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Abstract

Infrasound signals from open-vent volcanoes can contain information related to that volcano’s eruption dynamics and
future activity. Studying a specific volcano’s acoustic signature during periods of relative quiescence is thus important for
understanding potential warning signs of impending eruptions. Volcéan Villarrica, located in southern Chile, has a long-lived
active lava lake that produces continuous infrasound with spectral peaks centered around 1 Hz that vary by +/— ~0.2 Hz
over day-to-week-long time scales. The infrasound frequency content has been shown to illuminate key volcanic properties
such as eruption style and crater shape. Leading up to Villarrica’s most recent paroxysm in 2015, for instance, infrasound
spectral changes coincided with a rise in Villarrica’s lava lake level. Quantifying and understanding the regular fluctuation
in recorded infrasonic frequencies from Villarrica and other open-vent volcanoes is thus imperative during periods of rela-
tive calm. Our experiment entailed a week-long period of crater rim infrasound observations associated with stable, open-
vent activity and revealed two independent source processes: spatter bursting events (relatively broadband infrasound) and
lava lake-induced tremor (sustained signals peaked at 1 Hz). A comparison of these acoustic signals with results from 3-D
finite-difference time-domain wave propagation models shows that while sound speed variability can influence Villarrica’s
spectrum, it cannot explain the full extent of the observed frequency excursions. We conclude that source spectrum vari-
ability is primarily responsible for the frequency excursions. Our work highlights the utility of data collected from a dense
distribution of twenty infrasound sensors operating at the summit coupled with numerical modeling of sound radiation.
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Introduction

Degassing and eruptive activity at most volcanoes pro-
duce infrasound (low-frequency acoustic waves below the
20 Hz threshold of human hearing), which can be used to
characterize eruptive activity (e.g., Vergniolle and Caplan-
Auerbach 2004; Dzierma and Wehrmann 2010; Ripepe
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et al. 2010; Goto and Johnson 2011; Allstadt et al. 2018;
Vergniolle and Métrich 2022). Infrasound measurements,
modeling, and wave inversions have been used to estimate
the gas volume of Strombolian explosions at specific open-
vent volcanoes such as Stromboli (Italy; Vergniolle and
Brandeis 1994, 1996), Erebus (Antarctica; Johnson et al.
2008), Yasur (Vanuatu; lezzi et al. 2019), and Santiaguito
(Guatemala; Johnson et al. 2011), respectively. In addition,
infrasonic power has been used to estimate the gas velocity
and gas volume of eruptions at Shishaldin (Alaska; Vergn-
iolle and Caplan-Auerbach 2006) and Augustine (Alaska;
Caplan-Auerbach et al. 2010). Peaked infrasound spectra are
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common for volcanoes, such as Cotopaxi (Ecuador), where
infrasound was used to measure the dimension of the summit
conduit during a period of activity in 2016 (Johnson et al.
2018a; Johnson & Watson 2019). Resonant infrasound from
the craters of Mt. Etna (Italy; Spina et al. 2014), or the large,
open-vent crater of Halema‘uma‘u (Kilauea, Hawai‘i; Fee
et al. 2010), have also been used to infer the lengths of their
respective conduits.

One of the primary influences on a volcano’s infrasound
radiation is the geometry of the vent region. This is espe-
cially the case for open-vent volcanoes, where the shape
of volcanic craters has previously been described as that
of a massive horn (Richardson et al. 2014; Johnson et al.
2018b; Watson et al. 2019) or a cavity that approximates
a Helmholtz resonator (Fee et al. 2010; Goto and Johnson
2011; Spina et al. 2014) in which variations of a lava lake’s
level can change the effective length of the volcanic conduit
and influence the dominant peaks of radiated infrasound.
As such, infrasonic pressure waves contain key information
related to the dynamics of volcanic processes (e.g., Vergn-
iolle and Brandeis 1994; Vergniolle and Caplan-Auerbach
2004; Marchetti et al. 2009; Spina et al. 2014). An approach
to understanding the effects of a crater’s shape is to utilize
numerical models to calculate Green’s functions, which
may then be deconvolved from recorded signals (Johnson
et al. 2018a; Watson et al. 2019, 2020). In addition to cra-
ter geometry, wave propagation models can also be used to
implement and evaluate the effects of variable atmospheric
temperature structures and a range of source-time functions
(Kim and Lees 2011; Kim et al. 2012; Taddeucci et al. 2012;
Lacanna and Ripepe 2013).

Variations of a lava lake’s level relate to changes in
magma supply and are impacted by the depth-varying diam-
eter of a volcanic conduit and crater. Geometries of craters
and dynamics of active lava lakes vary broadly. The largest
lava lakes, including Nyiragongo (Democratic Republic of
Congo) and Halema‘uma‘u, are several hundred meters in
diameter (Lev et al. 2019). Halema‘uma‘u’s lava lake has
been observed directly through visual and thermal camera
measurements, and its surface deformation is related to res-
ervoir pressure occurring over time scales of weeks (Patrick
et al. 2015). Nyiragongo’s lava lake has been a persistent
source of degassing and infrasound radiation (Sawyer et al.
2008; Barriere et al. 2018), and large variations of its level
have led to rapid drainage events along rifts occurring with
approximately decadal frequency (Burgi et al. 2014; Pouclet
and Bram 2021). Other examples of smaller (tens-of-meters
diameter) lava lakes globally include Erebus, Erta ‘Ale (Ethi-
opia), and Villarrica (Chile) (Lev et al. 2019). Erebus is
known for its relatively frequent and discrete Strombolian
lava lake explosions, which produce intense, short-duration,
bimodal infrasound pulses (Johnson et al. 2008; Witsil and
Johnson, 2018). Erta ‘Ale can host two lava lakes at its
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summit, which are typically not active at the same time.
The northern lake (inactive) is fully encrusted with no incan-
descent zones. The southern lake is partially encrusted, with
cold plates separated by incandescent cracks, and may circu-
late these plates anywhere between 7 and 70 min (depending
on the lava lake’s convection and surface velocities) (Harris
et al. 2005; Bouche et al. 2010). The level of Erta ‘Ale’s
southern lava lake, which is deduced via MODIS (Moder-
ate Resolution Imaging Spectroradiometer) satellite data, is
explained by the growth and thinning of foam accumulated
at the top of a shallow reservoir (Vergniolle and Bouche
2016). In addition, Erta ‘Ale produces continuous infrasound
through a mechanism postulated as flat bubbles, where a
series of small degassing pulses sourced from a bubble close
to equilibrium results in continuous volcanic tremor at about
25-35 Hz. Villarrica’s lava lake displays a surface composed
of cold plates not unlike Erta ‘Ale (including possible flat
bubble eruption mechanisms), while its conduit geometry
is similar to that of Mt. Etna’s (whose vents are sometimes
narrow shaft conduits leading to a flaring crater) (Spina et al.
2014). Villarrica’s lava lake geometry is relatively simple.
Its summit crater typically hosts a single relatively small-
diameter lava lake situated ~ 100 m below the crater rim.
This lava lake is the surface manifestation of its magma col-
umn (Witter et al. 2004; Palma et al. 2008; Moussallam et al.
2016). Villarrica’s resonant infrasound is mostly stationary
and continuous, often characterized by monotonic tremors
(Goto and Johnson 2011). Excursions in infrasonic frequen-
cies have been correlated to its lava lake level (Richardson
et al. 2014; Johnson et al. 2018b).

Volcén Villarrica is the most continuously active volcano
of the Andes Southern Volcanic Zone and is an especially
prominent and well-known radiator of infrasound (Ripepe
et al. 2010; Goto and Johnson 2011). It is an open-vent,
symmetric 2860-m-tall stratovolcano with persistent degas-
sing from the nearly continuously present lava lake within
its summit crater (Palma et al. 2008). Villarrica is predomi-
nantly basaltic in chemistry and formed in the Mid-to-Late
Pleistocene era (~ 100 ka before the present) and has been
active with a pattern of explosive prehistoric caldera col-
lapses followed by periods of rebuilding (Dzierma and
Wehrmann 2010). The historic explosive activity of Villar-
rica is characterized as Strombolian style with a varying
intensity such that sometimes it is unsafe to visit the cra-
ter rim (Gurioli et al. 2008). Presently, Villarrica is one of
Chile’s most popular tourist destinations, and guided climbs
to the summit are common in the Austral summer. Since it is
located in an area with high population density and tourist
traffic, even small eruptions pose hazards to climbers while
larger eruptions present hazards to the surrounding towns
of Pucoén and Villarrica (Dzierma and Wehrmann 2010).
Villarrica’s glaciated summit poses a particular threat for
producing lahars during approximately decadal paroxysmal
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eruptions (Van Daele et al. 2014; Johnson and Palma 2015;
Naranjo and Moreno 2016).

Volcan Villarrica is a reliable laboratory for volcano
infrasound studies due to its active lava lake and station-
ary and continuous production of infrasound (Ripepe et al.
2010; Goto and Johnson 2011; Richardson and Waite 2013).
Given that Villarrica is one of the most continually active
volcanoes in Chile, multidisciplinary monitoring, includ-
ing infrasound surveillance, is critical for proper hazard
assessment. Villarrica’s most recent paroxysmal eruption
on 3 March 2015 was a short-lived but violent VEI 2 event
(Johnson et al. 2018b; Romero et al. 2018), whose eruption
was preceded by a rise in Villarrica’s infrasonic frequency
correlated attributed to a rise in lava lake level. With this
observation indicating a possible precursor to eruptions at
Villarrica, we now investigate the limits to Villarrica’s infra-
sonic frequency fluctuations while its lava lake level remains
in an unvarying background state.

Our field experiment in January 2020 was designed to
record Villarrica’s infrasonic frequencies close to the source
using a dense network of 20 sensors. Over the week-long
recording period, volcanic activity was stable and there
were no changes to the crater’s geometry, no noticeable
change in eruption styles, and no large explosive erup-
tions (i.e., ejecta leaving the crater rim). Although small,
approximately hourly spatter events from the lava lake were
noted, the source and mechanism of Villarrica’s continuous
monotonic infrasound were largely unchanged compared to
previous experiments with longer recording intervals (e.g.,
Shinohara and Witter 2005; Richardson et al. 2014; Johnson
et al. 2018b). Since the frequency content of Villarrica’s
infrasound has been proposed as a powerful forecasting tool
(Johnson et al. 2018b), we postulated that any frequency
fluctuation could be relatable to either crater geometric
changes (i.e., lava lake level) or changes in the nature of the
volcano’s activity. Given the unchanging crater shape dur-
ing our study period, this work focuses on non-geometric
factors, such as sound speed (i.e., temperature), infrasound
source characteristics, and the spatial distribution of sen-
sors around the crater, to better understand their impact on
the observed frequency content during a stable monitoring
period.

Data/methods
Infrasound

Twenty Gem infrasound loggers (Anderson et al. 2018)
were installed at the summit of Villarrica between 12
and 19 January 2020 and recorded continuous infrasound
using GPS time synchronization and position information.
Acquisition parameters include a sample rate of 100 Hz, a

sensor sensitivity that is flat between 0.04 and 27 Hz (sev-
eral octaves above and below the signals of interest), and an
RMS noise floor of 3 mPa, which is lower than the back-
ground environmental noise. The Gem infrasound loggers
are ideal for a week-long deployment given their low cost,
compact, and lightweight packaging (~400 g plus batter-
ies) and ease of deployment. We used three D-cells for each
sensor, which can run a Gem continuously for about two
months.

We broadly classify data for each sensor based upon its
position (“I,” “O,” or “C”). Seven sensors were situated
inside (“I”), and ten were located outside (“O”) the crater
rim and hidden away from areas frequented by tourists.
Three additional sensors deployed between January 16 and
January 19 were situated on a cable (“C”) strung across the
crater in an east/west orientation (Fig. 1). Cabled micro-
phones were unspooled from each side using deep sea fish-
ing reel winches.

Seventeen of the summit sensors were recorded continu-
ously for a full week starting on 12 January 2020, while
three of the cable sensors were deployed later and recorded
continuously for the last three days until 19 January. In our
analysis, all signals were bandpass filtered between 0.55 and
5 Hz using a fourth-order Butterworth filter. This band was
chosen to reduce microbarom noise below 0.5 Hz and noise
at or above 5 Hz while still capturing the frequency band
of interest associated with Villarrica’s activity. Historically,
there does not appear to be much volcanic infrasound signal
at Villarrica below the 0.55-Hz threshold (Johnson and Rip-
epe 2011) and above 5 Hz, where signal-to-noise ratios are
low. Figure 2 compares the raw recorded signal (Fig. 2c, g)
with filtered data (Fig. 2a, b, d, e, f, h) for a subset of six of
twenty infrasound channels representing geographically dis-
persed stations {c097 (C), s012 (1), s010 (1), s084 (1), s100
(O), and s094 (O)}. These same six channels are highlighted
in later figures and analyses. Data shown in Fig. 2 represents
both infrasonic tremor and some discrete infrasound bursts
evident in the 720-s time series (Fig. 2a).

InfraFDTD and DEM

Previous studies have used numerical modeling of acoustic
waves to investigate the relationship between peak frequency
and crater geometry (Fee et al. 2010; Richardson et al. 2014;
Witsil and Johnson 2018; Watson et al. 2019); however,
less work has focused on understanding the influence of the
spatial positioning of sensors located in the vicinity of the
crater. To help quantify and interpret potential frequency
differences among stations, we model the site-dependent
response of each location where we have deployed infra-
sound sensors. We use InfraFDTD, a 3D finite-difference
time-domain (FDTD) acoustic wave propagation model, to
quantify the influence of crater topography and atmospheric

@ Springer



103 Page 4 of 17

Bulletin of Volcanology (2022) 84:103

northing (m)

Summit DEM with Sensor Distribution

\\
N

olcan Villarrica

|

2

-150

= 25m contours

Outside Crater (O)
Inside Crater (1)
Cabled (C)

Lava Lake

S

-200 -150 -100 -50 0 50 100
easting (m)

Fig.1 (a) Contour map from digital elevation model (DEM) of Vil-
larrica’s summit showing locations of the 20 sensors and the cable.
(b) Zoomed-in photo of Gem logger (c089) suspended on the cable

properties on the source-time functions. The primary input
to the model is the digital elevation model (DEM) for the
crater. This is derived from drone-based structure-from-
motion (SfM) surveys made in mid-January, and we assume
that both the DEM and the location of the lava lake at the
bottom of the crater did not change over the week-long data
acquisition interval. The DEM’s resolution is interpolated
to a 2-m grid and derived from ~ 150 images taken during
an overflight using a DJI Mavic Pro quadcopter. Visibility to
the bottom of the crater was unobstructed during the aerial
overflights allowing for a map of the full extent of the crater.

InfraFDTD, developed by Kim and Lees (2014),
implements a source that we fix at the lava lake at the
bottom of the crater. The model solves the acoustic wave
equation over a 3-dimensional topographic domain and
is widely used in a variety of previous volcanic studies
(Kim and Lees 2011; Kim et al. 2012; Lacanna and Rip-
epe 2013). Although the code does not accommodate an
advecting (windy) atmosphere, it does allow vertically
varying sound speed structures, user-specified DEMs,
and user-selected source-time functions. InfraFDTD uses
a perfectly matched layer absorbing boundary condition
at the computational domain boundaries and a perfectly
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reflecting boundary on the topographic surfaces. The per-
fectly reflecting boundary condition is often used for infra-
sound modeling in volcano settings, resulting in a success-
ful prediction of infrasound diffraction and reflection over
complex topography (Lacanna and Ripepe 2013; Kim and
Lees 2014; Maher et al. 2021). The high contrast of sound
speeds and densities across the solid-air boundary trans-
mits only a small amount (<2%) of acoustic energy to the
solid earth (Bishop et al. 2022) and justifies the assump-
tion of perfect reflection. Our model space extended to the
limits of the map shown in Fig. 1a, and in our experience,
the absorbing boundary condition at the edge of the model
space performed well. Wavefield simulations did not show
artifacts reflected off of the model boundaries.

InfraFDTD requires a GPU and makes use of a high-
resolution DEM with an arbitrary topography. This mod-
eling is more computationally intensive than 1D simula-
tions such as Cres (crater resonance) (Watson et al. 2019),
but is potentially very important for understanding the
impact of topography that is not axisymmetric. Because
the objective of this study is focused on spatial frequency
variability, the 3D InfraFDTD model is appropriate and
necessary.
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Fig.2 Example infrasound signals from six stations deployed on
the summit of Villarrica in 2020. Time-series data are bandpass fil-
tered between 0.55 and 5 Hz except for panel (c), which is unfiltered.
Power spectra are smoothed with a 0.5-Hz spectral averaging Daniell
filter. (a) Normalized, 720-s waveforms contain continuous~1 Hz
infrasound (tremor) as well as three discrete events occurring

Model runs are computed on a graphics processing unit
(GPU) from the high-performance computer cluster R2
at Boise State, which can parallelize the FDTD calcula-
tions for fast simulations permitting many tests with vary-
ing parameters. Our standard model run, which involves
250%250% 500 grid nodes with 2-m spacing (correspond-
ing to the mapped region in Fig. 1) and 2000 time-steps
(corresponding to 0.0025-s intervals, 5 s total), takes about
5 min to run on the cluster. High-frequency waves can be
simulated without artificial scattering and dispersion by
using at least 10 points per wavelength (Wang 1996). Kim
and Lees (2011) use 20 points per wavelength to suppress
numerical dispersion which sets our maximum frequency at
20 Hz, suitably higher than the frequency band in question.
InfraFDTD models were run many times to help understand
the effect of a variety of parameters including source-time

at—310 s,—250 s, and 225 s. (b) The same normalized waveforms
zoomed to a 72-s window show waveform detail. (¢) Unfiltered wave-
forms from panel (b). (d) Waveforms zoomed in to 7.2-s are overlain
and shown with amplitude scale in Pa. (e, f, g, h) Spectra are pro-
vided for waveforms in panels a, b, ¢, and d, respectively

functions and variations in a homogeneous sound speed.
Synthetic waveform outputs are calculated at specific loca-
tions corresponding to sensor deployment positions (see
Fig. 1).

Source-time functions at the lava lake surface are pro-
vided as mass flux time-series input and are provided
with different frequency contents to compute Villarrica’s
transfer function or acoustic crater response (as termed
by Johnson et al. (2018b) and Watson et al. (2020)). Our
source inputs include Blackman-Harris functions (Harris
1978) ranging from 0.7 to 2.5 Hz as well as a bandpass
filtered (0.55-5 Hz) impulse, which is more broadband.
Blackman-Harris acoustic source functions are conveni-
ent, band-limited, short-duration time-series signals (Kim
and Lees 2011; 2014), which have been used in previous
studies to model discrete gas emissions with finite-time
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durations (McKee et al. 2017; Iezzi et al. 2019; Yokoo
et al. 2019; Fee et al. 2021). The specified corner fre-
quency of the Blackman-Harris represents the high-cut
corner and may be raised/lowered to decrease/increase the
time duration of the source pulse. Figure 3 shows exam-
ples of Blackman-Harris functions of 1.5 Hz and 2.5 Hz
frequencies and synthetic waveform outputs for atmos-
pheric sound speeds fixed at 350 m/s.

Spectral analysis of recorded data

To quantify the peak spectral distribution of Villarrica’s infrasound
recorded at the summit, histograms of peak frequencies were
calculated for each station for a full-day recording period. Peak
frequencies are calculated from filtered data with 100 s (10,000
samples) Hamming windows and 50% overlap (see Fig. 4). His-
tograms of measured peak frequencies are Gaussian shaped for

Parameters: c=350m/s source=1.5Hz BHarris
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Fig.3 Examples of two model runs with 350 m/s sound speed and
normalized Blackman-Harris mass flux (kg/s) source function (a)
at 1.5 Hz and (d) at 2.5 Hz. (b, e) Normalized synthetic signals at
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the sensor positions are shown as receiver gathers. (¢, f) Spectra of
synthetic signals (Pa) for all stations are given along with the source
input frequency spectrum (black curve)
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Probability Density Histogram for Peak Frequency Power
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Fig.4 (a—f) Day-long probability mass functions of peak frequencies for six different stations and best-fit normal distribution showing 25th and
75th percentiles. Peak frequencies are calculated with 100 s windows and 50% overlap, resulting in~ 1700 windows grouped into 50 bins

stations located within the crater and on the cable (e.g., s010, s012,
s084, c097), whereas s094 and s100 (on, or outside, the crater rim)
show an occasional second peak frequency at~0.5 Hz presumably
associated with time windows when microbarom peaks were more
pronounced than volcanic tremor peaks, i.e., when signal-to-noise
outside the crater is lower. The Gaussian-shaped peak frequency
distribution curves for stations inside the crater are associated with
Villarrica’s monotonic infrasound signal during a background state
of low-level activity. The volcano’s resonant frequency appears to
deviate symmetrically around a central, resonant peak frequency
in a normal distribution. Sensors outside the crater show deviation
from the normal distribution due to the influence of microbarom
contamination.

Results

Data recorded by the network show both temporal and
spatial variations in peak frequency, although more varia-
tion is observed temporally. In other words, spectral peak
values appear to reflect source controls as opposed to

propagation controls. For a given station, temporal vari-
ations in peak frequency have been found to vary by up
to+/—17% (e.g., 0.8 to 1.2 Hz; Fig. 4, Fig. 5), whereas
spatial frequency variations across stations are more lim-
ited and deviate by only about+/—10% (e.g.,+/—0.1 Hz;
Fig. 6, Fig. 7a). These temporal and spatial variations
are shown clearly in Fig. 7a, such as at time 350-400 s,
where the mean peak frequency values shift up~0.15 Hz
(+~17%) and the total spatial variability ranges by
only ~0.05 Hz (+/— ~3%). There are a few exceptions
to this trend, such as at times 550 or 900 s, where the sig-
nal-to-noise ratio decreases, and ambient noise overpow-
ers a lower amplitude tremor (Fig. 7b). This observation
implies that an infrasound recording made almost any-
where at the top of Villarrica (inside or outside the crater)
will reliably detect temporal changes of tremor frequency
characteristics.

We explore whether a diurnal temperature cycle could
influence the frequency distributions by computing fre-
quency statistics for daytime and nighttime windows
(Fig. 8). Supposing that temperatures in the crater drop

@ Springer
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significantly at night, we might expect lower frequencies
after sunset. Because no apparent day-to-night variations
are detected, we discount ambient temperature variations as
a primary explanation for frequency excursions.

Synthetic waveform spectra calculated by InfraFDTD
are compared with recorded infrasound spectra to elucidate
the source spectrum of infrasound produced by Villarrica,
assuming a source affixed to the lava lake at the bottom
of the crater. InfraFDTD models were run with an assort-
ment of Blackman-Harris source-time functions (of varying
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shows trends relating Blackman-Harris source frequency and
sound speed to peak output frequency. For example, using a
given output frequency of 1.0 Hz, the input corner of the
Blackman-Harris source wavelet needs to be 0.9 Hz at 400 m/s,
0.975 Hz at 350 m/s, and 1.3 Hz at 300 m/s sound speed. Gen-
erally, the output frequency increases as the Blackman-Harris
source frequency increases up to about 1.5 Hz. Then the mod-
eled output tends to level off, suggesting a preference for an
acoustic mode at certain frequencies (less than~ 1.4 Hz). This
helps to explain the predominance of ~ 1-Hz tremor, which is a
primary feature of Villarrica’s infrasound.

A primary input to the model is the non-advecting adiabatic
sound speed, which is a function of molar mass and temperature

(Pierce 2019), i.e.,c = 4/ % (Finn 1964). We assume in our

modeling that the crater is primarily composed of a standard
atmosphere (~78% N, and~21% O,), following Shinohara and
Witter (2005) who reported that each plume ejection at Villar-
rica, which was made up of up to 95% H,O and much lower
concentrations of CO, and sulfur species, accounted cumula-
tively for only 1% of the total crater atmosphere. This low per-
centage of magmatic gas is supported by qualitative observa-
tions made during our field campaign, where clear visibility into
and across the crater suggested a relatively low concentration of
volcanic gasses. We thus use a standard molar mass for an
atmosphere where the universal gas constant (R)=~8.314 J/
(mol - K) (dry air), the specific heat ratio (y)=1.4, and molar
mass (M)=28.95 g/mol. Even considering a 5% water vapor
concentration within the crater, the molar mass would only

change by about 1%, which is much less than the variability
caused by minor temperature changes.

Since we assume the crater’s sound speed is principally a
function of only temperature (i.e., c=~20.1 ﬁ ; T'is the tem-
perature in kelvins), we attempt to characterize Villarrica’s crater
temperature profile using a combination of values used previ-
ously and constrained by the internal sensor temperature data
provided by the Gem loggers. The Gem’s internal temperature
sensors, including those suspended on the cable less than 100 m
above the lava lake, ranged from 4 to 28 °C during our field
campaign. This corresponds to sound speeds ranging from 330
to 350 m/s at and around the crater’s rim. Goto and Johnson
(2011) also estimated relatively low temperatures. They specu-
lated that the buoyant air in the crater might have occasionally
reached ~ 50 °C owing to slightly melted plastic enclosures sus-
pended for many hours on cables. Although spatial temperature
distribution within Villarrica’s crater is certainly variable and
likely increases toward the crater floor, Watson et al. (2019)
showed the limited impact of a moderate temperature stratigra-
phy. That is, model output from a homogeneous velocity model
approximates a linear gradient model possessing the same aver-
age velocity.

Discussion
Because the peak frequency values for most of the recorded

infrasound range between 0.8 and 1.2 Hz, our modeling indi-
cates that the primary infrasound source probably contains
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much of its energy below 1.4 Hz (Fig. 9). Higher frequency
Blackman-Harris sources can yield observed data peaked
between 0.8 and 1.2 Hz only if unrealistically low sound
speeds are used (e.g., 300 m/s corresponding to — 50 °C).
This finding indicates that even though recorded infrasound
is modulated by the acoustic crater response, the source must
still have a predominance of low frequencies.

For reasonable crater sound speeds exceeding 350 m/s
(>~30 °C), the excursions in frequency content may be eas-
ily explained by subtle source frequency variations rather
than by variations in temperature caused by diurnal cycles
(see negative result from Fig. 8) or by emission of hot gas
filling or partially filling the crater. We do not possess data
to show how lava lake degassing perturbs the average tem-
perature within the crater; however, given the relatively low
level and stationary nature of the activity, we speculate that
the average crater temperature and sound speed does not
exceed 50 °C (360 m/s). The observed peak frequency vari-
ations ranging +/—0.2 Hz are thus most easily attributable
to source variations.

Fig. 10 Station s108 infrasound

We contend that the persistent lava lake degassing and/
or surface convection, coupled with Villarrica’s unique
crater acoustic response, is responsible for the bulk of the
0.8- to 1.2-Hz tremor that has been noted in this and many
previous studies over the years (Ripepe et al. 2010; Goto
and Johnson 2011; Richardson and Waite 2013; Richardson
et al. 2014; Johnson et al. 2018b; Watson et al. 2019). We
speculate that the mechanism for this persistent degassing
may be similar to what has been found at Erta ‘Ale, with
low, over-pressurized flat bubbles rising to the surface and
roiling the lava lake/free surface interface (Bouche et al.
2010). During our 2020 fieldwork, which included camera
and drone observations of the lava lake, we also noted rare
and sporadic small explosion events. These spatter bursts,
or small Strombolian eruptions, occurred approximately
hourly and triggered infrasound transients, whose energy
peaked at or above about 5 Hz. These events are evident
on spectrograms with short windows (Fig. 10), in which
energy above 5 Hz is evident on the recordings at all sum-
mit infrasound stations.
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The small Strombolian eruptions at Villarrica begin sud-
denly and are impulsive in their infrasound signature with a
corresponding signal spectrum that is relatively broadband.
Although not predictable, they occasionally followed periods
in which the pervasive background tremor was temporarily
absent (see, for example, the first two pulses in Fig. 10). The
interplay of discrete explosions with tremor suggests that
the supply of volatiles to the top of the magma column may
occasionally be impeded by a shallow high-viscosity layer
(Davaille and Jaupart 1993; Lev et al. 2019). We suspect
that volatiles might collect in the upper conduit for a period
of a few tens of seconds before exploding and upsetting the
viscosity stratification.

Low-frequency Blackman-Harris functions do not pro-
duce synthetic signals with energy above ~5 Hz, so we
attempt to replicate the recorded data using a broadband
source composed of an impulse delta function band passed
between 0.55 and 5 Hz (Fig. 11). This broadband source
produces synthetic spectra, which have odd overtones (i.e.,
peaks at 3 and 5 times the fundamental frequency; ~3 Hz
and~5 Hz). These odd integer modes suggest open-
closed pipe resonance, where one end of a tubular cavity
is restricted, and only odd integers of the fundamental fre-
quency can be sustained. This open-closed volcanic pipe
analog has been suggested by others where odd overtones
are present (Fig. 2 in Johnson et al. 2018a). The peak fre-
quency spectra at Cotopaxi and some craters at Mt. Etna

(Spina et al. 2014) have a dominant amplitude at the funda-
mental frequency, as opposed to the situation at Villarrica,
where the overtones appear to have higher amplitudes. These
differences can be due to crater shape geometry, which was
shaft-like at Cotopaxi and Mt. Etna compared to a funnel
shape at Villarrica. They can also be due to differences in
source excitation. Villarrica’s spatter bursts likely contain a
predominance of high frequencies, given their short duration
and impulsive nature.

We have identified two types of sources at Villarrica, which
have different infrasound signatures (Fig. 12). In 2020, Villar-
rica’s Strombolian eruptions were much smaller than the lower
frequency 0.7-1 Hz explosions described by Johnson et al.
(2018Db) leading up to the 3 March 2015 paroxysm. Those pre-
sumably larger explosions were effective at exciting the lower
frequency resonant modes of a~100-m deep crater. Based on
the depth of Villarrica’s crater and the frequency of the con-
tinuous infrasound, we assume that the continuous monotonic
infrasound is indicative of a fundamental acoustic resonance
for Villarrica’s crater controlled by the dimension of the crater
down to the lava lake-free surface. The small spatter bursts in
2020 did not easily excite the fundamental frequency but had
enough high-frequency energy to excite the higher modes. Nota-
bly, the 2015 eruption sequence was only recorded by infrasound
sensors 4 km (and further) from the summit such that higher
frequency infrasound, if present at the source, might have been
attenuated through propagation.

Parameters: c=350m/s source=0.55-5Hz Delta
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To quantify the source spectrum of Villarrica’s continuous
infrasound tremor and test whether source inversion is similar
using various stations, we attempt to deconvolve the syntheti-
cally derived Green’s functions in the frequency domain. Using
the impulse response highlighted in Fig. 11, we calculate a
source spectrum valid specifically within the frequency range of
0.55 to 5 Hz assuming a time-invariant linear Green’s function
(Riad 1986). Source spectra solutions are calculated for each sta-
tion by dividing the recorded tremor spectrum by the synthetic
Green’s function for each respective station (Fig. 13).

The inverted source spectra in Fig. 13h have similar shapes
and amplitudes, which vary by about 25% (e.g., s100 compared
with s094 in Fig. 11h). The amplitude differences are small but
may be attributed to errors in the DEM model, the assumption
in InfraFDTD of a perfectly reflecting solid/air boundary, the
assumption of precise source location at the middle of the crater

Crater rim

1 Hz continuous

~90m

Hardened
crust or roof

Ascending
bubbles

Fig. 12 Photos of Villarrica’s crater and schematic interpretation of
geometry and sound wavelengths. (a) UAV-based photograph of the
inside of Villarrica’s crater taken on 15 January 2020 shows a par-
tially crusted-over lava lake. (b) The schematic cross-section of the
crater highlights the continuous, 1-Hz infrasound standing wavefronts

infrasound (4/4)

bottom, and/or accuracy of GPS-located sensors. Additionally,
wind and/or buoyant plume-advected atmosphere is not inte-
grated into InfraFDTD and may potentially be a source of the
discrepancy. Nevertheless, this consistent source spectral shape
indicates the spectral properties of the source-time function.

Limitations

We highlight a few limitations of the presented study to pro-
vide potential direction for future work. To begin, we wish that
we had made temperature or gas composition measurements
during the time of infrasound collection. This data would have
been beneficial for finding more direct sound speeds within the
crater as it varies over both time and space. Another limitation
of this study was the absence of a video record of Villarrica’s
lava lake level activity during the collection period. Since the

Crater rim

1 Hz continuous
infrasound (1/4)

5+ Hz impulsive
infrasound

Mild strombolian
eruption

Hardened
crust or roof

Ascending
bubbles

drawn to approximate scale. (¢) Photograph taken from the crater rim
captures a small Strombolian eruption on 16 January 2020. (d) Sche-
matic cross-section of the crater during Strombolian activity shows
impulsive 5-Hz infrasound wavelengths drawn approximately to scale
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Fig. 13 Workflow for the band-limited deconvolution of crater
acoustic response from tremor examples at 6 stations. (a) Band-lim-
ited impulse from Fig. 11a is used to calculate (b) the band-limited
Green’s functions. (¢) Tremor data represents examples recorded
at several stations from 18 January. (d, e, f) Frequency spectra are

lava lake level was quite low during the experiment, it could
not be observed from the crater rim. In future work, we advo-
cate for deploying a gimbaled camera looking down from the
suspended cable and/or making longer-duration GPS-synced
drone video observations of lava lake activity. Lastly, this study
only spanned a week’s record of activity for which infrasound
data was collected. While this was appropriate for the meth-
ods and analyses presented herein, we did not observe longer-
term frequency excursions of Villarrica’s tremor, such as those
described by Richardson et al. (2014), that would be possibly
associated with dynamic changes in the lava lake.

Conclusion

Villarrica is a classic example of an open-vent volcano pro-
ducing continuous infrasonic tremor with a peaked spec-
trum. This infrasound tremor appears to be sourced by
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shown for panels a, b, and ¢, respectively. (g) Transfer function, or
volcano crater acoustic response, calculated as the band-limited
Green’s functions’ spectra divided by the source impulse spectrum.
(h) Deconvolved source spectra calculated from the recorded signal
spectrum (panel f) divided by the crater acoustic response (panel g)

an actively convecting lava lake deep within a resonating
horn-shaped crater. The spectrum of Villarrica’s infrasound
has previously been shown to be a useful indicator of lava
lake level (Johnson et al. 2018a, b), and our experiment
was designed to understand the infrasound tremor during
a period of relative quiescence. To help assess what con-
stitutes a meaningful change in Villarrica’s spectrum, we
were able to examine ordinary fluctuations in Villarrica’s
infrasound spectrum during a period of low activity. Our
study quantifies the dominant spectral peak at Villarrica
and its variability over both time and space using a net-
work of twenty infrasonic microphones around and within
the crater rim, including three suspended over the lava lake
on a cable. Signals recorded continuously over one week
in January 2020 showed that a low-frequency 1-Hz tremor
exhibited excursions of up to+/—0.2 Hz (+/—17%) and
that it was observed across the crater network. Since a rise in
Villarrica’s frequency content may be a precursor to future
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paroxysms, the variability of this frequency, which appears
to be a source effect rather than a path effect, is of impor-
tance for monitoring and forecasting future eruptions.

This study has also identified two independent sources
for Villarrica’s infrasound including the continuous ~ 1-Hz
tremor as well as discrete bursts. The continuous signal is
resonant in nature with a peaked spectrum, while the discrete
signal involves a more broadband signal that is relatively
short-lived. Results from the InfraFDTD model explain the
spectral content of the two sources, which both occur at the
bottom of the crater at the free surface of the lava lake. Our
study spanned a one-week period in January 2020, but we
suggest it could be useful to investigate other periods when
Villarrica might be in a different background state and when
the lava lake might be at a different level. While the ability
to assess the height of Villarrica’s lava lake level via tremor
may be somewhat unique to this system alone, replicating
our deployment (i.e., using a dense distribution of portable,
self-contained Gem infrasound loggers (Anderson et al.
2018) near the source) at other open-vent volcanoes such
as Nyiragongo, Halema‘uma‘u, Erta ‘Ale, Erebus, Yasur, or
Santiaguito, or volcanoes with a similar shape, such as Mt.
Etna, could be an effective means to characterize near-source
spatial and temporal frequency excursions. It would be use-
ful to quantify background activity at many open-vent vol-
canoes such that infrasound monitoring can be implemented
more effectively during future periods of unrest.
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