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Abstract: Advanced deep learning methods combined with regional, open access, airborne Light
Detection and Ranging (LiDAR) data have great potential to study the spatial extent of historic land
use features preserved under the forest canopy throughout New England, a region in the northeastern
United States. Mapping anthropogenic features plays a key role in understanding historic land use
dynamics during the 17th to early 20th centuries, however previous studies have primarily used
manual or semi-automated digitization methods, which are time consuming for broad-scale mapping.
This study applies fully-automated deep convolutional neural networks (i.e., U-Net) with LiDAR
derivatives to identify relict charcoal hearths (RCHs), a type of historical land use feature. Results
show that slope, hillshade, and Visualization for Archaeological Topography (VAT) rasters work well
in six localized test regions (spatial scale: <1.5 km2, best F1 score: 95.5%), but also at broader extents
at the town level (spatial scale: 493 km2, best F1 score: 86%). The model performed best in areas with
deciduous forest and high slope terrain (e.g., >15 degrees) (F1 score: 86.8%) compared to coniferous
forest and low slope terrain (e.g., <15 degrees) (F1 score: 70.1%). Overall, our results contribute to
current methodological discussions regarding automated extraction of historical cultural features
using deep learning and LiDAR.

Keywords: remote sensing; relict charcoal hearths; deep convolutional neural networks; semantic
segmentation; anthropogenic feature detection

1. Introduction

Relict charcoal hearths (RCHs) and charcoal production provide a unique insight into
the economic history and historic land use of New England, a region in the northeastern
United States [1]. Charcoal was primarily used from the mid-18th through the early 20th
century in the northeastern U.S to produce the fuel needed to process mined iron [2–5].
RCH distribution varies throughout the region from high densities (e.g., >100 per km2),
typically near iron furnaces, to much lower densities or sporadic (e.g., <5 per km2) where
charcoal was produced for local subsistence trade by farmers and foresters [3]. Large
scale charcoal production took place in the northwestern portion of Connecticut, a state in
southern New England, between 1760 and 1920 in support of the Salisbury Iron District [1,6].
In this region, the distribution and spatial extent of RCHs have been used to understand
economic history and reconstruct historic land use.

High-resolution airborne light detection and ranging (LiDAR) data play an essential
role in visualizing morphological features or anthropogenic features on landscapes at global
scales and can be used effectively in New England to identify a type of historical land use
feature which has been variously called a charcoal hearth or charcoal kiln [1,4,7–11]. Digital
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Elevation Models (DEMs) derived from LiDAR point clouds can provide morphological
information at fine scales under dense forest canopies, and for this reason have been widely
used to identify various types of historical land use features on a global scale [4,8,12,13]. In
addition, a diverse range of visualization techniques for LiDAR data have been employed,
which has allowed for detection of morphological features on LiDAR-derived rasters
including slope, hillshade, or blended imagery, such as Principal Component Analysis
(PCA) of hillshades, sky-view factor, and openness models and simplified local relief model
(SLRM) which are all popular visualization methods to highlight morphological properties
of features [14–20].

The current widespread availability of LiDAR data in addition to a diverse range
of visualization techniques have allowed several (semi-) automated feature extraction
techniques to be explored such as template-matching [21], object-based image analysis
(OBIA) [7], machine learning (ML) [22,23], and deep learning (DL) [9–12,24–26]; all of
which have been applied to morphological feature extraction. When it comes to mapping at
regional scales, these approaches enhance the time-consuming nature of on-screen manual
digitization. Template-matching and OBIA are semi-automated approaches based on a
ruleset built by geometric or morphological characteristics, such as length, area, and slope
angle of feature. ML is another semi-automated method based on the statistical relationship
among training datasets. Unlike these three approaches, DL is a fully-automated approach
as long as training data are available. A number of studies have focused on the application
of different DL models for anthropogenic feature detection recently [9–11,24,25]. In this
study, two main groups of DL models were used: (1) object detection models (i.e., R-
CNN, Faster R-CNN) and (2) semantic segmentation models (i.e., U-Net, ResUnet, and
FCN). Object detection models detect the extent of a target object with a bounding box.
Semantic segmentation models define semantic regions and segment these regions into
classes (e.g., target object vs. background). These methods have been applied to identifying
archaeological features [9–11,24].

The application of DL to detect anthropogenic features representative of historic land
use practices such as RCHs in New England provides great potential to understand a
unique land use history as well as define the extent of historic charcoal production, which
is representative of widespread deforestation in the region, between the 18th to mid-20th
centuries. To date, most studies in this region have only used manual digitization tech-
niques [8] or OBIA techniques [7] for extracting historical land use features from LiDAR
data. The present regional coverage of LiDAR data provides an opportunity for efficient
automated mapping at much broader scales to quantify the impacts of historic land use
more easily. Therefore, this study aims to (1) develop fully automated extraction of an-
thropogenic features (i.e., RCHs) in southern New England using high-resolution airborne
LiDAR and deep convolutional neural networks, (2) evaluate model performance in dif-
ferent terrain and landscape scenarios, and (3) discuss implications for historic landscape
dynamics in this region.

2. Materials and Methods
2.1. Study Area

The study areas are located in Litchfield County, Connecticut, in a part of the north-
eastern United States called New England. Much of the northeastern U.S. participated in
the iron industry during the 19th century [27] and the northwestern portion of Connecticut,
historically called the Salisbury Iron District, was well-known and prosperous during that
time period [1]. Production of charcoal for iron furnaces in the region resulted in RCH
construction across this landscape. RCHs are extant on the landscape in large quantities
and visible in LiDAR derivatives. These features are representative of the widespread
historical deforestation in the region, and are now covered with a dense forest canopy
consisting of deciduous forest and northern hardwoods [28]. Five training regions were
placed in a high-density area where there was an RCH presence of at least 1 RCH per
km2 (Figure 1). These training regions contained a total of 1700 RCHs which are easily
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identifiable in a LiDAR-derived slope map. To evaluate the trained model, six test regions
were selected across rugged and smooth terrain, and various land cover types such as
deciduous and coniferous forest, cleared fields, and developed (Table 1).
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Figure 1. Overview of study region and towns in Connecticut, United States. The background map
depicts RCH presence or absence and RCH density (RCH count/km2) [29].

Table 1. Size, landscape type, and RCH count in the test regions.

Region Area (km2) Landscape Type RCH Count

Test 1 0.94 >15◦ slopes with developed regions (e.g., sparse residential area) and stream/river
bed running through the area 44

Test 2 1.59 Developed region interspersed with >15◦ slopes 17
Test 3 1.17 >15◦ slopes with deciduous landscape 89
Test 4 0.53 <15◦ slopes with coniferous landscape 7
Test 5 1.13 Smooth terrain and cleared field with no RCHs 0
Test 6 0.35 >15◦ slopes with very rough terrain 9

2.2. Data Description
2.2.1. LiDAR Data and Derivatives

In this study, 1 m high-resolution LiDAR DEMs were used to prepare the input image
datasets for the U-Net model as well as a reference dataset based on on-screen manual
digitization. The DEMs used were produced from the ground classified points of two
different LiDAR point cloud datasets, one flown in 2011 and one in 2016 [30,31]. Both
datasets were collected in the spring after snow had melted and when deciduous trees were
without leaves. The point spacing of 2011 LiDAR data was no greater than 1 point every
0.7 m [31] and the point density of 2016 LiDAR data was 2 points per square meter [30]. The
quality of LiDAR point clouds and subsequent DEM tiles can be influenced by the forest
canopy type (i.e., deciduous vs. coniferous) and underlying vegetation, since it is difficult
to discern low vegetation points from the ground surface. Overall, these data quality issues
may lead to lower point densities for ground-classified points, which can create small
blurred areas in the interpolated DEM and make interpretation more difficult [4,32,33].
After being downloaded from [34], the necessary DEM tiles were mosaicked using ArcGIS
Pro to cover the five training regions and six test regions.
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With the high spatial resolution of the data and distinct morphological characteristics,
RCHs are clearly identifiable in LiDAR derivatives, such as slope, VAT (Visualization for
Archaeological Topography tool) [35], and hillshade rasters (Figure 2). First, a slope raster
was produced using the ArcGIS Pro Slope tool and it worked well with the morphology of
RCHs which have low slopes in the center and an adjacent high-slope edge (Figure 2A).
Second, we used the Relief Visualization Toolbox (RVT) [36,37] to create a single channel
VAT raster. The VAT raster is an alternative hillshaded DEM for visualizing landform
features proposed by Verbovšek et al. (2019) [35]. It is produced by blending four different
rasters such as slope and hillshade, sky-view factor [37], and positive openness [35]. As
shown in Figure 2B, it is effective at capturing the circular nature of the RCHs, and the
edge of each RCH is distinguishable from the background. Last, a hillshade map with a
different azimuth angle was generated using the Hillshade tool in ArcGIS Pro.
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2.2.2. Reference Data

Reference data of RCH distribution is required since the Deep Convolutional Neural
Networks (DCNNs) model used in this study is a supervised learning method. Previous
studies in the region have used manually digitized RCHs based on 2011 Northwest LiDAR
data [31] to examine various impacts including geomorphology [3] and forest cover [1].
Figure 3 shows the distribution of RCHs digitized by [1] and [3] published in an ArcGIS We-
bApp called ‘Northeastern US Relict Charcoal Hearth (RCH) Mapper’. Reference data that
are used in this study could have missing RCHs depending on digitizers’ interpretations;
manual digitization and user error (e.g., over- or under- mapping tendency depending on
users) in this region is discussed in depth in [38]. In addition to this, the quality of LiDAR
acquired in 2011 (used for RCH digitization in previous studies) and 2016 (used for model
training and prediction in this study) can vary due to slight differences in forest canopy at
the time of acquisition and overall point density and point spacing [39].
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2.3. Methodology

The workflow (Figure 4) for detecting RCHs includes the following five steps: (1) im-
age preparation for the U-Net model (training and validation samples), (2) model training
and validation, (3) model prediction for six test regions, (4) post-processing of model
predictions, and (5) accuracy assessment.
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2.3.1. Preparing Input Data for the U-Net Model

Table 2 shows the four input scenarios as follows: (1) slope only (single band), (2) VAT
only (single band), (3) composition of slope and hillshade rasters (7 bands), and (4) adding
VAT raster to scenario 3 (8 bands).

Table 2. Description of four input scenarios used in this study.

Input Scenarios Description # of Rasters

Scenario 1 (S1) Slope 1
Scenario 2 (S2) VAT 1
Scenario 3 (S3) Slope and hillshades (azimuth angle: 0, 45, 90, 180, 270, 315 deg.) 7
Scenario 4 (S4) Slope, hillshades (azimuth angle: 0, 45, 90, 180, 270, 315 deg.), and VAT 8

Compared to a multi-band image, using the single band slope raster and single
band VAT raster is a computationally efficient method. However, using a multi-band
raster can improve model performance by extracting various feature maps during training.
Scenario 3 used multiple rasters composed of slope and hillshade rasters. Hillshade
allows visualization of different aspects of morphological features based on sun-angle
azimuth so that six different azimuth angles were utilized; 0◦, 45◦, 90◦, 180◦, 270◦, and
315◦. Scenario 4 consisted of rasters from scenario 2 (single band VAT raster) and scenario 3
(7-band rasters). Input images for each scenario were normalized between 0 to 1 to speed
up the training process.

For reference data, the digitized RCH point feature class was buffered to include the
circumference of the RCH given that an average diameter of an RCH is ~7–12 m. The buffer
threshold was 8 m (diameter 16 m) because not all digitized RCH points are in the centroid
of the feature (see Section 2.2.2 for information on user digitization error). The buffered
polygon was then rasterized using ArcGIS Pro.

Once input training rasters and reference data were produced, both datasets were
sliced into small image patches (256 pixels by 256 pixels) to avoid an out of memory issue
which occurred when the entire training image was fed into the model. Next, a data
augmentation technique was applied to increase the number of training images by random
rotation (e.g., 90 degree rotation, vertical or horizontal flip). As a result, the total number
of input patches was 13,110 and among them, 90% of patches were used for the training
model and the remaining 10% of patches were used for validation during the training
process to keep track of model performance.

2.3.2. U-Net Model Training

The U-Net model is a DCNNs semantic segmentation model. It was first proposed
by [40] and it has been modified and widely applied in remote sensing image analy-
sis [41–45]; examples include Sentinel-2 imagery and other high resolution aerial imagery.
The architecture of U-Net consists of encoder-decoder branches (Figure 4). During en-
coder branches (down-sampling), input image tiles are passed through five convolutional
blocks to extract feature maps. Each block is composed of two sets of 3 × 3 kernel size
convolutional layers followed by a rectified linear unit (ReLU) as an activation function.
With a given number of channel depths (here we used 32, 64, 128, 256, and 512 for each
convolutional block), a number of feature maps were extracted through the convolutional
layer. Then a 2 × 2 max pooling layer was adopted to halve input spatial size (i.e., length
and width) to reduce computational burden and highlight important information in the
extracted feature map.

Decoder branches (up-sampling) are composed of five transposed convolutional
blocks which increase tensor size (16 × 16 pixels in the 5th convolutional block) to original
input image (here, 256 × 256 pixels) after passing through all transposed convolutional
blocks. Transposed convolutional blocks are similar to convolutional blocks except the max-
pooling layer is replaced by a transpose layer to increase the resolution of the output feature
map. In addition, feature maps generated with convolutional blocks are concatenated
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to the output of the transposed layer, which allows the model to learn to build more
precise output. Regarding concatenation, the size of the input feature should be the
same so that it is applied to a convolutional block 4 (conv 4)—transpose convolutional
block 1 (tran 1), conv 3—tran 2, conv 2—tran 3, and conv 1—tran 4. After passing through
the decoder branch, a 1 × 1 convolutional layer was implemented followed by sigmoid
function to reduce the depth of output and segment output to a binary image (i.e., RCHs
or background). The total number of trainable parameters was about 7.7 million. The
code used in this study has been made available at: https://github.com/twin22jw/RCH-
detection (accessed on 14 November 2020).

Once model training was initialized, the weight and bias of nodes connected with
these trainable parameters were updated to minimize loss value (error) between model
prediction and reference data. In particular, the model training process is based on end-
to-end learning using backpropagation, which means model parameters are updated
automatically based on a backpropagation. With this model architecture and training
process, the U-Net model was implemented and modified to deal with an overfitting issue
and GPU memory limitation. In order to avoid the overfitting issue, a batch normalization
layer [46] and a dropout layer after ReLU activation function layer were added in the
convolutional block. In addition, a batch size of 16 was used to train the model on an 8
Gigabyte RTX 2070. Table 3 shows specific hyperparameters used for model training in
this study.

Table 3. Hyperparameters for model training.

Hyperparameter Value/Type

Batch size 16
Optimizer Adam

Learning rate Initially starting from 0.001
Loss function Binary Cross Entropy

Epochs Up to 30 (used early stopping callback)

2.3.3. Model Prediction

Model prediction was conducted in two ways. Firstly, the model from the four input
scenarios (S1: single slope raster, S2: single VAT raster, S3: 7 bands composited with slope
and hillshade rasters, S4: S2 + S3) was tested in 6 test regions as described in Table 1. The
model prediction result was a binary output raster, where a value of 1 refers to RCH-like
pixels and a value of 0 is background (or non-RCH) pixels. The model was employed
at a broader scale for five towns (i.e., administrative entity) in northwestern Connecticut
(bolded town boundaries in Figure 2) to evaluate model performance over a broader region.

2.3.4. Post-Processing

Post-processing was conducted on the binary output raster to reduce noisy pixels and
convert it into point shapefile to extract RCH locations. First, vectorization was used to
convert RCH pixels in the output raster into polygons with ArcGIS Pro. In some cases,
more than two polygons were created for the same RCH because of isolated pixels near
the main RCH. To clear up these unnecessary polygons, noisy and fragmented polygons
from the vectorization process were deleted based on an area threshold (less than 30 m2).
The polygons were then converted into a point shapefile using the Feature to Point tool in
ArcGIS Pro.

2.3.5. Accuracy Assessment

Recall, precision, and F1 scores were used for accuracy assessment in the analysis of
test regions. Three evaluation metrics were calculated based on true positive, false negative,
and false positive. True positive refers to an actual RCH that is predicted as an RCH by
the model. False negative is an actual RCH that is not predicted as an RCH by the model.
False positive is not an actual RCH but is predicted as one by the model.

https://github.com/twin22jw/RCH-detection
https://github.com/twin22jw/RCH-detection
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Recall is the ratio of positives identified by the model to the actual number of true
positives in the reference data (i.e., true positives plus false negatives identified by the
model) and is measured by the following equation:

Recall = true positives / (true positives + f alse negatives) (1)

Precision, on the other hand, is the ratio of true positives compared to all positives
identified by the model and is measured by the equation:

Precision = true positives / (true positives + f alse positives) (2)

To assess the overall model performance, the F1 score was used and calculated by the
following equation:

F1 score = 2 × ((recall × precision) / (recall + precision)) (3)

3. Results and Discussion
3.1. Results in the Six Test Regions

The accuracy assessment results of the U-Net model performance for the four input
scenarios is summarized in Table 4 and Figure 5. The highest F1 score was 95.5% (S1) in
test region 1 and the lowest F1 score was 0% (S2 and S4) in test region 4. Results were
influenced by input scenario, nature of slope angle where RCHs are present in test regions,
and landscape/land cover types. The highest F1 score for each input scenario was sensitive
to the different qualities of each of the test regions. Overall, S3 performed well and has
the highest F1 score in three of the test regions: region 1 (89.4%), 4 (72.7%), and 6 (90%)
(Figure 5). Results also highlight that multi-raster scenarios (S3 or S4) can contribute to
an improvement in model performance (see test regions 1, 2, 4, 6) and can be suitable to
apply to study areas with diverse terrain conditions. A single raster can also have better
performance in areas where there is a high concentration of RCHs in a high slope region.

Table 4. Accuracy assessment results of six test regions. Bold text represents the highest F1 score in each test region.

Region Input Scenario True Positives False Positives False Negatives Precision Recall F1 Score

Test 1 S1 31 6 13 86.1% 70.5% 77.5%
S2 31 2 13 93.9% 70.5% 80.5%
S3 38 3 6 92.7% 86.4% 89.4%
S4 36 3 8 92.3% 81.8% 86.7%

Test 2 S1 9 4 8 69.2% 52.9% 60.0%
S2 9 2 8 81.8% 52.9% 64.3%
S3 9 3 8 75.0% 52.9% 62.1%
S4 11 6 6 64.7% 64.7% 64.7%

Test 3 S1 84 3 5 96.6% 94.4% 95.5%
S2 83 4 6 95.4% 93.3% 94.3%
S3 83 4 6 95.4% 93.3% 94.3%
S4 87 9 2 90.6% 97.8% 94.1%

Test 4 S1 1 2 6 33.3% 14.3% 20.0%
S2 0 1 7 0.0% 0.0% 0.0%
S3 4 0 3 100.0% 57.1% 72.7%
S4 0 2 6 0.0% 0.0% 0.0%

Test 5 S1 0 3 0 0.0% N/A N/A
S2 0 1 0 0.0% N/A N/A
S3 0 2 0 0.0% N/A N/A
S4 0 3 0 0.0% N/A N/A

Test 6 S1 8 1 1 88.9% 88.9% 88.9%
S2 9 2 0 81.8% 100.0% 90.0%
S3 9 2 0 81.8% 100.0% 90.0%
S4 6 2 3 75.0% 66.7% 70.6%
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The general morphological characteristics of RCHs in the study area (high slope edge
and flat, round surface in otherwise-high slope area) makes them clearly visible in LiDAR
raster derivatives (Figure 6). A previous study concluded that RCHs in high slope areas
(e.g., >15 degrees) tend to be identified by the model relatively easily compared to those in
low slope areas (e.g., <15 degrees) [21]. Model performance was good (F1 scores > 94%) in
test region 3 where RCHs were high density and appeared on high slope areas (Figure 7).
The poor model performance in test region 4 (F1 score < 20% with the exception of sce-
nario 3) could be related to the fact that false negatives tend to occur in low slope areas,
and these conditions are dominant in test region 4 (see Figure 7).

Modern land cover, particularly coniferous forest or developed areas, can also lead
to false negatives or false positives. For example, the poor results in test region 4 could
be related to LiDAR quality as well as the low slope terrain on which the RCHs appear
(see Figure 7). The dominant land cover in test region 4 is coniferous forest (see Figure 6),
which retains leaf cover year-round and can prevent laser pulses from reaching the ground
surface at equivalent point densities to cleared areas [32]. Relatively low density point
clouds in areas of coniferous forest can result in a rough texture in LiDAR derivatives due
to the lack of points available for interpolation in these areas [4]. As a result, the precision
of RCH morphology can suffer in visualizations of LiDAR raster derivatives. Our results
show that using multiple hillshade rasters (S3) can supplement this limitation.

3.2. Results of Accuracy Assessment over Broad Region

Because the F1 score can be sensitive when true or false positive, or false negative
samples are too small, we applied our model to five towns (North Canaan, Canaan,
Cornwall, Norfolk, and Goshen) in the Salisbury Iron District to evaluate the overall model
performance over a broad area (Figure 1). Previously, model performance was evaluated
at smaller extents with a limited number of RCH samples. This accuracy assessment was
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conducted with the same post-processing described in Section 2.3.4 and Table 5 shows
precision, recall, and F1 score results of the four input scenarios in the five study towns.
Unlike the result in the six test regions, S2 performed the best in all five towns, with an F1
score ranging from 72.5% to 84.8% (Figure 8). This is partly due to the fact that the six test
regions include RCH cases in various environments such as deciduous forest, coniferous
forest, cleared fields, and developed areas. In the broader town areas, most RCHs are
distributed in deciduous forest with smooth terrain along high slope regions and are well
articulated in the VAT raster. Therefore, the single VAT raster has the advantage of avoiding
a computational burden as well as achieving great performance to detect RCHs distributed
in deciduous forest and smooth terrain with high slopes.
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Figure 7. The comparison of model prediction results between a subset of test region 3 (RCHs on high slopes in deciduous
forest) and 4 (RCHs on low slopes in coniferous forest). Model prediction results are from input scenario 1 (single
slope raster).

Table 5. The results for the entire test region after post-processing. For Cornwall Town, accuracy was calculated without
including train region. Bold text represents the highest F1 score in each town.

Town Input Scenario True Positives False Positives False Negatives Precision Recall F1 Score

North Canaan S1 235 41 68 85.14% 77.56% 81.2%
S2 243 28 54 89.67% 81.82% 85.6%
S3 223 81 79 73.36% 73.84% 73.6%
S4 234 60 67 79.59% 77.74% 78.7%

Canaan S1 1752 389 596 81.83% 74.62% 78.1%
S2 1950 287 536 87.17% 78.44% 82.6%
S3 1876 271 613 87.38% 75.37% 80.9%
S4 1876 340 610 84.66% 75.46% 79.8%

Cornwall S1 2107 508 651 80.57% 76.40% 78.4%
S2 2280 466 532 83.03% 81.08% 82.0%
S3 2237 497 595 81.82% 78.99% 80.4%
S4 2286 526 520 81.29% 81.47% 81.4%

Norfolk S1 1105 515 464 68.21% 70.43% 69.3%
S2 1235 352 466 77.82% 72.60% 75.1%
S3 1206 382 505 75.94% 70.49% 73.1%
S4 1202 389 497 75.55% 70.75% 73.1%

Goshen S1 530 281 209 65.35% 71.72% 68.4%
S2 537 172 236 75.74% 69.47% 72.5%
S3 550 249 233 68.84% 70.24% 69.5%
S4 547 239 223 69.59% 71.04% 70.3%
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input image.

As briefly mentioned in Section 2.2.2, reference data may have error related to user
or the quality of LiDAR data. This could affect accuracy assessment result since model
performance was evaluated based on the reference. For example, Figure 7 showed a missing
RCH in test region 4 (upper middle area) in reference data and it was regarded to as false
positive. However, our model discovered new RCH site that is indeed RCHs and should
be added to the regional datasets. Therefore, our model can contribute to find new RCH
sites that were missed in the reference data (regional RCH datasets).

3.3. Model Performance and Landscapes

The accuracy assessment of the S2 model results in five towns was conducted in terms
of land cover types such as deciduous forest, coniferous forest, and other types and slope
angles with a threshold of 15◦ degrees (i.e., low slope vs. high slope). Table 6 shows the
overview of accuracy assessment results, indicating model performance can be affected
by land cover and slope angle conditions. Based on the F1 score, deciduous forest and
regions with high slopes are favorable land cover types and slope conditions for the model
(F1 score: 86.8%). As mentioned above, model results can be affected by the quality of
LiDAR data (i.e., the density of the point cloud) because the input image is a derivative,
and can also be affected by morphological characteristics of the RCH depending on the
background slope conditions. For example, RCHs in regions with high slopes have more
distinct morphological characteristics as an oval-shaped platform built deeply into the
slope. This leads to a difference in slope between the middle and edge of the RCH, which
provides a clearer delineation between minor slope differences whereas RCHs in low slope
regions are more circular ramparts with slightly leveled platforms around the hearth [29].



Remote Sens. 2021, 13, 4630 13 of 17

RCHs in both deciduous and coniferous forest show high precision compared to recall score
regardless of slope condition. However, the model shows an increase in false positives (low
precision score) identifying RCHs in other landscapes such as developed, cleared fields, or
agricultural land. Specifically, building foundations, wells, pools, or road and field edges
are features that can confuse the model due to their morphological similarity to RCHs in
LiDAR derivatives.

Table 6. Accuracy assessment results (true positive, false positive, false negative, precision, recall, and F1 scores) of the
S2 model in five towns in terms of RCH condition (i.e., land cover type, slope degrees, and their combination). Bold text
represents the highest F1 score in each landscape condition category.

Landscape Condition True
Positive

False
Positive

False
Negative Precision Recall F1 Score

Land cover
Deciduous 5013 775 1267 86.6% 79.8% 83.1%

Conifer 1133 406 511 73.6% 68.9% 71.2%
Other 99 124 46 44.4% 68.3% 53.8%

Slope High (>15◦) 1293 188 290 87.3% 81.7% 84.4%
Low (>15◦) 4952 1117 1534 81.6% 76.3% 78.9%

Land cover & slope

Deciduous & high slope 1061 115 209 90.2% 83.5% 86.8%
Deciduous & low slope 3952 660 1058 85.7% 78.9% 82.1%

Conifer & high slope 215 59 74 78.5% 74.4% 76.4%
Conifer & low slope 918 347 437 72.6% 67.7% 70.1%
Other & high slope 17 14 7 54.8% 70.8% 61.8%
Other & low slope 82 110 39 42.7% 67.8% 52.4%

Figure 9 shows the distribution of true positives (TP), false negatives (FN), and false
positives (FP) identified by the S2 model in different slope and land cover types. As
described earlier, true positives are better discerned in deciduous forest along highly
sloped regions or slightly sloped hills. Unlike true negatives (omission error) which often
occur as RCHs clustered in deciduous forest, false positives occur as intermittent patterns
across developed or other agricultural lands where one would not expect to find RCHs.
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Figure 9. Slope map (generated from 1m LiDAR DEM) (A), land cover map (2015, 30 m resolution, provided by CT
CLEAR) [48] (B), and S2 model prediction results for five towns (North Canaan, Canaan, Cornwall, Norfolk, and Goshen).
RCHs in training site 1 were excluded during the accuracy assessment (C).

3.4. Comparison of Model Performance to Previous Research

Our model prediction results were compared to the results from other anthropogenic
feature detection research using LiDAR-derived datasets and a DL approach [9–11,24].
However, it is difficult to simply compare in terms of F1 scores because target features and
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the spatial scale for model prediction are different. For example, model performance can
depend on how morphological properties are distinctly visualized on LiDAR derivatives,
which can also be dependent on LiDAR dataset quality and land cover conditions. In
addition, a broad spatial scale for the model test area can increase omission and commission,
resulting in a decrease of the F1 score [9]. Table 7 shows the overview of the results of
previous research including remote sensing data, target feature, the spatial scale of test
area, precision, recall, and F1 scores.

In terms of the DL method, object detection models (Faster R-CNN [11] and R-CNN [9])
and semantic segmentation models (ResNet [24] and U-Net) have been implemented. The
accuracy of the model tends to decrease as spatial scale increases, as described in [9], and
this is indeed supported by our results. However, over broader scales, the accuracy metrics
range from a low score (e.g., below 50%) to a very high score (e.g., over 80%) [11], and
compared to the results of previous studies, the results of our model show a high F1 score
on average over regions of various sizes and extents.

Table 7. Summary of the results (precision, recall, F1 score) of other studies that detecting anthropogenic features using DL.

Author RS Data DL Method Target Feature
(Diameter)

Spatial Scale
(km2) Precision (%) Recall (%) F1 Score (%)

[10] LiDAR SLRM,
PO, NO

CNN
(transfer learning)

historic mining pits
(2~3 m)

1 81 80 81
0.2 92 83 87

[11] LiDAR SLRM Faster R-CNN
barrows 10.95 36–90

(avg.: 64)
62–81

(avg.: 73)
46–79

(avg.:67)

Celtic fields 10.95 26–71
(avg.: 46)

19–97
(avg.: 60)

29–68
(avg.: 43)

[24] LiDAR SLRM ResNet

roundhouse
(8~15 m) 432 46 73 56

small cairn
(~10 m) 432 18 20 19

shieling hut
(~20 m) 432 12 26 17

[9]
LiDAR HS
and LRM R-CNN

grave mounds
(~77 m) 16.58 84 70 76

pitfall traps
(4~7 m) 16.58 86 80 83

charcoal kilns
(10~20 m) 16.58 96 68 80

grave mounds
(~77 m) 67 38 14 21

charcoal kilns
(10~20 m) 937 62 90 73

Our study LiDAR SP, HS,
and VAT U-Net charcoal hearth

(7–12 m)

<1.5–493 75–100 53–100 62–94
(avg.: 82)

76–90 70–82 73–86
(avg.: 80)

PO: Positive Openness; NO: Negative Openness, SLRM: simplified local relief model, HS: Hillshade, SP: Slope, VAT: Visualization for
archaeological topography tool, avg.: average. Our result for small extent area (i.e., less than 1.5 km2) is based on S3 model and that for
large extent area (i.e., 493 km2) is based on S2 model result.

3.5. Reconstruction of Historic Land Use Using Widespread RCH Mapping

Automated identification of anthropogenic features using deep convolutional neural
networks provides an opportunity to reconstruct historic land use where land use has left
traces identifiable on LiDAR data on at regional scales and at a fairly fine scale resolution [1].
The spatial distribution of anthropogenic features such as RCHs and stone walls in the
northeastern U.S. can be used as a reliable proxy for estimating spatial extents of historic
forest cover [1,49]. In this context, widespread mapping of RCHs using the DL approach
proposed here will play a key role in understanding spatial aspects of historic land use
dynamics in this region. For example, the distribution of RCHs in modern forested areas
indicates the transition of land cover from forest to cleared land during periods of heavy
iron production, and subsequent reforestation in the 20th century. Additionally, RCHs are
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indicative of other historical impacts to the landscape including geomorphological [3] and
ecological [1]. A better understanding of their spatial distribution in the region allows for
further quantification and study of historical impacts to the landscape that have persisted
through the present.

4. Conclusions

This study found success in the application of a DL model (i.e., U-Net) to fully au-
tomate the extraction of anthropogenic features (RCHs) from high-resolution (i.e., 1m)
LiDAR-based digital elevation models in New England. Our results provide a viable alter-
native to manual digitization of RCHs with promising accuracy even over broad extents
and test regions. We implemented four input compositions of LiDAR derivatives: slope,
hillshades, and VAT rasters to a U-Net model. In terms of input scenarios, the composition
of slope and multiple directional hillshades tends to show the best performance over local-
ized extents (e.g., less than 1.6 km2) of six test regions. At the town-level scale, the model
was best able to detect RCHs using the single VAT raster. The model performed the best
in areas of deciduous forest where slopes exceeded 15 degrees given that morphological
characteristics of RCHs are well articulated in the LiDAR derivatives under these two con-
ditions. Overall, the F1 scores of six test regions range from 62% to 94% (average: 82%) and
those of five towns range from 73% to 86% (average: 80%). This is a significantly promising
result compared to the previous studies that detect circular anthropogenic features.

With few exceptions, recent studies in the region have primarily used manual digitiza-
tion methods to extract extant cultural landscape features, which can be time consuming.
The results in this study present a reliable method of feature extraction and digitization at
regional scales which will allow for reconstruction of regional historic forest cover, cultural
resource management, and study of anthropogenic impacts at much broader scales than
previously before. The model described in this study can be applied to detect possible RCH
locations anywhere in the northeastern U.S. or other regions where high resolution LiDAR
datasets are available.
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