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ABSTRACT

Stone walls are widespread and iconic landforms found throughout forested terrain in the Northeastern
USA that were built during the 17th to early 20th centuries to delineate property boundaries and the
edges of agricultural fields and pastures. As linear, or broadly curved, features that are typically >0.5 m
high, 1-2 m wide, and >4-8 m long, stone walls are highly visible in LIDAR data, and mapping them is of
broad interest to the cultural heritage sector as well as to researchers specifically focused on historic
landscape reconstruction. However, existing mapping attempts have commonly relied on field surveys
and manual digitization, which is time-consuming, especially when trying to complete mapping at
broader scales. In response to this limitation, this study: (1) presents a novel framework to automate
stone wall mapping using Deep Convolutional Neural Networks (DCNN) models (U-Net and ResUnet)
and high-resolution airborne LiDAR, (2) evaluates model performance in two test sites against field
verified stone walls, (3) investigates the factors that can influence model performance in terms of the
quality of LiDAR data (e.g. ground point spacing), and (4) suggests post-processing for town-level
mapping of stone walls (~120 km?). Both models performed well with respect to the Matthews
Correlation Coefficient (MCC) score. U-Net scenario 3 achieved an MCC score of 0.87 at test site 1,
while ResUnet scenario 3 (S3) had an MCC score of 0.80 at test site 2. In town-level test site 3, ResUnet S3
achieved the best F; score of 82% after post-processing. This study demonstrates the potential of
automated mapping of anthropogenic features using our models.
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1. Introduction . . .
centuries. The vast majority of these land use practices

and walls were abandoned during mid-19th to early
20th centuries and reforestation followed (Foster et al.
2008; Johnson et al. 2021). Overall, stone walls are by far

Stone walls are ubiquitous anthropogenic landforms
found throughout forested terrain in the Northeastern
USA that represent the legacy of historic, 17th- to early-

20th-century land use practices in the region. The most
common type of stone wall, fieldstone walls, are linear,
or broadly curved, features that are composed of stones,
typically >0.5 m high, 1-2m wide and continuous for
>4-8 m in length (Thorson 2023). The hundreds of thou-
sands of fieldstone walls built across the Northeastern
USA are a unique landscape feature that is the result of
the region’s glacial and land use history (Thorson 2002;
Wessels 1997). Following European settlement, wide-
spread forest clearing commonly exposed stones and
sediment that had been deposited during deglaciation
in the region between 17,000 and 21,000 years ago
(Ridge 2004). Fieldstone walls were built through time
as stones were moved to property boundaries and the
edges of agricultural fields and pastures during the initial
process of land clearing as well as the continued use of
the land in the subsequent years, decade and even

the most widespread and resilient anthropogenic land-
form representing previously deforested land through-
out the previously glaciated Northeastern USA. Stone
wall maps, as a proxy of historic agricultural activity,
have been used to investigate historical land use
dynamics and forest cover extent prior to mid-20th
century (Johnson and Ouimet 2021, 2016, 2014).
Mapping stone walls and quantifying the legacy of
historical land use in the Northeastern USA is not
possible through medium-resolution satellite imagery
(e.g. Landsat 8 OLI and Sentinel 2) (Figure 1(a,b)) or
high-resolution aerial imagery (Figure 1(c)) because
stone walls are relatively small (i.e. less than 1-2
meters in width) and commonly rest under canopy
cover. Airborne Light Detection and Ranging (LiDAR)
solves these limitations (Figure 1(d,e)) (Risbgl and
Gustavsen 2018; Doneus et al. 2008; Gallwey et al.
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Figure 1. Visibility of stone walls with different imagery sources. a: Landsat 8 OLI (30 m), 3 January 2016; b: Sentinel-2 (10 m),
18 February 2016; c: Aerial photography (0.1m), March 2016; d: LiDAR derived hillshade (1m, Azimuth 315°), e: LiDAR derived slope
(1m); f: Stone walls in field (yellow refers to overall physical properties of stone walls (Johnson and Ouimet 2016)).

2019) because LiDAR can penetrate tree branches,
shrubs, and underbrush and typically has 4-20 returns
per m?, allowing for the creation of Digital Elevation
Models (DEMs) with a spatial resolution of <1m.
A diverse range of LiDAR DEM raster derivatives
such as hillshade, slope, openness, Visualization for
Archaeological Topography (VAT) and principal com-
ponent analysis (PCA) can then be utilized for visualiz-
ing small anthropogenic features such as stone walls,
charcoal hearths, grave mounds, and pits (Bennett
et al. 2012; Hesse 2010; Doneus 2013; Evans et al.
2013; Stular et al. 2012; Howey et al. 2016; Kokalj,
Zaksek, and Ostir 2013; Verbovsek, Popit, and Kokalj
2019; Suh et al. 2021; Johnson and Ouimet 2014).
Utilizing these LiDAR derivatives and visualization
techniques, manual digitization has been implemen-
ted as the most common approach to identify and
map stone walls in the Northeastern USA (Johnson
and Ouimet 2018, 2016, 2014). However, this
approach is time-consuming, especially when trying
to complete mapping over vast areas of land. Another
approach is to use public crowd-sourced digitization
via an ArcGIS web app covering the entire state (CT
stone wall mapper' and NH stone wall mapper?). Even
though the new mapper platform allows for crowd-
sourced manual digitization over a broad area, man-
ual digitization is still a time-inefficient approach and

an error can be introduced depending on the experi-
ence of the analysts (Leonard, Ouimet, and Dow
2021).

To overcome this inefficiency issue regarding
mapping anthropogenic features and take advan-
tage of the widespread availability of LiDAR datasets
around the region (Johnson and Ouimet 2018,
2014), object-based image analysis (OBIA) has been
applied for the detection and segmentation of
anthropogenic features based on LiDAR derivatives
(Niculita 2020; Witharana, Ouimet, and Johnson
2018). OBIA is a semi-automated method including
two steps: (1) extracting morphological characteris-
tic (e.g. shape, size, and texture) of the target fea-
ture to differentiate it from the background or other
objects, and (2) adjusting threshold to find the best
parameters to detect target-like feature (Blaschke
et al. 2000). A number of studies have utilized this
approach using LiDAR products to extract, charac-
terize, and classify various features such as relict
charcoal hearths and kilns (Witharana, Ouimet, and
Johnson 2018; Schneider et al. 2015; Suh et al.
2021), shell craters (Magnini, Bettineschi, and De
Guio 2017), and mounds (Trier, Zortea, and
Tonning 2015; Niculita 2020; Davis, Lipo, and
Sanger 2019; Freeland et al. 2016; Orengo et al.
2020). Previous studies have focused on features



that are isolated with circular shapes rather than
those having continuous and linear shapes like
a stone wall. While OBIA can be a useful and effi-
cient mapping approach compared to manual digi-
tization, it still requires significant time and effort to
build a rule set based on morphological character-
istics of the target feature and optimizing threshold-
ing parameters.

As a fully automated approach, Deep
Convolutional Neural Networks (DCNNs), also
known as deep learning (DL), have been implemen-
ted in semantic segmentation and object detection
using remote sensing imagery (Li et al. 2020;
Zhong, Hu, and Zhou 2019; Waldner and
Diakogiannis 2020). Semantic segmentation
involves the classification of pixels according to
semantic categories, which requires distinguishing
boundaries between semantic categories, in addi-
tion to pixel-level classification. Different types of
DCNN architectures have been developed
(Ronneberger, Fischer, and Brox 2015; Zhou et al.
2018; Diakogiannis et al. 2020; Chen et al. 2018).
Object detection, on the other hand, is the task of
locating and identifying multiple objects in an
image. The Region-based CNN (R-CNN) is one of
DCNNs-based object detection models (Girshick
et al. 2013). Unlike semantic segmentation model,
the R-CNN-based model extracts a set of regions of
interest (ROls: region proposals) within an image to
detect target objects, rather than processing the
entire image. Then, the R-CNN model uses CNNs
to extract features from the ROIs and classify the
objects within the ROIs (He et al. 2020). These
DCNN models are end-to-end process that auto-
mate the entire process of converting raw input
data into the desired prediction without human
intervention. With this advantage, its application is
diverse in terms of image datasets and target map-
ping features. For example, multispectral satellite
imagery (Zhong, Hu, and Zhou 2019; Li et al.
2020; Waldner and Diakogiannis 2020; Kussul et al.
2017) as well as aerial imagery (Sylvain, Drolet, and
Brown 2019; Zhang et al. 2020) has been used for
land cover (Mboga et al. 2020; Sylvain, Drolet, and
Brown 2019; Srivastava, Vargas-Mufoz, and Tuia
2019; Li et al. 2020; Zhang et al. 2020; Rodriguez,
Vitria, and Mora 2020; Kim et al. 2018) and urban
structures mapping (Zhang, Liu, and Wang 2018;
Wang and Li 2019; Tan, Xiong, and Li 2018;
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Abdollahi et al. 2020; Zhang et al. 2018). In
geoscience field, imagery has been employed for
landslide (Qi et al. 2020; Chen et al. 2020; Olteanu-
Raimond et al. 2020) and fluvial or glacial lake
mapping (Carbonneau et al. 2020; Wu et al. 2020).

A few studies have been conducted to integrate
LiDAR derivatives into DL models to identify archae-
ological objects (Trier, Reksten, and Lgseth 2021;
Verschoof-van der Vaart and Lambers 2019;
Verschoof-Van Der Vaart et al. 2020). These studies
utilized R-CNN-based models such as Faster R-CNN
(Ren et al. 2017), to detect circular-shaped features
such as charcoal kilns, pitfall traps, and grave mounds.
However, there are several gaps in previous research:
(1) there has been a lack of emphasis on the auto-
mated mapping of connected linear features, such as
stone walls and historical roads (Verschoof-van der
Vaart and Landauer 2021), (2) the application of
semantic segmentation models such as U-Net has
been limited in identifying small archaeological fea-
tures from LiDAR derivatives (Suh et al. 2021), and (3)
more research is needed to investigate the limitation
of LiDAR-based mapping using DCNNs due to varia-
tions in LiDAR quality when applied to large sites (e.g.
>100 km?) and to mitigate these limitations by using
additional reference data (e.g. land cover map) or GIS
processing (Verschoof van der Vaart et al. 2022).
Therefore, this study presents an innovative frame-
work for the automated mapping of small-scale linear
anthropogenic features, stone walls, in LiDAR deriva-
tives up to town-level scale. In order to achieve this
goal, two semantic segmentation DCNN models,
U-Net and ResUnet, has been trained with different
combinations of LiDAR derivatives from scratch. The
trained models were first evaluated at two test sites
(each with an area less than 1.5 km?) based on a field-
verified stone wall map. Next, the potential factors
that can affect model performance, such as the nature
and the quality of LiDAR imagery, were investigated.
Lastly, the trained models were applied to town-level
stone wall mapping by combining GIS processing
algorithms for post-processing to mitigate negative
factors that may impact model performance. A further
aim of this research is to use open-source statewide
LiDAR data, making this study expandable to state-
wide stone wall mapping by other researchers,
thereby enabling the reconstruction of historic defor-
estation and agricultural practices (Johnson and
Ouimet 2021; Johnson et al. 2021).
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2, Study sites and data
2.1. Study sites

Study sites are located in Connecticut, a state in the
Northeastern USA (Figure 2), where stone walls are
widely and densely distributed. Although historic
stone walls are best preserved in the forested areas,
they can be found all over the region in a variety of
different land cover types, including deciduous/con-
ifer forest, farmland, and developed/suburban region.
Training sites were selected to cover a range of land
cover types in order to train the model to deal with
identifying stone walls in a variety of landscape types
and conditions. Training sites specifically include
dense deciduous/conifer forest areas, which account
for over 80% (e.g. Ashford town) (Figure 2(1)), moder-
ate to dense deciduous forest cover ranging from
62% to 70% (e.g. Woodstock town), farmland (e.g.
portions of Woodstock town) (Figure 2(2)), and devel-
oped/suburban areas (e.g. portions of Windham
town) (Figure 2(3)). Each training site covers an area
of 13.5 km?.

72”3?’0”W 72"1?‘0"W

To assess the performance of the model, three test
sites were selected, two of which were small in extent
and located in Mansfield town, CT (referred to as test
site 1 and test site 2), and the third was town-level and
located in Cornwall town, CT (referred to as test site 3)
(Figure 2). Test site 1 is the northern portion of the
Fenton Tract in UConn Forest (UF, 0.92 km?). The site
primarily consists of dense deciduous forest cover,
with over 90% coverage. Test site 2 is located along
Wormwood Hill Road (WH, 1.46 km?). This site also
consists mainly of dense deciduous forest cover,
with over 78% coverage, and includes several struc-
tures such as road and buildings at the west part. Two
of the test sites were chosen to evaluate the model’s
accuracy based on field-verified stone wall. Due to
physical and personal property issue, we were able
to conduct field-mapping in a limited area, with
a focus on forested sites. Unlike two sites, test site 3,
located in the Northeastern part of Connecticut (120
km?), was selected as the town-level evaluation site
based on two factors: (1) a high density of stone walls
and (2) a forest-dominant region, as the majority of
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Figure 2. Study sites of this study with five training sites (including v.

alidation sites) and three test sites in Connecticut, USA. Training

sites consist of (1) dense forested landscape in Ashford and (2) moderate to dense forested landscape and farmland in Woodstock, and

(3) developed urban and suburban areas in Windham. Note that v
validation data in section 3.1.2). Test sites are (1) UConn forest (UF), (2

alidation data is derived from training sites (See details about
) Wormwood Hill (WH) in Mansfield town, and (3) Cornwall town.



stone walls are typically found under forest cover.
According to the 2015 land cover map (Connecticut
Center for Land Use Education & Research (CT CLEAR)
2016), the land cover of Cornwall town is composed
of deciduous forest (56.6%), conifer forest (23.2%),
agricultural field (9.7%), developed area (1.5%), and
other (9%). Cornwall was deemed an appropriate site
to assess the performance of our models in mapping
stone walls at a town level. The result of test site 1 and
site 2 will be addressed in section 4.1 to 4.3 and that
of test site 3 will be address in section 4.4.

2.2. Data

Data were collected for three main purposes: (1) to
prepare training/validation datasets, (2) to build
a reference dataset, and (3) to conduct post-
processing (Table 1). For the training dataset, we
used LiDAR-derived DEMs provided by CT ECO
(2016). According to its metadata (Capitol Region
Council of Governments (CRCoG) 2016b), the original
point cloud had an average point spacing of 2 points
per square meter, and the minimum spatial resolution
of the LiDAR specification (Quality Level 2; QL2) was
recommended to be 1meter (Heidemann 2018).
Based on this, CT ECO produced the 1 m resolution
DEMs from the ground-classified points acquired in
the spring of 2016 and we downloaded 1 m DEMs
from CT ECO. Then, hillshade maps and slope maps
were created for the training dataset. However,
canopy cover such as conifers or underbrush can
affect the quality of DEMs and derivatives locally
because these areas may have lower point densities
of ground-classified points, or, in the case of dense
underbrush, points classified as ground may not actu-
ally represent the ground surface, leading to greater

Table 1. List of collected data.
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elevation error in the resultant DEM. We will discuss
how these LiDAR quality issues affect DCNN model
performance when mapping anthropogenic landform
in section 4.3.4 in detail. For the reference stone wall
dataset, we edited a previously digitized stone walls
shapefile by Johnson and Ouimet (2014) which was
based on 2011 LiDAR dataset rather than 2016 LiDAR
dataset used in this study. Our update was performed
using hillshade maps, high-resolution leaf-off aerial
orthophoto, and Google Street View images to con-
firm the existence of stone walls. Stone wall digitiza-
tion was primarily undertaken using a LiDAR-derived
hillshade map since the feature is more distinguish-
able than in a slope map and leaf-off orthophotogra-
phy. Another stone wall polyline dataset was built by
field mapping (referred to as field verified stone walls)
particularly in test site 1 and 2. For test site 3, 2015
land cover map (30 m) and impervious shapefile was
used to conduct post-processing of stone wall map
predicted by model. Detailed information about post-
processing will be addressed in section 3.4.

3. Methodology

We proposed a workflow for a small-scale anthropogenic
feature mapping using LiDAR derivatives and DCNN
models (i.e. U-Net and ResUnet) (Figure 3). Details for
each step will be addressed in the following subsections.

3.1. Preparing the image and reference datasets

3.1.1. LiDAR derivatives preparation

Given that DCNN is a supervised model, the first step is to
prepare a training/validation dataset for the model train-
ing by combining the LiDAR derivatives with the raster-
ized reference data of the stone wall image. For the

Data Resolution Source Purpose

2016 LiDAR-derived DEMs Tm CT ECO* Training/validation dataset

Hillshade map m LiDAR derivatives Training/validation dataset and reference dataset (manual digitization)
Slope map m LiDAR derivatives Training/validation dataset

2016 Orthophoto (leaf-off)
Google Street View
Digitized stone walls***
Field verified stone walls -
2015 Land cover map 30m
2012 Impervious cover (shapefile)

3 bands, 0.1m  CRCoG (2016a)**
- Google Map

Field work
CT CLEAR (2016)****
CT CLEAR (2017)

Reference dataset (Supplement for manual digitization)
Reference dataset (Supplement for manual digitization)

Johnson and Ouimet (2014) Training/validation dataset and reference dataset

Reference dataset
Post-processing
Post-processing

*Connecticut Environmental Conditions Online (CT ECO).
**Capitol Region Council of Governments (CRCoG).

***Digitized shapefiles are available via https ://connecticut.maps.arcgis.com/home/item.htmI?id=0d956858d17a4366a630eded3c2ff703 (accessed on

2 November 2022).
**x*Center for Land Use Education & Research (CT CLEAR).
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Figure 3. Workflow for the stone wall detection. Abbreviation: TP (true positives), FP (false positives), FN (false negatives), TN (true

negatives).

LiDAR derivatives, we used three different scenarios (S1,
S2, and S3) depending on the types of input rasters (i.e.
LiDAR-derived hillshades or slope map), different sun-
light angle of hillshade images (i.e. NW, NE, SW, SE, and
multi-direction), and the number of input rasters (i.e. 1, 3,
and 6) (Table 2). All hillshade images were created using
the Hillshade tool in ArcGIS Pro with a z-factor of 3.5, and
slope images (degrees) were created using Slope tool
with a z-factor of 3, then converted to an 8-bit image

with values ranging from 0 to 255. We assumed different
sunlight azimuth angle plays an important role in
improving model performance since it can visualize
and highlight morphological property of stone wall fea-
ture from a different perspective.

3.1.2. Reference preparation
As briefly stated in section 2.2, reference datasets
were constructed by manual digitization and field
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Table 2. Specific information of three input scenarios used in this study.

Scenarios

Types of input Rasters

# of Rasters

Scenario 1 (S1)
Scenario 2 (S2)

Slope
Scenario 3 (S3)

NE hillshade (315°)
NW hillshade (45°)
SE hillshade (135°)
SW hillshade (225°)

NE hillshade (sunlight azimuth: 315°) 1
NE hillshade (315°)
NW hillshade (45°)

3

Multi-directional hillshade

Slope

mapping. Even though we used the digitized stone
walls by Johnson and Ouimet (2014), extra editing
was required to examine topographic features that
were newly identifiable in the updated 2016 LiDAR
hillshade map. Primarily, we manually digitized stone
wall features over T m NE/NW hillshade maps using
ArcGIS Pro software. Leaf-off aerial photographs and
Google Street View were used as supplementary ima-
gery in cases where stone wall features were ques-
tionable due to areas of light or dark in the hillshade
maps. In some cases, the street view map allowed us
to identify stone walls clearly along roads that are not
visible in hillshade maps. Next, field mapping was
conducted to build an accurate reference dataset of
stone walls within study sites to compare LiDAR-
based model results against. Particularly, our field
mapping was focused on two test sites (UF and WH)
considering accessibility issue such as private prop-
erty. Once the reference stone wall dataset was cre-
ated as polyline, then 2 m buffering was conducted to
capture the entire width of the stone wall feature
topography and lastly, buffered polygons were
rasterized.

3.1.3. Training/validation patches

With LiDAR derivatives and rasterized reference data,
training/validation patches for two DCNN models
were prepared by the following steps. (Figure 3).
Firstly, training/validation data were created by stack-
ing each scenario of LiDAR derivatives and reference
raster, respectively. Secondly, to reduce computa-
tional burden, we clipped this composited training/
validation data into the given size of patches (i.e. 256
by 256 pixels), using a stride of 64 pixels in x and
y direction to obtain a large number of training
patches. Thirdly, we applied data augmentation to
the clipped patches using a random rotation method
including —90°, 90°, and 180° rotation to increase the
total number of input patches. With randomly

rotating input patches, it also allows for training
model with various directional stone walls. As
a result, the total number of input patches was
12,774. Next, we normalized the pixel value of the
input patches to 0-1 to increase training speed and
improve feature learning during the model training.
Lastly, the total number of input patches were split
into training dataset and validation dataset (90% vs.
10%); 11,496 and 1,278, respectively.

3.2. Training models

3.2.1. Model architectures

In previous research, the U-Net model has been
shown to achieve highly accurate segmentation
results even with small input datasets (Ronneberger,
Fischer, and Brox 2015; Chen et al. 2022; Kugelman
et al. 2022). Additionally, as we trained our model
from scratch, we prepared our training dataset by
manually digitizing stone walls. Manual digitization
is a labor-intensive process, so we were only able to
prepare a limited-size of training dataset. However,
U-Net tends to show high performance with limited
data. Therefore, we used two U-Net-based models,
one is a modified U-Net from original U-Net architec-
ture developed by Ronneberger, Fischer, and Brox
(2015) and the other is a ResUnet, incorporating
Residual Network (ResNet) (He et al. 2015) to U-Net
architecture. Although U-Net was originally proposed
for the semantic segmentation of panchromatic bio-
medical images, it has been applied to satellite ima-
gery as well as aerial imagery in recent years (Mboga
et al. 2020; Stoian et al. 2019; Yan et al. 2021; Waldner
and Diakogiannis 2020).

The structure of the U-Net model used in this study
consists of encoding and decoding branches, like
U-shape (Figure 4(a)). In the encoding branch, the
model extracts a given number of feature maps
(here we used 32, 64, 128, 256, and 512 in
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Figure 4. Model architectures used in this study (A: U-Net, B: ResUNet).

convolutional black 1, 2, 3, 4, and 5, respectively) from
input patches by passing through convolutional
blocks. Each convolutional block includes two sets of
3 x 3 filter convolution layers, a Rectified Linear Unit
(ReLU) activation layer, a batch normalization layer

and dropout layer, then it is connected to 2 x 2 size
of max pooling layer. In particular, we used batch
normalization (loffe and Szegedy 2015) and dropout
strategies to avoid an overfitting issue. While passing
through convolutional blocks, the size of the input



feature map (i.e. length and width) is halved but the
depth (i.e. the number of feature maps) is doubled. In
the U-Net model, the lowest resolution of feature map
is 16 x 16 x 512 (width x height x depth) in convolu-
tional block 5. In the decoding branch, a series of up-
convolutional blocks helps to restore spatial informa-
tion that was lost during max pooling layer in the
convolutional block. Particularly, it includes
a transposed convolutional layer, concatenated
layer, two sets of convolutional layers with ReLU acti-
vation layer and dropout layer. After going through
four up-convolutional blocks, it passed 1 x 1 convolu-
tion layer to reduce the number of channels or the
depth of the feature map produced by the previous
layer. In the last step, semantic segmentation is con-
ducted by a sigmoid function to create a binary map
(i.e. “stone wall” or “non stone wall”).

The second model, ResUnet, has similar architec-
ture to the U-Net model except for adding a residual
unit in each block (Figure 4(b)). ResUnet, proposed by
(Zhang, Liu, and Wang 2018), was used as a baseline
model. We modified the number of feature maps at
each residual block, added one more residual block,
as well as an up-residual block to be comparable to
our U-Net model architecture. The concept of residual
unit was first proposed by He et al. (2015) to address
a vanishing gradient issue that occurs when the
neural network is going deeper. The application of
residual unit to the U-Net model shows improvement
with respect to model performance in previous stu-
dies (Zhang, Liu, and Wang 2018; Liu et al. 2020).

Table 3 shows a summary of specific model para-
meters used in both U-Net and ResUNet models. We
used input size (width and height) of 256 by 256
pixels and the number of input channels varied
depending on the composition of bands scenarios.
The number of feature maps for convolutional blocks

Table 3. Summary of model architecture for both U-Net and
ResUNet.

Parameter Value
256 by 256

Input size (width and height)
(pixels)

Number of input channels

Number of training/validation
patches

Number of feature maps

Convolution filter size (pixels)

Activation function

S$1:1/52:3/S3: 6
Training: 11496 (90%)
Validation: 1,278 (10%)
[32, 64, 128, 256, 512]

3by3
ReLU/Sigmoid (only used right before
output layer)
U-Net: 7,764,962
ResUNet: 18840,610

Total number of trainable
parameters
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Table 4. Hyperparameters for model training.

Hyperparameter Value
Batch size (count) 8
Optimizer Adam

Learning rate
Loss function
Epochs

Initially starting from 0.001
Binary Cross Entropy
Up to 30 (used early stopping callback)

or residual blocks was set as 32, 64, 128, 256, and 512
as networks go deeper. For the activation function,
ReLU (which has been widely used) was adopted, and
the Sigmoid function was used before the output
layer since target classes are binary. As a result, the
total number of trainable parameters for U-Net and
ResUNet was about 7 million and 18 million,
respectively.

3.2.2. Model parameters/hyperparameters

Our model was trained on the single GPU, 8 G RTX
2070 (compute capability =7.5) with Keras API of
TensorFlow 2.1 version. During the training process,
models were tuned by adjusting hyperparameters to
avoid overfitting and to improve model performance.
Table 4 shows the final hyperparameters. Due to an
out of memory issue (OOM) in training the ResUNet
model, the batch size for two models was set to 8,
which takes more time on training compared to large
batch size. Despite this fact, the large batch size does
not always have a positive influence on model perfor-
mance. Another important hyperparameter is
a learning rate that can influence training efficiency.
We used an Adam optimizer (Kingma and Ba 2015)
(initial learning rate =0.001) and it was multiplied by
0.1 whenever the validation loss value stopped dimin-
ishing during the previous three epochs. In addition,
the binary cross-entropy loss function was used to
monitor model performance which is suitable for bin-
ary classification with less calculation burden. Lastly,
models were trained for 30 epochs. However, it
recalled early stopping callback when validation loss
would not improve during the previous four epochs.

3.3. Model prediction and vectorization of raster
results

Through the training process of both U-Net and
ResUent models for three scenarios, we had six
trained models and applied them to two test sites.
Before evaluating the models’ accuracy from the
model prediction result, vectorization of the
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HTPEFNEFP

by model from model

Predicted SW — Extracted centerline — Reference SW after line adjustment IZ—_Olm ,N\

Figure 5. Vectorization process of model prediction result to minimize a potential error in accuracy assessment. A: example of errors
occurred in raster-based accuracy assessment result. B: predicted stone walls (SW) by model (yellow pixel) and its centerline (black
line); C: reference stone wall after line adjustment (pink line) based on extracted centerline from model (black line); D: Accuracy
assessment result after vectorization process. Note that TN is true negative, TP is true positive, FN is false negative, and FP is false

positive.

prediction result was required to minimize error that
regards true positive as false positive or false negative
(Figure 5(A)). This error can be caused by the fact that
two rasters (rasterized stone wall reference map and
model prediction result) are not perfectly aligned
even through the model identifies stone wall cor-
rectly. Given that this error can influence on accuracy
result, we performed three-step processing to con-
duct a vector-based calculation.

(1) Extracting a centerline (black line) from the
vectorized model prediction result (yellow
pixel) (Figure 5(B)).

(2) Comparing this centerline to the reference
stone wall polyline and removing the reference
stone wall line if the centerline and the refer-
ence line are overlapped each other within 2 m
buffering threshold (Figure 5(C)).

(3) 2m buffering of updated reference line and
conducting accuracy assessment (Figure 5(D)).

3.4. Accuracy assessment

3.4.1. Test site 1 and 2

Accuracy assessment was conducted to evaluate
model performance based on the areas (in m?) of TP,
FN, FP, and TN using the following evaluation metrics;
recall, precision, F;, and Matthews Correlation
Coefficient (MCC) score (Equation (1)-(4)). For the
test site 1 and 2, field-verified stone wall was used as
a reference map when calculating accuracy
assessment.

TP
ecd TP +FN (1

TP
P . . _ 2
recision = = = )
F,score = 2 % (Recall « Precision) 5

(Recall + Precision)



(TP x TN) — (FP % FN)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

MCC =

where TP means the feature regarded as a stone
wall by the model is also a true stone wall in the
reference data, FN is the case that model missed
a stone wall that is actually a true stone wall in the
reference data, and lastly, FP is the case that model
detects feature as a stone wall that is not a stone
wall in the reference data.

Recall measures how good the model finds all
positives, all existing stone walls in this case (i.e. the
sum of TP and FN) and it is calculated by Equation (1).
Particularly, a FN is related to omission error so that
recall can be defined as 1-omission error. Precision
evaluates how accurate the model’s prediction result
(i.e. the sum of TP and FP) is. It is calculated by
Equation (2), and it can be described as 1-commission
error since FP is related to commission error. Based on
the recall and precision, the F, score is widely used to
assess overall model performance. MCC is a binary
classification accuracy metric that considers both the
true positive rate (TPR) and the false positive rate
(FPR). Unlike F; score, MCC provides a balanced mea-
sure of the trade-off between TPR and FPR, which
makes it a suitable for imbalanced datasets. MCC
ranges from —1 to 1, where a value of 1 represents
a perfect prediction, 0 represents a random predic-
tion, and —1 represents a completely incorrect predic-
tion (Chicco and Jurman 2020). For test site 1 and 2,
these four metrics were calculated by the area of
buffered polygons from model prediction lines and
updated reference lines after line adjustment
explained in Figure 5.

3.4.2. Test site 3

For town-level mapping (test site 3), a larger test area
includes a diverse array of terrain and land cover
conditions, which could potentially weaken model
performance as reported in previous studies (Trier,
Reksten, and Laseth 2021; Suh et al. 2021; Verschoof
van der Vaart et al. 2022). To address this issue, post-
processing was conducted for test site 3 before accu-
racy assessment.

The workflow of post-processing and accuracy
assessment of town-level model results is demon-
strated in Figure 6. During the post-processing step,
an impervious cover shapefile from 2012, provided by
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CT CLEAR (2017), was used to mask out stone walls
near roads and building that can be confused with
stone walls LiDAR derivatives due to similar morphol-
ogy (this process is referred to as IC PP: impervious
cover post-processing). The impervious cover shape-
file includes three types of impervious covers: road,
building, and other. All three types were buffered
based on thresholds of 10 m and 15 m (Figure 6(b))
as most stone wall-like features (but not actual stone
walls) near impervious cover were found within these
buffer ranges. Next, the manually digitized stone wall
and model-predicted stone wall shapefiles were
removed from the buffered impervious cover using
the Erase tool in ArcGIS Pro to exclude stone walls or
stone wall-like road curbs or road edge segments
(Figure 6(c,d)). As a reference map for accuracy assess-
ment, the manually digitized stone wall based on
hillshades was used.

In addition to IC PP, land cover was considered to
exclude errors related to the low quality of LiDAR.
The issue with LiDAR quality was also discussed in
previous studies (Crow et al. 2007; Doneus et al.
2008; Suh et al. 2021; Verschoof van der Vaart
et al. 2022) which found that a lack of ground-
classified points due to conifer trees can lead to
irregular interpolation of terrain surfaces, resulting
in commission or omission errors. A recent land
cover map from 2015 (spatial resolution: 30 m) pro-
vided by CT CLEAR (2016) was used to extract agri-
cultural fields, turf, and deciduous forests as
polygons where the quality of LiDAR is high (this
process is referred to as IC LC PP: impervious cover
and land cover post-processing) (Figure 6(f)). Then
stone walls in these polygons were then extracted
using the Clip tool in ArcGIS (Figure 6(g,h)).

These two post-processing methods, IC PP and IC
LC PP, also contribute to controlling errors derived
from digitizing users because reference data for accu-
racy assessment is based on a manually digitized
shapefile rather than field mapping. As discussed in
Leonard, Ouimet, and Dow (2021), users have differ-
ent interpretations and errors associated with digitiz-
ing stone walls using LiDAR derivatives. Disagreement
in digitizing stone walls between users is more likely
to occur near stone-like features along roads and in
areas of irregular morphology derived from the low
point density of the LiDAR data.

As described in Figure 6, buffer thresholds of 3m
and 5m were used to calculate precision and recall
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Figure 6. Workflow of post-processing (PP) for accuracy assessment in town-level model prediction result. (a: NW hillshade map; b:
Manually digitized stone wall (SW) and SW predicted by U-Net S3 model overlaying three types of impervious cover (IC) in 2012 and
buffered all impervious cover (Data source: CT CLEAR (2017)); c: Precision example after impervious cover post-processing (IC PP); d:
Recall example after impervious cover post-processing (IC PP); e: leaf-off aerial photography in 2016 (CRCoG 2016a); f: Manually
digitized stone wall (SW) and SW predicted by U-Net S3 model overlaying land cover (LC) of 2015; G: Precision example after
impervious and land cover post-processing (IC LC PP); h: Recall example after impervious and land cover post-processing (IC LC PP)).

scores, taking into account that the width of stone
walls are described on hillshades in Cornwall can
reach up to 10 m. The reason for using buffer thresh-
olds is that manually digitized stone wall (vector line)
may slightly differ from model-predicted stone wall
(vector line). While the model tends to detect the
centerline of stone walls in the hillshades, manual

digitizing results do not always focus on the center
of stone walls in the hillshades. Cases where the stone
wall polyline predicted by the model is aligned within
a 3m or 5m buffered digitized stone wall polyline
were considered TP; otherwise, they were considered
FP in terms of precision (Figure 6(c,g)). In case of
recall, cases where the digitized stone wall polyline



is aligned within 3 m or 5 m buffered stone wall poly-
line predicted by model were considered TP; other-
wise, they were considered FN (Figure 6(d,h)). As TN is
not extracted in this method, it has not been possible
to calculate the MCC score for test site 3.

4. Results and discussion

We trained both U-Net and ResUnet models for each
scenario (S1, S2, and S3) and it took 200 seconds per
epoch to train U-Net, and 620 seconds per epoch for
ResUnet. As we can see through the difference
between the number of trainable model parameters
for each model, training speed of U-Net is three times
faster than that of ResUnet. Figure 7 illustrates binary
cross entropy losses (training/validation) for the
U-Net/ResUnet models by each scenario. Minor differ-
ence between training and validation loss demon-
strates that our models trained well without
overfitting or underfitting issues. In addition, the
training process was stable based on a smooth
decreasing trend. As stated in Section 3.2.2, the learn-
ing rate was reduced when the model was not
improved during the previous three epochs, which

0.07
—— Training loss

Validation loss
= LR scaled by 0.1

\
0.0671 |\
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are marked as black solid line in Figure 7. Except for
S2, the decay of learning rate helped models to
reduce loss value, although the gap between training
loss and validation loss increases. In S2, the model
reached minimum loss value before the learning rate
was adjusted. For model prediction, we used the best
model with the lowest validation loss value, and its
accuracy assessment result will be addressed in the
following sections.

4.1. Accuracy assessment results for two test sites

We calculated the area of TP, FN (omission error), FP
(commission error), and TN in two test sites. Table 5
shows the model performance results based on recall,
precision, F;, and MCC scores at different models and
scenarios. Taking into consideration the balance
between TP, FN, FP, and TN, our model achieved the
best MCC score of 0.87 and 0.8 in two test sites,
respectively. The MCC and F, score indicated that S3
performed the best in both models at two test sites,
which means there is a positive relationship between
model performance and the number of input rasters
(i.e. different directional hillshade maps and slope
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Figure 7. Binary cross entropy loss curve per epoch for U-Net/ResUnet models and three scenarios (S1, S2, and S3). (A: U-Net S1, B:

U-Net S2, C: U-Net S3, D: ResUnet S1, E: ResUnet S2, F ResUnet S3).

Table 5. Result of model performance with different models and scenarios.

U-Net ResUnet
Site # Scenario Recall Precision Fq MCC Recall Precision Fy MCC
Test 1 S1 70.5% 94.1% 80.6% 0.80 67.0% 97.3% 79.4% 0.80
(UF) S2 84.0% 92.3% 88.0% 0.87 78.3% 92.0% 84.6% 0.83
S3 83.5% 93.7% 88.3% 0.87 82.4% 94.0% 87.8% 0.87
Test 2 S1 60.0% 93.8% 73.2% 0.74 60.0% 94.2% 73.3% 0.74
(WH) S2 64.4% 95.3% 76.9% 0.78 61.1% 96.7% 74.9% 0.76
S3 64.7% 95.0% 76.9% 0.77 69.6% 94.9% 80.3% 0.80
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map). By comparing the MCC and F; score between
U-Net and ResUnet, we found that the U-Net model
outperformed ResUnet at test site 1, while ResUnet
outperformed U-Net at test site 2.

In terms of recall and precision scores, both models
showed high precision scores but relatively low recall
scores. The difference between recall and precision
scores reduced when more LiDAR-derived rasters
were used. In particular, multi-layered hillshade and
slope map (i.e. S2 and S3) tended to play a critical role
in reducing FN, while they do not contribute to redu-
cing FP. This result suggests that a diverse array of
LiDAR derivatives allows for identifying stone walls
with different physical properties (size, height, num-
ber of stacked stones, etc.) from normal stone walls.

4.2. Visualization of model prediction results for
two test sites

4.2.1. Test site 1 (UF)

Figure 8 shows the spatial distribution of TP, FN, and
FP cases in test site 1 by models and scenarios. The TP
cases in both model scenarios are mainly distributed
in areas with moderate to dense forest cover. The FN
cases are mainly distributed along brooks or shaded
surfaces in the hillshade maps. The FP cases are
located on trails, paths, or wall-like features (such as
a field edge with a pile of leaves) in the hillshade
image due to morphological similarities. Figure 8
also visually demonstrates the improvement in
model performance for each scenario. Many of the
FN cases in S1 are distributed near NW-SE directional
walls, but they tend to be classified as TP cases in S2
and S3. This is partly due to the fact that sunlight from
the NW direction does not create shade or light for
NW-SE directional stone walls in the NW hillshade
image. This will be discussed in detail in Section 4.3.

4.2.2. Test site 2 (WH)

Figure 9 demonstrates the spatial distribution of TP,
FN, and FP by models and scenarios at test site 2.
Similar to test site 1, the TP cases are primarily
observed in moderate to dense deciduous vegetation.
The FN cases are found in forested areas for the similar
reasons as test case 1, but they are more prevalent in
the western part of the test site near roads and build-
ing foundations. This is likely due to the difficulties in
distinguishing the morphological characteristics of
stone walls, such as height, width, and length, from

other man-made structures in the hillshade or slope
image. As our models were conservative in mapping
stone walls (low recall), there are only a few instances
of FP in test site 2, and these are distributed along
roads or trail paths.

Based on the results of both test sites, we conclude
that the models perform best at identifying stone
walls in areas dominated by deciduous forest that
are away from roads and buildings. This is likely
because the morphology of stone walls (>0.5m
high, 1-2m wide and continuous for >4-8 m in
length (Thorson 2023) make them visible in hillshades
or slope maps within deciduous forests or in open
areas where LiDAR quality is high due to many points
representing the ground surface being included in
the point cloud (Doneus et al. 2008).

Conifer forests and areas with a low density of
ground points in general, meanwhile, would likely lead
to FN (omission error) because the derivative the LiDAR
derived DEMs would be impacted by having too few
points to interpolate between, making it difficult to
identify small-scale anthropogenic features (Verschoof
van der Vaart et al. 2022; Suh et al. 2021). In addition, we
also found that the multi-layered input image (S3) con-
tributes to reducing FN since the model learns various
examples of stone wall features from visualizations of
different directional hillshade rasters. However, having
a large number of input channels does not necessarily
enhance the model performance since each model (e.g.
U-Net S1, U-Net S2, and U-Net S3) extracts distinct
feature maps during the training process and predicts
stone walls in the test sites based on these feature
maps. Although input rasters of S3 include all rasters
of S2, there were instances where stone wall segments
were correctly identified by U-Net S2, while these seg-
ments were missed (omission error) by U-Net S3
(Figure 9). This highlights the drawbacks of DCNNs as
black-box models, where the complexities involved in
training the models are challenging to interpret.

4.3. Factors that can cause FP (commission error)
and FN (omission error)

As shown in the results, multi-stacked LiDAR pro-
ducts contribute to identifying a small-scale mor-
phological feature, such as a stone wall. However,
the quality and nature of LiDAR products are essen-
tial factors that influence the model prediction
results, given that LiDAR hillshades and slope
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Figure 8. The distribution of TP, FN, FP, and TN results from different models and scenarios at test site 1 (UF). a: high-resolution
orthophotography (CT ECO 2019); A: U-Net S1; B: U-Net S2; C: U-Net S3; D: ResUnet S1; E: ResUnet S2; F: ResUnet S3. NW hillshade map
is a background. Note that TN symbol is transparent to visualize background hillshades.

maps are the only input sources for model training
and testing. In particular, we will address four fac-
tors: (1) morphological similarity, (2) sunlight angle
of hillshade images, (3) shade or brightness of hill-
shade images, and (4) land cover and canopy. We
will investigate the influence of these factors on
commission and omission errors of the models in
the following subsections.

4.3.1. Morphological similarity
Morphological similarity to stone walls in the LiDAR
image can increase the likelihood of FP (commission

error) since the model can detect non-stone walls as
stone wall features. Figure 10 illustrates three exam-
ples of commission errors shown in the two test
sites. Firstly, a stone wall-like feature can appear
on the LiDAR hillshade images that is not an actual
stone wall in the field verification (Figure 10(a,b)).
This case is an inevitable error that cannot be con-
trolled and only a field study can correct this mis-
classification. Secondly, linear concave features such
as trail paths are another geometric shape that can
confuse models (Figure 10(c,d)) because they have
stone wall-like edges due to subtle slope differences
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Figure 9. The distribution of TP, TN, FN, and FP results from different models and scenarios at test site 2 (WH). a: high-resolution
orthophotography (CT ECO, 2019); A: U-Net S1; B: U-Net S2; C: U-Net S3; D: ResUnet S1; E: ResUnet S2; F: ResUnet S3. Note that TN

symbol is transparent.

from the surrounding terrain. Similarly, the edges of
roads and curbs also increase the chance of com-
mission error (Figure 10(e,f)). This comprises one of
the most challenging cases to accurately identify
stone walls located along roadsides because these
features also have height variations similar to stone
walls. To mitigate the occurrence of FP resulting

from morphological similarity, one potential strategy
is to leverage impervious cover data. Specifically,
a buffer can be applied to exclude model-detected
stone walls within certain ranges and thereby elim-
inate potential FP. Additional details regarding the
results of this post-processing approach will be
addressed in section 4.4.
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Figure 10. Examples of commission errors caused by morphological similarity on LiDAR hillshade surface. (A: example of wall-like
features (a field edge with a pile of leaves) appearing on the hillshade map in the test site 1; B: U-Net S3 accuracy assessment result is
overlayed on Figure 9(a); C: example of edge of trail in the test site 1; D: U-Net S3 accuracy assessment result is overlayed on
Figure 10(c); E: example of road or curb edge in the test site 2; F: ResUnet S3 accuracy assessment result is overlayed on Figure 10(e)).
G: high-resolution orthophotography (CT ECO, 2019). Note that we used the best accuracy assessment result for each test site in this
figure and background image is NW hillshade map. Note that TN symbol is transparent.

4.3.2. Sunlight angle of hillshade image

Regarding FN (omission error), the sunlight angle
or azimuth angle can cause the absence of stone
walls on the hillshade image. Specifically, if the
direction of sunlight and stone walls is significantly
well aligned, the stone wall may lose its morpho-
logical properties in the hillshade map and appear
like a flat surface without shadows along the stone
wall (Figure 11(a)). As described in Figure 11(a),
NW-SE directional stone walls tend to be displayed
as flat terrain in the NW hillshade image while they
are clearly visible on the NE hillshade image, as
indicated in Figure 11(b). Therefore, this factor can
particularly affect the performance of model S1
since its input includes only the NW hillshade
image, which shows several FNs distributed along
NW-SE directional stone walls. Due to this, stacking

different directional hillshade images can help
avoid missing morphological characteristics in the
hillshade image, leading to accuracy improvement.
The impact of this factor is supported by the result
of test site 1 where it has many NW-SE directional
stone walls. For example, the omission error (100%
- recall score) of U-Net decreased from 29.5% (S1)
to 16.5% (S3) and that of ResUnet decreased from
33% (S1) to 17.6% (S3) (Table 5).

LiDAR visualization is a crucial aspect of mapping
anthropogenic features using a DCNN approach.
Previous studies have shown that combining differ-
ent visualization products or blending them into
single raster, such as Multiscale Topographic
Position and VAT can enhance model performance
(Guyot, Lennon, and Hubert-Moy 2021; Kokalj and
Somrak 2019; Suh et al. 2021). Therefore, further
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Figure 11. Example of omission error for S1 in test site 1 caused by alignment for direction of sunlight and stone walls. (A: stone walls
in NW-SE direction are invisible in the NW hillshade map; B: stone walls in NW-SE direction are visible in the NE hillshade map; C: U-Net
S1 accuracy assessment result is overlayed on Figure 10(a)). Note that TN symbol is transparent.

Figure 12. Example of omission error in test site 2 caused by darkness or brightness on the hillshade map. (A: stone walls disappear
due to shade or low signal in NW hillshade map; B: stone walls appear unclear due to shade or low signal in NE hillshade map; C:
ResUnet S3 accuracy assessment result is overlayed on Figure 11(b)). Note that TN symbol is transparent.

research is necessary to explore how blending or
combining different LiDAR visualizations can
improve the identification of stone walls.

4.3.3. Darkness or brightness of hillshade image

In addition to sunlight angle of hillshade image,
another factor that can cause FN is a darkness or
brightness of the hillshade image. For example,
stone walls on shaded slopes appear as nearly black,
while those on sunlight-facing slopes appear as nearly
white in the hillshade map. Figure 12 illustrates FNs
are distributed in extremely dark or bright areas, pre-
venting the stone walls from appearing distinctly on
the surface. Additionally, the distribution of FNs along
stream in test site 1 (Figure 8) is related to the shade.

4.3.4. Land cover and forest canopy

Regarding the quality of LiDAR data, land cover
and forest canopy are important factors. Dense
forest canopy, like that found in coniferous forests,

can restrict laser penetration and result in a sparse
point spacing and lack of ground-classified points
available for raster interpolation. Consequently, the
quality of DEM can be poor. For test site 1 and 2,
where over 80% of each site is covered by decid-
uous forest, the quality of LiDAR data is expected
to be good since the data were collected during
the leaf-off season. However, we found that the
distribution of FNs near the road at test site 2 is
partially associated with stone walls under conifer-
ous trees. Coniferous trees and dense understory
vegetation above stone walls prevents the laser
from reaching the ground surface to collect topo-
graphic information, causing noise in the LiDAR
point cloud product. To investigate the relation-
ship between canopy cover and poor LiDAR qual-
ity, additional fieldwork was conducted at Yale
Forest in Eastford town, Connecticut, which has
a conifer-dominant forest. Figure 13 demonstrates
the results of poor model performance, which are
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Figure 13. Example of poor-quality LiDAR hillshade image due to stone walls under canopy cover in Eastford town, CT. (A&D: NE
hillshade map; B&E: U-Net S3 accuracy assessment result; C&F: photos taken from field work). Note that TN symbol is transparent.

linked to the vague geometric shape of stone walls
in the LiDAR hillshade due to dense canopy cover.
One possible approach to address the impact of
poor LiDAR quality is to utilize land cover data and
exclude model results in areas that are potentially
of poor quality, such as coniferous forests, wet-
lands, and urban areas. Section 4.4 will provide
further information on the results of this post-
processing strategy.

4.4. Scaling up stone wall mapping

According to the results from the two test sites,
the morphological similarity to stone walls and
land cover type are main elements, inevitably lead-
ing to FP and FN errors. Figure 14 illustrates the
stone wall map results of manual digitization,
U-Net, and ResUnet model predictions, with (IC
PP and IC LC PP) and without post-processing (no
PP), several noisy segments distributed in conifer-
ous forests might be related to the low quality of
LiDAR derivatives. These segments are masked out
after IC LC PP. Figure 15 demonstrates the accu-
racy assessment results for the town-level stone
wall maps, showing the precision, recall, and F1
scores of U-Net S3 and ResUnet S3 for different
thresholds, including the buffering of model pre-
diction result (3 m vs. 5m) and the buffering of

impervious cover (Om vs. 10 m vs. 15 m). Overall,
the 5m buffering shows higher accuracy than the
3 m buffering for both model results because the
larger buffering size can include more true posi-
tives with a large offset between digitized lines
and model-predicted lines. Besides, excluding
stone walls near impervious cover (i.e. IC PP)
leads to increased accuracy, despite there being
no significant difference between the 10 m and
15m buffering thresholds. Post-processing is
essential in enhancing precision by decreasing the
number of FPs. This implies that FPs tend to occur
in regions with impervious cover and low-quality
LiDAR, which can be included in broad-scale map-
ping, although these examples were not well-
represented in test site 1 and test site 2. IC LC PP
leads to a 1.3~ 1.7% increase in the F; score, indi-
cating that post-processing significantly enhances
accuracy.

Overall, the F; score for U-Net S3 ranges from
68.1% to 82.2%, and for ResUnet S3 it ranges from
69.2% to 82.4%, depending on the thresholds and
post-processing applied. Among these, IC LC PP
achieved the best F; score, which shows that our
models are capable of accurately mapping high
density of stone wall regions in forested areas at
a broader spatial scale with over 80% F; accuracy
result. When comparing the accuracy of the U-Net
and ResUnet models, there is a slight difference
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Figure 14. Stone wall mapping result in Cornwall town, CT (A: elevation map; B: 30m resolution land use/land cover map of 2015 (data
source: (Center for Land Use Education & Research CT CLEAR. 2016)); C: Manually digitized SW result without post-processing (no PP);
D: Manually digitized SW result after impervious cover post-processing (IC PP); E: Manually digitized SW result after impervious cover
land cover post-processing (IC LC PP); F: U-Net S3 prediction result without post-processing (no PP); G: U-Net S3 prediction result after
impervious cover post-processing (IC PP); H: U-Net S3 prediction result after impervious cover land cover post-processing (IC LC PP); I:
ResUnet S3 prediction result without post-processing (no PP); J: ResUnet S3 prediction result after IC PP; K: ResUnet S3 prediction

result after IC LC PP).
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Figure 15. Accuracy assessment results of U-Net S3 and ResUnet S3 for town-level stone wall mapping.

(0.2%) in the best F; score (IC LC PP). Regarding
the accuracy trend, the U-Net model tends to show
high precision and relatively low recall score, while
ResUnet tends to show high recall and relatively
low precision. This implies that U-Net model tends
to be conservative in mapping stone walls, while
ResUnet has a better balance between precision
and recall.

5. Conclusions

This study presents an innovative framework that uses
U-Net-based models to automatically detect linear
anthropogenic landscape features, particularly stone
walls, from high-resolution airborne LiDAR derivatives.
Our study draws three main conclusions. First, the
DCNN models play a key role in recording anthropo-
genic landforms and mapping the extent of historic
land use legacy. Our models identified stone walls in
forested areas with a best F; score of 88.3% (U-Net S3)
at test site 1 and F; score of 80.3% (ResUnet S3) at test
site 2. Regarding town-level mapping, both models
performed similarly to the two local scale forested
areas (test 1 and test 2) with a F, score over 82% after
post-processing. Second, we found four factors that
need to be considered when implementing LiDAR ima-
gery to detect small-scale geomorphic features in
DCNN models: (1) morphological similarity to the tar-
get feature, (2) sunlight angle of the hillshade image,
(3) darkness or brightness of the hillshade image, and
(4) land cover and forest canopy. In particular, land
cover can directly affect light or laser penetration of

LiDAR sensor, which results in the quality of LiDAR
image and model performance. Therefore, our trained
models are suitable for detecting stone walls in refor-
ested area with deciduous dominant forests that had
used for agriculture or pasture in 17th to early 20th
centuries. Third, our proposed method will increase
stone wall detection and rapidly expand the scale of
investigation of anthropogenic features in the
Northeastern USA, which has important implications
in studying anthropogenic impacts on geomorphol-
ogy, forest structure, and ecology.

Notes

1. CT stone wall mapper: https://connecticut.maps.arcgis.
com/apps/webappviewer/index.html?id=
0208461aa98a4df3969624e7110e1f2c.

2. NH stone wall mapper: https://nhdes.maps.arcgis.com/
apps/webappviewer/index.html?id=
f4d57ec1a6b8414190ca0662456dffb0.
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