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Abstract

Many causal processes have spatial and temporal dimensions.
Yet the classic causal inference framework is not directly appli-
cable when the treatment and outcome variables are generated
by spatio-temporal point processes. We extend the potential
outcomes framework to these settings by formulating the treat-
ment point process as a stochastic intervention. Our causal
estimands include the expected number of outcome events
in a specified area under a particular stochastic treatment
assignment strategy. Our methodology allows for arbitrary pat-
terns of spatial spillover and temporal carryover effects. Using
martingale theory, we show that the proposed estimator is
consistent and asymptotically normal as the number of time
periods increases. We propose a sensitivity analysis for the
possible existence of unmeasured confounders, and extend it
to the Hajek estimator. Simulation studies are conducted to
examine the estimators’ finite sample performance. Finally, we
illustrate the proposed methods by estimating the effects of
American airstrikes on insurgent violence in Iraq from Febru-
ary 2007 to July 2008. Our analysis suggests that increasing the
average number of daily airstrikes for up to 1 month may result
in more insurgent attacks. We also find some evidence that
airstrikes can displace attacks from Baghdad to new locations

up to 400 km away.
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1 | INTRODUCTION

Many causal processes involve both spatial and temporal dimensions. Examples include the envi-
ronmental impact of newly constructed factories, the economic and social effects of refugee
flows, and the various consequences of disease outbreaks. These applications also illustrate key
methodological challenges. First, when the treatment and outcome variables are generated by
spatio-temporal processes, there exists an infinite number of possible treatment and event loca-
tions at each point in time. In addition, spatial spillover and temporal carryover effects are likely
to be complex and may not be well understood.

Unfortunately, the classical causal inference framework that dates back to Neyman (1923)
and Fisher (1935) is not directly applicable to such settings. Indeed, standard causal infer-
ence approaches assume that the number of units that can receive the treatment is finite (e.g.,
Robins, 1997; Rubin, 1974). Although a small number of studies develop a continuous time causal
inference framework, they do not incorporate a spatial dimension (e.g., Gill & Robins, 2001;
Zhang et al., 2011). In addition, causal inference methods have been used for analysing func-
tional magnetic resonance imaging data, which have both spatial and temporal dimensions. For
example, Luo et al. (2012) apply randomisation-based inference, while Sobel and Lindquist (2014)
employ structural modelling. We instead focus on data generated by different underlying pro-
cesses, leading to new estimands and estimation strategies.

Specifically, we consider settings in which the treatment and outcome events are assumed
to be generated by spatio-temporal point processes (Section 3). The proposed method is based
on a single time series of spatial patterns of treatment and outcome variables, and builds
upon three strands of the causal inference literature: interference, stochastic interventions and
time series.

First, we address the possibility that treatments might affect outcomes at a future time
period and at different locations in arbitrary ways. Although some researchers have considered
unstructured interference, they assume non-spatial and cross-sectional settings (see e.g., Basse &
Airoldi, 2018; Savje et al., 2019, and references therein). In addition, Aronow et al. (2019) study
spatial randomised experiments in a cross-sectional setting, and under the assumption that the
number of potential intervention locations is finite and their spatial coordinates are known and
fixed. By contrast, our proposed spatio-temporal causal inference framework allows for temporally
and spatially unstructured interference over an infinite number of locations.

Second, instead of separately estimating the causal effects of treatment received at each
location, we consider the impacts of different stochastic treatment assignment strategies, defined
formally as the intervention distributions over treatment point patterns. Stochastic interventions
have been used to estimate effects of realistic treatment assignment strategies (Diaz Mufioz & van
der Laan, 2012; Papadogeorgou et al., 2019; Young et al., 2014) and to address challenging causal
inference problems including violation of the positivity assumption (Kennedy, 2019), interference
(Hudgens & Halloran, 2008; Imai et al., 2021), mediation analysis (Diaz & Hejazi, 2019; Lok, 2016)
and multiple treatments (Imai & Jiang, 2019). We show that this approach is also useful for causal
inference with spatio-temporal treatments and outcomes.

Finally, our methodology allows for arbitrary patterns of spatial and temporal interference.
As such, our estimation method neither requires the separation of units into minimally interact-
ing sets (e.g., Tchetgen Tchetgen et al., 2017) nor relies on an outcome modelling approach that
entails specifying a functional form of spillover effects based on, for example, geographic dis-
tance. Instead, we view our data as a single time series of maps, which record the locations of
treatment and outcome realisations as well as the geographic coordinates of other relevant events.
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Our estimation builds on the time-series causal inference approach pioneered by Bojinov and
Shephard (2019).

We propose a spatially smoothed inverse probability weighting estimator that is consistent and
asymptotically normal under a set of reasonable assumptions, regardless of whether the propen-
sity scores are known, or estimated from a correctly specified model (Section 4). To do so, we
establish a new central limit theorem for martingales that can be widely used for causal infer-
ence in observational, time series settings. We also show that the proposed estimator based on
the estimated propensity score has a lower asymptotic variance than when the true propensity
score is known. This generalises the existing theoretical result under the independently and iden-
tically distributed setting (Hirano et al., 2003) to the spatially and temporally dependent setting.
Finally, to assess the potential impact of unobserved confounding, we develop a sensitivity anal-
ysis method by generalising the sensitivity analysis of Rosenbaum (2002) to our spatio-temporal
context and to the Hajek estimator with standardised weights (Section 5). We conduct simulation
studies to assess the finite sample performance of the proposed estimators (Section 6).

Our motivating illustration is the evaluation of the effects of American airstrikes on insurgent
violence in Iraq from February 2007 to July 2008 (Section 2). We consider all airstrikes during
each day anywhere in Iraq as a treatment pattern. Instead of focusing on the causal effects of each
airstrike, we estimate the effects of different airstrike strategies, defined formally as the distribu-
tions of airstrikes throughout Iraq (Section 7). The proposed methodology enables us to capture
spatio-temporal variations in treatment effects, shedding new light on how airstrikes affect the
location, distribution and intensity of insurgent violence.

Specifically, under a set of assumptions, our analysis suggests that a higher number of
airstrikes, without modifying their spatial distribution, may increase the number of insurgent
attacks, especially near Baghdad, Mosul, and the roads between them. We also find that chang-
ing the focal point of airstrikes to Baghdad without modifying the overall frequency can shift
insurgent attacks from Baghdad to Mosul and its environs. Under our assumptions, these find-
ings suggest that airstrikes can increase insurgent attacks and disperse them over considerable
distances. Furthermore, our analysis shows that increasing the number of airstrikes may initially
reduce attacks but ultimately increase them over the long run. Our sensitivity analysis indicates,
however, that these findings are somewhat sensitive to the potential existence of unmeasured con-
founders. Thus, further analyses are necessary in order for us to reach more definitive conclusions
about the impacts of airstrikes.

The proposed methodology has a wide range of applications beyond the specific example anal-
ysed in this paper. For example, the causal effects of pandemics and crime on a host of economic
and social outcomes could be evaluated using our methodology. With the advent of massive and
granular datasets, we expect the need to conduct causal analysis of spatio-temporal data will only
continue to grow.

2 | MOTIVATING APPLICATION: AIRSTRIKES AND
INSURGENT ACTIVITIES IN IRAQ

Airstrikes have emerged as a principal tool for fighting against insurgent and terrorist organisa-
tions in civil wars around the globe. In the past decade alone, the United States has conducted
sustained air campaigns in at least six different countries, including Afghanistan, Iraq and Syria.
Although it has been shown that civilians have all-too-often borne the brunt of these airstrikes
(Lyall, 2019b), we have few rigorous studies that evaluate the impact of airstrikes on subsequent
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insurgent violence. Even these studies have largely reached opposite conclusions, with some
claiming that airpower reduces insurgent attacks while others arguing they spark escalatory spi-
rals of increased violence (e.g., Dell & Querubin, 2018; Kocher et al., 2011; Lyall, 2019a; Mir &
Moore, 2019).

Moreover, all existing studies have two interrelated methodological shortcomings: they carve
continuous geographic space into discrete, often arbitrary, units, and they make simplifying
assumptions about patterns of spatial and temporal interference. Mir and Moore (2019b), for
example, argue that drone strikes in Pakistan have reduced terrorist violence. But they use a
coarse estimation strategy that bins average effects of drone strikes into broad half-year incre-
ments over entire districts that cannot capture local spatial and temporal dynamics. Similarly,
Rigterink (2021) draws on 443 drone strikes to estimate airstrike effects on 13 terrorist groups in
Pakistan, concluding that they have mixed effects. Yet their group-month estimation strategy can-
not detect spillover effects nor accurately capture the timing of insurgent responses. In short, we
need a flexible methodological approach that avoids the pitfalls of binning treatment and outcome
measures into too-aggregate, possibly misleading, temporal and spatial units.

We enter this debate by examining the American air campaign in Iraq. We use declassified
US Air Force data on airstrikes and shows of force (simulated airstrikes where no weapons are
released) for the February 2007 to July 2008 period. The period in question coincides with the
‘surge’ of American forces and airpower designed to destroy multiple Sunni and Shia insurgent
organisations in a bid to turn the war’s tide.

Aircraft were assigned to bomb targets via two channels. First, airstrikes were authorised in
response to American forces coming under insurgent attack. These close air support missions
represented the vast majority of airstrikes in 2007-2008. Second, a small percentage (about 5%) of
airstrikes were pre-planned against high-value targets, typically insurgent commanders, whose
presence had been detected from intercepted communications or human intelligence. In each
case, airstrikes were driven by insurgent attacks that were either ongoing or had occurred in the
recent past in a given location. As a result, the models used later in this paper adjust for prior
patterns of insurgent violence in a given location for several short-term windows.

We also account for prior air operations, including shows of force, by American and allied
aircraft. Insurgent violence in Iraq is also driven by settlement patterns and transportation net-
works. Our models therefore include population size and location of Iraqi villages and cities
as well as proximity to road networks, where the majority of insurgent attacks were conducted
against American convoys. Finally, prior reconstruction spending might also drive the location
of airstrikes. Aid is often provided in tandem with airstrikes to drive out insurgents, while these
same insurgents often attack aid locations to derail American hearts-and-minds strategies. Taken
together, these four factors—recent insurgent attacks, the presence of American forces, settlement
patterns, and prior aid spending—drove decisions about the location and severity of airstrikes.
We emphasise that we may not observe all factors used for decisions on airstrikes. We will address
this limitation by developing and applying a sensitivity analysis.

Figure 1 summarises the spatial and temporal distributions of airstrikes (treatment vari-
able) and insurgent violence (outcome variable). Figure 1a presents the temporal distribution of
airstrikes recorded by the US Air Force each month. There were a total of 2246 airstrikes dur-
ing this period. Figure 1b plots the spatial locations of these airstrikes across Iraq, with spatial
clustering observed around Baghdad and the neighbouring ‘Sunni Triangle’, a hotspot of insur-
gency. Figure 1c plots the monthly distribution of insurgent attacks by type: Improvised Explosive
Devices (IEDs), small arms fire (SAF), and other attacks. A total of 68,573 insurgent attacks were
recorded by the US Army’s CIDNE database during this time period. Finally, Figure 1d plots the
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FIGURE 1 Distribution of the treatment and outcome point processes over time and space.

Plots (b) and (d) show the locations of airstrikes and insurgent attacks, respectively, during the time period 23
February 2007 to 5 July 2008. Insurgent attacks are sorted into one of three categories: Improvised Explosive
Devices (IEDs), Small Arms Fire (SAF), and other attacks. (a) Airstrikes over time; (b) Airstrikes over space; (c)
Insurgent violence over time; (d) Insurgent violence over space

locations of insurgent attacks across Iraq. Baghdad, the Sunni Triangle, and the highway leading
north to Mosul are all starkly illustrated.

3 | CAUSAL INFERENCE FRAMEWORK FOR
SPATIO-TEMPORAL DATA

In this section, we propose a causal inference framework for spatio-temporal point processes. We
describe the setup, and define causal estimands based on stochastic interventions.
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3.1 | Thesetup

We represent the locations of airstrikes for each time period (e.g. day) as a spatial point pattern
measured attimet € 7 = {1,2, ... , T} where T is the total number of the discrete time periods.
Let Wy(s) denote the binary treatment variable at location s for time period ¢, indicating whether
or not the location receives the treatment during the time period. We use W; as a shorthand for
Wi(Q2), which evaluates the binary treatment variable W;(s) for each element s in a set Q. The set
Q is not assumed to be a finite grid, but it is allowed to include an infinite number of locations
that may receive the treatment. In addition, W represents the set of all possible point patterns at
each time period where, for simplicity, we assume that this set does not vary across time periods,
that is, W; € W for each t. The set of treatment-active locations, that is, the locations that receive
the treatment, at time ¢ is denoted by Sy, = {s € Q : Wi(s) = 1}. We assume that the number of
treatment-active locations is finite for each time period, i.e., |Sw,| < oo for any . In our study,
the treatment-active locations correspond to the set of coordinates of airstrikes. Finally, W, =
(W1, Ws, ..., W,) denotes the collection of treatments over the time periods 1,2, ... ,t

We use w; to represent a realisation of W, and w; = (wy, w,, ... ,w;) to denote the history of
treatment point pattern realisations from time 1 through time t. Let Y;(w;) represent the potential
outcome at time ¢ € T for any given treatment sequence w; € W' = W x - - - X W, depending on
all previous treatments. Similar to the treatment, Y;(w;) represents a point pattern with locations
Sy,aw,)» Which are referred to as the outcome-active locations. In our study, Sy g, represents the
locations of insurgent attacks if the patterns of airstrikes had been w,. Let YVr={Y,(w) : w, €
WE t € T'} denote the collection of potential outcomes for all time periods and for all treatment
sequences.

Among all of these potential outcomes for time ¢, we only observe the one corresponding to
the observed treatment sequence, denoted by Y; = Y,(Wt) We use Y, = {Y1,Ys, ... ,Y;} to rep-
resent the collection of observed outcomes up to and including time period t. In addition, let
X, be the set of possibly time-varying confounders that are realised prior to W; but after W,_;.
No assumption is necessary about the temporal ordering of any variables in X; and Y;_;. Let
X7 = {X;(w;_)) : w_; € WLt € T} be the set of potential values of X under any possible treat-
ment history and for all time periods. We also assume that the observed covariates correspond
to the covariates under the observed treatment path, X; = X,(W, 1), and use X, = X1,X, ..., X))
to denote the collection of observed covariates over the time periods 1,2, ... ,t. Finally, we use
H, = {W,,Y;,X;;1} to denote all observed history preceding the treatment at time ¢ + 1.

Since our statistical inference is based on a single time series, we consider all potential out-
comes and potential values of the time-varying confounders as fixed, pre-treatment quantities.
Then, the randomness we quantify is with respect to the a551gnment of treatment W, given the
complete history including all counterfactual values H, 1 Where H, e =1 w,, yT, X rYandH, C H, ‘-

3.2 | Causal estimands under stochastic interventions

A notion central to our proposed causal inference framework is stochastic intervention. Instead
of setting a treatment variable to a fixed value, a stochastic intervention specifies the prob-
ability distribution that generates the treatment under a potentially counterfactual scenario.
Although our framework accommodates a large class of intervention distributions, for concrete-
ness, we consider intervention distributions based on Poisson point processes, which are fully
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characterised by an intensity function & : Q — [0, o). For example, a homogeneous Poisson point
process with h(s) = h for all s € Q, implies that the number of treatment-active locations follows
a Poisson(h|Q|) distribution, with locations distributed independently and uniformly over Q. In
general, the specification of stochastic intervention should be motivated by policy or scientific
objectives. Such examples in the context of our study are given in Section 7.1.

Our causal estimands are the expected number of (potential) outcome-active locations under a
specific stochastic intervention of interest, and the comparison of such quantities under different
intervention distributions. We begin by defining the causal estimands for a stochastic intervention
taking place over a single time period. Let F, denote the distribution of a spatial point process
with intensity h. Also, let Np(-) denote a counting measure on a region B C Q. Then, we can define
the expected number of outcome-active locations for a region B at time ¢ as

Ni(F,) = /W N (Vi (Wioawi) ) dF, w0 = /W

In our application, this quantity represents the expected number of insurgent attacks within a
region of Iraq B if the airstrikes at time ¢ were to follow the point process specified by F, , given
the observed history of airstrikes up to time ¢ — 1. The region B does not need to be defined as a
connected subset of Q, and it can be the union of potentially non-bordering sets (e.g. the suburbs
of two cities).

We can extend the above estimand to an intervention taking place over M consecutive time
periods. Consider an intervention, denoted by Fp = F, X---X F , under which the treatment
at time ¢ is assigned according to F, o attime ¢t —1 accordlng to F g contlnumg until time period
t—M +1 for which treatment is 3551gned according to F, . A treatment path based on this

SYt(Wt—1!Wt> HB‘ th(Wl). (@8]

intervention is displayed in Figure 2a. Then, we define a general estimand as

Nu(F) = / N (Y (Wooars wersr, - wi) ) dF, 0+ dF, (Wiopren)
WM

=/WM

This quantity represents the expected number of outcome events within region B and at time ¢
if the treatment point pattern during the previous M time periods was to follow the stochastic

SY[ (W[—Msw[—M+1, ,Wt> n B‘ thl (Wt) o thM (WL_M_'—I). (2)

M time periods

AL
' - ™
(a)| Wi ‘ W, | | We-—m |Wt—M+1| ’ Wi—1 | Wi | —* Npe(Fn)
\f‘ o o Fh{/
~
Fy
(b)| Wy | W, | | Wi_m |Wt—M+1|Wt—M+2| ’ Wy | Wiy | — Na(tﬂ)(Fh)
\FhM th th/
e g =
Fn

FIGURE 2 Graphical illustration of stochastic intervention over multiple time periods for time period ¢
and ¢ + 1. Under intervention Fy, treatments during time periods t — M +1, ... ,t — 1, ¢ are assigned according to
distributions Fh Y e ,Fh ,Fh .

‘M 2 1
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intervention with distribution Fy,. Treatments during the initial t — M time periods were the same
as observed. A special case of Fy, assumes that treatments during the M time periods are inde-
pendent and identically distributed draws from the same distribution F,, which we denote by
Fn=F".

Given the above setup, we define the average treatment effect of stochastic intervention Fyy
versus Fy for a region B at time t as

7pt(Fyy, Fy) = Npi(Fyyr) — Np(Fyy), 3)
where h' = (1, h’z, ,h]’w) represents a collection of treatment intensities over M consecutive
time periods (similarly for h”).

We further consider the average, over time periodst = M,M + 1, ... , T, of the expected poten-

tial outcome for region B at each time period if treatments during the M proceeding time periods
arose from Fy,. This quantity is defined as

T
Np(Fn) = D Nii(F). €
t=M

1
T-M+1%4

Figure 2 shows two of the terms averaged in Equation (4), that is, Np,(Fn) and Np¢41)(Fn). For
Np:(Fn), treatments up to t — M are set to their observed values, and treatments at time periods
t—M+1, ... ,tare drawn from Fy. The same definition applies to Np+1)(Fn), but intervention
time periods are shifted by 1: treatments up to t — M + 1 are set to their observed values, while
treatments during time periodst — M + 2, ... ,t + 1 are drawn from Fy. In Equation (4), the sum-
mation starts at t = M since the quantity Ng,(Fp) assumes that there exist M prior time periods
during which treatments are intervened on. We suppress the dependence of Ng(Fy) on T for
notational simplicity.
Similarly, based on Ng(Fy,), we define the causal effect of intervention Fy versus Fy as

T

ZTBt(Fh’th”)~ ©)

t=M

5(Fy Fi) = NoFyr) = Na(Fy) = 7——
This estimand represents the average, over time periods t = M,M + 1, ... , T, of the expected
change in the number of points at each time period when the observed treatment path Wy
was followed until t — M with subsequent treatments W;_ps41, ... , W; arising according to Fyy
versus Fy.

The effect size of a point pattern treatment would depend on M, and a greater value of M allows
one to study slow-responding outcome processes. Moreover, specifying Fy and Fy,» such that they
are identical except for the assighment at M time periods prior, k), h},, yields the lagged effect of
a treatment change, which resembles the lagged effects defined by Bojinov and Shephard (2019)
for binary treatments and non-stochastic interventions.

The above estimands are defined while conditioning on the treatments of all previous time
periods. This is important because we do not want to restrict the range of temporal carryover
effects. Although the proposed estimand is generally data-dependent, the quantity becomes fixed
under some settings. For example, if the potential outcomes at time ¢ are restricted to depend at
most on the latest L treatment point patterns, then the estimands for stochastic interventions that
take place over M > L time periods will no longer depend on the observed treatment path.
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4 | ESTIMATION AND INFERENCE

In this section, we introduce a set of causal assumptions and the proposed estimator that com-
bines inverse probability of treatment weighting (IPW) with kernel smoothing. We then derive its
asymptotic properties. All proofs are given in Appendix B.

41 | The assumptions

Similar to the standard causal inference settings, variants of the unconfoundedness and overlap

assumptions based on stochastic interventions are required for the proposed methodology. For

simplicity, we focus on stochastic interventions with identical and independent distribution over

M periods, Fy, = Fﬁ” , and intensity h. Our theoretical results, however, extend straightforwardly

to stochastic interventions with non-i.i.d. treatment patterns.

Assumption 1 (Unconfoundedness). The treatment assignment at time ¢ does not depend
on any, past or future, potential outcomes and potential confounders conditional on the
observed history of treatments, confounders and outcomes up to time ¢t — 1:

FOWVH Wiy, Y1, X1) = f(Wi[H,_1).

Assumption 1 resembles the sequential ignorability assumption in the standard longitudinal
settings (Robins, 1999; Robins et al., 2000), but it is more restrictive. The assumption requires
that the treatment assignment does not depend on both past and future potential values of the
time-varying confounders as well as those of the outcome variable, conditional on their past
observed values. In contrast, the standard sequential ignorability assumption only involves future
potential outcomes.

Unfortunately, sequential ignorability would not suffice in the current setting. The reason is
that we utilise data from a single unit measured repeatedly over many time periods to draw causal
conclusions. This contrasts with the typical longitudinal settings where data are available on a
large number of independent units over a short time period. Our assumption is similar to the
non-anticipating treatment assumption of Bojinov and Shephard (2019) for binary non-stochastic
treatments, while explicitly showing the dependence on the time-varying confounders. By requir-
ing the treatment to be conditionally independent of the time-varying confounders, we assume
that all “back-door paths” from treatment to either the outcome or the time-varying confounders
are blocked (Pearl, 2000).

Next, we consider the overlap assumption, also known as positivity, in the current setting.
We define the probability density of treatment realisation w at time ¢ given the history, e;(w) =
f(W, = w|H,_1), as the propensity score at time period t. Also, let f;, denote the probability density
function of the stochastic intervention F, . The assumption requires the ratio of propensity score
over the density for the stochastic intervention, rather than the propensity score itself, is bounded
away from zero.

Assumption 2 (Bounded relative overlap). There exists a constant éy > 0 such that e,(w) >
6w - fu(w) for allw € W.

Assumption 2 ensures that all the treatment patterns which are possible under the stochastic
intervention of interest can also be observed. This assumption enforces that the support of the
intervention distribution has to be included in the support of the propensity score, and does not
allow for interventions that assign positive mass to fixed treatments w.
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4.2 | The propensity score for point process treatments

The propensity score plays an important role in our estimation. Here, we show that the propensity
score for point process treatments has two properties analogous to those of the standard propen-
sity score (Rosenbaum & Rubin, 1983). That is, the propensity score is a balancing score, and
under Assumption 1 the treatment assignment is unconfounded conditional on the propensity
score.

Proposition 1. The propensity score e(w) is a balancing score. That is, f(W; = wlew), Hi_y) =
f(W; = wle/(w)) holds for all t.

In practice, Proposition 1 allows us to empirically assess the propensity score model specification
by checking the predictive power of covariates in H,_; for the treatment W, conditional on the
propensity score. For example, if a covariate significantly improves prediction in a point process
model of W; after adjusting for the estimated propensity score, then the covariate is not balanced
and the propensity score model is likely to be misspecified.

Proposition 2. Under Assumption 1, the treatment assignment at time t is unconfounded given the
propensity score at time t, that is, given f(W;|W;_1, Y1, &) = f(W;|H;_1), we have

FWH Wiy, Y1, X 1) = f(W;|e(W))).

Proposition 2 shows that the potentially high-dimensional sets, ﬁf_l and H,_;, can be reduced
to the one dimensional propensity score e;(w) as a conditioning set sufficient for estimating the
causal effects of W;.

4.3 | The estimators

To estimate the causal estimands defined in Section 3, we propose propensity-score-based estima-
tors that combine IPW with kernel smoothing of spatial point patterns. The estimation proceeds
in two steps. First, at each time period t, the surface of outcome-active locations is spatially
smoothed according to a chosen kernel. Then, this surface is weighted by the relative density of
the observed treatment pattern under the stochastic intervention of interest and under the actual
data generating process.

An alternative approach would be the direct modelling of the outcome. For example,
one would model the outcome point process as a function of the past history following the
g-computation in the standard longitudinal settings (Robins, 1986). However, such an approach
would require an accurate specification of spatial spillover and temporal carryover effects. This
is a difficult task in many applications. Instead, we focus on modelling the treatment assignment
mechanism.

Formally, consider a univariate kernel K : [0, ) — [0, c0) satisfying f K(u)du = 1. Let K,
denote the scaled kernel defined as K,(u) = b~'K(u/b) with bandwidth parameter b. We define
f/t(FilW) Q- Rtas

(W)

V(P ) =
j=t1—7\/11+1 ¢(Wj)

Y Ko(llo sl |, (6)

SESy,
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where || - || denotes the Euclidean norm. The summation represents the spatially smoothed ver-
sion of the outcome point pattern at time period t. The product of ratios represents a weight
similar to those in the marginal structural models (Robins et al., 2000), but in accordance with
the stochastic intervention Fi‘l/f : each of the M terms represents the likelihood ratio of treatment
W in the counterfactual world of the intervention F, versus the actual world with the observed
data at a specific time period.

Assuming that the kernel K is continuous, the estimator given in Equation (6) defines a con-
tinuous surface over Q. The continuity of ¥ (FhM ) allows us to use it as an intensity function
when estimating causal quantities. This leads to the following estimator for the expected number
of outcome-active locations in any region B at time ¢, defined in Equation (2),

I/\\th (F;I:’I) = /?t (F}I:/I;a)) dw. (7
B

We can now construct the following estimator for the temporally-expected average potential
outcome defined in Equation (4),

T
~ 1 ~
Y (FM)=— Y (FM) 8
B h T_M + 1[221\4 Bt h ( )
We estimate the causal contrast between two interventions Fif and Fﬁ” defined in Equation (5) as,
1 2
?B(Fg,F%)zﬁB(Fﬁf)—ﬁB<Fgf). 9)

An alternative estimator of Np; (FhM ) could be obtained by replacing the kernel-smoothed

version of the outcome in Equation (6) with the number of observed outcome active locations in
B at time ¢t. Even though this estimator has the same asymptotic properties discussed below, the
kernel-smoothing of the outcome ensures that, for a specific intervention FM, once the surface in
Equation (6) is calculated, it can then be used to estimate the temporally expected effects defined
in Section 3 for any B C Q. In addition, it allows for the visualisation of the outcome surface
under an intervention, making it easier to identify the areas of increased or decreased activity as
illustrated in Section 7.

In the next section we establish the asymptotic properties of the proposed IPW estimators. In
our simulations (Section 6) and empirical study in (Section 7), we also use the Hajek estimator,
which standardises the IPW weights and replaces Equation (8) with

T T t :
mo()- 2o () / 2 { T 22 o)

j=t-M+1

We find that this Hajek estimator outperforms the corresponding IPW estimators in finite
samples, mirroring the existing results under other settings (e.g., Cole et al., 2021; Liu et al., 2016).

4.4 | The asymptotic properties of the proposed IPW estimators

Below, we establish the asymptotic properties of the proposed IPW estimators. Our results dif-
fer from the existing asymptotic normality results in the causal inference literature in several
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ways. First, our inference is based on a single time series of point patterns that are both spatially
and temporally dependent. Second, we employ a kernel-smoothed version of the outcome. Third,
using martingale theory, we derive a new central limit theorem in time-dependent, observational
settings. We now present the main theoretical results. All proofs are given in Appendix B.

Theorem 1 (Asymptotic normality). Suppose that Assumptions 1 and 2 as well as the regularity
conditions (Assumption A.1) hold. Then, if the bandwidth by — 0and as T — oo, we have that

VT (N5 (R ) =N (FY) ) = NO.v),

where v represents the probability limit of (T — M + 1)‘12tT:Mvt as T — oo with

! Wi —
vt=Var|J H I j)NB(Y,)lHt_M] for t > M.
—i-ir1 (W)

The key idea of our proof is to separate the estimation error arising due to the treatment
assignment W, given the complete history ﬁf_l, from the error due to spatial smoothing. Using
martingale theory, we show that the former is ﬁ-asymptotically normal, where the temporal
dependence is controlled based on Assumption 1. The latter is shown to converge to zero at a rate
faster than 1/ ﬁ

According to Theorem 1, the knowledge of v would enable asymptotic inference about
the temporally expected potential outcome. The variance v is the converging point of
(T-M+ 1)‘1Z[T=Mvt where v, represents a time period-specific variance. Unfortunately, since
we only observe one treatment path for each time period ¢, we cannot directly estimate the
time-specific variances, v, and thus v, without additional assumptions.

We circumvent this problem by using an upper bound of v, a quantity which we

A 2 4
can consistently estimate. Specifically, let vy = E{[NBt (F% )] |Ht_M}. For v* such that

(T-M+ 1)‘1ZtT=Mv;‘ 2, v*, we have v < v*. Then, an a-level confidence interval for Ny (Fif )
based on the asymptotic variance bound v*/T will achieve the nominal asymptotic coverage.
Although v* cannot be directly calculated either, there exists a consistent estimator of its value,
as stated in the following lemma:

Lemma 1 (Consistent estimation of variance upper bound). Suppose that Assumptions 1 and 2
and the regularity conditions (Assumption A.1) hold. Then, as by — 0 and T — oo, we have

T
1 R M 2 ¢ p
oy () ] Lo

t=M

In Appendix B.3 we extend the above results to the estimator 73 <F£’[ , F}’:”’ .
1 2

So far, all of the theoretical results presented above have been established with the true propen-
sity score e;(w). However, in practice, the propensity score is unknown and must be estimated. The
next theorem shows that, when the propensity score is estimated under the correct model spec-
ification, the proposed estimator maintains its consistency and asymptotic normality. To prove
this result, we extended classic M-estimation theory to multivariate martingale difference series,
established a new central limit theorem for time series data, and derived the properties of the
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propensity score models under the spatio-temporal settings. To our knowledge, these results are
new even though related results exist under the continuous time setting (Crimaldi & Pratelli, 2005;
Kiichler & Serensen, 1999). We believe that our results may be useful when studying the asymp-
totic properties of causal estimators in other dependent, observational settings (see Appendix B.4
more details).

Theorem 2 (Asymptotic normality using the estimated propensity score). Suppose that Assump-
tions 1 and 2 as well as the regularity conditions (Assumptions A.1, A.2, A.3) hold. If the
bandwidth by — 0, then as T — oo, we have

VT (NB <F£’[ ) — Nj (F}f )) L N,

Next, we show that using the estimated propensity scores from a correctly specified model
yields more efficient estimates than using the true propensity scores. This generalises the
well-known analogous result proved for the independent and identically distributed setting (e.g.,
Hirano et al., 2003) to the spatially and temporally dependent case (see Zeng et al., 2021, for a
similar result in a different dependent setting). Thus, even with the estimated propensity score,
we can make asymptotically conservative inference based on the variance upper bound derived
above.

Theorem 3 (Asymptotic efficiency under the estimated propensity score). The estimator in
Equation (8) based on the estimated propensity score from a correctly specified parametric
model has asymptotic variance that is no larger than the asymptotic variance of the same esti-
mator using the known propensity score. That is, for v in Theorem 1 and V¢ in Theorem 2, we
have v¢ < v.

The asymptotic results presented here require the area of interest, Q, to be fixed while the num-
ber of time periods T increases. We note that point pattern treatments and outcomes might also
arise in situations where the number of time periods T is fixed, but the area under study Q grows
to include more regions. In Appendix B.5, we provide an alternative causal inference framework
for point pattern treatments under this new design by extending our causal estimands, estima-
tion and asymptotic results to the spatio-temporal setting with an area consisting of a growing
number of independent regions.

5 | SENSITIVITY ANALYSIS

The validity of our estimators critically relies upon the assumption of no unmeasured confound-
ing (Assumption 1). We develop a sensitivity analysis to address the potential violation of this
key identification assumption. Specifically, we extend the sensitivity analysis pioneered by Rosen-
baum (2002) to the spatio-temporal context and to the Hijek estimator with standardised weights,
which we consider in our simulation and empirical studies.

Suppose there exists an unmeasured, potentially time-varying confounder U;. We assume that
the unconfoundedness assumption holds only after conditioning on the realised history of this
unobserved confounder as well as HH, ie.,

FWVHW,, V1, X1, Ur) = f(Wi|H,_1, U)),
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where U’y represents the collection of all potential values of U, across all time points ¢ =
1,2, ..., Twhereas U, represents the history of realised but unmeasured confounder U up to time
t. Note that U, can be correlated with the observed confounders.
The existence of an unmeasured confounder invalidates the inference based on the propen-
sity score with observed covariates alone e;(w) because the true propensity score, denoted by
e;(w) = fw, (w|H +-1, Up), conditions on the history of the unmeasured confounder U,.To develop a
sensitivity analysis, we assume the ratio of estimated versus true propensity scores for the realised
treatment W; is bounded by a value I'(> 1),

1 < g = et(Wt)

"= gwn =
A larger value of I' allows a greater degree of violation of the unconfoundedness
assumption.

In our application, we use the Héjek-version of the proposed estimator, which we find to
be more stable than the IPW estimator (see Section 6). Thus, to develop a sensitivity analy-
sis, we derive an algorithm for bounding the Héjek estimator for stochastic interventions for
each fixed value of I" (see Appendix D for the sensitivity analysis of the IPW estimator). Specif-
ically, for all values of p = (p1,pa. ... ,pr) € [["1,T]7, we wish to bound the following two
quantities:

. 1ot wi(F,) Np(Y)
Ny(F,) = = , and
Z[=1Pt Wl(Fh)

) Tepe wiE, ) Np(Y)  Eisype wilE, ) Np(Yy)
'rp(Fh1 , th) =

Yi1pe wilE, ) Yoot wi(E, )
where
(W) )
w(F,)="—2 and Np(¥)= | Y Kyllo-sl)do.
e(Wy) Bses,

Below we show how to formulate the bounding problem for ﬁp(Fh) as a linear programme, and

how to use the bounds for N ,,(Fh) to also bound the effect estimator 7 ,(Fp, , Fp, ).

Theorem 4 (Bounding the causal quantities).

1. The problem of maximising ﬁp(Fh) over p € [}, T'|T is equivalent to the following linear
program,

T
maximise - pr wi(F,) Np(Y1)
i=1

subjectto = < p} <Tx, Y pf w(F,) =1, and x >0,

==

where p = p* /k.
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2. Suppose that p}nax and p}nin represent the values of p that maximise and min-

imise J/\\I,,(Fh_), respectively, for j=1,2. Then, the bounds for the causal effect are
J
obtained as,

Nynin(F, ) = Nppo<(F,, ) < £p(F,,  F ) < Npox(F,, ) = Npun (F) ). (11)

The proof for bounding ﬁp(Fh) is based on the Charnes—Cooper transformation of linear fraction-
als (Charnes & Cooper, 1962), and the proof for bounding 7 ,(Fp, , Fy,) is given in Appendix D. For
bounding N »(F,), this proposition allows us to use a standard linear algorithm to obtain the opti-
mal solution for (p*, k) and transform it back to the optimal solution p. Then, we can use these
bounds to also acquire bounds on the effect estimator. Since all bounds are wider for a greater
value of T, the estimated effects are robust to propensity score misspecification up to the smallest
value of T for which the interval of bounds in Equation (11) includes 0. Due to the standardisa-
tion of weights in the Hajek estimator, the bound in Equation (11) is conservative, in the sense
that, if the causal estimate is shown to be robust up to some value I', then it is robust up to an even
greater degree of propensity score model misspecification I'* > I'. Similar bounds can be derived
for the stochastic interventions that take place over multiple time periods (see Appendix Data for
details).

The propensity score modelling in our spatio-temporal setting is much more complex with an
infinite number of potential treatment locations than in the conventional cross-sectional setting.
As a result, the modelling uncertainty for the propensity score is much greater. This makes it
difficult to compare the scale of I" between the spatio-temporal and conventional cross-section
settings. In particular, the value of I' is expected to be much closer to the null value of one in the
spatio-temporal context.

6 | SIMULATION STUDIES

We conduct simulation studies to empirically investigate several key theoretical properties of
the proposed methodology: (a) the performance of our estimator under different stochastic
interventions and as the number of time periods increases, (b) the accuracy of the asymptotic
approximation, (c) the difference between the theoretical variance bound and the actual vari-
ance, (d) the performance of the inferential approach based on the estimated asymptotic variance
bound, (e) the relative efficiency of the estimator when using the true and estimated propensity
scores, and (f) the balancing properties of the estimated propensity score. We use the spatstat
R package (Baddeley et al., 2015) to generate point patterns from Poisson processes and fit Poisson
process models to the simulated data.

6.1 | The study design

To construct a realistic simulation design, we base our data generating process on the
observed data from our application. We consider a time series of point patterns of length T €
{200,400, 500}. For each time series length T,200 datasets are generated. The scenario with
T = 500 closely resembles our observed data, which have T = 469.
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FIGURE 3 Simulated data. Panel (a) shows one of the two time-invariant confounders representing the
exponential decay of distance to the road network. Panel (b) shows one realisation for one of the time-varying
confounders. After generating points from a non-homogeneous Poisson process, which depends on the observed
airstrike density, we define the time-varying confounder as the exponential decay of distance to these points.
Panel (c) shows the estimated log-density of treatment patterns, which is used as the density ¢ in the definition of
stochastic interventions. (a) Time-invariant confounder X! (w); (b) Realisation of time-varying confounder Xt3 (w);
(c) Distribution of treatment point patterns

6.1.1 | Time-varying and time-invariant confounders

Our simulation study includes two time-invariant and two time-varying confounders. We base
the first time-invariant confounder on the distance from Iraq’s road network and its borders, by
defining its value at location @ € Q as X'(w) = exp{—3D;(w)} + log(D»(w)), where D;(w) is the
distance from w to the closest road, and D,(w) is the distance to the country’s border. This covariate
is shown in Figure 3a. The second covariate is defined similarly as X%(w) = exp{—Ds(w)} where
D;(w) is the distance from w to Baghdad.

We generate the time-varying confounders, Xf(w) and X;‘(a)), using the kernel-smoothed
density of the observed airstrike and attack patterns. Specifically, we pool all airstrike loca-
tions across time and estimate the density of airstrike patterns, denoted by f (w) at location w
(shown in the right plot of Figure 6). Based on this density, we draw a point pattern from a
non-homogeneous Poisson point process with intensity function AX’ (w) = exp {po + plf (w) } for
po ~ —2.7and p, = 8, and define X3(w) as exp{—D4(w)}, where D, (w) is the distance from location
o to the closest point. We generate X*(w) similarly based on the estimated density for insur-
gent attacks, and for corresponding values p, & —3.2 and p; = 7. Figure 3c shows one realisation
of X7 (w).

6.1.2 | Spatio-temporal point processes for treatment and outcome variables
For each time period t € 7, we generate W; from a non-homogeneous Poisson process that

depends on all confounders X;(w) = (X'(w), X*(w), X} (w), X;(®))7, as well as the previous treat-
ment and outcome realisations, W;_; and Y;_;. The intensity of this process is given by

Y (@) = exp {ao + azXy(®) + aw W (®) + ay Y} (@)}, (12)

where W} | (w) = exp{—2Dw(w)} and Y;" | (w) = exp{—2Dy(w)} with Dy(w) and Dy(w) being the
minimum distance from o to the points in Sy, and Sy, , respectively.
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Similarly, we generate Y; from a non-homogeneous Poisson process with intensity
3 (@) = exp {10 + VIXKA) + 12X21(0) + 1w Wiy (@) + 1y Y1)} (13)

where W(j 3: (@) = exp{-2Dj, (w)} with Dj, (o) being the distance from w to the closest points
in } 135w, This specification imposes a lag-three dependence of the outcome on the treatment
process. The model leads to an average of 5.5 treatment-active locations and 31 outcome-active
locations within each time period, resembling the frequency of events in our observed data. The
spatial distribution of generated treatment point patterns also resembles the observed one (com-
pare Figure 3c to the right plot of Figure 6). The simulated and observed outcome point patterns

also have similar distributions.

6.1.3 | Stochastic interventions

We consider stochastic interventions of the form Fﬁ/’ for a non-homogeneous Poisson process with
intensity h, which is defined as h(w) = c¢(w) for ¢ ranging from 3 to 8, and surface ¢ set to the
density shown (in logarithm) in Figure 3c. This definition of stochastic intervention based on
the treatment density aligns with the specification in our study in Section 7. We consider varying
the intervention duration by setting M € {1, 3,7, 30}. We also examine lagged interventions over
three time periods, that is, Fn = F, X F X F, . The intervention for the first time period F

is a Poisson process with intensity hg(w) = cd)(w) for ¢ ranging from 3 to 7, whereas F = F

is a non-homogeneous Poisson process with intensity 5¢(w). For each stochastic 1ntervent10n
we consider three regions of interest, B, of different sizes, representing the whole country, the
Baghdad administrative unit, and a small area in northern Iraq which includes the town of Mosul.

6.1.4 | Approximating the true estimands

Equation (13) shows that the potential outcomes depend on the realised treatments during the last
four time periods as well as the realised outcomes from the previous time period. This implies that
the estimands for all interventions, even for M > 4, depend on the observed treatment and out-
come paths and are therefore not constant across simulated data sets. Therefore, we approximate
the true values of the estimands in each dataset in the following manner. For each time period
t, and each r = 1,2, ... ,R repetition, we generate realisations WE?M TR ,wir_)l,wir) from the

intervention distribution Fy,. Based on the treatment path (W;_y;, w" W (r)) we generate

t-M+1° """
outcomes yir)M NI yﬁr) using Equation (13). Thisyields S e which contains the outcome-active
locations based on one realisation from the stochastic 1ntervent10n Repeating this process R times
and calculating the average number of points that lie within B provides a Monte Carlo approxi-

mation of Ng:(Fp), and further averaging these over time gives an approximation of Ng(Fy,).

6.1.5 | Estimation

We estimate the expected number of points Np(Fp) and the effect of a change in the intervention
on this quantity zp(F}y, Fy,») using the following estimators: (a) the proposed estimators defined
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in Equations (8) and (9) with the true propensity scores; (b) the same proposed estimators with
the estimated propensity scores based on the correctly specified model; (c) the above two estima-
tors with the Héjek-type standardisation in (10); and (d) the unadjusted estimator based on the
propensity score model using a homogeneous Poisson process with no predictor.

All estimators utilise the smoothed outcome point pattern. Spatial smoothing is performed
using Gaussian kernels with SD equal to 10T~%/3§, which is decreasing in T, and for § scaling the
bandwidth according to the size of the geometry under study. We choose this bandwidth such that
for T = 500 (the longest time series in our simulation scenario) the bandwidth is approximately
0.5, slightly smaller than the size of the smallest region of interest B (square with edge equal to
0.75). We discuss the choice of the bandwidth in Section 7.3.

6.1.6 | Theoretical variance and its upper bound

Theorem 1 provides the expression for the asymptotic variance of the proposed IPW estimator.
We compute Monte Carlo approximations to this variance and its upper bound. Specifically, for
each time period ¢ and each replication r, the computation proceeds as follows: (1) we gener-
ate treatment and outcome paths wﬁ?M r yﬁ?M TR ,wir), yi” using the distributions specified in
Equations (12) and (13), (2) using the data (wﬁr_)M RTREE ,wir)) and the outcome ygr), we compute
the estimator according to Equations (6) and (7), and finally (3) we calculate the variance and
the second moment of these estimates over R replications, which can be used to compute the
asymptotic variance and variance bound of interest.

Their averages over time give the desired Monte Carlo approximations. We use a similar

procedure to approximate the theoretical variance and variance bound of #g(Fy, Fy»)-

6.1.7 | Estimating the variance bound and the resulting inference

We use Lemma 1 to estimate the variance bound. This estimated variance bound is then used to
compute the confidence intervals and conduct a statistical test of whether the causal effect is zero.
Inference based on the Hajek estimator is discussed in Appendix C.

6.1.8 | Balancing property of the propensity score

Using the correctly specified model, we estimate the propensity score at each time period ¢. The
inverse of the estimated propensity score is then used as the weight in the weighted Poisson
process model for W; with the intensity specified in Equation (12). We compare the statistical
significance of the predictors between the weighted and unweighted model fits. Large p-values
under the weighted model would suggest that the propensity score adequately balances the
confounding variables.

6.1.9 | Relative efficiency of estimators based on the true and estimated
propensity score

According to Theorem 3, the asymptotic variance of the estimator based on the true propensity
score is at least as large as that of the estimator based on the estimated propensity score. We
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investigate the relative magnitude of the Monte Carlo approximations of the corresponding two
variances.

6.2 | Simulation results

Figure 4 presents the results for all the stochastic interventions that were considered. The top four
rows show how the (true and estimated) average potential outcomes in the whole region (B = Q)
change as the intensity varies under interventions Fi:” for M € {1, 3,7, 30}, respectively. The last
row shows how the true and estimated average potential outcomes in the same region change
under the three time period lagged interventions when the intensity at three time periods ago
ranges from 3 to 7. For both simulation scenarios, we vary the length of the time series from 200
(left column) to 500 (right column).

The unadjusted estimator returned values that are too far from the truth and are not shown
here. We find that the accuracy of the proposed estimator improves as the number of time periods
increases. Notice that the convergence is slower for larger values of M. This is expected because
the uncertainty of the treatment assignment is greater for a stochastic intervention with a longer
time period. We find that the Héjek estimator performs well across most simulation scenarios
even when T is relatively small and M is large. The IPW estimator (investigated more thoroughly
in Appendix F) tends to suffer from extreme weights because the weights are multiplied over the
intervention time periods as shown in Equation (6). These results indicate a deteriorating perfor-
mance of the IPW estimator as the value of M increases, whereas the standardisation of weights
used in the Héjek estimator appears to partially alleviate this issue. Results were comparable for
the two other sets B.

Next, we compare the true theoretical variance, v/T, with the variance bound v*/T and its
consistent estimator (see Lemma 1). We assess the conservativeness of the theoretical variance
bound by focusing on the proposed estimators with the true propensity score. Figure 5 shows
the results for an intervention Fﬁ” for M € {1, 3}, and for region B = Q. The results for the other
regions are similar and hence omitted.

First, we focus on the theoretical variance and variance bound (blue line with open circles, and
orange dotted lines with open triangles, respectively). As expected, the true variance decreases as
the total number of time periods increases, and the theoretical variance bound is at least as large
as the variance. In the setting with M = 3, the theoretical variance bound follows the variance
closely, evident by the fact that the two lines are essentially indistinguishable. We have found this
to be the case in all scenarios with higher uncertainty, indicating that the theoretical variance
bound is not overly conservative. Indeed, the variance bound is visibly larger than the true vari-
ance only in the low-variance scenarios of interventions over a single time period, as shown in
the top row of Figure 5 (and in Appendix E.1).

Second, we compare the theoretical variance bound with the estimated variance bound (green
dashed lines with open rhombuses). As the length of time series increases, the estimated variance
bound more closely approximates its theoretical value (consistent with Lemma 1). Furthermore,
the estimated variance bound is close to its theoretical value under low uncertainty scenarios and
when the intervention intensity more closely resembles that of the actual data generating process.
However, we find that the estimated variance bound underestimates the true variance bound in
high uncertainty scenarios, and convergence to its true value is slower for larger values of M (see
Appendix E.1).
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FIGURE 4 Simulation results for the average potential outcomes. In the top four rows, we present the true
and estimated average potential outcomes in B = Q under interventions Fﬁ” with the varying intensity
(horizontal axis) and M € {1, 3,7, 30} (rows), respectively. In the bottom row, we consider the average potential
outcome for the lagged intervention over three time periods Fy,, with the varying intensity of F, shown on the
horizontal axis. The black lines with solid circles represent the truths, the Hajek estimator based on the true
propensity score is shown in purple, and the Hajek estimator based on the estimated propensity score is in green.
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FIGURE 5 Comparison of the asymptotic SD with the true and estimated asymptotic SD bound for the
average potential outcome estimator. The comparison is based on the varying number of expected points
(horizontal axis) under the stochastic intervention F 2’1 taking place over M = 1 (top row) and M = 3 (bottom row)
time periods. The columns correspond to a simulation setting with a different time series length.

We also compare the variance of the estimator based on the true propensity score with that
of the estimator based on the estimated propensity score. Table 1 shows the ratio of the Monte
Carlo variances which, according to Theorem 3, should be larger than 1, asymptotically. Consis-
tent with the above simulation results, we find that the ratio is above 1 for interventions over
one and three time periods. In addition, the ratio is largest in the low uncertainty scenarios
where either the number of intervention periods, M, is small, or the expected number of points
is near the observed value under the intervention (c ~ 5). In contrast, in the high uncertainty
situations with longer intervention periods, for example M € {7, 30}, the ratio remains below 1,
implying that the asymptotic approximation may not be sufficiently accurate for the sample sizes
considered.

In Appendices E.2 and E.3, we also investigate the performance of the inferential proce-
dure based on the true variance, true variance bound, and estimated variance bound, for both
the IPW and Héjek estimators. The confidence interval for the IPW estimator tends to yield
coverage close to its nominal level only for the interventions over a small number of time peri-
ods. In contrast, the confidence interval for the H4jek estimator has good coverage probability
even for the interventions over a larger number of time periods. Partly based on these findings,
we use the Hajek estimator and its associated confidence interval in our empirical application
(see Section 7).
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TABLE 1 Variance ratio of the proposed estimator based on the true propensity score over the proposed
estimator based on the estimated propensity score

Expected number of treatment active locations under the intervention

c=3 c=4 c=5 c=6 c=7
M=1 1.24 1.38 1.41 1.32 1.08
M=3 1.09 1.18 1.24 1.14 1.06
M=7 1.07 0.85 1.08 0.61 0.54
M =30 0.60 0.75 0.87 0.58 0.75
Lagged 1.08 1.21 1.24 1.20 1.11

Notes: The results are based on Monte Carlo approximation with T = 500. The estimated propensity score is obtained from the
correctly specified model. If the ratio is greater than 1, the estimated propensity score yields a more efficient estimator than
the true propensity score. We consider interventions that are constant over all intervention time periods, FhM for

M € {1,3,7,30} (top four rows), and the lagged intervention over three time periods F}, = F, hy X F, h, X F, h (bottom row).

Finally, we evaluate the performance of the propensity score as a balancing score (Proposi-
tion 1). In Appendix E.4, we show that the p-values of the previous outcome-active locations
variable (Y;*, in Equation 12) are substantially greater in the weighted propensity score model
than in the unweighted model, where the weights are equal to the inverse of the estimated
propensity score. These findings are consistent with the balancing property of the propensity
score.

In Appendix F we present an alternative simulation study, though all qualitative conclusions
remain unchanged.

7 | EMPIRICAL ANALYSES

In this section, we present our empirical analyses of the data introduced in Section 2. We first
describe the airstrike strategies of interest and then discuss the causal effect estimates obtained
under those strategies.

7.1 | Airstrike strategies and causal effects of interest

We consider hypothesised stochastic interventions that generate airstrike locations based on a
simple non-homogeneous Poisson point process with finite and non-atomic intensity h : Q —
[0, o). We first specify a baseline probability density ¢y over Q. To make this baseline den-
sity realistic and increase the credibility of the overlap assumption, we use the airstrike data
during 1 January-24 September 2006 to define the baseline distribution ¢, for our stochas-
tic interventions. This subset of the data is not used in the subsequent analysis. The left plot
of Figure 6 shows the estimated baseline density, using kernel-smoothing of airstrikes with
an anisotropic Gaussian kernel and bandwidth specified according to Scott’s rule of thumb
(Scott, 1992).

We consider the following three questions: (1) How does an increase in the number of
airstrikes affect insurgent violence? (2) How does the shift in the prioritisation of certain loca-
tions for airstrikes change the spatial pattern of insurgent attacks? (3) How long does it take for
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FIGURE 6 Spatial density estimate of airstrike locations during 1 January-24 September 2006 (left) and
the entire study period February 2007-July 2008 (right)

the effects of change in these airstrike strategies to be realised? The last question examines how
quickly the insurgents respond to the change in airstrike strategy.

We address the first question by considering stochastic interventions that have the same spa-
tial distribution but vary in the expected number of airstrikes. We represent such strategies using
intensities h(w) = c¢o(w) with different values of ¢ > 0. Since fQ h(w)dw represents the expected
number of points from a Poisson point process, these interventions have the same spatial distri-
bution ¢, but the number of airstrikes monotonically increases as a function of c. In our analysis,
we consider {1, 2, ... , 6} as the range of c which corresponds to the expected number of airstrikes
per day, in agreement with the observed data.

For the second question, we fix the expected number of airstrikes but vary their focal loca-
tions. To do this, we specify a distribution over Q with power-density d,(w) = d(w)*/ ( fQ d(a))")
and modes located at sy € . Based on d,, we specify h,(w) = codo(w)d,(w) Where ¢, satisfies the
constraint fg hqe(w)dw = c, so that the overall expected number of airstrikes remains constant.
Locations in sy are increasingly prioritised under h,, for increasing a. For our analysis, we choose
the centre of Baghdad to be the focal point sy and d, to be the normal distribution centred at s;
with precision a. We set the expected number of airstrikes per day c to be 3, and vary the preci-
sion parameter a from 0 to 3. The visualisation of the spatial distributions in h, for the different
values of a is shown in Figure A15.

As discussed in Section 3, for both of these questions, we can specify airstrike strategies of
interest taking place over a number of time periods, M, by specifying the stochastic interventions
as Fp = Fﬁ” . In addition, we may also be interested in the lagged effects of airstrike strategies
as in the third question. We specify lagged intervention to be the one which differs only for
the M time periods ago, that is, Fy, = F%_l xF, where hy = ¢, represents the baseline inten-
sity (with ¢ = 1), and h; = c¢y is the increased intensity with different values of ¢ ranging from
1 to 6. We assume that insurgent attacks at day ¢ do not affect airstrikes on the same day, and
airstrikes at day ¢ can only affect attacks during subsequent time periods. Thus, causal quantities
for interventions taking place over M time periods refer to insurgent attacks occurring M days
later. For our analysis, we consider values of M which correspond to 1 day, 3 days, 1 week and
1 month.

Although full investigation is beyond the scope of this paper, in Appendix G.3, we
briefly consider an extension to adaptive interventions over a single time period (M = 1),
and discuss challenges when considering adaptive interventions over multiple time periods
(M >1).
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7.2 | The specification and diagnostics of the propensity score model

Our propensity score model is a non-homogeneous Poisson point process model with intensity
(@) = exp{ " X,(w)} where X includes an intercept, temporal splines, and 32 spatial surfaces
including all the covariates. The two main drivers of military decisions over airstrikes are the prior
number and locations of observed insurgent attacks and airstrikes, which are expected to approx-
imately satisfy unconfoundedness of Assumption 1. Our model includes the observed airstrikes
and insurgent attacks during the last day, week, and month (six spatial surfaces). For example, the
airstrike history of time ¢ during the previous week is Wf_l(a)) = 217:1 Zseswt_, exp{—dist(s, w)},
which represents a surface on Q with locations closer to the airstrikes in the pre\Jlious week having
greater values than more distant locations.

Our propensity score model also includes additional important covariates that might affect
both airstrikes and insurgent attacks. We adjust for shows-of-force (i.e. simulated bombing raids
designed to deter insurgents) that occurred 1 day, 1 week and 1 month before each airstrike (three
spatial surfaces). Patterns of US aid spending might also affect the location and number of insur-
gent attacks and airstrikes, as we discussed in Section 2. We therefore include the amount of aid
spent (in US dollars) in each Iraqi district in the past month as a time-varying covariate (one
spatial surface). Finally, we also incorporate several time-invariant spatial covariates, including
the airstrike’s distance from major cities, road networks, rivers, and the population (logged, mea-
sured in 2003) of the governorate in which the airstrike took place (4 spatial surfaces). Lastly, we
include separate predictors for distances from local settlements in each of the Iraqi districts to
incorporate any area specific effects (18 spatial surfaces).

We evaluate the covariate balance by comparing the p-values of estimated coefficients in the
propensity score model to the p-values in the weighted version of the same model, where each
time period is inversely weighted by its truncated propensity score estimate (truncated above at
the 90th quantile). Although 13 out of 35 estimated coefficients had p-values smaller than 0.05
in the fitted propensity score model, all the p-values in the weighted propensity score model are
close to 1, suggesting that the estimated propensity score adequately balances these confounders
(see Figure A14 of Appendix E.4 in Data).

7.3 | The choice of the bandwidth parameter for the spatial kernel
smoother

The kernel smoothing part of our estimator is not necessary for estimating the number of points
within any set B C Q since we can simply use an IPW estimator based on the observed number
of points within B. However, kernel smoothing is useful for visualising the estimated intensities
of insurgent attacks under an intervention of interest over the entire country. One can also use it
to acquire estimates of the expected number of insurgent attacks under the intervention for any
region of Iraq by considering the intensity’s integral over the region. Theorem 1 shows that, for
any set B C Q, kernel smoothing does not affect the estimator’s asymptotic normality as long as
the bandwidth converges to zero. In practice, the choice of the bandwidth should be partly driven
by the size of the sets B.

In our analysis, we estimate the causal quantities for the entire country and the Baghdad
administrative unit. We choose an adaptive bandwidth separately for each outcome using the
spatstat package in R. We consider all observed outcome event locations during our study
period, and use Scott’s criterion for choosing an optimal, constant bandwidth parameter for
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isotropic kernel estimation (Scott, 1992). Using the estimated density as the pilot density, we cal-
culate the optimal adaptive bandwidth surface according to Abramson’s inverse-square-root rule
(Abramson, 1982). This procedure yields a value of the bandwidth used for kernel smoothing at
each outcome event location.

7.4 | Findings

Figure 7 illustrates changes in the estimated intensity surfaces for insurgent attacks (IEDs and
SAFs) when increasing the expected number of airstrikes (the first two rows) and when shift-
ing the focal point of airstrikes to Baghdad (the bottom two rows), with the varying duration of
interventions, M = 1, 3,7, 30 days (columns). These surfaces can be used to estimate the causal
effect of a change in the intervention over any region. Dark blue areas represent areas where the
change in the military strategy would reduce insurgent attacks, whereas red areas correspond to
those with an increase in insurgent attacks. Statistical significance of these results is shown in
Appendix G.2.

The figure reveals a number of findings. First, we find no substantial change in insurgent
attacks if these interventions last only for 1 or 3 days. When increasing airstrikes for a longer
duration, however, a greater number of insurgent attacks are expected to occur. These changes
are concentrated in the Baghdad area and the roads that connect Baghdad and the northern city
of Mosul. These patterns apply to both IEDs and SAFs with slightly greater effects estimated for
SAFs. Under Assumption 1, these results suggest that, far from suppressing insurgent attacks,
airstrikes actually may increase them over time. In this setting, airstrikes can be counterpro-
ductive, failing to reduce insurgent violence while also victimising civilians. We emphasise that
Assumption 1 may be violated and address this issue through our sensitivity analysis.

Under our assumptions, we find that the effect estimates for shifting the focal point of
airstrikes to Baghdad for 1, 3, or 7 days are close to null. However, when the intervention change
lasts for 30 days, our analysis suggests that insurgents may shift their attacks to the areas around
Mosul while reducing the number of attacks in Baghdad. This displacement pattern is particularly
pronounced for SAFs. For SAFs, insurgents appear to move their attacks to the Mosul area even
with the intervention of 7 days, though the effect size is smaller. In short, the effects of airstrikes
may not be localised, but instead can ripple over long distances as insurgents respond in differ-
ent parts of the country. Unlike existing approaches which focus on the effect of an intervention
in the nearby area (e.g Schutte & Donnay, 2014), our approach captures this often-considerable
displacement of violence.

Figure 8a shows the changes in the estimated average number of insurgent attacks in Baghdad
as the expected number of airstrikes increases from 1 to 2, 3, ... , 6 airstrikes per day in the entire
country (horizontal axis). We also vary the duration of intervention from M = 1 day to M = 30
days (columns). Both the point estimate (solid lines) and 95% Cls (grey bands) are shown. Con-
sistent with Figure 7, we find that increasing the number of airstrikes leads to a greater number
of attacks when the duration of intervention is 7 or 30 days. These effects appear to be smaller
when the intervention is much shorter. The patterns are similar for both IEDs and SAFs.

Figure 8b shows the change in the estimated number of IEDs and SAFs attacks in Baghdad
when increasing the number of airstrikes M days before , while the expected number of airstrikes
during the following M — 1 days equals one per day. We find that all estimated lagged effects for
M = 3 are negative, whereas the estimated lagged effects for M = 7 are positive. This suggests that
increasing the number of airstrikes may reduce insurgent violence in a short term while leading
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FIGURE 7 Changes in estimated intensity of insurgent attacks when increasing the expected number of
airstrikes (the first two rows) and when shifting the focal point of airstrikes to Baghdad (the bottom two rows).
Insurgent attacks are measured using improvised explosive devices (IEDs; the first and third rows) and small
arms fire (SAFs; second and fourth rows) with the varying number of intervention duration, M = 1, 3, 7, 30 days
(columns). The number shown below each map represents the estimated change in the total number of attacks
per day over the entire country, whereas the legend represents the difference in estimated intensities. (a)
Increasing the expected number of airstrikes from 1 to 6 per day. (b) Increasing the priority of Baghdad as focal
point of airstrikes froma =0toa =3
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Changes in the Estimated Number of Insurgency Attacks in Baghdad when Increasing the
Expected Number of Airstrikes (a) for M days, and (b) M days ago. In each plot, the horizontal axis represents the

expected number of airstrike per day under the alternative intervention. The vertical axis represents a change in

the estimated average number of insurgency attacks in Baghdad for IEDs (first & third row) and SAFs (second &
fourth row) when number of airstrikes per day increases from 1 to the value on the horizontal axis. Each column
shows different (a) duration or (b) lag length of intervention, M = 1, 3,7, 30 days. 95% confidence intervals are
shown as grey bands. (a) Estimated effect of increasing the expected number of airstrikes for M days; (b)
Estimated effect of increasing the expected number of airstrikes M days ago
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to an increase in a longer term. Appendix G.2 presents the effect estimates and 95% ClIs for various
interventions and outcomes.

We interpret these localised effects around Baghdad as consistent with prior claims (e.g.
Hashim, 2011) that Sunni insurgents were sufficiently organised to shift their attacks to new
fronts in response to American airstrikes. That is, while heavy bombardment in Baghdad might
suppress insurgent attacks locally, we find a net increase in overall violence as insurgent comman-
ders displace their violence to new locations such as Mosul that are experiencing less airstrikes.
This displacement effect underscores the danger of adopting too-narrow frameworks for casual
estimation that miss spillover and other spatial knock-on effects.

We emphasise that the validity of our results hinges on the reliability of our causal assump-
tions, of which the unconfoundedness assumption (Assumption 1) is perhaps the strongest. We
evaluate the robustness of our results to violations of this assumption using the sensitivity anal-
ysis framework developed in Section 5. We investigate the sensitivity of estimated effects for a
change in intervention that corresponds to dosage or increased focus in Baghdad, for all values
of M, for both SAF and IED outcomes, and for effects in the whole country and in Baghdad only.
We find that the estimated effects are robust up to the ratio between the misspecified and the true
propensity score (I') being bounded by 1.12. The small value of " indicates that our causal analysis
may be sensitive to violations of the unconfoundedness assumption. As discuss before, however,
this sensitivity is partially due to the inherently large uncertainty in estimating the point process
intensity functions of the propensity scores from sparse data.

8 | CONCLUDING REMARKS

In this paper, we provide a framework for causal inference with spatio-temporal point process
treatments and outcomes. We illustrate the flexibility of this proposed methodology by applying
it to the estimation of airstrike effects on insurgent violence in Iraq. Our central idea is to use
a stochastic intervention that represents a distribution of treatments rather than the standard
causal inference approach that estimates the average potential outcomes under some fixed treat-
ment values. A key advantage of our approach is its flexibility: it permits unstructured patterns
of both spatial spillover and temporal carryover effects. This flexibility is crucial since for many
spatio-temporal causal inference problems, including our own application, little is known about
how the treatments in one area affect the outcomes in other areas across different time periods.

The estimands and methodology presented in this paper can be applied in a number of settings
to estimate the effect of a particular stochastic intervention strategy. There are several consider-
ations that may be useful when defining a stochastic intervention of interest. First, the choice of
intervention should be guided by pressing policy questions or important academic debates where
undetected spillover might frustrate traditional methods of causal inference. Second, stochas-
tic interventions should satisfy the overlap assumption (Assumption 2). Researchers should not
define a stochastic intervention that generates treatment patterns that appear to be far different
from those of the observed treatment events. In our application, we achieve this by constructing
the stochastic interventions based on the estimated density of point patterns obtained from the
past data and the observed number of airstrikes per day.

The proposed framework can also be applied to other high-dimensional, and possibly unstruc-
tured, treatments. The standard approach to causal inference, which estimates the causal effects
of fixed treatment values, does not perform well in such settings. Indeed, the sparsity of observed
treatment patterns alone makes it difficult to satisfy the required overlap assumption (Imai
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& Jiang, 2019). We believe that the stochastic intervention approach proposed here offers an
effective solution to a broad class of causal inference problems.

Future research should further develop the methodology for stochastic interventions. In par-
ticular, it is important to consider an improved weighting method that explicitly targets covariate
balance. This might be challenging in the spatiotemporal setting where the notion of covariate
balance is not yet well understood. Finally, it is crucial to extend the stochastic intervention frame-
work to adaptive strategies over multiple time periods that might be more reflective of realistic
assignments.
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