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ABSTRACT. We describe a recent, one-parameter family of characterizations of Sobolev
and BV functions on R"”, using sizes of superlevel sets of suitable difference quotients. This
provides an alternative point of view to the BBM formula by Bourgain, Brezis and Mironescu,
and complements in the case of BV some results of Cohen, Dahmen, Daubechies and DeVore
about the sizes of wavelet coefficients of such functions. An application towards Gagliardo-
Nirenberg interpolation inequalities is then given. We also establish a related one-parameter
family of formulae for the L” norm of functions in LP(R™).

1. INTRODUCTION

In this note we revisit Sobolev spaces on R™, n > 1, from the point of view of difference
quotients. For 1 < p < oo, the homogeneous Sobolev space WP on R™ consists of all
locally integrable functions u modulo constants, whose distributional gradient Vu € LP. It

is normed by
1/p
IV = (/ Vulrdr) "
Rn

We will also work with the homogeneous BV space (BV stands for bounded variation). It
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consists of all locally integrable functions v modulo constants, whose distributional gradient
Vu is a finite Radon measure (written Vu € M). In other words, it is the space of all
u € L. such that

arxiv

1) sup {\ [ ulo)divo(@)dals 6 € CHRMR), [0l e < 1}
is finite (which in particular contains W"'). Tt is normed by

[ullgy = [[Vulla

which is just the supremum in (1).

In [7], a new formula was established for ||Vul/zp@ny for u € C2° that involves only
difference quotients and no gradients. In [6], this formula was extended to all u € WP, or
all u € BV, and in fact we found a natural one-parameter family of such formulae. A related
limiting formula has been obtained earlier by Nguyen [19] and by Brezis and Nguyen [5].
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The one-parameter family of formulae we found can be used to recover certain Gagliardo-
Nirenberg interpolation inequalities due to Cohen, Dahmen, Daubechies and DeVore [9]. It
also allows us to prove some substitutes when such interpolation inequalities fail (cf. [8]).

Somewhat underpinning all these is a certain interplay between LP and weak-LP (also
known as LP*° in the scale of Lorentz spaces). In Section 2 we review the basics about
Lorentz spaces and some related facts about real interpolation; we also explain a simple
instance of how an LP norm on a lower dimensional space can be realized as a weak-LP norm
in a higher dimensional space, a phenomenon that drives our main theorems. In Section 3
we further motivate our main results by looking at difference quotient characterizations
of fractional Sobolev spaces (also known as diagonal Besov spaces) and the related BBM
formula. In Section 4 we state and comment on the proofs of our main results, which is a
one-parameter family formulae of Sobolev / BV norms and L? norms. In Section 5 we give
some applications towards Gagliardo-Nirenberg interpolation, emphasizing the importance
of the existence of a one-parameter family of formulae, and contrasting our formulae for BV
with the one-parameter family of embeddings by Cohen, Dahmen, Daubechies and DeVore.
In Section 6 we discuss some other related works and some possible further directions.

The current paper is based on the lecture delivered by the last named author at the award
ceremony of the inaugural Antonio Ambrosetti medal. Theorem 6 and some of the material
in Section 5 are extensions of known results, which may not have appeared explicitly in the
literature before.
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2. LORENTZ SPACES AND REAL INTERPOLATION

Let (X, v) be a measure space. For 1 < p < oo, if f € LP(v) for some measure v, then for
every A > 0,

ey = [ 1P dw = 2w 7o) > AL
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In particular, if f € LP(v), then

(2) sup ()\ v{iz: |f(x)| > A}l/p) < o0

A>0

but the converse is not necessarily true. If f is measurable on X and the supremum in (2)
is finite, then f is said to be in weak-LP(v). Its weak-L? (quasi)-norm is defined as the
supremum in (2), and denoted by [f]zree(). A classic example is given by f(z) = |z|~"/?; it
is in weak-LP(dz) on R", because

Lz € R™: |2[™7 > A} = £z € R": |z| < AP/"} o AP,

(Henceforth we write £™ for Lebesgue measure on R™.) This f is not in LP(dz), because

/|f|pd$:/ |z| 7" dz = +o0,

and this serves as a motivation of our main result in what follows.

Later on we will also need the Lorentz spaces LP"(v), which for 1 < p,r < oo are defined
as the space of all measurable f on X with

[flerrw) = <r /000 Nv{x: |f(x)] > A}"/P%y/r < 0.

They arise as real interpolation spaces: if 1 < py < p; < oo and 1—1) = =04 p% for some

P
0<# <1, then for 1 <r < oo, ’
L (v) = [L7(v), L (v)]o.r

where for any Banach spaces By and By, and f € By + Bj, the interpolation norm is defined
as

o0 di\ 1/r
. -0 r
oo, = ([, int (ol + el )
for 1 <r < oo, and

sup t7¢ inf
0<t<oo f=fot+fi

(U follo + tll f1ll )

HfH[BmBﬂo,oo =
when r = oo. It is also well-known that

fleerwy = | fllzrey ifr=p.

In the rest of this article, we will be exploiting a relationship between the LP norm on a
space and the weak-LP quasi-norm on a higher dimensional space. The simplest instance of
this might be the identity

) v = | 22

] , 1<p<oo;
LP:o0 (X x(0,00), v dy)

we thank Terence Tao for communicating this comment.
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3. THE BOURGAIN-BREZIS-MIRONESCU FORMULA

Let’s introduce now a shorthand for the first order difference operator:
(4) Apu(x) = u(zr + h) —u(z) forz,h € R".

For h small, and u € C*, we have then |Apu(z)| ~ |Vu(z) - h|. Hence roughly speaking,
we might believe that |Vu(z)| ~ %
for h. As a result, to express ||Vu|| L»(rn) using a difference quotient instead of a gradient, a

naive guess might be to try

A
// | nu(z dh dz in place of / |Vu(x)|P de.
R2n |h| R

This is not working, because if u,(x) = u(tx), then

, at least if one averages over all possible directions

/ |Vuy(z)[P de scales like tP7"

/ / ‘Ahut i dhdx scales like 7.
R™ xR"”

A proper scaling will be achieved if we COHSlder

// |Apu(x)|P dh dx
O N

instead; if given b € R we introduce a difference quotient®

[Anu(z)]
O

then the above suggests that we consider the integral ff]RZ” QH%u(x, h)P dhdz.

but

(5) Quu(x, h) =

This idea works if we are dealing with fractional Sobolev spaces. Indeed, for 0 < s < 1
and 1 < p < 0o, the fractional Sobolev space W*? is the space of all u € L] _(R") such that

. lu(x + h) —u(x)|P
||u||WSp = // Q5+nu z,h)Pdhdz = //R% S dh dz < oco.

When 1 < p < oo, it is known to be equal to the diagonal Besov space B; , with com-

parable norms. So this suggests again that maybe ||Vu||z»@n) should be compared to

Q1+ ul[o(ren, dzany?  Unfortunately this does not work; as observed in [1] (see also [3]),
even for u € C°(R"), unless u = 0, the L” norm on R*" is always infinite! The issue here
is that |h|~"/? ¢ LP(dh) on R™. On the other hand, we did see |h|~"/? € LP*°(dh), and this

will partly motivate our main result in the next section.

INote that our notation here is different from that in [6]; the Quu(z,y) in [6] would be written as
Q14pu(z, h) with h = y — z in the current paper. As a result, the set E) ,[u] in [6] should be compared to
the set €y 14+5[u] in (10) below.
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For now, let’s recall the “BBM-formula”, by Bourgain, Brezis and Mironescu in [1], which
explores what happens to ||uj., as s = 17. On R, one instance of this formula says for
1 <p< oo and (say) u € C!, that we have?

k(p,n)

©) i (=)l = (1= 9)1Qu gy = — [Vl

s—1—

where k(p,n) is given explicitly by
(7) k(p,n) = / le-wPdw, eeS™
S§n—1

In particular, || Qg2 ul|o(r2n, 4z an) blows up like (1 — s)~Y/P as s — 17 unless u is a constant,
another indication that |[Q14 = |12, dzdn) is D0t good for computing |[Vul|z». Our first
main result in the next section offers an alternative point of view, that does not involve
varying s (as in (6)), but involves a weak-L” norm instead of the LP norm on R*"; remember
|h|~"/P is not in LP(dh), but it is in weak-LP(dh). Before we close this section though, we
mention a related result of Maz’ya and Shaposhnikova [18|. They explored what happens to
||lyisr as s = 07 instead of s — 17, and showed that for (say) u € C! and 1 < p < oo,

20,1

p
where 0,,_; is the surface area of S"~!. This result will be compared to Theorem 6 below.

p

(8) sli}(l;i 8||u||Ws,p = s]il’(I]1+ 8||QS+%U||IZ/p(R2n7dxdh) = HuHiP

4. DIFFERENCE QUOTIENT CHARACTERIZATIONS

Our first result is a characterization of |Vul|r» for u € C2°(R™). We use the notations of
difference and difference quotient introduced in (4) and (5).

Theorem 1 (see [7]). Letn>1,1<p < oo and u € CX(R™). Then
Ahu

9 \V4 ~ n 100 (R2n do = [7"} ’
( ) || u||Lp [Q1+pU]LP (R2", dz dh) |h|1+g LP:o° (R27 dz dh)

In other words, for A >0 and b € R, denote by
(10) Exslu] = {(m, h) € R*": Qyu(z, h) > A}
the superlevel set of Qyu at height X. Then
[Vl = sup (WL (Exren [u]) ).
A>0
In fact, we also have
(11)

Here k(p,n) is given by (7).

k(p,n)

n

IVullf = lim (VL2 (Ensialul)).

2The original BBM formula was stated and proved for bounded domains in [1], but the result extends
easily to the whole R™. See e.g. [2, Appendix A].
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A few remarks are in order. First, the power 1 + % is dictated by dilation invariance: if
[Qvul .o (m2n 4z any scales like |[Vul|r» upon replacing u(z) by u(tz) for t > 0, then b =1+ 2.

Next, the limit equality (11) can be proved using Taylor expansion, in a way somewhat

reminiscent to the proof of the BBM formula. In fact, Q142w is approximately |h|="/P|Vu(x)-

h

W| when |h| is small, and heuristically 5,\,1+%[u] can be approximated by the set

g,\,1+7;}[u] = {(Ia h) € R*": ||~/

Vau(z) %‘ > A}

when A is big. But for all A > 0,

. k ,
ML (Exppn[u]) = @”Mvmﬁr

n

This heuristic can be turned into an actual proof for (11).

Moreover, in light of the limit equality (11), to prove (9), we only need to prove an upper
bound for a weak-L? norm, namely

Qusstlisman arany S [Vl

which can be done using a Vitali covering lemma (plus the method of rotations in dimensions
n > 1). It is somewhat reminiscient of the proof that the Hardy-Littlewood maximal function
is bounded from L' to weak-L'; see also work of Dai, Lin, Yang, Yuan and Zhang [11] who
extended our proof to some metric-measure spaces of homogeneous type.

Finally, the weak-L? quasi-norm in the theorem cannot be replaced by any (bigger) Lorentz
LP" quasi-norm where r < oco.

Theorem 2 (see [8]). (i) If u is measurable on R"™ and

[Q1+nu]pr(r2n, 4z dn) < 00

for some 1 < p,r < oo, then u is a.e. a constant.
(i) Indeed, if u is measurable on R™ and
lim )\p£2"{(:c, h) € R*™: Qi nu(z, h) > )\} Iy
A——+00 P

for some 1 < p < oo, then u is a.e. a constant.

The difficulty here is that we only know w is measurable. If we already know u € Cg°,
the conclusion of Theorem 2 follows from Theorem 1; if we already know w € W'?, then
the conclusion follows from our next two theorems. The case p = 1 relies on a result of
Poliakovsky [20].

Theorem 1 provided a way of computing the W'* norm of a function u € C2°(R") up to a
multiplicative constant. It turns out there is a natural one-parameter family of such formulae

for || Vu||Lrny, for general v € W' or u € BV (not just for u € C*°); in applications often
6



the question at hand determines which formula one uses within this family. To state such
formulae, let v € R. Define the measure

(12) dv, = |k dz dh

on R?". (The case v = n corresponds to the Lebesgue measure dz dh = £*" we used earlier.)
Then we have two theorems, the first dealing with the case p > 1, the second dealing with
the case p = 1; again we use the constant k(p,n) defined in (7).

Theorem 3 (see [6]). Letn > 1,1 <p < oo and u € WHP(R™). Then for v # 0,
Ahu

(13) IVullr = [Qirat] e @en v, = [_|h|1+;]Lp,oo(R2n,uv)'

Furthermore, if Explu] is the superlevel set of Qpu at height A given in (10), then

k(p,n) limy 4o (Ap’/w (&\,H%[u])) if v >0,

14
(14 7l limy 0+ ()\pyﬁ, (5>\71+%[u])> if v < 0.

IVullL, =

The case 7 = —p of the above limit equality (14) is due to Nguyen [19].

Next, for the case p = 1 we have a similar theorem for BV, but with a number of additional
twists!
Theorem 4 (see [6]). Suppose n > 1. Then for v € R\ [=1,0] and u € BV(R"),

Ahu

(15) L A O (R e e e (i1 P

Furthermore, if Explu] is the superlevel set of Qpu at height A given in (10), then the formula
k(1,n) limy s yoo (Ay (Exaael)) i 7> 0
] lim,, o+ (Ayﬁ, (ex,lﬂ[u])) if v < —1

holds for w € W' but can fail for u € BV (e.g. if u = 1q where Q@ C R™ is any bounded
domain with smooth boundary, then the limits above exist but is equal instead to 'T,(Yi’;‘) |Vl )
For~ € [-1,0),

(16) Vullp =

(17) sup [Ql-i-’yu]leOo(]RZ”,u.y) = —|—OO’
ueccoo(Rn)’ ||vu||L1(RTL):1

furthermore, the formula
k(1,n)
7]

remains true for allu € CHR™), but fails for u € WY(R™), and the failure is generic in the
sense of Baire category, despite the fact that for all uw € WH1(R™) we do have

k(1,n)
7l

(18)

IVulles = Jim (A, (s lul))

(19) [Vulles < limin (A, (Exisfu]) ).
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Note that the range of v allowed in (15) in Theorem 4 is smaller than that in Theorem 3;
in fact, (17) shows that (15) is false when v € [—1,0), even if one only restricts to functions
in C2°. The case v = —1 of the limiting formula (18) has already been established by Brezis
and Nguyen [5]: they have already shown that (18) remains true for all u € C}(R™), but fails
for general u € WH(R"). On the other hand, the counterexamples in the case v € (—1,0)
relies on the construction of a Cantor set of dimension 1+ +; in fact in this range of 7, one
may choose approximations of the associated Cantor-Lebesgue function (similar to the one
in the proof of Theorem 7(ii) below) to establish (17), and use sums of such functions to
construct counterexamples to (18) in W1,

We remark again once v, is fixed (by fixing 7), the powers 1 + L and 1+~ in the de-
nominators of the difference quotients in Theorem 3 and Theorem 4 are dictated by dilation
invariance. Also, the two theorems do not address what happens if v = 0; it turns out
things fail strikingly in the case v = 0. It can be shown [6, Theorem 1.5] that if both
u, Vu € L, (R™) then

loc
inf{\ > 0: v(Exqlu]) < oo} = ||Vul|Le;

in particular, if in addition [Qiu]rp.ec(r2n,,) < 00 for some 1 < p < oo, then u is a.e. a
constant.

It may be fitting to comment a bit on the proofs of the positive results in Theorem 3 and
Theorem 4. Let n > 1 and 1 < p < oo. The issue here is that C!(R") is dense in W"?(R")
only when n > 1 and p > 1, or when n = 1 and p > 1. In other words, C!(R) is not dense
in WU(R). Fortunately it is always possible to approximate a general function in W2 (RR")
in norm by C! functions whose gradients are compactly supported. Let ¢ denote this latter
set of functions. We have

ClceC W,

and it is no harder to prove, for u € € than for u € C!, the upper bound for [Q142u]ppoo(,)
for all v € R\ {0}, or the required upper bound for limsup,_,, o (Avy(Ey142[u])) when

v > 0. Thus we can pass to limits and conclude the same for a general function in WP(R")
(an additional argument allows us to conclude the same upper bound for [Qy - u]z1.0(,. ) for
all w € BV and all v € R\ {0}). On the other hand, when ~ < 0, it is not too hard to
establish the desired upper bound for lim sup,_,¢+ (A1, (5>\71+% [u])) for all w € CH(R™). If in
addition p > 1, or n > 2 and 7 < —1, then we can use the density of C!(R") in WhP(R")
mentioned above, together with the upper bound for [QH%U] Lr. (1) already proven, to pass
to limit to obtain the same conclusion for general u € W'?(R"). The remaining case is then
n =p=1and v < —1; in this case, one needs to first establish the desired upper bound for
lim sup,_, o+ ()\1/7 (5>\71+y[u])) for the bigger class u € € before passing to limit to a general
uw € WUL(R). Finally, one can establish directly, for all « € W'?(R"), the desired lower
bound for liminfy ., o ()\puV (5,\,1+% [u])) if v > 0, and that for liminf,_+ ()\f”uV (5>\,1+% [u]))
8



if v < 0. This completes our discussion of all positive results regarding the limiting formulae
in Theorem 3 and Theorem 4.

Note that if p > 1, the lower bound for [Q,2u]pp.ec(,.) for u € WP in (13) follows from
the limiting formulae (14). On the other handl,, when p = 1, v € R\ [-1,0], the limiting
formulae (16) can fail for u € BV. Thus to prove the lower bound for [Q1u]z1.0(,,) in (15)
for all u € BV, one must proceed differently. The BBM formula comes to our rescue; in fact,

the same argument also proves the following theorem, which characterizes Wie (1<p< o)
and BV:

Theorem 5 (see [6]). Letn > 1, ue L} (R"), vy e R. If [QH%U]LP,w(Ran) < 0o, then

Vy

loc

WhP(R?)  ifl<p<oo
BV(R") ifp=1.

See also Poliakovsky [20, Theorem 1.3], who proved, among other things, the same result
for v = n under an additional hypothesis u € LP(R™); in fact, in that case the hypothesis
[Ql+%U]LP,w(R27l7yn) < 0o can be weakened to

lim sup ()\I’Ez" (5,\,1+%[u])> < 0.

A——+00

It may be instructive to contrast Theorem 5 with Theorem 3 and Theorem 4: note that
Theorem 3 and Theorem 4 do not address what happens unless u € W? or u € BV.

To summarize, Theorem 3, Theorem 4 and Theorem 5 imply that for u € L} _(R"), 1 <
p < oo and vy # 0,
Ahu
|h|1+% ] LP:oo(R2™ vy )
Similarly, for v € L{, .(R") and v € R\ [-1, 0],
Ahu
|h|1+7} LLoo (R27,0,)

u € Wl’p <~ |: = [Ql-f%U]Lp,oo(RQn’,,y) < 0.

uweEBV < [ = [Ql-i-'yu]Ll"’o(Rz”,Vw) < 00.

In a slightly different direction, in place of ||Vul|Lr®n), one can also obtain a similar one
parameter family of formulae for ||u|z»m@n).
Theorem 6. Letn > 1,1 <p < oo and u € LP(R™). Then for v # 0,
Ahu}
|h|% Lp’oo(Rzan'y).

(20) s == [Qzulposeon, ) = |

Furthermore, if Explu] is the superlevel set of Qpu at height A given in (10), then

20,1 lull?, = {lim,\_>0+ (M\Pw, (é}g[u])) if v >0
=

] limy s yoo (A1 (Ex2[u])) iy <0,
9
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where 0,_; is the surface area of S" 1.

In this limiting formula (21), we let A — 0% if 4y > 0, and let A — 400 if v < 0, contrarily
to what happened in Theorem 3 and Theorem 4. Also, in the limiting formulae in Theorem 3
and Theorem 4, we had a constant k(p,n)/|v|, and here we had a constant 20,,_1/|7y|; these
should be compared, respectively, to the constant k(p,n)/p in the BBM formula (6), and
the constant 20,_;/p in the Maz’ya—Shaposhnikova formula (8). The case v = n of (21)
was proved in [16]. Note that we do not obtain a characterization of LP(R"), contrarily to
Theorem 5: the LP*°(v,) norms of Q»u are finite (in fact zero) when u is a non-zero constant.
We also note that the differences Ahzj(x) in Theorem 6 can be replaced by other expressions,
such that the sums Spu(x) = u(x + h) + u(x), as we will see in the proof below.

Proof of Theorem 6. We consider two cases.

Case 1: Suppose v > 0. In this case, to prove the upper bound in (20), note that

{(x,h):%>)\}

{ e n): upr < DN Gy e < 2UE LT

so for any A > 0,

[Apu(z)] 2lu(z)| 1
SR < . v/p — AN < P

To prove (21), and hence the lower bound in (20), first assume u has compact support in
Bgr(0). Then

{(x,h): %# > A} :{(:c,h): |z| < R,|h| > 2R, |h|"P < @}

IU($+h)\}

U{@.m): o+ bl < R bl > 2R, 077 < 225

U{(I, h): |h| < 2R, |h|P < M}

where all three sets are disjoint. We have
h
1/7{(:):, h): |z +h| < R, |h| > 2R, |h|"? < M}
= v {(e.h): Ja] < B.Jh) > 2, |pp e < Y
On-1 |u(z)[?
= —(2R)") d

10




SO

lim )\pyﬁ,{(:c, h): |z 4 h| < R, |h| > 2R, |n|"? < M}

A—0t A
=1 p : < v/p M
lim A VW{(:C, h): lal < R, |h| > 2R, |h] < == }

On—1 On—1

= lim / u(z)lP — MNW(2R)") do= u(z)|P dz.
Jim 22 [ (lu@P - v ERY) dr=22 | juGo)

We also have

A
fimsup A, { (. 1) ] < 28,7 < 120

A—=0t A
<lim sup )\pl/y{(x, h): |x| <R, |h| < QR} =0.
A—07F

Together this establishes (21) when u has compact support.

If now u is a general LP function, we approximate by a sequence of compactly supported
functions u;, so that ||u; — u||Lrrn) — 0 as j — 4o00. Then for any € >0, j > 1,

{(x, h): % > )x} C {(x, h): % > )\(1—5)} U {(x, h): |Ah(72‘;/g)(x)| > )\5}

so using the previous result for u;,

li§n_>solip )\puw{(x, h): % > )\} < a —16)P . |uj(x) P dz + ggp /Rn luj(x) —u(z)|P de.
Similarly,
{lams Sl > o) o {5 a b {(om: B o)

SO

. Apu(z 1 C
hmlnf)\pl/,y{(x, h): H}};‘# > )\} > m/w |u;(z)|P do — 8_?’/Rn lu;(z) — u(z)|P de.

A—0t

We let j — +o0o before letting ¢ — 07 in these inequalities to obtain (21).

Case 2: Suppose 7 < 0. To prove the upper bound in (20), note that

{(m,h): %# > )\}

L T
C{(x’h): B> 2|U($)\}U{(x’h>' i > 2|U($+h)|}

so for any \ > 0,

|Apu(z)] A 1
VV{(I, O T /\} < 21/7{(93, h): [h|VP > W} Sy [ @l
11



To prove (21), and hence the lower bound in (20), first assume u € L*, say |u| < M, with
compact support in Bg(0). Then for A > 2M (2R)"/?| we have

[Apu()]

T >\ = 2M|nP > 2M@2R)MP —  |h| > 2R,

in which case at most one of z, 2 + h can be in Bg(0). So

C|Apu(x)| B _ p A
{(g;, W /\} —{(1’, h): |z| < R, || > 2R, |h|"V? > |u(x)‘}

A
. < 2 ‘FY‘/p —
U{(as,h) |z +h| < R, |h| > 2R, |h] >\u(:c+h)|}

where the two sets in the union are disjoint. Hence

A
@) M>A}:2/ / B~ dh e
A7 |z|<R J|h|>max{2R, (o) "1}

20’n_1/ _ —py u(@)P
= min{ (2R)™", ——— ¢ dx
IV Jiwi<r {( ) AP }

which says
|Apu(z)| 2001 / : _
Ny s(z,h): ———= > A\ = min { N (2R) ™ Ju(z)|P } dz
2Un—1

u(z)|P dx
& /@' (2)

as A — 400 by monotone convergence.

If now u is a general LP function, we approximate by a sequence of bounded, compactly
supported functions uj, so that ||u; — ul|zr@n) — 0 as j — +o00. Then for any ¢ > 0, j > 1,

{(.1) ‘Aﬂ# > 2} {@.h): ‘Aﬁ# > -2 U ) ‘Ah(if;lﬁ/j)(x)' > e}

so using the previous result for u;,

) Apu(z 1 C
lim sup )\pl/,y{(x, h): % > )x} < A=y /n |u;(z)|P dx + 8_1”/Rn |uj(z) — u(z)|P dz.

A—00
Similarly,
{(I, h): % > >\} D {(:C, h): % > )\(1+5)}\{(:c, h): |Ah(72|:/:)(x)| > )\5}

. |Apu(z)] 1 C
p S > . p ., . — p
llgél.}f)\ I/fy{(l’, h): TRE > )\} Z T3 fon luj(x)|P dz = /.. luj(x) —u(z)|P de.

We let j — +o0o before letting e — 07 in these inequalities to obtain (21). O
12



5. APPLICATIONS TO GAGLIARDO-NIRENBERG INTERPOLATION

The existence of a one-parameter family of characterizations in the previous section is
not just natural, but useful in applications. For instance, Cohen, Dahmen, Daubechies and
DeVore (9] proved that for any 0 < ¢ < 1 and any 1 < ¢ < oo, if

1
(22) t<,

and if (%, s)=(1- 9)(%, t) 4 6(1,1) for some 0 < 6 < 1, then for any u € BV NIW%, one has
the interpolation inequality

(23) lullyirer S Nl leligy

BV

Tires

slope > 1

Wha

1/p

Their proof uses bounds for coefficients of wavelet expansions of a general function in
BV (R"). Indeed, let ¢° := ¢ and ¢° := ¢ be a pair of one-dimensional compactly supported
scaling functions which are in duality:

/ et)p(t —k)dt =46(k), keZ,

where § is the Kronecker delta, and let ¢! := 1), 1! := 1) be their corresponding univariate
wavelets. Define, for any e € £ = {0,1}"\ {(0,0,...,0)},

0f(x) = (1) . (), x = (21, .., 2);
also define, for any e € F and any dyadic cube I = 277 (k + [0, 1]"),
V8 (x) = 2" (P — k).

For any v € R, one can also define a measure 7, on the product of £ with the set of all
dyadic cubes {I}, so that

o ({(e, 1)}) = 27707+
if e € E and I has side length £(I) = 277. A result in [9] says that if v € BV(R") and
wj= [ u@iile)d,

13



then for any v € R\ [—1,0], the sequence (Z(;)L—Eﬂ) indexed by e and I is in weak-¢! with
respect to 7., with

(24) [(f(;ﬁﬂ)}zlm(m) S lelley 3 H (ﬁ)

Using (24), a proof of (23) was given in [9]; indeed a stronger result was proved there, namely

0 (5y)

(25) (W BV]y, = W*P.

The inequality (24) bears a superficial resemblance to our difference quotient characteri-
zation (15) for the BV norm. Indeed even the proofs are somewhat similar: both relies on
covering lemmas in the range v € R\ [-n, 0], and the range v € [—n, —1) for (23) was dealt
with in [9] using the coarea formula, while the same range for (15) was dealt with in [6] using
the method of rotation. While we did not manage to use (15) to recover a proof of (25),
the characterization (15) does allow us to give a simple alternative proof of (23), which we
describe as follows.

Proof of (23). Let vy be —1 times the slope connecting the points (1, 1) and (%, t), i.e.

1—-t

q

The assumption (22) shows that 7 < —1. Let v € BV W9, Our characterization for the
BV norm (see Theorem 4) shows that

(27) [ullgy 2= [Qusotl i yy):
On the other hand,

(28) lull e = 11Qes 20l ooy

|Apul |Apul? 1
</£%wwwwd(m /ﬁ%wwww )"

(29) [ellyirsr = [1Qss 20t Loy

because from (12)

Similarly

But since % =(1- 9)% + 6, we have, for any measurable function F', that

(30) I Lrng) S ||F!|Lq o) 1T )



indeed, for any A > 0,

[ 1717, - / FPdi+ [ |FPar,
F|>)\ |F|<X

/ Py {|F| > s}ds

)\5” !

[F]Ll,oo(

Vg )

so choosing A for which
ot
i Pl = 2
we obtain (30). We apply (30) to the function F':= Q,_ wu = Q, nu = Q11,,u; note that
our choice of vy ensures s + %0 =t+ %0 = 1+ (they arep all equal ’go the y-intercept of the
line joining (1, 1) and (%, t)). Using (27), (28) and (29), we obtain (23), as desired.

[F]

Ll'oo(’/wo)

We note that the v9 we used above when invoking Theorem 4 is dictated by the points
(%, t) and (1,1), and this proof does not work if we had chosen other values of 7. O

The previous proof made crucial use of the assumption t < % in (22), because (27) only
holds when vy ¢ R\ [-1,0]. In fact as was shown in [4], the inequality (23) does not hold
when t > %. Nevertheless, a simple adaptation of the above proof of (23) yields part (i) of
the following theorem:

S

Wt
0 < slope <1, 1ie. v €[-1,0)

1/p

Theorem 7. Letn>1,0<t <1, 1< q < oco. Supposet > % and (%,s) = (1 —9)(%,15) +
0(1,1) for some 0 <0 < 1. Let v € R\ [-1,0]. Then the following hold.

(i) Let r = 1%5. For any u € BV MW, one has the interpolation inequality

(31) [Qs-i-“’u]LPT(V.Y S HuHWtqHuH

(i) The inequality (31) fails for some u € C° if r < %5
15



The case v = n was already proved in [8]. The proof of the general case is similar, once
Theorem 4 is established.

Proof of Theorem 7. (i) Note that since (%, s)=(1—- 9)(%, t)+6(1,1), we have

(- i
s+5_(1 9)(t+q)+9(1+7)

for any v € R. In particular,
Qs+%“ = (Qt+%“)1_€(gl+wu)9-
It remains to apply Holder’s inequality for Lorentz spaces: since (%, H=01-0)2,1)+6(1,0)

q’q

for r = %5, we have

[F' G o) S ||F||};E9u,y)[G]i1v°°(uw)
for any non-negative measurable functions F' and G. Applying this to F' = Q;,2u and
G = Qy44u, and then invoking (27) and (28) with v € R\ [—1,0] in place of ~y, yieqlds the
desired inequality (31).

(i) The optimality of the above choice of r follows the same proof as in [8, Lemma 5.1], which
in turn was based on a construction in [4]; a related example also appeared in [6, Proof of
Proposition 6.1]. We reproduce some of the constructions for the convenience of the readers.

We first consider the case when the dimension n = 1. Let 0 <t < 1l and 1 < q < o0.

Suppose first ¢t > %. As in (26) we define vy = —ll_;i; this time vy € (—1,0). If (%,S) =

(1— 9)(%,1&) +0(1,1) for some 0 < § < 1, then 1+~ = s + 2> whose common value we

denote by a. Let ¢ := 271/% € (0,1/2). Let gy be an increasing, C* function on R such that
go(x) =0 for z <0, go(z) =1 for x > 1. For j > 1, let g; be defined on R by

0i(2) = 5 (01(e72) + a1 — 7 (1~ 2))
The failure of (31) when r < Z; can be seen from the inequalities
(32) 95llvir1amy = 1,
(33) lgsllvireaqmy < 317,
and
(34) Qo+ 9]Lmr@xran) 2 51"

for all v # 7o. To see that these inequalities hold, note that g’ > 0, from which (32) follows.
Also, if

Li=[-(3-¢)3, L2=I[53—¢l,
then if |z — y| > 3 — ¢ and g;(z) # g;(y) one must have (z,y) € (Ly x L1) U (Ly X Ly) (one

can first show if g;(z) # g;(y) and |z — y| < 5 — ¢, then both 2 and y belong to Ly U Ly; one
16



can then show that if (z,y) € (L1 X Lo) U (Ly x Ly) with |z —y| < 3 — ¢ then g;(z) = g;(y)).
Hence

1
9l Geamy < NGill5acr,y T 19515 eagr,y) + // dz dy

|x—y|2%—a |LE - y‘l—i-tq
+O(1)

< 279 gl )

(we used tq > 1 to estimate the last integral) whereas
21—q€1—tq _ 8—(1+”{0)(1—q)+1—tq _ g—vo(%—l)q-i-(l—t)q — 1
the estimate (33) now follows by induction on j. It remains to establish (34). We fix v # 7,
and define, for j > 0 and A > 0,
Ajx = vy {(z,h) €[0,1] x [0,1]: z + h € [0, 1], |QS+%gj(:L’, h)| > A}
Then for 7 > 1 and A > 0, we have
(35> Aj,A > 57_7014]‘_17)\5@7“/0)/11

because if I; := [0, ¢] and [y := [1 — ¢, 1], then
2
A=Y v {(zh) € x (0,6 +he L, Qs 2g5(a, h)| > A}

i=1
= 2", (2, 1) € [0,1] x [0,1]: 2" + 1’ € [0,1],| Qs 2951 (2, H)| > 2:°T0 A}
_ 14+~
=2 j—1.25 DA
whereas
253"'% = 2¢ +Z§) 5W7p70 = 250‘57;}0 = ngm

27 — 9070 — 9ca7=0 — Y0,

Set B = B(7,70) := e~ so that (35) reads A;y > B™'A; | yp-1/p. Thenfor £ =1,...
and A < %Bé/p, we may apply (35) £ times and invoke A;_;1/2 2 1 to obtain

(36) v A, h) € 0,1 % [0,1): 2+ h € [0,1], Q. 25w, )| > A} 2 B
If v > 7, then B > 1, and hence

[Qs—l—'yg] Lr7(vy) & (Z/

If on the other hand v < vy, then B < 1, and hence

1Bl/p

1/r
X‘—lB—WdA> ~ U,
1pe-1)/p

B/p 1/r
i " )\r—lB—ﬁr/pd)\ ~ '1/7’.
[Q +wg] Ler(vy) & <Z/ (e+1)/p J
This proves (34) in either case.
Next, suppose still n = 1, and assume t = % so that s + % = 1%. Then we define

instead g;(z) := go(272)go(27(2 — x)) where g is as above. We then have g5llvirnag = 2,
17



and ||gj||Wt,q(R) < jY4. The failure of (31) when r < 15 follows once we can show that

[Qst295]Lrr®RxR ) 2 47 for all sufficiently large j (depending only on ), which we achieve
P

below by considering the cases v > 0 and v < —1 separately. If v > 0, then when 1 < A\ <

27— 1y 1Y
(57) v » we have

v {(z,h): 2 <0 I+h>2_j,Qs+lgj(I h) > A}
/(14+7)
J

AT P Py
>/ / Rt dz dh = A A
”y—i—l v2

>
- 2(7 - 1)’
the last inequality following from our choice of A. It follows that for j sufficiently large

[Qs+%gj]L”""(l’w)
14y

271y 1ty
) P ' 1/r
v, h) e <0, +h>277, Q. 2gi(x,h) >
"y {(z,h h>27,Qag;(z,h) > A}/PdA

></(1+v
1

2i—1y 1ty

( ) P 1/r
> ( / R d/\) ~ U
1

On the other hand, if 7 < —1, then when ( T
r<0,x+h>27 Qs+vg](x h) > A}

LA

9=

IN

) <A

vy {(z,h):
AP —1 NP/ _q
/ / h~tdzdh = — .
5 Joion [y + 1 |v|27
AP/ (1+7) AP
> .
_2|7+1| 27 Ay +

(In the penultimate inequality, we used A — 1 > %)\_p which holds since A < 27 »; in the
727)1% < \.) It follows that for j sufficiently large,

last inequality, we used (21 -

[Qs+%gj]L”’r(Vw)
27% y 1/r
r—1 . —J /P
> ( o2, 10 vo{(z,h): 2 <0,2+h>2 J,QS+%gj(x,h)>>\} d)\)
=

_1

27 P 1/r y
> ~ /T
N</(2J 2y 142 AT dA) ~ /"

T+
This completes our proof of the optimality of r in the case where the dimension n =1

Finally, to pass to higher dimensions n > 1, we define

uj(z) = gj(x)m(z1) ... m(zn) € CF
18



where 7, € C°((—1,2)) takes values in [0, 1] and is such that 7, = 1 on (—1/2,3/2). Then
one has

lwillvirramny S g5l + 195llvinaw S 1.
and if we write n'(xq,...,2,) = m(x2)...m(x,), then

1/q )
sy S (N ey 1 W sy + N W 7 Wy ) 5 577

Furthermore, the argument in |6, Section 6.3|, together with our estimates above for g;,
shows that for j sufficiently large (depending only on ),

-1
[Qs-i‘%uj]LP’T'(R"XR"vV“/) Z J /7".

Hence if (31) were to hold for all u € C¢°, then r > %5. O

6. RELATED WORKS AND FURTHER DIRECTIONS

The left hand side of the inequality (31) involves the quasi-norm [Q8+%u] Lpr(v,), Which
arises in a number of different contexts in [14]. In fact, let {Lx}rez be an appropriate family
of Littlewood-Paley projections, and f, be the measure on R" x Z given by

/ F(z, k) dp = ZQ’”/ (z, k) dz
R™ X Z

kEZ
forall F € C.(R" xZ). For0 < s < 1,1 <p<oo,1<r<ooand~y € R, one defines
B;(7,7) to be the space of all tempered distributions u on R” modulo polynomials, for which
256+ Ly () < 00; the set of all measurable functions v on R™ for which [QSJF%U] Lo ()

is finite can then be identified with the space B;(fy, r), which also arises in e.g. Krepkogorskii
[17] as interpolation spaces between the fractional Sobolev spaces. Various embedding and
non-embedding results for B;(%r) were also established in [14]; an application towards
nonlinear approximation was also given there.

In [12], Dominguez and Milman extended some of the above results for W'» in an abstract
framework. They proved for instance that if (X, ) is a o-finite measure space, 1 < p < 0o
and {7} }~o is a family of sublinear operators on LP(X), then for all f € LP(X) satisfying

| T2 f — fllzex) Sy tY? for all t > 0,

one has

lim (A (v x LY(ENY?) = | fllox),s

A—00
where

= {(:c,t) € X x (0,00): mt{/(f” > )\}.

They found an impressive list of applications, ranging from formulae for ||Au||rrgr) and
|0y Oy || Lo Rz) to relations between || f|| L»(rn) With level set estimates for spherical averages

of f for p > "+, to ergodic theory, etc. In [20], Poliakovsky established some of our earlier
19



results on Lipschitz domains on R"™. The works of Dai, Lin, Yang, Yuan and Zhang [10,11]
contain other generalizations of some of the above results to situations where the gradient of
a function on R™ is in a weighted L? space (which can then be extrapolated), and the case
where R" is replaced by some suitable metric measure spaces.

In [13], Dominguez and Milman revisited the BBM and the Maz’ya-Shaposhnikova formu-
lae from the points of view of interpolation and extrapolation, putting in context certain
results from [2].

A number of interesting questions remain regarding this circle of ideas. For instance, for
v <0, if u € L{ . and the liminf on the right hand side of (19) is finite, must it be true that
u € BV? If u € BV, must ||u||gy be bounded by a multiple (depending only on n and =)
of the liminf on the right hand side of (19)7 Some similar questions remain open for v > 0
and for W' in place of BV. For v € R\ {0}, can one understand the failure of (16) for
u e BV using the concept of I'-convergence? A more detailed description of these questions,
including discussions of partial results, can be found in [6, Section 7]. Also it is conceivable
that one may be able to recover the Sobolev inequality, and its Lorentz refinement, namely

S|

1
lullzrrr S IVellee, T <p<n 2=

D=

out of Theorem 4.
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