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A Multilevel Spectral Framework for Scalable Vectorless
Power/Thermal Integrity Verification
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Vectorless integrity verification is becoming increasingly critical to the robust design of nanoscale integrated
circuits. This article introduces a general vectorless integrity verification framework that allows computing
the worst-case voltage drops or temperature (gradient) distributions across the entire chip under a set of
local and global workload (power density) constraints. To address the computational challenges introduced
by the large power grids and three-dimensional mesh-structured thermal grids, we propose a novel spectral
approach for highly scalable vectorless verification of large chip designs by leveraging a hierarchy of almost
linear-sized spectral sparsifiers of input grids that can well retain effective resistances between nodes. As a
result, the vectorless integrity verification solution obtained on coarse-level problems can effectively help
compute the solution of the original problem. Our approach is based on emerging spectral graph theory and
graph signal processing techniques, which consists of a graph topology sparsification and graph coarsening
phase, an edge weight scaling phase, as well as a solution refinement procedure. Extensive experimental
results show that the proposed vectorless verification framework can efficiently and accurately obtain worst-
case scenarios in even very large designs.
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1 INTRODUCTION

Aggressive VLSI technology scaling has led to ever-increasing power densities as well as tem-
peratures on chip, imposing grand challenges in designing integrated circuit (IC) systems [31].
For example, the rapidly increasing power dissipations and aggressively lowering supply voltages
result in a massive amount of the current drawn from the power supply, which in turn make
power grid integrity verification tasks increasingly challenging [8, 11, 12, 15, 16, 19, 27, 33, 39].
Meanwhile, higher power densities also inevitably raise chip temperatures, which further lead to
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(1) greater power grid IR drops and interconnect RC delays, (2) higher leakage power consumption
caused by the exponentially increasing sub-threshold currents, (3) slower devices caused by the
degraded carrier mobility, and (4) shorter device life and poorer package reliability. Therefore, it
is necessary for compute-intensive full-chip thermal analysis and integrity verification: At circuit
level, estimating temperature variations and peak temperature across the chip are essential for
accurate timing and power analysis of digital designs [31], whereas evaluating peak temperature
and temperature gradients for critical circuit modules becomes increasingly important for reduc-
ing mismatches and improving performance of analog and mixed-signal circuits [23]; at system
level, thermal modeling and analysis can be leveraged to guide dynamic voltage and frequency
scaling for reducing thermal violations, achieving desired temperature levels and thereby reduc-
ing workload runtimes [7].

Traditional vector-based power grid and thermal integrity verification methods rely on running
numerous circuit simulations using over-pessimistic input vectors to locate the worst-case voltage
or thermal profiles. However, vector-based methods require the underlying workloads or power
densities to be known in advance [17, 22, 36], which may not always be practical. For example, at
early chip design phase it is usually impossible to obtain a precise estimation of underlying power
densities due to the lack of accurate workloads modeling. As a result, vector-based power grid
and thermal verification methods may not provide useful guidance for improving the chip design
performance (reliability).

To address the aforementioned limitations, vectorless verification methods have been proposed
as alternatives, which have been adopted for power grid integrity verifications in recent years. Re-
cent methods have exploited optimization approaches for finding the worst-case scenarios under
given workload constraints (8, 11, 12, 15, 16, 19, 27, 33, 39], leveraging sparse approximate inverse
technique [15], efficient dual algorithm [39], and node elimination [16]. Despite these significant
improvements, the overall power grid verification cost can still be extremely high, especially for
large-scale tasks. To significantly improve the efficiency, scalable multilevel vectorless verification
methods based on geometric multigrid (GMG) operations and the PDE-constrained optimiza-
tion framework have been proposed [11, 12, 21]. However, such methods require the underlying
power grid designs to have (nearly) regular structures so that GMG operations can be performed
effectively, which may become a major limitation when applied to nanoscale PDN designs with
highly irregular power grid structures. Motivated by the existing GMG-based multilevel vectorless
verification methods, Reference [42] introduces a more versatile multilevel vectorless verification
framework exploiting the recent graph-theoretic algebraic multigrid (AMG) algorithmic frame-
work [24] as well as a hierarchy of spectrally sparsified power grids.

Motivated by the recent vectorless methods [11, 42, 44], this work introduces a general mul-
tilevel vectorless verification framework applicable to both power and thermal integrity verifica-
tion problems to enable efficient estimations of worst-case voltage drop or thermal profiles under
complex power or workload constraints (uncertainties). Our approach leverages a recent spectral
graph reduction framework for generating a hierarchy of spectral graph sparsifiers of decreasing
sizes [43], an iterative edge weight scaling scheme and a solution refinement procedure. The main
contribution of this work is briefly summarized as follows:

(1) We propose a more general multilevel framework for vectorless power and thermal integrity
verification that allows estimating nearly worst-case scenarios under various kinds of com-
plex workload or power density uncertainties and constraints.

(2) We introduce a novel power (thermal) grid simplification method based on recent spectral
graph sparsification and coarsening techniques as well as graph signal processing for achiev-
ing good scalability for large problems.
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(3) Extensive experimental results have been demonstrated for large-scale power and thermal
integrity verification tasks considering various power density (workload) constraints, as well
as the flexible tradeoffs between the verification cost and solution quality.

Comparing to the previous works [42, 44], the following innovations have been made: (1) We
propose a general multilevel framework for vectorless integrity verification that is applicable to
input problems with different structures and densities, including power grids and thermal prob-
lems; (2) a spectral graph coarsening framework is leveraged for input grid simplification; and
(3) the proposed framework is evaluated on large-scale power and thermal integrity verification
tasks considering various power density (workload) constraints, as well as the flexible tradeoffs
between the verification cost and solution quality.

The rest of this article is organized as follows. Section 2 provides a brief introduction to prior IC
power grid and thermal modeling and analysis methods as well as emerging spectral graph spar-
sification and graph signal processing techniques. In Section 3, the proposed scalable vectorless
integrity verification method is described in details. Section 4 demonstrates extensive experiment
results for both power grids and thermal chip designs with various power density (workload) con-
straints, which is followed by the conclusion of this work in Section 5.

2 BACKGROUND
2.1 Vectorless Power Grid Integrity Verification

The chip steady-state analysis of an n-node power grid can be formulated into following equation
by utilizing nodal analysis [11, 15]:

Tx = b, (1)

where T represents a conductance matrix representing all the interconnected resistors in the grid,
x is n X 1 node voltage vector, and b is the right-hand-side current vector;

Traditional vectorless power grid integrity verification aims to identify the maximum voltage
drops or current densities under linear current constraints [12, 15], where current constraints
are introduced to capture current loading variations and correlations in given chip designs. Two
types of constraints are considered in a typical vectorless verification problem: local constraints for
setting the lower and upper bounds of the power density for each source while global constraints
for setting the lower and upper bounds for blocks of sources.

Given the power grid, the proposed vectorless integrity verification tasks compute the maximum
voltage drop by solving the following linear programming (LP) for each individual node i:

maximize : x; = eiTT_1 b, for i=1,...,n
subject to:
2
local constraints :  bY < b < bY, @

global constraints : Bl < Mb < BY,

where n is the number of nodes in the power grid and e; is an elementary unit vector with ith
entry to be 1 and others being zeros. Since the conductance matrix T is an M-matrix, the T~! only
contains non-negative sensitivity values. The b* (BL) and bV (BY) represent the lower bounds and
upper bounds of individual power sources (blocks), while M is an m X n matrix that only contains
0s and 1s for defining m global (block) constraints. After getting the worst-case vector b,,5; through
the above optimization procedure, we can simply compute the maximum voltage drop x,,s; using
Xwst = e;rT_lbwst-
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Fig. 1. Thermal modeling of the chip package.

2.2 Vectorless Thermal Integrity Verification

A diagram of an IC chip in a C4 package is shown in Figure 1(a), showing two major heat transfer
paths: one is through the heat sink to the ambient surroundings, and the other is from the chip
package to the board. The equivalent thermal circuit of the die is usually modeled as a three-
dimensional (3D) mesh grid with thermal conductance computed according to the materials as
well as a discretization scheme, as shown in Figure 1(b). The heat diffusion in an IC can be modeled
by the following PDE equation [22, 30]:

OF (7, o ,
pep ) = 9k, OV 1) + 7. ), ®)

subject to the boundary condition:

OF (¥, 1)

k(P =
J

+ hiF(7,t) = f;(7, 1), 4)

where p is the material density (kg/m?), ¢, is the specific heat [J/(kg-°C)], F is the temperature (°C),
7 is the location in the 3D space, k is the thermal conductivity of the material [W/m? - °C], p(F, t)
is the power density of heat sources (W/m?), n; is the outward direction normal to the boundary
surface j, h; is the heat transfer coefficient [W/(m? - °C)], and f; is an arbitrary function at the
surface j. Similarly to the power grid analysis, the chip steady-state analysis of an n-node thermal
grid can be formulated as Equation (1) [22, 44], while T becomes the thermal conductance matrix
of the 3D thermal grid, b is the right-hand-side vector modeling the underlying workload (power
density) distribution, and x becomes the unknown temperature vector to be computed.

Vectorless thermal integrity verification seeks to identify the maximum temperature or temper-
ature gradient by solving LP problems similarly to the ones in Equation (2). However, factorization
of the thermal matrix obtained from 3D mesh-structured grids can be much more costly than factor-
izing the conductance matrices for power grid vectorless verification tasks [40, 42], due to the high
computational complexity of existing direct solution methods, such as LU and Cholesky decompo-
sition methods [9]. For example, our results show that factorizing a matrix with one million rows
(columns) using the state-of-the-art Cholesky solver [9] may take over 30 minutes and consume
18 GB memory.
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Fig. 2. A resistor network (conductance value of each element is shown) and its graph Laplacian matrix.

2.3 Relationship between Power Grid and Thermal Integrity Verification

The steady-state vectorless power grid and thermal integrity verification are essentially similar
which target on solving the linear programming problems formulated in Equation (2). The main
difference is that the formulated conductance matrix T has different structures and densities for
power grids and thermal grids. For example, T will be much denser for thermal grids compared to
the power grids, thus harder to solve in real applications. Previous works, such as References [11,
12, 16, 21], only work on specific types of problems due to different structures and densities of the
input grids. In this work, we introduce a general framework for vectorless integrity verification
regardless of the input grid types. This is realized by utilizing the graph simplification techniques
(spectral sparsification and coarsening) in the framework, which can handle large-scale power grid
and thermal integrity verification tasks.

2.4 Spectral Sparsification and Graph Signal Processing

For a weighted, undirected graph G = (Vi, Eg, wg), where Eg represents the edge set of G,
Vi represents the vertex set, and wg is a function that gives every edge a positive weight, the
following Laplacian matrix can be defined:

-we(p, q) if (p,q) € Ec
Lo(p,q) = (pJ)ZEEG wep.t) if(p=q (5)
0 if otherwise

It can be shown that the graph Laplacian matrix is a symmetric diagonally dominant matrix,
which can be considered as an admittance matrix of a resistive circuit network [37], as is shown
in Figure 2. Given any real vector x € RIY6!, the quadratic form of graph G can be defined as

*TLex = ). walp.9x (p) - x (@) (6)

(p.q9)€Ec

Spectral graph sparsification aims to find an ultra-sparse graph proxy (sparsifier) that has much
fewer edges but the same set of nodes and similar spectral properties (e.g., Laplacian eigenvalues
and eigenvectors) as the original graph. A sparsifier P = (Vi, Ep, wp) is said to be o-spectrally
similar to the original graph G if they have similar quadratic forms, or the following condition is
satisfied for all real vectors x € RIVe! [1], as shown in Figure 3,

xTLpx

< x"Lgx < ox'Lpx. (7)
o

The relative condition number can be computed by

K(Lg,Lp) = Amax/Amin < 0'2’ (®)
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Fig. 3. Two spectrally similar graphs G and P.

where Apmax (Amin) is the largest (smallest non-zero) eigenvalue of matrix L}, Lg with L}, denoting
the Moore—Penrose pseudoinverse of Lp matrix. It has been shown that a spectrally similar sub-
graph can approximately preserve the distances or effective resistances between vertices [38] so
that much faster graph-based algorithms can be developed based on these “spectrally” sparsified
networks. Also, a graph sparsifier with a smaller relative condition number (higher spectral simi-
larity) can lead to faster convergence when used as preconditioners in iterative methods, such as
Krylov-subspace iterative methods.

There is an analogy between traditional signal processing or classical Fourier analysis and graph
signal processing [35]: (1) The signals at different time points in classical Fourier analysis corre-
spond to the signals at different nodes in an undirected graph; (2) The more slowly oscillating
functions in time domain correspond to the graph Laplacian eigenvectors associated with lower
eigenvalues or the more slowly varying (smoother) components across the graph. The recent spec-
tral graph sparsification process [13, 14] aims to maintain as few as possible edges for preserving
the slowly varying or “low-frequency” signals of the original graphs, which therefore can be re-
garded as a “low-pass” graph filter. As a result, spectrally sparsified graphs will be able to preserve
the eigenvectors associated with low eigenvalues more accurately than high eigenvalues.

2.5 Spectral Graph Coarsening

Compared to the solid theoretical works on the graph sparsification, graph coarsening is harder
to understand due to the lack of matured theory support. Different coarsening methods have been
proposed and studied in the past decades, but most of them are based on heuristics. One widely
used coarsening algorithm is match-based graph coarsening. For example, METIS [18], which
has been widely used for graph partitioning and embedding, is a heavy edge matching-based
graph coarsening method; another popular way for graph coarsening is based on AMG-inspired
schemes [24, 34], which usually forms the Galerkin operator for generating the coarsened graphs;
Reference [4] recently introduces a graph neural network-based framework to learn the edge
weights of the coarsened graphs. Among existing coarsening methods, spectral graph coarsening
has been proven to be highly effective due to the preservation of key graph spectral (structural)
properties [25, 26]. A variety of spectral graph coarsening schemes have been proposed in recent
years: Reference [10] proposed a Kron reduction scheme based on Schur complement; Purohit et al.
[32] introduced CoarseNet to coarsen graphs while preserving the largest eigenvalue of its adja-
cency matrix such that the diffusion characteristics of the original graph can be kept; Loukas and
Vandergheynst [25] proposed a theoretical framework based on restricted spectral similarity,
which is a modification of the previous spectral similarity metric for spectral graph sparsification;
Bravo-Hermsdorff and Gunderson [2] proposed a probabilistic framework for graph coarsening,
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Fig. 4. An example illustrating the graph coarsening process.

with the goal of preserving the inverse Laplacian of the coarsened graph; and Reference [46] in-
troduces a spectral coarsening and scaling algorithm for preserving the first few eigenvalues and
eigenvectors of the original graph Laplacian matrix.

3 A SPECTRAL APPROACH TO VECTORLESS INTEGRITY VERIFICATION

To aggressively simplify circuit networks (e.g., the 3D thermal grids) and thereby addressing the
computational challenges in vectorless integrity verification without sacrificing the approximation
accuracy, in this work emerging graph signal processing and spectral graph algorithms [14, 35, 43]
will be leveraged for vectorless power and thermal integrity verification tasks. For example, since
full chip temperature distributions can be considered as the “low-frequency” graph signals on ther-
mal grids obtained after applying a “low-pass” graph filter on the original input power sources, the
spectrally coarsened thermal grids will be able to well preserve the original temperature distribu-
tions and thus facilitate vectorless thermal verification tasks.

3.1 Graph Coarsening via Local Spectral Embedding

Graph coarsening tries to find a smaller graph R = (Vg, Eg, wg) to approximate the original graph
G = (Vg, Eg, wg) with the graph mapping operator HS € RIVkXIVal;

Lr = HiLg (HE)', )

where HY is a coarsening matrix containing only 0 and 1. Figure 4 shows an example illustrating
the spectral graph coarsening process. The coarsening process can be considered as a surjective

mapping of the original node set: (Hg)p g =1 if node g in graph G is aggregated to super-node
p in graph R, and (Hg)p, g =0 for all nodes p” € {v € R : v # p}. The reduced graph R and the

original graph G satisfy restricted spectral similarity shown as the following condition [25, 26]:

1
—xllLe < llxgll, < o’lIxllg

(10)
VxR (S UR, VXG € UG,
where UR = [ug), ug), e, u;k)] and US = [u(Gl), u(GZ), e, ugc)] include the first k eigenvectors of

Lg and Lg correspondingly.

One of the properties for the mapping operator is that it is a locality-preserving operator, so how
to construct the HY is the key problem for preserving important spectral properties (e.g., the first
few eigenvalues and eigenvectors of the graph Laplacian matrix). One possible way is to directly
find node clusters on the low-dimensional representatives of graph G by performing spectral graph
embedding with the first k eigenvectors of Ls. However, it requires the eigenvector calculations
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Fig. 5. Smoothing a random vector on a path graph.

for the original graph Laplacians, which is not feasible for very large graphs. In this work, we
leverage an efficient yet effective local spectral embedding scheme to identify node clusters based
on emerging graph signal processing techniques [35].

So far we know that many standard iterative methods, such as Gauss—Seidel and Jacobi methods,
possess the smoothing property [3]. This property allows these methods effectively eliminating the
high-frequency or oscillatory components of the signal while leaving the low-frequency or smooth
components relatively unchanged. From the perspective of graph signal analysis, these iterative
methods are low-pass graph filtering functions that can quickly filter out the “high-frequency”
components of the random graph signal or the eigenvectors corresponding to high eigenvalues of
the graph Laplacian [35].

To better understand the concept, an example is demonstrated by smoothing a random vector
on a path graph, as shown in Figure 5. We consider a random vector (graph signal) x that can be
expressed with a linear combination of eigenvectors u;, fori = 1,. .., n, of a path-graph Laplacian,

shown as follows:
n
X = Z aiu;. (11)
i=1

After applying the smoothing function on x, a smoothed vector X can be obtained in linear time
by only preserving slow-varying signals, which can be considered as a linear combination of the
eigenvectors corresponding to the first few bottom eigenvalues, shown as follows:

k
%= Zdiui , k<n. (12)
i=1

In this work, we apply a few (e.g., 5 to 10) Gauss—Seidel iterations for solving the linear system of
equations Lox® = 0 to a set of k initial random vectors K = (x(V), ..., x®) that are orthogonal to
the all-one vector 1 satisfying 17x® = 0. Based on the smoothed vectors in K, each node is embed-
ded into a k-dimensional space such that nodes p and g are considered spectrally similar if their
low-dimensional embedding vectors x, € RF and Xq € RF are highly correlated. Consequently,
spectrally similar nodes p and g can be then aggregated together for node reduction purpose. Here
the node distance is measured by the spectral node affinity a, 4 for neighboring nodes p and ¢
[5, 24]:

L K )IE
P’q (Kp,nKp,:)(Kq,:’Kq,:)’

r (13)
with  (K,,..Kg:) = Z (xp(i) -xq(i)>.
i=1
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.2 A Multilevel Vectorless Verification Framework

In this work, we propose a multilevel vectorless verification framework shown in Figure 6. Our
approach is based on the latest graph coarsening algorithm [24, 43, 45] for generating coarse-level
(sparsified) grids according to the original power (thermal) grid problem, as well as the recent mul-
tilevel vectorless power grid integrity verification framework [11, 42]. The proposed framework
includes two phases: a multilevel sparsifier construction phase as well as a multilevel vectorless
verification phase, which are described as follows:

3

Phase I: Multilevel sparsifier construction

o Apply spectral sparsification for the input grid to generate initial grid sparsifier.

e Perform iterative edge weight scaling on the initial sparsifier to compensate the loss of edges.
The detailed introduction for scaling procedure is illustrated in Section 3.3

o Apply spectral graph coarsening on the scaled sparsifier for generating multilevel grid
sparsifiers.

e Map power constraints to each coarsened level by leveraging coarsening mapping operator.

e Factorize the sparsifiers at each level for adjoint sensitivity computations.

Phase II: Multilevel vectorless verification

e Calculate the adjoint sensitivities at each level with the matrix factors.

e Identify a global critical region on the coarsest grid and local critical regions on each finer
level.

e Perform vectorless verification on the global critical region at the coarsest level.

e Map solution vector to next finer level and improve the solution accuracy by performing
local solution refinements on local critical regions at each level until reaching the finest
level.

.3 Spectral Graph Sparsification and Edge Scaling

A perturbation-based spectral graph sparsification engine [13, 14] is leveraged to dramati-
cally sparsify the topology of the original grid during the vectorless verification. The spectral
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sparsification step will efficiently remove the redundant edges in the input grid and only keep the
edges that are spectrally critical to the structure of the graph. In doing so, it can effectively con-
trol the multilevel grid densities while maintaining good spectral approximation quality, such as
effective resistances between nodes. It is noted that preserving effective resistance is equivalent to
preserving the adjoint sensitivities to be applied for setting up LPs, which is the key for accurate
vectorless verification. Meanwhile, the treelike structures of the sparsified grids will immediately
reduce the matrix factorization time. The low-degree nodes in the sparsifier grid can be potentially
merged together to further reduce the number of variables in LPs. Therefore, both the matrix fac-
tors and adjoint sensitivities can be computed in a more efficient way without sacrificing the final
solution quality (e.g., worst-case vector).

ALGORITHM 1: Algorithm for Iterative Edge Weight Scaling
Input: The error tolerance €, the number of partitions k, the original graph G and the initial spectrally
sparsified graph P(0).
Output: The spectrally sparsified graph P with scaled edge weights.

1: Generate a random vector b that is orthogonal to the all-one vector.

2: Partition the original graph G into k blocks P1, Py, ..., Py using multilevel graph partitioning method
[20].

3: Let graph P = pO),

4: Construct matrices Tg = Lg + gminl and Tp = Lp + gminl by adding a small value g, similar to the
ambient thermal conductance to each diagonal entry of L and Lp for graph signal filtering purpose.

5: Solve T x = band Tp X = b and compute err = w

6: while err > € do

7. for partition Pj,i=1,...,k, do

8: calculate y; = Yiep, x[t], ¥i = Xtep, X[t], and a; = i’T: for all nodes;

9:  end for

10:  for each edge (p,q) € Ep do

11: if p, q € Pj, scale up wp(p, q) by a factor of ¢;;

12: if p € P; and q € Pj with i # j, scale up wp(p, q) by a factor of (&; + a5)/2;

13:  end for
14:  Update graph P, Lp and Tp with the latest edge weights;

x—X|| .

15:  Solve Tp X = b and update the mismatch err = Ix=x]| =T

16: end while
17: Return the latest spectrally sparsified graph P.

Motivated by recent graph signal processing techniques [35], an iterative edge weight scaling
scheme is leveraged to gradually scale up the edge weight in the sparsified thermal grid, as shown
in Figure 7. This scheme will compensate for the thermal conductance loss due to the missing edges
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by matching the “low-frequency” behaviors of the original thermal grids, such that approximation
quality after spectral sparsification can be further improved.

We define the non-decreasing eigenvalues and corresponding eigenvectors of the Laplacian ma-
trix Lgtobe 0 = Ay < Ay <--- < A, and uy, uy, . . ., u,, respectively. The spectral decomposition
of L can be expressed as follows:

n
Lg = Z/l, u; ul-T, (14)
i=1

while the spectral decomposition of L, can be expressed as follows:

:(iliuiu» Z_ul . (15)
i=2

By adding a small grounded thermal conductance gp,i, to each node in graph G, which is equiv-
alent to add a small value g,,;, to each diagonal element in Lg, we have the following:

To = Lo + Gminl = ) (Gmin + A i 0], (16)

i=1

where I = Z u; u] is the identify matrix. Similarly to Equation (15), the spectral decomposition of
i=1

T;' can be expressed as follows:

T =(Lg + gmm Z (gmm + A ) (17)

Given a random vector b, it can be expressed with the Laplacian eigenvectors as follows:

b= Zn:ﬂiuj. (18)
i=1

To get the solution of Tgx = b, we can have x = Talb, which can be further expressed as follows:

n -1
x=(Lc + gminI)_lb = (Z (gmin +Ai) u; u;l’) b
i=1

—ngmw uiupb = Zl+r/1

min
where r = 1/¢i,. Equation (19) indicates that when a small g,,;, is applied, the eigenvectors asso-
ciated with small eigenvalues or only “low-frequency” components in b will remain in x; however,
a relatively large gmin (r = 0) will allow more higher frequencies to be included in x and thus lead
tox = b.

Based on the above analysis, T; ! can be considered as a “low-pass” filter matrix for a given graph
signal b: By properly choosing g, values it is possible to only keep “low-frequency” components
in x, while the graph signal’s “high-frequency” (highly oscillating) components will be filtered out.
Since chip temperature distributions mainly contain “slowly varying” components due to relative
small ambient thermal conductance values, which can be viewed as “low-frequency” signals, it
becomes possible to leverage emerging spectral sparsification techniques [13, 14] to only maintain
a small number of edges in the sparsified thermal grids while still preserving accurate thermal
profiles, since spectrally sparsified graphs can very well preserve “low-frequency" graph signals.

(19)
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Based on the above intuition, Algorithm 1 is proposed for scaling up edge weights in the sparsified
thermal grid by matching the “low-frequency” responses filtered by the original thermal grids.

3.4 Solution Refinement

We define the non-decreasing eigenvalues and corresponding eigenvectors of the Laplacian matrix
Lptobe 0 =241 < Ay < --- < A, and uy, Uy, . . ., Uy, respectively, where graph P is a sparsified
graph of graph G. The spectral decomposition of Lp can be expressed as follows:

n
Lp =) Jyiiyii]. (20)
i=1

Assume that k smallest eigenvalues and corresponding eigenvectors of L can be well preserved
in Lp, while the remaining higher eigenvalues and eigenvectors are not. Then the spectral decom-
position of Lp can be approximately written as follows:

Lp ~ Z/l,—uiu;r+z/iiﬁi 12;'— (21)

Based on Equation (19), the solution from the original grid can be expressed as
n T
u;u b
x=(Lg + gmin) b=y ——. (22)
Jmin ; Gmin + Ai
While the identify matrix I can be written as follows:

n k

I= )iy ~ ) wu + Y i (23)
i=1 i=1 i=k+1

Similarly, the solution x obtained with Lp can be written as follows:

) & @b
Xx=(Lp + gminl) b= _
=1 Gmin + A
(24)
Z uiulb N wu] b
N gmm"'ﬂ icktl gmin+ii.

Based on Equations (22) and (24), the solution error due to spectral sparsification and scaling

becomes
" 1 Uj ulTb 12,' lllTb
Ax=x—-x~= - — . (25)
Tkl Imin + A Imin +/1,'

From Equation (25) we can see that the solution error using spectrally sparsified graphs can be
expressed as a linear combination of high eigenvectors corresponding to large Laplacian eigenval-
ues, which can also be viewed as a linear combination of high-frequency signals on graphs [35].
To further improve the solution obtained on sparsified grids, “low-pass” graph signal filters, such
as weighted Jacobi iterative method, can be utilized to filter out the high-frequency error. The solu-
tion refinement method is described in Algorithm 2. The inputs include the input grid conductance
matrix T that can be decomposed into a diagonal matrix D¢ and the remainder matrix Qg, the
solution vectors X1, . . ., X, obtained on the sparsified conductance matrix Tp, the right-hand-side
vectors by, . .., by as well as the weight factor y and iteration number Ny, 4, for signal filtering.
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ALGORITHM 2: Solution Refinement Algorithm
Input: Tg = DG + QG, X1, - - s Xks b1, - -, by Vs Nmaxs

1: For each of the approximate solution vector X; in X1, ..., X, do
2: fori=1to Nyqx do
L(i+1 (i
30 & = (- 4 yDG (b - Q%)
4: end for
5: Return the smoothed solution vectors X1, . . ., X.

3.5 Example: A Two-level Verification Framework

In the following, we will describe a two-level vectorless verification approach, while multilevel
schemes can be defined in a similar way.

Local and global constraints mapping. Instead of directly solving the linear programming problem
in Equation (2), we first reduce the input grid to a much smaller one by the multilevel graph
coarsening scheme. At the same time, the power constraints on the original problem needs to be
modified after the grid coarsening on each level. Assume the power constraints on level h to be
(bY)" (upper constraints) and (b*)" (lower constraints). Specifically, we have (bV)° = bV and
(1) = b! when h = 0. More generally, power constraints can be directly mapped from fine level
h to coarse level h + 1 with graph mapping operator H ;l’“ obtained as follows:

h+1

— H;lerl (bU)h
= HI (Y,

upper bound :  (bY)

lower bound : (bL)thl

where (bU)thl (b )h+l, (bU)h, and (bL)h denote the upper bound and lower bound of power

sources for coarse and fine grids, respectively. The global constraints mapping can be defined
in a similar manner by choosing the global constraints on the coarse grid to be the sum of each
block’s lower and upper bounds on the fine grid.

Solution mapping and refinement. To reduce the verification cost on the coarse level, the global
critical region Cy;, will be identified based on the adjoint sensitivity threshold [11], such that Cyy,,
will only include the most important power sources. Given a sensitivity threshold €, we will only
include the power sources that have adjoint sensitivity values greater than €, into Cyy;, for setting
up LPs:

maximize : X =

h+1 h+1 ph+1
wst Si bi

Vb!”l € Cglb

subject to local and global constraints: (26)
local : (bT)
global : (BF)

h+1 h+1

< bh+1 < (bU)

h+1 h+1

Mh+1 bh+1 < (BU)
The solution bfm will be further mapped back to the fine level using the mapping operator

(H*)" by
bh

wst

— (H}}:H) bh+1 (27)

wst*

Since directly mapping the solution of the coarse level problem to a finer level may lead to in-
creased solution error, a local solution refinement procedure at the finer level becomes essential as
suggested in Reference [11]. To this end, we propose to incrementally improve the solution quality
on the finer grid by setting up a new LP for a much smaller local critical region and combining the
updated LP solution with mapped coarse-level solution to gain good efficiency and accuracy. The

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 11. Pub. date: December 2022.



11:14 Z.Zhao and Z. Feng

key steps in the proposed solution mapping and refinement procedure for a vectorless integrity
verification problem are as follows:

(1) Set the normalized sensitivity threshold €;,c = f €4, with the scaling factor f > 1 to
obtain a much smaller local critical region Cjo;

—h
(2) Set up a new LP problem for the local critical region Cj,. to obtain the solution vector b,,,.
h

wses for

(3) For the current sources (variables) that belong to Cj,., update their solution with b
the sources (variables) that belong to Cy;; but not Cy,, reuse the mapped solution bfm.
(4) Compute the refined solution by: x,,s; = Xws: + €415 X Smax|b" = bﬁ;stll'

3.6 Algorithm Flow and Complexity Analysis

The detailed multilevel vectorless integrity verification algorithm has been described in
Algorithm 3. The complexity for graph coarsening is O(m) with m denoting the number of re-
sistors in the chip model. The complexity for spectral sparsification and edge scaling is O(mlog n)
with n denoting the number of nodes in the grid, which is nearly linear. The cost for solving LPs
will depend on the algorithm to be adopted as well as the sizes of critical regions for setting up
the LPs, which can be well controlled by the proposed multilevel verification framework. Since
only ultra-sparse (treelike) spectral sparsifiers of the original input grids are needed for vector-
less verification by leveraging the proposed solution refinement procedure, the proposed method
can significantly improve the overall algorithm scalability, as shown in our experiment results in
Section 4.

ALGORITHM 3: Multilevel Vectorless Integrity Verification

Input: original power or thermal grid, user-defined local and global power constraints bV, b’ and M, initial
normalized sensitivity threshold €, and sensitivity scaling factor f > 1
Output: worst-case voltage drop or thermal profile of the original input grid.

1: Extract spectrally sparsified grid for the original input grid.
2: For thermal grid, update sparsified grid using iterative edge weight scaling method (Algorithm 1).
3: Multilevel coarse grid construction:
(a) Construct all hierarchy levels from finest to coarsest level;
(b) Get local and global power constraints b¥, b and M for each level using coarsening operators.
4: Factorize each coarse-level grid for adjoint sensitivity calculation.
5: Perform global verification at the coarsest level K:
(a) Find global critical region Cgl , for a given sensitivity threshold ek, and set up LP to get worst case

vector bK _,
: Perform solution mapping and refinement on finer to finest levels:
k<K
: while k > 1 do

Map solution vector to finer level by: b1 = (H]’:_l)Tbk

wst wst

10:  Set sensitivity threshold € _; = fej and identify Cfo_cl.

RN

11:  Setup a new LP for C;C_l to obtain solution vector b1,
oc wst
k-1

12:  Combine the latest LP and interpolated solutions to form b7 ;.

13: kek-1
14: end while
15: Calculate the worst-case voltage drop or thermal distribution using the worst-case power source vector.
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Table 1. Statistics of Two Microprocessor Designs

Design Processor A Processor B
Power Consumption (W) 28 50

Die Area (mm?) 195 302

Num. of Metal Layers 4 6

Num. of Material Layers 11 15

Equivalent Heat Transfer || 3.3 (heat sink) 3.3 (heat sink)
Coefficients (10> W/m?K) || 2.0 (package) 2.0 (package)

Table 2. Specifications of the Power Grid Test Cases
and Thermal Test Cases

Power Grid Specs. Thermal Grid Specs.

CKT N# | P# |L#| CKT | N# | P# |L#
ibmpg3 | 0.85M | 90K T1 | 25K | 2.5K
ibmpg4 | 1.0M | 100K T2 | 0.1M | 10K
ibmpg6 | 1.7M | 170K T3 | 0.2M | 10K
ibmpg7 | 1.5M | 150K T4 | 0.4M | 40K
thupgl | 5.0M | 500K T5 | 0.9M | 90K
thupg2 | 9.0M | 900K T6 | 1.6M | 0.16M
- - — T7 | 2.0M | 0.20M

WlWIN(NN DN

NN NN DD N

4 EXPERIMENTAL RESULTS

In this section, we present the experiment results of the proposed vectorless power grid verification
method on different power grid designs and thermal verification method for two microprocessor
designs [22]. The proposed multilevel vectorless integrity verification method has been imple-
mented in MATLAB and C++. The LP problems are solved by the state-of-the-art LP solver [29]
and all experiment results have been obtained using a single CPU core of a computing platform
running 64-bit RHEL 6.0 with 2.67-GHz 12-core CPU and 48-GB DRAM memory.

4.1 Experimental Setup

The test cases used for power grid verification include industrial power grid designs with different
sizes up to 9 million nodes [28, 41]. The design details of the two microprocessors used for gen-
erating the thermal grids are shown in Table 1. The original design of the two microprocessors is
from Reference [22], and we reuse the same design in this work. The heat conductance paths are
modeled using equivalent heat transfer coefficients.

The specifications of the power grid and thermal test cases are shown in Table 2, where N.# and
P.# denote the numbers of grid nodes and power sources, respectively. L.# represents the number
of levels generated when using the multilevel verification methods. When setting up experiments,
three methods for vectorless power grid and thermal integrity verification are applied, including
single level (direct) method [6], multilevel method without (w/0) sparsification, and the proposed
multilevel method with (w/) sparsification.

4.2 Experimental Results for Power Grid Verification

4.2.1 Result of Solution Quality. As we mentioned in the previous sections, the spectral graph
sparsification method can well preserve the effective resistances of the original power grid,
which will guarantee a good solution quality during vectorless verifications. Figure 8 shows very
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Fig. 8. Relative errors of vectorless verification w/ sparsified grid.

Table 3. Results of the Proposed Vectorless Power Grid Integrity Verification Method

CKT Single Level Multilevel w/o Sparsification Multilevel w/ Sparsification
Tohot Tou T Tohot Too I, | Err (%) | Toha Y T, | Err (%) | «

ibmpg3 | 17.4s | 1.39s | 1.79s 37.12s 0.87s | 0.21s | 2.34% | 1.40s | 0.029s | 0.11s | 2.58% | 27
ibmpg4 | 22.4s | 1.57s | 2.10s 48.04 s 1.16s | 0.35s | 3.42% | 3.72s | 0.06s | 0.08s | 2.26% | 39
ibmpg6 | 16.3s | 2.84s | 3.19s 30.30 s 0.67s | 0.45s | 1.23% | 5.41s | 0.10s | 0.20s | 2.27% | 24
ibmpg7 | 30.3s | 2.44s 3.15s 66.50 s 1.57 s 0.32s | 3.98% | 4.86s | 0.08s | 0.15s | 1.00% | 36
thupgl | 92.2s | 9.20s | 11.43s | 433.54s 5.06s | 27.15s | 1.00% | 11.09s | 0.21s | 10.03s | 1.00% | 42
thupg2 | 963.2's | 43.16 s | 282.30 s | 2527.46 s | 398.055 | 45.10s | 1.00% | 47.23s | 0.46s | 17.93s | 1.00% | 41

satisfactory results for the vectorless verifications with the sparsified power grids (single level),
where relative errors are reported for vectorless verification results when using the original power

grid and the sparsified power grid.

4.2.2  Result of Runtime Efficiency. Two parts are included for adjoint sensitivity calculation
of the vectorless power grid verification: a matrix factorization phase and a linear equation solv-
ing phase using matrix factors. For example, for a given power grid conductance matrix Tg, to
calculate the voltage sensitivity given a node i with respect to all current sources, the following
procedure will be leveraged: First, a unit vector b will be set up with only the ith entry being 1 and
other entries being 0. Then, the linear system of equation Tgx = b will be solved based on matrix
factors. Once the solution x is obtained, it can be used as the sensitivity vector for setting up the
LPs. It should be noted that we only need to factorize the conductance matrix once for each level
and matrix factors can be reused many times during the vectorless verification process. Since the
conductance matrix of a sparsified grid can be factorized and solved in almost linear time, adjoint
sensitivity computations based upon sparsified grid can be much more efficient than the original
grid problem. As shown in Figure 9, the runtime results of sensitivity calculation for the original
and sparsified power grids (single level) have been illustrated, where the runtime for Cholesky ma-
trix factorization and linear equation solving are reported. It shows that sensitivity calculations
are much faster with the sparsifier grids.

Comprehensive verification results using different approaches are shown in Table 3, with
speedup numbers shown in Table 4. “Single Level,” “Multilevel w/o Sparsification,” and “Multilevel
w/ Sparsification” denote the verification methods using single level (direct), multilevel method
without and with sparsification methods, respectively; T, ., T, and Tl’; denote the runtime for

c
Cholesky factorization, matrix resolve using matrix factors and total LP solve including all levels,
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Fig. 9. Sensitivity computation time for the original and sparsified grids.

Table 4. Runtime Results of the Proposed Method

Sp. Over Single Level | Sp. Over Original Multilevel
CKT = TO T ™ ™ "
sehol | Zsot | | Zchol | sol lp
T hot 1501 Tlsp T ohot T30 lep
ibmpg3 | 12.4x | 47.8X | 16.3X | 26.5%X | 30X 2.0
ibmpgd | 6.0X | 26.2X | 26.3% | 12.9%X | 19.3X 4.4x
ibmpg6 | 3.0x | 28.4X | 16.0X | 5.6X 6.7X 2.3%
ibmpg7 6.2X | 30.5%x | 21.0x | 13.7X | 19.6X 2.1X
thupgl | 8.3%x | 43.8x | 1.1x | 40.0x | 24.1X 2.7X
thung 20.4X | 93.8X | 15.7X | 53.7X | 865X 2.5%

respectively; Err denotes the relative error of maximum voltage drop compared to single level
method, and k denotes the relative condition number.

For all test cases, verification using “Multilevel w/ Sparsification” method is the fastest among
all the methods. Meanwhile, huge speedups for Cholesky factorization and matrix resolve are
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Fig. 10. Total runtime speedups of Multilevel w/ Sparsification method comparing to the other two methods.

achieved when comparing to the other two methods while maintaining good verification accuracy.
It is noted that Cholesky factorization and matrix resolve time for “Multilevel w/o Sparsification”
method are slowest among all three methods. It is observed that solving LPs using the proposed
method is over 2x faster than using the “Multilevel w/o Sparsification” method, showing that the
proposed method can play very important roles in reducing overall computational cost during
vectorless verifications, especially for large power grid designs.

Figure 10 shows the total runtime speedups of Multilevel w/ Sparsification method comparing
to the other two methods, indicating the dramatically speedups when comparing to the other two
methods.

Figure 11 shows the nearly linear runtime scalability of the proposed method, where both the
LP solve time and total runtime have been demonstrated.

4.2.3 Tradeoff Analysis between Accuracy and Efficiency. Figure 12 shows how vectorless veri-
fication solution quality (error) and the LP runtime will change with different relative condition
numbers (k). As observed in our experimental results, the relative errors grow rather slowly with
increasing condition numbers (k < 200), while the LP solution time can be dramatically reduced.
The larger condition number represents a sparser power grid sparsifier, while the sparser power
grid will result in the coarsened grids with less number of current variables after node and con-
straint aggregations at coarse levels. This is equivalent to reducing the number of optimization
variables in the LP problem, and it will eventually achieve a faster verification procedure with
the cost of less accurate approximations. By doing so, we are able to flexibly explore the tradeoffs
between the vectorless verification runtime and solution quality by choosing the sparsity of the
input grids.

4.3 Experimental Results for Thermal Verification

4.3.1 lterative Edge Scaling and Solution Refinement. To demonstrate the effectiveness of the
proposed edge scaling and solution refinement schemes, four solution (temperature) vectors are
calculated for a 3D thermal grid and its spectral sparsifiers: (a) the true solution vector obtained
using the original thermal grid, (b) the approximate solution vector computed using the sparsifier
without edge scaling, (c) the approximate solution vector obtained using the sparsifier with edge
scaling, and (d) the refined (smoothed) solution vector using the sparsifier with edge scaling. We
plot the relative errors (shown as [>-norm) with the number of iterations during the iterative edge
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Fig. 11. Runtime scalability of the proposed method.

scaling procedure by comparing the solution vectors (c) and (d) against the true solution vector (a)
in Figure 13(a). Meanwhile, we plot the histogram distributions of relative errors of the solution
vectors (b)-(d) at the final iteration by comparing them against the true solution vector (a), as
shown in Figure 13(b). We can see that the solution errors between the sparsified thermal grid and
the original 3D thermal grid can be significantly reduced by leveraging the proposed iterative edge
scaling scheme, and further mitigated by the proposed solution refinement procedure.

4.3.2  Result of Verification Quality. As we mentioned earlier, low-frequency components of the
original thermal grid solutions can be well preserved after spectral graph sparsification, which is
the key to achieving high-quality solutions for vectorless verification tasks. Figures 14 and 15
show the worst-case thermal distributions of processors A and B using (a) the direct method,
(b) the multilevel vectorless verification method w/o sparsification, and (c) the multilevel vector-
less verification method w/spectral sparsification, respectively. As we can see from the figures, the
thermal distributions using three methods are very close to each other, indicating that rather ac-
curate vectorless verification results can be obtained using multilevel spectrally sparsified thermal
grids.
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Table 5. Results of the Proposed Multilevel Vectorless Thermal Integrity Verification Method

(Two-level Scheme Is Used)

CKT (a) Single Level (b) Multilevel w/o Sparsification (c) Multilevel w/ Sparsification
Tohot Too T, Tohot Tiol T Err(%) | T T5ol T Err(%) | ®
T1 0.94s 2.30s 2.71s 1.24s 3.21s 3.12s 1.0% 0.03 s 0.13 s 2.02s 5.0% 2,073
T2 5.89 s 14.79 s 10.36 s 8.12 s 20.48 s 5.80s 2.1% 0.29 s 0.72 s 6.81s 3.8% 2,400
T3 24.26s 55.20 s 20.08 s 33.91s 86.07 s 25.90 s 4.0% 1.13 s 2.90 s 4.33 s 4.0% 1,435
T4 38.03 s 99.91s 60.56s | 50.91s | 131.97s | 24.15s 2.0% 4.61s | 10.46s | 14.48s 5.0% | 2,193
T5 110.17 s | 262.53 s | 159.83 s | 148.11s | 335.97s | 21.43 s 1.0% 20.09s | 43.50s 9.36 s 2.0% 2,469
Té6 1.18K's | 33.60K's | 0.87K's | 1.25K's | 33.99K's | 0.79K s 1.0% 51.70 s | 167.00s | 133.83 s 1.0% 2,141
T7 1.32K's | 32.27K's | 1.76K's | 1.42K's | 28.91K's | 1.70K s | 1.0% | 65.23s | 187.36s | 181.76 s | 2.0% | 3,073
Table 6. Runtime Results of the Proposed Method
Sp. Over Single Level | Sp. Over Original Multilevel
CKT - > o - 77 T
T T T T
chol sol _Ip chol sol _Ip
S S S S S S
Tchol Tsol Tlp Tchol Tsol Tlp
T1 | 31x | 18X | 1.4X | 41x | 25X 1.6X
T2 20X 20X 1.6X 28X | 28X 0.85%
T3 22X | 19% | 4.6x | 30x | 30x 6.0X
T4 9% 10X 4X 11X | 13X 1.7X
T5 6X 6% 18X 8% 8X 2.3%
T6 23X | 201X | 6.5X 24X | 204X 5.9%
T7 20 | 172%x | 9.7X 22X | 154X 9.1X

4.3.3 Comprehensive Results. Vectorless thermal integrity verification results using different

methods are shown in Table 5. Except for

"
Tchol’

runtimes for verifying 100 randomly chosen nodes.

Table 6 shows the runtime speedups of Cholesky factorization, adjoint sensitivity calculation
and LP solving when comparing the proposed multilevel method with the other two methods. It
is observed that “Multilevel w/ Sparsification” method is consistently much faster than the other

all other time are computed by summing up the
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Fig. 14. Worst-case temperature distributions of processor A.

two methods, especially for larger test cases. And the total runtime speedups can be up to 100x for
the larger thermal grids when using the proposed method, as shown in Figure 16. The “Multilevel
w/o Sparsification” is the slowest method due to the fast growing matrix densities at coarse levels.
The overall LP solution time T}, for the proposed method is also the smallest, indicating that our
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Fig. 17. Verification time with various problem sizes.
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Fig. 18. Tradeoff analysis using the proposed method.

method can effectively reduce the number of decision variables in LP and thus result in much
lower computational cost in vectorless thermal verification tasks.

Meanwhile, the proposed method scales very comfortably with even very large 3D thermal
grids, since both the LP solve time and total verification time increase almost linearly with the 3D
thermal grid sizes, as shown in Figure 17.

Figure 18 shows how vectorless thermal verification solution quality (error) and the total run-
time will change with different relative condition numbers (k). The relative errors grow slowly
with increasing condition numbers, while the runtime is decreased, indicating that the proposed
method allows to flexibly explore the tradeoffs between the vectorless verification runtime and
solution quality.

5 CONCLUSION

We present a highly scalable multilevel vectorless power grid and thermal integrity verification
framework for computing chip worst-case voltage drop or thermal profiles without knowing ex-
act distribution of underlying power sources or workloads. Recent theoretical results in spectral
graph sparsification and coarsening, as well as graph signal processing techniques enable us to
develop much faster and more scalable vectorless integrity verification algorithms, while achiev-
ing flexible tradeoffs between computing efficiency and solution quality. Extensive experiment
results for various chip designs have been demonstrated, indicating that the proposed scalable
vectorless verification method can always efficiently obtain highly accurate results for large chip
designs.
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