LEBESGUE SPACE ESTIMATES FOR SPHERICAL
MAXIMAL FUNCTIONS ON HEISENBERG GROUPS

JORIS ROOS  ANDREAS SEEGER  RAJULA SRIVASTAVA

ABSTRACT. We prove L — L7 estimates for local maximal operators
associated with dilates of codimension two spheres in Heisenberg groups;
these are sharp up to two endpoints. The results can be applied to
improve currently known bounds on sparse domination for global max-
imal operators. We also consider lacunary variants, and extensions to
Meétivier groups.

1. INTRODUCTION

Let H® = R?” x R be the Heisenberg group of real Euclidean dimension
2n + 1. Writing = = (2, £2,+1) with 2 € R?", the group law is given by

-y = (z+y, Tant1 + Yony1 +27Jy),

where 2TJy = %Z?zl(xnﬂyj — TYn+j). A natural dilation structure on
H" is given by the parabolic dilations &;(x) = (tz, t>x2,41). These are auto-
morphic, i.e. satisfy &;(x - y) = oz - iy, and map the horizontal subspace
R2" x {0} into itself.

Let o be the normalized rotation-invariant measure on the 2n — 1 dimen-
sional sphere in R?" x {0}, centered at the origin and let y; denote its t-dilate
defined by (u, f) = (i, fod). The spherical means on the Heisenberg group,

[ () = /S%_1 f(z —tw, Tony1 — tzTJw)dp(w)

were introduced by Nevo and Thangavelu [25]. In the theory of generalized
Radon transforms, they can be viewed as model operators for which the
incidence relation (the support of the Schwartz kernel) has codimension
two, in contrast with the classical codimension one spherical means ([32, 31,
10, 12)).

The original interest in [25] was in pointwise convergence and ergodic
results and hence in LP-estimates for the maximal function

Mf =sup |f * pu.
t>0
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A sharp result was proved by Miiller and the second author [23] and, inde-
pendently and by a different method, by Narayanan and Thangavelu [24];
namely for n > 2, the LP boundedness of 9 holds if and only if p > 2n2f1.
It is conjectured that this statement holds true even when n = 1 but this
problem is currently still open (see [4] for a recent positive result for 9t

acting on LP(H!) functions of the form x — f,(|z|,x3)).

Our renewed interest is prompted by recent work of Bagchi, Hait, Roncal
and Thangavelu [3], in which the authors consider (p, ¢’)-sparse domination
results for the operator 9t with consequences for weighted inequalities [6].
The primary ingredient in the proof of such a result is an induction argument
relying on an LP — LY estimate for the local maximal function

Mf =sup|f * ]
tel

which is also of independent interest. Here I denotes a compact subinterval
of (0,00). The objective is to find the best possible value of ¢ in such
an inequality. For the sparse bounds one also needs to establish a closely
related e-regularity property, namely an LP — LI(L°°(I)) estimate for the
spherical means acting on compactly supported functions (cf. (8.2) below).
If ¢ > p the operator norm in such estimates will depend on I and it is
no loss of generality to assume I = [1,2]. In [3] it is proved that M maps
LP(H™) to LY(H"™) provided that (%, %) belongs to the interior of the triangle

with corners (0,0), (21, 22=1), (ggi%, 3n6+7). The authors ask whether this
result is essentially sharp, indeed results in [30], [31], [20] for the Euclidean
analogues suggest that it is not. In the following theorem we provide LP —
LY bounds that are sharp, possibly except for two endpoints at which we
prove restricted weak type inequalities. Implications on sparse bounds for

the global operator M will be discussed in §8, c¢f. (8.1).
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FI1GURE 1. The region R in Theorem 1.1, for n = 2.
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Theorem 1.1. Let n > 2. Let R be the closed quadrilateral with corners
le(0,0), Q2:(23;172351)>

_ n 1 _ 2n%+n 2n
Q3 - (T—H’ TH)7 Q4 - (2n2+3n+2’ 2n2+3n+2)'

(1.1)

Then

(i) M is of restricted weak type (p,q) for all ( )

(ii) M : LP(H") — LY(H") is bounded if (l l) longs to the interior of
R, or to the open boundary segments (Q2, Q3) ( Q4), or to the half open

boundary segments [Q1,Q2), [Q1,Q4).
(iii) M does not map LP(H™) to L4(H") 4 ( ) ¢R.

(iv) M does not map LP(H™) to LP(H"™) for (5, 5) = Q3.

We shall reduce the proof to estimates for standard oscillatory integrals
of Carleson-Sjolin-Hormander type, in particular to a variant of Stein’s the-
orem [33] which was formulated in [22] and which relies on the maximal
possible number of nonvanishing curvatures for a cone in the fibers of the
canonical relation. It came as a surprise to the authors that such a simple
reduction should be possible; as far as we know this has not been observed
for maximal functions associated with classes of generalized Radon trans-
forms with incidence relations of codimension two, or higher. We shall now
discuss cases with codimension greater than two.

Some extensions. We extend Theorem 1.1 in two directions, already con-
sidered in [23]. One extension deals with the situation on H" where the
subspace R?" x {0} is replaced by a general subspace transversal to the
center; this tilted space is then no longer invariant under the automorphic
dilations. Another extension is obtained by replacing the Heisenberg group
with other two step nilpotent groups with higher dimensional center; here
we will consider the class of Métivier groups [21] which also includes the
groups of Heisenberg type [17].

The Lie algebra g of a two step nilpotent group G splits as g = v @ 3, so
that [, 3] = {0} and [w, w] C 3. The Métivier groups are characterized by a
nondegeneracy condition, namely that for every nontrivial linear functional
9 on 3, the bilinear form J? on tv x 1o defined by J° = 9([X,Y]) is nonde-
generate. This implies that tv is of even dimension. We set dim(to) = 2n,
dim(3) = m and let d = 2n + m denote the Euclidean dimension of G.
Identifying 1 with R?" and 3 with R™, we use exponential coordinates
r = (z,%) € R?" x R™; the group multiplication is then given by

(1.2) voy=(z+yr+y+aly).
Here 2TJy = Y /", 2T J;y€; € R™ with {1, ..., €p} being the standard basis
in R™ and Jy,...,J, denote skew symmetric matrices acting on R?”. The

nondegeneracy condition on J? then says that for every § € R™ \ {0}, the
2n x 2n matrix J¢ = >oir, 0:J; is invertible. In the special case of groups
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of Heisenberg type we also have (J%)? = —|0|2I. We note that for every m
there are groups of Heisenberg type with an m-dimensional center. Kaplan
[17] points out the connection with Radon-Hurwitz numbers pry (k) defined
as follows ([16, 27)): if k = (2¢ + 1)2%*+9 with q € {0,1,2,3} and for some
0€{0,1,2,3,...}, then pru(k) = 8p + 29. By [27], [17] there are (2n 4+ m)-
dimensional groups of Heisenberg type with an m-dimensional center if and
only if m < pru(2n). For odd n, we have pru(2n) = 2, hence m = 1.

The automorphic dilations on G are given by d;(z, Z) = (tz,t>Z). We now
let v be a 2n-dimensional subspace of g which is transversal to the center,
i.e. in exponential coordinates

V ={(z,Az) : z € R*"},

where A is an m X 2n matrix with real entries. Notice that V is invariant
under the dilation group {d;} only when A = 0. Define a measure p* = pi
supported on V and its automorphic dilates ,ulf} by

Wi f) = [ Ft B Aw)dn(e),
We consider the convolution operator f — f * u* given explicitly by
[l (z) = /Zn 1 flz —tw, z — t2Aw — tzTJw)dp(w)
and the associated local ilaximal function
(1.3) Mfzstgl?!f*u?\-

These integral operators can be viewed as generalized Radon transforms
associated to a family of surfaces of codimension m + 1. We note that when
m =1 and A = 0, we recover the spherical means on the Heisenberg group
considered in Theorem 1.1. Let || - || denote the operator norm of a matrix
with respect to the Euclidean norm. We state an extension of Theorem 1.1
under the assumption that A? = o, 0;A; is sufficiently small.

Theorem 1.2. Let n > 2, d = 2n+ m, let M be as in (1.3), and suppose
that A satisfies

1.4 i JOTHTE = 1AY)] > o.
(1.4) i [[1C7) 74T = (1A%)]

Let R be the closed quadrilateral with corners

Qu=1(0,0), Qo= (T ),

_(d=1 m+l _ d(d—1) (m+1)(d—1)
Q3 = (dTn’ d%m)’ Q1= (d2+(d+1)m+1’ d2+(d+1)m+1)'

(1.5)

Then
(i) M is of restricted weak type (p,q) for all (%, é) eR.
(ii) M : LP(H") — L(H") is bounded if (1,1

R, or to the open boundary segments (Q2, Q3
boundary segments [Q1,Q2), [Q1,RQ4).

%, q) belongs to the interior of
), (Q3,Q4), or to the half open
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Remarks. (i) For m = 1 and A = 0, we recover the positive results in
Theorem 1.1 for the spherical means on Heisenberg groups.

(ii) Under the smallness condition (1.4), we give an alternative proof of
the result for maximal operators in [1] which relied on decoupling estimates
to prove local LP — L?anl) Iy regularity results for the averaging operators

; : ~ dnt2
acting on compactly supported functions on H", in the range 1 < p < 5= ant

Our approach is to use LP space-time estimates instead. However, the LP-
Sobolev result in [1] is interesting in its own right, and is still needed for the
LP(H") boundedness of the maximal operator in the range p > 522 if one

2n—1
does not impose any condition on A. The use of L? space-time estimates
is implicit already in the work by Narayanan and Thangavelu [24] who use
the group Fourier transform on the Heisenberg group to estimate a relevant
square-function involving generalizations of spherical means. L? space-time
estimates for the relevant Fourier integral operators have also been used in
a more recent paper by Joonil Kim [18]; for the basic idea see also the work
on variable coefficient Nikodym estimates in [22].

(iii) For m+3 < 2n, one can use an alternative approach to the LY — L1
estimates which does not require assumption (1.4), ¢f. Remark 5.1. One
also obtains the endpoint restricted weak type estimate for the point Q9
provided that m + 3 < 2n.

(iv) The example in §6.5 demonstrating the sharpness of the line Q3@ in
the case m = 1 seems to be new. It would be interesting to see whether there
exists similar examples for m > 2 and to settle the problem of sharpness for
those cases. It would also be interesting to analyze what happens when the
size restriction (1.4) on A is dropped.

LP improving estimates for spherical averages. We now discuss another prob-
lem considered in [3], concerning sparse bounds for the lacunary spherical
maximal function supy, | f * por| on the Heisenberg groups. Again, essentially
sharp sparse bounds (cf. (8.4)) follow from essentially sharp results on the
LP(H™) — LY(H") boundedness for the averaging operators f +— f*u and a
closely related e-regularity property. In [3] a partial result is proved; namely
the LP(H") — LI(H") boundedness holds for n > 2 if (%, %) belongs to the

triangle with corners (0,0), (1,1) and (ngﬁ, 3n?’+4); further, the method of
[3] does not seem to yield a result for n = 1. Here we prove sharp results
for all Heisenberg groups; indeed we formulate a general result for Métivier

groups of dimension d = 2n 4+ m.

Theorem 1.3. (i) When n > 2 and m < 2n — 2, the inequality

(1.6) I1f * 1Ml zaa) S I llze(a)
1Y belongs to the closed triangle

holds for all f € LP(G) if and only if (1,2

A(PLPyPs) with Py = (0,0), P, = (1,1) and Ps = (5250, 5050,
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(i) For m = 2n—2, inequality (1.6) holds if (1/p,1/q) € A(PyP2Ps)\ Ps.
It fails for (l l) ¢ A(PPyPs).

(iii) For m = 2n — 1, inequality (1.6) holds if (l l) lies in the convex

4
hull of {(0,0), (1,1), (6%12237 3%111)’ (Sﬂiév 3213)’ (3r2nni1v 631”21—1-;31711)}‘

This result is sharp at least when m = 1.

In contrast to Theorem 1.2, no assumption on A is needed; in fact, the
estimate for convolution with ,u{} (with fized t) is equivalent to the cor-
responding inequality for A = 0, as one can see by a change of variable
argument involving shear transformations.

The above result be obtained using essentially known results on general-
ized Radon transforms and oscillatory integral operators with fold singular-
ities (cf. [26], [13], [11]). For m = 1 (the Heisenberg case) the pentagon in
(iii) reduces to a trapezoid and we get the sharp result

Corollary 1.4. The inequality

(1.7) If * 1™ paqny S 0N oy
holds for all f € LP(H™) if and only if one of the following holds:
(i) n > 2 and (l l) belongs to the closed triangle with corners (0,0),
(1,1) and (2t )
1

2n+3° 2n+
(ii) n = 1 and (f 2) belongs to the closed trapezoid with corners (0,0),

(L1, 3,3) (é,é)'

Remark. In view of the restriction m < pru(2n), only cases with m < 2n—1
occur in Theorem 1.3. Observe that prp(4n + 2) = 2, and pryg takes the
values 4,8,4,8 for 2n = 4,8,12,16. Also pru(2n) < 2logy(2n) + 3, hence
clearly pru(2n) < 2n — 2 for 2n > 10.

The only cases with m = 2n — 1 are (m,2n +m) = (1,3), (7,15). In
these instances, the codimension m + 1 of our sphere in G exceeds half of
the dimension of G. The first situation (m = 1 and 2n = 2) corresponds to
the Heisenberg group H', for which the region in part (iii) of Theorem 1.3
is a trapezoid. In this case, we also establish the sharpness of our result.

In the only two cases with m = 2n—2, namely (m, 2n+m) = (2, 6), (6, 14),
we do not have a definitive answer for the endpoint Ps = (2n2f2t$r1 , 2nT2+n1 1)
All endpoints in all the other cases are covered, since part (i) of the theorem
applies.

Further directions. It would also be interesting to investigate LP — LY map-
ping properties of maximal functions with respect to arbitrary dilation sets
E C [1,2] (see [2, 28] for the Euclidean analogue of this question). We will
take up this problem in a subsequent paper [29].

Plan of the paper. The proof of Theorem 1.2 is contained in the next three
sections. In §2 we describe the basic estimates and how they can be reduced
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to problems about oscillatory integral operators. In §3 and §4 we show how
to apply in our context two well known theorems on oscillatory integral
operators acting on L? functions. Theorem 1.3 will be proved in §5. We
establish the necessary conditions in §6 and §7. In §8 we briefly discuss the
implications for sparse bounds.

Notation. Partial derivatives will often be denoted by subscripts. P denotes
the (2n—1) x 2n matrix P = (I2,—1 0). By A < B we mean that A < C- B,
where C' is a constant and A = B signifies that A < B and B < A. For
coefficient vectors § = (91,...,9m), and sets of 1 x 2n vectors {A;}]",, or
2nx2n matrices {J;}7,, we abbreviate AY = Y7, g;A; and JY = Y7, 4 ;.

2. MAIN ESTIMATES

We use the notation ; for convolution when the choice of J in (1.2)
is emphasized. Let v be a nonnegative bump function on R?" supported
in a neighborhood of es,, normalized so that fSO(%)v(R*lezn)dR = 1;
here dR denotes the normalized Haar measure on SO(2n). Then we have
fSO(Zn) v(R7lw)dR = 1 for all w € §?"~! and using this, Fubini’s theorem
and a change of variables, we can write the convolution as

* A:U:/ * v, (RTz, 7)dR,
/ J/'Lt( ) ReSO(n) Ir RTJR[ 2 ]t( & )
where fr(y) = f(Ry,y). Note that replacing (J;,A;) with (RTJ;R, A;R)
does not affect condition (1.4) and therefore, by the integral Minkowski
inequality, it suffices to prove our theorems with p® replaced by vu®.

By a localization argument we may assume that the function f is sup-
ported in a small neighborhood of the origin. To see this we use the group
translation to tile G. Let Qo = [—3,3)?""™ and, for n € Z*>"t™, let
Qn =n-Qp, ie. Qn={n+2z,n+2z2+nJz): 2z € Qo}. One then veri-
fies that » czonsm 1g, = 1. Moreover, the measures u; are supported in
{w e G : |w| < 2,|w| < 4||Al]}, hence in the union of Q¢ with |¢;| < 2,
J < 2n, [tonyi| < 2+4||All, ¢ = 1,...,m. Denote this set of indices by J.
Then

supp([f1g,) *p) C [ J(n-Qo-Q) C |J @,
kcy ned(n)
where J(n) is a set of indices n with [n; —n;| < C(A,J,n) forj =1,...,2n+
m. This consideration allows us to reduce to the case where f is supported
in a small neighborhood of the origin.

Splitting y = (¥, y2n) and using the parametrization w = (v, g(w’))
with g(w') = y/1 — |w'|? near the north pole eg, of the sphere, we are led
to consider the generalized Radon transforms associated to the incidence
relation given by the equations

(21) Yon = 62”(1‘5 tvy/)7 Y= é(ﬂfvt,?j)
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where
(2.2a) &2 (x,t,y') = w20 — tg(* L)
(2.2b) S(xz,t,y) =T+ tA(z —y) +2TJy,

where 1/ is small, z is near ey, on the support of v and
(2.3) g(0) =1, Vg(0) =0, ¢"(0) = —I,_1, g""(0) = 0.

Using (2.1) and (2.2a) to express ya,, in (2.2b), we conclude that (2.1) is
equivalent with

2.4) Yo = 87" (2,1, y') = &2z, t,y)),
g =5z, t,y) =&z t,y, & (x,t,y)).
Recall that P = (Ign_l 0). We compute for ¢ =1,...,m,
5i(z,t,9) =7; + thjz — tAZ-PTy' + 2T J; PTy/
+ (azgn - tg( y ))(xTJ ean — tAjean)

and also have §2"(z,t,y') = T2, — tg( ) We can thus write, for f with
small support near 0,

£ (o)) = / xa (b, ) (2 (o) (st o))y

where y1 is a smooth and compactly supported function so that on its
support v’ is small and z is near es,. The right hand side represents an
operator with Schwartz kernel

K(z,t,y) = x1(z,t,9)60(s*" (2, t,y') — yan,8(z, t,y') — 7)),

where &y denotes the Dirac measure at the origin in R™*!. We express dy
via the Fourier transform

(25) K(.Cl?,t,y) = X1 (m,t,y/)/ 6i1/1($,t,y,9)(27r0)l770n_~_1
fcRm+1

with

(2.6) Y(x,t,y,0) = Oan (™" (2, 1,9) — y2n) + 0 - (8(z,1,9) — ).

Note that K is well defined as an oscillatory integral distribution (indeed
from definition (2.4) we see that  — K(x,t,y) and y — K(x,t,y) are well
defined as oscillatory integral distributions on R%).

We now perform a dyadic decomposition of this modified kernel. Let (j
be a smooth radial function on R™*! with compact support in {|f] < 1}
such that (p(f) = 1 for || < 1/2. Setting (1(0) = (0(0/2) — (o(#) and
Cr(0) = ¢1(217%0) for k > 1, we define

Atf@) = [y [ GO G )iy
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and let

M"*f(x) = sup |Aff(x)].
te(1,2]

The basic estimates for M* are summarized in the following proposition.

Proposition 2.1. Assume (1.4) holds.
(i) For 1 < p < oo,

(2.7) |MFfl, S 2r27REmTDmING)
(ii) For 2 < q < oo,

(2.8) 1M £l oy S 255 1)
(iii) For q > g5 1= 240

(2.9) IM* fl oy S 27520 £

2.1. Proof of Theorem 1.2, given Proposition 2.1. It suffices to show the
required bounds for Mf(z) := 3 ;- MFEf.

We note that for n > 2;m > 1 (so d > 5) and ¢5 := 2%1:1) we have
(% — mTH >0and m+1— ‘“‘Tm < 0. To deduce the required restricted weak

type estimates for M at @Q2,Q3, Q4 we recall the Bourgain interpolation
argument ([7], [8]): Suppose we are given sublinear operators T}, so that for
k> 1,

| Txll Lrot oy a0 S 259 and [ Txll Lor1 sy paroe S g~k

for some po, go, p1,q1 € [1,0],a9,a1 > 0. Then the operator ;- Tj is of
restricted weak type (p, q), where

(57 3:0) = (1 =) (550 55, 00) + (57, 5, —an)

P’ q’ P0’ qo p1’qu’
and ¥ = 22— € (0,1).

aptai
. . d—m—1 d—m—
The restricted weak type estimate for M at Qo = ( dTml, df‘ml
follows from (2.7). Similarly, the restricted weak type bound at Q3 =
d—1 m-+1

(> T follows from (2.8). Finally, the restricted weak type bound

at Q4= (55, o;) with

1 d(d—1) 1 (m~+1)(d—1)

) now

ps — dd—1)+(d+1)(m+1)’ qa ~ d(d—1)+(d+1)(m+1)
follows from interpolating (2.9) for ¢ = g5 with the case ¢ = oo of (2.8),
since forn=d—m > 2

(p%l’q%ﬁo) :ﬁ(l % _i—i_mT—H)_‘_(l_ﬁ)(lvOam"i'l)

with ¢ = d(dfgc)‘iaﬁ;}}m) € (0,1). Since bounds for M imply bounds for

M, this concludes the proof of part (i) of Theorem 1.2. Part (ii) is immediate
by interpolation.
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2.2. Reduction to space-time bounds. We use the standard Sobolev inequal-
ity
(2.10) sup |F(6)| S 1Fllp + IF 1/ 1 F11,7,
te(1,2]

where the LP norms are taken on [1,2], see [34, p.499]. We apply it to
F(t) = AFf(x) = A¥ f(x,t), integrate in o and then use Holder’s inequality
to obtain Proposition 2.1 as a consequence of the following
Proposition 2.2. Assume (1.4) holds.

(i) For 1 <p < oo

—k(d—m—1) min(%,%
(2.11) HAkHLP(]R‘i)—>LP(]Rd><[1,2]) S2 ( JminG i)

11) For 2 < g <o
(it) q ;
(2~12> HAkaLq/(Rd)—)Lq(Rdx[1’2}) 5 2

2(d+1)
(iii) For q > ==1+,

k(m+1— L)

d+1 m+1

_f(g+l_m+1
(2.13) 1A 2y aggaxpay S 27700 1A
(iv) The same estimates hold for 27F L A* in place of A*.

For later calculations it will be convenient to introduce the nonlinear shear
transformation in the xz-variables (smoothly depending on t)

iz, t) =2z
5w, t) = 2; — tAix — xon (2T Jiean — tAjean).

By a change of variables it suffices to prove the above space-time inequalities
for Aff(x(v,t),t) and 27F LA f(r(z,t),t). Using the homogeneity we see
that both terms are linear comblnatlons of expressions of the form

(2.14)  AFf(,t) = 2D / / 2V (0 1 o 6) F(y) b dy
Rd Rm+1

where the symbol b is compactly supported in R? x R x R4="~1 x R™+1
with ¢’ near zero and z near ey, on the support of b and |0]| € [1/2,2]. The
phase function ¥ is given by

(2.15) Uz, t,y,0) = 02 (S™(x,t,y') — y2n) Zééxty — i)

with (52",5)|(4.t0) = (6°™,8)| (x(w,t) 4,7 that is
520 (z,t,y') = w9, — tg(#)

Si(@,t,y') = wongi + (2T J; — tA) (PTy — tg(X5
with g is as in (2.3). The Schwartz kernel of AF is given by

(2.16)

)e2n)

(2.17) KF (2, t,y) = / eizk\p(”’t’y’e)b(x,t, y',0)do
Rm+1
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and integration by parts yields the estimate
ok(m+1)
(1 + 25|y2n — S (z,t,y/)| + 2%]7 — S(, t,y))N
This estimate (together with the specific expressions for S%", S) yields for
all £ > 1 the bounds
(2.19) AP+ A e e S 1,
(2.20) IAF | e S 280D,
In view of these estimates it suffices in what follows to consider the case of

large k. The bounds (2.11), (2.12) then follow by an interpolation argument
using (2.19), (2.20) and the local L? space-time estimate

(2.21) IA* £l 2 raxn 2 S

This gives a gain over the estimate || AF|;2_2 < 2-k(=5=-%) for fixed
time ¢ established in [23] via estimates for oscillatory integrals with fold
singularities in [11]. As mentioned before, the papers [24] and [18] work
with similar space-time estimates.

(2.18) |KF(z,t,y)| < Cy

To prove (2.21) we use an oscillatory integral operator
Tf(aont) = [ ¥, ty) )y
R4

where b € C°(R? x R x R?) is as in (2.14), and

m
(2.22) (2, t,y) = Yo S (@, 1, 9) + > 7iSi(, 1, y).
i=1
Setting Fy(y) = [gme1 f(¥/, won, W)e =i2% (y2nw2n+9-0) gy, di we have

-Akf(aj’ ) = Tka(m’t)

and by Plancherel’s theorem ||Fj|l2 = (27%2m)™+D/2| f|lo. Hence (2.21)
follows from

Proposition 2.3. Assume (1.4) holds. For all f € L*(R%),
(2.23) 1T f || 2 raxppzy S 27211112

The proof will be given in §3 using the standard Hérmander L? estimate
([15]). By the same argument, the L? — L7 bound (2.13) is reduced to the
estimate

Proposition 2.4. Assume that (1.4) holds. Then for ¢ > g5 Q(djll) nd
fe L*RY),

(2.24) 1Tl Laaxqien <2 i

This will be proved in §4 using a result in [22].
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3. PROOF OF PROPOSITION 2.3

By Hérmander’s classical L? bound ([34, ch. IX.1]) applied after a par-
tition of unity and a slicing argument with a suitable subset of d of the
(z,t)-variables, it suffices to prove that the rank of the (d + 1) x d mixed

Hessian matrix CID’(’I 1),y 18 equal to d. Equivalently, for

m
(31) E(l’, t7 y) = vl‘,t(I)(x7 ta y) = yQTlv.t,tSQn + Z giva:,tgia
i=1

we need to check that (using subscripts to denote partial derivatives)
(3.2) rank (Zy,,...,5y,) =d

for every (x,t,y) € supp(b); in particular, || ~ 1, and 2’ — ¢/ is small.
Recall that P denotes the (2n — 1) x 2n matrix P = (I3,—1 0). We
calculate

~Vg(*5%)
~ 1
E(z,t,y) = y2n i
BT
PJPTY —tg(Z7L) Piegn — (27 Jiean — thieon) V(X 5L)
m "y
3 P o )

()
=1 %

B(EFE) (27T = tA)ean — Mi(PTy — tg(*5% ean)
where e]" denotes the i-th standard basis vector in R™ and
h(a') = (o', Vg(a)) - g(a"),
with
(3.3) h(0) = —1,Vh(0) = 0,h"(0) = —Isp_1.

The non-degeneracy assumption on J implies that vy, 12, + Jy is invertible
whenever (ya,,,7) # 0. More precisely, we have the following auxiliary lemma
for its operator norm (taken with respect to the standard Euclidean norm
in R?"); this is a quantitative extension of a lemma in [23].

Lemma 3.1. Let B be a real skew-symmetric N X N matriz and let Iy be
the N x N identity matriz.

(i) Suppose N is even. Then pIn + B is invertible if and only if either
p # 0 or B is invertible. Moreover, for the Euclidean operator norm of the
inverse,

o~ if det B = 0

-1 _
(3.4) [(pIn + B) | = {(p2 + HB—1H—2)—1/2 if det B £ 0
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(ii) Suppose that N is odd. Then pIn+ B is invertible if and only if p # 0
and we have ||(pIn + B)7Y| = |p|™'. Moreover det(ply + B) = c(p, B)p
where ¢ depends smoothly on p, B and c¢(p, B) # 0 if rank B =N — 1.

Proof. We first consider the case N = 2n. When acting on C?" the skew
symmetric matrix B has an orthonormal basis of eigenvectors, with purely
imaginary eigenvalues. If v is a complex eigenvector with eigenvalue 73, then
v is an eigenvector with eigenvalue —if, moreover B(Re v) = —fIm v and
B(Im v) = BRe v. There is then an orthonormal basis uy, ..., us, of R?"
such that Busgp_1 = —fBruor and Bugy = Brugi_1. Also, (p] + B)UQk_l =
pugk—1F Prugk and (pl & B)ugg, = Prugk—1 =+ pusg. Thus pl + B are invertible
if and only if either p # 0 or ming |5x| # 0.

We have ((pl +B)~1)T(pl+ B)~! = (p?I — B?)~!, by the skew-symmetry
of B. Observe that p?I — B? acts on V}, := span{ugy_1, ugi} as (p? +ﬁ,%)[vk
and it follows that

(oI + B)~'| = I((pI + B) ") (pI + B)~"||'/?
= max (p° + 1) "V% = (p* + min §7)"!

=1,...,n =1,...,n

Since ||[B~!||~! = miny, | 3| we obtain the claimed expression for the operator
norm.

Next consider the case N = 2n—1, n > 2 (the case N = 1 is trivial). The
proof uses the same argument as above. We can now find an orthonormal
bases u1, ..., us,_1 such that Busgr_1 = —Brusr and Busgy = Brugr_1 for k =
1,...,n—1, and Bug,_1 = 0. Let f(p, B) = det(pI + B) then f(0,B) =0
since N is odd, moreover ¢(p, B) = f(p,B)/p is a polynomial in p and the
entries of B. By the above computation f(p, B) = p[[;_ (,0 + Bk)?. If the
rank of B is N — 1 then the f; are nonzero and thus c(p, B) #0. O

We proceed to check (3.2). Recall the notation JY = >, 7;J; and
AV =3 ;A We compute, for j = 1,...,2n — 1, the partial derivatives
(using e} Jgean = 0),

£ (yan + (277 — tAY)e9,)0; V(25 =) L) + PJ(e; + i 9(“FL )ean)
= es, T (ej + 839( ) n)
By, G

—t (yan + (77 — tAV)eg,,)0jh(E 7Y

) = AV(ej + 9jg(*FE Jean)

_vg(f;y
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and, with ¥; = yonti,

/

PJ;PTy — tg(x/;y,)PJiegn — (27 J;ean — tAiegn)Vg(xlgy )

€3, Ji(PTy — tg(% )ean)
m

€;

h(ZF8) (2T J; — tAs)ean — Ai(PTY — tg(27% Yean)

:‘ p—
—Y2n+i

Let IT : R?n+mtl _ R2+m he the natural projection omitting the time
variable t = X2, 4m+1. Let

(3.5) o =o(z,t,y) = yon + (2TJY — tAY)ean
and let B = B(z,t,y) be the (2n — 1) X (2n — 1) matrix

/

B = PJVey,(Vg(Z7L)T

with rank at most one. We have

_ (fled (D + PIIPTE B V()
1=, = e, JUPT 1 *
0 0 I,

and therefore (using elementary column operations and the skew symmetry
of Jg)

(36)  detI1Z, = det (t~'og"(¥72) + PJVPT + B~ BT) .

Since PJYPT+ B— BT is a skew-symmetric (2n—1) x (2n— 1) matrix, we see
from Lemma 3.1 that II=, is invertible if and only if o # 0. Equivalently
det @, # 0 if and only if o # 0. If ¢ = 0, then ITZ, is not invertible and
we have to use the ¢-derivatives.

Remark 3.2. For later reference in §5 we include the following remarks which
establish the oscillatory integral operator f +— Tj f(-,t) as an operator with
a folding canonical relation (i.e. two-sided fold singularities). We examine
the one-dimensional kernel and cokernel of the matrix in (3.6) for 2’ = v/,
o=0.

(i) Consider b = (V/, by, b)T in the kernel. Then b = 0, by, = —eJ JYPTH
and PJYPTY = (0 with &' # 0. This also implies that el JYPTY # 0 (since
otherwise PTH’ would be in the kernel of the invertible matrix J¥ and b’ would
be zero). Let Vi, = 373771 b;0/0y; + ban0/Oyan with by, = —e, JIPTY # 0,
then 8‘;% =1 and from part (ii) of Lemma 3.1 we get Vi, (det IIZ,) # 0.

(ii) Let a™ = (a1,...,a2n+m) be in the cokernel of ITZ,. Then a right
kernel vector field Vi = Z?f{m a;0/0x; satisfies az, = 0 (when evaluated
at o' =y, 0 = 0), PJYPTd’ = 0 with o’ # 0 and a is determined by a'.
Note that Vgo = —el JYPTa’' # 0 which leads to Vg(det ITZ,) # 0.
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The case of small 0. We consider 4 in an e-neighborhood of 4, # 0, with
small € > 0. We look at the (2n +m + 1) x (2n + m) matrix Z, for 2/ = ¢/
and small o. Since ¢”(0) = —I2,—1 and h(0) = —1, we have

—t Yol 1 +JYPT 0«

= _ el JUPT 1
Y x/:yl Q 0 Im
—AYPT -1 =x

We recall that J¥ is invertible for § # 0 (and take y near y, # 0). This
implies that for AY = (AYPT,0) the 2n X 2n matrix with rows e]JY, ...,
el 1JY, e} JV — AV is invertible. To see this, let {c,}?", be such that
S epel Y 4 can(ed JY — A¥) = 0. This gives Y37, cref = e, AY(JY) !
and thus 37" ¢ + 3, (1 [|A7(J7)71|%) = 0. By (1.4), setting 0 = g/|g],

IAZI?) < AP < AT T < 1

which implies that the c; are all zero.

The preceding consideration also yields that 2n — 1 of the truncated rows
elJYPT, ..., e} JYPT, el JYPT — AYPT are linearly independent. For
ke{l,...,2n—1}, welet P() : R2"~1 _ R?"~2 denote the map that omits

the k™ coordinate. We also let IT(") be the corresponding linear map from
R2Zn+m+L to R2%H™ that omits the &' coordinate.

Since the skew symmetric matrix P.JY PT is not invertible we see that there
isake{l,...,2n — 1} (depending on y) such that the (2n — 1) x (2n — 1)

matrix
P pJipT
(e;nJ?J - AQ>PT
is invertible. By elementary row operations this implies that

—toPWPL, + POPJIPT 0

T 79p7
(5)= _ eopJY P 1
i Y =y’ 0 0 In
—AVPpPT -1 x

is invertible for & = 0. The above calculations for § = 4., 0 = 0 and 2’ = 3/
extend by continuity to small choices of |o|, |2’ — ¢/| and |y — s/, and for
these we obtain that I7(%) =y is invertible. This concludes the verification of
(3.2) and thus the proof of Proposition 2.3. O

4. PROOF OF PROPOSITION 2.4

Let == V,;® as in (3.1), N € R¥*! be a unit vector, and let CN(z,t,y)
be the d x d curvature matrix with respect to N given by

N

4.1 N = _~Z __(N,E
(4.) Y= 5ot
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We apply an oscillatory integral result in [22] according to which Proposition
2.4 holds provided that (3.2) and the additional curvature condition

(4.2) (N,Z,)=0,j=1,....d = rankC"=d-1

is satisfied; i.e. the conic surface ¥, ; parametrized by y — Z(x,t,y) has the
maximal number d — 1 of nonvanishing principal curvatures. It remains to
verify (4.2); here we shall use our size assumption (1.4) on A.

Let o be as in (3.5). For 2/ = ¢/, using the properties of g, h in (2.3), (3.3)
we get

Jyej
Eyj . = —t_lo'ej + Om 5
=Y —Ayej
O2n1 PJ;PTy' — tPJiea,
S I T R L IiPTy
Y2n /:y/ Om ? Y2n+i :v’:y’ e’?’b
-1 (tAZ' — l‘TJi)egn — Ai(PTy’ — tegn)

We now consider a unit vector

N = (o, @, ag41)" = (o, a2n, @, agy1)7 € R

z' =y’

perpendicular to Zy,, Zy,,, Zy,. Evaluating for 2’ =3/, we get

(4.3a)
0=(N,Ey,) vy —ttoa; +aTJV; — agiiAVej, j<2n—1.
(4.3b)
= (N, Zy,,) oy Q2n — Qgi1,
(4.3c)
0= (N,Zy,) vy = T(PJ;PTy —tPJean) + agned, JIPTY + @

+ OédJrl((tAi — acTJi)egn — Ai(PTy' — tegn)), 1= 1, e,

Equation (4.3c) above expresses @; in terms of o and agy; and turns out
to be not really relevant to our calculations. Normalizing |[N| = 1 we have
laf ~ 1.

Remark. Tt is instructive to see that when A = 0 and for the special case of
the Heisenberg type group, i.e. when (J¥)? = —|g|2I, the projection of the
normal vector N to R?" is tangential to the sphere for o = 0, indeed in that
case (as we evaluate at the northpole of the sphere with normal vector es;,)
we see from (4.3a) that a is perpendicular to span{.J%ey, ... J%es,_1} which
contains eg,.
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The second derivative vectors are given by
200,V g(XFL) — 7 (PTen) 0, 9(25L)
0

Syiye 0 )
m

/ /

12002 h(ZFL) + t7 AVes, d9(Z L)

for1 <j,k<2n-—1, and
Eyiye =0, if 2n < j, k < 2n +m.

Moreover,

19,V g (2T
_ 0 .
':'yjy2n = 6m ) 1 S J S 2n — 17

—t719;h(ZFY)

and, fore=1,...,mand j=1,...,2n — 1,

/

PJiej + PJieon0;g(57%) + 1 (2T J; — tA;)eand; Vg(*7L)
= - €3n i€
=YjYon+i I ,

—t_l(@TJi — tAi)egnth(xlzy/) — A,-(ej + (%g(””/;y )ezn)
We evaluate at 2’ = ¢/, using ¢”(0) = h”(0) = —I2,,—1, ¢"’(0) = 0, and see

that the components of the curvature matrix GV at 2’ = 4/ are given by

(N, Eys;)

!

/)thlpjﬂe}n - Oéd+1t720' + ad“(—tAf’egn),

/=

(N, Eyyi) it j #k,

for 1 < j,k <2n — 1. Moreover for 1 <j <2n —1,

/=

= (O[

y/
= ()Tt Ve, — agyi(t 20 + 1t AVey,),
=0,

y/

<i~7Eyjy2n> T —agt
a'=y
(N, Byjynii)| | = aTJiej — ajt™ ((2TJ; — thi)ean) — agyrhiej, 1 < i <m,
=y
and

(N, Zy,p0) =0, 2n<jk<d=0.

/

=y

Thus we get for the d x d curvature matrix GV,

. CIQn_l PA
vy \ATPT 0

where ¢ = ¢(t, z,y) is given by

GN

(4.4) c=t"taTJYs, — t_2ad+10 — t_ladHAgegn
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and ATPT is the (m + 1) x (2n — 1) matrix obtained from the following
(m + 1) x 2n matrix AT by deleting the last column; here

" aTlJp —t71((2TJy — tAr)ean)aT — agyi Ay
aTJp =t (27T — tAm)ean)a™ — agyiAp,
We combine (4.4), (4.3a) and (4.3b) to get
(4.5) (=t Lol + J)a — a9, (AY)T = cteay,.
Therefore, by Lemma 3.1, and writing ¥ = 3/|y],

o] =t (ST = TP)a + aza AV = G|l (1] — T )a + azah”|

1o o2 Iy 14— J
> ¢ gllal (5 + 1)) 7HI72)Y2 = A7)

and thus

(4.6) el =t~ Hgllal(1(77) M = A7)

which is bounded away from zero by assumption (1.4).

We finish by verifying that GV has rank d — 1 = 2n+m — 1. We have the
factorization

CIQn_l PA -
(47) <0m+1,2n—1 —cYATPTPA) —
Iy, 1 O2n—1,m+1\ [clon—1 PA
—CilATPT Im+1 ATPT 0m+1
where PA is an (2n — 1) x (m + 1) matrix, Is,_1 is the (2n — 1) x (2n — 1)
identity matrix, ;41 is the (m + 1) x (m + 1) identity matrix, 0,,+1 is the
(m+1) x (m+ 1) zero matrix and 02;,—1 m+1 is the (2n — 1) x (m + 1) zero
matrix.

Thus, the rank of the curvature matrix is 2n — 1 +rank(PA) and the rank
of PA the same as the rank of the (2n — 1) x (m + 1) matrix

(4.8) (=t='Pa Pu® ... Pu™) with o™ = JTa — Alagy.

v(™) are linearly

independent vectors in R?”. To see this let (won,w) € R™ be such
that —t~laws, + Zznzl Q(k)wk = 0. This is equivalent with —t'aws, +
Yoy Jlaw, =300 Alwg. If @ = 0 then we must also have wa,, = 0 since
a # 0. We thus need to show that w # 0 leads to a contradiction. Let
©=w/|wl|. Since ag1 = az, we get @ = ag,(—t twe,l — J¥)"LH(A¥)T and
thus by Lemma 3.1

w3 wy—1)1—2y— w W\ — )
lal < (5 + 1)) 72 1A% lazal < 1(IF) M IAZ] el

We observe that the extended columns —tta, v, ..., of

Since by assumption ||A“| < [[(J*)7Y||7! for |©] = 1 we get @ = 0, a
contradiction.
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We have thus verified that the m + 1 vectors —t_lf, y(l) . y(m) are
linearly independent and hence the rank of the matrix (4.8) is at least m.
This proves (4.2) and finishes the proof of Proposition 2.4.

5. PROOF OF THEOREM 1.3

Let o(x,t,y,0n,0) = 02, + (;UTJ(; — tAé>62n which is comparable to the
‘rotational curvature’ of the fixed time operator. We use the oscillatory
representation of the kernel in (2.14) and split A} = [k/ 8- Ak t Ak k3]
where

(5.1)
At f () = 28 / / 2V D) (0 4 . 0) dfam 40 £(y) dy,
R4 JRmMm+1

and by is supported where |62,| ~ 27¢ when ¢ < [k/3] — 1 and supported
where |0, < 275/ if £ = [k/3].

The operators Af’f are bounded on L! and L uniformly in k and ¢. A
trivial kernel estimate yields

(5:2) IAE flloo S 2500274 £

~

We also have the L? estimates

(5.3) JAEfly < 270

F22) £l

for ¢ < [k/3]. These follow, after an application of Plancherel’s theorem,
from corresponding bounds for the oscillatory integral operators with phase
function ® as in (2.22)

Ty f (z,t) = 2K+ / 2@, (2t y) f(y) dy,
]Rd

namely
(5.4) [T f (- t)ll2 S 2/227F472) £

The estimate (5.4) follows from bounds in [11] (cf. Remark 3.2). Interpola-
tion of the trivial L' estimate and (5.3) and summing in ¢ yields an LP — LP
estimate || AF|| s pr = O(27<PF) with e(p) > 0 for 1 < p < oco.

We may interpolate between (5.2) and (5.3) and obtain

(m+1— 237
(5.5) AP fllg < 28 Gty 2<g<oo
which implies
Ml << oo
mal— + +1
(5.6) IAZ fllg < Cq § k2™ Nfle,  a=3
2k(m+§— 2 S q < 3
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For the case ¢ = 3, the Bourgain interpolation trick (as discussed in §2.1)
also yields

k k 1_(i+m+l
(5.7) IAF f | zs.ce S 25570 F) g
In the case m < 2n — 2, we have derL;{l > 3 and thus get a uniform
estimate for AF when ¢ = d;”}rf = 2”;1”}“. For m = 2n — 2, we have
d‘*'mLHH = 3 and obtain the restricted weak type (¢, q) estimate for .A,’f uni-

formly in k. For m = 2n — 1, we get a uniform LY — Li%bound when

_ 3(d+m) _ 9m+3
9= 3m¥2 ~ 3mr2

To combine the AF, we use standard applications of Littlewood-Paley
theory, writing AF = Ly AFL, + Ej where the L satisfy Littlewood-Paley
inequalities

(X )
k>0

for 1 < 7 < oo and the error term Ej has LP — L7 operator norm O(27%)
for all 1 < p,q < oco. Since ¢’ < 2 < q, a standard application of Littlewood-
Paley inequalities in conjunction with Minkowski’s inequalities allows us to
deduce the endpoint estimate for P; when m < 2n — 2 and the LY — L4
bound for ¢ = Im%3 for the case m = 2n — 1. The inequalities for (1/p,1/q)

3Im+42
on the interior parts of the edges P; P3 and P, P follow by interpolation.

<A Hg;%nmsH(EQMﬁff”m

When ¢ = 3 and m = 2n — 2, we still get uniform bounds for .A,’f on
the interiors of PPy and P,Ps, and interpolating (5.7) with L' — L' and
L>® — L™ bounds gives us sharp L? — L4 estimates for A¥ on these edges.
The above Littlewood-Paley trick still works for those (p~!,¢~!) on the
open edges which satisfy p < 2 < ¢ and thus for those (p~!,¢~1) we get the
LP — L% boundedness for the averages. A further interpolation finishes the
argument.

Remark 5.1. For the case m + 3 < 2n the above estimates (5.5) also give
a sharp result for the LY — LY estimate for the full maximal operator in
Theorem 1.2, without imposing the condition (1.4) on A. By applying (2.10)
for ¢ in place of p we get

m-+1— 4tm 3_
(5.8) Hf?yAVﬂM§2“+lq)f“1WN¢ 2 < g < oo,
E)

which implies || sup Al < Zk(mﬂ_i + for ¢ > 3 and hence
te(1,2] q q

d+m _ 2n+m
m+1 — m+1>

provided that d+ 1 > 3, L.e. m+3 < 2n. Moreover one obtains the LY — L1
("er) if m+3 < 2n.

the L1 — [%:°° bound for the maximal operator M for gy =

bound for M in the range 2 < ¢ <
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Finally we consider LP — L2 bounds for p # ¢’ in the case m = 2n — 1.
To this end, we will now give a further estimate based on L? — L7 estimates
for oscillatory integral operators in [13].

Proposition 5.2. For 1 <p <2, % = 4211 - %)’

d—1— d+m

(5.9) IAEfllg < 27F 55 1)

Proof. This follows by an interpolation between the trivial L' — L es-
timate with operator norm O(25(m+1)) and the L? — L% estimate with
qo = dQTd1 and operator norm < 9 k(d/qo—(m+1)/2) — 9-k(d—m=2)/2  The
L? — L% bound follows via Plancherel’s theorem from the estimate

(5.10) T f () llgo S 27549 flla, g0 = 24

This in turn is a consequence of [13, Thm. 2.2] once we show that the d — 1
dimensional conic variety Efx"}d = {V,®(x,t,y) : o(z,t,y) =0} isad—1
dimensional cone with d — 2 nonvanishing principal curvatures everywhere
(with d = 2n +m).

Let = be as in (3.1) and let ITZ € R? be the spatial component of =
(omitting the last component from =). Let

Yon = Y2u(7) 1= (tAY — 27J%)eqy
denote the solution of the equation o(z,t,y) = 0. We define
.ty 9) = HE(z, £, 4,920 (9), 9))
PJIPTY — tg(ZZL )P Vey,

= | (¢AY — 2T JP)e, + €], JI(PTY — tg(27L Vean)
y

From (3.2) we see that &y,..., &y 1> Eyanits- - > Eyonym are linearly inde-
pendent, which establishes Efg%d as a manifold of dimension 2n — 1 + m.

We compute for 5,k € {1,...,2n} and i,l € {1,...,m},

_t—lajkg(x/;y/)PJ?J(an PJie; + @g(%)?%e%
Eyovne = 0 o Sy = | ebyJile; + 959(FF 5 Jean)
0 0

and ggigl =0.

Define the normal vector v for ' = 3 by vT = (aT,aT), and let o/ = Pq;
so that v7&, |,r—y = 0 for j =1,...2n — 1 and hence aT.J%¢; = 0. Since JY
is invertible this implies that either aTJY%es, # 0 or a = 0. But the latter
possibility would also imply & = 0 from the conditions (v,&y,) = 0. Hence
we have v := aTJYesy, # 0.

Let C denote the (2n—1+m) x (2n—1+4m) curvature matrix with respect
to the normal v, with entries (v, &, ., ) where j k€ {1,...,2n +m}\ {2n}.
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When z/ = 3/ it is given by

—t~ Iy PM . .

1!

C‘:BIZ?/ = <V7 ‘Eyy> - ( MTP'? 0 with Y= @TJy€2n ?é 07
where M is the 2n x m matrix with m columns Z?Zl(oﬂJiej)ej = —J;a and
hence PM is the (2n — 1) x m matrix with columns —PJ;a, i = 1,...,m.

Using a lower dimensional version of the factorization (4.7) we see that the
rank of C at 2’ = v/ is equal to the rank of

’7121171 PM T Ty
<Om,2n1 —’7_1MTPTPM> ) 7= J €2n
that is, rank C|p—y =2n—14+m —-1=d — 2. O

Conclusion of the proof of Theorem 1.3. It remains to finish the argument
for the ‘off-diagonal’ estimates in part (iii) of this theorem. Note that an
LP — L7 estimate implies an LY — LP" estimate since the dual operator is

similar with J replaced by —J.
Let p; = ‘fj‘%, and ¢q; = %. Since d = 2n+m > m + 2, we have
p1 < 2and q; > %. Proposition 5.2 yields the ILP* — L' boundedness of

the operators AF with norm uniform in k. The Littlewood-Paley arguments
above also allow us to deduce the LP1 — L% boundedness of A;, since
p1 <2< q;. Form=2n—-1, we have d = 2n+m = 2m+1, and in this case,

() = (22, g2gay) and (1= 21— 1) = (il msl) O

1’ q1 3m+1° 6m2+5m+1 q1’ p1/ — \6m24+bm+1’ 3m+1

6. NECESSARY CONDITIONS FOR MAXIMAL OPERATORS

We provide five counter-examples, corresponding to each edge of the
quadrilateral R for the Heisenberg group H" (in particular, m = 1), and
one for the point Q3. These show the necessity of all the conditions in The-
orem 1.1 and of some of the conditions in Theorem 1.2. The first four are
suitable modifications of those in [31] for the Euclidean case, which were
in turn adapted from standard examples for spherical means and maximal
functions. These examples will be presented for all Métivier groups. The
fifth example seems to be new; it replaces the Knapp type example in the
Fuclidean case.

6.1. The line connecting Q1 and Q2. This is the necessary condition p < ¢
imposed by translation invariance and noncompactness of the group G (see
[14] for the analogous argument in the Euclidean case).

6.2. The line connecting Q2 and Q3. Let Bs be the ball of radius § centered
at the origin. Let fs be the characteristic function of Bjgs. Then

/5]l = 6 mI/E.
Let C, :=10(1 + ||A]] + max; || J;]|). For 1 < ¢ < 2 we consider the sets
Ragi= {(2,5) : llal — 1] < 6/Co, |7 — thz| < §/Cu}.
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Then |Rs¢| = 6™ Let X, = {w € S?"7! : |z — tw| < §/4} which has
spherical measure ~ 2"~
If 2 € Rsy and w € ¥, then |z —tw| < 6 and
Z — taTJw — t*Aw| < |T — tAz| + |27 J (tw — )| + t|A(tw — z)| < 36
(here we have used the skew symmetry of the .J;). We get

fsxo(z,z) = / fs(z — tw, & — tzTJw — t2Aw) do(w) > 621
S2n—1

for x € R;s:. Passing to the maximal operator we consider |z| € [1,2] and
put t(z) = |z|. Then setting
Ry={x:1<|z[ <2, |z —|z|Az]| <6/C.}
we have |R;s| Z 6™ and |fs o3y ()] > 6*"~! for z € Rs.
This yields the inequality
§2n—15m/q < 5(2n+m)/p’

and consequently, the necessary condition
m 2n+m
(6.1) Moy op 1> T
q p

that is, (1/p,1/q) lies on or above the line connecting Q2 and Q3.

6.3. The point Q3. For p = py = 272£1 = dﬁ;n"jl the LP — LP bound
fails. Here one uses a modification of Stein’s example [32] for the Eu-

clidean spherical maximal function. One considers the function f, defined

by fa(v,vop41) = |y|7%]10g|v\|*a for |v| < 1/2, |vap+1| < 1 which belongs
to LP2 for a > 1/po. One finds that if ¢(z) = |z| then for o < 1 the integrals
[ * 04y () are oo on a set of positive measure. If one choose « close to 1
this also shows that M does not map any of the Lorentz spaces LP2? for
q < oo to LP2°°,

6.4. The line connecting ()1 and Q4. For this line we just use the coun-
terexample for the individual averaging operators, bounding the maximal
function from below by an averaging operator. Given t € [1,2], let g5; be
the characteristic function of the set {(y,9) : ||y| —t| < Cod, |y —tAy| < Cod}
with Co = 1027 || ;|- Thus [|gs|l, S sm+V/P.

Let x = (z,Z) be such that |z| < 6 and |z —tAz| < §. For any w € §?7~1,
we have that ¢|zTJw| < 26. Thus

||z — tw] —t| <26
|Z — taTJw — *Aw — tA(z — tw)| < |z — tAz| + t{2TJw| < Cyd

implying that |gs+ * o¢(x)| 2 1. This yields the inequality §2ntm)/a <
s(m+1)/P which leads to the necessary condition
1 11
(6.2) LA
q 2n+mp
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that is, (1/p,1/q) lies on or above the line connecting @1 and Qy.

6.5. The line connecting Q3 and Q4, m = 1. We now consider the case
m = 1; after a change of variables we may assume that the skew symmetric
matrix J satisfies the Heisenberg condition J? = —I. Pick a unit vector
u € R?" so that AT € Ru, and set v = Ju/||Jul| (thus (u,v) = 0). Let
V = span{u, v} and let V- denote the orthogonal complement of V in R?".
Finally, let 7,7, be the orthogonal projection to V, V= respectively. Note
that J maps V into itself, since J? = —1I, and since J is skew-symmetric it
also maps V1 into itself.

For sufficiently large C; (say, C1 = 10(2 + ||A]|)) and small § < C ' let

Qs = {(y,ya) : |71 (y)| < C16Y2, |m(y)| < C16, |yal < C16}.
Let f5 = 1g;, so that || fs|[h < 6CGn=2/243 e, || fs]|, < 6 +2)/p,
For 1 <t <2, let
Ry = {(z,2a) : |71 (2)] < 82, ||m(2)| — t] <6, |za— tha] <5,
1/4 < (z,u), (z,v) < 3/4}
and let R§ = U9/8§t§15/8Rf5' Then ’R5| ~ 5(271—2)/2-1—25—1 = (Sn.

For z € Rs, we derive a lower bound for oy, f5 (), setting t(x) := |7 (z)].
Let

S ={w e $™ 1 |y (w)] < 62, [(w,u) — {z,u) | <6, (w,v) > 0},

which has spherical measure 2> §(2n=2)/2+1 — gn

For z € Rs, w € Sy, t(x) = |n(z)| we have
(6.3) w1 (z — t(z)w)| < 362
and
[z — t(x)w, u)| < 6.
Since w € S?" 71 (w,v) > 0 and (z,u), (x,v) € [1/4,3/4], we also get

~ (o) <8 o

&~ t(a)e, )| <2 (@)

(z,v)
|7 (z))|

= 8’1 - (z, u)® — 1+ {w,u) + \m_(w)ﬂ < 8|{w, u) — (z, u) | +86% < 96.
| (2)]? ’ - (=) N

Hence

(6.4) |m(z — t(z)w)| <106, w € S.

Now, since J acts on V and V-,
2T Jw = (z — t(z)w)TJw = (7(x — t(zr)w)) T Jw + (7L (x — t(x)w))TJ (7L w)
and thus from (6.3) and (6.4).
2T Jw| < 6+ 36Y26Y/2 = 45, w e S,.
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From this we finally we obtain, writing 24 —t?Aw = x4—tA(z) +tA(z —tw)
and using that AT € V,

|2g—t(2)2T Jw—t(z)*Aw| < |2g—t(z)Az|+t(2)|All|7 (2 —t(x)w)| +45 < CO.

These inequalities imply

M f5() > fs % 0y (@) = / fs(x — t(@)w, 24 — t(z)aTJw — ()’ Aw)do(w)
Sz
> |Sz| 2 0" for z € Ry.
Hence we get
1M fsllg/ I follp Z | Rs|V/ 06760 2)/p 2 gn/atn=ne2)/p

and letting 6 — 0, we obtain the necessary condition

2
(6.5) Y k)
q p
that is, the necessary condition for m =1 is that (1/p,1/q) lies on or above

the line connecting Q3 and Q4.

7. NECESSARY CONDITIONS FOR AVERAGING OPERATORS

We now prove the necessity of the conditions in Corollary 1.4, and of some
of the conditions in Theorem 1.3.

7.1. Necessary condition forn > 2 and m < 2n—2. For n > 2 the sharpness
of Theorem 1.3 follows from the considerations in §6. Concerning the line
(Q2Q3 we use the example in §6.2 to get

1fs * oullg = g2 Hm D a= Gy gy,

2ntm _mAl < 9 1. The calculation in
§6.4 only involves the averaging operator and yields the necessary condition
1 +11
72 2ntmp

which gives the necessary condition

7.2. Sharpness for n = 1. Here we can assume by a change of variables that
A = 0 and that TJy = xoy1 — x1y2. We now consider the circular means
on G = H! given by

Af(x) = /f(a:l —COS §, g — sins, 3 — Ty cos s + x1 sin s) ds.

We need to prove the necessary condition

(7.1) 6(1/p—1/q) <1,

ie. (1/p,1/q) cannot lie below the line connecting the points (1/2,1/3)
and (2/3,1/2). This is in analogy with the situation for integrals along the
moment curve (s, 52, s%) in the Euclidean situation of R?; there the operator
is tested on indicator functions of (8,2, §%)-boxes. We show how to modify
that example in our situation.
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Let f5 be the indicator function of the parallelepiped

Ps={(y: 1] <(20)% lyal <26, |ys+yo| < (20)°}
and
Vs ={x:|x; — 1| <62 |ao| <6, |x3] < 6%}
For |s| < 4, and x € V5 we have
2
|z1 — coss| < |x1—1]+5+83§352
|zg — sins| < |xg| + |sins| < 25

and

|zg — x9cos s+ x18ins) + (ra — sins)|
< |as| + |x2||1 — cos s| 4 |sins||z; — 1] < 36°

Thus if y = (x1 — cos s, 9 — sin s, 3 — xacos s + 1 sins) for 0 < s < § and
x € Vs, then y € Ps and thus Afs(z) > . Hence

1AS5llg = V5|95 = §1+0/a

and since || fs||, = |P5|"/? < 6%/P, we obtain the necessary condition (7.1).

8. IMPLICATIONS FOR SPARSE BOUNDS

As mentioned in the introduction one principal goal of [3] was to derive
for the global maximal operator 9t inequalities of the form

(8.1) M (z)w(z)de < Csup {Asp, p,(f, w) : Ssparse},

Hn
where the supremum is taken over sparse families of nonisotropic Heisenberg
cubes (see [3] for precise definitions and constructions) and the sparse forms
Ag p, p, are given by

St ZI3(E )" G )"

Ses

Relying entirely on arguments in [3] and using our L” — L¢ bounds we can
show that the sparse bound (8.1) holds if (1/p1,1 —1/p2) lies in the interior
of the quadrilateral Q1Q2Q3Q4 in (1.1) (or on the open line segment Q1Q)2),
a result which is sharp up to the boundary.

For the proof of sparse bounds for the global maximal operator the rele-
vance of LP — L9 results of localized maximal functions was recognized by
Lacey [19] in his work on the Euclidean spherical maximal function. Here
we mention that the recent paper [5] gives very general results about this
correspondence for the Euclidean geometry; Theorem 1.4 of that paper is
of particular relevance here (see also [9] for some results in spaces of homo-
geneous type). Moreover we refer to [5] for general results about necessary
conditions.
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For the proof of (8.1) we use the argument in [3]. One needs to supplement
the LP — L9 bounds for the local maximal operator by a mild regularity
result, namely

(8.2) |Sl|1p1|h! “| ot [ f = f) #y el ||, S N Fll
tell

for some € > 0; here 7, 1is the right translation operator, i.e. 7,f(y) =
fly—h,y— h — yTJh). One also needs to verify a dual condition which in
our case is implied by (8.2) and the symmetry of the sphere. If (1/p,1/q)
belongs to the interior of the boundedness region in Theorem 1.2 then our
approach yields (8.2) with an (p,q) > 0. To prove this one needs to show,
by the localization argument in the beginning of §2 and the subsequent
dyadic decomposition, that the operator A* in (2.14) satisfies

(8.3) A5 (7 f = D)llegapay S 27 @D @F ) £,

for |h| < 1 and functions f supported near the origin, with a(p,q) > 0 in
the interior of the boundedness region. By taking means it suffices to prove
this for e = 0 and € = 1. The case for € = 0 is immediate from the already
proven results. For the case € = 1 we use a change of variables, followed by
the fundamental theorem of calculus, and a change of variable again, with
the fact that (7,,y)7Jih = y7J;h to write

9~k AR (7, £ — (. )
2R (x,t,y,0) (ok
/ / F(Tsny / e (2"6, +Bg))(h7z7t’yﬁ)d9dyds

with
Bi(h,x,t,y,0) = ib(x,t,y,0) [TV, U + hTVZU + yTJV 7V h]
BZ(hamata y79) = (h,)Tvy’bk;t,t,y’ﬁ)'

Thus, taking into account the explicit form of the phase function (2.15),
one can reduce the case for ¢ = 1 in (8.3) to estimates for operators of the
form (2.14) already handled (note that here V53U = —6).

Finally, by similar arguments one gets the regularity result for fixed ¢,

IAF (i f = )l Loy S 27D @8R £l

where b(p, ¢) > 0 in the interior of the boundedness region in Corollary 1.4.
Again, using the reasoning in [3] this yields an improved sparse bound for
the lacunary maximal function, namely

(z,t,y,0)’

(8.4) /H 2UIZ) | f * pgr (2) |w(z)dz < Csup {As,p, po (f,w) : Ssparse}
n E

whenever (1/p1,1 — 1/p2) belongs to the interior of the boundedness region
in Corollary 1.4.
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Remark. The reader may wonder whether it is necessary to use the sparse
bounds as in [3] for the proof of LP(H") — LP(H™) bounds for the lacunary
spherical maximal function, for 1 < p < oo and n > 1. We are grateful to
both Luz Roncal and an anonymous referee for raising this question. Indeed
a more direct proof can be given; on can for example modify the arguments
n [23]; alternatively one can rely on a straightforward modification of the
Calderén-Zygmund arguments in [1, §6].
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