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Abstract—Mobile power sources (MPSs) have promising poten-
tial for spatiotemporal flexibility exchange in power distribution
systems (DS). They can be strategically employed to enhance
the network resilience when facing the aftermath of high-impact
low-probability (HILP) events. This paper proposes a novel
service restoration formulation that models and accounts for
the endogenous uncertainty in the MPSs routing and scheduling
decision making. The proposed restoration model is formulated
as a mixed-integer nonlinear programming (MINLP) problem
with nonconvex continuous relaxation. We derive computationally
tractable linearization procedures to reformulate the MINLP
model as an equivalent mixed-integer linear programming
(MILP) problem. Case studies on the IEEE 33-node and 123-node
test systems demonstrate the role of incorporating endogenous
uncertainties in the decision-making process and the effectiveness
of the proposed restoration scheme in boosting the DS resilience.

Index Terms—Endogenous uncertainty; power distribution
system (DS); high-impact low-probability (HILP) events; mobile
power sources (MPSs); resilience.

NOMENCLATURE
A. Sets and Indices

1,7 €B Index and set of nodes in the network.

meM Index and set of mobile power sources (MPSs).

1(i,j) € L Index and set of network branches.

keK Index and set of MPS stations.

LdelL Subset of damaged branches in the network.

IL* L Subset of branches that are equipped with
remotely-controlled switches (RCSs).

BB Subset of nodes that are selected as sources of

fictitious supply in a physical island.
B. Parameters and Constants
oy Value of restored load at node 7 ($/kW).

Om Generation cost coefficient of MPS m ($/kW).

Cik Operation cost coefficient for MPSs to reach
node ¢ from station k ($).

P Survived demand after an HILP event (kW).

Ut W Maximum real and reactive power output of

MPS m (kW, kVar).
N Number of nodes in the network.

N? Number of physical islands formed due to dam-
aged and un-repaired branches in the network.
M7 M#*  Big M numbers denoting maximum value of

fictitious power flow and fictitious supply.
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d/ Fictitious load of node <.
Big M number denoting maximum value of the
difference in the squared voltage magnitudes.

P?,@? Maximum real and reactive power demand at
node ¢ (kW, kVar).

P, Q, Real and reactive power capacity of branch [
(kW, kVar).

P’ , @g Maximum real and reactive power output of the
substation node (kW, kVar).

P9 Q7 Minimum real and reactive power output of the

B substation node (kW, kVar).

Ve Vf Minimum and maximum squared voltage mag-
nitude at node i (kV?).

Tix MPS travel time to node ¢ from station &k (p.u.).

Mok Big M number representing the maximum

number of trips for MPS m at station k.
Ck Maximum number of MPSs that can be hosted
by station k.

Tri Service time of node ¢ served by MPS m (p.u.).
Ry, X Resistance and reactance of branch [ (2).

C. Decision Variables
RN T Real and reactive power of MPS m (kW, kVar).

fi Fictitious flow on branch .

4 Fictitious supply at source node i.

pf , qlf Real and reactive power flow on branch [ (kW,
kVar).

p?, qd Final real and reactive demand at node 4 fol-
lowing the restoration process (kW, kVar).

p?,q! Real and reactive power generation from sta-
tionary generating units at node ¢ (kW, kVar).

Di, Qi Total real and reactive power output of MPSs
at node 7 (kW, kVar).

|7 Squared voltage magnitude at node i (kV?2).

T Immediate restoration metric (IRM) of node +.

w; Waiting time for node ¢ served by MPSs (p.u.).

Umnki Variable representing waiting time for node @
to be served by MPS m from station £ (p.u.).

t; Travel time for MPSs to reach node ¢ (p.u.).

Y Binary variable defining the status of branch [:
= 1 if the branch is connected, = 0 otherwise.

ki Binary variable for the assignment of an MPS:
= 1 if node ¢ is served by MPS m originally
located at station k, = O otherwise.

Ymk Binary variable for the location of an MPS: =1

if MPS m is located at station k, = 0 otherwise.

I. INTRODUCTION
A. Motivation and Rationale
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HE more frequent occurrence of high-impact low-

probability (HILP) incidents—e.g., hurricanes, floods,
earthquakes, wildfires—has recently led to large-scale long-
lasting power outages. The resulting tremendous economic
losses and significant disruptions in our society have high-
lighted the importance and urgency to enhance power grid
resilience to such extremes. Mobile power sources (MPSs)
are emergency service vehicles that can offer spatio-temporal
flexibility to enhance the power distribution system (DS)
resilience [1]. MPSs can be effective resources when sustained
damage leads to prolonged electric service outages in DS.
However, they are currently not well utilized in practice. For
example, before Hurricane Sandy struck, 400 industrial-size
MPSs were prepared by the Federal Emergency Management
Agency, but only a portion of them was providing power three
days after Sandy made its landfall [2]. Holistic strategies to
enhance the efficiency of the MPSs utilization can render faster
restoration and augmented resilience.
B. Literature Review

Research on the deployment of MPSs in response to devas-
tating extremes has been conducted over the past decade. The
study in [3] proposed a two-stage restoration scheme for DS
restoration with a mixed-integer linear programming (MILP)
model. The scheme highlighted the full potential of MPSs
dispatch jointly with the dynamic DS reconfiguration. A post-
disaster restoration scheme presented in [4] could enhance
the DS resilience by scheduling MPSs in coordination with
DS reconfiguration. A rolling integrated service restoration
strategy for scheduling and routing MPSs is introduced in [5],
capturing the uncertainty in the status of the roads and electric
branches. A co-optimization approach formulated as a mixed-
integer second-order cone programming model is introduced
in [6] that coordinates the MPSs and repair crews dispatch for
DS resilience. The study in [7] proposed a temporal-spatial
status model with an MILP formulation for MPS deployment
in unbalanced DS. The study in [1] proposed a two-stage
robust optimization model for resilient scheduling and routing
of MPSs considering an optimal pre-positioning strategy. A
two-stage dispatch framework for pre-positioning and real-
time allocation of MPSs is introduced in [8], where a scenario-
based two-stage stochastic optimization model is formulated
for strengthening the DS resilience. The study in [9] presents
a multi-agent approach for service restoration with MPSs
participation, where the cyber, physical, and transportation
constraints are taken into account. A joint post-disaster restora-
tion scheme applying MPSs and distributed generators tackling
the transportation system constraints is proposed in [10]. A
framework is presented in [11] to determine the DS restoration
strategy considering the dispatch of MPSs and repair crews in
the transportation system. The study in [12] proposed a co-
optimization model including MPSs, repair crews, and soft-
open-point networked microgrids to enhance the DS resilience.
A microgrid-based critical service restoration strategy with
properly positioning MPSs is introduced in [13].

In [1], [3], [6], [7], [9]-[12], [14], [15], the routing and
scheduling of MPSs is approached through multi-period mod-
els that specify the decisions for the entire restoration horizon.
Such models allow for sequential changes in the network

topology, MPSs, and repair crews allocation status, etc. during
the DS restoration process. The performance of the multi-
period models might, however, be compromised due to the
prevailing uncertainties during the restoration process and the
need for dynamic information updates in different restoration
intervals. Accordingly, a rolling optimization perspective is
investigated for MPSs routing and scheduling in [5]. The
rolling horizon approach is based on a scheduling formulation
that solves iteratively the deterministic problem by moving
forward the optimization horizon in each iteration [16] and has
been applied to power system problems [17]-[19]. However,
the resulting formulations are typically complex and compu-
tationally challenging.

State-of-the-art models in the literature on the MPSs alloca-
tion and dispatch have been primarily based on the simplifying
assumption that MPSs are immediately available during the
entire restoration process and that their travel time is the only
contributor to the DS response and recovery. To achieve a
more realistic restoration model using MPSs, any delays prior
to the trip should be captured in the decision-making process,
which in turn affect the immediate service restoration of the
load points in the DS. Such delays can include the time to
decide which MPS to dispatch, the time to contact the MPS,
the time for the crew to reach its MPS and commission it, and
the travel time for the MPSs to reach the interrupted nodes.
C. Problem Statement and Contributions

In contrast with risk-neutral and risk-averse stochastic pro-
gramming formulations with exogenous uncertainties, there
has been minimal effort so far to formally model sources
of endogenous uncertainty in the context of electric power
systems operation in general and on service restoration during
emergencies in particular. This highlights the need for decision
support systems (models and solution algorithms) to intelli-
gently navigate both immediate and gradual uncertainties in
energy systems. This paper has explored and contributed to
filling these knowledge gaps by providing analytical models
representative of the actual decisional context. The situation
in which a vehicle’s availability is uncertain and depends on
its workload, itself determined by its location and assigned
tasks, was coined endogenous uncertainty [20] in the late
80’s. The extant literature on MPS scheduling and dispatch
for DS resilience [9]-[15] has ignored the endogenous sources
of uncertainty in the decision-making process. However, the
waiting time for a request to be served by an MPS is uncertain
and depends on the workload of the MPS and its possible
non-immediate availability when called upon, which are both
affected by other decision variables (e.g., requests assigned
to MPS, the location, and dispatch route of the MPS) taken
within the optimization model. This illustrates the prevalence
of decision-dependent or endogenous uncertainty in the de-
ployment of MPSs for DS resilience.

The main contributions of this paper are as follows

o We present a new service restoration model in the DS via

MPSs routing and dispatch scheduling along with possi-
ble network topology re-configurations which accounts
for endogenous uncertainty in MPSs’ availability.

e We propose a mixed-integer non-linear programming

(MINLP) optimization model through a single-time pe-
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riod framework for boosting DS resilience. A lineariza-
tion approach is introduced to reformulate the MINLP
model to an equivalent and computationally tractable
mixed-integer linear programming (MILP) model.

o We empirically evaluate the performance of the proposed
optimization approach quantified and compared with
traditional MPSs modeling approaches. We numerically
demonstrate the effective role of endogenous uncertain-
ties in offering a more realistic estimation of the MPSs

contributions to DS resilience enhancement.
The paper is organized as follows. Section II introduces

endogenous uncertainty and gives insights on its impact on
the DS restoration problem with MPSs. Section III introduces
the proposed MPS optimization model with endogenous un-
certainty. Section IV describes the method to reformulate the
MINLP problem as an equivalent MILP. Several numerical
case studies are presented in Section V to validate the proposed
model under a variety of outage scenarios, evaluate its scalabil-
ity and computational efficiency, and compare its performance
with the traditional models. Research findings are eventually
summarized in Section VI

II. ENDOGENOUS UNCERTAINTY

There are two main types of uncertainties: exogenous un-
certainties are independent of decisions, while endogenous
uncertainties or decision-dependent uncertainties [21], [22] are
impacted by decisions taken within an optimization problem.
Several forms of endogenous uncertainty can be distinguished
(see taxonomy in [21]). In models with Type 1 endogenous
uncertainty, decisions impact the probability distribution of
(some) random variables. Problems with Type 2 endoge-
nous uncertainty are two- or multi-stage stochastic programs
with recourse in which decisions affect the time at which
information is revealed and the uncertainty gets resolved.
A recent review [21] identified other types of endogenous
uncertainty involving the concept of busy probability [23]-
[25], endogenous uncertainty sets in robust optimization [26],
and in distributionally robust optimization [27], [28].

The modeling of the (endogenous) dependency connecting
random and decision variables is challenging and often results
in the formulation of nonconvex problems. To avoid the inher-
ent modeling and solution challenges, simplifying assumptions
are often used. We refer the readers to [20], [23], [24], [29],
[30] for a detailed discussion of these simplifications and
the issues they cause (i.e., models not representative of the
actual problems and questionable decisions). In this study,
we propose the immediate restoration metric (IRM) r; and
define it as the probability of an interrupted node 7 to be
served immediately by an MPS, which is determined by other
decisions taken within the optimization problem — hence
endogenous uncertainty. The IRM depends on the time needed
to restore service to the interrupted node: the sum of the travel
time ¢; for the assigned MPS to reach node ¢ and waiting
time w; for an interrupted node ¢ served by the assigned
MPS. Note that the restoration process is impacted by how
quickly MPSs serve the interrupted nodes. An interrupted
node cannot be restored immediately, if the assigned MPS
is not immediately available (or is busy). Hence, we define
IRM for the interrupted node ¢ as an endogenous uncertainty

which is driven by the busy probability of an MPS and the
resulting waiting time and delay incurred when using an MPS.
Introduced several decades ago in the context of probabilistic
location problems [20], busy probability is used to model
the probabilistic nature of a vehicle’s availability. The busy
probability is calculated as the ratio of the vehicle’s workload
to its total service time and is called an endogenous uncertainty
(see [20], [23] and the references therein). Several recent
studies provide a thorough explanation of the endogenous
nature of the availability of vehicles [23], [24] and make a
compelling case on the need to endogenize this uncertainty via
the concept of busy probability. In the suggested model, the
endogenous uncertainty in MPSs’ busy probability is reflected
and propagates in the proposed IRM metric.

Our optimization model endogenizes and calculates an indi-
vidual IRM for each interrupted node and for each individual
MPS assignment. The proposed model does not assume that
interrupted nodes have all the same IRM, nor that IRMs
are fixed (exogenous) parameters computed ex-ante, prior
to solving the optimization model. We define the IRM of
interrupted node i as r; = 1 — (¢; + w;). The times ¢; and w;
are both normalized with respect to the maximum admissible
time for restoration and are thus defined on [0, 1], so does
the proposed IRM r;. If the interrupted node 7 can be served
immediately by an MPS, r; = 1. Otherwise, r; decreases
proportionally with the time to restore node <.

The proper modeling of the dependency of the endogenous
uncertainties on decisions is modelled with the linking con-
straints (la)-(le) presented next:

t; = Z Z Tk o i € B (la)
keK meM
Umk1 = 0 ke K,meM (lb)

i—1
Umnki = Hmki ( tmir (Tirg + Tmi’))
1

i'=

keK,ieB\{l},meM (lc

wi= Y Y Uk ieB (1d)
meM keK
ti +w; <1 1€B (le)

Constraint (1a) defines the travel time of MPS m from station
k to reach the interrupted node ¢, where fi,,,; defines whether
node ¢ was served by MPS m located at station k. Constraint
(1c) defines the waiting time for MPS m located at station
k to serve the interrupted node 7. The parameters 7;; and
Tms represent the travel time from station k to node 7 and
the service time for node ¢ serviced by MPS m, respectively.
The term Z;,;ll ki’ (Tt + Tmir) in (1c) is the sum of
the travel and service times to reach and restore power at
all interrupted nodes, except the node served first (z = 1), if
they were served by MPS m. If node ¢ is serviced by MPS
m from station k implying ji;,r; = 1, then the waiting time
takes the value of Z;,;ll tmki' (Tirke + Timir) and O otherwise.
Constraint (1d) defines the waiting time to restore power at
node ¢ with the MPS selected to serve interrupted node i.
Constraint (le) ensures that service restoration to node ¢ is
achieved within the maximum admissible time (i.e., < 1).

The power restoration is assumed to be handled in the order in
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which outages are notified to the DS operator. This assumption
impacts the assessment of the waiting time to serve interrupted
node ¢ and affects constraint (1e). Constraint (1b) states that
the auxiliary variable v,,5; for the node serviced first (z = 1)
is zero since at least one MPS is available to serve this node.

Expanding the expression 1 — (¢; + w;) using the linking
constraints (1a)-(1e), we obtain
Ty = 1-— |:Z Z nkﬂ7r1ki

keK meM
i—1

+ Z Z Hmki Z(Tz’k + Tt ) ok

meEM k€K ir=1

ieB\{1} @
The above expression shows how the decision variables fi,,x;
defining the MPSs’ assignment to interrupted node i impact
the IRM and highlights the endogenous uncertainty nature of
the IRM r;. The equality (2) underscores that the IRM of an
interrupted node is a decreasing function of the time needed to
restore power, i.e., travel and waiting times. This shows how
the delayed availability of MPSs impacts the overall time to
restore power at the interrupted nodes and how this deflates the
number of restorative actions carried out on a timely basis. The
busier the MPS assigned to an interrupted node, the less likely
for this node to be immediately served, thereby increasing
delays and waiting times, and leading to longer full restoration.

III. PROBLEM FORMULATION
In this section, we propose a new MPS optimization model
(MPSOM) that captures the endogenous uncertainty nature of
the proposed IRM metric. The MPSOM model with endoge-
nous uncertainty in waiting times and the IRM is formulated
as an MINLP problem with the following objective function:

max Zai(pf—PiO)rﬁ Z Z Zcikumkr Z Smtr,

i€B meM k€K i€eB meM (3)

The objective function maximizes the total restoration benefit
realized through effective management of MPSs in the DS. The
first term reflects the total value of the expected restored load
across the DS considering the IRM of each interrupted node ¢
impacted by the possible non-immediate availability of MPS to
service them. The difference (p¢ — P?) is the amount of power
restored and its multiplication by 7; is the expected power
restored without delay. The second term reflects the MPSs’
operation cost due to the number of trips they make and the
distances traveled during the restoration process, and the third
term represents the MPSs’ cost for output power. The objective
function (3) is nonlinear due to the endogenous uncertainty
nature of r; which requires the introduction of bilinear terms.
The model has a mixed-integer nonlinear feasible set defined
by the constraints described in sub-sections III-A-III-F.

We here briefly illustrate the concept of IRM through a
simple example. We consider a simple network with a single-
line damaged branch between nodes n1 and n2 (see Fig. 1),
which results in interruption of nodes n2 and n3. Assume that
the MPS station is at node n1 and that only one MPS is located
at this station. The time needed for the MPS to reach node n2
from nl is set to 5 minutes (fo = 5), the time needed for the
MPS to reach node n3 from n1 is set to 15 minutes (t3 = 15),

and the time needed for the MPS to reach node n3 from n2 is
10 minutes (t3» = 10). The value of the restored load at node
n3 is $5/kW (a3 = 5) and the final real power demand at
nodes n2 and n3 following the restoration process are pg = 10
kW and p¢ = 10 kW. The restoration time horizon is assumed
to be 1 hour. The simplified objective function maximizes the
total restoration benefit formulated as:
max Z ai(pd — PO)r;
i€{1,2,3}

where i denotes the node index, and P? represents the total
survived demand following an HILP event (for simplicity
PP = 0), and r; denotes the IRM corresponding to node i.
To illustrate how the MPS travel and waiting times affect the
IRM and the restoration process, we consider the following
scenarios: Scenario 1 (“ideal case”) where the restoration
process begins immediately; as a result, the restoration benefit
is equal to 5 % 10 * 1 = $50. Scenario 2 demonstrates the
“impact of travel time”, where the MPS travels from node
nl to n3 with normalized travel time t3 = % = 0.25 and
the corresponding value of the restoration benefit is found
5% 10 % (1 — 0.25) = $37.5. Scenario 3 demonstrates the
“impact of travel and waiting time”, where the MPS travels
from node nl to n2 and stays there to restore the power for
15 minutes, and then it travels from node n2 to n3. The IRM
at node n3 is equal to r3 = 1 — (32 + 23) = 0.5 and the
corresponding restoration benefit is 5x10+0.5 = $25. Different
from the state-of-the-art models where nodal waiting times
for service restoration are neglected or simply estimated ex-
ante as fixed parameters, this example highlights the need to
consider the waiting time in the service restoration process.
This is because, in practice, MPS vehicles may not be readily
available to serve the interrupted nodes immediately. This
observation motivates the proposed problem formulation with
endogenous uncertainty.

13
r 1 N
nl r n2 Iy n3
. N
7\
% P as, p PO
@ Station Interrupted Node

Fig. 1. The example network to demonstrate the proposed concept of IRM.
A. MPS Connection Constraints

To ease the notations, we define the index set V =
{(m,k,7) : m € M,k € K,i € B}. Constraint (4a) ensures
that the number of nodes serviced by an MPS m located at
a station k£ does not exceed a certain threshold M,,, which
represents the maximum number of trips that can be made by
MPS m. Constraint (4b) ensures that each interrupted node @
is assigned to at most one MPS. Constraint (4c) enforces that
the number of MPSs located across all stations is equal to the
number |M| of units available for DS restoration. Constraint
(4d) ensures that each MPS m is initially assigned to only one
station k. Constraint (4e) reflects that the number of MPSs
located at station k does not exceed the maximum number
of spots cj, available at station k. Constraint (4f) defines the
proposed IRM which can take any value between O and 1
due to constraint (le). Constraints (4g) and (4h) define the
integrality restrictions.
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Z,umki < MokYmk mée M,k € K (4a)

i€B

DD ki <1 i€B (4b)
meM keK

SN Yk =M (4c)
keK meM

Y ymi <1 meM (4d)
keK

> ymr < keK (de)
meM

(1a) — (le)

Tizl—(ti—‘r’wi) 1€B (4f)
ymk € {0,1} keK,meM (4g)
tmki € {0,1} (m,k,i) €V  (4h)

B. Power Balance Constraints

Constraints (5a) and (5b) describe the real and reactive
power balance conditions at all nodes, respectively. Constraint
(5¢) ensures that the restored load does not exceed the max-
imum demand at node i. We assume that the demand power
factor is fixed and calculated as (@Zl /F?). The relationship
between the restored real and reactive load is defined by (5d).
The real and reactive power flows in online branches are
respectively limited by their real and reactive power capacities
in (5e)-(5f). The lower and upper bounds for the real and
reactive power generation at substation node (node 1) are set
by constraints (5g) and (5h). Assuming no other distributed
generators across the network, stationary sources of real and
reactive power generation are only available at the substation
node, which is enforced by constraint (5i).

ool +pl= > ol +p!+pi i€B (52
1(4,j)€L 1(4,i) €L

Sood+adl= > o +d +a i€B (5b)
1(4,j)€L 1(4,i) €L
0<p! <P ieB (5)
¢! = pl(@;/P)) i€B (5d)
—\P < plf < NP, leL (Se)
~-NQ, <dqf <NQ leL (50
P <pl <P’ (52)
Q' <qf <qQ’ (5h)
Pl =q/=0 ie B\ {1} (5

C. Power Flow Constraints

Constraints (6a) and (6b) represent the power flow equation
considering the status of branches where the term (1 — ;) M"
or (\; — 1)M" ensures that the power flow condition is
satisfied for connected branches [31]. The parameter M" is
the maximum value for the difference in the squared voltage
magnitudes between nodes ¢ and j connected by branch [. If
the branch [ between nodes ¢ and j is connected (\; = 1),
then the terms (1 — A;)M" and ()\; — 1) M vanish from (6a)
and (6b). If the branch is disconnected (\; = 0), the second
term will be 0—see (5¢) and (5f). Constraint (6¢) states the
limits for the squared voltage magnitudes at any node .

VP - VP < (- N)MY +2(Rpf + Xigf) i.jeB,leL

(6a)
Ve —VE> (N - 1)MY +2(Rp] + Xiqf) i,j€B,leL
(6b)
VE<VELV, i €B (6¢)

D. MPS Output Power Constraints

The total real and reactive power supplied by MPSs at node
1 is equal to the sum of the real and reactive power output of
each MPS assigned to node i—see constraints (7a) and (7b).
Constraints (7c) and (7d) guarantee that the real and reactive
power output of MPS m do not exceed the respective limits.

pi= Z Z Wﬁumm 1€B (7a)
meM keK

4% = Z Z Yy ki icB (7b)
meM keK

0<¢, <V, meM  (7d)

E. Branch Status Constraints

DS reconfiguration is one common practice for service
restoration following an HILP incident. DS reconfiguration
is achieved through the operation of remotely-controlled
switches (RCSs) across the network [32]. The DS operator
can control the ON/OFF status of the RCSs to change the
network connectivity. The binary variable \; indicates whether
branch [ is connected (A\; = 1) or not (\; = 0). The status
of the branches equipped with RCSs can be changed during
the restoration process. However, DS reconfiguration does not
apply to damaged branches as enforced in constraint (8a). Con-
straint (8b) indicates that undamaged branches without RCSs
are always kept connected during the restoration process.

AN =0 leLd (8a)
N=1 le L\ {L4 L5} (8b)
A € 40,1} leL (8¢c)

F. DS Radiality Constraints

Radiality constraints (9a)-(9e) are introduced to maintain
the radial topology of the DS [1]. There are two significant
reasons for the DS to be operated with a radial topology
[33]: (i) to facilitate the network protection coordination; (ii)
to reduce the short-circuit current in the DS. While DSs
can have a meshed (i.e., loop) structure, they are normally
operated as radial for effective coordination of their protection
systems under emergency and faulted operating conditions
[34]. Branch damages due to an HILP event result in several
physical islands (PIs) in which all load nodes are disconnected
from the main grid. The relationship between the number
of available branches and the number of PIs is presented in
the electronic Appendix [35]. Constraint (9a) states that the
number of connected branches is equal to the number of nodes
in DS minus the number of PIs caused by damaged branches
[1], [5]. Each PI is modeled via fictitious supply and demand
nodes. In each PI, one node is considered to be a fictitious
supply node and the remaining nodes are fictitious load nodes.
The concept of fictitious flow also needs to be introduced to
establish the connection between fictitious supply and load
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nodes in a PI. Constraints (9b) and (9¢) ensure the fictitious
flow balance for the fictitious supply and load nodes—similar
to (5a) and (5b). Here, the fictitious load dlf is set to be 1
at all load nodes. Constraint (9d) stipulates the direction and
the amount of fictitious power flow. Constraint (9d) enforces
that the fictitious supply at node ¢ cannot exceed its maximum
limit M*.

> M=N-N (9a)
leL
ooh= > h= ieB*  (9b)
1(i,7)€L 1(4,5)€L
o A= > hi=d  ieB\B* (%)
1(3,)€EL 1(i,7)€Ls
M < <M/ leL (9d)
0< fI<M® ieB® (%)

IV. SOLUTION METHOD

We here examine the properties and tractability of the
MINLP problem MPSOM. We first note that the continuous
relaxation of problem MPSOM

> mth,

max E ai(pf—PiO)r —
i€B meM

= >3 Cinponri

meM keK i€B
s.to (1a) — (le), (4a) —

(10)

(%e)

is nonconvex. Indeed, problem MPSOM has nonlinear equal-
ity constraints (1c), (7a), and (7b), which implies that the
feasible area is not convex and that MPSOM is not a convex
problem regardless of the integrality restrictions on some
decision variables.

We shall now derive an MILP reformulation for problem
MPSOM by using several linearization methods for small-
degree polynomial terms. The sources of nonconvexity in
MPSOM are due to the bilinear terms: 1) ripg with prod-
ucts of continuous variables, 2) . ki and ¥ pmg; with
products of a binary by a continuous variable. Note that
the McCormick inequalities [36] applied to the product of
two continuous variables can only provide a linear relaxation
and the convex envelope of bilinear terms. The properties of
our model allow us to exactly reformulate products of two
continuous variables and is a key contribution. The following
two lemmas will be used in the proof of Theorem 1.

Lemma 1: [36] Let x € {0,1} and y € [0,y] C R*.
The bilinear term zy can be linearized by the set M7, =
{(z,y,2) € {0,1} x [0,9]* : (1la) — (11d)} of hnear

inequalities
z>0 (11a)
>y+ry—y (11b)
Mz, = yraxy—y
z<y (11¢)
z < gx (11d)

that ensures that z := zy.
Lemma 2: Lemma 2 is a direct extension of lemma 1 for
a trilinear term of that form. Let = [z, 22] € {0,1}? and

y € [0,y] € RT. The trilinear term z1z2y can be linearized

by the set MY . = {(z1,22,y,w) € {0,1}* x [0,7]?
(12a) — (12e)} of linear inequalities
w >0 (12a)
w > y(ry + 72 —2) +y (12b)
Mgla:zy = w < Y (120)
w < yxy (12d)
w < Yxo (12e)

that ensures that w := z1x2y.

Theorem 1 shows how we can linearize such bilinear terms by

exploiting the structure of the problem. We define the index

set W={(m,k,i,i") :meMkeKiiecB:i>1ii}.
Theorem 1: Let 0,(, 3, k, 7y, n be vectors of the nonnegative

auxiliary decision variables. Problem R-MPSOM:

max Zai(pf—/@ —n; — Plr;) — Z S,

i€B meM
- Z chﬂcumm (13a)
meM keK i€eB
s.to (le), (4a) — (4e), (4g) — (6¢), (8a) — (9e)

pi= > > Omri, i€B (13b)
meM kecK

G= Y > Cokis i€eB (13c)
meM keK

Omri >0 (m,k,i) € V (13d)

Omii = Vi (ki — 1) + 0,
omki § d};
emki S \II;':LMmkz

(m, k,i) € V (13e)
(m,k,i) €V (13D
(m,k,i) €V (13g)

Cmki >0 (m,k,i) € V. (13h)
Cmki = Vo, (ki — 1) + 9, (m,k,i) eV (130
Cmki < Uy, (m, k,i) €V (13))
Cmki < Vo, ki (m,k,i) € V. (13k)
ki= Y > TiBmki ieB (13
keK meM
Bmki >0, (m, k,i) € V (13m)
Brnki > pe Jrﬁj(,ufmki —1) (m,k,i) € V (13n)
Bk < P b (m, k,i) € V (130)
Bunki < D (m,k,i) € V (13p)
Z Z Z i’k + Tmi’ ’Y’mkii/ 1€B (13Q)
meM keK i/=1
m=20 (13r)
Ymkiir = 0 (m, k,i,i") € W (13s)
Ymkiit = Py (ki + tmiir — 2) + pf (m, k,i,7) € W
(130)

(m, k,i,i") € W (13u)
(m,k,i,i") € W (13v)

—d
Ymkiit < PUmki P
VYmkiit < p?

is equivalent to problem MPSOM and has a convex continu-
ous reformulation.
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Proof. (i) We first reformulate the nonlinear constraints (7a)
and (7b), and use Lemma 1 to linearize the bilinear terms
wmum;ﬂ and ¢, mki. Let \Ilm and W denote the upper
bounds of the nonnegative variables 1;; and .. The lin-
earization of (7a) and (7b) is accomplished by introducing the
McCormick inequalities (13d)-(13g) for each term ¥} ok
and another one (13h)-(13k) for each ), iy, ki, Which ensures
that; Ok = Utk and Cmri == ¥, fmki. Constraints
(13b) and (13c) enforce that each term p; and g; is respectively
equal to the sum of the variables 6,,,;; and (,,x; representing
the bilinear terms in (7a) and (7b).
(ii) We now reformulate and linearize the products ripf of
continuous variables in the objective function. Using (4f), we
can rewrite the objective function (13a) in a lifted space as:

Z ai(pd — PO)r; = Z aipf(l — (t; + w1)> - Z a; Pr;

icB i€B icB

=3 a (pg _

i€B

(it + plw)) = 3 aiPPri (14)
i€B
Two sets of bilinear terms — p¢t; and pfw; — appear now.

(ii.1) We start with the linearization of the products pftl of
continuous variables, which, using (la), can be rewritten as:

plt; = Z Z TisefombiD’

keKmeM

1€B (15)
Each equality (15) reformulates the corresponding bilinear
term pdt; as a sum of bilinear terms with weighted (by
parameters T;;) products of a binary u,,x; by a continuous
variable p¢ upper-bounded by ?d Using Lemma 1, the
bilinear terms p?t; can be exactly reformulated and linearized
with the McCormick inequalities (13m)-(13p) which forces
Bmki = ,umkipf. The linear constraint (131) ensures that the
new variable x; is equal to the weighted sum of the new

variables (,,k; introduced in the linearization process.
(ii.2) In order to linearize the terms pfwi, we use (Ic) and
(1d) to rewrite them

pz W —Pz Z Z <Mmk1 (Z ,U/mkz T’k + Tt )>> (16)
meM keK i'=1

as sums of trilinear terms pfumkiumki/ with products of
two binary variables by a continuous one. Introducing the
vector of non-negative continuous variables v and applying
Lemma 2, we linearize these trilinear terms with the set
of linear inequalities (13s)-(13v) which guarantee v,k =
P tmbitbmkir, (M, k,i,7') € W. The linear constraint (13q)
ensures that the new variable 7; is equal to the weighted sum of
the new variables ,,; introduced in the linearization process.
All polynomial terms in the objective function and constraints
of the problem MPSOM are exactly reformulated with linear
inequalities, which provides the result we set out to prove. []

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the proposed model and solution approach
are applied to the IEEE 33-node and IEEE 123-node test
systems. The IEEE 33-node test system includes 1 substation,
32 branches, 33 nodes, and 5 normally open RCSs [31] — see
Fig. 2. The IEEE 123-node test system owns 1 substation, 122
branches, 123 nodes, and 5 normally open RCSs [37] — see

Fig. 3. Note that the proposed MPSOM framework is a deter-
ministic model designed in response to one forecasted damage
scenario in the network. In order to verify the effectiveness
of the presented scheme for DS restoration and in capturing
the endogenous uncertainties in MPSs availability, we study
a series of single- and multi-line damage scenarios in each
test system, as a result of which full (worst-case) or partial
electricity outages may be realized. We run the proposed
MPSOM model for each forecasted damage scenario where
the optimal decisions on the MPSs pre-positioning (before the
event), as well as their routing and dispatch (following the
event) are made concurrently. The proposed model is aimed
at enhanced resilience delivery in the electric power DS and
is generic enough to accommodate any additional constraints
and considerations of the transportation system. The tests are
conducted on a PC with an Intel Xeon E5-2620 v2 processor
and 16 GB memory. The optimization problems are formulated
with AMPL and solved with the state-of-the-art optimization
solvers Baron 19.12.7 for the MINLP problem MPSOM and
Gurobi 9.0.2 for the MILP problem R-MPSOM.

26 27 28

[.L,J 2 3 4 5 ¢ 10 11 14 /15

12 1316 17 18
Open RCS

2930 31 32 33

19 20 21 22
[JMPS Station

Fig. 2. The studied IEEE 33-node test system with MPS stations.
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Fig. 3. The studied IEEE 123-node test system with MPS stations.
A. MPSs Routing and Scheduling Assignments

We illustrate here the detailed MPSs routing and scheduling
assignments with the corresponding IRM values obtained with
the proposed model and its application to the IEEE 33-node
and IEEE 123-node test systems. The greater the value of
the IRM, the faster the interrupted node is restored by MPSs
(where TRM = 1 is indicative of an immediate service
restoration). In order to verify the efficiency of proposed model
for DS restoration, the maximum admissible time for system
restoration is set to 1 hour for both systems.

1) IEEE 33-Node Test Systems: The IEEE 33-node test
system is assumed to be equipped with 2 MPS stations located
at nodes nl and n8 (see Figure 2), and 3 MPSs with 800
KW/600 kVar capacity can be hosted in any of these stations.
Figure 4 illustrates the MPSs assignments under two multi-
line damage scenarios in the IEEE 33-node test system with
the corresponding IRM values.
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Fig. 4. MPSs assignments for response and recovery in the face of extreme

In the three-line damage scenario with damaged branches
L2, L18, and L22, 2 RCSs are closed to help in DS restoration:
the RCS between nodes n8 and n21, and the RCS between
nodes 125 and n29. Both MPS1 and MPS2 are assigned from
station 1. MPS1 provides power to n23 with an IRM equal
to 0.94, and then moves to n26 with an IRM of 0.708. MPS2
is sent to n21 and n26 with the IRM values of 0.92 and
0.648, respectively. Located at station 2, MPS3 supplies n8
immediately. In this scenario, it takes nearly 21 minutes for
the MPSs to reach the designated nodes during the restoration
process, resulting in full-service recovery within 1 hour. In
Figure 4, all 3 MPSs are assigned from station 1 in the four-
line damage scenario with damaged branches L3, L4, L19, and
L22. MPS1 is sent to n24 with an IRM value of 0.94, then
to n28 with an IRM value of 0.668. Node n21 is supplied by
MPS2 with an IRM value of 0.92, and then moves to n26 with
an IRM value of 0.688. MPS3 is assigned to n4 with an IRM
value of 0.94, and then to n17 with around 32 minutes delay
(IRM equals 0.47). Furthermore, the same two normally open
RCSs as in the three-line damage scenario mentioned above
are closed to participate in DS restoration.

2) IEEE 123-Node Test System: The IEEE 123-node test
system is assumed to be equipped with 2 MPS stations
located at nodes n20 and n65 (see Figure 3), each of which
capable of hosting 3 MPSs with 800kW/600 kVar capacity.
Figure 5 illustrates the MPSs assignments in three multi-line
damage scenarios in the IEEE 123-node test system with the
corresponding IRM values.

For the multi-line damage scenario, where branches LS,
L10, and L17 are damaged, all MPSs are positioned and
deployed from station 1. MPS1 immediately serves node n20
and then travels to restore node n92 with an IRM value of
0.72. MPS2 first serves node n28 with an IRM value of 0.94
and then travels to node n83 with an IRM value of 0.72.
Lastly, MPS3 serves node nll with an IRM value of 0.95.
Meanwhile, the normally-open RCS between n49 and n71
are closed to facilitate the DS service restoration. Similarly, in
another damage scenario where branches L8, L10, L62 and
L63 are damaged, all 3 MPSs are assigned to participate in
the restoration process. The results show that MPS1 (located at
station 2) immediately begins the restoration process at node
n65 and then travels to restore n92 with an IRM value of
0.799. MPS2 (located and station 2) first serves node n59
with an IRM value of 0.985 and reaches node n83 with a
13-minute delay (IRM equal to 0.789). Located at station 1,

events: IEEE 33-node test system.
MPS3 serves n9 with the IRM value of 0.973. Note that the
normally-open RCS between 1749 and n71, and also between
n55 and n117 are closed to facilitate the DS restoration.
% Station1] — | n20am | —| n9207 | Damage Scenario:
L8(n8,n9)
@5 Station 1| —= 528 (0.94) — | n830.729) ‘ L]O(n9,n15) L]7(n15‘n56)
@3,'1,” s
Damage Scenario:

@3 Station 2 n65(1.00) — | n920.799)
L8(n8,n9) L10(n8, nl5)

@5 Station 2| —= | 390989 | — | 3@z | LO2(162,165) L63(n65, n72)
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Fig. 5. MPSs assignments for restoration: IEEE 123-node test system.
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B. Computational Efficiency

We now compare the computational efficiency of the
MINLP model MPSOM solved with the Baron solver and of
the MILP model R-MPSOM solved with the Gurobi solver.
The tolerance level for each solver is set to 0.01%. To carry
out this analysis, we generate 4 single-line and 6 multi-line
damage scenarios for each test system. Table I and Table II
report the computational time for the two models under single-
line and multi-line damage scenarios, respectively.

For all single-line damage scenarios in the IEEE 33-
node test system, one can observe from Table I that (i) the
MINLP model MPSOM is solved to optimality (tolerance
level < 0.01%) within 1 hour, and (ii) the optimal solutions
for the MILP model R-MPSOM are obtained much faster
than those for the MINLP model MPSOM. In particular,
Table I shows that the MILP problem’s solution time for
scenario S1 (resp., S2, S3, and S4) for the IEEE 33-node
test system is of 2.51 seconds (resp., 1.72, 1.19, and 1.22)
while, for the MINLP problem, it amounts to 39.33 seconds
(resp., 38.2, 19.55, and 14.45). This indicates that the MILP
problem can be solved 15.6 (resp., 22.2, 16.5, and 11.8) times
quicker than the MINLP problem for scenario S1 (resp., S2,
S3, and S4). Focusing on the IEEE 123-node test system,
the results presented in Table I show that the MINLP model
could not be always solved to optimality within 1 hour (e.g.,
S1 and S2 with respective optimality gaps of 0.11% and
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0.12%). However, the suggested MILP model R-MPSOM
could always be solved to optimality very quickly. These
observations once again attest to the increased difficulty of
solving a nonconvex MINLP problem and the benefits of the
developed linearization procedure.

Similar observations prevail for the multi-line damage sce-
narios whose results are given in Table II. The MILP model
R-MPSOM is solved to optimality very quickly for each
scenario. However, the MINLP formulation could only be
solved in one hour for seven of the twelve tested scenarios
(i.e., six of those correspond to the IEEE 33-node test system
and one to the IEEE 123-node test system). The solution time
of the MILP model is, on average, around 45 times smaller
than that of the MINLP model (4.18 sec. vs. 190.06 sec.).

The analyses over all outage scenarios in both test systems
(see Table I and Table II) demonstrate that, despite having
a (much) larger number of decision variables and linear
constraints, the linearity feature — and the resulting convexity
of the continuous relaxation — makes it significantly faster to
find the optimal solution and to prove its optimality with the
proposed MILP model. The scalability of the MILP model
makes it employable for larger and more complex instances.

TABLE I

COMPUTATIONAL PERFORMANCE COMPARISONS UNDER SINGLE-LINE
DAMAGE SCENARIOS

IEEE 33-Node Test System

Scenarios Damaged Computation Time (sec.)
(S) Line MILP MINLP
S1 L1 2.515 39.328
S2 L2 1.719 38.188
S3 L3 1.188 19.547
S4 L4 1.224 14.453

IEEE 123-Node Test System

Scenarios Damaged Computation Time (sec.)
(S) Line MILP MINLP
S1 L1 144256 3600 (0.11%%*)
S2 L2 1631.933 3600 (0.12%%*)
S3 L8 1712.688 3600 (0.15%%)
S4 L10 1952.921 3600 (0.16%%*)

*Optimality gap for MINLP model after one hour

TABLE II
COMPUTATIONAL PERFORMANCE COMPARISONS IN MULTI-LINE
DAMAGE SCENARIOS

IEEE 33-Node Test System

Scenarios Damaged Computation Time (sec.)
S) Lines MILP MINLP
S1 L2-L18-L22 2.828 45.109
S2 L5-L6-L25 1.578 31.375
S3 L3-L4-L19-1L22 4.906 78.984
S4 L5-L24-L25-L26 4.297 224.203
S5 L2-L3-1.19-L22-1.23 9.032 683.25
S6 L5-L6-L7-L24-L25 2.453 77.438

IEEE 123-Node Test System

Scenarios Damaged Computation Time (sec.)
S) Lines MILP MINLP
S1 L8-L10-L17 538.594 3600 (0.044%%*)
S2 L17-L21-L23 100.188 1548.58
S3 L8-L10-L62-163 1083.58 3600 (0.053%%*)
S4 L21-L23-L70-L71 244.406 3600 (0.061%%*)
S5 L8-L10-L17-L62-L63 1575.75 3600 (0.091%%*)
S6 L10-L16-L17-L62-L63  1430.86 3600 (0.059%%*)

*QOptimality gap for MINLP model after one hour

C. Modeling Endogenous Uncertainty in the Waiting Time for
Restoration: Quantification of Benefits

To further evaluate the IRM metric in DS restoration, we
here compare the proposed R-MPSOM formulation (with
waiting times modeled as endogenous uncertainties) with
traditional approaches in which either only travel times are
considered and waiting times are ignored (Case 1) or busy
probabilities and waiting times are estimated as a fixed pa-
rameter set prior to solving the optimization model (Case 2).

The mathematical formulation for Case 1 model — which
ignores waiting times — reads as follows:

max Z ai(p? — ki — PPry) — Z St

i€B meM

= >3 Cinttoni

meM keK ieB

s.to (4a) — (4e), (4g) — (6¢), (8a) — (9e), (13b) — (13p)

t; <1 1€ B (17b)

T’iilfti i1€B (17C)
Note that constraints (17b) and (17¢) are analogous to (le)
and (4f) since the waiting times are ignored: vy, = w; =
0,7eB, ke K,me M.

To obtain the mathematical formulation for Case 2, we
assume that the busy probability of each MPS, and therefore
the waiting times associated with each MPS assignment, is
known and computed ex-ante. The assumed MPSs’ busy
probability is denoted as 7, and can be estimated as the
ratio of the average number of requests per hour to the
product of the number of MPSs that are deployed by the
average service time per request [38]. This approximation ex-
ante of the (assumed) busy probability, also called normalized
workload, is commonly used in the literature (see, e.g., [38]).
We accordingly update the objective function as:

S~ PO(1- (3 (T + 7)) (18)
i€B keK meM

As a result, the model R-MPSOM-W corresponding to Case
2 in which the busy probability is the same for each MPS and
is a fixed parameter estimated ex-ante reads:

max Z ai(pd —vy) — Z Z Z Cikbombi

i€B meM keK i€B

=Y P (1 = pmki(Tik +7Tm)> - Stk

i€B kEK meM meM
(19a)

s.to (4a) — (4e), (4g) — (6¢), (8a) — (9e), (13b) — (13k),
(13m) — (13p)

(17a)

vi= Y > (Ti+ Tm)Bouks ieB (19b)
keK meM

SN tki(Ti + ) <1 ieB (19)

keK meM

Note that the sum of bilinear terms ji,,x;p¢ weighted by
the parameters (T} + 7,,) can be exactly reformulated and
linearized with the McCormick inequalities (13m)-(13p) which
forces Bki := umkipf. The linear constraint (19b) ensures
that the new variable 1v; is equal to the weighted sum of
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the variables f3,,x; introduced in the linearization process.
Constraint (19¢) guarantees that the MPSs’ service time to
restore node ¢ could not exceed the maximum admissible time
for system restoration (i.e., < 1).

We postulate that there is value to be gained if the en-
dogenous uncertainty in the waiting time is accounted for. We
aim to demonstrate that the traditional approaches (Case I and
Case II) may lead to an inaccurate estimation of the restoration
benefits primarily due to their simplifying assumptions on
the availability of the MPSs. We calculate the added value
(additional restoration benefit) obtained by endogenizing the
uncertainty in MPSs’ availability and waiting times. To do
so, we compare the proposed R-MPSOM model that ac-
counts for endogenous uncertainty with the R-MPSOM-T
and R-MPSOM-W models. In the following, we formalize
the approach taken to check the validity of the assumptions
underlying models R-MPSOM-T and R-MPSOM-W and
to quantify the value of properly modeling the endogenous
uncertainty in the availability of MPSs and in the resulting
waiting time for power restoration:

1) Solve model R-MPSOM. Let Z* be its optimal value
and (x*, u*) be its optimal solution. The vector x is the
concatenation of all (except u) decision variables.

2) Solve:

e Model R-MPSOM-T with no waiting times. Let
(xT*, uT*) denote the optimal solution.

« Model R-MPSOM-W with fixed MPSs’ availability
and waiting times computed ex-ante. Let (xWV*,
1"V*) be the optimal solution.

3) Set (fix) pmi; equal to:

. ,u%c ;- Calculate the resulting optimal value obtained
by using the optimal solution of R-MPSOM-T
in R-MPSOM. Denote the resulting value of the
objective function by Z7*,

o p!V¥. Calculate the resulting optimal value obtained
by using the optimal solution of R-MPSOM-W
in R-MPSOM. Denote the resulting value of the
objective function by ZW*.

4) Calculate the value of accounting for endogenous uncer-
tainty in waiting times versus assuming that:

o MPSs are immediately available (no waiting times):
Z*-77x,

o There is no uncertainty in MPSs’ availability:
ARVALLS

TABLE 1II

ACTUAL MPSS’ AVAILABILITY WITH MODELS R-MPSOM-T AND
R-MPSOM-W: IEEE 123-NODE TEST SYSTEM

Actual MPSs’ Availability

MPS1 MPS2  MPS3

Damaged Lines R-MPSOM-T  0.7625  0.651 0.6745
L8-L10-L17 R-MPSOM-W  0.8875 0.6225  0.666
Damaged Lines R-MPSOM-T 0.655  0.7365  0.7625
L8-L10-L62-L63 R-MPSOM-W 08615 0.8875  0.509
Damaged Lines R-MPSOM-T 0.7625 0.6595  0.7365
L8-L10-L17-L62-L63 R-MPSOM-W  0.526  0.8615  0.8875

We first investigate whether the assumed MPSs’ availability
is the same as (or close to) the actual MPSs’ availability

corresponding to the optimal solutions of models R-MPSOM-
T and R-MPSOM-W. The actual availability of an MPS
depends on its workload, i.e., the time needed to serve the
interrupted nodes to which it has been assigned. The actual
availability of MPS m, called the availability probability, is
denoted by p,,, and calculated as:

pm=1—= > > (ot + Tons)

i€B\{1} keK

meM  (20)

We can compare the assumed and actual availability of MPSs.
Table III provides the results for different damage scenarios
in the IEEE 123-node test system. Note that the same three
scenarios are represented in Figure 5.

Table III shows the fallacy of the underlying assumptions
for models R-MPSOM-T and R-MPSOM-W:

e R-MPSOM-T model assumes that each MPS is always
available to serve the interrupted nodes (i.e., the assumed
MPSs’ availability is set to one). The issue with this
strategy can be seen by comparing the assumed vs. actual
MPSs’ availability (p,,,) values. For all test scenarios, the
actual MPSs’ availability vary between 0.651 and 0.7625
which violates the assumption of immediate MPSs’ avail-
ability. This indicates that waiting times should be taken
into account and that R-MPSOM-T model — that ignores
them — is not to be trusted.

e R-MPSOM-W model assumes that the MPSs’ busy
probabilities, and therefore the waiting times associated
with each MPS assignment, are all equal, known ex-ante,
and set to a fixed value. The assumed MPS’ availability
is 1 — m,, with 7, calculated as explained above. This
gives the following assumed MPSs’ availability for each
scenario: 0.85 for L8-L10-L17 damaged lines scenario,
0.83 for L8-L10-L62-L63 damaged lines scenario, and
0.8 for L8-L10-L17-L62-L63 damaged lines scenario.
We observe first from Table III that the actual availability
differs for each MPS in all test scenarios. This obser-
vation violates the model’s assumption that each MPS
has the same availability (i.e., same busy probability).
Additionally, the actual availability of the MPSs differs
from the assumed availability. The actual availability is
almost always lower than the assumed one. For exam-
ple, the assumed MPSs’ availability for the L8-L10-
L17 damaged lines scenario is fixed to 0.85, while the
actual availability of the three MPSs is: 0.8875, 0.6225,
and 0.666. This illustrates the discrepancy between the
assumed and actual availability of MPSs associated with
the optimal solution of model R-MPSOM-W. This points
out that model R-MPSOM-W is not suitable and chal-
lenges the validity of its underlying assumptions. More
precisely, this indicates that the MPSs’ availability and
waiting times cannot be assumed known prior to solving
the optimization model.

Table IV and V report and compare the values of Z*,
ZT*, and Z"* obtained for several single-line and multi-
line damage scenarios in the IEEE 33-node and 123-node test
systems. For each tested scenario, differences of (Z* — Z7*)
and (Z* — Z™*) are always strictly positive, which confirms
the need to account for the endogenous uncertainty in the IRM
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metric. The obtained results show that the busy probability of
each MPS, and therefore the waiting times associated with
each MPS assignment, should not be modeled as a fixed
parameter due to the loss in the total restoration benefit.
Contrary to the model with an estimated busy probability and
waiting times that requires re-estimations for each damaged-
line scenario, modeling waiting time as an endogenous source
of uncertainty allows for levels of adaptivity to any delays
and MPS travel settings that might be realized during the
real-world HILP incidents. The endogenization of the waiting
time as an endogenous uncertainty can be viewed as a new
and promising modeling avenue that permits to achieve more
realistic service restoration plans.

TABLE IV
RESTORATION BENEFITS: VALUES OF Z*, ZT* AND ZW* FOR THE
SINGLE-LINE DAMAGE SCENARIOS

IEEE 33-Node Test System

Scenarios (S) zZ* ZT+ A AN AR AN A
S1 671023 669107 669742 1916 1281
S2 592340 584936 590824 7404 1516
S3 381717 380235 381380 1482 337
S4 356577 355055 356200 1522 377

IEEE 123-Node Test System

Scenarios (S) Z* ZT* A AN A AN A
S1 464104 461083 462055 3021 2049
S2 448216 445180 446166 3036 2050
S3 445201 442191 443178 3010 2023
S4 429938 426897 427655 3041 2283

TABLE V

RESTORATION BENEFITS: VALUES OF Z*, ZT* AND ZW* FOR THE
STUDIED MULTI-LINE DAMAGE SCENARIOS

IEEE 33-Node Test System

Scenarios (S) z* AR A AN A AN AL
S1 661561 656992 657461 4569 4100
S2 348425 348187 348253 238 172
S3 637642 633543 634206 4099 3436
S4 447145 445903 446379 1242 766
S5 630886 612814 613578 18072 17308
S6 432418 402513 403468 29905 28950

IEEE 123-Node Test System

Scenarios (S) zZ* ZT+ A AN AR AN A
S1 444985 444012 444353 973 632
S2 407722 407635 407674 87 48
S3 445032 444199 444640 833 392
S4 402162 402105 402138 57 24
S5 445071 443887 444395 1184 676
S6 429876 428452 428794 1424 1082

VI. CONCLUSION

This paper proposed a service restoration optimization
model that utilizes MPSs for enhancing the DS resilience
when facing extreme emergencies. We introduced the concept
of node immediate restoration metric (IRM) to make optimal
MPSs scheduling decisions to deliver resilience services. The
IRM for each interrupted node depends on the travel and
waiting times for an MPS to reach that node, and was thereby
modeled as an endogenous source of uncertainty. The proposed
problem takes the form of an MINLP optimization model.
An efficient linearization method was designed to reformulate
it as an equivalent MILP formulation, which can be solved
faster and more efficiently. Extensive numerical results on two

test systems and over a variety of outage scenarios clearly
highlighted the benefits of the reformulation method and the
efficacy of the proposed approach in boosting the power
distribution network resilience against HILP extremes. Addi-
tionally, the value of endogenous uncertainty considerations
in the use of MPSs for service restoration was quantified
and compared with the traditional MPSs modeling approaches.
The analyses of the results demonstrated that the traditional
models overestimate the actual availability of the MPSs and
the resilience benefits, while the proposed model capturing
endogenous uncertainties offer a more realistic estimation of
the MPSs contributions to DS resilience enhancement.

In general, knowledge on the intensity of an HILP event
and the resulting damaged branches in the DS can signifi-
cantly impact the optimal decisions on MPS deployment for
resilience delivery in the network. While the focus of this
paper was solely on modeling and assessment of endogenous
uncertainties in the MPS availability for service restoration
in the DS, future research could explore the problem with
a stochastic programming formulation accounting also for
external (exogenous) sources of uncertainty, including but
not limited to the uncertain realization of the extreme event
and damaged scenarios, intermittent renewable resources, and
variable electrical demand. The explicit modeling and repre-
sentation of such uncertainties would lead to the formulation
of risk-averse stochastic programming problems including,
for example, chance constraints or conditional value-at-risk
constraints. Additionally, the proposed formulation with en-
dogenous uncertainty can be used within a rolling horizon
framework [5] that can supersede a larger-scale multi-period
optimization solution process with a series of the proposed

static optimization problems rolled over time.
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