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Abstract. We prove Lp → Lq estimates for local maximal operators
associated with dilates of codimension two spheres in Heisenberg groups;
these are sharp up to two endpoints. The results can be applied to
improve currently known bounds on sparse domination for global max-
imal operators. We also consider lacunary variants, and extensions to
Métivier groups.

1. Introduction

Let Hn = R2n × R be the Heisenberg group of real Euclidean dimension
2n+ 1. Writing x = (x, x2n+1) with x ∈ R2n, the group law is given by

x · y = (x+ y, x2n+1 + y2n+1 + xᵀJy),

where xᵀJy = 1
2

∑n
j=1(xn+jyj − xjyn+j). A natural dilation structure on

Hn is given by the parabolic dilations δt(x) = (tx, t2x2n+1). These are auto-
morphic, i.e. satisfy δt(x · y) = δtx · δty, and map the horizontal subspace
R2n × {0} into itself.

Let µ be the normalized rotation-invariant measure on the 2n− 1 dimen-
sional sphere in R2n×{0}, centered at the origin and let µt denote its t-dilate
defined by 〈µt, f〉 = 〈µ, f◦δt〉. The spherical means on the Heisenberg group,

f ∗ µt(x) =

∫
S2n−1

f(x− tω, x2n+1 − txᵀJω)dµ(ω)

were introduced by Nevo and Thangavelu [25]. In the theory of generalized
Radon transforms, they can be viewed as model operators for which the
incidence relation (the support of the Schwartz kernel) has codimension
two, in contrast with the classical codimension one spherical means ([32, 31,
10, 12]).

The original interest in [25] was in pointwise convergence and ergodic
results and hence in Lp-estimates for the maximal function

Mf = sup
t>0
|f ∗ µt|.
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A sharp result was proved by Müller and the second author [23] and, inde-
pendently and by a different method, by Narayanan and Thangavelu [24];
namely for n ≥ 2, the Lp boundedness of M holds if and only if p > 2n

2n−1 .
It is conjectured that this statement holds true even when n = 1 but this
problem is currently still open (see [4] for a recent positive result for M
acting on Lp(H1) functions of the form x 7→ f◦(|x|, x3)).

Our renewed interest is prompted by recent work of Bagchi, Hait, Roncal
and Thangavelu [3], in which the authors consider (p, q′)-sparse domination
results for the operator M with consequences for weighted inequalities [6].
The primary ingredient in the proof of such a result is an induction argument
relying on an Lp → Lq estimate for the local maximal function

Mf = sup
t∈I
|f ∗ µt|

which is also of independent interest. Here I denotes a compact subinterval
of (0,∞). The objective is to find the best possible value of q in such
an inequality. For the sparse bounds one also needs to establish a closely
related ε-regularity property, namely an Lp → Lqε(L∞(I)) estimate for the
spherical means acting on compactly supported functions (cf. (8.2) below).
If q > p the operator norm in such estimates will depend on I and it is
no loss of generality to assume I = [1, 2]. In [3] it is proved that M maps
Lp(Hn) to Lq(Hn) provided that ( 1

p ,
1
q ) belongs to the interior of the triangle

with corners (0, 0), (2n−1
2n , 2n−1

2n ), (3n+1
3n+7 ,

6
3n+7). The authors ask whether this

result is essentially sharp, indeed results in [30], [31], [20] for the Euclidean
analogues suggest that it is not. In the following theorem we provide Lp →
Lq bounds that are sharp, possibly except for two endpoints at which we
prove restricted weak type inequalities. Implications on sparse bounds for
the global operator M will be discussed in §8, cf. (8.1).

1
q

1
p

Q1

Q2

Q3

Q4

Figure 1. The region R in Theorem 1.1, for n = 2.
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Theorem 1.1. Let n ≥ 2. Let R be the closed quadrilateral with corners

(1.1)
Q1 = (0, 0), Q2 = (2n−1

2n , 2n−1
2n ),

Q3 = ( n
n+1 ,

1
n+1), Q4 = ( 2n2+n

2n2+3n+2
, 2n

2n2+3n+2
).

Then

(i) M is of restricted weak type (p, q) for all (1
p ,

1
q ) ∈ R.

(ii) M : Lp(Hn) → Lq(Hn) is bounded if (1
p ,

1
q ) belongs to the interior of

R, or to the open boundary segments (Q2, Q3), (Q3, Q4), or to the half open
boundary segments [Q1, Q2), [Q1, Q4).

(iii) M does not map Lp(Hn) to Lq(Hn) if (1
p ,

1
q ) /∈ R.

(iv) M does not map Lp(Hn) to Lp(Hn) for (1
p ,

1
p) = Q2.

We shall reduce the proof to estimates for standard oscillatory integrals
of Carleson-Sjölin-Hörmander type, in particular to a variant of Stein’s the-
orem [33] which was formulated in [22] and which relies on the maximal
possible number of nonvanishing curvatures for a cone in the fibers of the
canonical relation. It came as a surprise to the authors that such a simple
reduction should be possible; as far as we know this has not been observed
for maximal functions associated with classes of generalized Radon trans-
forms with incidence relations of codimension two, or higher. We shall now
discuss cases with codimension greater than two.

Some extensions. We extend Theorem 1.1 in two directions, already con-
sidered in [23]. One extension deals with the situation on Hn where the
subspace R2n × {0} is replaced by a general subspace transversal to the
center; this tilted space is then no longer invariant under the automorphic
dilations. Another extension is obtained by replacing the Heisenberg group
with other two step nilpotent groups with higher dimensional center; here
we will consider the class of Métivier groups [21] which also includes the
groups of Heisenberg type [17].

The Lie algebra g of a two step nilpotent group G splits as g = w⊕ z, so
that [w, z] = {0} and [w,w] ⊂ z. The Métivier groups are characterized by a
nondegeneracy condition, namely that for every nontrivial linear functional
ϑ on z, the bilinear form J ϑ on w×w defined by J ϑ = ϑ([X,Y ]) is nonde-
generate. This implies that w is of even dimension. We set dim(w) = 2n,
dim(z) = m and let d = 2n + m denote the Euclidean dimension of G.
Identifying w with R2n and z with Rm, we use exponential coordinates
x = (x, x̄) ∈ R2n × Rm; the group multiplication is then given by

(1.2) x · y = (x+ y, x̄+ ȳ + xᵀJy).

Here xᵀJy =
∑m

i=1 x
ᵀJiy ēi ∈ Rm with {ē1, . . . , ēm} being the standard basis

in Rm and J1, . . . , Jm denote skew symmetric matrices acting on R2n. The
nondegeneracy condition on J ϑ then says that for every θ ∈ Rm \ {0}, the
2n × 2n matrix Jθ =

∑m
i=1 θiJi is invertible. In the special case of groups
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of Heisenberg type we also have (J θ)2 = −|θ|2I. We note that for every m
there are groups of Heisenberg type with an m-dimensional center. Kaplan
[17] points out the connection with Radon-Hurwitz numbers ρRH(k) defined
as follows ([16, 27]): if k = (2` + 1)24p+q with q ∈ {0, 1, 2, 3} and for some
` ∈ {0, 1, 2, 3, . . . }, then ρRH(k) = 8p+ 2q. By [27], [17] there are (2n+m)-
dimensional groups of Heisenberg type with an m-dimensional center if and
only if m < ρRH(2n). For odd n, we have ρRH(2n) = 2, hence m = 1.

The automorphic dilations on G are given by δt(x, x̄) = (tx, t2x̄). We now
let v be a 2n-dimensional subspace of g which is transversal to the center,
i.e. in exponential coordinates

V = {(x,Λx) : x ∈ R2n},
where Λ is an m × 2n matrix with real entries. Notice that V is invariant
under the dilation group {δt} only when Λ = 0. Define a measure µΛ ≡ µΛ

1

supported on V and its automorphic dilates µΛ
t by

〈µΛ
t , f〉 =

∫
S2n−1

f(tω, t2Λω)dµ(ω).

We consider the convolution operator f 7→ f ∗ µΛ
t given explicitly by

f ∗ µΛ
t (x) =

∫
S2n−1

f(x− tω, x̄− t2Λω − txᵀJω)dµ(ω)

and the associated local maximal function

(1.3) Mf = sup
t∈I
|f ∗ µΛ

t |.

These integral operators can be viewed as generalized Radon transforms
associated to a family of surfaces of codimension m+ 1. We note that when
m = 1 and Λ = 0, we recover the spherical means on the Heisenberg group
considered in Theorem 1.1. Let ‖ · ‖ denote the operator norm of a matrix
with respect to the Euclidean norm. We state an extension of Theorem 1.1
under the assumption that Λθ =

∑m
i=1 θiΛi is sufficiently small.

Theorem 1.2. Let n ≥ 2, d = 2n + m, let M be as in (1.3), and suppose
that Λ satisfies

(1.4) min
θ∈Sm−1

[
‖(Jθ)−1‖−1 − ‖Λθ‖

]
> 0.

Let R be the closed quadrilateral with corners

(1.5)
Q1 = (0, 0), Q2 = (d−m−1

d−m , d−m−1
d−m ),

Q3 = ( d−1
d+m ,

m+1
d+m), Q4 = ( d(d−1)

d2+(d+1)m+1
, (m+1)(d−1)
d2+(d+1)m+1

).

Then

(i) M is of restricted weak type (p, q) for all (1
p ,

1
q ) ∈ R.

(ii) M : Lp(Hn) → Lq(Hn) is bounded if (1
p ,

1
q ) belongs to the interior of

R, or to the open boundary segments (Q2, Q3), (Q3, Q4), or to the half open
boundary segments [Q1, Q2), [Q1, Q4).
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Remarks. (i) For m = 1 and Λ = 0, we recover the positive results in
Theorem 1.1 for the spherical means on Heisenberg groups.

(ii) Under the smallness condition (1.4), we give an alternative proof of
the result for maximal operators in [1] which relied on decoupling estimates
to prove local Lp → Lp(2n−1)/p′ regularity results for the averaging operators

acting on compactly supported functions on Hn, in the range 1 < p < 4n+2
2n+3 .

Our approach is to use Lp space-time estimates instead. However, the Lp-
Sobolev result in [1] is interesting in its own right, and is still needed for the
Lp(Hn) boundedness of the maximal operator in the range p > 2n

2n−1 if one

does not impose any condition on Λ. The use of L2 space-time estimates
is implicit already in the work by Narayanan and Thangavelu [24] who use
the group Fourier transform on the Heisenberg group to estimate a relevant
square-function involving generalizations of spherical means. L2 space-time
estimates for the relevant Fourier integral operators have also been used in
a more recent paper by Joonil Kim [18]; for the basic idea see also the work
on variable coefficient Nikodym estimates in [22].

(iii) For m+3 ≤ 2n, one can use an alternative approach to the Lq
′ → Lq

estimates which does not require assumption (1.4), cf. Remark 5.1. One
also obtains the endpoint restricted weak type estimate for the point Q2

provided that m+ 3 < 2n.

(iv) The example in §6.5 demonstrating the sharpness of the line Q3Q4 in
the case m = 1 seems to be new. It would be interesting to see whether there
exists similar examples for m ≥ 2 and to settle the problem of sharpness for
those cases. It would also be interesting to analyze what happens when the
size restriction (1.4) on Λ is dropped.

Lp improving estimates for spherical averages. We now discuss another prob-
lem considered in [3], concerning sparse bounds for the lacunary spherical
maximal function supk |f ∗µ2k | on the Heisenberg groups. Again, essentially
sharp sparse bounds (cf. (8.4)) follow from essentially sharp results on the
Lp(Hn)→ Lq(Hn) boundedness for the averaging operators f 7→ f ∗µ and a
closely related ε-regularity property. In [3] a partial result is proved; namely
the Lp(Hn) → Lq(Hn) boundedness holds for n ≥ 2 if (1

p ,
1
q ) belongs to the

triangle with corners (0, 0), (1, 1) and (3n+1
3n+4 ,

3
3n+4); further, the method of

[3] does not seem to yield a result for n = 1. Here we prove sharp results
for all Heisenberg groups; indeed we formulate a general result for Métivier
groups of dimension d = 2n+m.

Theorem 1.3. (i) When n ≥ 2 and m < 2n− 2, the inequality

(1.6) ‖f ∗ µΛ‖Lq(G) . ‖f‖Lp(G)

holds for all f ∈ Lp(G) if and only if (1
p ,

1
q ) belongs to the closed triangle

4(P1P2P3) with P1 = (0, 0), P2 = (1, 1) and P3 = ( 2n+m
2n+2m+1 ,

m+1
2n+2m+1).



6 J. ROOS A. SEEGER R. SRIVASTAVA

(ii) For m = 2n−2, inequality (1.6) holds if (1/p, 1/q) ∈ 4(P1P2P3)\P3.
It fails for (1

p ,
1
q ) /∈ 4(P1P2P3).

(iii) For m = 2n − 1, inequality (1.6) holds if (1
p ,

1
q ) lies in the convex

hull of {(0, 0), (1, 1), (4m2+3m+1
6m2+5m+1

, m+1
3m+1), (6m+1

9m+3 ,
3m+2
9m+3), ( 2m

3m+1 ,
2m2+2m

6m2+5m+1
)}.

This result is sharp at least when m = 1.

In contrast to Theorem 1.2, no assumption on Λ is needed; in fact, the
estimate for convolution with µΛ

t (with fixed t) is equivalent to the cor-
responding inequality for Λ = 0, as one can see by a change of variable
argument involving shear transformations.

The above result be obtained using essentially known results on general-
ized Radon transforms and oscillatory integral operators with fold singular-
ities (cf. [26], [13], [11]). For m = 1 (the Heisenberg case) the pentagon in
(iii) reduces to a trapezoid and we get the sharp result

Corollary 1.4. The inequality

(1.7) ‖f ∗ µΛ‖Lq(Hn) . ‖f‖Lp(Hn)

holds for all f ∈ Lp(Hn) if and only if one of the following holds:

(i) n ≥ 2 and (1
p ,

1
q ) belongs to the closed triangle with corners (0, 0),

(1, 1) and (2n+1
2n+3 ,

2
2n+3).

(ii) n = 1 and (1
p ,

1
q ) belongs to the closed trapezoid with corners (0, 0),

(1, 1), (2
3 ,

1
2), (1

2 ,
1
3).

Remark. In view of the restriction m < ρRH(2n), only cases with m ≤ 2n−1
occur in Theorem 1.3. Observe that ρRH(4n + 2) = 2, and ρRH takes the
values 4, 8, 4, 8 for 2n = 4, 8, 12, 16. Also ρRH(2n) < 2 log2(2n) + 3, hence
clearly ρRH(2n) ≤ 2n− 2 for 2n ≥ 10.

The only cases with m = 2n − 1 are (m, 2n + m) = (1, 3), (7, 15). In
these instances, the codimension m + 1 of our sphere in G exceeds half of
the dimension of G. The first situation (m = 1 and 2n = 2) corresponds to
the Heisenberg group H1, for which the region in part (iii) of Theorem 1.3
is a trapezoid. In this case, we also establish the sharpness of our result.

In the only two cases with m = 2n−2, namely (m, 2n+m) = (2, 6), (6, 14),
we do not have a definitive answer for the endpoint P3 = ( 2n+m

2n+2m+1 ,
m+1

2n+2m+1).

All endpoints in all the other cases are covered, since part (i) of the theorem
applies.

Further directions. It would also be interesting to investigate Lp → Lq map-
ping properties of maximal functions with respect to arbitrary dilation sets
E ⊂ [1, 2] (see [2, 28] for the Euclidean analogue of this question). We will
take up this problem in a subsequent paper [29].

Plan of the paper. The proof of Theorem 1.2 is contained in the next three
sections. In §2 we describe the basic estimates and how they can be reduced
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to problems about oscillatory integral operators. In §3 and §4 we show how
to apply in our context two well known theorems on oscillatory integral
operators acting on L2 functions. Theorem 1.3 will be proved in §5. We
establish the necessary conditions in §6 and §7. In §8 we briefly discuss the
implications for sparse bounds.

Notation. Partial derivatives will often be denoted by subscripts. P denotes
the (2n−1)×2n matrix P = (I2n−1 0). By A . B we mean that A ≤ C ·B,
where C is a constant and A ≈ B signifies that A . B and B . A. For
coefficient vectors ȳ = (ȳ1, . . . , ȳm), and sets of 1 × 2n vectors {Λi}mi=1, or
2n×2n matrices {Ji}mi=1, we abbreviate Λȳ =

∑m
i=1 ȳiΛi and J ȳ =

∑m
i=1 ȳiJi.

2. Main estimates

We use the notation ∗J for convolution when the choice of J in (1.2)
is emphasized. Let υ be a nonnegative bump function on R2n supported
in a neighborhood of e2n, normalized so that

∫
SO(2n) υ(R−1e2n)dR = 1;

here dR denotes the normalized Haar measure on SO(2n). Then we have∫
SO(2n) υ(R−1ω)dR = 1 for all ω ∈ S2n−1, and using this, Fubini’s theorem

and a change of variables, we can write the convolution as

f ∗
J
µΛ
t (x) =

∫
R∈SO(2n)

fR ∗RᵀJR
[υµΛR]t(R

ᵀx, x̄)dR,

where fR(y) = f(Ry, ȳ). Note that replacing (Ji,Λi) with (RᵀJiR,ΛiR)
does not affect condition (1.4) and therefore, by the integral Minkowski
inequality, it suffices to prove our theorems with µΛ replaced by υµΛ.

By a localization argument we may assume that the function f is sup-
ported in a small neighborhood of the origin. To see this we use the group
translation to tile G. Let Q0 = [−1

2 ,
1
2)2n+m and, for n ∈ Z2n+m, let

Qn = n · Q0, i.e. Qn = {(n + z, n̄ + z̄ + nJz) : z ∈ Q0}. One then veri-
fies that

∑
n∈Z2n+m 1Qn = 1. Moreover, the measures µt are supported in

{w ∈ G : |w| ≤ 2, |w̄| ≤ 4‖Λ‖}, hence in the union of Qk with |kj | ≤ 2,
j ≤ 2n, |k2n+i| ≤ 2 + 4‖Λ‖, i = 1, . . . ,m. Denote this set of indices by J.
Then

supp
(
[f1Qn ] ∗ µt

)
⊂
⋃
k∈J

(n ·Q0 ·Qk) ⊂
⋃

ñ∈I(n)

Qñ,

where I(n) is a set of indices ñ with |nj− ñj | ≤ C(Λ, J, n) for j = 1, . . . , 2n+
m. This consideration allows us to reduce to the case where f is supported
in a small neighborhood of the origin.

Splitting y = (y′, y2n) and using the parametrization ω = (w′, g(w′))

with g(w′) =
√

1− |w′|2 near the north pole e2n of the sphere, we are led
to consider the generalized Radon transforms associated to the incidence
relation given by the equations

(2.1) y2n = S2n(x, t, y′), ȳ = S̄(x, t, y)
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where

S2n(x, t, y′) = x2n − tg(x
′−y′
t )(2.2a)

S(x, t, y) = x+ tΛ(x− y) + xᵀJy,(2.2b)

where y′ is small, x is near e2n on the support of υ and

(2.3) g(0) = 1, ∇g(0) = 0, g′′(0) = −I2n−1, g
′′′(0) = 0.

Using (2.1) and (2.2a) to express y2n in (2.2b), we conclude that (2.1) is
equivalent with

(2.4)
y2n = s2n(x, t, y′) := S2n(x, t, y′),

ȳ = s̄(x, t, y′) := S̄(x, t, y′,S2n(x, t, y′)).

Recall that P =
(
I2n−1 0

)
. We compute for i = 1, . . . ,m,

si(x, t, y
′) =x̄i + tΛix− tΛiP ᵀy′ + xᵀJiP

ᵀy′

+
(
x2n − tg(x

′−y′
t )

)
(xᵀJie2n − tΛie2n)

and also have s2n(x, t, y′) = x2n − tg(x
′−y′
t ). We can thus write, for f with

small support near 0,

f ∗ (υµΛ)t(x) =

∫
χ1(x, t, y′)f(y′, s2n(x, t, y′), s̄(x, t, y′))dy′,

where χ1 is a smooth and compactly supported function so that on its
support y′ is small and x is near e2n. The right hand side represents an
operator with Schwartz kernel

K(x, t, y) = χ1(x, t, y′)δ0(s2n(x, t, y′)− y2n, s(x, t, y
′)− y),

where δ0 denotes the Dirac measure at the origin in Rm+1. We express δ0

via the Fourier transform

(2.5) K(x, t, y) = χ1(x, t, y′)

∫
θ∈Rm+1

eiψ(x,t,y,θ) dθ
(2π)m+1

with

(2.6) ψ(x, t, y, θ) = θ2n(s2n(x, t, y′)− y2n) + θ · (s(x, t, y′)− y).

Note that K is well defined as an oscillatory integral distribution (indeed
from definition (2.4) we see that x 7→ K(x, t, y) and y 7→ K(x, t, y) are well
defined as oscillatory integral distributions on Rd).

We now perform a dyadic decomposition of this modified kernel. Let ζ0

be a smooth radial function on Rm+1 with compact support in {|θ| < 1}
such that ζ0(θ) = 1 for |θ| ≤ 1/2. Setting ζ1(θ) = ζ0(θ/2) − ζ0(θ) and
ζk(θ) = ζ1(21−kθ) for k ≥ 1, we define

Akt f(x) =

∫
χ1(x, t, y′)

∫
θ∈Rm+1

ζk(θ)e
iψ(x,t,y,θ) dθ

(2π)m+1 f(y)dy
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and let

Mkf(x) = sup
t∈[1,2]

|Akt f(x)|.

The basic estimates for Mk are summarized in the following proposition.

Proposition 2.1. Assume (1.4) holds.

(i) For 1 ≤ p ≤ ∞,

(2.7) ‖Mkf‖p . 2
k
p 2
−k(d−m−1) min( 1

p
, 1
p′ )‖f‖p.

(ii) For 2 ≤ q ≤ ∞,

(2.8) ‖Mkf‖Lq(Rd) . 2
k(m+1− d+m

q
)‖f‖q′ .

(iii) For q ≥ q5 := 2(d+1)
d−1 ,

(2.9) ‖Mkf‖Lq(Rd) . 2
−k( d

q
−m+1

2
)‖f‖2.

2.1. Proof of Theorem 1.2, given Proposition 2.1. It suffices to show the

required bounds for Mf(x) :=
∑

k≥0M
kf .

We note that for n ≥ 2,m ≥ 1 (so d ≥ 5) and q5 := 2(d+1)
d−1 we have

d
q5
− m+1

2 > 0 and m+ 1− d+m
2 < 0. To deduce the required restricted weak

type estimates for M at Q2, Q3, Q4 we recall the Bourgain interpolation
argument ([7], [8]): Suppose we are given sublinear operators Tk so that for
k ≥ 1,

‖Tk‖Lp0,1→Lq0,∞ . 2ka0 and ‖Tk‖Lp1,1→Lq1,∞ . 2−ka1

for some p0, q0, p1, q1 ∈ [1,∞], a0, a1 > 0. Then the operator
∑

k≥1 Tk is of

restricted weak type (p, q), where

(1
p ,

1
q , 0) = (1− ϑ)( 1

p0
, 1
q0
, a0) + ϑ( 1

p1
, 1
q1
,−a1)

and ϑ = a0
a0+a1

∈ (0, 1).

The restricted weak type estimate for M at Q2 = (d−m−1
d−m , d−m−1

d−m ) now

follows from (2.7). Similarly, the restricted weak type bound at Q3 =
( d−1
d+m ,

m+1
d+m) follows from (2.8). Finally, the restricted weak type bound

at Q4 = ( 1
p4
, 1
q4

) with

1
p4

= d(d−1)
d(d−1)+(d+1)(m+1) ,

1
q4

= (m+1)(d−1)
d(d−1)+(d+1)(m+1)

follows from interpolating (2.9) for q = q5 with the case q = ∞ of (2.8),
since for n = d−m ≥ 2

( 1
p4
, 1
q4
, 0) = ϑ(1

2 ,
1
q5
,− d

q5
+ m+1

2 ) + (1− ϑ)(1, 0,m+ 1)

with ϑ = 2(d+1)(m+1)
d(d−1)+(d+1)(m+1) ∈ (0, 1). Since bounds for M imply bounds for

M , this concludes the proof of part (i) of Theorem 1.2. Part (ii) is immediate
by interpolation.
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2.2. Reduction to space-time bounds. We use the standard Sobolev inequal-
ity

(2.10) sup
t∈[1,2]

|F (t)| . ‖F‖p + ‖F‖1/p′p ‖F ′‖1/pp ,

where the Lp norms are taken on [1, 2], see [34, p.499]. We apply it to
F (t) = Akt f(x) ≡ Akf(x, t), integrate in x and then use Hölder’s inequality
to obtain Proposition 2.1 as a consequence of the following

Proposition 2.2. Assume (1.4) holds.

(i) For 1 ≤ p ≤ ∞

(2.11) ‖Ak‖Lp(Rd)→Lp(Rd×[1,2]) . 2
−k(d−m−1) min( 1

p
, 1
p′ )

(ii) For 2 ≤ q ≤ ∞,

(2.12) ‖Akf‖Lq′ (Rd)→Lq(Rd×[1,2]) . 2
k(m+1− d+m+1

q
)
.

(iii) For q ≥ 2(d+1)
d−1 ,

(2.13) ‖Ak‖L2(Rd)→Lq(Rd×[1,2]) . 2
−k( d+1

q
−m+1

2
)‖f‖2.

(iv) The same estimates hold for 2−k ddtA
k in place of Ak.

For later calculations it will be convenient to introduce the nonlinear shear
transformation in the x-variables (smoothly depending on t)

x(x, t) = x,

xi(x, t) = x̄i − tΛix− x2n(xᵀJie2n − tΛie2n).

By a change of variables it suffices to prove the above space-time inequalities
for Akt f(x(x, t), t) and 2−k ddtA

k
t f(x(x, t), t). Using the homogeneity we see

that both terms are linear combinations of expressions of the form

(2.14) Akf(x, t) = 2k(m+1)

∫
Rd

∫
Rm+1

ei2
kΨ(x,t,y,θ)b(x, t, y′, θ)f(y) dθ dy

where the symbol b is compactly supported in Rd × R × Rd−m−1 × Rm+1

with y′ near zero and x near e2n on the support of b and |θ| ∈ [1/2, 2]. The
phase function Ψ is given by

(2.15) Ψ(x, t, y, θ) = θ2n(S2n(x, t, y′)− y2n) +
m∑
i=1

θ̄i(S̄i(x, t, y
′)− ȳi)

with (S2n, S̄)|(x,t,y′) = (s2n, s̄)|(x(x,t),t,y′), that is

(2.16)
S2n(x, t, y′) = x2n − tg(x

′−y′
t )

S̄i(x, t, y
′) = x2n+i + (xᵀJi − tΛi)(P ᵀy′ − tg(x

′−y′
t )e2n),

with g is as in (2.3). The Schwartz kernel of Ak is given by

(2.17) Kk(x, t, y) =

∫
Rm+1

ei2
kΨ(x,t,y,θ)b(x, t, y′, θ)dθ



SPHERICAL MAXIMAL FUNCTIONS ON HEISENBERG GROUPS 11

and integration by parts yields the estimate

(2.18) |Kk(x, t, y)| ≤ CN
2k(m+1)

(1 + 2k|y2n − S2n(x, t, y′)|+ 2k|ȳ − S̄(x, t, y′)|)N
.

This estimate (together with the specific expressions for S2n, S̄) yields for
all k ≥ 1 the bounds

‖Akt ‖L1→L1 + ‖Akt ‖L∞→L∞ . 1,(2.19)

‖Akt ‖L1→L∞ . 2k(m+1).(2.20)

In view of these estimates it suffices in what follows to consider the case of
large k. The bounds (2.11), (2.12) then follow by an interpolation argument
using (2.19), (2.20) and the local L2 space-time estimate

(2.21) ‖Akf‖L2(Rd×[1,2]) . 2−k
d−m−1

2 ‖f‖2.

This gives a gain over the estimate ‖Akt ‖L2→L2 . 2−k( d−m−1
2
− 1

6
) for fixed

time t established in [23] via estimates for oscillatory integrals with fold
singularities in [11]. As mentioned before, the papers [24] and [18] work
with similar space-time estimates.

To prove (2.21) we use an oscillatory integral operator

Tkf(x, t) =

∫
Rd
ei2

kΦ(x,t,y)b(x, t, y)f(y)dy

where b ∈ C∞c (Rd × R× Rd) is as in (2.14), and

(2.22) Φ(x, t, y) = y2nS
2n(x, t, y′) +

m∑
i=1

ȳiS̄i(x, t, y
′).

Setting Fk(y) =
∫
Rm+1 f(y′, w2n, w̄)e−i2

k(y2nw2n+ȳ·w̄)dw2ndw̄ we have

Akf(x, t) = TkFk(x, t)

and by Plancherel’s theorem ‖Fk‖2 = (2−k2π)(m+1)/2‖f‖2. Hence (2.21)
follows from

Proposition 2.3. Assume (1.4) holds. For all f ∈ L2(Rd),

(2.23) ‖Tkf‖L2(Rd×[1,2]) . 2−k
d
2 ‖f‖2

The proof will be given in §3 using the standard Hörmander L2 estimate
([15]). By the same argument, the L2 → Lq bound (2.13) is reduced to the
estimate

Proposition 2.4. Assume that (1.4) holds. Then for q ≥ q5 = 2(d+1)
d−1 and

f ∈ L2(Rd),

(2.24) ‖Tkf‖Lq(Rd×[1,2]) . 2
−k d+1

q ‖f‖2.

This will be proved in §4 using a result in [22].



12 J. ROOS A. SEEGER R. SRIVASTAVA

3. Proof of Proposition 2.3

By Hörmander’s classical L2 bound ([34, ch. IX.1]) applied after a par-
tition of unity and a slicing argument with a suitable subset of d of the
(x, t)-variables, it suffices to prove that the rank of the (d + 1) × d mixed
Hessian matrix Φ′′(x,t),y is equal to d. Equivalently, for

(3.1) Ξ(x, t, y) := ∇x,tΦ(x, t, y) = y2n∇x,tS2n +
m∑
i=1

ȳi∇x,tSi,

we need to check that (using subscripts to denote partial derivatives)

(3.2) rank (Ξy1 , . . . ,Ξyd) = d

for every (x, t, y) ∈ supp(b); in particular, |ȳ| ≈ 1, and x′ − y′ is small.

Recall that P denotes the (2n − 1) × 2n matrix P = (I2n−1 0). We
calculate

Ξ(x, t, y) = y2n


−∇g(x

′−y′
t )

1
~0m

h(x
′−y′
t )



+

m∑
i=1

yi


PJiP

ᵀy′ − tg(x
′−y′
t )PJie2n − (xᵀJie2n − tΛie2n)∇g(x

′−y′
t )

eᵀ2nJi(P
ᵀy′ − tg(x

′−y′
t )e2n)

emi
h(x

′−y′
t )(xᵀJi − tΛi)e2n − Λi(P

ᵀy′ − tg(x
′−y′
t )e2n)


where emi denotes the i-th standard basis vector in Rm and

h(x′) = 〈x′,∇g(x′)〉 − g(x′),

with

(3.3) h(0) = −1,∇h(0) = 0, h′′(0) = −I2n−1.

The non-degeneracy assumption on J implies that y2nI2n+Jy is invertible
whenever (y2n, y) 6= 0. More precisely, we have the following auxiliary lemma
for its operator norm (taken with respect to the standard Euclidean norm
in R2n); this is a quantitative extension of a lemma in [23].

Lemma 3.1. Let B be a real skew-symmetric N ×N matrix and let IN be
the N ×N identity matrix.

(i) Suppose N is even. Then ρIN + B is invertible if and only if either
ρ 6= 0 or B is invertible. Moreover, for the Euclidean operator norm of the
inverse,

(3.4) ‖(ρIN +B)−1‖ =

{
|ρ|−1 if detB = 0

(ρ2 + ‖B−1‖−2)−1/2 if detB 6= 0
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(ii) Suppose that N is odd. Then ρIN +B is invertible if and only if ρ 6= 0
and we have ‖(ρIN + B)−1‖ = |ρ|−1. Moreover det(ρIN + B) = c(ρ,B)ρ
where c depends smoothly on ρ,B and c(ρ,B) 6= 0 if rankB = N − 1.

Proof. We first consider the case N = 2n. When acting on C2n the skew
symmetric matrix B has an orthonormal basis of eigenvectors, with purely
imaginary eigenvalues. If v is a complex eigenvector with eigenvalue iβ, then
v̄ is an eigenvector with eigenvalue −iβ, moreover B(Re v) = −β Im v and
B(Im v) = βRe v. There is then an orthonormal basis u1, . . . , u2n of R2n

such that Bu2k−1 = −βku2k and Bu2k = βku2k−1. Also, (ρI ± B)u2k−1 =
ρu2k−1∓βku2k and (ρI±B)u2k = βku2k−1±ρu2k. Thus ρI±B are invertible
if and only if either ρ 6= 0 or mink |βk| 6= 0.

We have ((ρI+B)−1)ᵀ(ρI+B)−1 = (ρ2I−B2)−1, by the skew-symmetry
of B. Observe that ρ2I−B2 acts on Vk := span{u2k−1, u2k} as (ρ2 +β2

k)IVk
and it follows that

‖(ρI +B)−1‖ = ‖((ρI +B)−1)ᵀ(ρI +B)−1‖1/2

= max
k=1,...,n

(ρ2 + β2
k)−1/2 = (ρ2 + min

k=1,...,n
β2
k)−1.

Since ‖B−1‖−1 = mink |βk| we obtain the claimed expression for the operator
norm.

Next consider the case N = 2n−1, n ≥ 2 (the case N = 1 is trivial). The
proof uses the same argument as above. We can now find an orthonormal
bases u1, . . . , u2n−1 such that Bu2k−1 = −βku2k and Bu2k = βku2k−1 for k =
1, . . . , n − 1, and Bu2n−1 = 0. Let f(ρ,B) = det(ρI + B) then f(0, B) = 0
since N is odd, moreover c(ρ,B) = f(ρ,B)/ρ is a polynomial in ρ and the

entries of B. By the above computation f(ρ,B) = ρ
∏n−1
k=1(ρ2 + βk)

2. If the
rank of B is N − 1 then the βk are nonzero and thus c(ρ,B) 6= 0. �

We proceed to check (3.2). Recall the notation Jy =
∑m

i=1 yiJi and
Λy =

∑m
i=1 yiΛi. We compute, for j = 1, . . . , 2n − 1, the partial derivatives

(using eᵀ2nJye2n = 0),

Ξyj =


t−1(y2n + (xᵀJy − tΛy)e2n)∂j∇g(x

′−y′
t ) + PJy(ej + ∂jg(x

′−y′
t )e2n)

eᵀ2nJ
y(ej + ∂jg(x

′−y′
t )e2n)

~0m
−t−1(y2n + (xᵀJy − tΛy)e2n)∂jh(x

′−y′
t )− Λȳ(ej + ∂jg(x

′−y′
t )e2n)

 ,

Ξy2n =


−∇g(x

′−y′
t )

1
~0m

h(x
′−y′
t )

 ,
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and, with yi ≡ y2n+i,

Ξy2n+i =


PJiP

ᵀy′ − tg(x
′−y′
t )PJie2n − (xᵀJie2n − tΛie2n)∇g(x

′−y′
t )

eᵀ2nJi(P
ᵀy′ − tg(x

′−y′
t )e2n)

emi
h(x

′−y′
t )(xᵀJi − tΛi)e2n − Λi(P

ᵀy′ − tg(x
′−y′
t )e2n)

 .

Let Π : R2n+m+1 → R2n+m be the natural projection omitting the time
variable t = x2n+m+1. Let

(3.5) σ ≡ σ(x, t, y) = y2n + (xᵀJ ȳ − tΛȳ)e2n

and let B = B(x, t, y) be the (2n− 1)× (2n− 1) matrix

B = PJ ȳe2n(∇g(x
′−y′
t ))ᵀ

with rank at most one. We have

ΠΞy =

t−1σg′′(x
′−y′
t ) + PJyP ᵀ +B −∇g(x

′−y′
t ) ∗

eᵀ2nJ
yP ᵀ 1 ∗

0 0 Im


and therefore (using elementary column operations and the skew symmetry
of Jȳ)

detΠΞy = det
(
t−1σg′′(x

′−y′
t ) + PJyP ᵀ +B −Bᵀ

)
.(3.6)

Since PJyP ᵀ+B−Bᵀ is a skew-symmetric (2n−1)×(2n−1) matrix, we see
from Lemma 3.1 that ΠΞy is invertible if and only if σ 6= 0. Equivalently
det Φ′′xy 6= 0 if and only if σ 6= 0. If σ = 0, then ΠΞy is not invertible and
we have to use the t-derivatives.

Remark 3.2. For later reference in §5 we include the following remarks which
establish the oscillatory integral operator f 7→ Tkf(·, t) as an operator with
a folding canonical relation (i.e. two-sided fold singularities). We examine
the one-dimensional kernel and cokernel of the matrix in (3.6) for x′ = y′,
σ = 0.

(i) Consider b = (b′, b2n, b̄)
ᵀ in the kernel. Then b̄ = 0, b2n = −eᵀ2nJ ȳP ᵀb′

and PJ ȳP ᵀb′ = 0 with b′ 6= 0. This also implies that eᵀ2nJ
ȳP ᵀb′ 6= 0 (since

otherwise P ᵀb′ would be in the kernel of the invertible matrix J ȳ and b′ would
be zero). Let VL =

∑2n−1
j=1 bj∂/∂yj + b2n∂/∂y2n with b2n = −eᵀ2nJ ȳP ᵀb′ 6= 0,

then ∂σ
∂y2n

= 1 and from part (ii) of Lemma 3.1 we get VL(detΠΞy) 6= 0.

(ii) Let aᵀ = (a1, . . . , a2n+m) be in the cokernel of ΠΞy. Then a right

kernel vector field VR =
∑2n+m

j=1 aj∂/∂xj satisfies a2n = 0 (when evaluated

at x′ = y′, σ = 0), PJ ȳP ᵀa′ = 0 with a′ 6= 0 and ā is determined by a′.
Note that VRσ = −eᵀ2nJ ȳP ᵀa′ 6= 0 which leads to VR(detΠΞy) 6= 0.
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The case of small σ. We consider ȳ in an ε-neighborhood of ȳ◦ 6= 0, with
small ε > 0. We look at the (2n+m+ 1)× (2n+m) matrix Ξy for x′ = y′

and small σ. Since g′′(0) = −I2n−1 and h(0) = −1, we have

Ξy

∣∣∣
x′=y′

=


−t−1σI2n−1 + JyP ᵀ 0 ∗

eᵀ2nJ
yP ᵀ 1 ∗

0 0 Im
−ΛȳP ᵀ −1 ∗


We recall that J ȳ is invertible for ȳ 6= 0 (and take ȳ near ȳ◦ 6= 0). This

implies that for Λ̃ȳ = (ΛȳP ᵀ, 0) the 2n × 2n matrix with rows eᵀ1J
ȳ, . . . ,

eᵀ2n−1J
ȳ, eᵀ2nJ

ȳ − Λ̃ȳ is invertible. To see this, let {ck}2nk=1 be such that∑2n−1
k=1 cke

ᵀ
kJ

ȳ + c2n(eᵀ2nJ
ȳ − Λ̃ȳ) = 0. This gives

∑2n
k=1 cke

ᵀ
k = c2nΛ̃ȳ(J ȳ)−1

and thus
∑2n−1

k=1 c2
k + c2

2n(1− ‖Λ̃ȳ(J ȳ)−1‖2) = 0. By (1.4), setting θ = ȳ/|ȳ|,

‖Λ̃ȳ(J ȳ)−1‖ ≤ ‖Λ̃θ̄‖‖(J θ̄)−1‖ ≤ ‖Λθ̄‖‖(J θ̄)−1‖ < 1

which implies that the ck are all zero.

The preceding consideration also yields that 2n− 1 of the truncated rows
eᵀ1J

ȳP ᵀ, . . . , eᵀ2n−1J
ȳP ᵀ, eᵀ2nJ

ȳP ᵀ − ΛȳP ᵀ are linearly independent. For

κ ∈ {1, . . . , 2n−1}, we let P (κ) : R2n−1 → R2n−2 denote the map that omits

the κth coordinate. We also let Π(κ) be the corresponding linear map from
R2n+m+1 to R2n+m that omits the κth coordinate.

Since the skew symmetric matrix PJ ȳP ᵀ is not invertible we see that there
is a κ ∈ {1, . . . , 2n− 1} (depending on ȳ) such that the (2n− 1)× (2n− 1)
matrix (

P (κ)PJ ȳP ᵀ

(eᵀ2nJ
ȳ − Λȳ)P ᵀ

)
is invertible. By elementary row operations this implies that

Π(κ)Ξy

∣∣∣
x′=y′

=


−t−1σP (κ)PI2n + P (κ)PJyP ᵀ 0 ∗

eᵀ2nJ
yP ᵀ 1 ∗

0 0 Im
−ΛȳP ᵀ −1 ∗


is invertible for σ = 0. The above calculations for ȳ = ȳ◦, σ = 0 and x′ = y′

extend by continuity to small choices of |σ|, |x′ − y′| and |ȳ − ȳ◦|, and for

these we obtain that Π(κ)Ξy is invertible. This concludes the verification of
(3.2) and thus the proof of Proposition 2.3. �

4. Proof of Proposition 2.4

Let Ξ = ∇x,tΦ as in (3.1), N ∈ Rd+1 be a unit vector, and let CN (x, t, y)
be the d× d curvature matrix with respect to N given by

(4.1) CNjl =
∂2

∂yj∂yl
〈N,Ξ〉
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We apply an oscillatory integral result in [22] according to which Proposition
2.4 holds provided that (3.2) and the additional curvature condition

(4.2) 〈N,Ξyj 〉 = 0, j = 1, . . . , d =⇒ rankCN = d− 1

is satisfied; i.e. the conic surface Σx,t parametrized by y 7→ Ξ(x, t, y) has the
maximal number d − 1 of nonvanishing principal curvatures. It remains to
verify (4.2); here we shall use our size assumption (1.4) on Λ.

Let σ be as in (3.5). For x′ = y′, using the properties of g, h in (2.3), (3.3)
we get

Ξyj

∣∣∣
x′=y′

= −t−1σej +

 Jyej
~0m
−Λȳej

 ,

Ξy2n

∣∣∣
x′=y′

=


~02n−1

1
~0m
−1

 , Ξy2n+i

∣∣∣
x′=y′

=


PJiP

ᵀy′ − tPJie2n

eᵀ2nJiP
ᵀy′

emi
(tΛi − xᵀJi)e2n − Λi(P

ᵀy′ − te2n)

 .

We now consider a unit vector

N
∣∣∣
x′=y′

= (α, α, αd+1)ᵀ = (α′, α2n, α, αd+1)ᵀ ∈ Rd+1

perpendicular to Ξyi , Ξy2n , Ξyi . Evaluating for x′ = y′, we get

0 = 〈N,Ξyj 〉
∣∣∣
x′=y′

= −t−1σαj + αᵀJ ȳej − αd+1Λȳej , j ≤ 2n− 1.

(4.3a)

0 = 〈N,Ξy2n〉
∣∣∣
x′=y′

= α2n − αd+1,

(4.3b)

0 = 〈N,Ξyi〉
∣∣∣
x′=y′

= α′ᵀ(PJiP
ᵀy′ − tPJie2n) + α2ne

ᵀ
2nJiP

ᵀy′ + αi

(4.3c)

+ αd+1((tΛi − xᵀJi)e2n − Λi(P
ᵀy′ − te2n)), i = 1, . . . ,m.

Equation (4.3c) above expresses αi in terms of α and αd+1 and turns out
to be not really relevant to our calculations. Normalizing |N | = 1 we have
|α| ≈ 1.

Remark. It is instructive to see that when Λ = 0 and for the special case of
the Heisenberg type group, i.e. when (J ȳ)2 = −|ȳ|2I, the projection of the
normal vector N to R2n is tangential to the sphere for σ = 0, indeed in that
case (as we evaluate at the northpole of the sphere with normal vector e2n)
we see from (4.3a) that α is perpendicular to span{J ȳe1, . . . J

ȳe2n−1} which
contains e2n.
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The second derivative vectors are given by

Ξyjyk =


−t−2σ∂jk∇g(x

′−y′
t )− t−1(PJye2n)∂2

jkg(x
′−y′
t )

0
~0m

t−2σ∂2
jkh(x

′−y′
t ) + t−1Λȳe2n∂jkg(x

′−y′
t )

 ,

for 1 ≤ j, k ≤ 2n− 1, and

Ξyjyk = 0, if 2n ≤ j, k ≤ 2n+m.

Moreover,

Ξyjy2n =


t−1∂j∇g(x

′−y′
t )

0
~0m

−t−1∂jh(x
′−y′
t )

 , 1 ≤ j ≤ 2n− 1,

and, for i = 1, . . . ,m and j = 1, . . . , 2n− 1,

Ξyjy2n+i =


PJiej + PJie2n∂jg(x

′−y′
t ) + t−1(xᵀJi − tΛi)e2n∂j∇g(x

′−y′
t )

eᵀ2nJiej
~0

−t−1(xᵀJi − tΛi)e2n∂jh(x
′−y′
t )− Λi(ej + ∂jg(x

′−y′
t )e2n)

 ,

We evaluate at x′ = y′, using g′′(0) = h′′(0) = −I2n−1, g′′′(0) = 0, and see
that the components of the curvature matrix CN at x′ = y′ are given by

〈N,Ξyjyj 〉
∣∣∣
x′=y′

= (α′)ᵀt−1PJ ȳe2n − αd+1t
−2σ + αd+1(−tΛȳe2n),

= (α)ᵀt−1J ȳe2n − αd+1(t−2σ + t−1Λȳe2n),

〈N,Ξyjyk〉
∣∣∣
x′=y′

= 0, if j 6= k,

for 1 ≤ j, k ≤ 2n− 1. Moreover for 1 ≤ j ≤ 2n− 1,

〈N,Ξyjy2n〉
∣∣∣
x′=y′

= −αjt−1,

〈N,Ξyjy2n+i〉
∣∣∣
x′=y′

= αᵀJiej − αjt−1((xᵀJi − tΛi)e2n)− αd+1Λiej , 1 ≤ i ≤ m,

and

〈N,Ξyjyk〉
∣∣∣
x′=y′

= 0, 2n ≤ j, k ≤ d = 0.

Thus we get for the d× d curvature matrix CN ,

CN
∣∣∣
x′=y′

=

(
cI2n−1 PA
AᵀP ᵀ 0

)
where c = c(t, x, y) is given by

(4.4) c = t−1αᵀJ ȳe2n − t−2αd+1σ − t−1αd+1Λȳe2n
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and AᵀP ᵀ is the (m + 1) × (2n − 1) matrix obtained from the following
(m+ 1)× 2n matrix Aᵀ by deleting the last column; here

Aᵀ =


−t−1(α)ᵀ

αᵀJ1 − t−1((xᵀJ1 − tΛ1)e2n)αᵀ − αd+1Λ1
...

αᵀJm − t−1((xᵀJm − tΛm)e2n)αᵀ − αd+1Λm

 .

We combine (4.4), (4.3a) and (4.3b) to get

(4.5) (−t−1σI + J ȳ)α− α2n(Λȳ)ᵀ = cte2n.

Therefore, by Lemma 3.1, and writing ϑ = ȳ/|ȳ|,

|c| = t−1‖(σt I − J
ȳ)α+ α2nΛȳ‖ = t−1|ȳ|‖( σ

|ȳ|tI − J
ϑ̄)α+ α2nΛϑ̄‖

≥ t−1|ȳ||α|
(
( σ2

|ȳ|2t2 + ‖(J ϑ̄)−1‖−2)1/2 − ‖Λϑ̄‖
)

and thus

(4.6) |c| ≥ t−1|ȳ||α|(‖(J ϑ̄)−1‖−1 − ‖Λϑ̄‖)
which is bounded away from zero by assumption (1.4).

We finish by verifying that CN has rank d− 1 = 2n+m− 1. We have the
factorization

(4.7)

(
cI2n−1 PA

0m+1,2n−1 −c−1AᵀP ᵀPA

)
=(

I2n−1 02n−1,m+1

−c−1AᵀP ᵀ Im+1

)(
cI2n−1 PA
AᵀP ᵀ 0m+1

)
where PA is an (2n− 1)× (m+ 1) matrix, I2n−1 is the (2n− 1)× (2n− 1)
identity matrix, Im+1 is the (m+ 1)× (m+ 1) identity matrix, 0m+1 is the
(m+ 1)× (m+ 1) zero matrix and 02n−1,m+1 is the (2n− 1)× (m+ 1) zero
matrix.

Thus, the rank of the curvature matrix is 2n−1+rank(PA) and the rank
of PA the same as the rank of the (2n − 1)× (m+ 1) matrix

(4.8)
(
−t−1Pα Pv(1) . . . Pv(m)

)
with v(k) = Jᵀkα− Λᵀkαd+1.

We observe that the extended columns −t−1α, v(1), ...., v(m) are linearly
independent vectors in R2n. To see this let (w2n, w̄) ∈ R1+m be such

that −t−1αw2n +
∑m

k=1 v
(k)wk = 0. This is equivalent with −t−1αw2n +∑m

k=1 J
ᵀ
kαwk =

∑m
k=1 Λᵀkwk. If w̄ = 0 then we must also have w2n = 0 since

α 6= 0. We thus need to show that w̄ 6= 0 leads to a contradiction. Let
ω̄ = w̄/‖w̄‖. Since αd+1 = α2n we get α = α2n(−t−1ω2nI −Jω)−1(Λω)ᵀ and
thus by Lemma 3.1

|α| ≤ (
ω2

2n
t2

+ ‖(Jω)−1‖−2)−1/2‖Λω‖|α2n| ≤ ‖(Jω)−1‖‖Λω‖ |α|

Since by assumption ‖Λω̄‖ < ‖(J ω̄)−1‖−1 for |ω̄| = 1 we get α = 0, a
contradiction.
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We have thus verified that the m + 1 vectors −t−1α, v(1), ..., v(m) are
linearly independent and hence the rank of the matrix (4.8) is at least m.
This proves (4.2) and finishes the proof of Proposition 2.4.

5. Proof of Theorem 1.3

Let σ(x, t, y′, θ2n, θ̄) = θ2n + (xᵀJ θ̄ − tΛθ̄)e2n which is comparable to the
‘rotational curvature’ of the fixed time operator. We use the oscillatory

representation of the kernel in (2.14) and split Akt =
∑[k/3]−1

`=0 Ak,`t + Ãk,[k/3]
t

where
(5.1)

Ak,`t f(x) = 2k(m+1)

∫
Rd

∫
Rm+1

ei2
kΨ(x,t,y′,θ2n,θ̄)b`(x, t, y, θ) dθ2n dθ̄ f(y) dy,

and b` is supported where |θ2n| ≈ 2−` when ` ≤ [k/3] − 1 and supported

where |θ2n| . 2−k/3 if ` = [k/3].

The operators Ak,`t are bounded on L1 and L∞ uniformly in k and `. A
trivial kernel estimate yields

(5.2) ‖Ak,`t f‖∞ . 2k(m+1)2−`‖f‖1

We also have the L2 estimates

(5.3) ‖Ak,`t f‖2 . 2−k
d−m−1

2 2`/2‖f‖2

for ` ≤ [k/3]. These follow, after an application of Plancherel’s theorem,
from corresponding bounds for the oscillatory integral operators with phase
function Φ as in (2.22)

Tk,`f(x, t) = 2k(m+1)

∫
Rd
ei2

kΦ(x,t,y)b`(x, t, y)f(y) dy,

namely

(5.4) ‖Tk,`f(·, t)‖2 . 2`/22−kd/2‖f‖2.

The estimate (5.4) follows from bounds in [11] (cf. Remark 3.2). Interpola-
tion of the trivial L1 estimate and (5.3) and summing in ` yields an Lp → Lp

estimate ‖Akt ‖Lp→Lp = O(2−ε(p)k) with ε(p) > 0 for 1 < p <∞.

We may interpolate between (5.2) and (5.3) and obtain

(5.5) ‖Ak,`t f‖q . 2
k(m+1− d+m+1

q
)
2
`( 3
q
−1)‖f‖q′ , 2 ≤ q ≤ ∞

which implies

(5.6) ‖Akt f‖q ≤ Cq


2
k(m+1− d+m+1

q
)‖f‖q′ , 3 < q ≤ ∞

k2
k(m+1− d+m+1

q
)‖f‖q′ , q = 3

2
k(m+ 2

3
− d+m

q
)‖f‖q′ , 2 ≤ q < 3
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For the case q = 3, the Bourgain interpolation trick (as discussed in §2.1)
also yields

(5.7) ‖Akt f‖L3,∞ . 2k(m+1− d+m+1
3

)‖f‖
L

3
2 ,1
.

In the case m < 2n − 2, we have d+m+1
m+1 > 3 and thus get a uniform

estimate for Akt when q = d+m+1
m+1 = 2n+2m+1

m+1 . For m = 2n − 2, we have
d+m+1
m+1 = 3 and obtain the restricted weak type (q′, q) estimate for Akt uni-

formly in k. For m = 2n − 1, we get a uniform Lq
′ → Lq-bound when

q = 3(d+m)
3m+2 = 9m+3

3m+2 .

To combine the Akt , we use standard applications of Littlewood-Paley
theory, writing Akt = LkAktLk + Ek where the Lk satisfy Littlewood-Paley
inequalities∥∥∥(∑

k≥0

|Lkf |2
)1/2∥∥∥

r
. ‖f‖r,

∥∥∥∑
k≥0

Lkfk

∥∥∥
r
.
∥∥∥(∑

k≥0

|Lkfk|2
)1/2∥∥∥

r

for 1 < r < ∞ and the error term Ek has Lp → Lq operator norm O(2−k)
for all 1 ≤ p, q ≤ ∞. Since q′ ≤ 2 ≤ q, a standard application of Littlewood-
Paley inequalities in conjunction with Minkowski’s inequalities allows us to
deduce the endpoint estimate for P3 when m < 2n − 2 and the Lq

′ → Lq

bound for q = 9m+3
3m+2 for the case m = 2n− 1. The inequalities for (1/p, 1/q)

on the interior parts of the edges P1P3 and P2P3 follow by interpolation.

When q = 3 and m = 2n − 2, we still get uniform bounds for Akt on
the interiors of P1P3 and P2P3, and interpolating (5.7) with L1 → L1 and
L∞ → L∞ bounds gives us sharp Lp → Lq estimates for Akt on these edges.
The above Littlewood-Paley trick still works for those (p−1, q−1) on the
open edges which satisfy p ≤ 2 ≤ q and thus for those (p−1, q−1) we get the
Lp → Lq boundedness for the averages. A further interpolation finishes the
argument.

Remark 5.1. For the case m + 3 < 2n the above estimates (5.5) also give

a sharp result for the Lq
′ → Lq estimate for the full maximal operator in

Theorem 1.2, without imposing the condition (1.4) on Λ. By applying (2.10)
for q in place of p we get

(5.8) ‖ sup
t∈[1,2]

|Ak,`t f |‖q . 2
k(m+1− d+m

q
)
2
`( 3
q
−1)‖f‖q′ , 2 ≤ q ≤ ∞,

which implies ‖ supt∈[1,2] |Akt f |‖q . 2
k(m+1− d+m

q
)‖f‖q′ for q > 3 and hence

the Lq
′
0,1 → Lq0,∞ bound for the maximal operator M for q0 = d+m

m+1 = 2n+m
m+1 ,

provided that d+m
m+1 > 3, i.e. m+3 < 2n. Moreover one obtains the Lq

′ → Lq

bound for M in the range 2 ≤ q < 2(n+m)
m+1 if m+ 3 ≤ 2n.
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Finally we consider Lp → Lq bounds for p 6= q′ in the case m = 2n − 1.
To this end, we will now give a further estimate based on L2 → Lq estimates
for oscillatory integral operators in [13].

Proposition 5.2. For 1 ≤ p ≤ 2, 1
q = d−1

d (1− 1
p),

(5.9) ‖Akt f‖q . 2
−k(d−1− d+m

p
)‖f‖p.

Proof. This follows by an interpolation between the trivial L1 → L∞ es-
timate with operator norm O(2k(m+1)) and the L2 → Lq0 estimate with

q0 = 2d
d−1 and operator norm . 2−k(d/q0−(m+1)/2) = 2−k(d−m−2)/2. The

L2 → Lq0 bound follows via Plancherel’s theorem from the estimate

(5.10) ‖Tkf(·, t)‖q0 . 2−kd/q0‖f‖2, q0 = 2d
d−1 .

This in turn is a consequence of [13, Thm. 2.2] once we show that the d− 1
dimensional conic variety Σfold

x,t = {∇xΦ(x, t, y) : σ(x, t, y) = 0} is a d − 1
dimensional cone with d − 2 nonvanishing principal curvatures everywhere
(with d = 2n+m).

Let Ξ be as in (3.1) and let ΠΞ ∈ Rd be the spatial component of Ξ
(omitting the last component from Ξ). Let

y2n = y2n(ȳ) := (tΛȳ − xᵀJ ȳ)e2n

denote the solution of the equation σ(x, t, y) = 0. We define

ξ(x, t, y′, ȳ) = ΠΞ(x, t, y′, y2n(ȳ), ȳ))

=

 PJ ȳP ᵀy′ − tg(x
′−y′
t )PJ ȳe2n

(tΛȳ − xᵀJ ȳ)e2n + eᵀ2nJ
ȳ(P ᵀy′ − tg(x

′−y′
t )e2n)

ȳ


From (3.2) we see that ξy1 , . . . , ξy2n−1 , ξy2n+1 , . . . , ξy2n+m are linearly inde-

pendent, which establishes Σfold
x,t as a manifold of dimension 2n− 1 +m.

We compute for j, k ∈ {1, . . . , 2n} and i, l ∈ {1, . . . ,m},

ξyjyk =

−t−1∂jkg(x
′−y′
t )PJ ȳe2n

0
0

 , ξyj ȳi =

PJiej + ∂jg(x
′−y′
t )PJie2n

eᵀ2nJi(ej + ∂jg(x
′−y′
t )e2n)

0


and ξȳiȳl = 0.

Define the normal vector ν for x′ = y′ by νᵀ = (αᵀ, ᾱᵀ), and let α′ = Pα;
so that νᵀξyj |x′=y′ = 0 for j = 1, . . . 2n− 1 and hence αᵀJ ȳej = 0. Since J ȳ

is invertible this implies that either αᵀJ ȳe2n 6= 0 or α = 0. But the latter
possibility would also imply ᾱ = 0 from the conditions 〈ν, ξȳi〉 = 0. Hence
we have γ := αᵀJ ȳe2n 6= 0.

Let C denote the (2n−1+m)×(2n−1+m) curvature matrix with respect
to the normal ν, with entries 〈ν, ξyjyk〉 where j, k ∈ {1, . . . , 2n+m} \ {2n}.
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When x′ = y′ it is given by

C|x′=y′ = 〈ν, ξ′′yy〉 =

(
−t−1γI2n−1 PM
MᵀP ᵀ 0

)
with γ = αᵀJ ȳe2n 6= 0,

where M is the 2n×m matrix with m columns
∑2n

j=1(αᵀJiej)ej = −Jiα and

hence PM is the (2n − 1) ×m matrix with columns −PJiα, i = 1, . . . ,m.
Using a lower dimensional version of the factorization (4.7) we see that the
rank of C at x′ = y′ is equal to the rank of(

γI2n−1 PM
0m,2n−1 −γ−1MᵀP ᵀPM

)
, γ = αᵀJ ȳe2n

that is, rank C|x′=y′ = 2n− 1 +m− 1 = d− 2. �

Conclusion of the proof of Theorem 1.3. It remains to finish the argument
for the ‘off-diagonal’ estimates in part (iii) of this theorem. Note that an

Lp → Lq estimate implies an Lq
′ → Lp

′
estimate since the dual operator is

similar with J replaced by −J .

Let p1 = d+m
d−1 , and q1 = d(d+m)

(d−1)(m+1) . Since d = 2n+m ≥ m+ 2, we have

p1 ≤ 2 and q1 ≥ 2d
d−1 . Proposition 5.2 yields the Lp1 → Lq1 boundedness of

the operators Akt with norm uniform in k. The Littlewood-Paley arguments
above also allow us to deduce the Lp1 → Lq1 boundedness of At, since
p1 ≤ 2 ≤ q1. For m = 2n−1, we have d = 2n+m = 2m+1, and in this case,

( 1
p1
, 1
q1

) = ( 2m
3m+1 ,

2m2+2m
6m2+5m+1

) and (1− 1
q1
, 1− 1

p1
) = (4m2+3m+1

6m2+5m+1
, m+1

3m+1). �

6. Necessary Conditions for maximal operators

We provide five counter-examples, corresponding to each edge of the
quadrilateral R for the Heisenberg group Hn (in particular, m = 1), and
one for the point Q2. These show the necessity of all the conditions in The-
orem 1.1 and of some of the conditions in Theorem 1.2. The first four are
suitable modifications of those in [31] for the Euclidean case, which were
in turn adapted from standard examples for spherical means and maximal
functions. These examples will be presented for all Métivier groups. The
fifth example seems to be new; it replaces the Knapp type example in the
Euclidean case.

6.1. The line connecting Q1 and Q2. This is the necessary condition p ≤ q
imposed by translation invariance and noncompactness of the group G (see
[14] for the analogous argument in the Euclidean case).

6.2. The line connecting Q2 and Q3. Let Bδ be the ball of radius δ centered
at the origin. Let fδ be the characteristic function of B10δ. Then

‖fδ‖p ≈ δ(2n+m)/p.

Let C◦ := 10(1 + ‖Λ‖+ maxi ‖Ji‖). For 1 ≤ t ≤ 2 we consider the sets

Rδ,t := {(x, x̄) : ||x| − t| ≤ δ/C◦, |x̄− tΛx| ≤ δ/C◦}.
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Then |Rδ,t| & δm+1. Let Σx,t = {ω ∈ S2n−1 : |x − tω| ≤ δ/4} which has
spherical measure ≈ δ2n−1.

If x ∈ Rδ,t and ω ∈ Σx,t then |x− tω| ≤ δ and

|x̄− txᵀJω − t2Λω| ≤ |x̄− tΛx|+ |xᵀJ(tω − x)|+ t|Λ(tω − x)| ≤ 3δ

(here we have used the skew symmetry of the Ji). We get

fδ ∗ σt(x, x̄) =

∫
S2n−1

fδ(x− tω, x̄− txᵀJω − t2Λω) dσ(ω) & δ2n−1

for x ∈ Rδ,t. Passing to the maximal operator we consider |x| ∈ [1, 2] and
put t(x) = |x|. Then setting

Rδ =
{
x : 1 ≤ |x| ≤ 2,

∣∣x̄− |x|Λx∣∣ ≤ δ/C◦}
we have |Rδ| & δm and |fδ ∗ σt(x)(x)| ≥ δ2n−1 for x ∈ Rδ.

This yields the inequality

δ2n−1δm/q . δ(2n+m)/p,

and consequently, the necessary condition

(6.1)
m

q
+ 2n− 1 ≥ 2n+m

p
,

that is, (1/p, 1/q) lies on or above the line connecting Q2 and Q3.

6.3. The point Q2. For p = p2 := 2n
2n−1 = d−m

d−m−1 the Lp → Lp bound

fails. Here one uses a modification of Stein’s example [32] for the Eu-
clidean spherical maximal function. One considers the function fα defined

by fα(v, v2n+1) = |v|−
2n
p2 | log |v||−α for |v| ≤ 1/2, |v2n+1| ≤ 1 which belongs

to Lp2 for α > 1/p2. One finds that if t(x) = |x| then for α < 1 the integrals
f ∗ σt(x)(x) are ∞ on a set of positive measure. If one choose α close to 1
this also shows that M does not map any of the Lorentz spaces Lp2,q for
q <∞ to Lp2,∞.

6.4. The line connecting Q1 and Q4. For this line we just use the coun-
terexample for the individual averaging operators, bounding the maximal
function from below by an averaging operator. Given t ∈ [1, 2], let gδ,t be
the characteristic function of the set {(y, ȳ) : ||y|−t| ≤ C0δ, |ȳ−tΛy| ≤ C0δ}
with C0 = 10

∑m
i=1 ‖Ji‖. Thus ‖gδ,t‖p . δ(m+1)/p.

Let x = (x, x̄) be such that |x| ≤ δ and |x̄− tΛx| ≤ δ. For any ω ∈ S2n−1,
we have that t|xᵀJω| . 2δ. Thus∣∣|x− tω| − t∣∣ ≤ 2δ∣∣x̄− txᵀJω − t2Λω − tΛ(x− tω)

∣∣ ≤ |x̄− tΛx|+ t|xᵀJω| ≤ C0δ

implying that |gδ,t ∗ σt(x)| & 1. This yields the inequality δ(2n+m)/q ≤
δ(m+1)/p which leads to the necessary condition

(6.2)
1

q
≥ m+ 1

2n+m

1

p
,



24 J. ROOS A. SEEGER R. SRIVASTAVA

that is, (1/p, 1/q) lies on or above the line connecting Q1 and Q4.

6.5. The line connecting Q3 and Q4, m = 1. We now consider the case
m = 1; after a change of variables we may assume that the skew symmetric
matrix J satisfies the Heisenberg condition J2 = −I. Pick a unit vector
u ∈ R2n so that Λᵀ ∈ Ru, and set v = Ju/‖Ju‖ (thus 〈u, v〉 = 0). Let
V = span{u, v} and let V ⊥ denote the orthogonal complement of V in R2n.
Finally, let π, π⊥ be the orthogonal projection to V, V ⊥ respectively. Note
that J maps V into itself, since J2 = −I, and since J is skew-symmetric it
also maps V ⊥ into itself.

For sufficiently large C1 (say, C1 = 10(2 + ‖Λ‖)) and small δ � C−1
1 let

Qδ = {(y, yd) : |π⊥(y)| ≤ C1δ
1/2, |π(y)| ≤ C1δ, |yd| ≤ C1δ}.

Let fδ = 1Qδ , so that ‖fδ‖pp . δ(2n−2)/2+3, i.e. ‖fδ‖p . δ(n+2)/p.

For 1 ≤ t ≤ 2, let

Rtδ =
{

(x, xd) : |π⊥(x)| ≤ δ1/2,
∣∣|π(x)| − t

∣∣ ≤ δ, |xd − tΛx| ≤ δ,
1/4 < 〈x, u〉, 〈x, v〉 < 3/4

}
and let Rδ = ∪9/8≤t≤15/8R

t
δ. Then |Rδ| ≈ δ(2n−2)/2+2δ−1 = δn.

For x ∈ Rδ, we derive a lower bound for σt(x)∗fδ(x), setting t(x) := |π(x)|.
Let

Sx = {ω ∈ S2n−1 : |π⊥(ω)| ≤ δ1/2,
∣∣〈ω, u〉 − 〈x, u〉

|π(x)|
∣∣ ≤ δ, 〈ω, v〉 > 0},

which has spherical measure & δ(2n−2)/2+1 = δn.

For x ∈ Rδ, ω ∈ Sx, t(x) = |π(x)| we have

(6.3) |π⊥(x− t(x)ω)| ≤ 3δ1/2

and
|〈x− t(x)ω, u〉| ≤ δ.

Since ω ∈ S2n−1, 〈ω, v〉 > 0 and 〈x, u〉, 〈x, v〉 ∈ [1/4, 3/4], we also get∣∣〈x− t(x)ω, v〉
∣∣ ≤ 2

∣∣∣ 〈x, v〉|π(x)|
− 〈ω, v〉

∣∣∣ ≤ 8
∣∣∣ 〈x, v〉2|π(x)|2

− 〈ω, v〉2
∣∣∣

= 8
∣∣∣1− 〈x, u〉2|π(x)|2

− 1 + 〈ω, u〉2 + |π⊥(ω)|2
∣∣∣ ≤ 8

∣∣〈ω, u〉 − 〈x, u〉
|π(x)|

∣∣+ 8δ2 ≤ 9δ.

Hence

(6.4) |π(x− t(x)ω)| ≤ 10δ, ω ∈ Sx.
Now, since J acts on V and V ⊥,

xᵀJω = (x− t(x)ω)ᵀJω = (π(x− t(x)ω))ᵀJω + (π⊥(x− t(x)ω))ᵀJ(π⊥ω)

and thus from (6.3) and (6.4).

|xᵀJω| ≤ δ + 3δ1/2δ1/2 = 4δ, ω ∈ Sx.
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From this we finally we obtain, writing xd−t2Λω = xd−tΛ(x)+tΛ(x−tω)
and using that Λᵀ ∈ V ,

|xd−t(x)xᵀJω−t(x)2Λω| ≤ |xd−t(x)Λx|+t(x)‖Λ‖|π(x−t(x)ω)|+4δ ≤ Cδ.

These inequalities imply

Mfδ(x) ≥ fδ ∗ σt(x)(x) =

∫
Sx

fδ(x− t(x)ω, xd − t(x)xᵀJω − t(x)2Λω)dσ(ω)

≥ |Sx| & δn for x ∈ Rδ.
Hence we get

‖Mfδ‖q/‖fδ‖p & |Rδ|1/qδnδ−(n+2)/p & δn/q+n−(n+2)/p

and letting δ → 0, we obtain the necessary condition

(6.5)
n

q
+ n ≥ n+ 2

p
,

that is, the necessary condition for m = 1 is that (1/p, 1/q) lies on or above
the line connecting Q3 and Q4.

7. Necessary conditions for averaging operators

We now prove the necessity of the conditions in Corollary 1.4, and of some
of the conditions in Theorem 1.3.

7.1. Necessary condition for n ≥ 2 and m ≤ 2n−2. For n ≥ 2 the sharpness
of Theorem 1.3 follows from the considerations in §6. Concerning the line
Q2Q3 we use the example in §6.2 to get

‖fδ ∗ σt‖q ≥ δ2n−1+(m+1)/q−(2n+m)/p‖fδ‖p
which gives the necessary condition 2n+m

p −m+1
q ≤ 2n−1. The calculation in

§6.4 only involves the averaging operator and yields the necessary condition
1
q ≥

m+1
2n+m

1
p .

7.2. Sharpness for n = 1. Here we can assume by a change of variables that
Λ = 0 and that xᵀJy = x2y1 − x1y2. We now consider the circular means
on G = H1 given by

Af(x) =

∫
f(x1 − cos s, x2 − sin s, x3 − x2 cos s+ x1 sin s) ds.

We need to prove the necessary condition

(7.1) 6(1/p− 1/q) ≤ 1,

i.e. (1/p, 1/q) cannot lie below the line connecting the points (1/2, 1/3)
and (2/3, 1/2). This is in analogy with the situation for integrals along the
moment curve (s, s2, s3) in the Euclidean situation of R3; there the operator
is tested on indicator functions of (δ, δ2, δ3)-boxes. We show how to modify
that example in our situation.
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Let fδ be the indicator function of the parallelepiped

Pδ = {(y : |y1| ≤ (2δ)2, |y2| ≤ 2δ, |y3 + y2| ≤ (2δ)3}
and

Vδ = {x : |x1 − 1| ≤ δ2, |x2| ≤ δ, |x3| ≤ δ3}.
For |s| ≤ δ, and x ∈ Vδ we have

|x1 − cos s| ≤ |x1 − 1|+ s2

2
+ s3 ≤ 3δ2

|x2 − sin s| ≤ |x2|+ | sin s| ≤ 2δ

and

|x3 − x2 cos s+ x1 sin s) + (x2 − sin s)|
≤ |x3|+ |x2||1− cos s|+ | sin s||x1 − 1| ≤ 3δ3

Thus if y = (x1 − cos s, x2 − sin s, x3 − x2 cos s+ x1 sin s) for 0 ≤ s ≤ δ and
x ∈ Vδ, then y ∈ Pδ and thus Afδ(x) ≥ δ. Hence

‖Afδ‖q ≥ |Vδ|1/qδ = δ1+6/q

and since ‖fδ‖p = |Pδ|1/p . δ6/p, we obtain the necessary condition (7.1).

8. Implications for sparse bounds

As mentioned in the introduction one principal goal of [3] was to derive
for the global maximal operator M inequalities of the form

(8.1)

∫
Hn

Mf(x)w(x)dx ≤ C sup
{

ΛS,p1,p2(f, w) : S sparse
}
,

where the supremum is taken over sparse families of nonisotropic Heisenberg
cubes (see [3] for precise definitions and constructions) and the sparse forms
ΛS,p1,p2 are given by

ΛS,p1,p2(f, w) =
∑
S∈S
|S|
( 1

|S|

∫
|f |p1

)1/p1
( 1

|S|

∫
S
|f |p2

)1/p2

.

Relying entirely on arguments in [3] and using our Lp → Lq bounds we can
show that the sparse bound (8.1) holds if (1/p1, 1− 1/p2) lies in the interior
of the quadrilateral Q1Q2Q3Q4 in (1.1) (or on the open line segment Q1Q2),
a result which is sharp up to the boundary.

For the proof of sparse bounds for the global maximal operator the rele-
vance of Lp → Lq results of localized maximal functions was recognized by
Lacey [19] in his work on the Euclidean spherical maximal function. Here
we mention that the recent paper [5] gives very general results about this
correspondence for the Euclidean geometry; Theorem 1.4 of that paper is
of particular relevance here (see also [9] for some results in spaces of homo-
geneous type). Moreover we refer to [5] for general results about necessary
conditions.
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For the proof of (8.1) we use the argument in [3]. One needs to supplement
the Lp → Lq bounds for the local maximal operator by a mild regularity
result, namely

(8.2) sup
|h|≤1

|h|−ε
∥∥ sup
t∈[1,2]

|(τhf − f) ∗
J
µt|
∥∥
q
. ‖f‖p

for some ε > 0; here τh is the right translation operator, i.e. τhf(y) =
f(y − h, ȳ − h̄ − yᵀJh). One also needs to verify a dual condition which in
our case is implied by (8.2) and the symmetry of the sphere. If (1/p, 1/q)
belongs to the interior of the boundedness region in Theorem 1.2 then our
approach yields (8.2) with an ε(p, q) > 0. To prove this one needs to show,
by the localization argument in the beginning of §2 and the subsequent
dyadic decomposition, that the operator Ak in (2.14) satisfies

(8.3) ‖Ak(τhf − f)‖Lq(Rd×[1,2]) . 2
−k( 1

q
+a(p,q))

(2k|h|)ε‖f‖p

for |h| � 1 and functions f supported near the origin, with a(p, q) > 0 in
the interior of the boundedness region. By taking means it suffices to prove
this for ε = 0 and ε = 1. The case for ε = 0 is immediate from the already
proven results. For the case ε = 1 we use a change of variables, followed by
the fundamental theorem of calculus, and a change of variable again, with
the fact that (τshy)ᵀJih = yᵀJih to write

2−k(m+1)Ak[τhf − f ](x, t)

=

∫ 1

0

∫
f(τshy)

∫
ei2

kΨ(x,t,y,θ)(2kβ1 + β2)
∣∣∣
(h,x,t,y,θ)

dθ dy ds

with

β1(h, x, t, y, θ) = ib(x, t, y′, θ)
[
hᵀ∇yΨ + h̄ᵀ∇ȳΨ + yᵀJ∇ȳΨh

]
(x,t,y,θ)

,

β2(h, x, t, y, θ) = (h′)ᵀ∇y′b|(x,t,y′,θ).

Thus, taking into account the explicit form of the phase function (2.15),
one can reduce the case for ε = 1 in (8.3) to estimates for operators of the
form (2.14) already handled (note that here ∇ȳΨ = −θ).

Finally, by similar arguments one gets the regularity result for fixed t,

‖Akt (τhf − f)‖Lq(Rd) . 2−kb(p,q)(2k|h|)ε‖f‖p

where b(p, q) > 0 in the interior of the boundedness region in Corollary 1.4.
Again, using the reasoning in [3] this yields an improved sparse bound for
the lacunary maximal function, namely

(8.4)

∫
Hn

sup
k∈Z
|f ∗ µ2k(x)|w(x)dx ≤ C sup

{
ΛS,p1,p2(f, w) : S sparse

}
whenever (1/p1, 1− 1/p2) belongs to the interior of the boundedness region
in Corollary 1.4.
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Remark. The reader may wonder whether it is necessary to use the sparse
bounds as in [3] for the proof of Lp(Hn)→ Lp(Hn) bounds for the lacunary
spherical maximal function, for 1 < p ≤ ∞ and n ≥ 1. We are grateful to
both Luz Roncal and an anonymous referee for raising this question. Indeed
a more direct proof can be given; on can for example modify the arguments
in [23]; alternatively one can rely on a straightforward modification of the
Calderón-Zygmund arguments in [1, §6].
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