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Mapping stone walls in Northeastern USA using deep learning and LiDAR data
Ji Won Suh a,b and William Ouimetb,c

aDepartment of Natural Resources and the Environment, University of Connecticut, Storrs, CT, USA; bDepartment of Geography, University of 
Connecticut, Storrs, CT, USA; cDepartment of Earth Science, University of Connecticut, Storrs, CT, USA

ABSTRACT
Stone walls are widespread and iconic landforms found throughout forested terrain in the Northeastern 
USA that were built during the 17th to early 20th centuries to delineate property boundaries and the 
edges of agricultural fields and pastures. As linear, or broadly curved, features that are typically >0.5 m 
high, 1–2 m wide, and >4–8 m long, stone walls are highly visible in LiDAR data, and mapping them is of 
broad interest to the cultural heritage sector as well as to researchers specifically focused on historic 
landscape reconstruction. However, existing mapping attempts have commonly relied on field surveys 
and manual digitization, which is time-consuming, especially when trying to complete mapping at 
broader scales. In response to this limitation, this study: (1) presents a novel framework to automate 
stone wall mapping using Deep Convolutional Neural Networks (DCNN) models (U-Net and ResUnet) 
and high-resolution airborne LiDAR, (2) evaluates model performance in two test sites against field 
verified stone walls, (3) investigates the factors that can influence model performance in terms of the 
quality of LiDAR data (e.g. ground point spacing), and (4) suggests post-processing for town-level 
mapping of stone walls (~120 km2). Both models performed well with respect to the Matthews 
Correlation Coefficient (MCC) score. U-Net scenario 3 achieved an MCC score of 0.87 at test site 1, 
while ResUnet scenario 3 (S3) had an MCC score of 0.80 at test site 2. In town-level test site 3, ResUnet S3 
achieved the best F1 score of 82% after post-processing. This study demonstrates the potential of 
automated mapping of anthropogenic features using our models.
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1. Introduction

Stone walls are ubiquitous anthropogenic landforms 
found throughout forested terrain in the Northeastern 
USA that represent the legacy of historic, 17th- to early- 
20th-century land use practices in the region. The most 
common type of stone wall, fieldstone walls, are linear, 
or broadly curved, features that are composed of stones, 
typically >0.5 m high, 1–2 m wide and continuous for 
>4–8 m in length (Thorson 2023). The hundreds of thou
sands of fieldstone walls built across the Northeastern 
USA are a unique landscape feature that is the result of 
the region’s glacial and land use history (Thorson 2002; 
Wessels 1997). Following European settlement, wide
spread forest clearing commonly exposed stones and 
sediment that had been deposited during deglaciation 
in the region between 17,000 and 21,000 years ago 
(Ridge 2004). Fieldstone walls were built through time 
as stones were moved to property boundaries and the 
edges of agricultural fields and pastures during the initial 
process of land clearing as well as the continued use of 
the land in the subsequent years, decade and even 

centuries. The vast majority of these land use practices 
and walls were abandoned during mid-19th to early 
20th centuries and reforestation followed (Foster et al.  
2008; Johnson et al. 2021). Overall, stone walls are by far 
the most widespread and resilient anthropogenic land
form representing previously deforested land through
out the previously glaciated Northeastern USA. Stone 
wall maps, as a proxy of historic agricultural activity, 
have been used to investigate historical land use 
dynamics and forest cover extent prior to mid-20th 
century (Johnson and Ouimet 2021, 2016, 2014).

Mapping stone walls and quantifying the legacy of 
historical land use in the Northeastern USA is not 
possible through medium-resolution satellite imagery 
(e.g. Landsat 8 OLI and Sentinel 2) (Figure 1(a,b)) or 
high-resolution aerial imagery (Figure 1(c)) because 
stone walls are relatively small (i.e. less than 1–2 
meters in width) and commonly rest under canopy 
cover. Airborne Light Detection and Ranging (LiDAR) 
solves these limitations (Figure 1(d,e)) (Risbøl and 
Gustavsen 2018; Doneus et al. 2008; Gallwey et al.  
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2019) because LiDAR can penetrate tree branches, 
shrubs, and underbrush and typically has 4–20 returns 
per m2, allowing for the creation of Digital Elevation 
Models (DEMs) with a spatial resolution of ≤1 m. 
A diverse range of LiDAR DEM raster derivatives 
such as hillshade, slope, openness, Visualization for 
Archaeological Topography (VAT) and principal com
ponent analysis (PCA) can then be utilized for visualiz
ing small anthropogenic features such as stone walls, 
charcoal hearths, grave mounds, and pits (Bennett 
et al. 2012; Hesse 2010; Doneus 2013; Evans et al.  
2013; Štular et al. 2012; Howey et al. 2016; Kokalj, 
Zaksek, and Oštir 2013; Verbovšek, Popit, and Kokalj  
2019; Suh et al. 2021; Johnson and Ouimet 2014). 
Utilizing these LiDAR derivatives and visualization 
techniques, manual digitization has been implemen
ted as the most common approach to identify and 
map stone walls in the Northeastern USA (Johnson 
and Ouimet 2018, 2016, 2014). However, this 
approach is time-consuming, especially when trying 
to complete mapping over vast areas of land. Another 
approach is to use public crowd-sourced digitization 
via an ArcGIS web app covering the entire state (CT 
stone wall mapper1 and NH stone wall mapper2). Even 
though the new mapper platform allows for crowd- 
sourced manual digitization over a broad area, man
ual digitization is still a time-inefficient approach and 

an error can be introduced depending on the experi
ence of the analysts (Leonard, Ouimet, and Dow  
2021).

To overcome this inefficiency issue regarding 
mapping anthropogenic features and take advan
tage of the widespread availability of LiDAR datasets 
around the region (Johnson and Ouimet 2018,  
2014), object-based image analysis (OBIA) has been 
applied for the detection and segmentation of 
anthropogenic features based on LiDAR derivatives 
(Niculiță 2020; Witharana, Ouimet, and Johnson  
2018). OBIA is a semi-automated method including 
two steps: (1) extracting morphological characteris
tic (e.g. shape, size, and texture) of the target fea
ture to differentiate it from the background or other 
objects, and (2) adjusting threshold to find the best 
parameters to detect target-like feature (Blaschke 
et al. 2000). A number of studies have utilized this 
approach using LiDAR products to extract, charac
terize, and classify various features such as relict 
charcoal hearths and kilns (Witharana, Ouimet, and 
Johnson 2018; Schneider et al. 2015; Suh et al.  
2021), shell craters (Magnini, Bettineschi, and De 
Guio 2017), and mounds (Trier, Zortea, and 
Tonning 2015; Niculiță 2020; Davis, Lipo, and 
Sanger 2019; Freeland et al. 2016; Orengo et al.  
2020). Previous studies have focused on features 

Figure 1. Visibility of stone walls with different imagery sources. a: Landsat 8 OLI (30 m), 3 January 2016; b: Sentinel-2 (10 m), 
18 February 2016; c: Aerial photography (0.1m), March 2016; d: LiDAR derived hillshade (1m, Azimuth 315°), e: LiDAR derived slope 
(1m); f: Stone walls in field (yellow refers to overall physical properties of stone walls (Johnson and Ouimet 2016)).
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that are isolated with circular shapes rather than 
those having continuous and linear shapes like 
a stone wall. While OBIA can be a useful and effi
cient mapping approach compared to manual digi
tization, it still requires significant time and effort to 
build a rule set based on morphological character
istics of the target feature and optimizing threshold
ing parameters.

As a fully automated approach, Deep 
Convolutional Neural Networks (DCNNs), also 
known as deep learning (DL), have been implemen
ted in semantic segmentation and object detection 
using remote sensing imagery (Li et al. 2020; 
Zhong, Hu, and Zhou 2019; Waldner and 
Diakogiannis 2020). Semantic segmentation 
involves the classification of pixels according to 
semantic categories, which requires distinguishing 
boundaries between semantic categories, in addi
tion to pixel-level classification. Different types of 
DCNN architectures have been developed 
(Ronneberger, Fischer, and Brox 2015; Zhou et al.  
2018; Diakogiannis et al. 2020; Chen et al. 2018). 
Object detection, on the other hand, is the task of 
locating and identifying multiple objects in an 
image. The Region-based CNN (R-CNN) is one of 
DCNNs-based object detection models (Girshick 
et al. 2013). Unlike semantic segmentation model, 
the R-CNN-based model extracts a set of regions of 
interest (ROIs: region proposals) within an image to 
detect target objects, rather than processing the 
entire image. Then, the R-CNN model uses CNNs 
to extract features from the ROIs and classify the 
objects within the ROIs (He et al. 2020). These 
DCNN models are end-to-end process that auto
mate the entire process of converting raw input 
data into the desired prediction without human 
intervention. With this advantage, its application is 
diverse in terms of image datasets and target map
ping features. For example, multispectral satellite 
imagery (Zhong, Hu, and Zhou 2019; Li et al.  
2020; Waldner and Diakogiannis 2020; Kussul et al.  
2017) as well as aerial imagery (Sylvain, Drolet, and 
Brown 2019; Zhang et al. 2020) has been used for 
land cover (Mboga et al. 2020; Sylvain, Drolet, and 
Brown 2019; Srivastava, Vargas-Muñoz, and Tuia  
2019; Li et al. 2020; Zhang et al. 2020; Rodríguez, 
Vitrià, and Mora 2020; Kim et al. 2018) and urban 
structures mapping (Zhang, Liu, and Wang 2018; 
Wang and Li 2019; Tan, Xiong, and Li 2018; 

Abdollahi et al. 2020; Zhang et al. 2018). In 
geoscience field, imagery has been employed for 
landslide (Qi et al. 2020; Chen et al. 2020; Olteanu- 
Raimond et al. 2020) and fluvial or glacial lake 
mapping (Carbonneau et al. 2020; Wu et al. 2020).

A few studies have been conducted to integrate 
LiDAR derivatives into DL models to identify archae
ological objects (Trier, Reksten, and Løseth 2021; 
Verschoof-van der Vaart and Lambers 2019; 
Verschoof-Van Der Vaart et al. 2020). These studies 
utilized R-CNN-based models such as Faster R-CNN 
(Ren et al. 2017), to detect circular-shaped features 
such as charcoal kilns, pitfall traps, and grave mounds. 
However, there are several gaps in previous research: 
(1) there has been a lack of emphasis on the auto
mated mapping of connected linear features, such as 
stone walls and historical roads (Verschoof-van der 
Vaart and Landauer 2021), (2) the application of 
semantic segmentation models such as U-Net has 
been limited in identifying small archaeological fea
tures from LiDAR derivatives (Suh et al. 2021), and (3) 
more research is needed to investigate the limitation 
of LiDAR-based mapping using DCNNs due to varia
tions in LiDAR quality when applied to large sites (e.g. 
>100 km2) and to mitigate these limitations by using 
additional reference data (e.g. land cover map) or GIS 
processing (Verschoof van der Vaart et al. 2022). 
Therefore, this study presents an innovative frame
work for the automated mapping of small-scale linear 
anthropogenic features, stone walls, in LiDAR deriva
tives up to town-level scale. In order to achieve this 
goal, two semantic segmentation DCNN models, 
U-Net and ResUnet, has been trained with different 
combinations of LiDAR derivatives from scratch. The 
trained models were first evaluated at two test sites 
(each with an area less than 1.5 km2) based on a field- 
verified stone wall map. Next, the potential factors 
that can affect model performance, such as the nature 
and the quality of LiDAR imagery, were investigated. 
Lastly, the trained models were applied to town-level 
stone wall mapping by combining GIS processing 
algorithms for post-processing to mitigate negative 
factors that may impact model performance. A further 
aim of this research is to use open-source statewide 
LiDAR data, making this study expandable to state
wide stone wall mapping by other researchers, 
thereby enabling the reconstruction of historic defor
estation and agricultural practices (Johnson and 
Ouimet 2021; Johnson et al. 2021).
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2. Study sites and data

2.1. Study sites

Study sites are located in Connecticut, a state in the 
Northeastern USA (Figure 2), where stone walls are 
widely and densely distributed. Although historic 
stone walls are best preserved in the forested areas, 
they can be found all over the region in a variety of 
different land cover types, including deciduous/con
ifer forest, farmland, and developed/suburban region. 
Training sites were selected to cover a range of land 
cover types in order to train the model to deal with 
identifying stone walls in a variety of landscape types 
and conditions. Training sites specifically include 
dense deciduous/conifer forest areas, which account 
for over 80% (e.g. Ashford town) (Figure 2(1)), moder
ate to dense deciduous forest cover ranging from 
62% to 70% (e.g. Woodstock town), farmland (e.g. 
portions of Woodstock town) (Figure 2(2)), and devel
oped/suburban areas (e.g. portions of Windham 
town) (Figure 2(3)). Each training site covers an area 
of 13.5 km2.

To assess the performance of the model, three test 
sites were selected, two of which were small in extent 
and located in Mansfield town, CT (referred to as test 
site 1 and test site 2), and the third was town-level and 
located in Cornwall town, CT (referred to as test site 3) 
(Figure 2). Test site 1 is the northern portion of the 
Fenton Tract in UConn Forest (UF, 0.92 km2). The site 
primarily consists of dense deciduous forest cover, 
with over 90% coverage. Test site 2 is located along 
Wormwood Hill Road (WH, 1.46 km2). This site also 
consists mainly of dense deciduous forest cover, 
with over 78% coverage, and includes several struc
tures such as road and buildings at the west part. Two 
of the test sites were chosen to evaluate the model’s 
accuracy based on field-verified stone wall. Due to 
physical and personal property issue, we were able 
to conduct field-mapping in a limited area, with 
a focus on forested sites. Unlike two sites, test site 3, 
located in the Northeastern part of Connecticut (120  
km2), was selected as the town-level evaluation site 
based on two factors: (1) a high density of stone walls 
and (2) a forest-dominant region, as the majority of 

Figure 2. Study sites of this study with five training sites (including validation sites) and three test sites in Connecticut, USA. Training 
sites consist of (1) dense forested landscape in Ashford and (2) moderate to dense forested landscape and farmland in Woodstock, and 
(3) developed urban and suburban areas in Windham. Note that validation data is derived from training sites (See details about 
validation data in section 3.1.2). Test sites are (1) UConn forest (UF), (2) Wormwood Hill (WH) in Mansfield town, and (3) Cornwall town.

4 J. W. SUH AND W. OUIMET



stone walls are typically found under forest cover. 
According to the 2015 land cover map (Connecticut 
Center for Land Use Education & Research (CT CLEAR)  
2016), the land cover of Cornwall town is composed 
of deciduous forest (56.6%), conifer forest (23.2%), 
agricultural field (9.7%), developed area (1.5%), and 
other (9%). Cornwall was deemed an appropriate site 
to assess the performance of our models in mapping 
stone walls at a town level. The result of test site 1 and 
site 2 will be addressed in section 4.1 to 4.3 and that 
of test site 3 will be address in section 4.4.

2.2. Data

Data were collected for three main purposes: (1) to 
prepare training/validation datasets, (2) to build 
a reference dataset, and (3) to conduct post- 
processing (Table 1). For the training dataset, we 
used LiDAR-derived DEMs provided by CT ECO 
(2016). According to its metadata (Capitol Region 
Council of Governments (CRCoG) 2016b), the original 
point cloud had an average point spacing of 2 points 
per square meter, and the minimum spatial resolution 
of the LiDAR specification (Quality Level 2; QL2) was 
recommended to be 1 meter (Heidemann 2018). 
Based on this, CT ECO produced the 1 m resolution 
DEMs from the ground-classified points acquired in 
the spring of 2016 and we downloaded 1 m DEMs 
from CT ECO. Then, hillshade maps and slope maps 
were created for the training dataset. However, 
canopy cover such as conifers or underbrush can 
affect the quality of DEMs and derivatives locally 
because these areas may have lower point densities 
of ground-classified points, or, in the case of dense 
underbrush, points classified as ground may not actu
ally represent the ground surface, leading to greater 

elevation error in the resultant DEM. We will discuss 
how these LiDAR quality issues affect DCNN model 
performance when mapping anthropogenic landform 
in section 4.3.4 in detail. For the reference stone wall 
dataset, we edited a previously digitized stone walls 
shapefile by Johnson and Ouimet (2014) which was 
based on 2011 LiDAR dataset rather than 2016 LiDAR 
dataset used in this study. Our update was performed 
using hillshade maps, high-resolution leaf-off aerial 
orthophoto, and Google Street View images to con
firm the existence of stone walls. Stone wall digitiza
tion was primarily undertaken using a LiDAR-derived 
hillshade map since the feature is more distinguish
able than in a slope map and leaf-off orthophotogra
phy. Another stone wall polyline dataset was built by 
field mapping (referred to as field verified stone walls) 
particularly in test site 1 and 2. For test site 3, 2015 
land cover map (30 m) and impervious shapefile was 
used to conduct post-processing of stone wall map 
predicted by model. Detailed information about post- 
processing will be addressed in section 3.4.

3. Methodology

We proposed a workflow for a small-scale anthropogenic 
feature mapping using LiDAR derivatives and DCNN 
models (i.e. U-Net and ResUnet) (Figure 3). Details for 
each step will be addressed in the following subsections.

3.1. Preparing the image and reference datasets

3.1.1. LiDAR derivatives preparation
Given that DCNN is a supervised model, the first step is to 
prepare a training/validation dataset for the model train
ing by combining the LiDAR derivatives with the raster
ized reference data of the stone wall image. For the 

Table 1. List of collected data.
Data Resolution Source Purpose

2016 LiDAR-derived DEMs 1m CT ECO* Training/validation dataset
Hillshade map 
Slope map

1m 
1m

LiDAR derivatives 
LiDAR derivatives

Training/validation dataset and reference dataset (manual digitization) 
Training/validation dataset

2016 Orthophoto (leaf-off) 3 bands, 0.1m CRCoG (2016a)** Reference dataset (Supplement for manual digitization)
Google Street View - Google Map Reference dataset (Supplement for manual digitization)
Digitized stone walls*** - Johnson and Ouimet (2014) Training/validation dataset and reference dataset
Field verified stone walls - Field work Reference dataset
2015 Land cover map 30m CT CLEAR (2016)**** Post-processing
2012 Impervious cover (shapefile) CT CLEAR (2017) Post-processing

*Connecticut Environmental Conditions Online (CT ECO). 
**Capitol Region Council of Governments (CRCoG). 
***Digitized shapefiles are available via https ://connecticut.maps.arcgis.com/home/item.html?id=0d956858d17a4366a630eded3c2ff703 (accessed on 

2 November 2022). 
****Center for Land Use Education & Research (CT CLEAR).
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LiDAR derivatives, we used three different scenarios (S1, 
S2, and S3) depending on the types of input rasters (i.e. 
LiDAR-derived hillshades or slope map), different sun
light angle of hillshade images (i.e. NW, NE, SW, SE, and 
multi-direction), and the number of input rasters (i.e. 1, 3, 
and 6) (Table 2). All hillshade images were created using 
the Hillshade tool in ArcGIS Pro with a z-factor of 3.5, and 
slope images (degrees) were created using Slope tool 
with a z-factor of 3, then converted to an 8-bit image 

with values ranging from 0 to 255. We assumed different 
sunlight azimuth angle plays an important role in 
improving model performance since it can visualize 
and highlight morphological property of stone wall fea
ture from a different perspective.

3.1.2. Reference preparation
As briefly stated in section 2.2, reference datasets 
were constructed by manual digitization and field 

Figure 3. Workflow for the stone wall detection. Abbreviation: TP (true positives), FP (false positives), FN (false negatives), TN (true 
negatives).
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mapping. Even though we used the digitized stone 
walls by Johnson and Ouimet (2014), extra editing 
was required to examine topographic features that 
were newly identifiable in the updated 2016 LiDAR 
hillshade map. Primarily, we manually digitized stone 
wall features over 1 m NE/NW hillshade maps using 
ArcGIS Pro software. Leaf-off aerial photographs and 
Google Street View were used as supplementary ima
gery in cases where stone wall features were ques
tionable due to areas of light or dark in the hillshade 
maps. In some cases, the street view map allowed us 
to identify stone walls clearly along roads that are not 
visible in hillshade maps. Next, field mapping was 
conducted to build an accurate reference dataset of 
stone walls within study sites to compare LiDAR- 
based model results against. Particularly, our field 
mapping was focused on two test sites (UF and WH) 
considering accessibility issue such as private prop
erty. Once the reference stone wall dataset was cre
ated as polyline, then 2 m buffering was conducted to 
capture the entire width of the stone wall feature 
topography and lastly, buffered polygons were 
rasterized.

3.1.3. Training/validation patches
With LiDAR derivatives and rasterized reference data, 
training/validation patches for two DCNN models 
were prepared by the following steps. (Figure 3). 
Firstly, training/validation data were created by stack
ing each scenario of LiDAR derivatives and reference 
raster, respectively. Secondly, to reduce computa
tional burden, we clipped this composited training/ 
validation data into the given size of patches (i.e. 256 
by 256 pixels), using a stride of 64 pixels in x and 
y direction to obtain a large number of training 
patches. Thirdly, we applied data augmentation to 
the clipped patches using a random rotation method 
including −90°, 90°, and 180° rotation to increase the 
total number of input patches. With randomly 

rotating input patches, it also allows for training 
model with various directional stone walls. As 
a result, the total number of input patches was 
12,774. Next, we normalized the pixel value of the 
input patches to 0–1 to increase training speed and 
improve feature learning during the model training. 
Lastly, the total number of input patches were split 
into training dataset and validation dataset (90% vs. 
10%); 11,496 and 1,278, respectively.

3.2. Training models

3.2.1. Model architectures
In previous research, the U-Net model has been 
shown to achieve highly accurate segmentation 
results even with small input datasets (Ronneberger, 
Fischer, and Brox 2015; Chen et al. 2022; Kugelman 
et al. 2022). Additionally, as we trained our model 
from scratch, we prepared our training dataset by 
manually digitizing stone walls. Manual digitization 
is a labor-intensive process, so we were only able to 
prepare a limited-size of training dataset. However, 
U-Net tends to show high performance with limited 
data. Therefore, we used two U-Net-based models, 
one is a modified U-Net from original U-Net architec
ture developed by Ronneberger, Fischer, and Brox 
(2015) and the other is a ResUnet, incorporating 
Residual Network (ResNet) (He et al. 2015) to U-Net 
architecture. Although U-Net was originally proposed 
for the semantic segmentation of panchromatic bio
medical images, it has been applied to satellite ima
gery as well as aerial imagery in recent years (Mboga 
et al. 2020; Stoian et al. 2019; Yan et al. 2021; Waldner 
and Diakogiannis 2020).

The structure of the U-Net model used in this study 
consists of encoding and decoding branches, like 
U-shape (Figure 4(a)). In the encoding branch, the 
model extracts a given number of feature maps 
(here we used 32, 64, 128, 256, and 512 in 

Table 2. Specific information of three input scenarios used in this study.
Scenarios Types of input Rasters # of Rasters

Scenario 1 (S1) NE hillshade (sunlight azimuth: 315°) 1
Scenario 2 (S2) NE hillshade (315°) 

NW hillshade (45°) 
Slope

3

Scenario 3 (S3) NE hillshade (315°) 
NW hillshade (45°) 
SE hillshade (135°) 
SW hillshade (225°) 
Multi-directional hillshade 
Slope

6
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convolutional black 1, 2, 3, 4, and 5, respectively) from 
input patches by passing through convolutional 
blocks. Each convolutional block includes two sets of 
3 × 3 filter convolution layers, a Rectified Linear Unit 
(ReLU) activation layer, a batch normalization layer 

and dropout layer, then it is connected to 2 × 2 size 
of max pooling layer. In particular, we used batch 
normalization (Ioffe and Szegedy 2015) and dropout 
strategies to avoid an overfitting issue. While passing 
through convolutional blocks, the size of the input 

Figure 4. Model architectures used in this study (A: U-Net, B: ResUNet).
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feature map (i.e. length and width) is halved but the 
depth (i.e. the number of feature maps) is doubled. In 
the U-Net model, the lowest resolution of feature map 
is 16 × 16 × 512 (width x height x depth) in convolu
tional block 5. In the decoding branch, a series of up- 
convolutional blocks helps to restore spatial informa
tion that was lost during max pooling layer in the 
convolutional block. Particularly, it includes 
a transposed convolutional layer, concatenated 
layer, two sets of convolutional layers with ReLU acti
vation layer and dropout layer. After going through 
four up-convolutional blocks, it passed 1 × 1 convolu
tion layer to reduce the number of channels or the 
depth of the feature map produced by the previous 
layer. In the last step, semantic segmentation is con
ducted by a sigmoid function to create a binary map 
(i.e. “stone wall” or “non stone wall”).

The second model, ResUnet, has similar architec
ture to the U-Net model except for adding a residual 
unit in each block (Figure 4(b)). ResUnet, proposed by 
(Zhang, Liu, and Wang 2018), was used as a baseline 
model. We modified the number of feature maps at 
each residual block, added one more residual block, 
as well as an up-residual block to be comparable to 
our U-Net model architecture. The concept of residual 
unit was first proposed by He et al. (2015) to address 
a vanishing gradient issue that occurs when the 
neural network is going deeper. The application of 
residual unit to the U-Net model shows improvement 
with respect to model performance in previous stu
dies (Zhang, Liu, and Wang 2018; Liu et al. 2020).

Table 3 shows a summary of specific model para
meters used in both U-Net and ResUNet models. We 
used input size (width and height) of 256 by 256 
pixels and the number of input channels varied 
depending on the composition of bands scenarios. 
The number of feature maps for convolutional blocks 

or residual blocks was set as 32, 64, 128, 256, and 512 
as networks go deeper. For the activation function, 
ReLU (which has been widely used) was adopted, and 
the Sigmoid function was used before the output 
layer since target classes are binary. As a result, the 
total number of trainable parameters for U-Net and 
ResUNet was about 7 million and 18 million, 
respectively.

3.2.2. Model parameters/hyperparameters
Our model was trained on the single GPU, 8 G RTX 
2070 (compute capability = 7.5) with Keras API of 
TensorFlow 2.1 version. During the training process, 
models were tuned by adjusting hyperparameters to 
avoid overfitting and to improve model performance. 
Table 4 shows the final hyperparameters. Due to an 
out of memory issue (OOM) in training the ResUNet 
model, the batch size for two models was set to 8, 
which takes more time on training compared to large 
batch size. Despite this fact, the large batch size does 
not always have a positive influence on model perfor
mance. Another important hyperparameter is 
a learning rate that can influence training efficiency. 
We used an Adam optimizer (Kingma and Ba 2015) 
(initial learning rate = 0.001) and it was multiplied by 
0.1 whenever the validation loss value stopped dimin
ishing during the previous three epochs. In addition, 
the binary cross-entropy loss function was used to 
monitor model performance which is suitable for bin
ary classification with less calculation burden. Lastly, 
models were trained for 30 epochs. However, it 
recalled early stopping callback when validation loss 
would not improve during the previous four epochs.

3.3. Model prediction and vectorization of raster 
results

Through the training process of both U-Net and 
ResUent models for three scenarios, we had six 
trained models and applied them to two test sites. 
Before evaluating the models’ accuracy from the 
model prediction result, vectorization of the 

Table 3. Summary of model architecture for both U-Net and 
ResUNet.

Parameter Value

Input size (width and height) 
(pixels)

256 by 256

Number of input channels S1: 1/S2: 3/S3: 6
Number of training/validation 

patches
Training: 11496 (90%) 

Validation: 1,278 (10%)
Number of feature maps [32, 64, 128, 256, 512]
Convolution filter size (pixels) 3 by 3
Activation function ReLU/Sigmoid (only used right before 

output layer)
Total number of trainable 

parameters
U-Net: 7,764,962 

ResUNet: 18840,610

Table 4. Hyperparameters for model training.
Hyperparameter Value

Batch size (count) 8
Optimizer Adam
Learning rate Initially starting from 0.001
Loss function Binary Cross Entropy
Epochs Up to 30 (used early stopping callback)
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prediction result was required to minimize error that 
regards true positive as false positive or false negative 
(Figure 5(A)). This error can be caused by the fact that 
two rasters (rasterized stone wall reference map and 
model prediction result) are not perfectly aligned 
even through the model identifies stone wall cor
rectly. Given that this error can influence on accuracy 
result, we performed three-step processing to con
duct a vector-based calculation.

(1) Extracting a centerline (black line) from the 
vectorized model prediction result (yellow 
pixel) (Figure 5(B)).

(2) Comparing this centerline to the reference 
stone wall polyline and removing the reference 
stone wall line if the centerline and the refer
ence line are overlapped each other within 2 m 
buffering threshold (Figure 5(C)).

(3) 2 m buffering of updated reference line and 
conducting accuracy assessment (Figure 5(D)).

3.4. Accuracy assessment

3.4.1. Test site 1 and 2
Accuracy assessment was conducted to evaluate 
model performance based on the areas (in m2) of TP, 
FN, FP, and TN using the following evaluation metrics; 
recall, precision, F1, and Matthews Correlation 
Coefficient (MCC) score (Equation (1)–(4)). For the 
test site 1 and 2, field-verified stone wall was used as 
a reference map when calculating accuracy 
assessment. 

Recall ¼
TP

TP þ FN
(1) 

Precision ¼
TP

TP þ FP
(2) 

F1score ¼ 2 �
Recall � Precisionð Þ

Recall þ Precisionð Þ
(3) 

Figure 5. Vectorization process of model prediction result to minimize a potential error in accuracy assessment. A: example of errors 
occurred in raster-based accuracy assessment result. B: predicted stone walls (SW) by model (yellow pixel) and its centerline (black 
line); C: reference stone wall after line adjustment (pink line) based on extracted centerline from model (black line); D: Accuracy 
assessment result after vectorization process. Note that TN is true negative, TP is true positive, FN is false negative, and FP is false 
positive.
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MCC ¼
TP � TNð Þ � FP � FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ

p

(4) 

where TP means the feature regarded as a stone 
wall by the model is also a true stone wall in the 
reference data, FN is the case that model missed 
a stone wall that is actually a true stone wall in the 
reference data, and lastly, FP is the case that model 
detects feature as a stone wall that is not a stone 
wall in the reference data.

Recall measures how good the model finds all 
positives, all existing stone walls in this case (i.e. the 
sum of TP and FN) and it is calculated by Equation (1). 
Particularly, a FN is related to omission error so that 
recall can be defined as 1-omission error. Precision 
evaluates how accurate the model’s prediction result 
(i.e. the sum of TP and FP) is. It is calculated by 
Equation (2), and it can be described as 1-commission 
error since FP is related to commission error. Based on 
the recall and precision, the F1 score is widely used to 
assess overall model performance. MCC is a binary 
classification accuracy metric that considers both the 
true positive rate (TPR) and the false positive rate 
(FPR). Unlike F1 score, MCC provides a balanced mea
sure of the trade-off between TPR and FPR, which 
makes it a suitable for imbalanced datasets. MCC 
ranges from −1 to 1, where a value of 1 represents 
a perfect prediction, 0 represents a random predic
tion, and −1 represents a completely incorrect predic
tion (Chicco and Jurman 2020). For test site 1 and 2, 
these four metrics were calculated by the area of 
buffered polygons from model prediction lines and 
updated reference lines after line adjustment 
explained in Figure 5.

3.4.2. Test site 3
For town-level mapping (test site 3), a larger test area 
includes a diverse array of terrain and land cover 
conditions, which could potentially weaken model 
performance as reported in previous studies (Trier, 
Reksten, and Løseth 2021; Suh et al. 2021; Verschoof 
van der Vaart et al. 2022). To address this issue, post- 
processing was conducted for test site 3 before accu
racy assessment.

The workflow of post-processing and accuracy 
assessment of town-level model results is demon
strated in Figure 6. During the post-processing step, 
an impervious cover shapefile from 2012, provided by 

CT CLEAR (2017), was used to mask out stone walls 
near roads and building that can be confused with 
stone walls LiDAR derivatives due to similar morphol
ogy (this process is referred to as IC PP: impervious 
cover post-processing). The impervious cover shape
file includes three types of impervious covers: road, 
building, and other. All three types were buffered 
based on thresholds of 10 m and 15 m (Figure 6(b)) 
as most stone wall-like features (but not actual stone 
walls) near impervious cover were found within these 
buffer ranges. Next, the manually digitized stone wall 
and model-predicted stone wall shapefiles were 
removed from the buffered impervious cover using 
the Erase tool in ArcGIS Pro to exclude stone walls or 
stone wall-like road curbs or road edge segments 
(Figure 6(c,d)). As a reference map for accuracy assess
ment, the manually digitized stone wall based on 
hillshades was used.

In addition to IC PP, land cover was considered to 
exclude errors related to the low quality of LiDAR. 
The issue with LiDAR quality was also discussed in 
previous studies (Crow et al. 2007; Doneus et al.  
2008; Suh et al. 2021; Verschoof van der Vaart 
et al. 2022) which found that a lack of ground- 
classified points due to conifer trees can lead to 
irregular interpolation of terrain surfaces, resulting 
in commission or omission errors. A recent land 
cover map from 2015 (spatial resolution: 30 m) pro
vided by CT CLEAR (2016) was used to extract agri
cultural fields, turf, and deciduous forests as 
polygons where the quality of LiDAR is high (this 
process is referred to as IC LC PP: impervious cover 
and land cover post-processing) (Figure 6(f)). Then 
stone walls in these polygons were then extracted 
using the Clip tool in ArcGIS (Figure 6(g,h)).

These two post-processing methods, IC PP and IC 
LC PP, also contribute to controlling errors derived 
from digitizing users because reference data for accu
racy assessment is based on a manually digitized 
shapefile rather than field mapping. As discussed in 
Leonard, Ouimet, and Dow (2021), users have differ
ent interpretations and errors associated with digitiz
ing stone walls using LiDAR derivatives. Disagreement 
in digitizing stone walls between users is more likely 
to occur near stone-like features along roads and in 
areas of irregular morphology derived from the low 
point density of the LiDAR data.

As described in Figure 6, buffer thresholds of 3 m 
and 5 m were used to calculate precision and recall 
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scores, taking into account that the width of stone 
walls are described on hillshades in Cornwall can 
reach up to 10 m. The reason for using buffer thresh
olds is that manually digitized stone wall (vector line) 
may slightly differ from model-predicted stone wall 
(vector line). While the model tends to detect the 
centerline of stone walls in the hillshades, manual 

digitizing results do not always focus on the center 
of stone walls in the hillshades. Cases where the stone 
wall polyline predicted by the model is aligned within 
a 3 m or 5 m buffered digitized stone wall polyline 
were considered TP; otherwise, they were considered 
FP in terms of precision (Figure 6(c,g)). In case of 
recall, cases where the digitized stone wall polyline 

Figure 6. Workflow of post-processing (PP) for accuracy assessment in town-level model prediction result. (a: NW hillshade map; b: 
Manually digitized stone wall (SW) and SW predicted by U-Net S3 model overlaying three types of impervious cover (IC) in 2012 and 
buffered all impervious cover (Data source: CT CLEAR (2017)); c: Precision example after impervious cover post-processing (IC PP); d: 
Recall example after impervious cover post-processing (IC PP); e: leaf-off aerial photography in 2016 (CRCoG 2016a); f: Manually 
digitized stone wall (SW) and SW predicted by U-Net S3 model overlaying land cover (LC) of 2015; G: Precision example after 
impervious and land cover post-processing (IC LC PP); h: Recall example after impervious and land cover post-processing (IC LC PP)).
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is aligned within 3 m or 5 m buffered stone wall poly
line predicted by model were considered TP; other
wise, they were considered FN (Figure 6(d,h)). As TN is 
not extracted in this method, it has not been possible 
to calculate the MCC score for test site 3.

4. Results and discussion

We trained both U-Net and ResUnet models for each 
scenario (S1, S2, and S3) and it took 200 seconds per 
epoch to train U-Net, and 620 seconds per epoch for 
ResUnet. As we can see through the difference 
between the number of trainable model parameters 
for each model, training speed of U-Net is three times 
faster than that of ResUnet. Figure 7 illustrates binary 
cross entropy losses (training/validation) for the 
U-Net/ResUnet models by each scenario. Minor differ
ence between training and validation loss demon
strates that our models trained well without 
overfitting or underfitting issues. In addition, the 
training process was stable based on a smooth 
decreasing trend. As stated in Section 3.2.2, the learn
ing rate was reduced when the model was not 
improved during the previous three epochs, which 

are marked as black solid line in Figure 7. Except for 
S2, the decay of learning rate helped models to 
reduce loss value, although the gap between training 
loss and validation loss increases. In S2, the model 
reached minimum loss value before the learning rate 
was adjusted. For model prediction, we used the best 
model with the lowest validation loss value, and its 
accuracy assessment result will be addressed in the 
following sections.

4.1. Accuracy assessment results for two test sites

We calculated the area of TP, FN (omission error), FP 
(commission error), and TN in two test sites. Table 5 
shows the model performance results based on recall, 
precision, F1, and MCC scores at different models and 
scenarios. Taking into consideration the balance 
between TP, FN, FP, and TN, our model achieved the 
best MCC score of 0.87 and 0.8 in two test sites, 
respectively. The MCC and F1 score indicated that S3 
performed the best in both models at two test sites, 
which means there is a positive relationship between 
model performance and the number of input rasters 
(i.e. different directional hillshade maps and slope 

Figure 7. Binary cross entropy loss curve per epoch for U-Net/ResUnet models and three scenarios (S1, S2, and S3). (A: U-Net S1, B: 
U-Net S2, C: U-Net S3, D: ResUnet S1, E: ResUnet S2, F ResUnet S3).

Table 5. Result of model performance with different models and scenarios.
U-Net ResUnet

Site # Scenario Recall Precision F1 MCC Recall Precision F1 MCC

Test 1 
(UF)

S1 70.5% 94.1% 80.6% 0.80 67.0% 97.3% 79.4% 0.80
S2 84.0% 92.3% 88.0% 0.87 78.3% 92.0% 84.6% 0.83
S3 83.5% 93.7% 88.3% 0.87 82.4% 94.0% 87.8% 0.87

Test 2 
(WH)

S1 60.0% 93.8% 73.2% 0.74 60.0% 94.2% 73.3% 0.74
S2 64.4% 95.3% 76.9% 0.78 61.1% 96.7% 74.9% 0.76
S3 64.7% 95.0% 76.9% 0.77 69.6% 94.9% 80.3% 0.80
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map). By comparing the MCC and F1 score between 
U-Net and ResUnet, we found that the U-Net model 
outperformed ResUnet at test site 1, while ResUnet 
outperformed U-Net at test site 2.

In terms of recall and precision scores, both models 
showed high precision scores but relatively low recall 
scores. The difference between recall and precision 
scores reduced when more LiDAR-derived rasters 
were used. In particular, multi-layered hillshade and 
slope map (i.e. S2 and S3) tended to play a critical role 
in reducing FN, while they do not contribute to redu
cing FP. This result suggests that a diverse array of 
LiDAR derivatives allows for identifying stone walls 
with different physical properties (size, height, num
ber of stacked stones, etc.) from normal stone walls.

4.2. Visualization of model prediction results for 
two test sites

4.2.1. Test site 1 (UF)
Figure 8 shows the spatial distribution of TP, FN, and 
FP cases in test site 1 by models and scenarios. The TP 
cases in both model scenarios are mainly distributed 
in areas with moderate to dense forest cover. The FN 
cases are mainly distributed along brooks or shaded 
surfaces in the hillshade maps. The FP cases are 
located on trails, paths, or wall-like features (such as 
a field edge with a pile of leaves) in the hillshade 
image due to morphological similarities. Figure 8 
also visually demonstrates the improvement in 
model performance for each scenario. Many of the 
FN cases in S1 are distributed near NW-SE directional 
walls, but they tend to be classified as TP cases in S2 
and S3. This is partly due to the fact that sunlight from 
the NW direction does not create shade or light for 
NW-SE directional stone walls in the NW hillshade 
image. This will be discussed in detail in Section 4.3.

4.2.2. Test site 2 (WH)
Figure 9 demonstrates the spatial distribution of TP, 
FN, and FP by models and scenarios at test site 2. 
Similar to test site 1, the TP cases are primarily 
observed in moderate to dense deciduous vegetation. 
The FN cases are found in forested areas for the similar 
reasons as test case 1, but they are more prevalent in 
the western part of the test site near roads and build
ing foundations. This is likely due to the difficulties in 
distinguishing the morphological characteristics of 
stone walls, such as height, width, and length, from 

other man-made structures in the hillshade or slope 
image. As our models were conservative in mapping 
stone walls (low recall), there are only a few instances 
of FP in test site 2, and these are distributed along 
roads or trail paths.

Based on the results of both test sites, we conclude 
that the models perform best at identifying stone 
walls in areas dominated by deciduous forest that 
are away from roads and buildings. This is likely 
because the morphology of stone walls (>0.5 m 
high, 1–2 m wide and continuous for >4–8 m in 
length (Thorson 2023) make them visible in hillshades 
or slope maps within deciduous forests or in open 
areas where LiDAR quality is high due to many points 
representing the ground surface being included in 
the point cloud (Doneus et al. 2008).

Conifer forests and areas with a low density of 
ground points in general, meanwhile, would likely lead 
to FN (omission error) because the derivative the LiDAR 
derived DEMs would be impacted by having too few 
points to interpolate between, making it difficult to 
identify small-scale anthropogenic features (Verschoof 
van der Vaart et al. 2022; Suh et al. 2021). In addition, we 
also found that the multi-layered input image (S3) con
tributes to reducing FN since the model learns various 
examples of stone wall features from visualizations of 
different directional hillshade rasters. However, having 
a large number of input channels does not necessarily 
enhance the model performance since each model (e.g. 
U-Net S1, U-Net S2, and U-Net S3) extracts distinct 
feature maps during the training process and predicts 
stone walls in the test sites based on these feature 
maps. Although input rasters of S3 include all rasters 
of S2, there were instances where stone wall segments 
were correctly identified by U-Net S2, while these seg
ments were missed (omission error) by U-Net S3 
(Figure 9). This highlights the drawbacks of DCNNs as 
black-box models, where the complexities involved in 
training the models are challenging to interpret.

4.3. Factors that can cause FP (commission error) 
and FN (omission error)

As shown in the results, multi-stacked LiDAR pro
ducts contribute to identifying a small-scale mor
phological feature, such as a stone wall. However, 
the quality and nature of LiDAR products are essen
tial factors that influence the model prediction 
results, given that LiDAR hillshades and slope 
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maps are the only input sources for model training 
and testing. In particular, we will address four fac
tors: (1) morphological similarity, (2) sunlight angle 
of hillshade images, (3) shade or brightness of hill
shade images, and (4) land cover and canopy. We 
will investigate the influence of these factors on 
commission and omission errors of the models in 
the following subsections.

4.3.1. Morphological similarity
Morphological similarity to stone walls in the LiDAR 
image can increase the likelihood of FP (commission 

error) since the model can detect non-stone walls as 
stone wall features. Figure 10 illustrates three exam
ples of commission errors shown in the two test 
sites. Firstly, a stone wall-like feature can appear 
on the LiDAR hillshade images that is not an actual 
stone wall in the field verification (Figure 10(a,b)). 
This case is an inevitable error that cannot be con
trolled and only a field study can correct this mis
classification. Secondly, linear concave features such 
as trail paths are another geometric shape that can 
confuse models (Figure 10(c,d)) because they have 
stone wall-like edges due to subtle slope differences 

Figure 8. The distribution of TP, FN, FP, and TN results from different models and scenarios at test site 1 (UF). a: high-resolution 
orthophotography (CT ECO 2019); A: U-Net S1; B: U-Net S2; C: U-Net S3; D: ResUnet S1; E: ResUnet S2; F: ResUnet S3. NW hillshade map 
is a background. Note that TN symbol is transparent to visualize background hillshades.
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from the surrounding terrain. Similarly, the edges of 
roads and curbs also increase the chance of com
mission error (Figure 10(e,f)). This comprises one of 
the most challenging cases to accurately identify 
stone walls located along roadsides because these 
features also have height variations similar to stone 
walls. To mitigate the occurrence of FP resulting 

from morphological similarity, one potential strategy 
is to leverage impervious cover data. Specifically, 
a buffer can be applied to exclude model-detected 
stone walls within certain ranges and thereby elim
inate potential FP. Additional details regarding the 
results of this post-processing approach will be 
addressed in section 4.4.

Figure 9. The distribution of TP, TN, FN, and FP results from different models and scenarios at test site 2 (WH). a: high-resolution 
orthophotography (CT ECO, 2019); A: U-Net S1; B: U-Net S2; C: U-Net S3; D: ResUnet S1; E: ResUnet S2; F: ResUnet S3. Note that TN 
symbol is transparent.
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4.3.2. Sunlight angle of hillshade image
Regarding FN (omission error), the sunlight angle 
or azimuth angle can cause the absence of stone 
walls on the hillshade image. Specifically, if the 
direction of sunlight and stone walls is significantly 
well aligned, the stone wall may lose its morpho
logical properties in the hillshade map and appear 
like a flat surface without shadows along the stone 
wall (Figure 11(a)). As described in Figure 11(a), 
NW-SE directional stone walls tend to be displayed 
as flat terrain in the NW hillshade image while they 
are clearly visible on the NE hillshade image, as 
indicated in Figure 11(b). Therefore, this factor can 
particularly affect the performance of model S1 
since its input includes only the NW hillshade 
image, which shows several FNs distributed along 
NW-SE directional stone walls. Due to this, stacking  

different directional hillshade images can help 
avoid missing morphological characteristics in the 
hillshade image, leading to accuracy improvement. 
The impact of this factor is supported by the result 
of test site 1 where it has many NW-SE directional 
stone walls. For example, the omission error (100% 
- recall score) of U-Net decreased from 29.5% (S1) 
to 16.5% (S3) and that of ResUnet decreased from 
33% (S1) to 17.6% (S3) (Table 5).

LiDAR visualization is a crucial aspect of mapping 
anthropogenic features using a DCNN approach. 
Previous studies have shown that combining differ
ent visualization products or blending them into 
single raster, such as Multiscale Topographic 
Position and VAT can enhance model performance 
(Guyot, Lennon, and Hubert-Moy 2021; Kokalj and 
Somrak 2019; Suh et al. 2021). Therefore, further 

Figure 10. Examples of commission errors caused by morphological similarity on LiDAR hillshade surface. (A: example of wall-like 
features (a field edge with a pile of leaves) appearing on the hillshade map in the test site 1; B: U-Net S3 accuracy assessment result is 
overlayed on Figure 9(a); C: example of edge of trail in the test site 1; D: U-Net S3 accuracy assessment result is overlayed on 
Figure 10(c); E: example of road or curb edge in the test site 2; F: ResUnet S3 accuracy assessment result is overlayed on Figure 10(e)). 
G: high-resolution orthophotography (CT ECO, 2019). Note that we used the best accuracy assessment result for each test site in this 
figure and background image is NW hillshade map. Note that TN symbol is transparent.
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research is necessary to explore how blending or 
combining different LiDAR visualizations can 
improve the identification of stone walls.

4.3.3. Darkness or brightness of hillshade image
In addition to sunlight angle of hillshade image, 
another factor that can cause FN is a darkness or 
brightness of the hillshade image. For example, 
stone walls on shaded slopes appear as nearly black, 
while those on sunlight-facing slopes appear as nearly 
white in the hillshade map. Figure 12 illustrates FNs 
are distributed in extremely dark or bright areas, pre
venting the stone walls from appearing distinctly on 
the surface. Additionally, the distribution of FNs along 
stream in test site 1 (Figure 8) is related to the shade.

4.3.4. Land cover and forest canopy
Regarding the quality of LiDAR data, land cover 
and forest canopy are important factors. Dense 
forest canopy, like that found in coniferous forests, 

can restrict laser penetration and result in a sparse 
point spacing and lack of ground-classified points 
available for raster interpolation. Consequently, the 
quality of DEM can be poor. For test site 1 and 2, 
where over 80% of each site is covered by decid
uous forest, the quality of LiDAR data is expected 
to be good since the data were collected during 
the leaf-off season. However, we found that the 
distribution of FNs near the road at test site 2 is 
partially associated with stone walls under conifer
ous trees. Coniferous trees and dense understory 
vegetation above stone walls prevents the laser 
from reaching the ground surface to collect topo
graphic information, causing noise in the LiDAR 
point cloud product. To investigate the relation
ship between canopy cover and poor LiDAR qual
ity, additional fieldwork was conducted at Yale 
Forest in Eastford town, Connecticut, which has 
a conifer-dominant forest. Figure 13 demonstrates 
the results of poor model performance, which are 

Figure 12. Example of omission error in test site 2 caused by darkness or brightness on the hillshade map. (A: stone walls disappear 
due to shade or low signal in NW hillshade map; B: stone walls appear unclear due to shade or low signal in NE hillshade map; C: 
ResUnet S3 accuracy assessment result is overlayed on Figure 11(b)). Note that TN symbol is transparent.

Figure 11. Example of omission error for S1 in test site 1 caused by alignment for direction of sunlight and stone walls. (A: stone walls 
in NW-SE direction are invisible in the NW hillshade map; B: stone walls in NW-SE direction are visible in the NE hillshade map; C: U-Net 
S1 accuracy assessment result is overlayed on Figure 10(a)). Note that TN symbol is transparent.
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linked to the vague geometric shape of stone walls 
in the LiDAR hillshade due to dense canopy cover. 
One possible approach to address the impact of 
poor LiDAR quality is to utilize land cover data and 
exclude model results in areas that are potentially 
of poor quality, such as coniferous forests, wet
lands, and urban areas. Section 4.4 will provide 
further information on the results of this post- 
processing strategy.

4.4. Scaling up stone wall mapping

According to the results from the two test sites, 
the morphological similarity to stone walls and 
land cover type are main elements, inevitably lead
ing to FP and FN errors. Figure 14 illustrates the 
stone wall map results of manual digitization, 
U-Net, and ResUnet model predictions, with (IC 
PP and IC LC PP) and without post-processing (no 
PP), several noisy segments distributed in conifer
ous forests might be related to the low quality of 
LiDAR derivatives. These segments are masked out 
after IC LC PP. Figure 15 demonstrates the accu
racy assessment results for the town-level stone 
wall maps, showing the precision, recall, and F1 
scores of U-Net S3 and ResUnet S3 for different 
thresholds, including the buffering of model pre
diction result (3 m vs. 5 m) and the buffering of 

impervious cover (0 m vs. 10 m vs. 15 m). Overall, 
the 5 m buffering shows higher accuracy than the 
3 m buffering for both model results because the 
larger buffering size can include more true posi
tives with a large offset between digitized lines 
and model-predicted lines. Besides, excluding 
stone walls near impervious cover (i.e. IC PP) 
leads to increased accuracy, despite there being 
no significant difference between the 10 m and 
15 m buffering thresholds. Post-processing is 
essential in enhancing precision by decreasing the 
number of FPs. This implies that FPs tend to occur 
in regions with impervious cover and low-quality 
LiDAR, which can be included in broad-scale map
ping, although these examples were not well- 
represented in test site 1 and test site 2. IC LC PP 
leads to a 1.3 ~ 1.7% increase in the F1 score, indi
cating that post-processing significantly enhances 
accuracy.

Overall, the F1 score for U-Net S3 ranges from 
68.1% to 82.2%, and for ResUnet S3 it ranges from 
69.2% to 82.4%, depending on the thresholds and 
post-processing applied. Among these, IC LC PP 
achieved the best F1 score, which shows that our 
models are capable of accurately mapping high 
density of stone wall regions in forested areas at 
a broader spatial scale with over 80% F1 accuracy 
result. When comparing the accuracy of the U-Net 
and ResUnet models, there is a slight difference 

Figure 13. Example of poor-quality LiDAR hillshade image due to stone walls under canopy cover in Eastford town, CT. (A&D: NE 
hillshade map; B&E: U-Net S3 accuracy assessment result; C&F: photos taken from field work). Note that TN symbol is transparent.
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Figure 14. Stone wall mapping result in Cornwall town, CT (A: elevation map; B: 30m resolution land use/land cover map of 2015 (data 
source: (Center for Land Use Education & Research CT CLEAR. 2016)); C: Manually digitized SW result without post-processing (no PP); 
D: Manually digitized SW result after impervious cover post-processing (IC PP); E: Manually digitized SW result after impervious cover 
land cover post-processing (IC LC PP); F: U-Net S3 prediction result without post-processing (no PP); G: U-Net S3 prediction result after 
impervious cover post-processing (IC PP); H: U-Net S3 prediction result after impervious cover land cover post-processing (IC LC PP); I: 
ResUnet S3 prediction result without post-processing (no PP); J: ResUnet S3 prediction result after IC PP; K: ResUnet S3 prediction 
result after IC LC PP).
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(0.2%) in the best F1 score (IC LC PP). Regarding 
the accuracy trend, the U-Net model tends to show 
high precision and relatively low recall score, while 
ResUnet tends to show high recall and relatively 
low precision. This implies that U-Net model tends 
to be conservative in mapping stone walls, while 
ResUnet has a better balance between precision 
and recall.

5. Conclusions

This study presents an innovative framework that uses 
U-Net-based models to automatically detect linear 
anthropogenic landscape features, particularly stone 
walls, from high-resolution airborne LiDAR derivatives. 
Our study draws three main conclusions. First, the 
DCNN models play a key role in recording anthropo
genic landforms and mapping the extent of historic 
land use legacy. Our models identified stone walls in 
forested areas with a best F1 score of 88.3% (U-Net S3) 
at test site 1 and F1 score of 80.3% (ResUnet S3) at test 
site 2. Regarding town-level mapping, both models 
performed similarly to the two local scale forested 
areas (test 1 and test 2) with a F1 score over 82% after 
post-processing. Second, we found four factors that 
need to be considered when implementing LiDAR ima
gery to detect small-scale geomorphic features in 
DCNN models: (1) morphological similarity to the tar
get feature, (2) sunlight angle of the hillshade image, 
(3) darkness or brightness of the hillshade image, and 
(4) land cover and forest canopy. In particular, land 
cover can directly affect light or laser penetration of 

LiDAR sensor, which results in the quality of LiDAR 
image and model performance. Therefore, our trained 
models are suitable for detecting stone walls in refor
ested area with deciduous dominant forests that had 
used for agriculture or pasture in 17th to early 20th 
centuries. Third, our proposed method will increase 
stone wall detection and rapidly expand the scale of 
investigation of anthropogenic features in the 
Northeastern USA, which has important implications 
in studying anthropogenic impacts on geomorphol
ogy, forest structure, and ecology.

Notes

1. CT stone wall mapper: https://connecticut.maps.arcgis. 
c o m / a p p s / w e b a p p v i e w e r / i n d e x . h t m l ? i d =  
0208461aa98a4df3969624e7110e1f2c.

2. NH stone wall mapper: https://nhdes.maps.arcgis.com/ 
a p p s / w e b a p p v i e w e r / i n d e x . h t m l ? i d =  
f4d57ec1a6b8414190ca0662456dffb0.
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