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Abstract

In the past decade, numerous studies have successfully mapped thousands of former

charcoal production sites (also called relict charcoal hearths) manually using digital

elevation model (DEM) data from various forested areas in Europe and the north-

eastern USA. The presence of these sites causes significant changes in the soil physi-

cal and chemical properties, referred to as legacy effects, due to high amounts of

charcoal that remain in the soils. The overwhelming amount of charcoal hearths

found in landscapes necessitates the use of automated methods to map and analyse

these landforms. We present a novel approach based on open source data and soft-

ware, to automatically detect relict charcoal hearths in large-scale LiDAR datasets

(visualized with Simple Local Relief Model). In addition, the approach simultaneously

provides both general as well as domain-specific information, which can be used to

further study legacy effects. Different versions of the methodology were fine-tuned

on data from north-western Connecticut and subsequently tested on two different

areas in Connecticut. The results show that these perform adequate, with F1-scores

ranging between 0.21 and 0.76, although additional post-processing was needed to

deal with variations in LiDAR quality. After testing, the best performing version of

the prediction model (with an average F1-score of 0.56) was applied on the entire

state of Connecticut. The results show a clear overlap with the known distribution of

charcoal hearths in the state, while new concentrations were found as well. This

shows the usability of the approach on large-scale datasets, even when the terrain

and LiDAR quality varies.
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1 | INTRODUCTION

Recent archaeological and pedological research has shown the wide-

spread presence of former charcoal production sites, also called relict

charcoal hearths (RCHs), across forested areas in Europe and the

north-eastern USA (for an extensive overview see Hirsch et al., 2020).

These landforms are mainly of pre-industrial age and persist in the

present-day landscape as earthworks, that is, circular-shaped, elevated

platforms of on average 11 m in diameter (generally between 8 and

15 m diameter) surrounded by a shallow ditch or multiple pits. LiDAR-

based digital elevation model (DEM) analysis has proven an effective

tool to find, map and investigate them (Figure 1).

One of the reasons for investigating RCHs is the value of these

objects for geoarchaeological and pedological research. Recent larger

scale studies have analysed the spatial association between RCH and

historic industrial sites (Schneider et al., 2020), emphasizing the scale

dependent heterogeneity of site densities (Schneider et al., 2022).

RCH sites are often studied for past-landscape and historic recon-

struction efforts (e.g., Dupin et al., 2019; Tolksdorf et al., 2015). The

charcoal remaining in these RCHs is of particular value to reconstruct

historic forest compositions and abundances (Deforce et al., 2013;

Gocel-Chalté et al., 2020). As a result of high amounts of charcoal

remaining in the soils, these sites (categorized as Spolic Technosols;

IUSS Working Group World Reference Base, WRB, 2014) have a dis-

tinct enrichment of total organic and pyrogenic carbon (e.g., Borchard

et al., 2014; Hirsch et al., 2017), resulting in significant changes of the

soil physical and chemical properties (e.g., Donovan et al., 2020;

Schneider et al., 2019). This enrichment is also affecting vegetation

patterns and dynamics as well as microbial growth and abundance

(e.g., Raab et al., 2022). Efforts have been made to quantify the

changes caused by historical charcoal burning on today's soil land-

scapes, referred to as legacy effects, on a larger-than-site specific

scale. For instance, Bonhage, Hirsch, Schneider, et al. (2020) found a

positive correlation between local slope, RCH site volume, and stratig-

raphy, that is, on steeper slopes the sites total volume increases and

vice versa. By using a GIS-based modelling approach, it enables the

quantification of nutrient and carbon stocks in RCH sites based on

their topographical position. Thereby, information about the local

topography and the sites' surface area is of high interest next to the

site's location itself. A uniform and seamless large scale mapping can

significantly help to improve the assessment of legacy effects on soil

landscapes caused by historic land-use, whether it be in terms of mor-

phology (e.g., how much soil substrate was redistributed) or soil prop-

erties (e.g., carbon and element stocks), and it can help in the effort to

identify large scale clusters of site occurrences.

In the past decade, various studies have successfully mapped

thousands of RCHs by hand using DEM data from various regions

(Carrari et al., 2017; Deforce et al., 2013; Hazell et al., 2017;

Hesse, 2010; Johnson et al., 2015; Raab et al., 2019; Risbøl

et al., 2013; Rutkiewicz et al., 2019). For instance, the manual analysis

of DEM data from northwestern Connecticut, USA resulted in the dis-

covery of over 20 000 RCHs (Johnson et al., 2015; Johnson &

Ouimet, 2021; Raab et al., 2017; see also Table 1).

This overwhelming number of RCHs, combined with an ever-

increasing set of available, high-quality, remotely sensed data necessi-

tates the use of computer-aided methods for the automatic detection

of these objects, thereby alleviating the complications surrounding

manual analysis, for example, biassed and heterogeneous detection

accuracy (Quintus et al., 2017; Risbøl et al., 2013; Sadr, 2016), and

documentation (Bennett et al., 2014; Bevan, 2015). Furthermore, in

order to model legacy effects using these enormous numbers of

RCHs, automation in the calculation of domain specific information

based on their topographical position (e.g., local slope) is needed

as well.

Previous research in an effort to automatically detect RCHs has

relied on various methods including Template Matching (Schneider

et al., 2015; Trier & Pilø, 2012) and Geographic Object-Based Image

Analysis (Witharana et al., 2018), whereas more recently, Machine

Learning approaches are being developed and utilized

(Anderson, 2019; Bonhage et al., 2021; Carter et al., 2021; Davis &

Lundin, 2021; Kazimi et al., 2020, 2019; Oliveira et al., 2021; Suh

et al., 2021; Trier et al., 2021, 2018; Verschoof-van der Vaart

F IGURE 1 Excerpts of LiDAR data, visualized with Simple Local Relief Model (Hesse, 2010), showing examples of relict charcoal hearths in
the Netherlands (left), Connecticut, USA (centre) and Germany (right).
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et al., 2020). Deep Learning (LeCun et al., 2015), a subfield of Machine

Learning, predominantly employs Convolutional Neural Networks

(CNNs)—hierarchically structured algorithms that generally consist of

a (image) feature extractor and classifier (Guo et al., 2016)—that learn

to generalize from a large set of labelled examples, rather than relying

on a human operator to set parameters or formulate rules. To date,

these automated methods are mainly tested in an experimental set-

ting but have yet to be applied in various contexts or on a large

(e.g., regional or national) scale (Verschoof-van der Vaart et al., 2020;

but see for instance Berganzo-Besga et al., 2021; Davis et al., 2021;

Orengo et al., 2020), with this being the aim of previous initiatives

(Trier et al., 2019). Questions remain concerning the usability of these

approaches for large-scale surveys and the transferability of these

methods when applied outside of the area where they were devel-

oped (Cowley et al., 2020; Kermit et al., 2018; Verschoof-van der

Vaart & Landauer, 2022). Furthermore, archaeological automated

detection can still be considered as being in a developmental stage

(Opitz & Herrmann, 2018), and as such, studies generally focus on the

training and testing of automated methods and the resulting detection

rates, while the further analysis and use of the generated archaeologi-

cal information are often not part of these studies (Davis, 2019). Lead-

ing to the understanding that, opportunities to automate the

subsequent analysis of detections to gain domain-specific information

are rarely explored.

In this paper, we present a novel approach to automatically detect

RCHs in LiDAR-based DEM data. For this, a state-of-the-art Deep

Learning object detection framework, YOLOv4, has been transfer-

learned; that is, the model has been pre-trained on a generic image

dataset and subsequently fine-tuned on our own dataset and com-

bined with (GIS) processing algorithms with a focus on being effective

and efficient to handle large amounts of spatial data (e.g., entire

states). Simultaneously, it is designed to be able to provide both gen-

eral information (e.g., the location), as well as domain-specific informa-

tion, such as the area (i.e., the area covered by the RCH's platform and

ditch) and average local slope (i.e., the slope in the direct vicinity of

the RCH; see Bonhage, Hirsch, Schneider, et al., 2020; Johnson &

Ouimet, 2021), of the objects of interest (see also Verschoof-van der

Vaart, 2022). A further aim of this research is to utilize open-source

data and software, to make this research more transparent, reproduc-

ible and more readily implementable by other researchers (Schmidt &

Marwick, 2020).

2 | RESEARCH AREAS AND LIDAR DATA

In order to train, test and apply the developed method, four different,

predominantly forested areas were first defined (see Table 1 and

Figure 2). The Huntsville area (circa 40 km2) comprises the northern

part of the Housatonic State Forest between Huntsville, Cornwall

Hollow and West Cornwall in Litchfield County located in north-

western Connecticut (Figure 2, Training area). This wider area is part

of the Salisbury Iron district and has a very high density of known

RCHs (Johnson et al., 2015; Johnson & Ouimet, 2021; Raab

et al., 2017). RCH sites from the Huntsville area have been used for

the training of our approach (see Section 3.1).

To test the developed method, two separate areas in Connecticut

were selected. The Canaan area (approximately 11 km2), or Test area

1, lies circa 10 km north of the Huntsville area near the town of

Canaan within the Salisbury Iron district. Due to the close proximity,

this area closely resembles the training area in terms of landscape and

to a lesser extent in known RCH density (Table 1). The discrepancy in

forest cover (see https://www.sciencebase.gov/catalog/item/

5b6fa9d4e4b0f5d57878e707) between these two areas is in large

part caused by Washining Lake in the southwest of the Canaan area.

The Ashford area (302 km2), or Test area 2, lies approximately 100 km

to the east of the Huntsville area, in Windham County in eastern Con-

necticut. Although this area has a comparable topography and forest

cover as the Huntsville area, the density of known RCHs is much

lower and more comparable with the overall density of RCHs in Con-

necticut (Table 1; see also Suh et al., 2021). The difference in size and

RCH density of the two test areas offers opportunities to see the

influence of these parameters on the performance of the developed

method (see Verschoof-van der Vaart, 2022).

After testing, the developed method has been applied on a large

scale. The application area equals the entire state of Connecticut

(approximately 12,542 km2), excluding the training and testing areas.

As of this publication, about 24 000 RCHs are known from the entire

state of Connecticut according to the publicly available Northeastern

US Relict Charcoal Hearth ArcGIS Online Web Map (Ouimet, 2019).

Statewide LiDAR-based DEM data (the 2016 dataset with a raster

cell size of 0.6 m) were acquired from the openly accessible repository

of the Connecticut Department of Energy and Environmental Protec-

tion (http://www.cteco.uconn.edu). The global accuracy of this data-

set is stated as a horizontal accuracy of ±1.0 m and a vertical accuracy

TABLE 1 Overview of the research areas and the number and density of manually mapped relict charcoal hearts

Location Type Sq. km Known RCH Density (RCH/sq. km) Forest cover Ground point/sq. m

Huntsville, Litchfield County CT Training area 40 3040 76 92% 2.44

Canaan, Litchfield County CT Test area 1 11 314 29 77% 3.98

Ashford, Windham County CT Test area 2 302 527 1.75 87% 2.13

State of Connecticut Application 12 189 24 051 2 66% -

Abbreviation: RCH, relict charcoal hearth.
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of ±0.138–0.170 m. In addition, we assessed the quality of the LiDAR

data for the three subregions by randomly selecting 10 point cloud .

las tiles (760 � 760 m each) and then averaging their calculated

ground point density, which varied between 2.1 and 4 (Table 1).

The downloaded DEM tiles were merged into a single file, which

was subsequently split into 25 tiles (around 800 km2 each) to ease

further computational requirements. This procedure was a compro-

mise of reducing the total number of DEM tiles and keeping the files

sizes manageable. The 25 DEM tiles were visualized, using the RVT

toolbox (see Kokalj & Hesse, 2017), with Simple Local Relief Model

(SLRM; Hesse, 2010) and subsequently merged. The choice to use

SLRM was based on several factors such as the fact that this visualiza-

tion most clearly shows the RCHs for the purpose of human observa-

tion. Also, in prior automated detection research on RCHs the use of

SLRM had led to satisfactory results (Trier et al., 2021; Verschoof-van

der Vaart, 2022). We are aware that multiscale visualization tech-

niques can result in better detection results when using Deep Learn-

ing (Guyot et al., 2021). Even though, SLRM produces relatively high

results in a recent study comparing visualizations (Guyot et al., 2021)

as well as in less recent publications (Gallwey et al., 2019; Kazimi

et al., 2020). More importantly, we choose efficiency over total accu-

racy as we are dealing with (very) large-scale datasets. Compared with

other visualizations and especially blends and multiscale visualizations,

SLRM is more easy to implement and can be utilized using open

source tools that allow rapid batch processing of large datasets.

3 | METHODOLOGY

The aim of this study is to create an effective and efficient approach

to automatically detect RCHs in large amounts of DEM data, while

simultaneously providing both general (e.g., location) as well as

domain-specific information (e.g., area and local slope). The developed

approach (Figure 3), called ARCHMAGE (Automated Relict Charcoal

Hearth Mapping And Geospatial Exploration), combines the state-of-

the-art object detection framework, YOLOv4 (Bochkovskiy

et al., 2020), with different (GIS) processing algorithms. The workflow

can be divided into three parts: a preprocessing part that converts the

DEM data into input images (subtiles), based on geospatial informa-

tion about known RCHs (Section 3.1); a part concerning the Deep

Learning-based object detection (Section 3.2); and a post-processing

part where the results of the object detection are converted back into

geospatial data (Section 3.3). In addition, two domain-specific parame-

ters, that is, area and local slope, are calculated.

F IGURE 2 The research areas on an elevation map of Connecticut, USA [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Simplified representation
of the ARCHMAGE workflow [Colour
figure can be viewed at wileyonlinelibrary.
com]
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3.1 | Preprocessing of DEM data into subtiles

To generate a training dataset for the object detection model, all

RCHs in the Huntsville area (approximately 40 km2; see Table 1) were

manually mapped. The results of a prior analysis of the 2011 LiDAR

data of Litchfield County (Johnson et al., 2015) were used as a starting

point. These data on the location of RCHs originally consisted of point

data, which we converted into polygons, using the outer edge of RCH

sites as a maximum extent. Subsequently, two experts—both with

ample experience in the analysis of DEM data—independently marked

all other visible RCHs in the DEM data. The annotations were com-

bined and compared in QGIS (QGIS Development Team, 2017). This

resulted in a dataset containing 3040 unique RCH sites, of which

2350 were known from the 2015 analysis (see Johnson et al., 2015).

The latter shows the problem of heterogeneous detection accuracy

between operators in manual analysis, which is further enhanced by

the use of DEM data of different date, quality and different visualiza-

tions (see Quintus et al., 2017; Risbøl et al., 2013; Sadr, 2016).

To make input subtiles for the YOLOv4 model, a modified version

of the dataset generation method developed by Olivier and

Verschoof-van der Vaart (2021) was used. This python script uses a

spatial dataset of objects (in this case known RCH sites) to crop LiDAR

data into smaller images (subtiles) with set dimensions (in this case

500 � 500 pixels or approximately 305 � 305 m). For every individ-

ual object in the dataset, a subtile is generated, centred on the loca-

tion of the object. To avoid bias, a small shift (or jitter) is added so

that the RCH is not in the exact centre of the subtile. However, as

RCHs are often spatially clustered, these cropped subtiles generally

contain multiple RCHs, and therefore, a RCH site can appear on multi-

ple subtiles. This ‘re-use’ of objects has proven beneficial, as it not

only increases the number of subtiles in the training dataset but also

increases variability (Olivier & Verschoof-van der Vaart, 2021).

A selection of 2427 RCHs from the 3040 RCHs found in the man-

ually mapped dataset were used to crop the SLRM visualized DEM

data of the Huntsville training area. The remaining 613 RCHs were

omitted as these were mapped in the prior analysis of Johnson et al.

(2015) but could not be verified in the LiDAR data used in this

research. Subsequently, all subtiles were randomly split 80/20 into a

train and validation dataset (Table 2), as is common practice in the

training of Deep Learning algorithms (Goodfellow et al., 2016).

As the testing and application areas simply need to be split into

equal parts, not based on the location of known RCHs, an additional

python script was used that cuts the DEM data into subtiles of

500 � 500 pixels (approximately 305 � 305 m) with a 25 pixel

(approximately15 m) overlap to all sides. The latter is done to avoid

the dissecting of potential RCHs at the edge of the subtiles. A draw-

back of this overlap is the occurrence of multiple overlapping predic-

tions (i.e., bounding boxes) on RCHs at the edge of multiple subtiles.

This resulted in two test datasets of, respectively, 143 and 3672

subtiles, whereas the application dataset consists of 214 620 subtiles

(Table 2).

3.2 | Object detection with the YOLOv4
framework

The object detection portion of the ARCHMAGE workflow consists of

the YOLOv4 detection framework1 (Bochkovskiy et al., 2020), a

recent implementation of the YOLO (‘You Only Look Once’) frame-

work (Redmon et al., 2016). YOLOv4 is a so-called ‘one-stage’ detec-
tor, which, contrary to ‘two-stage’ detectors such as Faster R-CNN

(Ren et al., 2017), combines the two parts of object detection

(i.e., object localization and classification) in one process and

approaches this as one would a regression problem. More specifically,

as part of the input of YOLOv4, subtiles are downscaled to a fixed

resolution and subsequently divided into an equally spaced grid. For

every cell within this grid, a set amount of bounding boxes with confi-

dence scores is predicted as well as a class probability (Bochkovskiy

et al., 2020). This approach dramatically decreases the inference time

(i.e., the speed of detections), generally without a loss of accuracy. For

example, a comparison of the testing time between YOLOv4 and Fas-

ter R-CNN on DEM data showed that the former was about 18 times

faster than the latter (see Olivier & Verschoof-van der Vaart, 2021).

Although speed is normally not the focus of archaeological automated

detection research, the aim to develop an effective and efficient

approach for large-scale mapping—which involves massive amount of

data up to several hundred gigabytes—necessitates a fast inference

time without a loss in performance, especially on small objects which

the YOLOv4 framework provides (Bochkovskiy et al., 2020; Carranza-

García et al., 2021).

3.2.1 | Adjusting YOLOv4 for archaeological object
detection

Implementing an off-the-shelf version of an object detection frame-

work, pre-trained on a general-purpose dataset, for example, Micro-

soft COCO (Lin et al., 2014), on the task of detecting (archaeological)

objects in remotely sensed data generally results in an unsatisfactory

performance (Verschoof-van der Vaart & Lambers, 2019). This is

directly related to the differences between the (objects in) images in

general-purpose datasets and DEM data (Olivier & Verschoof-van der

TABLE 2 The number of subtiles per research area, resulting from
the dataset generation

Location Number of subtiles

Huntsville, Litchfield County CT (Training area) 1942 (training)

485 (validation)

Canaan, Litchfield County CT (Test area 1) 143

Ashford, Windham County CT (Test area 2) 3672

State of Connecticut (Application area) 214 620

1In this research, the code provided by Technizou (https://medium.com/analytics-vidhya/

train-a-custom-yolov4-object-detector-using-google-colab-61a659d4868#4be1) was used to

construct our model.
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Vaart, 2021; Verschoof-van der Vaart, 2022). The main problem is

that general-purpose datasets contain ‘natural images’
(i.e., photographs of scenes seen in normal, every-day settings) in

which objects are generally large and prominent and occupy a major

portion of the image. Object detection methods normally take advan-

tage of this by downscaling (and pooling) the images, when they pass

through the CNN to greatly reduce the computational cost (Guo

et al., 2016). For instance, in the YOLOv4 framework input, images

are downscaled to a fixed size, normally 416 � 416 pixels. However,

within DEM data (and remotely-sensed imagery in general), the

objects of interest are generally very small, especially in relation to the

size of the images. Consequently, downscaling on these images will

result in information loss and the removal of small objects, which

makes it impossible to detect them (Olivier & Verschoof-van der

Vaart, 2021). Therefore, in our versions of YOLOv4, the input size

was set to 512 � 512 pixels—while the actual size of the subtiles is

500 � 500 pixels—to prevent the downsampling of the subtiles in the

CNN (Table 3).

Another common problem remains in the fact that the objects of

interest in remotely sensed imagery are often densely clustered but

scarcely distributed. This means that while many subtiles in the test

and application datasets will be empty, some will contain a large num-

ber of RCHs. Traditional object detection methods can generally only

detect a select number of objects within a single subtile, although this

can be adjusted. Therefore, the maximum number of detections per

subtile was increased to 200 in the YOLOv4 framework used in this

study (Table 3). Finally, several data augmentation techniques

(Goodfellow et al., 2016) were implemented to improve the robust-

ness of the model to deal with occlusion and fragmentation of RCHs

in the data (for an extensive explanation of augmentation techniques,

see Bochkovskiy et al., 2020; Redmon et al., 2016).

In addition to the general adjustments to the YOLOv4 framework,

we experimented with different upsample strides, loss functions and

accuracy metrics. To measure the influence of these, six different ver-

sions of the YOLOv4 model were created, transfer-learned, and

tested on the two test areas (Table 4).

Upsample stride

To further enhance YOLOv4's performance on small objects, that is,

smaller than 19 � 19 pixels (the average size of RCH in the dataset is

approximately 17 � 17 pixels or 11 by 11 m), the upsampling stride in

YOLOv4 can be increased. At two points in the framework the image

is upsampled, that is, if the image is upsampled with a stride 2, one

pixel is transformed into four pixels in a 2 by 2 area. By increasing the

stride parameter from 2 to 4, small objects, which constitute a few

pixels, will appear larger in the upsampled image. A downside can be

that the element of scale becomes more difficult.

Loss function

During the training of the CNN, the loss function—a function that cal-

culates the penalties of incorrect classifications into a single number

(Goodfellow et al., 2016)—is optimized. A low loss value is generally

regarded as an indication for a well-trained approach and therefore

high performance (Guo et al., 2016). In the case of object detection,

the Intersection Over Union (IoU) is often used as loss function, which

gives a measure for the overlap between the predicted bounding box

and the ground truth. While this metric gives a good indication for

bounding box quality, it completely disregards the positional relation

between the predicted bounding box and the ground truth

(Rezatofighi et al., 2019). Therefore, YOLOv4 employs an improved

version of the IoU, the Complete IoU (CIoU), which uses three param-

eters, that is, the overlap between predicted bounding box and

ground truth, the distance between the centre point of the predicted

bounding box and ground truth and the aspect ratio between the two

(Zheng et al., 2021). However, other loss functions, which also take

the position of the bounding box in regard to the ground truth into

account, might prove more beneficial. Therefore, several versions (3–

6) have been outfitted with the Generalized IoU (GIoU) (Rezatofighi

et al., 2019). The GIoU takes into account the distance between the

predicted bounding box and ground truth, as well as their overlap by

using the size of a box enclosing the prediction and the ground truth.

TABLE 3 Overview of the general (hyper)parameters for the
YOLOv4 framework (before specific modifications) used in this
research

(Hyper)parameter Value/type

backbone CNN CSPDarknet53

input size 512 � 512

batchsize 64

learning rate Initially 0.001

epochs 4000

data

augmentation

Photometric distortions: brightness, contrast,

hue, saturation and noise;

geometric distortion: random scaling, cropping,

flipping, and rotating;

mosaic

regularization Dropblock

loss function CIoU

non-maximum

suppression

greedyNMS

TABLE 4 Overview of the different versions of the YOLOv4

framework used in this research

Model Upsample stride Loss function Accuracy metric

1 2 CIoU mAP@0.5

2 4 CIoU mAP@0.5

3 2 GIoU mAP@0.5

4 4 GIoU mAP@0.5

5 2 GIoU mAP@0.9

6 4 GIoU mAP@0.9
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Accuracy metric

The last modification involves using GIoU (see above) and changing

the metric used to evaluate the quality of detections during training,

that is, the mean average precision, or mAP. This metric is changed

from mAP@0.5 to mAP@0.9, which means that only predictions

whose overlap with the ground truth is over 0.9 (instead of 0.5) are

regarded as True Positives when determining mAP (Everingham

et al., 2010). This modification could make the detected bounding

boxes more accurate and consequently improve the overall perfor-

mance of the detection framework.

3.3 | Post-processing

The initial post-processing part of the ARCHMAGE workflow consists

of three steps: (1) Converting predicted bounding boxes to geospatial

polygons and calculate their area; (2) Filter detections by land-use;

and (3) Calculate the average slope in the vicinity of the detections.

The output of the YOLOv4 model is one text file per subtile, with a list

of detected RCHs comprising pixel coordinates for the bounding box

and a confidence score (range 0–100).

The first post-processing step involves converting these pixel

coordinates into a ‘real-world’ coordinate system, so that these can

be managed and analysed in a GIS environment (see also Verschoof-

van der Vaart & Lambers, 2019). Therefore, a python script, based on

the detectionsToCSV script by Olivier and Verschoof-van der Vaart

(2021), was used to convert the content of the txt file into a CSV file

by connecting every subtile to the DEM tile from which it originally

derived. The real-world coordinates from the DEM tile are used to

compute the real-world coordinates of the bounding boxes and add

them to the CSV file. Then, the area (i.e., the area covered by the

potential RCH's platform and ditch) is calculated using the formula for

the area of an oval, based on the size of the bounding box and the res-

olution, that is, cell size, of the DEM tile (Equation 1). However, this

initially produced unsatisfactory results, as the predicted bounding

boxes are generally larger than the actual RCH (Figure 4). Further

analysis of this problem showed that most ground truths are also

larger than the actual RCH, which might have led to larger predicted

bounding boxes. To cope with this problem, a negative constant (α

and β; in this research, 5 and 6 pixel respectively) was added to the

formula. This resulted in areas much closer to the manually calculated

analogs.

Area¼ π� width�αð Þ� resolutionð Þ=2Þ � height�βð Þ� resolutionð Þ=2Þ:
ð1Þ

In the second step of the post-processing, the detections are

loaded into a GIS environment, and the location of every potential

RCH is compared with a spatial layer containing forested areas (see

https://www.sciencebase.gov/catalog/item/

5b6fa9d4e4b0f5d57878e707). All detections situated outside of

woodland are discarded, as research has shown that over 95% of all

known RCHs are situated in forested areas (dedicious and conifer for-

est, Johnson et al., 2015). This aids in filtering out some False Posi-

tives created by landscape objects such as swimming pools,

roundabouts and so on.

Finally, the average slope in the vicinity of the potential RCHs has

been automatically calculated using a combination of different GIS

processing algorithms (see Algorithm 1). This process is comparable

with how the average slope surrounding RCHs is manually calculated

usually (see for instance Johnson & Ouimet, 2021). For every

F IGURE 4 Excerpt of LiDAR data, visualized with Simple Local
Relief Model (Hesse, 2010), showing the outline of a RCH (black), the
ground truth (green) and the predicted bounding box (blue) [Colour
figure can be viewed at wileyonlinelibrary.com]

Algorithm 1 Calculation of the average slope in

the vicinity of RCH detections.

Algorithm 1: Average Slope

Input: detection polygons

Output: average slope value

1 for each polygon do

2 buffered_bbox compute buffer (20m radius) of

polygon

3 surrounding_bbox compute difference

between buffered_bbox and polygon

4 average_slope = median of surrounding_bbox on

slope map (5m resolution)

5 slope_class = classify average_slope in ≤4 /

4–8 / 8–12 / 12–16 / >16

6 end

der VAART ET AL. 7

 10990763, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/arp.1889, W

iley O
nline Library on [25/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://www.sciencebase.gov/catalog/item/5b6fa9d4e4b0f5d57878e707
https://www.sciencebase.gov/catalog/item/5b6fa9d4e4b0f5d57878e707
http://wileyonlinelibrary.com


bounding box, a buffer with 20 m radius is generated. The original

bounding box is removed from this buffer to reduce distortions in the

average slope value due to slope variation within the RCH. The result-

ing polygon is compared with a slope map (5 m cell size). Empirically,

we found that the median of slope values inside the polygon gave the

best results as compared with manually generated average slope

values and was less affected by outliers. In addition, the detections

are divided into five classes (<4�/4�–8�/8�–12�/12�–16�/>16�),

based on the calculated average slope value. The latter is done to

make an informed distinction between RCHs on (relatively) flat terrain

and more steep terrain.

3.4 | Implementation details

We used the six versions of the YOLOv4 framework with CSPDar-

knet53 as the backbone CNN. The CNN was pre-trained on the

Microsoft COCO dataset (Lin et al., 2014) and fine-tuned for 4000

epochs with an initial learning rate of 0.001 on our own training data-

set (see Section 2). During and directly after training, the performance

of the six versions of YOLOv4 was determined on the validation data-

set. Subsequently, the models were used to detect RCHs in the test

datasets (see Tables 1 and 2), and the results were post-processed

(see Section 3.3) and evaluated.

The training and testing of the frameworks was implemented on

the browser-based Colaboratory platform (Colab Pro+) from Google

Research (Google, 2022). Google Colab is a specialized version of

Jupyter Notebook, which is cloud-based and offers free computing

resources (e.g., GPUs). This platform is connected to Google Drive,

where the necessary data (e.g., training and testing dataset and model

weights) are stored. Therefore, Colab provides straightforward imple-

mentation of the developed models, allows multiple researchers to

access and use the same data and code and makes dissemination of

the developed approach simple.

3.5 | Performance metrics

To evaluate and compare the performance of our Deep Learning

model, the common metrics Recall (R; Equation 2), Precision (P; Equa-

tion 3) and F1-score (F1; Equation 4) were calculated (Chicco &

Jurman, 2020; Verschoof-van der Vaart, 2022) by determining the

number of True Positives (TP), False Positives (FP) and False Nega-

tives (FN). Recall gives a measure of how many relevant objects are

selected, whereas Precision measures how many of the selected items

are relevant. The F1-score is the harmonic mean of the Precision and

Recall and a single metric of the model's overall performance

(Sammut &Webb, 2010). These metrics range between 0 and 1, where

higher values indicate better performance.

Recall¼TP= TPþFNð Þ: ð2Þ

Precision¼TP= TPþFPð Þ: ð3Þ

F1¼2� Recall� Precisionð Þ= RecallþPrecisionð Þ: ð4Þ

To obtain the highest F1-scores, we employed threshold moving (Zou

et al., 2016). By default, a Deep Learning model uses a certain confi-

dence threshold: Detections with a confidence score that equals or

exceeds this threshold are included in the results, whereas detections

with a lower confidence score are discarded. This confidence thresh-

old is generally set to an arbitrary number, typically 0.5. However, by

changing the threshold and recalculating the performance metric, an

optimal trade-off between Recall and Precision can be found, resulting

in the highest F1-score (Zou et al., 2016). Therefore, we empirically

calculated the optimal confidence threshold for the validation and test

datasets and used these (see Table 5). Although this might complicate

the comparison of the performance between datasets, it better

shows the capability and maximum performance of the model on that

particular dataset.

TABLE 5 The performance (Recall, Precision, F1) of the different versions of the YOLOv4 framework on the validation and test datasets.
Notice the difference in confidence threshold between the different datasets.

Validation (conf thresh
0.25) Test area 1 (conf thresh 0.5) Test area 2 (conf thresh 0.9)

Model
Upsample
stride

Loss
function

Accuracy
metric Recall Precision F1 Recall Precision F1 Recall Precision F1

1 2 CIoU mAP@0.5 0.90 0.85 0.88 0.65 0.89 0.75 0.38 0.15 0.21

2 4 CIoU mAP@0.5 0.90 0.87 0.89 0.61 0.89 0.73 0.36 0.24 0.28

3 2 GIoU mAP@0.5 0.91 0.86 0.88 0.71 0.69 0.70 0.52 0.09 0.15

4 4 GIoU mAP@0.5 0.90 0.87 0.88 0.66 0.88 0.754 0.40 0.18 0.24

5 2 GIoU mAP@0.9 0.90 0.85 0.87 0.62 0.87 0.72 0.30 0.25 0.27

6 4 GIoU mAP@0.9 0.91 0.86 0.88 0.60 0.92 0.72 0.25 0.37 0.30
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4 | RESULTS

4.1 | General results

Table 5 shows the performance of the different versions of the

YOLOv4 framework on the validation and test datasets. The perfor-

mance (F1) on the validation dataset is high, on average 0.88, which

demonstrates that the detection method is suitable—at least on a

technical level—for this specific task (see Verschoof-van der

Vaart, 2022). The performance on both test areas is lower. The perfor-

mance (F1) on Test area 1 is on average 0.73. Although the average

Precision (0.86) is very similar to the validation dataset (0.86), a clear

drop in average Recall can be observed (0.90 to 0.64). This reduced

performance between the validation dataset (or a small, non-random,

selective dataset) and test datasets (‘realistic’ datasets representing

the real-world situation) has been observed in various studies

(Soroush et al., 2020; Verschoof-van der Vaart et al., 2020) and is

related to several factors, such as the proportion of positive and nega-

tive subtiles (i.e., subtiles with or without archaeological objects), the

total number of labelled objects in the area as compared with the size

of the area (i.e., the density), the variety in the state of preservation of

the archaeological objects (Verschoof-van der Vaart et al., 2020) and

land cover conditions (Suh et al., 2021).

Another factor that can have a considerable impact on the perfor-

mance of detection methods are changes in the LiDAR data quality

(Bonhage et al., 2021; Suh et al., 2021; Verschoof-van der Vaart &

Landauer, 2022). This is clearly illustrated by the large decline in per-

formance between Test area 1 and Test area 2 (Table 5).

An inspection of the properties of the LiDAR data of both test

areas shows that Test area 2 has a lower ground point density than

Test area 1 (Table 1). This results in the appearance of interpolation

errors (C�aţeanu & Ciubotaru, 2020). These errors are particularly

problematic for this research, as their appearance in the interpolated

and visualized DEM data is often round and thereby very comparable

with RCHs (Figure 5). This results in the severe drop in Precision from

on average 0.86 (Test area 1) to on average 0.21 (Test area 2). As a

solution to this problem, an additional post-processing step was

developed to automatically filter out the majority of FPs resulting

from these interpolation errors.

Further investigation proved that the slope within the interpola-

tion errors varies little; that is, the standard deviation (stdev) of the

slope within the errors is low. Therefore, a combination of different

GIS processing algorithms (Algorithm 2) was developed. For every

bounding box (detection polygon), the centroid is computed, and a

buffer with 4 m radius is generated. The size of the buffer was empiri-

cally determined to make sure no edges of the RCHs or the interpola-

tion artefacts where included, while still allowing the computation of

the slope standard deviation by including enough raster cells. These

buffer polygons are compared with a slope map of the original DEM

resolution, which has been created with an added z-factor of 10 and

then has been subsequently converted to integer values to allow the

use of the Zonal Statistic Toolbox in ArcGIS. For each buffer polygon,

the standard deviation (stdev) of the slope is calculated. Subsequently,

the buffer polygon feature tables are joined with the detection poly-

gons based on their location. Every detection polygon with a slope

standard deviation lower or equal than the threshold of 4.5 is

removed. This threshold was determined by comparing the slope stan-

dard deviation of a selection of the interpolation errors.

F IGURE 5 Excerpt of LiDAR data, in scale 1:2000, visualized with
Simple Local Relief Model (Hesse, 2010), showing a relict charcoal
hearth (RCH) in blue outline and an interpolation error in red outline
[Colour figure can be viewed at wileyonlinelibrary.com]

Algorithm 2 Removal of interpolation errors based

on the standard deviation of the slope within

detections.

Algorithm 2: Interpolation Error Removal

Input: detection polygons

Output: detections without interpolation

error FPs

1 for each polygon do

2 centroid compute centroid of

detection_polygon

3 buffered_point compute buffer (2m radius)

of centroid

4 stdev_slope = stdev of buffered_point on

slope map (0.6m resolution)

5 detections = join on location buffered_points

and detection_polygons

6 Filtered_detections = remove detection if

stdev_slope ≤4.5

7 end

der VAART ET AL. 9

 10990763, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/arp.1889, W

iley O
nline Library on [25/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

http://wileyonlinelibrary.com


To evaluate the effectiveness of this post-processing step, the

models' performance on Test area 1 and Test area 2 was recalculated

(Table 6). Based on the results, interpolation errors account for 25–

41% of the FPs in Test area 1, whereas in Test area 2, the percentage

lies between 43% and 59%. The remaining FPs are mainly caused by a

variety of natural landforms that ‘mimic’ RCHs. For Test area 1, a

slight decrease in Recall (0–1 point) and an increase in Precision (2–8

points), with an overall increase in performance (F1) between 0 and

3 points, can be observed. The impact on the performance of Test

area 2 is more notable. Whereas the Recall is only slightly decreasing,

the Precision increases by 5–20 points; that is, the procedure is effec-

tive and efficient in predominantly deleting false positive sites. In

summation, false positives are generally caused by areas with low

ground point density (resulting in interpolation errors) but with a cen-

tral elevation value higher than the surrounding values. Therefore,

these areas can be automatically selected as being detections with

low standard deviation of the elevation values.

4.2 | Results of the implementation of specific
adjustments

The results (Tables 5 and 6) display that the specific adjustments are

of influence on the performance. More specifically, the increase of the

upsampling stride seems to have a negative influence on Recall, while

improving Precision. Changing the loss function from CIoU to GIoU

improves Recall but decreases Precision. Finally, changing the mAP

results in an increase in Precision but a decrease in Recall. The version

of YOLOv4 with the best Recall is model 3, which concerns the base

model with GIoU. However, this model also has the lowest Precision

of all versions (see Tables 5 and 6). The opposite is true for model

6. This version reached the highest Precision but has the lowest Recall

of all versions (Tables 5 and 6). The models with the overall best per-

formance (F1) in both test areas are models 2 and 4, of which the for-

mer uses an increased upsampling stride and the latter an increased

upsampling stride and GIoU.

4.3 | Results of the post-processing

To evaluate the automatically computed area (see Equation 1), the

results of 25 randomly selected RCHs in Test area 1 were compared

with manually determined areas. The results (Figure 6) show that on

TABLE 6 The original and recalculated performance (Recall, Precision, F1) of the different versions of the YOLOv4 framework on the test
datasets. Notice the difference in confidence threshold between Test areas 1 and 2.

Test area 1 (conf thresh 0.5)Original Test area 1 (conf thresh 0.5)Recalculated

Model Upsample stride Loss function Accuracy metric Recall Precision F1 Recall Precision F1

1 2 CIoU mAP@0.5 0.65 0.89 0.749 0.64 0.96 0.757

2 4 CIoU mAP@0.5 0.61 0.89 0.73 0.61 0.93 0.73

3 2 GIoU mAP@0.5 0.71 0.69 0.70 0.70 0.76 0.73

4 4 GIoU mAP@0.5 0.66 0.88 0.754 0.65 0.91 0.759

5 2 GIoU mAP@0.9 0.62 0.87 0.71 0.62 0.92 0.74

6 4 GIoU mAP@0.9 0.60 0.92 0.725 0.59 0.94 0.72

Test area 2 (conf thresh 0.9)Original Test area 2 (conf thresh 0.9)Recalculated

Model Upsample stride Loss function Accuracy metric Recall Precision F1 Recall Precision F1

1 2 CIoU mAP@0.5 0.38 0.15 0.21 0.37 0.29 0.32

2 4 CIoU mAP@0.5 0.36 0.24 0.28 0.34 0.42 0.38

3 2 GIoU mAP@0.5 0.52 0.09 0.15 0.5 0.14 0.21

4 4 GIoU mAP@0.5 0.40 0.18 0.24 0.39 0.32 0.35

5 2 GIoU mAP@0.9 0.30 0.25 0.27 0.3 0.43 0.35

6 4 GIoU mAP@0.9 0.25 0.37 0.30 0.25 0.57 0.34

F IGURE 6 Boxplot graph showing the difference (in fractions)
between the automatically and manually determined area of 25 relict
charcoal hearths (RCHs) [Colour figure can be viewed at
wileyonlinelibrary.com]
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average, the automatically determined area is still an overestimation

of the actual area. Even though the overestimation is less than 20 m2

on average, which we deem an acceptable error.

To evaluate the performance of the average slope algorithm (see

Algorithm 1), the results for 50 RCH locations in the training area

were compared with manually determined slope values (see Bonhage,

Hirsch, Raab, et al., 2020). The results show that 46% (23 out of 50)

of the automatically calculated slope values are within 1 degree of the

manually determined slopes, while 94% (47 out of 50) are within

4 degrees. Three locations yield widely different values (>4 degree dif-

ference). A manual investigation of these outliers shows that two are

located on a ridge surrounded by low-lying areas (e.g., gullies;

Figure 7a,b). For the other outlier (Figure 7c), no clear cause for the

discrepancy can be found, although it should be noted that the differ-

ence between the two slope values for this location is reasonably low

(4.1 degrees) in comparison with the other outliers (6.1 and 9.5

degrees, respectively).

4.4 | Application and transferability of the
ARCHMAGE workflow

Based on the results (Section 4.3), model 2 was regarded as the most

suitable to be used for large scale mapping of RCHs in the entire state

of Connecticut. The testing time on approximately 214 500 subtiles

took about 40 h on Colab, using a Nvidia T4, P100 or V100 GPU. The

results were post-processed (see Sections 3.3 and 4.3), which resulted

in 43 197 detections. The distribution of these detections shows a

clear concentration in the northwestern part of Connecticut, with up

to 194 RCHs per sq. km (see Figure 8). The highest concentration can

be found in the western part of the Salisbury district, in Sharon

County. To get a first impression of the results, a comparison was

made to the distribution of known RCHs, obtained through manually

mapping, by Anderson (2019). Note that the latter only shows the

presence or absence of RCHs, and our results also show the number

F IGURE 7 Excerpts of LiDAR data, in scale 1:2000, visualized with Simple Local Relief Model (Hesse, 2010), showing the three predicted
relict charcoal hearth (RCH) locations in blue outline [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 Overview of the distribution of relict charcoal hearths
(RCHs) (per sq. km) in the state of Connecticut, based on prior
research by Anderson (2019; top) and current research (bottom). The
top figure shows the presence (orange) or absence (lilac) of RCHs. The
bottom figure shows the numbers of RCHs per sq. km (in shades of
orange) or absence (lilac). Note that cells with less than 3 RCHs are
omitted. The Training area is shown in black, the Test areas in blue.
The red outline shows the newly discovered concentration of RCHs
near West Stafford. [Colour figure can be viewed at
wileyonlinelibrary.com]
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of RCHs per sq. km (Figure 8). A visual inspection reveals a clear over-

lap between both distributions, with minor differences between the

extents of individual concentrations. A major deviation can be

observed in the northeastern part of the state (Figure 8, red outline).

This was confirmed to be a concentration of previously unknown

RCHs in Shenipsit State Forest near the town of West Stafford

(Figure 9). This demonstrates that ARCHMAGE is able to successfully

detect RCHs over the entire state of Connecticut, even when the ter-

rain and LiDAR quality varies (9).

5 | DISCUSSION

With the ever-increasing reliance of archaeologists on remotely

sensed data (Opitz & Herrmann, 2018)—with some even advocating

for remote sensing as the primary source for archaeological prospec-

tion of large areas (Banaszek et al., 2018)—the usability of automated

mapping approaches for large-scale archaeological survey becomes

ever more important and necessitates investigation (Lambers

et al., 2019). However, up-to-now, the application of automated

methods is generally limited to relatively small test areas, although a

trend towards covering larger areas can be observed (e.g., Berganzo-

Besga et al., 2021; Carter et al., 2021; Suh et al., 2021). Even though,

questions concerning the reliability and transferability of these

methods for large spatial scales remain (Cowley et al., 2020; Kermit

et al., 2018; Verschoof-van der Vaart & Landauer, 2022). Presumably,

the application on large areas is still mostly limited by DEM data avail-

ability, problems in handling and processing large amounts of spatial

data and, most pressingly, the uncertainty caused by changes in

LiDAR data quality over larger areas. The usability of a method on

areas with different topography, land-use and/or LiDAR data quality

is challenging. As shown in this research, variations in LiDAR data

quality presumably caused by differences in data acquisition and pro-

cessing (Opitz & Cowley, 2013) and/or varying land cover conditions

(Bonhage et al., 2021; Cowley et al., 2020; Suh et al., 2021) can result

in reduced and heterogeneous ground points densities and interpola-

tion errors (C�aţeanu & Ciubotaru, 2020) that can greatly influence

detection performance. As shown in this study (Tables 5 and 6),

increasing the spatial scale of the investigated area results in a drastic

decrease in performance (see also Trier et al., 2021). Unsurprisingly,

the efficiency of automated mapping approaches seems scale depen-

dent (Bonhage et al., 2021). The effect of differences in LiDAR quality

has also been noted in other research on automated (Banasiak

et al., 2022; Dolejš et al., 2020; Trier & Pilø, 2012) as well as manual

mappings (Risbøl et al., 2013) of archaeological objects in LiDAR data.

We showed that these variations in LiDAR data quality could be

addressed by an additional post-processing step, without decreasing

the information value of the LiDAR data (e.g., by increasing the resolu-

tion of the DEM although this could be a valid solution as well). The

results of the application (Section 4.4) show that with this additional

step, ARCHMAGE is able to efficiently and effectively detect RCHs

on very large spatial scales.

Another obstacle appears to be the general low density of objects

(i.e., the number of objects per sq km) within the test areas. This is a

problem inherent to archaeological automated detection, as archaeo-

logical objects are more often absent than present in the landscape

(Trier et al., 2021), and consequently, the majority of subtiles in a test

datasets will not contain an object of interest. Identifying objects in

such low-density datasets is a challenging task, not only for auto-

mated methods but also for domain experts, with a decrease in object

density having a negative influence on performance (Soroush

et al., 2020; Verschoof-van der Vaart, 2022). This is, apart from the

problem with LiDAR data quality outlined above, the most probably

cause of the decrease in performance of our method between Test

area 1 (high-density: 29 RCHs/sq. km) and Test area 2 (low-density:

1.75 RCHs/sq. km; see also Table 1).

In addition, the objects within our test datasets are generally

small and scarcely distributed, especially compared with objects in

more general image datasets, such as the Microsoft COCO dataset

(Lin et al., 2014), which are often large and predominately present

(see for instance Verschoof-van der Vaart, 2022, fig. 7.2). Deep Learn-

ing methods take advantage of the large size of objects to reduce

computational cost by downscaling images when they pass through a

CNN. However, this also removes small objects, rendering them

impossible to detect (Olivier & Verschoof-van der Vaart, 2021). Small

and scarcely distributed objects lead to the problem of foreground-

background class imbalance in object detection (Oksuz et al., 2019),

where one class is over-represented, in this case the background class,

whereas the other class (foreground, i.e., the archaeological objects) is

under-represented (Luque et al., 2019). This imbalance can have a

major impact on the classification and generalization capacity of

F IGURE 9 Excerpt of LiDAR data, visualized with Simple Local
Relief Model (Hesse, 2010), showing part of the newly discovered
cluster of relict charcoal hearths (RCHs) in Shenipsit State Forest near
West Stafford [Colour figure can be viewed at wileyonlinelibrary.com]
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CNNs, leading to bias and low performance, as these are generally

geared towards detecting large, abundantly present objects.

A final challenge when using automated detection on a large scale

is the matter of validating the results, as using a singular methodology

as the primary source of information, without verifying the results,

seems neither scientifically sound, nor desirable (Bennett et al., 2014).

However, manually verifying all detections made on such a large spa-

tial scale runs the risk of moving the professional bottleneck

(Smith, 2014) from manual analysis to manual verification, especially

when automated approaches with middling performance are used.

Therefore, either an approach with very high performance is required

or alternative strategies need to be explored to verify the results

(Trier et al., 2021; Verschoof-van der Vaart et al., 2020), such as the

use of citizen science (Herfort et al., 2019; Lambers et al., 2019). Not-

withstanding, the need for detailed verification is very dependent of

how the method, and its results are embedded within the wider

research framework (Banaszek et al., 2018; Cowley et al., 2020;

Lambers et al., 2019; Opitz & Herrmann, 2018). In the case of this

research, the aim was to develop a method that can be used in subse-

quent research on legacy effects on a landscape scale (see Section 1).

As such, the validation and correctness of every single detection

might not be necessary (see also Soroush et al., 2020). Alternatively, a

shift may become necessary from a fixation on individual detections

being correct, to the overall patterns being descriptive (Cowley, 2012;

Sadr, 2016). While individual detections might not always be correct;

the overall patterns in the landscape might be correctly reproduced

by the automated method (Gallwey et al., 2019). For instance, the

comparison in distribution of RCHs in Connecticut, as shown in

Figure 8, can inform us on of the methods ‘pattern descriptiveness’.
Although, the true value of using automated detection would lie in

the discovery of RCHs in areas priory devoid of these objects of inter-

est, that is, deviations from the prevailing pattern.

6 | CONCLUSION

In this research, we presented a novel approach (ARCHMAGE) based

on open source data and software to automatically detect RCHs in

large-scale LiDAR datasets and simultaneously provide general as well

as domain-specific information. The workflow consists of three steps:

a preprocessing step that converts the DEM data into input images

(subtiles), based on geospatial information about known RCHs; a step

concerning the Deep Learning-based object detection; and a post-

processing step where the results of the object detection are con-

verted back into geospatial data. In addition, two domain-specific

parameters, that is, area and local slope are calculated.

Our study shows that ARCHMAGE is able to effectively detect

RCHs in Connecticut, with F1-scores ranging between 0.21 and 0.76,

although an additional post-processing was needed to deal with varia-

tions in LiDAR quality between different test areas. The results of

applying best performing version of the prediction model (with an

average F1-score of 0.56) on the entire state of Connecticut show a

clear overlap with the known distribution of RCHs in the region, and

new site clusters were found as well, showing the usability of the

approach on large-scale datasets even when the terrain and LiDAR

quality varies.

Future research will focus on the improvement of the overall

workflow and especially the generation of domain specific informa-

tion. For instance, preprocessing of the LiDAR data to remove inter-

polation errors would enhance the performance of the workflow.

Additional post-processing is envisioned to deal with overlapping

bounding boxes, caused by the overlap in the subtiles (which is esti-

mated to occur in approximately 4% of all detections). Another possi-

ble angle of research would be to use semantic segmentation

(e.g., Guyot et al., 2021) to improve the calculation of domain specific

information. Furthermore, the results of the statewide detection and

analysis will be used in subsequent research to analyse site distribu-

tions as well as morphological and pedological legacy effects of his-

toric charcoal burning on a landscape scale. The additional

information of the sites local slope and surface area will be used to

calculate specific site volumes and subsequently how much soil sub-

strate was moved and what the sites element stocks are. The datasets

and methods created in this research will be made freely available in

the near future.
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