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Abstract
In women, excess androgen causes polycystic ovary syndrome (PCOS), a common fertility disorder with comorbid metabolic dysfunctions 
including diabetes, obesity, and nonalcoholic fatty liver disease. Using a PCOS mouse model, this study shows that chronic high androgen 
levels cause hepatic steatosis while hepatocyte-specific androgen receptor (AR)-knockout rescues this phenotype. Moreover, through RNA-
sequencing and metabolomic studies, we have identified key metabolic genes and pathways affected by hyperandrogenism. Our studies reveal 
that a large number of metabolic genes are directly regulated by androgens through AR binding to androgen response element sequences on 
the promoter region of these genes. Interestingly, a number of circadian genes are also differentially regulated by androgens. In vivo and in vitro 
studies using a circadian reporter [Period2::Luciferase (Per2::LUC)] mouse model demonstrate that androgens can directly disrupt the hepatic 
timing system, which is a key regulator of liver metabolism. Consequently, studies show that androgens decrease H3K27me3, a gene silencing 
mark on the promoter of core clock genes, by inhibiting the expression of histone methyltransferase, Ezh2, while inducing the expression of 
the histone demethylase, JMJD3, which is responsible for adding and removing the H3K27me3 mark, respectively. Finally, we report that under 
hyperandrogenic conditions, some of the same circadian/metabolic genes that are upregulated in the mouse liver are also elevated in nonhuman 
primate livers. In summary, these studies not only provide an overall understanding of how hyperandrogenism associated with PCOS affects 
liver gene expression and metabolism but also offer insight into the underlying mechanisms leading to hepatic steatosis in PCOS.
Key Words:  PCOS, androgen, androgen receptor, liver, circadian clock, NAFLD

Polycystic ovary syndrome (PCOS) affects 10% to 15% of 
women worldwide (1-3) and primarily causes anovulation 
and fertility problems. However, PCOS women also develop 
or are more likely to develop diseases such as nonalcoholic 
fatty liver disease (NAFLD), type 2 diabetes, hypertension, 
and cardiovascular problems (4). Currently, the origin or 
underlying mechanism of PCOS is unknown, and the PCOS 
patient population is also highly heterogeneous, including 
lean and obese PCOS patients. However, hyperandrogenism 
represents the main attribute of PCOS (5, 6). Evidence from 
human (7-11) and animal (12, 13) studies establish that an-
drogens in excess play a key role in PCOS etiology that sig-
nificantly contributes to the development of the large number 
of comorbidities such as reproductive, endocrine, metabolic, 
and psychological dysfunctions (14, 15) associated with 
PCOS (16, 17).

NAFLD is one of the most common chronic 
noncommunicable diseases in the Western world. Defined as 
the accumulation of fatty acid content greater than 5% of 
liver weight, NAFLD is a spectrum of diseases ranging from 
steatosis (fat accumulation) involving increased de novo syn-
thesis of lipids and fatty acids to nonalcoholic steatohepatitis, 
which is characterized by hepatic injury and inflammation 
and, with time, may progress to cirrhosis. Several studies have 
shown a link between PCOS and development of liver dys-
function such as NAFLD (18-20). Yet, direct androgen effects 
on liver metabolism and its manifestation as liver dysfunction 
in PCOS women are poorly understood. NAFLD in PCOS 
patients has been primarily viewed as a secondary outcome 
of obesity and/or insulin resistance that are often associated 
with hyperandrogenism. However, lean (21) and normal-
weight (19) women with PCOS also have an increased rate of 
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NAFLD (22, 23). Epidemiological studies show that in add-
ition to body mass index and dysglycemia, androgen excess 
is also a contributing risk factor for NAFLD development in 
PCOS (24, 25). A  recent meta-analysis study reported that 
the association of PCOS with a high risk of NAFLD is in-
dependent of obesity but correlates with hyperandrogenism 
(20). Similarly, other studies in PCOS patients have reported 
that hyperandrogenism, independent of insulin resistance, 
is significantly associated with the development of NAFLD 
in PCOS patients (26-28). While it is well established that 
obesity and/or insulin resistance causes NAFLD (29) and are 
a significant contributing factors in the development of liver 
dysfunction in PCOS, the concept that androgens can also 
directly affect liver function leading to NAFLD is now being 
considered.

Using a well-established dihydrotestosterone (DHT)-
induced PCOS mouse model, this study determines the direct 
impact of elevated androgen levels on liver steatosis. We re-
port that hepatocyte-specific androgen receptor knockout 
(hepARKO) rescues the hepatic steatosis phenotype in the 
PCOS mouse model. Furthermore, RNA-sequencing (RNA-
seq) and metabolomic analyses show key metabolic genes 
and pathways downstream of androgen actions in the PCOS 
liver. Our results show that high androgen levels associ-
ated with PCOS through epigenetic modifications disrupt 
the hepatic circadian system resulting in changes in the ex-
pression of metabolic genes associated with liver dysfunc-
tion and steatosis. Furthermore, we report similar hepatic 
gene expression pattern between PCOS mouse model and 
nonhuman primates (rhesus macaques) receiving PCOS level 
of testosterone. Androgen actions are mediated by nuclear 
and/or extranuclear signaling (30-32), and previous studies 
(33-35) in the ovary from our laboratory have shown that 
the physiological effects of androgens are mediated through 
a synergistic effect between these AR signaling pathways. 
Similar to our previous studies in the liver, we show that the 
androgen-induced modulation of the hepatic circadian system 
involves both the nuclear and extranuclear AR signaling. In 
summary, this study offers a comprehensive understanding 
and molecular insight into the effect of hyperandrogenism on 
liver metabolism and the development of NAFLD associated 
with PCOS.

Material and Methods
Ethics Statement
Mouse studies were performed in accordance with the guide-
lines for the care and use of laboratory animals and were ap-
proved by the Institutional Animal Care and Use Committee at 
Michigan State University (approval no. PROTO202000156). 
The rhesus macaque studies were conducted according to the 
National Institutes of Health Guide for the Care and Use of 
Laboratory Animals. All protocols were approved by Oregon 
National Private Research Center’s (ONPRC’s) Institutional 
Animal Care and Use Committee.

Development of PCOS Mouse Model
Postnatal day 20-21 mice of comparable body weight were 
randomly divided into 2 groups (DHT and control) and were 
implanted subcutaneously with a 90-day continuous DHT re-
lease pellet (2.5 mg of DHT; Innovative Research of America) 
(36). Control mice were implanted with a placebo pellet. 

Mice were euthanized at the end of the treatment period 
(90 days). PCOS phenotype was determined by measuring es-
trous cyclicity through vaginal smears, taken daily for the last 
30 days of treatment as described previously (36). Ovarian 
morphology was determined using hematoxylin- and eosin-
stained paraffin-embedded ovarian sections and previously 
published criteria (36, 37).

Generation of hepARKO Mice
To generate hepARKO mice, AR (exon 2) floxed mice (38) were 
mated with albumin-Cre (Alb-Cre) mice (Jackson laboratory, 
strain: B6.Cg-Speer6-ps1Tg(Alb-cre)21Mgn/J). The Alb-Cre trans-
gene has been used extensively to drive hepatocyte-specific 
recombination of a gene of interest (39). First AR-loxPflox/flox 
females were crossed with Alb-Cre males. Thereafter, the Alb-
Cre/+;AR-loxPflox/Y males were backcrossed with AR-loxPflox/flox  
females to generate Alb-Cre/+;AR-loxPflox/flox female mice 
conditionally deleted for AR in the hepatocytes. Genomic 
DNA was isolated from 18-day-old animals, and polymerase 
chain reaction (PCR) genotyping with appropriate primers 
was used to identify mice with wildtype (Wt), floxed, and 
cre transgene, revealing bands of 830, 930, and 390 bp, re-
spectively. Once female mice reached 21 days of age, a 90-day 
continuous DHT release pellet (2.5 mg of DHT; Innovative 
Research of America) (36) or placebo pellets were inserted 
into the hepARKO mice under the skin.

Triglycerides Level in Liver
Livers were cut into small pieces, and 150 to 200  mg was 
used to measure triglyceride levels using a triglyceride col-
orimetric assay kit (Fisher, NC9656167) at 540 nm readout. 
Triglyceride concentrations were normalized to total protein 
concentration and are expressed as milligrams per deciliter.

Tissue Histology Oil Red Oil Staining Assay
Liver samples were fixed overnight in 4% paraformaldehyde 
for cryosections (40). Cryosections (8-µm thick) were stained 
with Oil Red O (Abcam, ab150678). Briefly, cryosections 
were warmed at room temperature for 3 minutes and were 
then put into 100% propylene glycol. Oil Red Oil staining 
was done for 10 minutes. The sections were differentiated 
in 85% propylene glycol and counterstained with Mayer’s 
Hematoxylin Solution (Abcam, ab150678).

Metabolomics
Liver samples (~50 mg, 5 liver samples from 5 different ani-
mals/treatment, DHT vs placebo) were subjected to biphasic 
extraction using a modified Folch chloroform/methanol/
water extraction, as previously described (41) with the re-
covery of polar and semipolar metabolites in the aqueous 
upper extraction phase. Twenty nanograms of stable isotope-
labeled (D4)-glycochenodeoxycholic acid were added to each 
sample during extraction for use in the estimation of metab-
olite recovery and for relative quantitation across experi-
mental groups. Extracts were dried in a SpeedVac centrifuge 
and reconstituted in 200 μL of acetonitrile.

The liquid chromatography-mass spectrometry (LC-
MS) platform consisted of a Shimadzu Prominence high-
performance liquid chromatography coupled to a Thermo 
Scientific LTQ-Orbitrap Velos mass spectrometer. The li-
quid chromatography system included 2 LC20AD pumps, 
a vacuum degassing system, an autosampler, and a column 
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oven. The high-performance liquid chromatography column 
was a Phenomenex 2.0 mmx100 mm HILIC (3 microns, 100 
Angstrom pore size) column equipped with a guard cartridge 
of the same column chemistry. Solvent A was water containing 
50 mM ammonium formate. Solvent B was acetonitrile. The 
flow rate was 200 μL per minute, and the column oven was 
held at 25°C with the autosampler at 4°C and 5 μL of each 
sample was injected. The gradient conditions used were time 
0 to 2 minutes, 95% solvent B. Column eluant was diverted 
to waste using a 2-position 6-port valve for the first 1.5 min-
utes. From time 2 minutes to 14 minutes, Solvent B was de-
creased linearly to 50% and then held at 50% for 5 minutes. 
The column was then re-equilibrated at 95% solvent B for 10 
minutes. Column eluent was introduced to a Thermo LTQ-
Orbitrap Velos mass spectrometer via a heated electrospray 
ionization source. The mass spectrometer was operated in 
negative ion mode at 60 000 resolution using the Fourier 
transform analyzer for full-scan MS data, and data-dependent 
product ion spectra were collected on the 4 most abundant 
ions at 7500 resolution using the Fourier transform analyzer. 
The electrospray ionization source was maintained at a spray 
voltage of 4.5 kV with sheath gas at 30 (arbitrary units) and 
auxiliary gas at 10 (arbitrary units). The inlet of the mass 
spectrometer was held at 350°C, and the S-lens were set to 
35%. The heated electrospray ionization source was main-
tained at 350°C. Chromatographic alignment, isotope cor-
rection, peak identification, and peak area calculations were 
performed using MAVEN and XCMS software. Peak areas 
were normalized against the D4-glychochenodeoxycholic 
acid internal standard. Analyte m/z and retention times were 
compared against reference standards using MAVEN soft-
ware, and unknown LC-MS peaks generated by XCMS soft-
ware were searched for potential matches against the KEGG 
online database. Statistical analysis was performed using 
MetaboAnalyst software (www.metaboanalyst.ca).

Western Blot Analysis
Western blots were performed as described previously (42-44). 
Antibodies used were mouse anti-EZH2 (45), rabbit anti-
JMJD3 (46), rabbit anti-RPL19 (47), rabbit anti-H3K27me3 
(48), rabbit anti-H3 (49), rabbit anti-AR (50), and rabbit anti-
BMAL1 (51). All antibodies used were at 1:1000 dilution.

RNA Isolation and RNA-seq
Total RNA isolation, library construction, and RNA-seq 
services were carried out by Genewiz, Inc, as described pre-
viously (34, 44). For RNA-seq, total RNA was extracted 
from liver tissues isolated from placebo and DHT pelleted 
animals (n = 3 liver samples from 3 different mice/treatment) 
using Qiagen RNeasy Plus Universal mini kit following the 
manufacturer’s instructions (Qiagen, Hilden, Germany). 
RNA samples were quantified using Qubit 2.0 Fluorometer 
(Life Technologies, Carlsbad, CA, USA) and RNA integ-
rity was checked using Agilent TapeStation 4200 (Agilent 
Technologies, Palo Alto, CA, USA). RNA integrity number 
for all the samples was between 9.7 to 10. RNA-seq li-
braries were prepared using 500 ng RNA, and the NEBNext 
Ultra RNA Library Prep Kit for Illumina, following the 
manufacturer’s instructions (NEB, Ipswich, MA, USA). The 
sequencing library was validated on the Agilent TapeStation 
(Agilent Technologies, Palo Alto, CA, USA) and quantified 
by using Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, 

USA), as well as by quantitative PCR (KAPA Biosystems, 
Wilmington, MA, USA). The sequencing libraries were clus-
tered on a single lane of a flow cell. After clustering, the flow 
cell was loaded on the Illumina HiSeq instrument (4000 or 
equivalent) according to the manufacturer’s instructions. The 
samples were sequenced using a 2 × 150 bp paired-end con-
figuration. The total number of reads/sample was 45 to 50 
million. Image analysis and base calling were conducted by 
the HiSeq Control Software. Raw sequence data (.bcl files) 
generated from Illumina HiSeq were converted into fastq files 
and demultiplexed using Illumina’s bcl2fastq 2.17 software. 
One mismatch was allowed for index sequence identification.

Bioinformatics Analysis for RNA-seq
Raw data quality was judged based on Illumina’s Q score, 
which represents the error rate at each base, built on a log10 
score. Thereafter, sequence reads were trimmed to remove 
possible adapter sequences and nucleotides with poor quality 
using Trimmomatic v.0.36. The trimmed reads were mapped 
to the reference Mus musculus GRCm38 genome available on 
ENSEMBL using the STAR aligner v.2.5.2b. The STAR aligner 
uses a spliced aligner that detects splice junctions and incorp-
orates them to help align the entire read sequences. BAM 
files were generated as a result of this step. Unique gene hit 
counts were calculated using feature Counts from the Subread 
package v.1.5.2. Only unique reads that fell within exon re-
gions were counted. After extraction of gene hit counts, the 
gene hit counts table was used for downstream differential ex-
pression analysis. Using DESeq2 R package, differentially ex-
pressed genes (DEGs) were identified between placebo (n = 3) 
and DHT pelleted (n = 3). The heat maps were constructed 
using log-transformed values obtained from RNA-seq data 
followed by z-normalization. The Wald test was used to gen-
erate P-values, and the Benjamini-Hochberg test was used for 
adjusted P-value. Genes with adjusted P-values ≤ 0.05 and ab-
solute log2 fold changes > 0.5 were called DEGs for each com-
parison. For gene ontology analysis, significant DEGs were 
clustered by their gene ontology, and the enrichment of gene 
ontology terms was tested using Fisher exact test (GeneSCF 
v1.1-p2). Pathways with P-values ≤ 0.05 were considered sig-
nificant. A list of all the DEGs is shown in the supplemental 
(Table 1) (52). The RNA-seq data are available in the Gene 
Expression Omnibus (accession no. GSE197765) (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197765).

Quantitative Real-Time PCR
Quantitative real-time PCR (qRT-PCR) was performed by ∆/∆Ct 
method as described previously (34, 43) using 1 μg of RNA for 
all the qRT-PCR reactions with TaqMan gene expression assay 
primers (assay IDs: Mm00840032_m1-Kdm5c, Mm00432554_
m1-Cidea, Mm00617672_m1-Cidec, Mm00840165_g1-Fgf21, 
Mm00500223_m1-Arntl, Mm00440940_m1-Ppar-γ, Mm0120 
4084_m1-Ppp1r3c, Mm00442759_m1-Chka, Mm00475794_
m1-Plin2, Mm00475772_m-Adcy6, Mm00455950_m1-clock, 
Mm00503358_m1-Mogat1, Mm00507980_m1-Agxt, Mm013 
51475_g1-Hint2). Each target gene was normalized to Rpl19 
(Mm02601633_g1-Rpl19). For Rhesus monkey, gene expres-
sions primers used were Rh01555643_m1-Arntl, Rh02897 
526_g1-Clock, Rh00985430_m1-Hmgcs2, Rh04254609_
g1-Ddit3, Rh02787680_m1-Ppar-γ, Rh07255046_m1-Fgf2, 
and Rh02852283_m1-Mogat1. Each target gene was normalized 
to Rpl32 (Rh02811772_s1-Rpl32).
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Chromatin Immunoprecipitation Assay
A chromatin immunoprecipitation assay (ChIP) was per-
formed using the MAGnify Chromatin Immunoprecipitation 
System (Invitrogen) as previously described (34, 43, 44, 
53). Chromatin fragments were immunoprecipitated with 
Dynabeads coupled with rabbit anti-H3K27me3 ChIP grade 
antibody (54), rabbit anti-AR ChIP grade antibody (50), 
and rabbit anti-BMAL1 ChIP grade antibody (51). Rabbit 
immunoglobin G as a nonspecific control and 1 µg per ChIP 
reaction were used. Quantitative PCR was performed using 
PerfeCTa SYBR Green Supermix, ROX (VWR, cat no. 95055-
500) with primers designed within 1000 bp from transcrip-
tion start sites (TSS; identified using the Eukaryotic Promoter 
Database) of the mouse promoters.

In Vitro and In Vivo Liver Tissue Recordings of 
Per2::LUC Expression
All LumiCycle studies were carried out in female Per2::LUC 
circadian reporter mice (Jackson Laboratory, strain: 
B6.129S6-Per2tm1Jt/J) (55). For in vivo studies, Per2::LUC 
mice were inserted with a 90-day continuous DHT release 
pellet (2.5 mg of DHT; Innovative Research of America) (36), 
and livers were removed after 90 days of DHT pellet treat-
ment. Control mice were implanted with a placebo pellet. 
For in vitro studies, 6-week-old Per2::LUC mice (untreated) 
were used. For both the in vitro and in vivo experiment, the 
liver was removed immediately and placed in ice-cold Hanks’ 
Balanced Salt Solution for approximately 30 to 60 minutes. 
Small (~3 × 2 mm) liver sections were placed individually on 
a 30-mm MilliCell membrane (Millipore-Sigma) in a 35-mm 
cell culture dish containing Dulbecco’s modified Eagle’s 
medium with high glucose (no phenol red), 10  μM N-2-
hydroxyethylpiperazine-N′-2-ethane sulfonic acid, 1% peni-
cillin/streptomycin, 2% B27 supplement, and 1 mM luciferin 
(BD Biosciences). For the in vitro studies, liver sections were 
treated with media alone (control) or 25 nM or 1 μM DHT. 
The lid was sealed to the plate using vacuum grease to ensure 
an airtight seal. Plated tissues were loaded into a LumiCycle 
luminometer (Actimetrics) inside a 35°C nonhumidified in-
cubator at ZT6-6.5, and recordings were started. The bio-
luminescence was counted for 70 seconds every 10 minutes 
for 6  days (day 1-7 of recording time). Per2::LUC rhythm 
data were analyzed using LumiCycle Analysis software 
(Actimetrics) by an experimenter blind to the experimental 
group. To allow the tissue to recover and stabilize from sec-
tioning, the data collected from the first 24 hours of culture 
were not included in the data analysis. Data were normalized 
by subtraction of the first 24 hours and fitted to a dampened 
sine wave (LM fit, damped) model. The period was defined 
as the time in hours between the peaks of the fitted curve. 
Amplitude was defined as the amplitude of the fitted sine 
wave. Phase relationships were analyzed via Rayleigh test of 
uniformity and a Watson’s 2-sample test of homogeneity or a 
1-criterion analysis of variance for circular data, followed by 
pairwise comparisons, and Watson’s 2-sample test of homo-
geneity using Bonferroni’s correction to accommodate family-
wise error rate, where appropriate. Phase data were reported 
in radians with circular mean deviation.

miR-101 Isolation and Detection
Total RNA was isolated using the standard Trizol isola-
tion method according to the manufacturer’s instructions, 

and RT-PCR was performed using the TaqMan MicroRNA 
Reverse Transcription Kit and mouse miR-101 TaqMan 
MicroRNA Assays (assay ID-002507; ThermoFisher 
Scientific). snoRNA202 (assay ID-001232; ThermoFisher 
Scientific) was used as endogenous control, and relative ex-
pression of miR-101 was calculated using the ∆/∆Ct method.

Nonhuman Primate PCOS Model
Liver samples from nonhuman primate (female rhesus ma-
caques) PCOS model were obtained from Oregon Primate 
Center, Oregon Health and Science University (Portland, 
OR, USA). Female rhesus macaques at 2.5 years of age were 
treated with cholesterol implants (controls) or testosterone 
implants (mean serum levels: 1.35 ± 0.01 ng/mL) as described 
previously (56, 57) for 5 years prior to collection of liver sam-
ples used in this study.

Statistical Analysis
Statistical analysis was performed using GraphPad 
Prism version 7 (GraphPad Software) and RStudio 
2021.09.2 + 382  “Ghost Orchid” release. Statistical com-
parisons were made by paired/unpaired Student’s t-test (for 
comparing 2 groups), a 1-way analysis of variance followed 
by Dunnett’s (for comparing multiple groups). Results with 
P < 0.05 were considered significant.

Results
Direct Androgen Actions Through the Hepatic 
Androgen Receptor Cause NAFLD Associated 
With PCOS
Many animal models of PCOS have been developed using 
prenatal, postnatal, or peripubertal androgen treatment 
(58-61). For our studies, we used a well-established (36, 37) 
PCOS mouse model involving subcutaneous implantation of 
a long-term (90-day) continuous slow-releasing DHT pellet 
in prepubertal (21-day-old) female mice to induce a PCOS 
phenotype. DHT (nonaromatizable) was used instead of tes-
tosterone to avoid any confounding effects arising from the 
aromatization of testosterone (estrogenic effects). The DHT 
pellet animals had 5× higher serum DHT levels (578.3 ± 22.8 
vs 115.6 ± 12.5 pg/mL; enzyme-linked immunosorbent assay, 
Alpha Diagnostics International, assay sensitivity 6 pg/μL), 
were slightly overweight, had higher fasting (food deprived, 
water only for 24 hours), and fed blood glucose level (Accu-
Chek glucometer, Roche) (Fig. 1A) compared to placebo ani-
mals at the end of the treatment (37). Moreover, similar to 
previous studies (59-60), our results in supplemental Fig. S1 
show that all the DHT-treated animals were acyclic (52), de-
veloped cystic ovaries (52), and had significant hepatic stea-
tosis (lipid and triglyceride accumulation) (Fig. 1A and B).

To determine the direct impact of androgens on liver 
steatosis, we created a hepARKO mouse model by crossing 
AR-floxed (38) with albumin-Cre mice and then inserted 
DHT pellets in these animals. The validation of the hepARKO 
is shown in the supplemental (Fig. S2) (52). The AR mes-
senger RNA (mRNA) and protein levels were barely detect-
able in the livers of hepARKO animals compared to Wt and 
heterogenous littermates. Moreover, AR mRNA and protein 
levels were not altered in the ovary, demonstrating the tissue-
specificity of the AR depletion in the liver. Results show that in 
hepARKO DHT pellet-treated animals, body weight, and fed 
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Figure 1.  Chronic high levels of androgens significantly cause hepatic steatosis. (A) Metabolic features, (B) Oil Red O staining of liver sections, and 
(C) liver triglyceride levels isolated from wild-type (WT) and hepatocyte-specific androgen receptor knockout (hepARKO) mice after 90 days of placebo 
or dihydrotestosterone (DHT) pellet treatment. Data are the mean ± SE of the mean (n = 6 mice/treatment group). *P ≤ 0.01 vs placebo using 1-way 
analysis of variance followed by Dunnett’s multiple comparison test). (D) Hierarchical clustering shown as heatmap of lipid classes in livers isolated 
from placebo (control) or DHT (treated) pellet mice (n = 5 mice/treatment). (E) Important lipid classes identified by partial least squares-discriminant 
analysis (PLS-DA) and represented as the average of the variable importance in projection (VIP) scores. The boxes on the right indicate the relative 
concentrations of the corresponding lipid class in each group (placebo-control vs DHT-treated) (F) Hierarchical clustering shown as heatmap of 
metabolites isolated from livers of placebo (control) or DHT (treated) pellet mice (n = 5 mice/treatment). (G) Important metabolites identified by PLS-DA 
and represented as the average of the VIP scores. The boxes on the right indicate the relative concentrations of the corresponding metabolites in each 
group (placebo control vs DHT-treated). (H) Graphical presentation of metabolome pathways in the liver impacted by DHT pellet treatment.
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and fasting blood glucose levels, as well as hepatic steatosis 
phenotype, are completely rescued (Fig. 1A-1C) compared to 
DHT pellet-treated mice. Without DHT treatment (and under 
normal chow), hepARKO-placebo mice were similar to Wt 
placebo animals (Figs. 1A-1C), which is in accordance with 
previous studies (62).

High Androgen Levels Alter the Hepatic 
Metabolomic Milieu
Metabolomic studies (LC-MS) in liver samples from DHT 
and placebo pellet-treated animals reveal a significant in-
crease in liver triglyceride and total lipid content in the DHT 
pellet-treated animals. Figure 1D and 1F shows a heatmap 
representing hierarchical clustering of all significant lipids 
(Fig. 1D) and metabolites (Fig. 1F) in livers from placebo 
vs DHT pellet-treated animals. We analyzed the data by a 
supervised, multivariate classification technique [partial least 
squares-discriminant analysis (PLS-DA)] to separately assess 
the overall segregation of the samples for placebo and DHT 
pellet-treated livers. Based on the PLS-DA model for placebo 
and DHT pellet-treated samples, we extracted lipids and me-
tabolites that contributed significantly to the differentiation 
between placebo and DHT pellet-treated livers by using 
variable importance in projection (VIP) scores as a quanti-
tative estimation. VIP scores were extracted for components 
1 and 2 that showed a clear separation between placebo and 
DHT pellet-treated samples [PLS-DA score plots shown in 
supplemental (Fig. S4) (52)]. Figure 1E and 1G represents 
VIP score plots of lipids and metabolites, respectively, from 
livers of DHT pellet (treated) and placebo (control) animals. 
Results show total all lipids, including monoglycerolipids, 
triglycerolipids, glycerolipid, and diglycerides, as well as 
total lysophosphatidylcholine, were significantly increased 
in livers isolated from DHT pellet-treated animals compared 
to placebo animals. In contrast, total ceramide-1-phosphate, 
e-phosphatidyl serine, total polar sphingolipids, total 
plasmalogen, sulfatide lipids, and total e-phosphatidylcholine 
were some key lipid classes that were significantly lower in 
DHT pellet-treated livers vs placebo. A  list of lipid features 
and metabolites identified in DHT pellet-treated livers vs pla-
cebo by fold-change analysis is shown in the supplemental 
(Fig. S4) (52). Pathway analysis (Fig. 1H) of liver metabolites 
reveals that the citrate cycle, pyrimidine metabolism, amino 
acid (alanine, aspartate, and glutamate) metabolism, and 
glyoxylate and dicarboxylate metabolism to be the most af-
fected metabolic pathways in the DHT pellet-treated livers 
compared to placebo. Detailed results of the pathway analysis 
are provided in the supplemental (Fig. S4) (52).

High Androgen Levels Alter Hepatic Transcriptome
To further understand the overall impact of androgen excess 
on liver function, we next performed an RNA-seq study in 
DHT-treated vs placebo control liver samples. DESeq2 ana-
lysis identified a total of 787 annotated significant Ensembl 
DEGs. Out of these genes, 361 were upregulated, and 426 
were downregulated genes. Hierarchical clustering of all the 
significant DEGs in placebo vs DHT pellet-treated livers is 
shown in Figure 2A, while the global transcriptional change 
across the 2 groups compared (placebo vs DHT) is represented 
by a volcano plot in Figure 2B. The complete list of significant 
DEGs is presented in the supplemental (Fig. S1) (52). Based on 
established hepatic functions, 5 upregulated DEGs (Kdm5c, 

Cidea, Cidec, Fgf21, and Pparγ) and 2 downregulated DEGs 
(Agxt and Hint2) were selected for validation of the RNA-seq 
data by qRT-PCR. Figure 2C shows that mRNA abundance 
of Kdm5c, Cidea, Cidec, Fgf21, and Pparγ are significantly 
elevated while Agxt and Hint2 were downregulated in livers 
isolated from DHT pellet-treated animals compared to pla-
cebo animals. Results show that some key metabolic genes 
known to be upregulated in NAFLD, such as Cidea and Cidec 
(cell death-inducing DFFA like effector A and C; involved in 
lipid storage and formation of large lipid droplets) (63), (Fig. 
2C), Pparγ (proliferator-activated receptor gamma; nuclear 
receptor) (64) (Fig. 2C), Fgf21 (fibroblast growth factor 21; 
regulator of carbohydrate and lipid metabolism) (65, 66) (Fig. 
2C), Chka (choline kinase alpha; plays a key role in phospho-
lipid biosynthesis) (Fig. 2C), Plin2 (perilin-2; encodes lipid 
droplet protein used as a marker of lipid droplets) (67), and 
Mogat1 (monoacylglycerol acyltransferase; contributes to 
hepatic glyceride pools) (68, 69) are upregulated in the livers 
of DHT pellet animals compared to placebo. In contrast, 
genes such as Agxt (alanine-glyoxylate aminotransferase; 
breakdown of fats and removing toxic substances) (70, 71) 
(Fig. 2C), Hint2 (histidine triad nucleotide binding protein 
2; involved in mitochondrial function) (72) (Fig. 2C), and 
Prdx4 (peroxiredoxin; protects against oxidative damage) 
(73) known to be decreased in NAFLD are downregulated in 
the livers of DHT pellet-treated animals compared to placebo 
(Fig. 2G). Notably, the expression of Kdm5c, Cidea, Cidec, 
Fgf21, Pparγ, Agxt, Hint2, Chka, Ppp1r3c, Plin2, Adcy6, and 
Mogat1 were not upregulated in the livers from hepARKO-
DHT mice (Fig. 2C). The expression of these genes in livers 
isolated for hepARKO-placebo mice were similar to placebo 
pellet-treated animals. This suggests that while androgens are 
not essential for expression of hepatic genes in females, under 
hyperandrogenic conditions, the expression of these genes are 
upregulated by androgens in the liver. In silico analysis re-
vealed that a large number of the DEGs have ≥1 AR element 
(ARE) sequences in the promoter and/or distal (within 1 Kb) 
region, thereby suggesting that most of these genes are regu-
lated directly by AR, rather than secondary effects of hormone 
exposure. To further verify that AR, through direct ARE 
binding, regulates the expression of these genes, ChIP-qPCR 
studies with AR antibody were performed. Results show that 
DHT treatment increases AR binding to AREs located on the 
promoter region of the previously mentioned genes and is sig-
nificantly lower in hepARKO animals (Fig. 2D).

Biological pathway analysis (Fig. 2E) revealed genes of 
different categories and pathways were altered in livers iso-
lated from DHT pellet-treated mice compared to placebo. 
Metabolic process, cell proliferation, and immune system 
process in the liver were some of the key pathways primarily 
affected by high androgen levels. Given that the metabolic 
process was the single largest biological pathway affected by 
hyperandrogenism, we focused our studies on these metabolic 
genes to gain further insight into androgen actions in the liver. 
Our studies show that out of the total 787 DEGs, 236 were 
metabolic genes, out of which 103 were upregulated and 133 
were downregulated. Figure 2F represents the hierarchical clus-
tering of all the significant metabolic DEGs in placebo vs DHT 
pellet-treated livers, and the top 12 up- and downregulated 
metabolic genes are shown in Figure 2G. Biological pathway 
analysis by gene ontology of the metabolic genes (supple-
mental Fig. S3) shows that lipid storage and its regulation, fat 
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cell differentiation, and fatty acid metabolic process are some 
of the key biological processes affected in the liver by the 103 
upregulated metabolic genes (52). In contrast, epoxygenase 
P450 pathway, eicosanoid metabolic process, and unsaturated 
fatty acid metabolic process are the top pathways affected by 
the upregulated metabolic genes (52).

High Androgen Levels Associated With PCOS Affect 
a Number of Hepatic Circadian Genes
Interestingly, 240 circadian genes were also differentially regu-
lated (127 upregulated and 113 downregulated) in the livers of 
DHT pellet-treated mice compared to placebo. The circadian 

clock is an endogenous timing system that drives numerous 
physiological processes (74). The circadian timing system is a 
key regulator of liver metabolism as hepatic health is main-
tained by proper timing of metabolic gene expression (75-77). 
In humans, variations in transcription factors involved in cir-
cadian rhythms are associated with NAFLD susceptibility and 
progression (78). The molecular clock is an autoregulatory 
transcription based feedback loop oscillator consisting of a 
group of transcriptional regulators referred to collectively as 
clock genes (79). The core loop (Fig. 3A) includes the tran-
scriptional activator, brain and muscle arntl-like1 (BMAL1) 
and its binding partner CLOCK, a histone acetyltransferase 

Figure 2.  High level of androgen changes the hepatic transcriptomic profile. (A) Hierarchical clustering is shown as a heatmap of differentially expressed 
sorted by adjusted P-value by plotting their log2 transformed expression values in samples (n = 3 mice/treatment). (B) Volcano plot representing the 
global transcriptional change across the groups compared. Each data point in the scatter plot represents a gene. Genes with an adjusted P ≤ 0.05 
and a log2 fold change ≥ 1 are indicated by red dots and represent upregulated genes. Genes with an adjusted P ≤ 0.05 and a log2 fold change ≤ −1 
are indicated by green dots and represent downregulated genes. (C) Relative expression of Kdm5c (lysine-specific demethylase 5C), Cidea, Cidec 
(cell death-inducing DFFA-like effector A and C), Fgf21 (fibroblast growth factor 21), Pparγ (proliferator-activated receptor gamma), Agxt (alanine-
glyoxylate aminotransferase), and Hint2 (histidine triad nucleotide binding protein 2) and metabolic genes Chka (choline kinase alpha), Ppp1r3c (protein 
phosphatase 1 regulatory subunit 3C), Plin2 (perilipin 2), Adcy6 (adenylate cyclase 6), and Mogat1 (monoacylglycerol O-acyltransferase 1) messenger 
RNA levels by quantitative real-time polymerase chain reaction in livers isolated from wild-type placebo and dihydrotestosterone (DHT) pellet-
treated mice as well as hepatocyte-specific androgen receptor knockout (hepARKO) mice treated with placebo or DHT pellets. Data are displayed as 
means ± SE of the mean (n = 6 mice/treatment) and normalized to Rpl19. *P ≤ 0.05, **P ≤ 0.01 vs placebo using 1-way analysis of variance followed by 
Dunnett’s multiple comparison test). (D) Anti-AR chromatin immunoprecipitation assay in livers isolated from wild-type placebo and DHT pellet-treated 
mice as well as hepatocyte-specific AR knockout (hepARKO) mice treated with DHT-pellet, showing AR binding to different AR element sequences 
on Cidea [P1: −289 bp, P2:−119 bp, and P3: 4 bp from transcription start site (TSS)], Cidec (−102 bp from TSS), Pparγ (−463 bp from TSS) and Kdm5c 
(−744 bp from TSS) promoter region. Immunoglobulin G (IgG) represents a nonspecific antibody. Values represent percentage input. Data are displayed 
as mean ± SE of the mean (n = 6 mice/treatment). *P ≤ 0.05 for P3 Cidea and Cidec, **P ≤ 0.01 for Kdm5c and Pparγ vs placebo using Student’s 
t-test (E) Gene ontology analysis of enriched pathways in the differentially expressed gene sets. (F) Hierarchical clustering is shown as a heatmap 
of differentially expressed metabolic genes sorted by adjusted p-value by plotting their log2 transformed expression values in samples (n = 3 mice/
treatment). (G) List of top 12 up- and downregulated metabolic genes.
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that drives the expression of several genes, including the re-
pressors Period (Per1, Per2, Per3) and Cryptochrome (Cry1, 
Cry2). PER and CRY in a negative feedback loop act as po-
tent repressors of BMAL1:CLOCK-dependent transcription 
(Fig. 3A). BMAL1:CLOCK and PER:CRY are considered the 
core clock genes. Our results show that the mRNA expression 
of both Bmal1 (Arntl) and Clock (Fig. 3B) as well as protein 
level of BMAL1 (Fig. 3B, inset) are significantly elevated in 
livers from DHT pellet-treated animals compared to placebo 
mice, and AR ablation in DHT pellet-treated animals restore 
BMAL1 protein to placebo levels (Fig. 3B, inset). In addition 
to the core clock genes, the BMAL1L:CLOCK complex also 
drives the rhythmic expression of a multitude of cell-specific 
genes, collectively termed “clock-controlled genes” (Fig. 3A) 
that underlie rhythms of cellular activity. In the liver, there 
are several clock-controlled genes that are critical to normal 
liver function (80). Therefore, to understand the effect of 
androgen-induced changes of clock-controlled hepatic gene 
expression on liver metabolism, we compared the differen-
tially expressed circadian genes to metabolic genes. Results 
show that there were 48 upregulated and 45 downregulated 
clock-controlled metabolic genes in DHT pellet-treated livers 
compared to placebo (Fig. 3C). Figure 3D represents the 
hierarchical clustering of all the clock-controlled metabolic 
DEGs in placebo vs DHT pellet-treated livers; the top up- and 
downregulated clock-controlled metabolic genes are shown 
in Figure 3E.

Based on these studies, we hypothesized that in the liver, 
high androgen levels associated with PCOS increase the 

expression of Bmal1 and Clock, which in turn induces the 
expression of different metabolic genes resulting in hepatic 
steatosis. To prove this hypothesis, we performed ChIP-qPCR 
with BMAL1 antibody on the promoter region of Mogat1 
(BMAL1 binding site determined by in silico analysis). Results 
show significant BMAL1 binding on the promoter region of 
Mogat1 under hyperandrogenic conditions compared to con-
trol (placebo-treated), which is reversed with liver-specific ab-
lation of AR (Fig. 3F).

High Androgen Levels Associated With PCOS 
Disrupt the Circadian Timing-System in the Liver 
Through Epigenetic Modifications
To determine the effect of high androgen levels on the hepatic 
clock, we developed a DHT pellet-induced PCOS mouse model 
using a well-established knock-in mouse (Jackson Lab) that 
expresses a PER2::LUC fusion protein, allowing for real-time 
ex vivo monitoring of molecular clock function. Liver tissue 
from DHT and placebo pellet-treated animals were collected, 
and bioluminescence was continuously recorded (counts per 
second) with an automated luminometer as described in the 
Materials and Methods section (55). Figure 4A shows rep-
resentative traces of PER2::LUC expression in liver explants 
from DHT and placebo pellet-treated mice. Results show that 
chronic high androgen level disrupts the circadian timing 
system in the liver. DHT pellet-treated liver samples showed 
high amplitude (Fig. 4B), but there was not a significant 
phase shift (Fig. 4C) between DHT and placebo pellet-treated 
livers with respect to the peak expression of PER2::LUC. 

Figure 3.  High level of androgen affects the expression of a large number of hepatic circadian genes important for liver metabolism. (A) Schematic 
of the molecular clock. (B) Relative expression of core clock genes, Arntl1/ Bmal1 (brain and muscle arntl-like 1) and Clock (clock circadian regulator) 
messenger RNA levels by quantitative real-time polymerase chain reaction in livers isolated from wild-type placebo and dihydrotestosterone (DHT) 
pellet-treated mice. Data are displayed as means ± SE of the mean (n = 6 mice/ treatment) and normalized to Rpl19.*P ≤ 0.01 for Arntl/Bmal1, 
**P ≤ 0.05 for Clock vs placebo using Student’s t-test. Representative immunoblots (inset) showing total protein levels of BMAL1 in liver samples 
isolated from wild-type mice treated with placebo pellet, DHT pellet, and hepatocyte-specific androgen receptor (AR) knockout mice treated with 
placebo or DHT pellet. RPL19 protein level was used as internal control. (C) The total number of up- and downregulated metabolic genes regulated 
by the hepatic circadian clock was identified by comparing the total number of differentially regulated circadian and metabolic genes. (D) Hierarchical 
clustering is shown as a heatmap of differentially expressed circadian metabolic genes sorted by adjusted P-value by plotting their log2 transformed 
expression values in samples (n = 3 mice/treatment). (E) List of top 9 up- and downregulated circadian-metabolic genes. (F) Anti-BMAL1 chromatin 
immunoprecipitation assay in livers isolated from wild-type placebo and DHT pellet-treated mice as well as hepatocyte-specific AR knockout (hepARKO) 
mice treated with DHT pellet, showing BMAL1 binding on Mogat1 promoter region (−104 bp from transcription start site). Immunoglobin G (IgG) 
represents a nonspecific antibody. Values represent percentage input. Data are displayed as mean ± SE of the mean (n = 6 mice/treatment). *P ≤ 0.05 
vs placebo using 1-way analysis of variance followed by Dunnett’s multiple comparison test.
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Both placebo (0.21820 rad ± 0.327; Rayleigh = 0.9174, 
P = 0.0019) and DHT pellet-treated (−0.28360 rad ± 0.327; 
Rayleigh = 0.9252, P = 0.0016) livers exhibited a significant 
mean direction for their phase (Watson’s 2-sample test of 
homogeneity = 0.0764, P > 0.10).

To determine whether the expression of Bmal1 (Arntl) is 
directly regulated by androgens through AR-ARE interaction, 
we initially scanned in silico for AREs on the Bmal1 (Arntl) 
promoter region that revealed 1 ARE binding site (Fig. S5) 
(−592 from TSS). However, ChIP-qPCR studies show no 
AR binding to this ARE site on the Bmal1 promoter in liver 
samples isolated from DHT pellet-treated mice compared 
to placebo pellet-treated mice (52). Previous studies from 
our laboratory have reported that in addition to regulating 
gene expression through AR-ARE interaction, androgens can 
also regulate/influence the expression of genes via epigen-
etic modulation. Our studies in the ovary (33, 34) show that 
H3K27me3 (trimethylation of lysine 27 on histone 3), which 
is a gene repressive mark, is a downstream target of androgen 
actions. We have reported that androgen-induced decrease of 
H3K27me3 is mediated through (1) inhibiting the expression 
and activity of enhancer of zeste homologue 2 (EZH2), a his-
tone methyltransferase that promotes trimethylation of K27 

through inducing the expression of a microRNA, miR-101, 
that targets Ezh2 expression (33), and (2) by inducing the 
expression of a histone demethylase called Jumonji domain 
containing protein-3 (JMJD3/KDM6B) (34), responsible for 
removing the H3K27me3 mark (Fig. 4D). In our effort to 
elucidate the underlying mechanism of how androgens regu-
late Bmal1 expression, we assessed androgen-induced modu-
lation of H3K27me3 in liver samples isolated from DHT 
and placebo pellet-treated animals. Results show that under 
hyperandrogenic conditions, there was a significant decrease 
in H3K27me3 in mouse liver, while hepatic EZH2 levels were 
decreased and JMJD3 levels were elevated (Fig. 4E). The ex-
pression of miR-101 was also upregulated in livers of DHT 
pellet-treated mice (Fig. 4F). Furthermore, ChIP-qPCR assays 
with H3K27me3 antibodies on the Bmal1 promoter region 
show significantly lower H3K27me3 levels in liver samples 
isolated from DHT-pellet vs placebo animals (Fig. 4G). In 
contrast, these effects were completely reversed in hepARKO 
animals treated with DHT pellets (Fig. 4E-4G). These studies 
establish that Bmal1 expression is regulated by androgen-
induced decrease of H3K27me3.

To further demonstrate that androgens directly disrupt 
the hepatic circadian system, in vitro studies using liver 

Figure 4.  Elevated androgen levels disrupt the circadian timing system in the liver through epigenetic modulation. (A) Representative traces of 
Period2::Luciferase (PER2::LUC) expression in liver explants from dihydrotestosterone (DHT) and placebo pellet mice. The peak of the tissue from DHT-
pellet animals peaks slightly earlier than the placebo pellet-treated mice, indicating that DHT reduces the peak-to-peak time, thus advancing the overall 
peak of PER2 expression over 5 days. (B) The amplitude of the first 2 peaks of PER2::Luc luminescence was calculated by LM fit (damped sine) method 
(LumiCycle analysis, Actimetrics) from liver tissues isolated from placebo and DHT pellet-treated mice. Data are displayed as mean ± SE of the mean 
(n = 6 mice/ treatment). *P ≤ 0.05 vs placebo using Student’s t-test. (C) The time of day of the first PER2::LUC peak was used to establish the phase of 
the studied tissue. Phase relationship is represented in radians with circular mean deviation. The mean of the first peak is indicated by the vector lines 
and symbols indicate individual data points. Rayleigh test of uniformity revealed clustering of the studied tissues, indicated by arrowheads crossing 
the dotted circle (P = 0.05). (D) Schematic showing androgen-induced regulation of H3K27me3 mark. (E) Representative immunoblots showing total 
protein levels of EZH2, JMJD3, and H3K27me3 in liver samples isolated from wild-type mice treated with placebo pellet, DHT pellet, and hepatocyte-
specific androgen receptor knockout (hepARKO) mice treated with DHT pellet. RPL19 and H3 protein levels are used as internal controls. (F) Relative 
expression of miR-101 by quantitative real-time polymerase chain reaction in livers isolated from wild-type mice treated with placebo pellet, DHT pellet, 
and hepARKO mice treated with DHT pellet. Data are displayed as means ± SE of the mean (n = 3 mice/ treatment) and normalized to snoRNA202. 
*P ≤ 0.01 vs placebo using Student’s t-test. (G) Anti-H3K27me3 chromatin immunoprecipitation assay in livers isolated from wild-type placebo and 
DHT pellet-treated mice as well as hepARKO mice treated with DHT pellet, showing H3K27me3 enrichment on Arntl (Bmal1) promoter region (within 
500 bp from transcription start site). Immunoglobin G (IgG) represents a nonspecific antibody. Values represent percentage input. Data are displayed as 
mean ± SE of the mean (n = 6 mice/treatment). *P ≤ 0.05 vs placebo using 1-way analysis of variance followed by Dunnett’s multiple comparison test.
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explants isolated from PER2::LUC mice cultured with 
DHT (25 nM and 1 μM) or vehicle control were performed. 
For the in vitro studies, the amplitude and phase shift of 
PER2::LUC expression (Fig. 5A-5C) were significantly dif-
ferent between control and DHT treatment. For phase shift 
analysis (Fig. 5C), all groups passed the Rayleigh test of 
uniformity, with control (Rayleigh = 0.696, P < 0.0001), 
1  μM (Rayleigh = 0.9413, P < 0.0001), and 25  nM 
(Rayleigh = 0.9659, P < 0.0001) all exhibiting a significant 
mean phase. The circular analysis of variance involving a 
high concentration F-test [F(21,59) = Inf, P < 0.0001] (81, 
82) and subsequent post hoc Watson’s 2-sample test of 
homogeneity revealed significant differences in the timing 
of the phase between the control (0.4977 rad ± 0.615) and 
both the 1 μM DHT treatment dose (0.1132 rad ± 0.273; 
Watson’s = 0.2028, 0.01 < P < 0.05) and the 25 nM DHT 
treatment dose (0.04071rad ± 0.223; Watson’s = 0.3019, 
0.001 < P < 0.01). Moreover, similar to in vivo studies, in 
vitro treatment of liver tissues with 25 nM DHT (24 hours) 
caused a significant decrease in EZH2 and elevated JMJD3, 
resulting in lower H3K27me3 levels (Fig. 5D). Moreover, 
in accordance with in vivo studies (Fig. 3B, inset), in vitro 

studies also show that 25 nM of DHT treatment increases 
the BMAL1 protein levels (Fig. 5D), as well as upregulated 
the expression of miR-101 (Fig. 5E). Flutamide, an AR 
inhibitor, blocked these DHT effects, thereby mimicking 
the results observed in the hepARKO-DHT animals. 
Furthermore, ChIP-qPCR assays with H3K27me3 anti-
bodies on the Bmal1 promoter region show significantly 
lower H3K27me3 levels in liver tissues treated with DHT 
(Fig. 5F).

High Androgen Levels Also Alter Key Hepatic 
Metabolic and Circadian-Metabolic Genes in a 
Nonhuman Primate PCOS Model
To determine whether the changes in hepatic gene expres-
sion by high androgen levels are conserved in primate spe-
cies, we extended our findings from the mouse PCOS model 
to a rhesus monkey PCOS model (Fig. 6). Results show 
that chronically elevated androgen not only increases the 
expression of core clock genes, Arntl/Bmal1 and Clock, 
but also the expression of several metabolic genes, such as 
Ddit3 (DNA damage inducible transcript 3 encoding for C/
EBP homologous protein), Fgf21, Mogat1, and Pparγ. In 

Figure 5.  In vitro androgen treatment of liver tissues mimic in vivo effects with respect to disruption of the circadian timing system and epigenetic 
modulations. (A) Representative traces of Period2::Luciferase (PER2::LUC) expression in liver explants treated in vitro with vehicle only (control) and 
25 nM and 1 μM of dihydrotestosterone (DHT) for 5 days. (B) The amplitude of the second peak of PER2::Luc luminescence was calculated by LM fit 
(damped sin) method (LumiCycle analysis, Actimetrics) from liver tissues treated in vitro with vehicle only (control) and 25 nM and 1 μM of DHT for 
5 days. Data are displayed as mean ± SE of the mean (n = 20 samples/treatment). *P ≤ 0.01 vs control using Student’s t-test. (C) The time of day of the 
first PER2::LUC peak was used to establish the phase of the studied tissue. Phase relationship is represented in radians with circular mean deviation. 
The mean of the first peak is indicated by the vector lines and symbols indicate individual data points. Rayleigh test of uniformity revealed clustering 
of the studied tissues, indicated by arrowheads crossing the dotted circle (P = 0.05). (D) Representative immunoblots showing total protein levels of 
BMAL1, EZH2, JMJD3, and H3K27me3. Total protein levels of RPL19 and H3 were used as internal controls (E) Relative expression of miR-101 by 
quantitative real-time polymerase chain reaction (RT-PCR) in liver samples treated (24 hours) in vitro with vehicle only (control) and 25 nM of DHT in 
presence or absence of flutamide (100 nM). RPL19 and H3 protein levels are used as internal controls for the immunoblots. For quantitative RT-PCR, 
data are displayed as means ± SE of the mean (n = 3 experiments/treatment) and normalized to snoRNA202. *P ≤ 0.01 vs control using 1-way analysis 
of variance followed by Dunnett’s multiple comparison test). (F) Anti-H3K27me3 chromatin immunoprecipitation assay in liver tissues treated (24 hours) 
in vitro with vehicle only (control) and 25nM of DHT, showing H3K27me3 enrichment on Arntl (Bmal1) promoter region (within 500 bp from transcription 
start site). Immunoglobin G (IgG) represents a nonspecific antibody. Values represent percentage input. Data are displayed as mean ± SE of the mean 
(n = 6 experiments/ treatment). *P ≤ 0.01 vs control using Student’s t-test.
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addition, clock-controlled metabolic genes, such as Hmgcs2 
(3-hydroxy-3-methylglutaryl-CoA synthase 2), are also 
upregulated in livers isolated from PCOS rhesus monkeys 
(Fig. 6).

Discussion
This study highlights 3 major points (Fig. 7). First, direct an-
drogen actions through the AR in the liver are a contributing 
factor to the hepatic steatosis seen in hyperandrogenic con-
ditions associated with PCOS. Second, it provides an overall 
understanding of all the hepatic genes and metabolic path-
ways affected by high androgen levels. Third, in addition to 
direct regulation of gene expression through AR-ARE inter-
action, high androgen levels through epigenetic modification 
alter the circadian timing system in the liver that, in turn, 
negatively affects the expression of a number of metabolic 
genes (Fig. 7).

The PCOS patient population not only is highly heteroge-
neous, consisting of lean and obese PCOS patients, but also 
the range of elevated androgen level in this population signifi-
cantly varies (83-86). To mimic this heterogeneity, different 
concentrations of DHT have been used to develop diverse 
murine models of hyperandrogenism associated with PCOS 
that manifests to various degrees of obesity and metabolic 
dysfunctions (61). The murine model developed with low 
doses of DHT (achieving 2-fold higher serum DHT levels) 
represents the lean PCOS phenotype and shows impaired 
glucose intolerance but no liver steatosis or obesity (87, 
88). Studies in this model have reported that DHT-induced 
hepatocyte insulin resistance is driven by androgen-induced 
impaired liver metabolism and is reversed by the AR antag-
onist, flutamide (88) as well as deletion of hepatic AR (87). 
The DHT dose (2.5 mg) used to develop the murine PCOS 
model in this study achieves about a 5-fold increase in serum 
DHT levels, and the animals are slightly overweight, are glu-
cose intolerant, and have liver steatosis. Also, in our model, 
deletion of hepatic AR rescues the liver steatosis phenotype. 
Similarly, animals in murine PCOS models with a very high 
DHT concentration (10 mg) develop obesity, glucose intoler-
ance, and NAFLD, but studies in these animals show that adi-
pose and brain-specific knockout of the AR could rescue these 
phenotypes (89). Based on these studies, it can be postulated 
that under low to medium hyperandrogenism, liver dysfunc-
tion (hepatic insulin resistance and hepatic steatosis) is pri-
marily regulated through the hepatic ARs. In contrast, when 
androgen levels are very high, the adipose and brain-specific 
ARs are the primary driver of liver steatosis.

Additionally, this study provides an overall view of 
how hyperandrogenism affects liver metabolism. Our 
metabolomics and RNA-seq studies reveal that high an-
drogen levels in general increase the synthesis of cholesterol 
and lipids in the liver, which is mediated by the upregulation 
of genes involved in various lipid/fatty acid metabolic path-
ways. A  number of these metabolic genes contain ARE 
sequences in the promoter region, demonstrating that an-
drogens can directly regulate these genes, thereby influencing 
liver metabolism. For example, Mogat1, which is upregulated 
in DHT pellet-treated livers, encodes monoacylglycerol 
acyltransferase that catalyzes the formation of diacylglycerol 
from 2-monoacylglycerol and fatty acyl-CoA and is the pre-
cursor of lipids such as triacylglycerol and phospholipids. 
Similarly, other upregulated genes, such as Chka, encoding for 
choline kinase alpha are involved in the biosynthesis of phos-
phatidylcholine via the cytidine diphosphate-choline pathway; 
Osbp18, encoding oxysterol binding protein-like 8 is involved 
in glycerophospholipid biosynthesis and phospholipid me-
tabolism; and Ddhd2, encoding for a phospholipase enzyme 

Figure 6.  Expression of metabolic genes in livers of a nonhuman 
primate polycystic ovary syndrome model. Relative expression of 
Arntl1/Bmal1 (brain and muscle arntl-like 1) and Clock (clock circadian 
regulator), Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthase 2), Ddit3 
(DNA damage inducible transcript 3), Fgf21 (fibroblast growth factor 21), 
Mogat1 (monoacylglycerol O-acyltransferase 1), and Ppar-γ (proliferator-
activated receptor gamma) messenger RNA levels by quantitative real-
time polymerase chain reaction in livers isolated from female rhesus 
macaques treated with control (cholesterol implants) or testosterone 
implants for 5 years. Data are displayed as means ± SE of the mean 
(n = 10 animals/ treatment) and normalized to Rpl32. *P ≤ 0.05 for Clock, 
Hmgcs2, and Fgf21; **P ≤ 0.01 for Arntl/Bmal1, Ddit3, Mogat1, and 
Ppar-γ vs control using Student’s t-test.

Figure 7.  Proposed model of androgen-induced liver dysfunction 
leading to hepatic steatosis. Androgens decrease the H3K27me3, a 
gene-silencing mark on the promoter region of circadian clock genes 
like Arntl/Bmal1 and Clock, which disrupts the circadian timing system. 
This is achieved by inhibiting the expression and activity of enhancer of 
zeste homologue 2 (EZH2), a histone methyltransferase that promotes 
trimethylation of K27 through inducing the face of a microRNA, miR-101, 
that targets Ezh2 expression and by inducing the expression of a histone 
demethylase called Jumonji domain containing protein-3 (JMJD3/
KDM6B), responsible for removing the H3K27me3 mark. These clock 
genes, in turn, regulate several metabolic genes. In addition, androgens 
also directly regulate the expression of several metabolic genes through 
the androgen receptor–mediated transcription in a clock-independent 
fashion. Both pathways lead to the development of hepatic steatosis in 
polycystic ovary syndrome mice.
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containing sterile-alpha motif, WWE, and DDHD domains, 
are involved in glycerophospholipid biosynthesis. These gene 
expression profiles correlate with our metabolomic data that 
show a high level of diacylglycerol as well as triacylglycerol, 
glycerophospholipid, and phospholipids in livers from DHT 
pellet-treated animals compared to placebo. Generally, fat ac-
cumulation arises from an imbalance between hepatic lipid 
uptake, de novo lipogenesis, and oxidation. Our RNA-seq 
data show increased expression of Elovl3, a gene encoding for 
elongation of very long-chain fatty acids protein 3 involved 
in de novo lipogenesis. Notably, livers of DHT pellet-treated 
animals also have increased expression of Pparγ, which is 
known to be involved in NAFLD (64) and has been reported 
to be high in liver steatosis (90). PPARγ regulates the expres-
sion of a number of fatty acid transporters (91), one of which 
is fatty acid translocase (CD36/FAT) encoded by Cd36, which 
is also upregulated in the DHT pellet-treated livers.

In contrast, our data suggest that a high level of androgen 
disrupts catabolism of hepatic fatty acids resulting in fat 
accumulation. This is reflected by the downregulation of a 
number of genes involved in fatty acid β oxidation [Abcd2 
(ATP-binding cassette sub-family D member 2), Eci3 (enoyl-
CoA delta isomerase 3), and Hsd17β4 (peroxisomal multi-
functional enzyme type 2)] in livers of DHT pellet-treated 
animals. While AR is primarily seen as a transcription acti-
vator, AR can also act as a transcriptional inhibitor when it 
binds to DNA at enhancers and/or promoters by assembling 
repressive complexes involving histone/DNA deacetylases 
and methylases (92). Moreover, androgens can also induce 
transcription inhibitors, which, in turn, cause repression 
of genes. Another key gene that is upregulated in the DHT 
pellet-treated livers is Fgf21, which has a large number of 
metabolic functions (93) and is used as a biomarker and a 
therapeutic target of NAFLD (66, 94). Taken together, our 
transcriptomic and metabolomic data suggest that in females 
chronic hyperandrogenemia causes the accumulation of hep-
atic fat by stimulating de novo lipogenesis and increasing free 
fatty acid uptake and catabolism, as well as overall hepatic 
lipid biosynthesis.

In addition to AR-ARE–mediated regulation of gene ex-
pression, we find that high androgen levels can also indirectly 
influence hepatic gene expression through modulation of the 
hepatic circadian timing system. Emerging evidence suggests 
that PCOS women have circadian rhythm dysfunction and 
poorer sleep than non-PCOS women (95-98). A recent study 
in 436 PCOS patients and 715 control subjects reported a 
significant association between circadian rhythm disrup-
tion and PCOS (99). Circadian rhythms are near–24-hour 
patterns of physiology and behavior that are regulated by a 
master circadian pacemaker located in the suprachiasmatic 
nucleus (SCN) of the hypothalamus (100). Daily oscillations 
of light and darkness synchronize, or entrain, the circadian 
SCN pacemaker to the 24-hour day. Tissues outside the SCN 
also have tissue-specific circadian clock (called “peripheral 
cellular clock”) that influence tissue-specific functions and 
can be synchronized by circadian-driven behaviors such as 
feeding-fasting cycles (101). The circadian timing system has 
been associated with a large number of physiological (repro-
ductive, metabolic, neuroendocrine) and pathophysiological 
conditions (102-105). It is believed that the disruption of the 
circadian system due to hyperandrogenemia is an underlying 
cause for the manifestation of various PCOS phenotypes (106, 
107). In the liver (108), there are several clock-controlled 

genes (82, 109-111) that contribute to the daily rhythms of 
metabolism (112). Mutation or genetic deletion of a number 
of the core clock genes results in impaired expression of these 
metabolic genes leading to metabolic dysfunction, including 
NAFLD (113). Moreover, previous studies have reported that 
DHT pellet treatment-induced hyperandrogenism disrupts 
the circadian timing system in the PCOS mouse model (114). 
Our results are in accordance with these previous observa-
tions and provide direct evidence of androgen-induced dis-
ruption of the hepatic clock, as well as identify the disrupted 
clock-controlled metabolic genes in the PCOS liver.

Furthermore, this study offers a mechanistic under-
standing of how high androgen levels disrupt the hepatic cir-
cadian system. The studies in the liver reported here, along 
with our recent observations in the ovary (33, 34, 115), 
clearly show that H3K27me3 is a downstream target of an-
drogen actions, and the decrease of this gene silencing mark 
through androgen-induced regulation of Ezh2, and Jmjd3 is 
conserved across tissues. Classically, ARs transcriptionally 
regulate gene expression by directly binding to AREs on the 
promoter region of the target genes. Our studies highlight 
that androgen-induced modulation of the H3K27me3 mark 
is another avenue, independent of AR-ARE actions, through 
which androgens can influence gene expression. While our 
results show that decreased levels of the H3K27me3 mark 
in the vicinity of the Bmal1 promoter enables the increased 
transcription of Bmal1, implicating it in the disruption 
of the hepatic clock, the far-reaching impact of decreased 
H3K27me3 levels on overall hepatic gene expression and 
liver metabolism cannot be discounted. For example, ex-
pression of Fgf21 and Cidea, 2 important metabolic genes 
upregulated in the DHT pellet-treated livers, are regulated 
by an Ezh2-Jmjd3–mediated decrease of H3K27me3 in glio-
blastoma stem cells (116) and adipocytes (117), respectively. 
Interestingly, downregulation of Ezh2 and the H3K27me3 
mark is also associated with hepatic steatosis, NAFLD, and 
liver dysfunction (118).

The fact that the livers of both PCOS mice and nonhuman 
primate models have the same elevated circadian and meta-
bolic genes in the liver not only demonstrates that the effects 
of chronic high androgen levels on hepatic gene expression 
are conserved but also strengthens the concept that direct an-
drogen actions in the liver may be an underlying mechanism 
for liver dysfunction associated with PCOS. Interestingly, re-
cent studies (56, 57) in the nonhuman primate PCOS model 
have reported no significant difference in the metabolic pheno-
type associated with PCOS between control and testosterone-
treated groups. However, these studies included only body 
weight/body composition measurements, glucose tolerance, 
and insulin sensitivity determination (56, 57). As mentioned 
in the introduction, hepatic steatosis in PCOS can occur in-
dependent of obesity, and while NAFLD can be detected by 
computed tomography/magnetic resonance imaging, liver bi-
opsy is the gold standard for diagnosing NAFLD. The gene 
expression data from the liver biopsies of nonhuman primate 
models presented here form the premise for a further in-depth 
investigation into the liver functions of these testosterone-
treated animals.

In summary, our findings provide insight into the effect 
and underlying mechanism of high androgen associated with 
PCOS on female liver metabolism and highlight the hep-
atic genes and metabolic pathways associated with NAFLD 
in PCOS.
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