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Abstract

Many causal processes have spatial and temporal dimensions.

Yet the classic causal inference framework is not directly appli-

cable when the treatment and outcome variables are generated

by spatio-temporal point processes. We extend the potential

outcomes framework to these settings by formulating the treat-

ment point process as a stochastic intervention. Our causal

estimands include the expected number of outcome events

in a specified area under a particular stochastic treatment

assignment strategy. Ourmethodology allows for arbitrary pat-

terns of spatial spillover and temporal carryover effects. Using

martingale theory, we show that the proposed estimator is

consistent and asymptotically normal as the number of time

periods increases. We propose a sensitivity analysis for the

possible existence of unmeasured confounders, and extend it

to the Hájek estimator. Simulation studies are conducted to

examine the estimators’ finite sample performance. Finally, we

illustrate the proposed methods by estimating the effects of

American airstrikes on insurgent violence in Iraq from Febru-

ary 2007 to July 2008. Our analysis suggests that increasing the

average number of daily airstrikes for up to 1monthmay result

in more insurgent attacks. We also find some evidence that

airstrikes can displace attacks from Baghdad to new locations

up to 400 km away.
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1 INTRODUCTION

Many causal processes involve both spatial and temporal dimensions. Examples include the envi-

ronmental impact of newly constructed factories, the economic and social effects of refugee

flows, and the various consequences of disease outbreaks. These applications also illustrate key

methodological challenges. First, when the treatment and outcome variables are generated by

spatio-temporal processes, there exists an infinite number of possible treatment and event loca-

tions at each point in time. In addition, spatial spillover and temporal carryover effects are likely

to be complex and may not be well understood.

Unfortunately, the classical causal inference framework that dates back to Neyman (1923)

and Fisher (1935) is not directly applicable to such settings. Indeed, standard causal infer-

ence approaches assume that the number of units that can receive the treatment is finite (e.g.,

Robins, 1997; Rubin, 1974). Although a small number of studies develop a continuous time causal

inference framework, they do not incorporate a spatial dimension (e.g., Gill & Robins, 2001;

Zhang et al., 2011). In addition, causal inference methods have been used for analysing func-

tional magnetic resonance imaging data, which have both spatial and temporal dimensions. For

example, Luo et al. (2012) apply randomisation-based inference, while Sobel and Lindquist (2014)

employ structural modelling. We instead focus on data generated by different underlying pro-

cesses, leading to new estimands and estimation strategies.

Specifically, we consider settings in which the treatment and outcome events are assumed

to be generated by spatio-temporal point processes (Section 3). The proposed method is based

on a single time series of spatial patterns of treatment and outcome variables, and builds

upon three strands of the causal inference literature: interference, stochastic interventions and

time series.

First, we address the possibility that treatments might affect outcomes at a future time

period and at different locations in arbitrary ways. Although some researchers have considered

unstructured interference, they assume non-spatial and cross-sectional settings (see e.g., Basse &

Airoldi, 2018; Sävje et al., 2019, and references therein). In addition, Aronow et al. (2019) study

spatial randomised experiments in a cross-sectional setting, and under the assumption that the

number of potential intervention locations is finite and their spatial coordinates are known and

fixed. By contrast, our proposed spatio-temporal causal inference framework allows for temporally

and spatially unstructured interference over an infinite number of locations.

Second, instead of separately estimating the causal effects of treatment received at each

location, we consider the impacts of different stochastic treatment assignment strategies, defined

formally as the intervention distributions over treatment point patterns. Stochastic interventions

have been used to estimate effects of realistic treatment assignment strategies (DíazMuñoz & van

der Laan, 2012; Papadogeorgou et al., 2019; Young et al., 2014) and to address challenging causal

inference problems including violation of the positivity assumption (Kennedy, 2019), interference

(Hudgens&Halloran, 2008; Imai et al., 2021),mediation analysis (Díaz&Hejazi, 2019; Lok, 2016)

andmultiple treatments (Imai & Jiang, 2019).We show that this approach is also useful for causal

inference with spatio-temporal treatments and outcomes.

Finally, our methodology allows for arbitrary patterns of spatial and temporal interference.

As such, our estimation method neither requires the separation of units into minimally interact-

ing sets (e.g., Tchetgen Tchetgen et al., 2017) nor relies on an outcome modelling approach that

entails specifying a functional form of spillover effects based on, for example, geographic dis-

tance. Instead, we view our data as a single time series of maps, which record the locations of

treatment and outcome realisations as well as the geographic coordinates of other relevant events.
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Our estimation builds on the time-series causal inference approach pioneered by Bojinov and

Shephard (2019).

We propose a spatially smoothed inverse probabilityweighting estimator that is consistent and

asymptotically normal under a set of reasonable assumptions, regardless of whether the propen-

sity scores are known, or estimated from a correctly specified model (Section 4). To do so, we

establish a new central limit theorem for martingales that can be widely used for causal infer-

ence in observational, time series settings. We also show that the proposed estimator based on

the estimated propensity score has a lower asymptotic variance than when the true propensity

score is known. This generalises the existing theoretical result under the independently and iden-

tically distributed setting (Hirano et al., 2003) to the spatially and temporally dependent setting.

Finally, to assess the potential impact of unobserved confounding, we develop a sensitivity anal-

ysis method by generalising the sensitivity analysis of Rosenbaum (2002) to our spatio-temporal

context and to the Hájek estimator with standardised weights (Section 5). We conduct simulation

studies to assess the finite sample performance of the proposed estimators (Section 6).

Our motivating illustration is the evaluation of the effects of American airstrikes on insurgent

violence in Iraq from February 2007 to July 2008 (Section 2). We consider all airstrikes during

each day anywhere in Iraq as a treatment pattern. Instead of focusing on the causal effects of each

airstrike, we estimate the effects of different airstrike strategies, defined formally as the distribu-

tions of airstrikes throughout Iraq (Section 7). The proposed methodology enables us to capture

spatio-temporal variations in treatment effects, shedding new light on how airstrikes affect the

location, distribution and intensity of insurgent violence.

Specifically, under a set of assumptions, our analysis suggests that a higher number of

airstrikes, without modifying their spatial distribution, may increase the number of insurgent

attacks, especially near Baghdad, Mosul, and the roads between them. We also find that chang-

ing the focal point of airstrikes to Baghdad without modifying the overall frequency can shift

insurgent attacks from Baghdad to Mosul and its environs. Under our assumptions, these find-

ings suggest that airstrikes can increase insurgent attacks and disperse them over considerable

distances. Furthermore, our analysis shows that increasing the number of airstrikes may initially

reduce attacks but ultimately increase them over the long run. Our sensitivity analysis indicates,

however, that these findings are somewhat sensitive to the potential existence of unmeasured con-

founders. Thus, further analyses are necessary in order for us to reachmore definitive conclusions

about the impacts of airstrikes.

The proposedmethodology has awide range of applications beyond the specific example anal-

ysed in this paper. For example, the causal effects of pandemics and crime on a host of economic

and social outcomes could be evaluated using our methodology. With the advent of massive and

granular datasets, we expect the need to conduct causal analysis of spatio-temporal data will only

continue to grow.

2 MOTIVATING APPLICATION: AIRSTRIKES AND
INSURGENT ACTIVITIES IN IRAQ

Airstrikes have emerged as a principal tool for fighting against insurgent and terrorist organisa-

tions in civil wars around the globe. In the past decade alone, the United States has conducted

sustained air campaigns in at least six different countries, including Afghanistan, Iraq and Syria.

Although it has been shown that civilians have all-too-often borne the brunt of these airstrikes

(Lyall, 2019b), we have few rigorous studies that evaluate the impact of airstrikes on subsequent
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insurgent violence. Even these studies have largely reached opposite conclusions, with some

claiming that airpower reduces insurgent attacks while others arguing they spark escalatory spi-

rals of increased violence (e.g., Dell & Querubin, 2018; Kocher et al., 2011; Lyall, 2019a; Mir &

Moore, 2019).

Moreover, all existing studies have two interrelated methodological shortcomings: they carve

continuous geographic space into discrete, often arbitrary, units, and they make simplifying

assumptions about patterns of spatial and temporal interference. Mir and Moore (2019b), for

example, argue that drone strikes in Pakistan have reduced terrorist violence. But they use a

coarse estimation strategy that bins average effects of drone strikes into broad half-year incre-

ments over entire districts that cannot capture local spatial and temporal dynamics. Similarly,

Rigterink (2021) draws on 443 drone strikes to estimate airstrike effects on 13 terrorist groups in

Pakistan, concluding that they havemixed effects. Yet their group-month estimation strategy can-

not detect spillover effects nor accurately capture the timing of insurgent responses. In short, we

need a flexiblemethodological approach that avoids the pitfalls of binning treatment and outcome

measures into too-aggregate, possibly misleading, temporal and spatial units.

We enter this debate by examining the American air campaign in Iraq. We use declassified

US Air Force data on airstrikes and shows of force (simulated airstrikes where no weapons are

released) for the February 2007 to July 2008 period. The period in question coincides with the

‘surge’ of American forces and airpower designed to destroy multiple Sunni and Shia insurgent

organisations in a bid to turn the war’s tide.

Aircraft were assigned to bomb targets via two channels. First, airstrikes were authorised in

response to American forces coming under insurgent attack. These close air support missions

represented the vast majority of airstrikes in 2007–2008. Second, a small percentage (about 5%) of

airstrikes were pre-planned against high-value targets, typically insurgent commanders, whose

presence had been detected from intercepted communications or human intelligence. In each

case, airstrikes were driven by insurgent attacks that were either ongoing or had occurred in the

recent past in a given location. As a result, the models used later in this paper adjust for prior

patterns of insurgent violence in a given location for several short-term windows.

We also account for prior air operations, including shows of force, by American and allied

aircraft. Insurgent violence in Iraq is also driven by settlement patterns and transportation net-

works. Our models therefore include population size and location of Iraqi villages and cities

as well as proximity to road networks, where the majority of insurgent attacks were conducted

against American convoys. Finally, prior reconstruction spending might also drive the location

of airstrikes. Aid is often provided in tandem with airstrikes to drive out insurgents, while these

same insurgents often attack aid locations to derail American hearts-and-minds strategies. Taken

together, these four factors—recent insurgent attacks, the presence ofAmerican forces, settlement

patterns, and prior aid spending—drove decisions about the location and severity of airstrikes.

We emphasise that wemay not observe all factors used for decisions on airstrikes.Wewill address

this limitation by developing and applying a sensitivity analysis.

Figure 1 summarises the spatial and temporal distributions of airstrikes (treatment vari-

able) and insurgent violence (outcome variable). Figure 1a presents the temporal distribution of

airstrikes recorded by the US Air Force each month. There were a total of 2246 airstrikes dur-

ing this period. Figure 1b plots the spatial locations of these airstrikes across Iraq, with spatial

clustering observed around Baghdad and the neighbouring ‘Sunni Triangle’, a hotspot of insur-

gency. Figure 1c plots themonthly distribution of insurgent attacks by type: Improvised Explosive

Devices (IEDs), small arms fire (SAF), and other attacks. A total of 68,573 insurgent attacks were

recorded by the US Army’s CIDNE database during this time period. Finally, Figure 1d plots the
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F IGURE 1 Distribution of the treatment and outcome point processes over time and space.

Plots (b) and (d) show the locations of airstrikes and insurgent attacks, respectively, during the time period 23

February 2007 to 5 July 2008. Insurgent attacks are sorted into one of three categories: Improvised Explosive

Devices (IEDs), Small Arms Fire (SAF), and other attacks. (a) Airstrikes over time; (b) Airstrikes over space; (c)

Insurgent violence over time; (d) Insurgent violence over space

locations of insurgent attacks across Iraq. Baghdad, the Sunni Triangle, and the highway leading

north to Mosul are all starkly illustrated.

3 CAUSAL INFERENCE FRAMEWORK FOR
SPATIO-TEMPORAL DATA

In this section, we propose a causal inference framework for spatio-temporal point processes. We

describe the setup, and define causal estimands based on stochastic interventions.
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3.1 The setup

We represent the locations of airstrikes for each time period (e.g. day) as a spatial point pattern

measured at time t ∈  = {1, 2, … ,T} where T is the total number of the discrete time periods.

LetWt(s) denote the binary treatment variable at location s for time period t, indicating whether

or not the location receives the treatment during the time period. We useWt as a shorthand for

Wt(Ω), which evaluates the binary treatment variableWt(s) for each element s in a set Ω. The set

Ω is not assumed to be a finite grid, but it is allowed to include an infinite number of locations

that may receive the treatment. In addition, represents the set of all possible point patterns at

each time period where, for simplicity, we assume that this set does not vary across time periods,

that is,Wt ∈  for each t. The set of treatment-active locations, that is, the locations that receive

the treatment, at time t is denoted by SWt
= {s ∈ Ω ∶ Wt(s) = 1}. We assume that the number of

treatment-active locations is finite for each time period, i.e., |SWt
| < ∞ for any t. In our study,

the treatment-active locations correspond to the set of coordinates of airstrikes. Finally, Wt =

(W1,W2, … ,Wt) denotes the collection of treatments over the time periods 1, 2, … , t.

We use wt to represent a realisation of Wt and wt = (w1,w2, … ,wt) to denote the history of

treatment point pattern realisations from time 1 through time t. Let Yt(wt) represent the potential

outcome at time t ∈  for any given treatment sequencewt ∈  t =  × · · · × , depending on

all previous treatments. Similar to the treatment, Yt(wt) represents a point pattern with locations

SYt(wt)
, which are referred to as the outcome-active locations. In our study, SYt(wt)

represents the

locations of insurgent attacks if the patterns of airstrikes had been wt. Let T = {Yt(wt) ∶ wt ∈ t, t ∈  } denote the collection of potential outcomes for all time periods and for all treatment

sequences.

Among all of these potential outcomes for time t, we only observe the one corresponding to

the observed treatment sequence, denoted by Yt = Yt(Wt). We use Yt = {Y1,Y2, … ,Yt} to rep-

resent the collection of observed outcomes up to and including time period t. In addition, let

Xt be the set of possibly time-varying confounders that are realised prior to Wt but after Wt−1.

No assumption is necessary about the temporal ordering of any variables in Xt and Yt−1. Let

T = {Xt(wt−1) ∶ wt−1 ∈  t−1, t ∈  } be the set of potential values of X under any possible treat-

ment history and for all time periods. We also assume that the observed covariates correspond

to the covariates under the observed treatment path, Xt = Xt(Wt−1), and use Xt = (X1,X2, … ,Xt)

to denote the collection of observed covariates over the time periods 1, 2, … , t. Finally, we use

Ht = {Wt,Yt,Xt+1} to denote all observed history preceding the treatment at time t + 1.

Since our statistical inference is based on a single time series, we consider all potential out-

comes and potential values of the time-varying confounders as fixed, pre-treatment quantities.

Then, the randomness we quantify is with respect to the assignment of treatment Wt given the

complete history including all counterfactual valuesH
∗

t−1whereH
∗

t = {Wt,T ,T} andHt ⊂ H
∗

t .

3.2 Causal estimands under stochastic interventions

A notion central to our proposed causal inference framework is stochastic intervention. Instead

of setting a treatment variable to a fixed value, a stochastic intervention specifies the prob-

ability distribution that generates the treatment under a potentially counterfactual scenario.

Although our framework accommodates a large class of intervention distributions, for concrete-

ness, we consider intervention distributions based on Poisson point processes, which are fully
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characterised by an intensity functionh ∶ Ω → [0,∞). For example, a homogeneous Poisson point

process with h(s) = h for all s ∈ Ω, implies that the number of treatment-active locations follows

a Poisson(h|Ω|) distribution, with locations distributed independently and uniformly over Ω. In
general, the specification of stochastic intervention should be motivated by policy or scientific

objectives. Such examples in the context of our study are given in Section 7.1.

Our causal estimands are the expected number of (potential) outcome-active locations under a

specific stochastic intervention of interest, and the comparison of such quantities under different

intervention distributions.We begin by defining the causal estimands for a stochastic intervention

taking place over a single time period. Let F
h
denote the distribution of a spatial point process

with intensity h. Also, letNB(⋅) denote a countingmeasure on a region B ⊂ Ω. Then, we can define

the expected number of outcome-active locations for a region B at time t as

NBt(Fh) = ∫
NB

(
Yt

(
Wt−1,wt

))
dF

h
(wt) = ∫

||||SYt
(
Wt−1,wt

) ∩ B
|||| dFh(wt). (1)

In our application, this quantity represents the expected number of insurgent attacks within a

region of Iraq B if the airstrikes at time t were to follow the point process specified by F
h
, given

the observed history of airstrikes up to time t − 1. The region B does not need to be defined as a

connected subset ofΩ, and it can be the union of potentially non-bordering sets (e.g. the suburbs

of two cities).

We can extend the above estimand to an intervention taking place over M consecutive time

periods. Consider an intervention, denoted by Fh = F
h1
× · · · × F

hM
, under which the treatment

at time t is assigned according to F
h1
, at time t − 1 according to F

h2
, continuing until time period

t −M + 1 for which treatment is assigned according to F
hM
. A treatment path based on this

intervention is displayed in Figure 2a. Then, we define a general estimand as

NBt(Fh) = ∫M

NB

(
Yt

(
Wt−M ,wt−M+1, … ,wt

))
dF

h1
(wt) · · · dFhM

(wt−M+1)

= ∫M

||||SYt
(
Wt−M ,wt−M+1,… ,wt

) ∩ B
|||| dFh1(wt) · · · dFhM

(wt−M+1). (2)

This quantity represents the expected number of outcome events within region B and at time t

if the treatment point pattern during the previous M time periods was to follow the stochastic

(a)

(b)

F IGURE 2 Graphical illustration of stochastic intervention over multiple time periods for time period t

and t + 1. Under intervention Fh, treatments during time periods t −M + 1, … , t − 1, t are assigned according to

distributions F
hM
, … ,F

h2
,F

h1
.
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intervention with distribution Fh. Treatments during the initial t −M time periods were the same

as observed. A special case of Fh assumes that treatments during the M time periods are inde-

pendent and identically distributed draws from the same distribution F
h
, which we denote by

Fh = FM
h
.

Given the above setup, we define the average treatment effect of stochastic intervention Fh′

versus Fh′′ for a region B at time t as

𝜏Bt(Fh′ ,Fh′′) = NBt(Fh′′) − NBt(Fh′ ), (3)

where h′ = (h′1, h
′
2
, … , h′

M
) represents a collection of treatment intensities over M consecutive

time periods (similarly for h′′).

We further consider the average, over time periods t = M,M + 1, … ,T, of the expected poten-

tial outcome for region B at each time period if treatments during theM proceeding time periods

arose from Fh. This quantity is defined as

NB(Fh) =
1

T −M + 1

T∑
t=M

NBt(Fh). (4)

Figure 2 shows two of the terms averaged in Equation (4), that is, NBt(Fh) and NB(t+1)(Fh). For

NBt(Fh), treatments up to t −M are set to their observed values, and treatments at time periods

t −M + 1, … , t are drawn from Fh. The same definition applies to NB(t+1)(Fh), but intervention

time periods are shifted by 1: treatments up to t −M + 1 are set to their observed values, while

treatments during time periods t −M + 2, … , t + 1 are drawn from Fh. In Equation (4), the sum-

mation starts at t = M since the quantity NBt(Fh) assumes that there exist M prior time periods

during which treatments are intervened on. We suppress the dependence of NB(Fh) on T for

notational simplicity.

Similarly, based on NB(Fh), we define the causal effect of intervention Fh′ versus Fh′′ as

𝜏B(Fh′ ,Fh′′) = NB(Fh′′) − NB(Fh′) =
1

T −M + 1

T∑
t=M

𝜏Bt(Fh′ ,Fh′′). (5)

This estimand represents the average, over time periods t = M,M + 1, … ,T, of the expected

change in the number of points at each time period when the observed treatment path WT

was followed until t −M with subsequent treatments Wt−M+1, … ,Wt arising according to Fh′

versus Fh′′ .

The effect size of a point pattern treatmentwould depend onM, and a greater value ofM allows

one to study slow-responding outcome processes. Moreover, specifying Fh′ and Fh′′ such that they

are identical except for the assignment atM time periods prior, h′
M
, h′′

M
, yields the lagged effect of

a treatment change, which resembles the lagged effects defined by Bojinov and Shephard (2019)

for binary treatments and non-stochastic interventions.

The above estimands are defined while conditioning on the treatments of all previous time

periods. This is important because we do not want to restrict the range of temporal carryover

effects. Although the proposed estimand is generally data-dependent, the quantity becomes fixed

under some settings. For example, if the potential outcomes at time t are restricted to depend at

most on the latest L treatment point patterns, then the estimands for stochastic interventions that

take place overM ≥ L time periods will no longer depend on the observed treatment path.
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4 ESTIMATION AND INFERENCE

In this section, we introduce a set of causal assumptions and the proposed estimator that com-

bines inverse probability of treatment weighting (IPW) with kernel smoothing. We then derive its

asymptotic properties. All proofs are given in Appendix B.

4.1 The assumptions

Similar to the standard causal inference settings, variants of the unconfoundedness and overlap

assumptions based on stochastic interventions are required for the proposed methodology. For

simplicity, we focus on stochastic interventions with identical and independent distribution over

M periods, Fh = FM
h
, and intensity h. Our theoretical results, however, extend straightforwardly

to stochastic interventions with non-i.i.d. treatment patterns.

Assumption 1 (Unconfoundedness). The treatment assignment at time t does not depend

on any, past or future, potential outcomes and potential confounders conditional on the

observed history of treatments, confounders and outcomes up to time t − 1:

f (Wt|Wt−1,T ,T) = f (Wt|Ht−1).

Assumption 1 resembles the sequential ignorability assumption in the standard longitudinal

settings (Robins, 1999; Robins et al., 2000), but it is more restrictive. The assumption requires

that the treatment assignment does not depend on both past and future potential values of the

time-varying confounders as well as those of the outcome variable, conditional on their past

observed values. In contrast, the standard sequential ignorability assumption only involves future

potential outcomes.

Unfortunately, sequential ignorability would not suffice in the current setting. The reason is

that we utilise data from a single unit measured repeatedly over many time periods to draw causal

conclusions. This contrasts with the typical longitudinal settings where data are available on a

large number of independent units over a short time period. Our assumption is similar to the

non-anticipating treatment assumption of Bojinov and Shephard (2019) for binary non-stochastic

treatments, while explicitly showing the dependence on the time-varying confounders. By requir-

ing the treatment to be conditionally independent of the time-varying confounders, we assume

that all “back-door paths” from treatment to either the outcome or the time-varying confounders

are blocked (Pearl, 2000).

Next, we consider the overlap assumption, also known as positivity, in the current setting.

We define the probability density of treatment realisation w at time t given the history, et(w) =

f (Wt = w|Ht−1), as the propensity score at time period t. Also, let fh denote the probability density

function of the stochastic intervention F
h
. The assumption requires the ratio of propensity score

over the density for the stochastic intervention, rather than the propensity score itself, is bounded

away from zero.

Assumption 2 (Bounded relative overlap). There exists a constant 𝛿W > 0 such that et(w) >

𝛿W ⋅ fh (w) for all w ∈  .

Assumption 2 ensures that all the treatment patterns which are possible under the stochastic

intervention of interest can also be observed. This assumption enforces that the support of the

intervention distribution has to be included in the support of the propensity score, and does not

allow for interventions that assign positive mass to fixed treatments w.
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4.2 The propensity score for point process treatments

The propensity score plays an important role in our estimation. Here, we show that the propensity

score for point process treatments has two properties analogous to those of the standard propen-

sity score (Rosenbaum & Rubin, 1983). That is, the propensity score is a balancing score, and

under Assumption 1 the treatment assignment is unconfounded conditional on the propensity

score.

Proposition 1. The propensity score et(w) is a balancing score. That is, f (Wt = w|et(w),Ht−1) =

f (Wt = w|et(w)) holds for all t.
In practice, Proposition 1 allows us to empirically assess the propensity score model specification

by checking the predictive power of covariates in Ht−1 for the treatment Wt conditional on the

propensity score. For example, if a covariate significantly improves prediction in a point process

model ofWt after adjusting for the estimated propensity score, then the covariate is not balanced

and the propensity score model is likely to be misspecified.

Proposition 2. Under Assumption 1, the treatment assignment at time t is unconfounded given the

propensity score at time t, that is, given f (Wt|Wt−1,T ,T) = f (Wt|Ht−1), we have

f (Wt|Wt−1,T ,T) = f (Wt|et(Wt)).

Proposition 2 shows that the potentially high-dimensional sets, H
∗

t−1 and Ht−1, can be reduced

to the one dimensional propensity score et(w) as a conditioning set sufficient for estimating the

causal effects ofWt.

4.3 The estimators

To estimate the causal estimands defined in Section 3, we propose propensity-score-based estima-

tors that combine IPW with kernel smoothing of spatial point patterns. The estimation proceeds

in two steps. First, at each time period t, the surface of outcome-active locations is spatially

smoothed according to a chosen kernel. Then, this surface is weighted by the relative density of

the observed treatment pattern under the stochastic intervention of interest and under the actual

data generating process.

An alternative approach would be the direct modelling of the outcome. For example,

one would model the outcome point process as a function of the past history following the

g-computation in the standard longitudinal settings (Robins, 1986). However, such an approach

would require an accurate specification of spatial spillover and temporal carryover effects. This

is a difficult task in many applications. Instead, we focus on modelling the treatment assignment

mechanism.

Formally, consider a univariate kernel K ∶ [0,∞) → [0,∞) satisfying ∫ K(u)du = 1. Let Kb
denote the scaled kernel defined as Kb(u) = b−1K(u∕b) with bandwidth parameter b. We define

Ŷt
(
FM
h

)
∶ Ω → R+ as

Ŷt(F
M
h
;𝜔) =

t∏
j=t−M+1

fh (Wj)

ej(Wj)

⎡
⎢⎢⎣
∑
s∈SYt

Kb(||𝜔 − s||)
⎤
⎥⎥⎦
, (6)
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where || ⋅ || denotes the Euclidean norm. The summation represents the spatially smoothed ver-
sion of the outcome point pattern at time period t. The product of ratios represents a weight

similar to those in the marginal structural models (Robins et al., 2000), but in accordance with

the stochastic intervention FM
h
: each of the M terms represents the likelihood ratio of treatment

Wj in the counterfactual world of the intervention Fh versus the actual world with the observed

data at a specific time period.

Assuming that the kernel K is continuous, the estimator given in Equation (6) defines a con-

tinuous surface over Ω. The continuity of Ŷ
(
FM
h

)
allows us to use it as an intensity function

when estimating causal quantities. This leads to the following estimator for the expected number

of outcome-active locations in any region B at time t, defined in Equation (2),

N̂Bt

(
FM
h

)
= ∫B Ŷt

(
FM
h
;𝜔

)
d𝜔. (7)

We can now construct the following estimator for the temporally-expected average potential

outcome defined in Equation (4),

N̂B

(
FM
h

)
=

1

T −M + 1

T∑
t=M

N̂Bt

(
FM
h

)
. (8)

We estimate the causal contrast between two interventions FM
h1
and FM

h2
defined in Equation (5) as,

𝜏B

(
FM
h1
,FM

h2

)
= N̂B

(
FM
h2

)
− N̂B

(
FM
h1

)
. (9)

An alternative estimator of NBt

(
FM
h

)
could be obtained by replacing the kernel-smoothed

version of the outcome in Equation (6) with the number of observed outcome active locations in

B at time t. Even though this estimator has the same asymptotic properties discussed below, the

kernel-smoothing of the outcome ensures that, for a specific intervention FM
h
, once the surface in

Equation (6) is calculated, it can then be used to estimate the temporally expected effects defined

in Section 3 for any B ⊂ Ω. In addition, it allows for the visualisation of the outcome surface

under an intervention, making it easier to identify the areas of increased or decreased activity as

illustrated in Section 7.

In the next section we establish the asymptotic properties of the proposed IPW estimators. In

our simulations (Section 6) and empirical study in (Section 7), we also use the Hájek estimator,

which standardises the IPW weights and replaces Equation (8) with

N̂B

(
FM
h

)
=

T∑
t=M

N̂Bt

(
FM
h

) / T∑
t=M

{
t∏

j=t−M+1

fh(Wj)

ej(Wj)

}
. (10)

We find that this Hájek estimator outperforms the corresponding IPW estimators in finite

samples, mirroring the existing results under other settings (e.g., Cole et al., 2021; Liu et al., 2016).

4.4 The asymptotic properties of the proposed IPW estimators

Below, we establish the asymptotic properties of the proposed IPW estimators. Our results dif-

fer from the existing asymptotic normality results in the causal inference literature in several
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ways. First, our inference is based on a single time series of point patterns that are both spatially

and temporally dependent. Second, we employ a kernel-smoothed version of the outcome. Third,

using martingale theory, we derive a new central limit theorem in time-dependent, observational

settings. We now present the main theoretical results. All proofs are given in Appendix B.

Theorem 1 (Asymptotic normality). Suppose that Assumptions 1 and 2 as well as the regularity

conditions (AssumptionA.1) hold. Then, if the bandwidth bT → 0 and as T → ∞,we have that

√
T
(
N̂B

(
FM
h

)
− NB

(
FM
h

))
d
−−→ (0, v),

where v represents the probability limit of (T −M + 1)−1
∑T

t=Mvt as T → ∞ with

vt = Var

[
t∏

j=t−M+1

fh(Wj)

ej(Wj)
NB(Yt) | H∗

t−M

]
for t ≥ M.

The key idea of our proof is to separate the estimation error arising due to the treatment

assignment Wt given the complete history H
∗

t−1, from the error due to spatial smoothing. Using

martingale theory, we show that the former is
√
T-asymptotically normal, where the temporal

dependence is controlled based on Assumption 1. The latter is shown to converge to zero at a rate

faster than 1∕
√
T.

According to Theorem 1, the knowledge of v would enable asymptotic inference about

the temporally expected potential outcome. The variance v is the converging point of

(T −M + 1)−1
∑T

t=Mvt where vt represents a time period-specific variance. Unfortunately, since

we only observe one treatment path for each time period t, we cannot directly estimate the

time-specific variances, vt, and thus v, without additional assumptions.

We circumvent this problem by using an upper bound of v, a quantity which we

can consistently estimate. Specifically, let v∗t = E

{[
N̂Bt

(
FM
h

)]2|H∗

t−M

}
. For v∗ such that

(T −M + 1)−1
∑T

t=Mv
∗
t

p
−−→ v∗, we have v ≤ v∗. Then, an 𝛼-level confidence interval for NB

(
FM
h

)

based on the asymptotic variance bound v∗∕T will achieve the nominal asymptotic coverage.

Although v∗ cannot be directly calculated either, there exists a consistent estimator of its value,

as stated in the following lemma:

Lemma 1 (Consistent estimation of variance upper bound). Suppose that Assumptions 1 and 2

and the regularity conditions (Assumption A.1) hold. Then, as bT → 0 and T → ∞, we have

1

T −M + 1

T∑
t=M

[
N̂Bt

(
FM
h

)2
− v∗t

]
p
−−→ 0.

In Appendix B.3 we extend the above results to the estimator 𝜏B
(
FM
h1
,FM

h2

)
.

So far, all of the theoretical results presented above have been establishedwith the true propen-

sity score et(w). However, in practice, the propensity score is unknownandmust be estimated. The

next theorem shows that, when the propensity score is estimated under the correct model spec-

ification, the proposed estimator maintains its consistency and asymptotic normality. To prove

this result, we extended classic M-estimation theory to multivariate martingale difference series,

established a new central limit theorem for time series data, and derived the properties of the
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propensity score models under the spatio-temporal settings. To our knowledge, these results are

neweven though related results exist under the continuous time setting (Crimaldi&Pratelli, 2005;

Küchler & Sørensen, 1999). We believe that our results may be useful when studying the asymp-

totic properties of causal estimators in other dependent, observational settings (see Appendix B.4

more details).

Theorem 2 (Asymptotic normality using the estimated propensity score). Suppose that Assump-

tions 1 and 2 as well as the regularity conditions (Assumptions A.1, A.2, A.3) hold. If the

bandwidth bT → 0, then as T → ∞, we have

√
T
(
N̂B

(
FM
h

)
− NB

(
FM
h

))
d
−−→ (0, ve).

Next, we show that using the estimated propensity scores from a correctly specified model

yields more efficient estimates than using the true propensity scores. This generalises the

well-known analogous result proved for the independent and identically distributed setting (e.g.,

Hirano et al., 2003) to the spatially and temporally dependent case (see Zeng et al., 2021, for a

similar result in a different dependent setting). Thus, even with the estimated propensity score,

we can make asymptotically conservative inference based on the variance upper bound derived

above.

Theorem 3 (Asymptotic efficiency under the estimated propensity score). The estimator in

Equation (8) based on the estimated propensity score from a correctly specified parametric

model has asymptotic variance that is no larger than the asymptotic variance of the same esti-

mator using the known propensity score. That is, for v in Theorem 1 and ve in Theorem 2, we

have ve ≤ v.

The asymptotic results presentedhere require the area of interest,Ω, to be fixedwhile the num-

ber of time periods T increases. We note that point pattern treatments and outcomes might also

arise in situations where the number of time periods T is fixed, but the area under studyΩ grows

to include more regions. In Appendix B.5, we provide an alternative causal inference framework

for point pattern treatments under this new design by extending our causal estimands, estima-

tion and asymptotic results to the spatio-temporal setting with an area consisting of a growing

number of independent regions.

5 SENSITIVITY ANALYSIS

The validity of our estimators critically relies upon the assumption of no unmeasured confound-

ing (Assumption 1). We develop a sensitivity analysis to address the potential violation of this

key identification assumption. Specifically, we extend the sensitivity analysis pioneered by Rosen-

baum (2002) to the spatio-temporal context and to theHájek estimatorwith standardisedweights,

which we consider in our simulation and empirical studies.

Suppose there exists an unmeasured, potentially time-varying confounderUt. We assume that

the unconfoundedness assumption holds only after conditioning on the realised history of this

unobserved confounder as well as Ht−1, i.e.,

f (Wt|Wt−1,T ,T , T) = f (Wt|Ht−1,U t),
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where  T represents the collection of all potential values of Ut across all time points t =

1, 2, … ,TwhereasU t represents the history of realised but unmeasured confounderU up to time

t. Note that Ut can be correlated with the observed confounders.

The existence of an unmeasured confounder invalidates the inference based on the propen-

sity score with observed covariates alone et(w) because the true propensity score, denoted by

e∗t (w) = fWt
(w|Ht−1,U t), conditions on the history of the unmeasured confounderU t. To develop a

sensitivity analysis, we assume the ratio of estimated versus true propensity scores for the realised

treatmentWt is bounded by a value Γ(≥ 1),

1

Γ
≤ 𝜌t =

et(Wt)

e∗t (Wt)
≤ Γ.

A larger value of Γ allows a greater degree of violation of the unconfoundedness

assumption.

In our application, we use the Hájek-version of the proposed estimator, which we find to

be more stable than the IPW estimator (see Section 6). Thus, to develop a sensitivity analy-

sis, we derive an algorithm for bounding the Hájek estimator for stochastic interventions for

each fixed value of Γ (see Appendix D for the sensitivity analysis of the IPW estimator). Specif-

ically, for all values of 𝝆 = (𝜌1, 𝜌2, … , 𝜌T) ∈ [Γ−1,Γ]T , we wish to bound the following two

quantities:

N̂𝝆(Fh) =

∑T
t=1𝜌t wt(Fh) ÑB(Yt)

∑T
t=1𝜌t wt(Fh )

, and

𝜏𝝆(Fh1
,F

h2
) =

∑T
t=1𝜌t wt(Fh2

) ÑB(Yt)

∑T
t=1𝜌t wt(Fh2

)
−

∑T
t=1𝜌t wt(Fh1

) ÑB(Yt)

∑T
t=1𝜌t wt(Fh1

)
,

where

wt(Fh) =
fh(Wt)

et(Wt)
and ÑB(Yt) = ∫B

∑
s∈SYt

Kb(||𝜔 − s||)d𝜔.

Below we show how to formulate the bounding problem for N̂𝝆(Fh ) as a linear programme, and

how to use the bounds for N̂𝝆(Fh) to also bound the effect estimator 𝜏𝜌(Fh1 ,Fh2).

Theorem 4 (Bounding the causal quantities).

1. The problem of maximising N̂𝝆(Fh ) over 𝝆 ∈ [Γ−1,Γ]T is equivalent to the following linear

program,

maximise𝝆∗

T∑
t=1

𝜌∗t wt(Fh) ÑB(Yt)

subject to
𝜅

Γ
≤ 𝜌∗t ≤ Γ𝜅,

∑
𝜌∗t wt(Fh) = 1, and 𝜅 ≥ 0,

where 𝝆 = 𝝆∗∕𝜅.
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2. Suppose that 𝝆max
j

and 𝝆min
j

represent the values of 𝝆 that maximise and min-

imise N̂𝝆(Fhj
), respectively, for j = 1, 2. Then, the bounds for the causal effect are

obtained as,

N̂𝝆min
2
(F

h2
) − N̂𝝆max1

(F
h1
) ≤ 𝜏𝝆(Fh1

,F
h2
) ≤ N̂𝝆max

2
(F

h2
) − N̂𝝆min1

(F
h1
). (11)

The proof for bounding N̂𝝆(Fh) is based on the Charnes–Cooper transformation of linear fraction-

als (Charnes & Cooper, 1962), and the proof for bounding 𝜏𝜌(Fh1 ,Fh2) is given in Appendix D. For

bounding N̂𝝆(Fh ), this proposition allows us to use a standard linear algorithm to obtain the opti-

mal solution for (𝝆∗, 𝜅) and transform it back to the optimal solution 𝝆. Then, we can use these

bounds to also acquire bounds on the effect estimator. Since all bounds are wider for a greater

value of Γ, the estimated effects are robust to propensity score misspecification up to the smallest

value of Γ for which the interval of bounds in Equation (11) includes 0. Due to the standardisa-

tion of weights in the Hájek estimator, the bound in Equation (11) is conservative, in the sense

that, if the causal estimate is shown to be robust up to some value Γ, then it is robust up to an even

greater degree of propensity score model misspecification Γ∗ ≥ Γ. Similar bounds can be derived

for the stochastic interventions that take place over multiple time periods (see Appendix Data for

details).

The propensity score modelling in our spatio-temporal setting is muchmore complex with an

infinite number of potential treatment locations than in the conventional cross-sectional setting.

As a result, the modelling uncertainty for the propensity score is much greater. This makes it

difficult to compare the scale of Γ between the spatio-temporal and conventional cross-section

settings. In particular, the value of Γ is expected to be much closer to the null value of one in the

spatio-temporal context.

6 SIMULATION STUDIES

We conduct simulation studies to empirically investigate several key theoretical properties of

the proposed methodology: (a) the performance of our estimator under different stochastic

interventions and as the number of time periods increases, (b) the accuracy of the asymptotic

approximation, (c) the difference between the theoretical variance bound and the actual vari-

ance, (d) the performance of the inferential approach based on the estimated asymptotic variance

bound, (e) the relative efficiency of the estimator when using the true and estimated propensity

scores, and (f) the balancing properties of the estimated propensity score. We use the spatstat

Rpackage (Baddeley et al., 2015) to generate point patterns fromPoisson processes and fit Poisson

process models to the simulated data.

6.1 The study design

To construct a realistic simulation design, we base our data generating process on the

observed data from our application. We consider a time series of point patterns of length T ∈

{200,400, 500}. For each time series length T, 200 datasets are generated. The scenario with

T = 500 closely resembles our observed data, which have T = 469.
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F IGURE 3 Simulated data. Panel (a) shows one of the two time-invariant confounders representing the

exponential decay of distance to the road network. Panel (b) shows one realisation for one of the time-varying

confounders. After generating points from a non-homogeneous Poisson process, which depends on the observed

airstrike density, we define the time-varying confounder as the exponential decay of distance to these points.

Panel (c) shows the estimated log-density of treatment patterns, which is used as the density 𝜙 in the definition of

stochastic interventions. (a) Time-invariant confounder X1(𝜔); (b) Realisation of time-varying confounder X3
t (𝜔);

(c) Distribution of treatment point patterns

6.1.1 Time-varying and time-invariant confounders

Our simulation study includes two time-invariant and two time-varying confounders. We base

the first time-invariant confounder on the distance from Iraq’s road network and its borders, by

defining its value at location 𝜔 ∈ Ω as X1(𝜔) = exp{−3D1(𝜔)} + log(D2(𝜔)), where D1(𝜔) is the

distance from𝜔 to the closest road, andD2(𝜔) is the distance to the country’s border. This covariate

is shown in Figure 3a. The second covariate is defined similarly as X2(𝜔) = exp{−D3(𝜔)} where

D3(𝜔) is the distance from 𝜔 to Baghdad.

We generate the time-varying confounders, X3
t (𝜔) and X4

t (𝜔), using the kernel-smoothed

density of the observed airstrike and attack patterns. Specifically, we pool all airstrike loca-

tions across time and estimate the density of airstrike patterns, denoted by f̂ (𝜔) at location 𝜔

(shown in the right plot of Figure 6). Based on this density, we draw a point pattern from a

non-homogeneous Poisson point process with intensity function 𝜆X
3
(𝜔) = exp

{
𝜌0 + 𝜌1 f̂ (𝜔)

}
, for

𝜌0 ≈ −2.7 and 𝜌1 = 8, and defineX3(𝜔) as exp{−D4(𝜔)}, whereD4(𝜔) is the distance from location

𝜔 to the closest point. We generate X4(𝜔) similarly based on the estimated density for insur-

gent attacks, and for corresponding values 𝜌0 ≈ −3.2 and 𝜌1 = 7. Figure 3c shows one realisation

of X3
t (𝜔).

6.1.2 Spatio-temporal point processes for treatment and outcome variables

For each time period t ∈  , we generate Wt from a non-homogeneous Poisson process that

depends on all confounders Xt(𝜔) = (X1(𝜔),X2(𝜔),X3
t (𝜔),X

4
t (𝜔))

⊤, as well as the previous treat-

ment and outcome realisations,Wt−1 and Yt−1. The intensity of this process is given by

𝜆Wt (𝜔) = exp
{
𝛼0 + 𝜶⊤

XXt(𝜔) + 𝛼WW
∗
t−1(𝜔) + 𝛼YY

∗
t−1(𝜔)

}
, (12)

whereW∗
t−1(𝜔) = exp{−2DW (𝜔)} and Y∗

t−1(𝜔) = exp{−2DY (𝜔)} with DW (𝜔) and DY (𝜔) being the

minimum distance from 𝜔 to the points in SWt−1
and SYt−1 , respectively.
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Similarly, we generate Yt from a non-homogeneous Poisson process with intensity

𝜆Yt (𝜔) = exp
{
𝛾0 + 𝜸⊤

X
Xt(𝜔) + 𝛾2X

2
t−1(𝜔) + 𝛾WW

∗
(t−3)∶t(𝜔) + 𝛾YY

∗
t−1(𝜔)

}
, (13)

where W∗
(t−3)∶t

(𝜔) = exp{−2D∗
W
(𝜔)} with D∗

W
(𝜔) being the distance from 𝜔 to the closest points

in
⋃t

j=t−3SWj
. This specification imposes a lag-three dependence of the outcome on the treatment

process. The model leads to an average of 5.5 treatment-active locations and 31 outcome-active

locations within each time period, resembling the frequency of events in our observed data. The

spatial distribution of generated treatment point patterns also resembles the observed one (com-

pare Figure 3c to the right plot of Figure 6). The simulated and observed outcome point patterns

also have similar distributions.

6.1.3 Stochastic interventions

We consider stochastic interventions of the formFM
h
for a non-homogeneous Poisson processwith

intensity h, which is defined as h(𝜔) = c𝜙(𝜔) for c ranging from 3 to 8, and surface 𝜙 set to the

density shown (in logarithm) in Figure 3c. This definition of stochastic intervention based on

the treatment density aligns with the specification in our study in Section 7. We consider varying

the intervention duration by settingM ∈ {1, 3, 7, 30}. We also examine lagged interventions over

three time periods, that is, Fh = F
h3
× F

h2
× F

h1
. The intervention for the first time period F

h3
is a Poisson process with intensity h3(𝜔) = c𝜙(𝜔) for c ranging from 3 to 7, whereas F

h2
= F

h1
is a non-homogeneous Poisson process with intensity 5𝜙(𝜔). For each stochastic intervention,

we consider three regions of interest, B, of different sizes, representing the whole country, the

Baghdad administrative unit, and a small area in northern Iraqwhich includes the town ofMosul.

6.1.4 Approximating the true estimands

Equation (13) shows that the potential outcomes depend on the realised treatments during the last

four time periods as well as the realised outcomes from the previous time period. This implies that

the estimands for all interventions, even for M > 4, depend on the observed treatment and out-

come paths and are therefore not constant across simulated data sets. Therefore, we approximate

the true values of the estimands in each dataset in the following manner. For each time period

t, and each r = 1, 2, … ,R repetition, we generate realisations w(r)
t−M+1, … ,w(r)

t−1,w
(r)
t from the

intervention distribution Fh. Based on the treatment path (Wt−M ,w
(r)
t−M+1, … ,w(r)

t ), we generate

outcomes y(r)
t−M+1, … , y(r)t using Equation (13). This yields Sy(r)t

, which contains the outcome-active

locations based on one realisation from the stochastic intervention. Repeating this processR times

and calculating the average number of points that lie within B provides a Monte Carlo approxi-

mation of NBt(Fh), and further averaging these over time gives an approximation of NB(Fh).

6.1.5 Estimation

We estimate the expected number of points NB(Fh) and the effect of a change in the intervention

on this quantity 𝜏B(Fh′ ,Fh′′ ) using the following estimators: (a) the proposed estimators defined



18 PAPADOGEORGOU et al.

in Equations (8) and (9) with the true propensity scores; (b) the same proposed estimators with

the estimated propensity scores based on the correctly specified model; (c) the above two estima-

tors with the Hájek-type standardisation in (10); and (d) the unadjusted estimator based on the

propensity score model using a homogeneous Poisson process with no predictor.

All estimators utilise the smoothed outcome point pattern. Spatial smoothing is performed

using Gaussian kernels with SD equal to 10T−2∕3𝛿, which is decreasing in T, and for 𝛿 scaling the

bandwidth according to the size of the geometry under study.We choose this bandwidth such that

for T = 500 (the longest time series in our simulation scenario) the bandwidth is approximately

0.5, slightly smaller than the size of the smallest region of interest B (square with edge equal to

0.75). We discuss the choice of the bandwidth in Section 7.3.

6.1.6 Theoretical variance and its upper bound

Theorem 1 provides the expression for the asymptotic variance of the proposed IPW estimator.

We compute Monte Carlo approximations to this variance and its upper bound. Specifically, for

each time period t and each replication r, the computation proceeds as follows: (1) we gener-

ate treatment and outcome paths w(r)
t−M+1, y

(r)
t−M+1, … ,w(r)

t , y(r)t using the distributions specified in

Equations (12) and (13), (2) using the data (w(r)
t−M+1, … ,w(r)

t ) and the outcome y(r)t , we compute

the estimator according to Equations (6) and (7), and finally (3) we calculate the variance and

the second moment of these estimates over R replications, which can be used to compute the

asymptotic variance and variance bound of interest.

Their averages over time give the desired Monte Carlo approximations. We use a similar

procedure to approximate the theoretical variance and variance bound of 𝜏B(Fh′ ,Fh′′ ).

6.1.7 Estimating the variance bound and the resulting inference

We use Lemma 1 to estimate the variance bound. This estimated variance bound is then used to

compute the confidence intervals and conduct a statistical test of whether the causal effect is zero.

Inference based on the Hájek estimator is discussed in Appendix C.

6.1.8 Balancing property of the propensity score

Using the correctly specified model, we estimate the propensity score at each time period t. The

inverse of the estimated propensity score is then used as the weight in the weighted Poisson

process model for Wt with the intensity specified in Equation (12). We compare the statistical

significance of the predictors between the weighted and unweighted model fits. Large p-values

under the weighted model would suggest that the propensity score adequately balances the

confounding variables.

6.1.9 Relative efficiency of estimators based on the true and estimated
propensity score

According to Theorem 3, the asymptotic variance of the estimator based on the true propensity

score is at least as large as that of the estimator based on the estimated propensity score. We
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investigate the relative magnitude of the Monte Carlo approximations of the corresponding two

variances.

6.2 Simulation results

Figure 4 presents the results for all the stochastic interventions that were considered. The top four

rows show how the (true and estimated) average potential outcomes in the whole region (B = Ω)

change as the intensity varies under interventions FM
h
forM ∈ {1, 3, 7, 30}, respectively. The last

row shows how the true and estimated average potential outcomes in the same region change

under the three time period lagged interventions when the intensity at three time periods ago

ranges from 3 to 7. For both simulation scenarios, we vary the length of the time series from 200

(left column) to 500 (right column).

The unadjusted estimator returned values that are too far from the truth and are not shown

here.We find that the accuracy of the proposed estimator improves as the number of time periods

increases. Notice that the convergence is slower for larger values ofM. This is expected because

the uncertainty of the treatment assignment is greater for a stochastic intervention with a longer

time period. We find that the Hájek estimator performs well across most simulation scenarios

even when T is relatively small andM is large. The IPW estimator (investigated more thoroughly

in Appendix F) tends to suffer from extreme weights because the weights are multiplied over the

intervention time periods as shown in Equation (6). These results indicate a deteriorating perfor-

mance of the IPW estimator as the value ofM increases, whereas the standardisation of weights

used in the Hájek estimator appears to partially alleviate this issue. Results were comparable for

the two other sets B.

Next, we compare the true theoretical variance, v∕T, with the variance bound v∗∕T and its

consistent estimator (see Lemma 1). We assess the conservativeness of the theoretical variance

bound by focusing on the proposed estimators with the true propensity score. Figure 5 shows

the results for an intervention FM
h
forM ∈ {1, 3}, and for region B = Ω. The results for the other

regions are similar and hence omitted.

First, we focus on the theoretical variance and variance bound (blue linewith open circles, and

orange dotted lines with open triangles, respectively). As expected, the true variance decreases as

the total number of time periods increases, and the theoretical variance bound is at least as large

as the variance. In the setting with M = 3, the theoretical variance bound follows the variance

closely, evident by the fact that the two lines are essentially indistinguishable. We have found this

to be the case in all scenarios with higher uncertainty, indicating that the theoretical variance

bound is not overly conservative. Indeed, the variance bound is visibly larger than the true vari-

ance only in the low-variance scenarios of interventions over a single time period, as shown in

the top row of Figure 5 (and in Appendix E.1).

Second, we compare the theoretical variance boundwith the estimated variance bound (green

dashed lines with open rhombuses). As the length of time series increases, the estimated variance

bound more closely approximates its theoretical value (consistent with Lemma 1). Furthermore,

the estimated variance bound is close to its theoretical value under low uncertainty scenarios and

when the intervention intensitymore closely resembles that of the actual data generating process.

However, we find that the estimated variance bound underestimates the true variance bound in

high uncertainty scenarios, and convergence to its true value is slower for larger values ofM (see

Appendix E.1).
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F IGURE 4 Simulation results for the average potential outcomes. In the top four rows, we present the true

and estimated average potential outcomes in B = Ω under interventions FM
h
with the varying intensity

(horizontal axis) andM ∈ {1, 3, 7, 30} (rows), respectively. In the bottom row, we consider the average potential

outcome for the lagged intervention over three time periods Fh, with the varying intensity of Fh3
shown on the

horizontal axis. The black lines with solid circles represent the truths, the Hájek estimator based on the true

propensity score is shown in purple, and the Hájek estimator based on the estimated propensity score is in green.
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F IGURE 5 Comparison of the asymptotic SD with the true and estimated asymptotic SD bound for the

average potential outcome estimator. The comparison is based on the varying number of expected points

(horizontal axis) under the stochastic intervention FM
h
taking place overM = 1 (top row) andM = 3 (bottom row)

time periods. The columns correspond to a simulation setting with a different time series length.

We also compare the variance of the estimator based on the true propensity score with that

of the estimator based on the estimated propensity score. Table 1 shows the ratio of the Monte

Carlo variances which, according to Theorem 3, should be larger than 1, asymptotically. Consis-

tent with the above simulation results, we find that the ratio is above 1 for interventions over

one and three time periods. In addition, the ratio is largest in the low uncertainty scenarios

where either the number of intervention periods, M, is small, or the expected number of points

is near the observed value under the intervention (c ≈ 5). In contrast, in the high uncertainty

situations with longer intervention periods, for exampleM ∈ {7, 30}, the ratio remains below 1,

implying that the asymptotic approximation may not be sufficiently accurate for the sample sizes

considered.

In Appendices E.2 and E.3, we also investigate the performance of the inferential proce-

dure based on the true variance, true variance bound, and estimated variance bound, for both

the IPW and Hájek estimators. The confidence interval for the IPW estimator tends to yield

coverage close to its nominal level only for the interventions over a small number of time peri-

ods. In contrast, the confidence interval for the Hájek estimator has good coverage probability

even for the interventions over a larger number of time periods. Partly based on these findings,

we use the Hájek estimator and its associated confidence interval in our empirical application

(see Section 7).
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TABLE 1 Variance ratio of the proposed estimator based on the true propensity score over the proposed

estimator based on the estimated propensity score

Expected number of treatment active locations under the intervention

c = 3 c = 4 c = 5 c = 6 c = 7

M = 1 1.24 1.38 1.41 1.32 1.08

M = 3 1.09 1.18 1.24 1.14 1.06

M = 7 1.07 0.85 1.08 0.61 0.54

M = 30 0.60 0.75 0.87 0.58 0.75

Lagged 1.08 1.21 1.24 1.20 1.11

Notes: The results are based on Monte Carlo approximation with T = 500. The estimated propensity score is obtained from the

correctly specified model. If the ratio is greater than 1, the estimated propensity score yields a more efficient estimator than

the true propensity score. We consider interventions that are constant over all intervention time periods, FM
h
for

M ∈ {1, 3, 7, 30} (top four rows), and the lagged intervention over three time periods Fh = F
h3
× F

h2
× F

h1
(bottom row).

Finally, we evaluate the performance of the propensity score as a balancing score (Proposi-

tion 1). In Appendix E.4, we show that the p-values of the previous outcome-active locations

variable (Y∗
t−1 in Equation 12) are substantially greater in the weighted propensity score model

than in the unweighted model, where the weights are equal to the inverse of the estimated

propensity score. These findings are consistent with the balancing property of the propensity

score.

In Appendix F we present an alternative simulation study, though all qualitative conclusions

remain unchanged.

7 EMPIRICAL ANALYSES

In this section, we present our empirical analyses of the data introduced in Section 2. We first

describe the airstrike strategies of interest and then discuss the causal effect estimates obtained

under those strategies.

7.1 Airstrike strategies and causal effects of interest

We consider hypothesised stochastic interventions that generate airstrike locations based on a

simple non-homogeneous Poisson point process with finite and non-atomic intensity h ∶ Ω →

[0,∞). We first specify a baseline probability density 𝜙0 over Ω. To make this baseline den-

sity realistic and increase the credibility of the overlap assumption, we use the airstrike data

during 1 January–24 September 2006 to define the baseline distribution 𝜙0 for our stochas-

tic interventions. This subset of the data is not used in the subsequent analysis. The left plot

of Figure 6 shows the estimated baseline density, using kernel-smoothing of airstrikes with

an anisotropic Gaussian kernel and bandwidth specified according to Scott’s rule of thumb

(Scott, 1992).

We consider the following three questions: (1) How does an increase in the number of

airstrikes affect insurgent violence? (2) How does the shift in the prioritisation of certain loca-

tions for airstrikes change the spatial pattern of insurgent attacks? (3) How long does it take for
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F IGURE 6 Spatial density estimate of airstrike locations during 1 January–24 September 2006 (left) and

the entire study period February 2007–July 2008 (right)

the effects of change in these airstrike strategies to be realised? The last question examines how

quickly the insurgents respond to the change in airstrike strategy.

We address the first question by considering stochastic interventions that have the same spa-

tial distribution but vary in the expected number of airstrikes. We represent such strategies using

intensities h(𝜔) = c𝜙0(𝜔) with different values of c > 0. Since ∫
Ω
h(𝜔)d𝜔 represents the expected

number of points from a Poisson point process, these interventions have the same spatial distri-

bution𝜙0, but the number of airstrikesmonotonically increases as a function of c. In our analysis,

we consider {1, 2, … , 6} as the range of cwhich corresponds to the expected number of airstrikes

per day, in agreement with the observed data.

For the second question, we fix the expected number of airstrikes but vary their focal loca-

tions. To do this, we specify a distribution over Ω with power-density d𝛼(𝜔) = d(𝜔)𝛼∕
(∫

Ω
d(𝜔)𝛼

)
and modes located at sf ∈ Ω. Based on d𝛼 , we specify h𝛼(𝜔) = c𝛼𝜙0(𝜔)d𝛼(𝜔)where c𝛼 satisfies the

constraint ∫
Ω
h𝛼(𝜔)d𝜔 = c, so that the overall expected number of airstrikes remains constant.

Locations in sf are increasingly prioritised under h𝛼 for increasing 𝛼. For our analysis, we choose

the centre of Baghdad to be the focal point sf and d𝛼 to be the normal distribution centred at sf
with precision 𝛼. We set the expected number of airstrikes per day c to be 3, and vary the preci-

sion parameter 𝛼 from 0 to 3. The visualisation of the spatial distributions in h𝛼 for the different

values of 𝛼 is shown in Figure A15.

As discussed in Section 3, for both of these questions, we can specify airstrike strategies of

interest taking place over a number of time periods,M, by specifying the stochastic interventions

as Fh = FM
h
. In addition, we may also be interested in the lagged effects of airstrike strategies

as in the third question. We specify lagged intervention to be the one which differs only for

the M time periods ago, that is, Fh = FM−1
h0

× F
h1
, where h0 = 𝜙0 represents the baseline inten-

sity (with c = 1), and h1 = c𝜙0 is the increased intensity with different values of c ranging from

1 to 6. We assume that insurgent attacks at day t do not affect airstrikes on the same day, and

airstrikes at day t can only affect attacks during subsequent time periods. Thus, causal quantities

for interventions taking place over M time periods refer to insurgent attacks occurring M days

later. For our analysis, we consider values of M which correspond to 1 day, 3 days, 1 week and

1 month.

Although full investigation is beyond the scope of this paper, in Appendix G.3, we

briefly consider an extension to adaptive interventions over a single time period (M = 1),

and discuss challenges when considering adaptive interventions over multiple time periods

(M > 1).
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7.2 The specification and diagnostics of the propensity score model

Our propensity score model is a non-homogeneous Poisson point process model with intensity

𝜆t(𝜔) = exp{𝜷⊤Xt(𝜔)} where X includes an intercept, temporal splines, and 32 spatial surfaces

including all the covariates. The twomain drivers ofmilitary decisions over airstrikes are the prior

number and locations of observed insurgent attacks and airstrikes, which are expected to approx-

imately satisfy unconfoundedness of Assumption 1. Our model includes the observed airstrikes

and insurgent attacks during the last day, week, andmonth (six spatial surfaces). For example, the

airstrike history of time t during the previous week is W
∗

t−1(𝜔) =
∑7

j=1

∑
s∈SWt−j

exp{−dist(s, 𝜔)},

which represents a surface onΩwith locations closer to the airstrikes in the previousweek having

greater values than more distant locations.

Our propensity score model also includes additional important covariates that might affect

both airstrikes and insurgent attacks. We adjust for shows-of-force (i.e. simulated bombing raids

designed to deter insurgents) that occurred 1 day, 1 week and 1month before each airstrike (three

spatial surfaces). Patterns of US aid spending might also affect the location and number of insur-

gent attacks and airstrikes, as we discussed in Section 2. We therefore include the amount of aid

spent (in US dollars) in each Iraqi district in the past month as a time-varying covariate (one

spatial surface). Finally, we also incorporate several time-invariant spatial covariates, including

the airstrike’s distance frommajor cities, road networks, rivers, and the population (logged, mea-

sured in 2003) of the governorate in which the airstrike took place (4 spatial surfaces). Lastly, we

include separate predictors for distances from local settlements in each of the Iraqi districts to

incorporate any area specific effects (18 spatial surfaces).

We evaluate the covariate balance by comparing the p-values of estimated coefficients in the

propensity score model to the p-values in the weighted version of the same model, where each

time period is inversely weighted by its truncated propensity score estimate (truncated above at

the 90th quantile). Although 13 out of 35 estimated coefficients had p-values smaller than 0.05

in the fitted propensity score model, all the p-values in the weighted propensity score model are

close to 1, suggesting that the estimated propensity score adequately balances these confounders

(see Figure A14 of Appendix E.4 in Data).

7.3 The choice of the bandwidth parameter for the spatial kernel
smoother

The kernel smoothing part of our estimator is not necessary for estimating the number of points

within any set B ⊂ Ω since we can simply use an IPW estimator based on the observed number

of points within B. However, kernel smoothing is useful for visualising the estimated intensities

of insurgent attacks under an intervention of interest over the entire country. One can also use it

to acquire estimates of the expected number of insurgent attacks under the intervention for any

region of Iraq by considering the intensity’s integral over the region. Theorem 1 shows that, for

any set B ⊂ Ω, kernel smoothing does not affect the estimator’s asymptotic normality as long as

the bandwidth converges to zero. In practice, the choice of the bandwidth should be partly driven

by the size of the sets B.

In our analysis, we estimate the causal quantities for the entire country and the Baghdad

administrative unit. We choose an adaptive bandwidth separately for each outcome using the

spatstat package in R. We consider all observed outcome event locations during our study

period, and use Scott’s criterion for choosing an optimal, constant bandwidth parameter for
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isotropic kernel estimation (Scott, 1992). Using the estimated density as the pilot density, we cal-

culate the optimal adaptive bandwidth surface according to Abramson’s inverse-square-root rule

(Abramson, 1982). This procedure yields a value of the bandwidth used for kernel smoothing at

each outcome event location.

7.4 Findings

Figure 7 illustrates changes in the estimated intensity surfaces for insurgent attacks (IEDs and

SAFs) when increasing the expected number of airstrikes (the first two rows) and when shift-

ing the focal point of airstrikes to Baghdad (the bottom two rows), with the varying duration of

interventions, M = 1, 3, 7, 30 days (columns). These surfaces can be used to estimate the causal

effect of a change in the intervention over any region. Dark blue areas represent areas where the

change in the military strategy would reduce insurgent attacks, whereas red areas correspond to

those with an increase in insurgent attacks. Statistical significance of these results is shown in

Appendix G.2.

The figure reveals a number of findings. First, we find no substantial change in insurgent

attacks if these interventions last only for 1 or 3 days. When increasing airstrikes for a longer

duration, however, a greater number of insurgent attacks are expected to occur. These changes

are concentrated in the Baghdad area and the roads that connect Baghdad and the northern city

of Mosul. These patterns apply to both IEDs and SAFs with slightly greater effects estimated for

SAFs. Under Assumption 1, these results suggest that, far from suppressing insurgent attacks,

airstrikes actually may increase them over time. In this setting, airstrikes can be counterpro-

ductive, failing to reduce insurgent violence while also victimising civilians. We emphasise that

Assumption 1 may be violated and address this issue through our sensitivity analysis.

Under our assumptions, we find that the effect estimates for shifting the focal point of

airstrikes to Baghdad for 1, 3, or 7 days are close to null. However, when the intervention change

lasts for 30 days, our analysis suggests that insurgents may shift their attacks to the areas around

Mosulwhile reducing the number of attacks in Baghdad. This displacement pattern is particularly

pronounced for SAFs. For SAFs, insurgents appear to move their attacks to the Mosul area even

with the intervention of 7 days, though the effect size is smaller. In short, the effects of airstrikes

may not be localised, but instead can ripple over long distances as insurgents respond in differ-

ent parts of the country. Unlike existing approaches which focus on the effect of an intervention

in the nearby area (e.g Schutte & Donnay, 2014), our approach captures this often-considerable

displacement of violence.

Figure 8a shows the changes in the estimated average number of insurgent attacks in Baghdad

as the expected number of airstrikes increases from 1 to 2, 3, … , 6 airstrikes per day in the entire

country (horizontal axis). We also vary the duration of intervention from M = 1 day to M = 30

days (columns). Both the point estimate (solid lines) and 95% CIs (grey bands) are shown. Con-

sistent with Figure 7, we find that increasing the number of airstrikes leads to a greater number

of attacks when the duration of intervention is 7 or 30 days. These effects appear to be smaller

when the intervention is much shorter. The patterns are similar for both IEDs and SAFs.

Figure 8b shows the change in the estimated number of IEDs and SAFs attacks in Baghdad

when increasing the number of airstrikesM days before , while the expected number of airstrikes

during the followingM − 1 days equals one per day. We find that all estimated lagged effects for

M = 3 are negative, whereas the estimated lagged effects forM = 7 are positive. This suggests that

increasing the number of airstrikes may reduce insurgent violence in a short term while leading
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(a)

(b)

F IGURE 7 Changes in estimated intensity of insurgent attacks when increasing the expected number of

airstrikes (the first two rows) and when shifting the focal point of airstrikes to Baghdad (the bottom two rows).

Insurgent attacks are measured using improvised explosive devices (IEDs; the first and third rows) and small

arms fire (SAFs; second and fourth rows) with the varying number of intervention duration,M = 1, 3, 7, 30 days

(columns). The number shown below each map represents the estimated change in the total number of attacks

per day over the entire country, whereas the legend represents the difference in estimated intensities. (a)

Increasing the expected number of airstrikes from 1 to 6 per day. (b) Increasing the priority of Baghdad as focal

point of airstrikes from 𝛼 = 0 to 𝛼 = 3
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F IGURE 8 Changes in the Estimated Number of Insurgency Attacks in Baghdad when Increasing the

Expected Number of Airstrikes (a) forM days, and (b)M days ago. In each plot, the horizontal axis represents the

expected number of airstrike per day under the alternative intervention. The vertical axis represents a change in

the estimated average number of insurgency attacks in Baghdad for IEDs (first & third row) and SAFs (second &

fourth row) when number of airstrikes per day increases from 1 to the value on the horizontal axis. Each column

shows different (a) duration or (b) lag length of intervention,M = 1, 3, 7, 30 days. 95% confidence intervals are

shown as grey bands. (a) Estimated effect of increasing the expected number of airstrikes forM days; (b)

Estimated effect of increasing the expected number of airstrikesM days ago



28 PAPADOGEORGOU et al.

to an increase in a longer term. Appendix G.2 presents the effect estimates and 95%CIs for various

interventions and outcomes.

We interpret these localised effects around Baghdad as consistent with prior claims (e.g.

Hashim, 2011) that Sunni insurgents were sufficiently organised to shift their attacks to new

fronts in response to American airstrikes. That is, while heavy bombardment in Baghdad might

suppress insurgent attacks locally, we find a net increase in overall violence as insurgent comman-

ders displace their violence to new locations such as Mosul that are experiencing less airstrikes.

This displacement effect underscores the danger of adopting too-narrow frameworks for casual

estimation that miss spillover and other spatial knock-on effects.

We emphasise that the validity of our results hinges on the reliability of our causal assump-

tions, of which the unconfoundedness assumption (Assumption 1) is perhaps the strongest. We

evaluate the robustness of our results to violations of this assumption using the sensitivity anal-

ysis framework developed in Section 5. We investigate the sensitivity of estimated effects for a

change in intervention that corresponds to dosage or increased focus in Baghdad, for all values

ofM, for both SAF and IED outcomes, and for effects in the whole country and in Baghdad only.

We find that the estimated effects are robust up to the ratio between the misspecified and the true

propensity score (Γ) being bounded by 1.12. The small value of Γ indicates that our causal analysis

may be sensitive to violations of the unconfoundedness assumption. As discuss before, however,

this sensitivity is partially due to the inherently large uncertainty in estimating the point process

intensity functions of the propensity scores from sparse data.

8 CONCLUDING REMARKS

In this paper, we provide a framework for causal inference with spatio-temporal point process

treatments and outcomes. We illustrate the flexibility of this proposed methodology by applying

it to the estimation of airstrike effects on insurgent violence in Iraq. Our central idea is to use

a stochastic intervention that represents a distribution of treatments rather than the standard

causal inference approach that estimates the average potential outcomes under some fixed treat-

ment values. A key advantage of our approach is its flexibility: it permits unstructured patterns

of both spatial spillover and temporal carryover effects. This flexibility is crucial since for many

spatio-temporal causal inference problems, including our own application, little is known about

how the treatments in one area affect the outcomes in other areas across different time periods.

The estimands andmethodology presented in this paper can be applied in a number of settings

to estimate the effect of a particular stochastic intervention strategy. There are several consider-

ations that may be useful when defining a stochastic intervention of interest. First, the choice of

intervention should be guided by pressing policy questions or important academic debates where

undetected spillover might frustrate traditional methods of causal inference. Second, stochas-

tic interventions should satisfy the overlap assumption (Assumption 2). Researchers should not

define a stochastic intervention that generates treatment patterns that appear to be far different

from those of the observed treatment events. In our application, we achieve this by constructing

the stochastic interventions based on the estimated density of point patterns obtained from the

past data and the observed number of airstrikes per day.

The proposed framework can also be applied to other high-dimensional, and possibly unstruc-

tured, treatments. The standard approach to causal inference, which estimates the causal effects

of fixed treatment values, does not perform well in such settings. Indeed, the sparsity of observed

treatment patterns alone makes it difficult to satisfy the required overlap assumption (Imai
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& Jiang, 2019). We believe that the stochastic intervention approach proposed here offers an

effective solution to a broad class of causal inference problems.

Future research should further develop the methodology for stochastic interventions. In par-

ticular, it is important to consider an improved weighting method that explicitly targets covariate

balance. This might be challenging in the spatiotemporal setting where the notion of covariate

balance is not yetwell understood. Finally, it is crucial to extend the stochastic intervention frame-

work to adaptive strategies over multiple time periods that might be more reflective of realistic

assignments.
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