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ABSTRACT
Large-scale policing data is vital for detecting inequity in police
behavior and policing algorithms. However, one important type of
policing data remains largely unavailable within the United States:
aggregated police deployment data capturing which neighborhoods
have the heaviest police presences. Here we show that disparities
in police deployment levels can be quanti�ed by detecting police
vehicles in dashcam images of public street scenes. Using a dataset
of 24,803,854 dashcam images from rideshare drivers in New York
City, we �nd that police vehicles can be detected with high accu-
racy (average precision 0.82, AUC 0.99) and identify 233,596 images
which contain police vehicles. There is substantial inequality across
neighborhoods in police vehicle deployment levels. The neighbor-
hood with the highest deployment levels has almost 20 times higher
levels than the neighborhood with the lowest. Two strikingly dif-
ferent types of areas experience high police vehicle deployments
— 1) dense, higher-income, commercial areas and 2) lower-income
neighborhoods with higher proportions of Black and Hispanic resi-
dents. We discuss the implications of these disparities for policing
equity and for algorithms trained on policing data.
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1 INTRODUCTION
How do citizens hold the police to account, ensuring that they are
equitably protecting those they serve? A vital tool in the struggle
for police accountability has been data shedding light on police
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activity. Statistical analysis of police data has been used to doc-
ument disparities in police stops, searches, use of force, and re-
spect [2, 25, 27–29, 52, 53, 64, 73]. These statistical analyses have
been instrumental to driving policy change and police reform: exam-
ples include a reduction in random police searches in Los Angeles
following a statistical investigation documenting racial bias [9, 56]
and a consent decree in Chicago following a Department of Justice
investigation documenting numerous rights violations [71]. In re-
cent years, policing datasets have become more widely available
to the public [34, 53, 65], allowing activists, policymakers, and re-
searchers to examine a range of policing behavior, including stops,
searches, and arrests.

However, there is still one type of data that remains largely un-
available to the public within the United States: information on
where the police are deployed in the �rst place. This data is crucial
for several reasons. First, statistical analyses of police deployments
have revealed ine�ciencies or inequities [49, 50] in which some
areas have disproportionate police deployments. Second, disparities
in police deployments create biases in downstream outcomes like ar-
rests. If an area has a heavier police presence, crimes are more likely
to result in arrests. Thus, more heavily policed neighborhoods may
appear to be more prone to crime, when they are simply more prone
to observed crime; similarly, residents of these neighborhoods may
appear to be more likely to commit a crime, when in fact they are
simply more likely to be arrested for it. This bias has been observed
in practice: for example, African Americans are far more likely to be
arrested for marijuana use than are white Americans, even though
surveys of drug use do not show the same racial disparities [57].
This bias could also propagate into algorithms used in policing and
criminal justice — including pretrial risk assessments [15, 16, 42]
and predictive policing algorithms [20, 45, 54, 58, 62] — since these
algorithms can use arrests, or outcomes downstream from arrests
like convictions, as input.

Deployment data are thus essential for monitoring disparities
or ine�ciencies in policing and detecting potential biases in al-
gorithms. Even aggregated deployment data — grouped by neigh-
borhood or demographic — would be useful towards this end. In
spite of this, police deployment data remains largely unavailable
to the public within the United States. Addressing this need, we
introduce a novel methodology for monitoring police deployments:
detecting police vehicles in dashcam images of public street scenes.
Using a dataset of more than 24 million dashcam images collected
throughout New York City in 2020, we annotate a training dataset
of 9,449 images for presence of police vehicles, and train a deep
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learning model to identify police vehicles with high accuracy (av-
erage precision 0.82; AUC 0.99). We use this model to identify
233,596 dashcam images which contain police vehicles. We develop
a framework for analyzing inequality in police deployment levels
across neighborhoods — that is, the probability an image within a
given neighborhood contains a police vehicle — which compensates
for several data and model biases. Our analysis reveals substantial
disparities in police deployments: the neighborhood with the high-
est police deployments has almost 20 times higher deployments
than the neighborhood with lowest deployments. Two very dif-
ferent types of areas experience high police deployments: dense,
high-income, commercial areas; and areas with higher proportions
of Black and Hispanic residents and lower incomes. We discuss
the implications of these disparities for policing and algorithmic
equity. We also discuss the residual potential biases in the data
which cannot be removed by our extensive debiasing pipeline, and
argue that this fact suggests that the police should simply release
more reliable and straightforward aggregated deployment data.

2 RELATEDWORK
2.1 Auditing policing practices
An extensive academic literature uses large-scale policing data to
statistically audit policing for e�ciency and equity [1, 2, 25, 27–
30, 45, 52, 53, 59, 64, 73, 75]. (Here and throughout the paper, we
focus our discussion on policing within the United States because
policing practices are highly heterogeneous across countries and
our data is from New York City.) The existing academic literature
largely analyzes outcomes downstream of police deployment pat-
terns: that is, it studies not where police go, but what they do once
they get there. For example, many papers [27, 28, 30, 52, 53, 59, 75]
quantify disparities in how likely the police are to stop drivers of
di�erent races. Work has also studied post-stop outcomes: for exam-
ple, [29] studies racial disparities in whether police grant leniency
to drivers pulled over for speeding; [2, 36, 52, 53, 64] study racial
disparities in police searches; and [73] studies racial disparities
in how respectful o�cers are to drivers of di�erent races. Work
also quanti�es police misconduct [31]; use of force [25]; police
killings [21]; and downstream e�ects of police violence [1].

Outside of academia, there have also been extensive journal-
istic, activist, and legal e�orts to quantify disparities in policing.
Journalistic e�orts include an investigation by the Los Angeles
Times [10, 56] which documented racial bias in policing practices,
ultimately resulting in a curtailment of random vehicle searches in
an e�ort to reduce racial bias [9]. Closer to our own work, Mueller
and Baker [49] analyzed con�dential data on detective deployments
within New York City and found racial and socioeconomic inequal-
ity in whether neighborhoods had enough homicide detectives to
meet their needs. This report was followed by calls for increased
transparency andmore equitable deployments [50], testifying to the
importance of police deployment data. Activists have also compiled
large datasets on police activity [65]. Finally, many legal e�orts
against the police have leveraged large-scale policing data [67, 71].

Other e�orts have quanti�ed disparities in policing using datasets
other than large-scale data from the police themselves. For exam-
ple, journalists have analyzed footage of individual police encoun-
ters [66]; researchers have also interviewed individuals about their

experiences with police [22] and conducted analyses of survey data
on experiences with police [19].

2.2 E�ect of deployment disparities on
algorithmic bias

Many algorithms used in policing and criminal justice use data from
outcomes downstream from police deployments, including arrests
and convictions. Examples include pretrial risk assessments [15, 16,
42] and predictive policing algorithms [20, 45, 54, 58, 62].1 Thus,
disparities in police deployments can bias the data these algorithms
use [16, 20, 45, 54, 58, 62]. For example, Lum and Isaac [45] argue
that disparities in police deployments could result in increasingly
severe biases over time in predictive policing algorithms trained
on arrest data. In their model, heavy police deployments in areas
result in higher arrest levels at the same crime levels; consequently,
the algorithm learns that areas with heavy police deployments are
riskier than they really are, and recommends that even more police
be deployed there; this further biases the arrest rates which are fed
back into the algorithm, exacerbating inequality over time.

2.3 Analysis of public street scene datasets
Streetview imagery datasets – for example, Google Street View,
Microsoft Bing Maps, Baidu Total View, and Tencent Street View –
are increasingly used for urban analytics. Research has used such
datasets to count trees [68, 77], utility poles [40], tra�c signs [8, 69],
bike racks [46] and manholes [72]. Streetview data has also been
used for computational social science purposes: for example, esti-
mating the demographic makeup of neighborhoods [26] or quanti-
fying human political stereotyping [79].

More recently, dashcam datasets collected by Automotive Origi-
nal Equipment Manufacturers (OEMs) and add-on manufacturers
such as Nexar or Mobileye that provide cloud-connected dashcam
products have enabled street view image datasets to be collected
at a greater spatial scale and temporal density [78] (in contrast to
Streetview data, which may be collected at much lower temporal
density). This type of data has been used to assess pavement quality
and classify road surface types [17], detect lanes or curbs [80], or
detect potholes and other defects [60].

Dashcam data has a unique combination of properties that make
it apt for the automated detection of objects in dense, feature-rich
environments. Dashcam data is frame-by-frame, inexpensive to
gather, not �xed in terms of camera perspective, and capable of
depicting pedestrians, other vehicles, and small objects in detail.
Dashcam datasets have been used to characterize when and where
people were out in New York City during di�erent phases of curfew
and social distancing policy [12, 13, 35]. This work points to the
possibility of using the density of the data from dashcam datasets
to look at more dynamic aspects of urban environments–the num-
ber of people and cars, the density of tra�c, and the prevalent
activities [13].

Closest to our own work in this genre is Sheng et al. [63], which
uses Streetview data to quantify how the density of surveillance
cameras varies across and within cities. However, our work di�ers
in important ways: most notably, we study police deployment, not

1We note that the implementation details of many of these algorithms remain murky,
and not all of them rely on arrest or conviction data.
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surveillance cameras. Overall, the works are complementary: Sheng
et al. [63] analyzes surveillance cameras across 16 cities at lower
spatial and temporal resolution, and we analyze police deployments
across a single city at high resolution.

3 DATASET
We estimate the total number and spatial distribution of police
vehicles visible in public street scenes in New York City using a
large dataset of dashcam images collected throughout 2020. In this
section, we describe the dashcam dataset. In the next section, we
describe our pipeline for analyzing it.

3.1 Dataset details
Our dataset is provided by Nexar, a company which provides ride-
sharing (Uber, Lyft, NYC Taxi, etc) drivers with dashboard cameras
(dashcams) to record their drives (which can be useful if, for exam-
ple, an accident occurs). The dataset consists of 24,803,854 images
taken throughout the �ve boroughs2 of New York City between
March 4 2020 and November 15 2020. Each image is 1280 x 720
pixels. We remove a small number of duplicate images (less than
0.01% of the overall dataset) with identical latitudes, longitudes,
and timestamps.

3.2 Geographic and temporal coverage
Data was provided to us by Nexar in two phases. Phase 1 consists
of 3,987,835 images sampled prior to September 1 2020, and is ex-
tremely geographically and temporally skewed. Geographically,
it is concentrated within the boroughs of Manhattan and Brook-
lyn, and does not contain data from the boroughs of Staten Island,
Queens, and the Bronx at all; temporally, it overrepresents data
from Thursday nights. Phase 2, which constitutes the majority of
the dataset, consists of 20,816,019 images sampled after October 4
2020, and is much more geographically and temporally representa-
tive: it is sampled at all times of the day, on all days of the week,
and also covers the entire geographic area of New York City.

Because Phase 2 is much more representative than Phase 1, we
conduct our primary analysis of disparities using only data from
Phase 2. We additionally conduct numerous validations and bias
corrections, described in §4.1, to compensate for non-representative
sampling in the dataset. Geographic and temporal coverage during
the Phase 2 period is very good. Speci�cally, 100% of hours during
the Phase 2 period are covered; 99.6% of Census Block Groups
(CBGs)3 have at least one image, with a mean of 168.2 images
per CBG; 88% of roads contained within the borders of New York
City are covered by at least one image, using data from OSMNX
[6]. Figure 1 summarizes geographic data availability; Figure S1
summarizes temporal data availability.

3.3 Ethical considerations
Our use of this dataset was deemed not human subjects research
by our university’s Institutional Review Board. Nonetheless, we

2New York City is divided into �ve areas, referred to as boroughs: Queens, Brooklyn,
Manhattan, the Bronx, and Staten Island.
3Census Block Groups are Census areas consisting of a couple hundred to a couple
thousand people, and are the �nest geographic resolution at which we conduct our
analysis. New York City has more than 6,000 Census Block Groups.
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Figure 1: Number of images per Census Block Group in the
Phase 2 dataset we use in our primary analysis of disparities.

carefully considered the costs and bene�ts of this research prior to
embarking on it. A key concern for this type of research is that the
"subjects"–police vehicles, other vehicles, and other bystanders–do
not consent to the initial data collection nor its subsequent use
in this research. However, under American Psychological Associ-
ation Ethics guidelines [3], informed consent procedures can be
waived when permitted by law, federal and institutional regula-
tions, or when the research would not reasonably be expected to
distress or harm participants and involves naturalistic observations
or archival research for which disclosure of responses would not
place participants at risk of criminal or civil liability or damage their
�nancial standing, employability or reputation, and for which con-
�dentiality is protected. These provisions are the primary reason
why naturalistic observation in public settings does not normally
require informed consent [32]. Ultimately, we felt that the potential
bene�ts of this work — namely, quantifying disparities in police
deployments to enable more equitable policing — more than o�set
the costs. This conclusion is consistent with the numerous research
works [12, 13, 26, 35, 63, 79] which have used similar datasets cap-
turing public street scenes for research. However, we do believe
that it would bene�t the public to have broader awareness that data
from instruments such as dashcams are now being aggregated on a
large-scale basis.

4 STATISTICAL ANALYSIS
In this section, we describe our procedure for assessing disparities in
police deployments. First, we describe the mathematical framework
to estimate disparities in police deployments while compensating
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for potential data and model biases (§4.1). We then provide de-
tail on the deep learning model, which is a key ingredient to this
framework, as it detects police vehicles from dashcam images (§4.2).

4.1 Mathematical framework
Our goal is to assess disparities in police vehicle deployments while
mitigating the e�ects of potential model or dataset biases. Here
we introduce our mathematical framework for doing this. Before
describing the details of the framework, the high-level intuition is
that we are reweighting the Nexar data sample, which is sampled
from a non-representative set of locations, so that it matches the
locations where di�erent demographic groups actually live. For
example, to calculate the police deployment levels that Asian resi-
dents of New York City experience, we reweight the original data
sample to upsample neighborhoods with larger Asian populations.

More formally, let � denote the demographic variable — for
example, racial group — over which we wish to assess disparities in
police deployment, and let 0 denote speci�c values of this variable.
Our goal is to estimate the probability a person of group 0 has
a police vehicle visible when they are on a street in their home
Census area: in other words, to estimate Pr(~ = 1|� = 0), where ~
indicates whether there is a police vehicle visible. Letting ⇠ denote
Census area, and summing over Census areas, we can write:

Pr(~ = 1 |� = 0) =
’
2

Pr(⇠ = 2 |� = 0) · Pr(~ = 1 |⇠ = 2,� = 0)

=
’
2

Pr(⇠ = 2 |� = 0) · Pr(~ = 1 |⇠ = 2 )
(1)

where the second line re�ects our assumption that conditional
on Census area, the probability a police vehicle is visible is constant
across groups: that is, one group within a Census area is no more
likely to observe a police vehicle than another. We use �ne-grained
Census areas throughout our analysis — Census Block Groups —
to render this assumption reasonable.4

We estimate the �rst term in the product, Pr(⇠ = 2 |� = 0), as
the fraction of people of group 0 who live in Census area 2 . Let
#20 denote the number of people of group 0 living in Census area
2 . Then, letting bPr(⇠ = 2 |� = 0) denote our estimate of the true
probability Pr(⇠ = 2 |� = 0), our estimator is:

bPr(⇠ = 2 |� = 0) = #20Õ
2 #20

(2)

The other term we must estimate to compute Equation 1 is Pr(~ =
1|⇠ = 2). Let ~̂ = 1 if our police vehicle detection model detects a
police vehicle in an image and ~̂ = 0 otherwise. Then our estimator
is:

bPr(~ = 1|⇠ = 2) = bPr(~̂ = 1|⇠ = 2) · bPr(~ = 1|~̂ = 1) +
bPr(~̂ = 0|⇠ = 2) · bPr(~ = 1|~̂ = 0)

(3)

In other words, we estimate the fraction of images which truly have
police vehicles in a Census area by taking the fraction classi�ed pos-
itive multiplied by the estimated classi�er precision bPr(~ = 1|~̂ = 1),
plus the fraction classi�ed negative multiplied by the estimated
classi�er false omission rate bPr(~ = 1|~̂ = 0). This procedure com-
pensates for imperfect classi�er performance. This procedure will
be invalid if classi�er performance — i.e., Pr(~ = 1|~̂ = 1) and
4We use data from the 2020 American Community Survey.

Pr(~ = 1|~̂ = 0) — does not remain constant across Census areas,
and in particular if it varies by demographic group 0. Given the
extensive literature illustrating that classi�er performance can vary
by by demographic group [7, 11, 14, 38, 76], this is important to
verify, and in §4.2.3 we do so.

Overall, our estimation procedure compensates for two types of
potential bias. Equation 2 compensates for a data bias, reweighting
the Nexar dataset (which is sampled from a set of locations which
does not necessarily match the population distribution; Figure 1)
to match the population distribution of demographic subgroups.
This is conceptually similar to inverse propensity weighting pro-
cedures [4] which are used to compensate for non-representative
data in other settings. Equation 3 compensates for imperfect model
performance, and allows us to check that model performance is
unbiased (i.e., calibrated) across demographic subgroups.

We note that there are other biases which could prevent us
from perfectly estimating disparities in police deployments. In the
Discussion section, we discuss two potential biases in more detail.
First, the sample of Nexar images we have within each Census
area 2 may be biased, in the sense that it may not capture the true
probability a resident of that Census area will see a police vehicle
at any given time when they are out on the road. For example,
if vehicles are prohibited from driving near protest areas, which
also have larger police presences, we will not have images of large
police presences near protests. It is not possible to correct for this
bias with the data we have because 1) the true distribution may
di�er from the Nexar sampling distribution along unobservable
dimensions which we cannot reweight along and 2) we may simply
have no Nexar images in some regions of the true distribution (e.g.
if all vehicles are banned near protests). A second potential bias is
that police vehicles represent only a subset of overall police activity:
for example, they do not capture o�cers on foot. We return to both
these points below.

4.2 Deep learning model
We train a deep learning model to identify police vehicles with
high accuracy. Our model training pipeline consists of three steps.
First, we annotate a large dataset of images for presence of police
vehicles (§4.2.1); second, we train a police vehicle detection model
on this dataset (§4.2.2); �nally, we use a held-out dataset to verify
that the model achieves high accuracy on the dataset overall and is
not biased with respect to demographic groups (§4.2.3).

4.2.1 Data annotation. We begin by creating training, validation,
and test datasets for our police vehicle detection model. Following
standard machine learning practice, we use the training set to opti-
mize the parameters of each machine learning model; the validation
set to select the model which yields the best performance; and the
test dataset to measure the performance of the chosen model. We
draw all training images from a random 10% of the dataset, and
reserve the remaining 90% for validating the model and analyzing
disparities.

A challenge in creating the training set is that the dataset is
imbalanced — the vast majority of images do not contain police
vehicles — and highly imbalanced datasets can produce inferior
model performance [33]. To mitigate this issue, we construct a
more balanced training set by sampling images near police stations,
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which are more likely to contain police vehicles: speci�cally, we
�lter for images within 0.25 miles of one of NYC’s 77 police precinct
stations, which raises the proportion of images with police vehicles
from about 1% to roughly 7%. The risk of this training strategy is
that it potentially introduces distribution shift [39], which can also
harm model performance, because images near police stations may
di�er from the overall image distribution; below, we describe how
we check for this concern.

We collect annotations for 15,250 images using Scale.AI [61], an
outsourcing platform for annotations similar to Amazon Mechani-
cal Turk. Each image is annotated with rectangular bounding boxes
to identify police vehicles. We utilize evaluation tasks (images pre-
veri�ed with ground truth annotations by us) on the platform to
disqualify inaccurate labelers. Every image labeled by a Scale.AI
annotator is then submitted to a review phase, where a separate,
high-scoring labeler checks each image for accuracy. In choosing
which types of NYPD vehicles to have annotators label, we account
for the fact that the NYPD has several divisions, including the pris-
oner transport, building maintenance, and museum units [55], that
are not involved in active policing. We instruct annotators to only
label NYPD sedans, SUVs, compacts, and trucks (but not buses or
4x4 trucks) to mitigate this. In total, 1,088 images from Scale.AI
have police vehicles; we add these to the training set.

To further increase the size of the training dataset, we use the
model trained on the Scale.AI annotations to select images which
it predicts have police vehicles (at a con�dence threshold of 0.9).
Speci�cally, we apply the model to 450,000 images selected at ran-
dom from the 10% training sample (not just images near police
stations); examine all images passing the 0.9 con�dence threshold
and manually verify whether these images do, in fact, contain police
vehicles, and add the images with veri�ed labels to the train set.
The �nal training set consists of 4,748 images with police vehicles
and 4,701 images without police vehicles.

In contrast to the training set, which oversamples images near
police stations, the validation and test splits are both random sam-
ples of 20,000 images from the overall dataset. A random sample
is essential because it provides us with an unbiased measure of
performance, which our estimation framework requires (§4.1). To
annotate the validation and test sets, we use Scale.AI to collect
annotations and manually audit all images labeled as positive for
correctness. The validation set includes 247 positive images (i.e.,
which contain police vehicles) out of 20,000, and the test set includes
239 positive images out of 20,000.

4.2.2 Model training. We frame our police vehicle detection prob-
lem as a rectangular object detection problem. We �ne-tune models
from the widely-used You Only Look Once (YOLO) suite of object
detectionmodels [74] which have been pretrained on theMS-COCO
dataset to detect object classes including vehicles [24]. We compare
performance from a range of model con�gurations (for example,
we compare performance from model variants YOLO5X [70] and
YOLO7-E6E [74], and experiment with hyperparameter evolution).
We use average precision on the validation set to select the model
which yields optimal performance.5 Our �nal model is trained using

5Because each image can potentially contain multiple police vehicles and multiple
model predictions, to compute average precision, we de�ne an overall model prediction
for each image as the maximum model prediction for any object detection (or as 0 if
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Figure 2: Receiver Operating Characteristic (ROC) and
Precision-Recall curves for our �nal model, evaluated on
the test set.

the default hyperparameter con�guration for YOLOv7. To choose
a threshold for positive classi�cation, we use the threshold (0.77)
which maximizes the F-score on the validation set.

4.2.3 Model validation. Using the held-out test set, we �rst assess
model performance both on the dataset as a whole, and then verify
that the model achieves consistent performance across subsets of
the dataset. Figure 2 shows the precision-recall curve and ROC
curve for the test set, and Table S2 reports average precision, AUC
(i.e., AUROC), precision and recall. The model achieves high per-
formance (test set AUC 0.99, average precision 0.82). This speaks
to one bene�t of our methodology: because we have chosen a rela-
tively feasible object detection task (likelier easier than identifying
surveillance cameras, as attempted in previous work [63], which
are much smaller) we are able to achieve high performance. Figure
3 shows speci�c true positive, false positive, and false negative
classi�cations on the dataset, demonstrating that the model can
recognize police vehicles in a wide variety of images, but also that
it can be confused by optical illusions and poor light conditions.

Our estimation framework (§4.1) requires that our model is cali-
brated across subgroups — that is, Pr(~ = 1|~̂ = 1) and Pr(~ = 1|~̂ =
0) remain similar across subgroups. We therefore assess whether
this is the case using the test set, and as an additional validation
assess model average precision and AUC across subgroups. Figure 4
shows that themodel is calibrated across demographic variables (e.g.
% White, % Black, population density, median household income,
and Manhattan vs. non-Manhattan). The model is also calibrated
across a number of other variables (whether the image is taken
during the day, on the weekend, or during phase 1). Table S1 shows
that AUC and average precision remain consistently high across
subgroups (AUC 0.98-0.99 for all subgroups; average precision 0.77-
0.84). The only evidence of miscalibration we see does not occur in
the variables over which we assess disparities, and thus does not
threaten the validity of those estimates. Speci�cally, the model is
somewhat miscalibrated by distance from nearest police stations:
Pr(~ = 1|~̂ = 0) is higher for images closer to police stations. This

no objects are detected). We de�ne the true label for each image as 1 if it contains any
police vehicles, and 0 otherwise. We do this because it allows us to compute precision
and recall statistics at the per-image level, not the per-object level, and our primary
analysis is at the per-image level.
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(a) True Positives (b) False Positives (c) False Negatives

Figure 3: Examples of police vehicle detections. Notice the di�erent times of day, di�ering camera perspectives, and multiple
types of vehicles. Initially, the object detection model was easily confused by NYC taxis, buses, white sedans, and white SUVs.
As more training data was added, the model was more di�cult to confuse, with incorrect classi�cations occurring typically
with optical illusions and poor light conditions. Note that images are cropped and zoomed to better depict annotated regions;
raw images are 1280x720.
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Percent White > Median

Images Classified Positive
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False
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Probability Image Truly has a Police Car

Images Classified Negative

Figure 4: Calibration plots by subgroup, evaluated on the test set. The left plot shows Pr(~ = 1|~̂ = 1); the right sub�gure shows
Pr(~ = 1|~̂ = 0). Lines indicate uncertainty in estimates, calculated as 1.96 times the Bernoulli standard error; if the di�erence
between the orange and blue dots is smaller than the uncertainty, it indicates that there is no statistically signi�cant di�erence
in model performance across the strati�cation.

is unsurprising, given the overdensity of police vehicles near po-
lice stations, and may also result from the distribution shift from
training set to validation/testing set. We experiment with two �xes
for this issue: �rst, we try upsampling images which the model
misclassi�es, but �nd it harms overall performance signi�cantly.
Second, we recalibrate the �nal model using distance from nearest

police station as a covariate. This recalibration does not signi�-
cantly a�ect our main results, as expected, so we do not use the
recalibrated model for simplicity. There is also slight evidence of
miscalibration by distance from nearest crime, but it is inconsistent
and depends on the temporal threshold used for determining the
nearest crime.
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(b) Deployments by population density.
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(c) Deployments by zone type.

Figure 5: Disparities in police deployments by borough, density, and zone.

Overall, the model is generally well-calibrated and achieves high
performance across subgroups over which we assess disparities, as
our mathematical framework requires. At our positive classi�ca-
tion threshold of 0.77, the model classi�es 233,596 images (out of
24,803,854 total) as containing a police vehicle. From the validation
set, we estimate bPr(~ = 1|~̂ = 1) and bPr(~ = 1|~̂ = 0), and use them
as described in §4.1 to compute disparities in police deployments
across demographic groups.

As an additional validation, we assess whether the police de-
tections correlate as expected with external data. Speci�cally, we
assess whether Census Block Groups whose images have a lower
mean distance to crime or to police stations are likelier to have
police vehicles detected, as one would expect. We �nd that both cor-
relations hold (? < 0.001, Pearson correlation across Census Block
Groups). This provides an additional validation beyond assessing
model performance, since it suggests that police vehicle presence
shows the same correlations with crime and police stations which
we would expect police activity as a whole to display.

5 ANALYSIS OF DISPARITIES
We examine disparities in police deployments — i.e., Pr(~ = 1|� =
0), computed as described in §4.1 — by racial group (white, Black,
Hispanic, and Asian), zone type (commercial, residential, and manu-
facturing), population density, median household income, borough,
and neighborhood. Throughout the results, we express police de-
ployments relative to the population-weighted city overall average:
e.g., 1.6⇥ for a group indicates that deployment levels are 1.6 times
the overall average. We compute error bars for all estimates by
bootstrapping; reported errors are 1.96 times the standard deviation
across bootstrapped datasets.

We �nd signi�cant disparities in police deployments across bor-
oughs (Figure 5) and neighborhoods (Figure 6). The borough with
the highest police deployments (Manhattan) has levels 1.62± 0.01⇥
the city average; the borough with the lowest police deployments
(Staten Island) has levels 0.51 ± 0.02⇥ the city average, a more
than 3-fold di�erence. Similarly, the neighborhood with the highest
police deployment levels (Gramercy) has levels 4.28 ± 0.10⇥ the
city average; the neighborhood with the lowest police deployments
(Arden Heights-Rossville) has levels 0.23 ± 0.02⇥ the city average,

0� 0.25� 0.5� 0.75�1� 2� 3� 4� 5�

Police deployment
(relative to city average)

Figure 6: Map of police deployment throughout NYC, ex-
pressed relative to the city average. Grey areas are those with
zero population in Census data, including airports, cemeter-
ies, and parks.

a nearly 20-fold di�erence. Examining the neighborhoods with
the highest police levels reveals a striking mixture of two types of
neighborhoods: some of the wealthiest areas in New York (Hudson
Yards, once described as a “billionaire’s fantasy city” [18]) and some
of the most heavily policed (Rikers Island, which houses a prison
complex).

High police deployment levels in some neighborhoods may be
driven by idiosyncratic neighborhood attributes — for example,
Gramercy is home to a major police training center on two busy
thoroughfares. To more systematically examine spatial disparities,
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therefore, we examine correlations with zone and density (Fig-
ure 5). Commercial zones have much higher police deployments
(1.98 ± 0.03⇥ the city average) than residential or manufacturing
zones. Police deployments also increase dramatically with popu-
lation density, from 0.65 ± 0.01⇥ the city average in areas in the
lowest quartile of density to 1.21 ± 0.01⇥ the city average in areas
in the highest quartile of density.6 Overall, this analysis suggests
that one place high police levels are observed is dense, commercial
regions of downtown Manhattan.

We next analyze disparities in police deployments by race and
socioeconomic status (Figure 7a), restricting the analysis to resi-
dential zones to capture where people actually live. We observe
substantial racial disparities. Black and Hispanic residents face po-
lice deployment levels 1.08 ± 0.01⇥ the city average, as compared
to 0.95 ± 0.004⇥ for white residents and 0.81 ± 0.01⇥ for Asian
residents, a 34% discrepancy between the highest and lowest race
groups. This is consistent with previously observed disparities in
policing in New York City [27, 36, 52] where Black and Hispanic
residents were more heavily policed. (In Figure S2 we plot racial
disparities without restricting to residential zones, yielding con-
sistent results — Black and Hispanic residents face higher police
deployments than white and Hispanic residents — although the
disparities narrow somewhat, to a 19% gap between the highest
and lowest race groups.)

We also observe disparities by Census Block Group (CBG) me-
dian income (Figure 7b). Again restricting to residential zones, po-
lice deployments increase as income decreases: residents of CBGs
in the lowest median household income quartile face police deploy-
ments which are 1.19 ± 0.01⇥ the city average, while residents of
CBGs in the highest median household income quartile face police
deployments only 0.91 ± 0.01⇥ the city average. Interestingly, the
relationship between income and deployment becomes U-shaped if
we do not restrict to residential zones (Figure S2 ): neighborhoods in
the top quartile of median income, and the bottom quartile of median
income, both experience higher police deployments than neigh-
borhoods in the middle two quartiles. In other words, top-quartile
income areas go from having the lowest police deployments (when
we analyze only residential zones) to the highest (when we analyze
all areas). The di�erence likely occurs because of higher-income
commercial zones which are heavily policed.

We note that we report racial and socioeconomic disparities with-
out attempting to control for other covariates for two reasons. First,
if New York City residents of di�erent races face di�erent levels of
police deployments, that disparate impact is itself important; it can
also bias algorithms trained on downstream policing data irrespec-
tive of the true causal mechanism. Second, controlling for other
factors in policing data can be di�cult to interpret, introducing
concerns about omitted variable bias and model misspeci�cation
which make it di�cult to identify which factor is truly the “cause”
of higher police deployments. For the sake of transparency and
simplicity, therefore, we report results by stratifying each variable
separately, noting that these disparities are themselves important
but that multiple causal mechanisms may underlie them.

6We compute quartile boundaries at the image level.

6 DISCUSSION
We present a novel methodology for studying disparities in police
deployments. We show that a deep learning model can be applied
to tens of millions of dashcam images to identify police vehicles
with high accuracy, and introduce a principled framework for esti-
mating disparities in a way that mitigates data and model biases.
We �nd substantial spatial inequality in where police vehicles are
deployed. Residential areas with higher proportions of Black and
Hispanic residents, or lower-income residents, have signi�cantly
higher police deployments. But so, too, do dense, wealthy commer-
cial areas in downtown Manhattan like Hudson Yards; this �nding
that police deployments can be high in wealthy neighborhoods is
consistent with past work showing that gentri�cation correlates
with increased police presence [5]. Overall, our analysis speaks to
a complex, multifaceted picture of police deployment in New York.

We employ a number of techniques to reduce bias in our pipeline,
providing a template for future computational social science re-
search on non-representative dashcam data. However, two unavoid-
able limitations are important to acknowledge. First, while we
reweight the sample such that each Census area is weighted propor-
tional to its population, it is possible that the sample of images we
have within each Census area is biased. In other words, the police
vehicle frequency within our Nexar data sample for each Census
area may not accurately represent the true police vehicle frequency
within that Census area. News articles document, for example, how
protests after George Floyd’s death blocked tra�c throughout New
York City [23], which would obviously preclude getting dashcam
images from some areas; it is also plausible that ride-share drivers
would seek to avoid areas with protest activity. Since protest activ-
ity likely correlates both with our data availability and with police
vehicle presence, this could plausibly bias our estimates. We miti-
gate the speci�c concern about protests by conducting our analysis
of disparities using data only from October 2020 onward, when
protest activity was reduced. Nonetheless, the sampling process
for the Nexar dataset is somewhat opaque and the time period
analyzed was full of dramatic changes in social distancing policy
and responses to policing so it would be unwise to assume that no
other biases remain. Similarly, it is possible the time period sampled
captures trends speci�c to the COVID-19 pandemic. At the same
time, that time period itself is of interest because it is known that
there were racial disparities in policing through the pandemic. Ka-
jeepeta et al. [37] �nd that from March to May 2020, a one standard
deviation increase in percentage of Black residents was associated
with a 73% increase in the COVID-19-speci�c summons rate and a
34% increase in the public health and nuisance arrest rate. Finally,
we assume that people in the same Census area have the same
probability of seeing a police vehicle irrespective of their group;
while the Census areas we analyze (Census Block Groups) are quite
small, rendering this assumption more plausible, it is possible there
is additional variation correlated with group within Census areas.

A second important limitation is that identi�able police vehicles
are only a partial proxy for all policing activity. They do not cap-
ture, for example, o�cers on foot or unmarked vehicles. We did
attempt to train a computer vision model to identify o�cers on
foot; however, we found that the annotations we obtained were
considerably lower quality than annotations for police vehicles,
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(a) Deployments by race group.
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(b) Deployments by income quartile.

Figure 7: Disparities in police deployments by race group (a) and median household income (b). Plots are made using data from
Census Block Groups in residential zones. Figure S2 shows the corresponding plots without �ltering for residential zones;
results for race are qualitatively similar, but results for income show a U-shaped trend, for reasons we discuss in the main text.

with annotators frequently confusing police o�cers with construc-
tion workers, cyclists with re�ective vests, and other individuals in
dark clothing. Given this, we opted to focus our analysis on police
vehicles to ensure we could train a classi�er with high accuracy.
The high performance of the classi�er likely stems in part from the
iconic and unique branding of NYPD vehicles, which makes them
very easy to spot and label in training images. While it is important
to be aware that our analysis captures only one dimension of police
activity, police vehicles are, themselves, an important indicator of
policing activity: for example, they carry out tra�c stops, which
are one of the most common ways that Americans interact with
police [53].

We assert our approach and results constitute a key step towards
transparency in policing, proving it is possible to derive deployment
patterns from dashcam data. Our results have several implications
for equity and algorithmic fairness. First, our work reveals substan-
tial inequality in police vehicle deployments. Police vehicles are
more heavily deployed in neighborhoods with larger Black and
Hispanic populations, recapitulating historic patterns of inequality
in New York policing [27, 28, 52]. These disparities are themselves
of concern, and could also propagate into algorithms which made
use of data from outcomes downstream of deployments, including
arrests [15, 16, 20, 42, 45, 54, 58, 62].

Second, our work highlights the potential of dashcam data for
auditing government agencies for e�ciency and equity, including
but not limited to the police, as well as for computational social sci-
ence more broadly. For example, similar methodology could also be
used to identify double parking issues, dynamic obstacles to accessi-
bility, or weather-induced hazards, and then to study disparities in
government service response times, following previous work [41].

Dashcam data is becoming increasingly available [47, 51], and dash-
cam is being postulated as a medium for future work [43, 44]. Our
methods could easily be extended to other cities or detection tasks.

Finally, our work serves as a call for the police themselves to
release better deployment data. In the past police have resisted
this [48] on the grounds that it would undermine public safety.
But this claim stretches plausibility on multiple grounds: even
aggregated deployment data would be very useful for detecting
disparities, as we show and past work has also found [49, 50]. And
far more granular data on many measures of policing activity is
already publicly available — including stops, searches, arrests, cita-
tions, and shootings [34, 53] — making it unclear how aggregated
deployment data uniquely compromises police operations. The ben-
e�ts would be substantial: public release of aggregated deployment
data would democratize the ability to audit the police. This project
was performed using highly specialized resources — terabytes of
data, a customized annotation pipeline and computer hardware,
and hundreds of hours of model training — and even then incurred
unavoidable biases. This pipeline is not, in short, a realistic way for
the average citizen to monitor the police. Quis custodiet ipsos cus-
todes? The answer cannot be “only those with 25 million dashcam
images.”

Code availability: Code used in this analysis is available at this
GitHub repository: https://github.com/mattwfranchi/police-
deployment-patterns.

Dataset availability: It is our intent to share the data from this
paper with other researchers, with protections to prevent abuse. To
learn how to access to data from the study, see https://github.com/
mattwfranchi/police-deployment-patterns/wiki/Dataset-Access.

Acknowledgments: The authors thank Serina Chang, Nikhil Garg,
Nakia Kenon, Hao Sheng, and Maria Teresa Parreira for helpful

542

https://github.com/mattwfranchi/police-deployment-patterns
https://github.com/mattwfranchi/police-deployment-patterns
https://github.com/mattwfranchi/police-deployment-patterns/wiki/Dataset-Access
https://github.com/mattwfranchi/police-deployment-patterns/wiki/Dataset-Access


FAccT ’23, June 12–15, 2023, Chicago, IL, USA Franchi et al.

comments, and Gabriel Agostini and IlanMandel for assistance with
data and analysis. The Nexar dashcam dataset used in this study
was licensed for use as part of NSF IIS-2028009 RAPID: Tracking
Urban Mobility and Occupancy under Social Distancing Policy. WJ
was supported by an Amazon Research Award. EP was supported
by a Google Research Scholar award, an NSF CAREER award, a
CIFAR Azrieli Global scholarship, a LinkedIn Research Award, and
a Future Fund Regrant. JZ was partially supported by the United
States Air Force and DARPA under contracts FA8750-20-C-0156,
FA8750-20-C-0074, and FA8750-20-C0155 (SDCPS Program).

REFERENCES
[1] Desmond Ang. 2021. The e�ects of police violence on inner-city students. The

Quarterly Journal of Economics 136, 1 (2021), 115–168.
[2] Shamena Anwar and Hanming Fang. 2006. An alternative test of racial prejudice

in motor vehicle searches: Theory and evidence. American Economic Review 96,
1 (2006), 127–151.

[3] American Psychological Association et al. 2002. Ethical principles of psycholo-
gists and code of conduct. American psychologist 57, 12 (2002), 1060–1073.

[4] Peter C Austin and Elizabeth A Stuart. 2015. Moving towards best practice when
using inverse probability of treatment weighting (IPTW) using the propensity
score to estimate causal treatment e�ects in observational studies. Statistics in
medicine 34, 28 (2015), 3661–3679.

[5] Brenden Beck. 2020. Policing gentri�cation: Stops and low–level arrests during
demographic change and real estate reinvestment. City & Community 19, 1 (2020),
245–272.

[6] Geo� Boeing. 2017. OSMnx: New Methods for Acquiring, Constructing, Ana-
lyzing, and Visualizing Complex Street Networks. Computers, Environment and
Urban Systems 65 (Sept. 2017), 126–139. https://doi.org/10.1016/j.compenvurbsys.
2017.05.004 arXiv:1611.01890 [physics].

[7] Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accu-
racy disparities in commercial gender classi�cation. In Conference on fairness,
accountability and transparency. PMLR, 77–91.

[8] Andrew Campbell, Alan Both, and Qian Chayn Sun. 2019. Detecting and map-
ping tra�c signs from Google Street View images using deep learning and GIS.
Computers, Environment and Urban Systems 77 (2019), 101350.

[9] Cindy Chang and Ben Poston. 2019. LAPD will drastically cut back on pulling
over random vehicles over racial bias concerns. Los Angeles Times (2019).

[10] Cindy Chang and Ben Poston. 2019. Stop-and-frisk in a car’: Elite LAPD unit
disproportionately stopped black drivers, data show. Los Angeles Times (2019).

[11] Irene Y Chen, Emma Pierson, Sherri Rose, Shalmali Joshi, Kadija Ferryman, and
Marzyeh Ghassemi. 2021. Ethical machine learning in healthcare. Annual review
of biomedical data science 4 (2021), 123–144.

[12] Tahiya Chowdhury, Ansh Bhatti, Ilan Mandel, Taqiya Ehsan, Wendy Ju, and Jorge
Ortiz. 2021. Towards sensing urban-scale COVID-19 policy compliance in New
York City. In Proceedings of the 8th ACM International Conference on Systems for
Energy-E�cient Buildings, Cities, and Transportation. 353–356.

[13] Tahiya Chowdhury, Qizhen Ding, Ilan Mandel, Wendy Ju, and Jorge Ortiz. 2021.
Tracking urban heartbeat and policy compliance through vision and language-
based sensing. In Proceedings of the 8th ACM International Conference on Systems
for Energy-E�cient Buildings, Cities, and Transportation. 302–306.

[14] Sam Corbett-Davies and Sharad Goel. 2018. The measure and mismeasure of
fairness: A critical review of fair machine learning. arXiv preprint arXiv:1808.00023
(2018).

[15] Sam Corbett-Davies, Emma Pierson, Avi Feller, and Sharad Goel. 2016. A com-
puter program used for bail and sentencing decisions was labeled biased against
blacks. It’s actually not that clear. Washington Post 17 (2016).

[16] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. 2017.
Algorithmic decision making and the cost of fairness. In Proceedings of the 23rd
acm sigkdd international conference on knowledge discovery and data mining.
797–806.

[17] Bahar Dadashova, Chiara Silvestri Dobrovolny, and Mahmood Tabesh. 2021.
Detecting Pavement Distresses Using Crowdsourced Dashcam Camera Images.
(2021).

[18] Justin Davidson. 2019. Hudson Yards is a billionaire’s fantasy city and you never
have to leave — provided you can pay for it. New York Magazine (2019).

[19] Elizabeth Davis, Anthony Whyde, and Lynn Langton. 2018. Contacts between
police and the public, 2015. US Department of Justice O�ce of Justice Programs
Bureau of Justice Statistics Special Report (2018), 1–33.

[20] Angel Diaz. 2021. Data-driven policing’s threat to our constitutional rights.
Brookings Institution (2021).

[21] Frank Edwards, Hedwig Lee, and Michael Esposito. 2019. Risk of being killed by
police use of force in the United States by age, race–ethnicity, and sex. Proceedings

of the national academy of sciences 116, 34 (2019), 16793–16798.
[22] Charles R Epp, Steven Maynard-Moody, and Donald P Haider-Markel. 2014.

Pulled over: How police stops de�ne race and citizenship. University of Chicago
Press.

[23] Alan Feuer and Azi Paybarah. 2020. Thousands Protest in N.Y.C., Clashing With
Police Across All 5 Boroughs. The New York Times (2020).

[24] David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.). 2014.
Computer Vision – ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V. Lecture Notes in Computer Science,
Vol. 8693. Springer International Publishing, Cham. https://doi.org/10.1007/978-
3-319-10602-1

[25] Roland G Fryer Jr. 2019. An empirical analysis of racial di�erences in police use
of force. Journal of Political Economy 127, 3 (2019), 1210–1261.

[26] Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, Erez Lieber-
man Aiden, and Li Fei-Fei. 2017. Using deep learning and Google Street View to
estimate the demographic makeup of neighborhoods across the United States.
Proceedings of the National Academy of Sciences 114, 50 (2017), 13108–13113.

[27] Andrew Gelman, Je�rey Fagan, and Alex Kiss. 2007. An analysis of the New York
City police department’s “stop-and-frisk” policy in the context of claims of racial
bias. Journal of the American statistical association 102, 479 (2007), 813–823.

[28] Sharad Goel, Justin M Rao, and Ravi Shro�. 2016. Precinct or prejudice? Under-
standing racial disparities in New York City’s stop-and-frisk policy. The Annals
of Applied Statistics 10, 1 (2016), 365–394.

[29] Felipe Goncalves and StevenMello. 2021. A few bad apples? Racial bias in policing.
American Economic Review 111, 5 (2021), 1406–41.

[30] Je�rey Grogger and Greg Ridgeway. 2006. Testing for racial pro�ling in tra�c
stops from behind a veil of darkness. J. Amer. Statist. Assoc. 101, 475 (2006),
878–887.

[31] Andrea Marie Headley, Stewart J D’Alessio, and Lisa Stolzenberg. 2020. The
e�ect of a complainant’s race and ethnicity on dispositional outcome in police
misconduct cases in Chicago. Race and justice 10, 1 (2020), 43–61.

[32] Elizabeth M Hill and Mary N Monahan. 2011. Naturalistic Observation in Public
Settings: Applying for Institutional Review Board Approval. Human Ethology
Bulletin (2011).

[33] Nathalie Japkowicz and Shaju Stephen. 2002. The class imbalance problem: A
systematic study. Intelligent data analysis 6, 5 (2002), 429–449.

[34] Jennifer Jenkins, Monika Mathur, John Muyskens, Razzan Nakhlawi, Steven Rich,
and Andrew Ba Tran. 2023. Police shootings database 2015-202s3. TheWashington
Post (2023). https://www.washingtonpost.com/graphics/investigations/police-
shootings-database/

[35] Wendy Ju, Sharon Yavo-Ayalon, IlanMandel, Federico Saldarini, Natalie Friedman,
Srinath Sibi, JD Zam�rescu-Pereira, and Jorge Ortiz. 2020. Tracking urban
mobility and occupancy under social distancing policy. Digital Government:
Research and Practice 1, 4 (2020), 1–12.

[36] Jongbin Jung, Sam Corbett-Davies, Ravi Shro�, and Sharad Goel. 2018. Omit-
ted and included variable bias in tests for disparate impact. arXiv preprint
arXiv:1809.05651 (2018).

[37] Sandhya Kajeepeta, Emilie Bruzelius, Jessica Z. Ho, and Seth J. Prins. 2022. Polic-
ing the pandemic: estimating spatial and racialized inequities in New York City
police enforcement of COVID-19 mandates. Critical Public Health 32, 1 (Jan.
2022), 56–67. https://doi.org/10.1080/09581596.2021.1987387

[38] Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion
Mengesha, Connor Toups, John R Rickford, Dan Jurafsky, and Sharad Goel. 2020.
Racial disparities in automated speech recognition. Proceedings of the National
Academy of Sciences 117, 14 (2020), 7684–7689.

[39] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution
shifts. In International Conference on Machine Learning. PMLR, 5637–5664.

[40] Vladimir A Krylov, Eamonn Kenny, and Rozenn Dahyot. 2018. Automatic discov-
ery and geotagging of objects from street view imagery. Remote Sensing 10, 5
(2018), 661.

[41] Benjamin Laufer, Emma Pierson, and Nikhil Garg. Working paper, 2023; ICML
Workshop on Responsible Decision Making in Dynamic Environments, 2022.
Detecting Disparities in Capacity-Constrained Service Allocations. (Working
paper, 2023; ICML Workshop on Responsible Decision Making in Dynamic Envi-
ronments, 2022).

[42] Laura and John Arnold Foundation. 2016. Public safety assessment: Risk factors
and formula.

[43] Xiaojiang Li. 2021. Examining the spatial distribution and temporal change of
the green view index in New York City using Google Street View images and
deep learning. Environment and Planning B: Urban Analytics and City Science 48,
7 (Sept. 2021), 2039–2054. https://doi.org/10.1177/2399808320962511 Publisher:
SAGE Publications Ltd STM.

[44] Xiaojiang Li, Chuanrong Zhang, Weidong Li, Robert Ricard, Qingyan Meng, and
Weixing Zhang. 2015. Assessing street-level urban greenery using Google Street
View and a modi�ed green view index. Urban Forestry & Urban Greening 14, 3
(2015), 675–685. https://doi.org/10.1016/j.ufug.2015.06.006

543

https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1007/978-3-319-10602-1
https://doi.org/10.1007/978-3-319-10602-1
https://www.washingtonpost.com/graphics/investigations/police-shootings-database/
https://www.washingtonpost.com/graphics/investigations/police-shootings-database/
https://doi.org/10.1080/09581596.2021.1987387
https://doi.org/10.1177/2399808320962511
https://doi.org/10.1016/j.ufug.2015.06.006


Detecting disparities in police deployments using dashcam data FAccT ’23, June 12–15, 2023, Chicago, IL, USA

[45] Kristian Lum and William Isaac. 2016. To predict and serve? Signi�cance 13, 5
(2016), 14–19.

[46] Eddy Maddalena, Luis-Daniel Ibáñez, and Elena Simperl. 2020. Mapping points of
interest through street view imagery and paid crowdsourcing. ACM Transactions
on Intelligent Systems and Technology (TIST) 11, 5 (2020), 1–28.

[47] Vashisht Madhavan and Trevor Darrell. 2017. The BDD-Nexar Collective: A
Large-Scale, Crowsourced, Dataset of Driving Scenes. Master’s thesis. EECS De-
partment, University of California, Berkeley. http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2017/EECS-2017-113.html

[48] Benjamin Mueller. 2017. As Troopers Are Diverted, Deployment Data Remains
Restricted. (08 2017). https://www.nytimes.com/2017/08/17/nyregion/new-york-
state-police-deployment-data.html

[49] Benjamin Mueller and Al Baker. 2016. Rift Between O�cers and Residents as
Killings Persist in South Bronx. The New York Times (2016).

[50] Benjamin Mueller and Al Baker. 2017. New York Police Urged to Fix Inequities
in Deployment of Investigators. The New York Times (2017).

[51] Xingchao Peng, Ben Usman, Neela Kaushik, Dequan Wang, Judy Ho�man, and
Kate Saenko. 2018. VisDA: A Synthetic-to-Real Benchmark for Visual Do-
main Adaptation. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). IEEE, Salt Lake City, UT, USA, 2102–21025.
https://doi.org/10.1109/CVPRW.2018.00271

[52] Emma Pierson, Sam Corbett-Davies, and Sharad Goel. 2018. Fast threshold tests
for detecting discrimination. In International conference on arti�cial intelligence
and statistics. PMLR, 96–105.

[53] Emma Pierson, Camelia Simoiu, Jan Overgoor, Sam Corbett-Davies, Daniel Jen-
son, Amy Shoemaker, Vignesh Ramachandran, Phoebe Barghouty, Cheryl Phillips,
Ravi Shro�, et al. 2020. A large-scale analysis of racial disparities in police stops
across the United States. Nature human behaviour 4, 7 (2020), 736–745.

[54] Michael Pinard. 2018. Predicting more biased policing in Baltimore. The Baltimore
Sun (2018).

[55] PoliceCarWebsite.net. 2023. NYPD Police Cars. http://www.policecarwebsite.
net/fc/ny/nypd/nypddiv.html

[56] Ben Poston and Cindy Chang. 2019. LAPD searches blacks and Latinos more. But
they’re less likely to have contraband than whites. The Los Angeles Times (2019).

[57] Rajeev Ramchand, Rosalie Liccardo Pacula, and Martin Y Iguchi. 2006. Racial
di�erences in marijuana-users’ risk of arrest in the United States. Drug and
alcohol dependence 84, 3 (2006), 264–272.

[58] Rashida Richardson, Jason M Schultz, and Kate Crawford. 2019. Dirty data, bad
predictions: How civil rights violations impact police data, predictive policing
systems, and justice. NYUL Rev. Online 94 (2019), 15.

[59] Greg Ridgeway and John M MacDonald. 2009. Doubly robust internal bench-
marking and false discovery rates for detecting racial bias in police stops. J. Amer.
Statist. Assoc. 104, 486 (2009), 661–668.

[60] Konstantin Riedl, Sebastian Huber, Maximilian Bömer, Julian Kreibich, Felix
Nobis, and Johannes Betz. 2020. Importance of Contextual Information for
the Detection of Road Damages. In 2020 Fifteenth International Conference on
Ecological Vehicles and Renewable Energies (EVER). IEEE, 1–7.

[61] Scale.AI. 2023. Scale.AI. https://scale.com
[62] Andrew D Selbst. 2017. Disparate impact in big data policing. Ga. L. Rev. 52

(2017), 109.
[63] Hao Sheng, Keniel Yao, and Sharad Goel. 2021. Surveilling Surveillance: Estimat-

ing the Prevalence of Surveillance Cameras with Street View Data. In Proceedings
of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. ACM, Virtual Event
USA, 221–230. https://doi.org/10.1145/3461702.3462525

[64] Camelia Simoiu, Sam Corbett-Davies, and Sharad Goel. 2017. The problem of
infra-marginality in outcome tests for discrimination. (2017).

[65] Samuel Sinyangwe et al. 2022. The Police Scorecard. (2022). https://
policescorecard.org/

[66] Visual Investigations Team. 2023. Visual investigations of police miscon-
duct. The New York Times (2023). https://www.nytimes.com/spotlight/visual-
investigations-police-misconduct

[67] Floyd v. City of New York. 2013. 959 F. Supp. 2d 540 - Dist. Court, SD New York.
(2013).

[68] Andrew Thirlwell and Ognjen Arandjelović. 2020. Big data driven detection of
trees in suburban scenes using visual spectrum eye level photography. Sensors
20, 11 (2020), 3051.

[69] Victor J. D. Tsai, Jyun-Han Chen, Pei-Shan Tsai, Hsun-Sheng Huang, and Ke-
Jhong Chen. 2017. Exploring Tra�c Features on Google Street View Images.
In Proceedings of the 2017 International Conference on Wireless Communications,
Networking and Applications (Shenzhen, China) (WCNA 2017). Association for
Computing Machinery, New York, NY, USA, 230–234. https://doi.org/10.1145/
3180496.3180638

[70] UltraLytics. 2021. YOLOv5. https://github.com/ultralytics/yolov5/releases
[71] United States Department of Justice Civil Rights Division and United States

Attorney’s O�ce for Northern District of Illinois. 2017. Investigation of the
Chicago Police Department. (2017).

[72] Vinay Vishnani, Anikait Adhya, Chinmay Bajpai, Priya Chimurkar, and Kumar
Khandagle. 2020. Manhole detection using image processing on google street view
imagery. In 2020 Third International Conference on Smart Systems and Inventive
Technology (ICSSIT). IEEE, 684–688.

[73] Rob Voigt, Nicholas P Camp, Vinodkumar Prabhakaran, William L Hamilton,
Rebecca C Hetey, Camilla M Gri�ths, David Jurgens, Dan Jurafsky, and Jen-
nifer L Eberhardt. 2017. Language from police body camera footage shows racial
disparities in o�cer respect. Proceedings of the National Academy of Sciences 114,
25 (2017), 6521–6526.

[74] Chien-YaoWang, Alexey Bochkovskiy, and Hong-YuanMark Liao. 2022. YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.
arXiv preprint arXiv:2207.02696 (2022).

[75] Patricia Warren, Donald Tomaskovic-Devey, William Smith, Matthew Zingra�,
and Marcinda Mason. 2006. Driving while black: Bias processes and racial
disparity in police stops. Criminology 44, 3 (2006), 709–738.

[76] Benjamin Wilson, Judy Ho�man, and Jamie Morgenstern. 2019. Predictive in-
equity in object detection. arXiv preprint arXiv:1902.11097 (2019).

[77] Qian Xie, Dawei Li, Zhenghao Yu, Jun Zhou, and JunWang. 2020. Detecting Trees
in Street Images via Deep Learning With Attention Module. IEEE Transactions
on Instrumentation and Measurement 69, 8 (2020), 5395–5406. https://doi.org/10.
1109/TIM.2019.2958580

[78] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu,
Vashisht Madhavan, and Trevor Darrell. 2020. Bdd100k: A diverse driving dataset
for heterogeneous multitask learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2636–2645.

[79] JD Zam�rescu-Pereira, Jerry Chen, Emily Wen, Allison Koenecke, Nikhil Garg,
and Emma Pierson. 2022. Trucks Don’t Mean Trump: Diagnosing Human Error
in Image Analysis. In 2022 ACM Conference on Fairness, Accountability, and
Transparency. 799–813.

[80] Hui Zhou, Han Wang, Handuo Zhang, and Karunasekera Hasith. 2020. LaCNet:
Real-time end-to-end arbitrary-shaped lane and curb detection with instance seg-
mentation network. In 2020 16th International Conference on Control, Automation,
Robotics and Vision (ICARCV). IEEE, 184–189.

544

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-113.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-113.html
https://www.nytimes.com/2017/08/17/nyregion/new-york-state-police-deployment-data.html
https://www.nytimes.com/2017/08/17/nyregion/new-york-state-police-deployment-data.html
https://doi.org/10.1109/CVPRW.2018.00271
http://www.policecarwebsite.net/fc/ny/nypd/nypddiv.html
http://www.policecarwebsite.net/fc/ny/nypd/nypddiv.html
https://scale.com
https://doi.org/10.1145/3461702.3462525
https://policescorecard.org/
https://policescorecard.org/
https://www.nytimes.com/spotlight/visual-investigations-police-misconduct
https://www.nytimes.com/spotlight/visual-investigations-police-misconduct
https://doi.org/10.1145/3180496.3180638
https://doi.org/10.1145/3180496.3180638
https://github.com/ultralytics/yolov5/releases
https://doi.org/10.1109/TIM.2019.2958580
https://doi.org/10.1109/TIM.2019.2958580

	Abstract
	1 Introduction
	2 Related Work
	2.1 Auditing policing practices
	2.2 Effect of deployment disparities on algorithmic bias
	2.3 Analysis of public street scene datasets

	3 Dataset
	3.1 Dataset details
	3.2 Geographic and temporal coverage
	3.3 Ethical considerations

	4 Statistical analysis
	4.1 Mathematical framework
	4.2 Deep learning model

	5 Analysis of disparities
	6 Discussion
	References

