity of 588 m/s. Compared to waveforms predicted by
the linear monopole source model, the nonlinear simulations feature
steeper onsets and longer decay times. B Comparison of true erupted
area in nonlinear aeroacoustic simulations (circles) with estimates
from inversion of synthetic waveforms using linear monopole model
(triangles) as a function of maximum exit velocity. Nonlinear wave-
form changes increase with exit velocity, leading to underestimation
of erupted area when using linear acoustics model. Modified from
Watson et al. (2021a)
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Infrasound propagation depends upon meteorological
conditions, with wind and temperature able to strongly influ-
ence infrasound observations, even at local distances (Fee
& Garcés, 2007; Matoza et al. 2009b; Johnson et al. 2012;
Lacanna et al. 2014). While some local infrasound studies
have incorporated wind data into their analysis (Dabrowa
et al. 2014; Ortiz et al. 2018), there remains a need to obtain
more wind data at high temporal and spatial resolutions,
and to incorporate meteorological expertise within the vol-
cano infrasound community. At regional to global distances,
atmospheric specifications from numerical weather predic-
tion models for the lower atmosphere can be seamlessly
combined with empirical models for the upper atmosphere
using ground to space models (Drob et al. 2003; Schwaiger
et al. 2019) to be used by propagation modeling methods
such as ray tracing (Blom 2014) and the parabolic (Waxler
et al. 2015) and Navier—Stokes equations (De Groot-Hedlin
2017). However, discrepancies between atmospheric propa-
gation modeling and infrasound observations are often found
when applying such approaches (Matoza et al. 2011; Green
et al. 2012, 2018; Schwaiger et al. 2020; Iezzi et al. 2019b;
Toney et al. 2021). Thus, we identify a need for future work
on atmospheric model uncertainty and for inclusion of
small-scale variability from sources such as gravity waves
and topography in future long-range propagation modeling
efforts. We note that this is also a current topic of research
in other fields such as atmospheric physics and explosion
monitoring (Le Pichon et al. 2019).

Instrumentation and computation

Infrasound microphones and associated equipment (digitiz-
ers and power supplies) are becoming smaller and lower in
cost (e.g., Marcillo et al. 2012; Anderson et al. 2018b; Lamb
et al. 2021) and, as a result, more widely used. The contin-
ued proliferation of infrasound sensors will result in more
observations of varied styles of volcanic activity, which will
help to validate existing hypotheses and pose new questions.
Smaller, lower cost, and higher quality infrasound sensors,
digitizers, and power supplies are allowing for novel deploy-
ments that will better and more completely characterize the
acoustic wavefield. Large-N nodal infrasound surveys will be
able to capture small-scale variations in the acoustic wave-
field, while airborne sensors (Jolly et al. 2017; Iezzi et al.
2019a) will record vertical wavefield variations, which will
better constrain the potential directionality of sources and
quantify estimates of acoustic power. Recommendations for
deployment topologies that were recently advanced by the
volcano acoustics community (CONVERSE 2019) include
the following: (1) more large-N style local deployments for
research purposes, (2) inclusion of at least one infrasound
sensor or array (but hopefully more) in local monitoring
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networks (McKee et al. 2018; Iezzi et al. 2020), and (3)
a more dense global infrasound network to augment the
International Monitoring System (Matoza et al. 2017, 2018),
either through more arrays or by adding infrasound sensors
to the existing seismic network (Wilson et al. 2018; Sander-
son et al. 2020).

The increased number of sensors and data collection
opportunities will facilitate improvements in machine learn-
ing (ML) methodologies, now common in volcano seismol-
ogy (e.g., Malfante et al. 2018; Anzieta et al. 2019; Hajian
et al. 2019), to complement existing data processing work-
flows. Unsupervised ML has already shown promise in dis-
tinguishing volcanic signals from noise (Fig. 3; Ortiz et al.
2020) and tracking changes in volcanic activity (Witsil &
Johnson 2020; Watson 2020). However, to classify signals
into predetermined categories, supervised ML is necessary.
Supervised learning has been successful at locating infra-
sound sources at Mt. Etna, Italy (Cannata et al., 2011) and
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Fig.3 Unsupervised machine learning applied to infrasound data
from RIOE array, which is 37 km from Tungurahua. A Preliminary
catalog showing the number of daily detections of signals originat-
ing within+ 10° of the expected back-azimuth (33°) to Tungurahua.
B Daily count of impulsive signals found after applying hierarchi-
cal clustering to the preliminary catalog. C Daily analyst detections
of impulsive signals using the local monitoring network run by the
Instituto Geofisico. There is good agreement between the hierarchical

(B) Hierarchical clustering (RIOE)

identifying various signals including mining blasts, earth-
quakes, and regional volcanic events (Albert & Linville
2020), but research is limited by a lack of labeled data to
train ML models. Though raw data are readily available,
labeling is time intensive and recorded signals are specific
to the source processes, terrain, source-receiver distance,
and atmosphere at specific volcanic centers. Looking for-
ward, researchers should leverage strategies to increase
the small amount of training data typically available. For
example, adding domain specific data to generalized training
data (i.e., transfer learning) has helped detect moonquakes
(Civilini et al. 2021) and classify volcano seismic events
(Titos et al. 2020). Integrated seismo-acoustic ML analy-
sis will be particularly beneficial. Additionally, the volcano
infrasound community is well positioned to synthetically
create data given the various source time function models
(Kinney & Graham 1985; Kim et al. 2021), atmospheric
models (Schwaiger et al., 2019), and propagation software

(A) Preliminary Catalogue (RIOE)

|

_ (C) Catalogue from Instituto Geofisico

2009 2010
Year

2011 2012 2013

clustering results (B) and the analyst catalog (C), with hierarchical
clustering identifying more events. The red squares represent satellite
detections of eruptive activity (color intensity scales with number of
satellite detections), which are also well correlated with the hierarchi-
cal clustering results. Blue shaded areas in A and B indicate when
only three out of the four microphones at RIOE were operational.
Modified from Ortiz et al. (2020)
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(Waxler et al. 2017) currently available. Along with other
physics-based data augmentation strategies, this may sup-
plant the need to collect and label large datasets and will
help generalize ML methodologies. Along with ML tech-
niques, advances in computing power including high perfor-
mance computing and cloud-based processing (MacCarthy
et al. 2020) will enable large-scale data processing, as well
as facilitate more complex source modeling and propagation
simulations at local and global scales.

To optimize efforts and make the most of existing data
and analysis codes, and avoid reproducibility barriers affect-
ing the sciences (Baker 2016), we encourage sharing data
and codes with FAIR (Findable, Accessible, Interoperable,
and Reusable) principles in mind. Recognizing this, many
geoscience journals now require data archiving in long-term
public repositories (cf. Stall et al. 2019). Geophysical data
management centers permit easy access and re-use by others
and are excellent places to archive data. In addition to open
data, use of standard, open-source tools facilitates the repro-
duction of computational analyses. The growing acceptance
of open-source standards and practices (e.g., Python, ObsPy
(Beyreuther et al. 2010), and hosting code on public services
such as GitHub) is a promising sign for our community.
Well-documented and benchmarked open-source codes fol-
lowing good software development practices (Wilson et al.
2017) should continue to be developed and published, with
coordination between research groups and funding agencies
to avoid duplicated effort.

Integration with other data streams

Advances in instrumentation, analytical methods, and
numerical and physics-based modeling permit adequate
recording and integration of many observations of volcano
phenomena that occur during magma storage, its migration
to the surface, and subsequent eruption. Given their com-
parable sub-second time resolution, parameters allowing
direct temporal comparison with infrasound now include
seismicity, SO, gas flux, deformation (tilt, GNSS), thermal
and visible cameras, and lightning (cf. Ripepe et al. 2002;
Iguchi et al. 2008; Johnson and Miller 2014; Yamada et al.
2019; Smith et al. 2020; McKee et al. 2021a).

Volcano infrasound and seismology share similar phys-
ics and can be analyzed with similar processing techniques
(e.g., Haney 2009; McNutt et al. 2015; Thelen et al., this
issue). The combination of seismic and infrasound records
can be used for robust detection (De Angelis et al. 2012;
Ichihara et al. 2012) and back azimuth estimation of infra-
sonic sources (McKee et al. 2018). Differential arrival
times between infrasound, seismic, and thermal signals
have been used to infer explosive source depths (e.g.,
Sahetapy-Engel et al. 2008; Petersen & McNutt 2007;
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Richardson et al. 2014) and to examine source processes
(e.g., Ripepe et al. 2001, 2002; Marchetti et al. 2009).
Seismo-acoustic observations have been combined with
tiltmeters and cameras to link internal and external vol-
canic processes such as deformation prior to explosions
(e.g., Yokoo et al. 2009; Genco and Ripepe 2010; Lyons
et al. 2012; Waite et al. 2013; Johnson et al. 2014), gradual
pressurization of magmatic plumbing systems preceding
eruptions (Cannata et al. 2015), and caldera collapse and
lava effusion rates (Patrick et al. 2019).

Robust estimation of volume flow rate (VFR, in m3/s,
which is a proxy of mass eruption rate) from infrasound
records remains a primary research target. The regular inte-
gration of DEMs in numerical modeling (Kim et al. 2015)
now provides more accurate VFR estimates for short dura-
tion explosions that have been validated with independent
SO,, tephra, and thermal measurements (Dalton et al. 2010;
Delle Donne et al. 2016; Fee et al. 2017). Estimating VFR
for volcanic jet flows will require observing gas- to ash-rich
flows with jet diameter length scales of meters (e.g., fuma-
roles, geysers) (Johnson et al. 2013; McKee et al. 2017) to
hundreds of meters (i.e., VEI 4 + eruptions) (e.g., Matoza
et al. 2009a, b; Fee et al. 2010; McKee et al. 2021a,b) with
acoustic observations that extend vertically using airborne
sensors (e.g., Jolly et al. 2017; Iezzi et al. 2019a; Brissaud
et al. 2021), up-to-date DEMs, and high-speed thermal and
visual data (e.g., Taddeucci et al. 2012; 2014; Gaudin et al.
2016). Field observations should be combined with analogue
experiments (e.g., Medici et al. 2014; Cigala et al. 2017,
Peiia Fernandez et al. 2020; Schmid et al. 2020), numerical
modeling (e.g. Ogden et al. 2008; Cerminara et al. 2016;
Watson et al. 2021a), and new data types such as continual
radio frequency, which Méndez-Harper et al. (2018) recently
suggested is caused by shock structures in volcanic jet flows.

The community still has much to uncover with mul-
tiparametric studies. The June 2019 eruption of Ulawun
volcano, Papua New Guinea highlights the power of com-
bining infrasound with other observations (Fig. 4; McKee
et al. 2021b). The infrasound and SO, detections sug-
gested jetting occurred for hours prior to satellite-based
ash detection and that the eruption started more than
24 h before the main sequence with vigorous gas jetting
(McKee et al. 2021b). Infrasonic observations of a long
eruption sequence allow for connections to data streams
yet to be explored, such as petrology-based crystal clocks
(e.g. Landi et al. 2011; Lynn et al. 2018; Costa et al. 2020).
Multidisciplinary approaches that combine infrasound;
local and satellite thermal, ultraviolet, and visible imagery;
seismic; lightning; and geological observations combined
with modeling will continue to inform on eruptive pro-
cesses and dynamics (e.g., Gurioli et al. 2008; Steffke
et al. 2010; Perttu et al. 2020b; McKee et al. 2021a,b).
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Fig.4 Ulawun eruption sequence observations comparing discrete
(red lines at top; SO2, pilot photos, NOAA ash plume detections, and
shortwave infrared satellite (SWIR) observations) and time series
(lightning, plume height, mass eruption rate (MER), infrasound)
observations. A Lightning strokes per 5 min, B estimated peak cur-

Diversity, equity, and inclusion

Our vision for the future of volcano infrasound is one in
which the research community and collaborative infrastruc-
ture better incorporate the principles of diversity, equity, and
inclusion (DEI). To narrow documented gaps in representa-
tion (Bernard and Cooperdock 2018; Dutt 2020), we need to
align research and educational standard practices in our field
with, for example, DEI strategic plans of the American Geo-
physical Union (AGU 2020) and the European Geophysical
Union (EGU 2020), and to follow evidence-based practices
for achieving DEI goals. For more details about discrimina-
tion in volcanology and recommendations to advance DEI
in the volcanological community, see Kavanagh et al. (this
issue).

Fundamental efforts towards advancing DEI should
include better recruitment and retention of students and

rent per stroke (red is positive; black is negative), C plume height
(10 min increment) in blue and MER in black estimated from plume
height, D beamformed infrasound trace with times of coherent detec-
tions plotted in blue. Infrasound data are filtered from 0.1 to 5 Hz.
Modified from McKee et al. (2021b)

scientists from underrepresented demographic and geo-
graphic backgrounds at all career levels. Possible actions
include providing expanded opportunities for marginalized
students to attend workshops, conferences, and internships
as well as training in networking and the development of
improved mentoring relationships. There is a strong need
to improve safety, accessibility, and inclusivity, particularly
in field work but also in laboratory and classroom settings
(Giles et al. 2020; Cooperdock et al. 2021). Ali et al. (2021)
detail a practical roadmap of actions that organizations can
take to address racism in the geosciences.

Equal access to resources and the development of low-
cost instrumentation can be a foundation for mutually
beneficial international collaboration and training of new
scientists (Minasny et al. 2020). We recognize a vital need
to include scientists and practitioners from nations where
volcano hazards may be impactful but where monitoring
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infrastructure and training is underdeveloped. The inclusion
of geographically diverse observatories in the advancement
of infrasound science is beneficial both to the local insti-
tutions and to international partners. These partners must
be respectful of operational needs of an observatory during
crises and inclusive to ensure the collected data is analyzed
collaboratively (CONVERSE 2019; IAVCEI 2015).

We emphasize that these listed points are merely a start-
ing point that may improve the diversity, equity, and inclu-
sivity in the field of volcano infrasound. We intend that DEI
improvements will be a topic of ongoing discussion, evalu-
ation, and change.

Conclusion

Infrasound is a useful tool for detecting, locating, and char-
acterizing volcanic processes and monitoring volcanic activ-
ity at both local and global distances. Here we have sum-
marized the progress made in volcano infrasound over the
last two decades, and highlighted potential future research
directions including: improved eruption monitoring, acoustic
source characterization, infrasound propagation modeling,
machine learning, and integration with other data streams.
We envision that the future of the volcano infrasound com-
munity and collaborative research infrastructure will better
incorporate the principles of DEI. The proliferation of infra-
sound stations, operated both by research groups and obser-
vatories, coupled with advances in computation, modeling,
and analysis by a broad and diverse community will provide
an increasing wealth of opportunities for improved eruption
monitoring and research advances in the coming decade.
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