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Abstract—Electrification is known as the greatest engineering
achievement in the 20st century, as its drives our daily lives
and the operation of mission-critical systems and services. Any
disruption in the electric power delivery infrastructure could im-
pose catastrophic economical, social, environmental, and political
consequences. Even though there are concerted efforts to mitigate
or predict the power outages that may lead to larger-scale
blackouts, the data made available by the U.S. Department of
Energy (DOE) during 2015-2022 on electric emergency incidents
and disturbances in the U.S. indicate that there is an increase
in frequency and duration of power outages across the country.
In this paper, we discuss a user-friendly visualization tool, a
power grid outage dashboard, that sheds some lights on the
patterns behind, regional vulnerability, and impacts of these
outages. The developed dashboard helps in decision-making on
the future allocation of funds and reinforcement investments to
tackle the power outages in an effort to build a more reliable
power system. Several examples indicate the importance of
finding better forecasting and mitigation techniques for power
system outages driven by some particular events and in different
geographical regions across the U.S.

Index Terms—interrupted customers, NERC regions, outage
causes, outage impacts, outage trends, power outages.

I. INTRODUCTION

Electric power systems worldwide are being revolutionized
by the growing digitalization and penetration of new tech-
nologies such as wide-area monitoring systems (WAMS) and
a variety of renewable energy resources (e.g., solar and wind)
with complex control procedures [1]. While such investments
on grid modernization are primarily targetted to improve the
power grid situational awareness, operational efficiency, and
the reliability of the electric service delivery to end-use con-
sumers, we have been observing an increase in the frequency
and duration of electricity outages in the U.S., in some cases
resulting in catastrophic blackouts. While the increased com-
plexity of the system operation and control, random equipment
failures, protective relay’s miss-operations, and now-and-then
cyber adversaries are all contributing to power outages, the
climate change-driven severe weather events (e.g., hurricanes,
storms, and extreme temperature) are found to be the major
driver of the electricity outages in the U.S. [2], [3]. The
recurrent power outages and blackouts in recent years calls
for new solutions, tool, and decision-making platforms for
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a variety of stakeholders to help enhance the reliability and
resilience of the electric power systems against power outages
in general and extreme weather events in particular.

Reference [4] proposed a two-stage restoration scheme to
facilitate the distribution system restoration following the high-
impact low-probability (HILP) seismic disasters. Furthermore,
[5] introduced an advanced model predictive control (MPC)
based scheme to control the distributed energy resources
(DERs), minimize the impact of transients and disruptions,
speed up the response and recovery of particular system
functions, and maintain an acceptable operational reliability.
In [6], a multi-objective mixed integer linear programming
optimization problem was formulated to minimize the amount
of load curtailments and generation operation costs when a
power system is impacted by a hurricane while adhering to
system operational and technical constraints.

With the increased frequency of power outages, their pre-
diction has attracted some research attention as emerging tech-
nologies became abundantly available such as high-resolution
measurements from phasor measurement units (PMUs) and the
growing developments in data-driven online optimization and
machine learning (ML) techniques. For instance, [7] proposed
a framework that predicts power outages based on the current
weather conditions using graph neural networks (GNNs). In
addition, [8] utilized a satellite-based Visible Infrared Imag-
ing Radiometer Suite (VIIRS) night light data product as a
surrogate for the power delivery to predict hurricane-induced
power outages in areas having limited access to historical data
records. Also, [9] proposed a data-driven model to predict
the number of distribution network users that may experience
power outages when a typhoon passes by.

With all the abundant research efforts and developments
to mitigate and predict power outages, the U.S. Department
of Energy’s (DOE) Electric Disturbance Events Annual Sum-
maries (OE-417) [10] have evidenced an increase in the
frequency of power outages. Reference [11] indicated that
the frequency of large blackouts in the U.S. is not decreasing
from 1998 to 2006. Reference [12] provided a comprehensive
analyses of large-scale power outages in the U.S. from 2002
to 2019, where it discussed the power outage data in different
states across the U.S. In this study, we report and discuss our
recent developments in building a power outage dashboard that
presents and visualizes the spatio-temporal trends in power
outages across the U.S. and demonstrates the causes and the
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main drivers behind the power outages. Furthermore, in the
developed dashboard, the number of affected customers as
well as the amount of power outage with the corresponding
spatial and temporal characteristics under various types of
outage-inducing events are visualized. The proposed dash-
board will help grid planners and decision-makers understand
the regional vulnerabilities to power outages, and facilitate
making informed decisions on future investments and grid
reinforcements for structural resilience.

The rest of this paper is organized as follows: Section II
introduces the sources of the data and the data filtering and pre-
processing approach implemented in the developed dashboard.
Section III discusses the spatio-temporal trends, causes, and
impacts of the U.S. power outages during 2015-2022, and
Section IV summarizes the research findings.

II. DOE’s ELECTRIC DISTURBANCE EVENTS DATABASE

To enhance the public availability of data for research and
developments, the U.S. DOE requires electric utility compa-
nies to report any type of power outages within their regional
territory, specifically named “form OE-417” report [10], [11].
In this study, we focus only on the time interval from 2015
to 2022 as the DOE transformed the way data is captured i1
2015. The available dataset focuses on the time, month, anc
the date the power outage happened and restored, the affectec
states and the North American Electric Reliability Corporatior
(NERC) regions, the event type, the amount of power outage
(demand loss), the number of customers affected, and any aler
criteria indicated. Focusing on 2015-2022 interval, a total o
2,430 events are analyzed in this study.

A. Data Pre-processing and Filtering

To build the power grid outage visualization dashboard, th
downloaded data from the DOE dataset must be filtered anc
pre-processed. The pre-processing was done using Python 3.1(
and the visualization was accomplished using Microsoft Powe
BI platform [13]. The following steps are conducted:

o The sever weather events include those driven by win-
ter temperatures, wind, thunderstorms as well as those
resulted from severe weather and a natural disaster.

o The physical attack events cover the actual physical
attacks, the actual physical evens, the suspected physical
attacks, and the potential physical attack events.

e The sabotage events include the ones with and without
operation actions.

« Removed any extra spaces originally existing in the
dataset that could lead to miss-counting or miss-
classification of power outages.

o Created a separate outage entry for power outages in
the dataset that are attributed to multiple event types.
The number of affected customers and the amount of
demand loss were accordingly assumed to be equally
shared between all newly-generated outage events.

o Created a separate outage entry per NERC region [14]
for power outages that are recorded in multiple NERC re-
gions. The number of affected customers and the amount
of demand loss were accordingly assumed to be equally
shared between all newly-generated outage events.

o Assumed that the RF NERC region entry in the dataset
is the same as that of the Reliability First Corporation
(RFC) and that for SPP RE is the same as the one for
Southwest Power Pool (SPP).

III. CAUSES, TRENDS, AND IMPACTS OF THE RECORDED
POWER OUTAGES IN THE U.S.

A. Causes

After pre-processing and filtering the recorded data as
described in Section II-A, we here shed some lights on the
causes and the primary drivers behind these power outages.
The studied events were recorded from 2015 to 2022, the
statistics on which are shown in Fig. 1. This figure also
illustrates the percentage frequency of each event happened
through the years. Clearly, one can see that around 50% of
the power outages lately are due to sever weather events
such as thunderstorms, heat waves, or cold waves all driven
by climate change. It is also worth noting that 17% of the
total power outages are due to system operation mistakes, i.e.,
human error, 14% are due to vandalism, and 10% are due to
transmission interruptions. Comparing these observations with
those reported in [11], one can clearly notice a significant
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Fig. 1. Frequency (in %) and types of outage-inducing events in the U.S.
recorded during 2015 to 2022.

B. Trends

Despite the abundant literature focused on development of
tools and mechanisms to mitigate and predict power system
outages, Fig. 2 of the developed power outage dashboard
shows an increasing trend in the total frequency of power
outages in each year from 2015 to 2021. This can be seen
in some specific events such as sever weather, system opera-
tions, vandalism, and transmission interruptions. Additionally,
since 2019 (post COVID), the number of outage events is
observed on the rise significantly. Furthermore, Fig. 3 shows a
closer look at less-frequent outage events, where it highlights
that there is an increasing trend recorded for the suspicious
activities, a decreasing trend is found for sabotage events,
and a stable trend is observed for those event driven by
power generation adequacy and physical attacks. Figure 4 from
the proposed power outage dashboard illustrates the monthly
power outages occurred from 2015 to 2022. It indicates that
the months with most recorded power outages are February,
September, and July. This could be expected as these months
are known for their extreme hot and cold weather realizations
such as the blackout and outage events that happened in the
state of Texas due to the cold storm in February 2021.
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Fig. 2. The yearly frequency of power outages recorded from 2015 to 2022.
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Fig. 3. The yearly power outages attributed to less-frequent events recorded
from 2015 to 2022.

C. Impacts

While knowledge on the main underlying drivers and trends
behind the recorded power outages in the past is useful,
additional insights could be grained when the location of the
outages and impacts they leave to the society are quantified and
studied. Figure 5 from the developed power outage dashboard
illustrates the percentage frequency of power outages recorded
in each region within the NERC territory during 2015 to
2022. It indicates that most power outages occurred at the
Western Electricity Coordinating Council (WECC), followed
by the Southeastern Electric Reliability Council (SERC) and
Northeast Power Coordinating Council (NPCC), respectively.
In addition, Fig 6 from the developed power outage dashboard
shows the total amount of power outages recorded per NERC
region annually from 2015 to 2022. Some key findings from
Fig 6 are highlighted in the following:

o On average, WECC, RFC, Texas Reliability Entity (TRE)
and SERC regions demonstrate an increasing trend in the
realized power outages.

e On average, Florida Reliability Coordinating Council
(FRCC), SPP, and Puerto Rico (PR) regions are attributed
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Fig. 4. The monthly frequency of power outages recorded from 2015 to 2022.
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Fig. 5. Frequency (in %) of power outages for each NERC region recorded
during 2015 to 2022.

a better performance with decreasing trends of power
outages through the years.

o Since 2019 (Post COVID), the frequency of power out-
ages at Midwest Reliability Organization (MRO) region
has increased significantly.

Since each NERC region is composed of several U.S.
states, Fig. 7a from the developed power outage dashboard
illustrates the U.S. map with circles on each state, the ra-
dius size of which corresponding to the frequency of power
outages. Furthermore, the circle’s colors correspond to the
NERC region in which the outage event occurred. The figure
demonstrates that the states with most recorded outages during
the analyzed interval are Texas, California, and Washington
with 265, 252, 130 recorded outages, respectively. In addition,
Table I captured from the developed power outage dashboard
shows the frequency of power outages per U.S. state and
NERC region, where most outage events are found to have
been occurred in WECC, SERC, and NPCC regions with 651,
486, and 366 recorded outages, respectively. To visualize how
each of the major outage-inducing events have affected the
U.S. states and the NERC regions, Figures 7b, 7c, and 7d
captured from the developed power outage dashboard show the
U.S. map for power outages per U.S. state and NERC region
for the following events: severe weather, system operation, and
vandalism, respectively. Figure 7b indicates the most affected
states during severe weather events from 2015 to 2022 have
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Fig. 7. Power outages across the U.S. per state and NERC region for the events recorded during 2015 to 2022.

been Texas, California, and North Carolina with 134, 72, and
47 recorded events, respectively. Additionally, some states
were not affected by such events including Montana, Utah,
Puerto Rico, and New Mexico. The most affected NERC
regions by severe weather events seem to be SERC and NPCC.
Regarding Fig. 7c, one can notice that the most affected
states by the system operation events are California, Texas,
and Maine with 41, 37, and 25 recorded events, respectively.
Interesting observation is that all states in the U.S. were
affected by this type of event. WECC and RFC regions are
found to be the most affected regions by the system operation
events. Figure 7d shows that the most affected states by
vandalism events are California, Washington, and Utah all
from the WECC region with 55, 30, and 28 recorded events,

respectively. This implies that this event type highly impacts
the WECC region and its served communities, calling for
the development and deployment of effective mitigation and
prediction techniques and strategies.

In order to visualize the underlying drivers behind the
power outages in the most-affected NERC regions, Fig. 8
captured from the developed power outage dashboard shows
the U.S. map for power outages per U.S. state and event type
recorded during 2015-2022 for most-affected NERC regions
(i.e, WECC, SERC, and NPCC). Figure 8a indicates that
WECC region is heavily affected by the three outage events:
system operations, vandalism, and transmission interruptions.
Unlike the other NERC regions, the severe weather event is not
the main contributor to power outages in the WECC region.
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TABLE I
FREQUENCY OF POWER OUTAGES PER U.S. STATE AND NERC REGION
RECORDED DURING 2015 TO 2022
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According to Fig 8a, California and Washington are the states
that were impacted the most by these event categories. On the
other hand, the SERC and NPCC regions were highly affected
by the severe weather event as shown in Fig. 8b and Fig. 8c,
as mentioned earlier. As shown in these figures, most states
in the SERC and NPCC regions are affected mainly by severe
weather events; some states are also affected by other types
of events, such as Kentucky and Tennessee from the SERC
region and New York from the NPCC region.

There is a need to minimize power outages due to their
tendency to cause a great deal of environmental damages and
economical losses in the society. For instance, the number
of customers affected is a measure of how influential a
power outage was. Figure 9 captured from the developed
power outage dashboard presents a treemap for the number
of affected customers per months and event type during 2015
to 2022. Clearly, many customers were affected in the months
of August, September, and February. Even though February is
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Fig. 8. Power outages per U.S. state and event type recorded during 2015 to
2022 for most affected NERC regions.

Another measure of how severe a power outage was is
the amount of demand loss. Therefore, the developed power
outage dashboard presents a treemap on the amount of demand
loss (in MW) per month and event type during 2015 to 2022
as shown in Fig. 10. It shows that the maximum amount of
demand loss has been recorded in the months of January,
October, and August. Note that while imposing the most
significant power outage, two of these three months were not
among the months with most number of affected customers.
Also, one can conclude from Fig. 9 and Fig. 10 that the months
of November and December are those typically found with the
least number of affected customers and amount of demand
loss, which is in line with the observations made in Fig. 4.
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IV. CONCLUSION

In this paper, we presented a developed dashboard for a bet-
ter understanding of the U.S. power outages recorded during
2015 to 2022. Using the DOE’s electric emergency incidents
and disturbances dataset, the original data was filtered, pre-
processed, and inserted in the developed visualization tool. The
yearly records on power outages from 2015 to 2022 indicated
that (1) the frequency of power outages has been increasing,
(2) the most frequent power outages were found to occur in
February, August, and July, (3) the main causes behind the
recorded power outages were due to severe weather, system
operations, and vandalism events, (4) WECC, SERC, and
NPCC regions were the most affected NERC regions by power
outages, (5) unlike other NERC regions which were mainly
impacted by the severe weather event, WECC was mainly
affected by system operation, vandalism, and transmission
interruptions events, (6) some of the most affected U.S. states
by the power outages were California, Texas, Washington,
North Carolina, and Maine. Lastly, the severe weather was
found responsible for the highest number of affected customers
and amount of demand loss from 2015 to 2022. The developed
dashboard will improve the decision-making process on future
allocations of funds and investments to increase the reliability
of the power gird in response to power outages.
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