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SOBOLEV SPACES REVISITED

HAÏM BREZIS, ANDREAS SEEGER, JEAN VAN SCHAFTINGEN, AND PO-LAM YUNG

Dedicated with emotion to the memory of Antonio Ambrosetti

Abstract. We describe a recent, one-parameter family of characterizations of Sobolev
and BV functions on Rn, using sizes of superlevel sets of suitable difference quotients. This
provides an alternative point of view to the BBM formula by Bourgain, Brezis and Mironescu,
and complements in the case of BV some results of Cohen, Dahmen, Daubechies and DeVore
about the sizes of wavelet coefficients of such functions. An application towards Gagliardo-
Nirenberg interpolation inequalities is then given. We also establish a related one-parameter
family of formulae for the Lp norm of functions in Lp(Rn).

1. Introduction

In this note we revisit Sobolev spaces on Rn, n ≥ 1, from the point of view of difference

quotients. For 1 ≤ p < ∞, the homogeneous Sobolev space Ẇ 1,p on Rn consists of all

locally integrable functions u modulo constants, whose distributional gradient ∇u ∈ Lp. It

is normed by

‖∇u‖Lp =
(

∫

Rn

|∇u|p dx
)1/p

.

We will also work with the homogeneous ˙BV space (BV stands for bounded variation). It

consists of all locally integrable functions u modulo constants, whose distributional gradient

∇u is a finite Radon measure (written ∇u ∈ M). In other words, it is the space of all

u ∈ L1
loc

such that

(1) sup

{

∣

∣

∣

∫

Rn

u(x) div φ(x) dx
∣

∣

∣
: φ ∈ C1

c (R
n;Rn), ‖φ‖L∞(Rn;Rn) ≤ 1

}

is finite (which in particular contains Ẇ 1,1). It is normed by

‖u‖ḂV := ‖∇u‖M

which is just the supremum in (1).

In [7], a new formula was established for ‖∇u‖Lp(Rn) for u ∈ C∞
c that involves only

difference quotients and no gradients. In [6], this formula was extended to all u ∈ Ẇ 1,p, or

all u ∈ ˙BV, and in fact we found a natural one-parameter family of such formulae. A related

limiting formula has been obtained earlier by Nguyen [19] and by Brezis and Nguyen [5].
1
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The one-parameter family of formulae we found can be used to recover certain Gagliardo-

Nirenberg interpolation inequalities due to Cohen, Dahmen, Daubechies and DeVore [9]. It

also allows us to prove some substitutes when such interpolation inequalities fail (cf. [8]).

Somewhat underpinning all these is a certain interplay between Lp and weak-Lp (also

known as Lp,∞ in the scale of Lorentz spaces). In Section 2 we review the basics about

Lorentz spaces and some related facts about real interpolation; we also explain a simple

instance of how an Lp norm on a lower dimensional space can be realized as a weak-Lp norm

in a higher dimensional space, a phenomenon that drives our main theorems. In Section 3

we further motivate our main results by looking at difference quotient characterizations

of fractional Sobolev spaces (also known as diagonal Besov spaces) and the related BBM

formula. In Section 4 we state and comment on the proofs of our main results, which is a

one-parameter family formulae of Sobolev / ḂV norms and Lp norms. In Section 5 we give

some applications towards Gagliardo-Nirenberg interpolation, emphasizing the importance

of the existence of a one-parameter family of formulae, and contrasting our formulae for ˙BV

with the one-parameter family of embeddings by Cohen, Dahmen, Daubechies and DeVore.

In Section 6 we discuss some other related works and some possible further directions.

The current paper is based on the lecture delivered by the last named author at the award

ceremony of the inaugural Antonio Ambrosetti medal. Theorem 6 and some of the material

in Section 5 are extensions of known results, which may not have appeared explicitly in the

literature before.
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2. Lorentz spaces and real interpolation

Let (X, ν) be a measure space. For 1 ≤ p < ∞, if f ∈ Lp(ν) for some measure ν, then for

every λ > 0,

‖f‖pLp(ν) =

∫

X

|f |p dν ≥ λp ν{x : |f(x)| > λ}.
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In particular, if f ∈ Lp(ν), then

(2) sup
λ>0

(

λ ν{x : |f(x)| > λ}1/p
)

< ∞;

but the converse is not necessarily true. If f is measurable on X and the supremum in (2)

is finite, then f is said to be in weak-Lp(ν). Its weak-Lp (quasi)-norm is defined as the

supremum in (2), and denoted by [f ]Lp,∞(ν). A classic example is given by f(x) = |x|−n/p; it

is in weak-Lp(dx) on Rn, because

Ln{x ∈ Rn : |x|−n/p > λ} = Ln{x ∈ Rn : |x| ≤ λ−p/n} ≃ λ−p.

(Henceforth we write Ln for Lebesgue measure on Rn.) This f is not in Lp(dx), because
∫

Rn

|f |p dx =

∫

Rn

|x|−n dx = +∞,

and this serves as a motivation of our main result in what follows.

Later on we will also need the Lorentz spaces Lp,r(ν), which for 1 ≤ p, r < ∞ are defined

as the space of all measurable f on X with

[f ]Lp,r(ν) :=
(

r

∫ ∞

0

λrν{x : |f(x)| > λ}r/p
dλ

λ

)1/r

< ∞.

They arise as real interpolation spaces: if 1 ≤ p0 < p1 ≤ ∞ and 1
p
= 1−θ

p0
+ θ

p1
for some

0 < θ < 1, then for 1 ≤ r ≤ ∞,

Lp,r(ν) = [Lp0(ν), Lp1(ν)]θ,r

where for any Banach spaces B0 and B1, and f ∈ B0+B1, the interpolation norm is defined

as

‖f‖[B0,B1]θ,r :=
(

∫ ∞

0

t−θ inf
f=f0+f1

(‖f0‖B0 + t‖f1‖B1)
rdt

t

)1/r

for 1 ≤ r < ∞, and

‖f‖[B0,B1]θ,∞ := sup
0<t<∞

t−θ inf
f=f0+f1

(‖f0‖B0 + t‖f1‖B1)

when r = ∞. It is also well-known that

[f ]Lp,r(ν) = ‖f‖Lp(ν) if r = p.

In the rest of this article, we will be exploiting a relationship between the Lp norm on a

space and the weak-Lp quasi-norm on a higher dimensional space. The simplest instance of

this might be the identity

(3) ‖f‖Lp(X, ν) =

[

f(x)

y1/p

]

Lp,∞(X×(0,∞), ν dy)

, 1 ≤ p < ∞;

we thank Terence Tao for communicating this comment.
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3. The Bourgain-Brezis-Mironescu formula

Let’s introduce now a shorthand for the first order difference operator:

(4) ∆hu(x) := u(x+ h)− u(x) for x, h ∈ Rn.

For h small, and u ∈ C∞, we have then |∆hu(x)| ≃ |∇u(x) · h|. Hence roughly speaking,

we might believe that |∇u(x)| ≃ |∆hu(x)|
|h|

, at least if one averages over all possible directions

for h. As a result, to express ‖∇u‖Lp(Rn) using a difference quotient instead of a gradient, a

naive guess might be to try
∫∫

R2n

|∆hu(x)|
p

|h|p
dh dx in place of

∫

Rn

|∇u(x)|p dx.

This is not working, because if ut(x) := u(tx), then
∫

Rn

|∇ut(x)|
p dx scales like tp−n

but
∫∫

Rn×Rn

|∆hut(x)|
p

|h|p
dh dx scales like tp.

A proper scaling will be achieved if we consider
∫∫

R2n

|∆hu(x)|
p

|h|p
dh dx

|h|n

instead; if given b ∈ R we introduce a difference quotient1

(5) Qbu(x, h) :=
|∆hu(x)|

|h|b
,

then the above suggests that we consider the integral
∫∫

R2n Q1+n
p
u(x, h)p dh dx.

This idea works if we are dealing with fractional Sobolev spaces. Indeed, for 0 < s < 1

and 1 ≤ p < ∞, the fractional Sobolev space Ẇ s,p is the space of all u ∈ L1
loc
(Rn) such that

‖u‖p
Ẇ s,p

:=

∫∫

R2n

Qs+n
p
u(x, h)p dh dx =

∫∫

R2n

|u(x+ h)− u(x)|p

|h|sp+n
dh dx < ∞.

When 1 < p < ∞, it is known to be equal to the diagonal Besov space Ḃs
p,p with com-

parable norms. So this suggests again that maybe ‖∇u‖Lp(Rn) should be compared to

‖Q1+n
p
u‖Lp(R2n,dx dh)? Unfortunately this does not work; as observed in [1] (see also [3]),

even for u ∈ C∞
c (Rn), unless u ≡ 0, the Lp norm on R2n is always infinite! The issue here

is that |h|−n/p /∈ Lp(dh) on Rn. On the other hand, we did see |h|−n/p ∈ Lp,∞(dh), and this

will partly motivate our main result in the next section.

1Note that our notation here is different from that in [6]; the Qbu(x, y) in [6] would be written as
Q1+bu(x, h) with h = y − x in the current paper. As a result, the set Eλ,b[u] in [6] should be compared to
the set Eλ,1+b[u] in (10) below.
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For now, let’s recall the “BBM-formula”, by Bourgain, Brezis and Mironescu in [1], which

explores what happens to ‖u‖Ẇ s,p as s → 1−. On Rn, one instance of this formula says for

1 ≤ p < ∞ and (say) u ∈ C1
c , that we have2

(6) lim
s→1−

(1− s)‖u‖p
Ẇ s,p = lim

s→1−
(1− s)‖Qs+n

p
u‖pLp(R2n, dxdh) =

k(p, n)

p
‖∇u‖pLp

where k(p, n) is given explicitly by

(7) k(p, n) :=

∫

Sn−1

|e · ω|p dω, e ∈ Sn−1.

In particular, ‖Qs+n
p
u‖Lp(R2n,dx dh) blows up like (1− s)−1/p as s → 1− unless u is a constant,

another indication that ‖Q1+n
p
u‖Lp(R2n,dx dh) is not good for computing ‖∇u‖Lp. Our first

main result in the next section offers an alternative point of view, that does not involve

varying s (as in (6)), but involves a weak-Lp norm instead of the Lp norm on R2n; remember

|h|−n/p is not in Lp(dh), but it is in weak-Lp(dh). Before we close this section though, we

mention a related result of Maz’ya and Shaposhnikova [18]. They explored what happens to

‖u‖Ẇ s,p as s → 0+ instead of s → 1−, and showed that for (say) u ∈ C1
c and 1 ≤ p < ∞,

(8) lim
s→0+

s‖u‖p
Ẇ s,p = lim

s→0+
s‖Qs+n

p
u‖pLp(R2n, dxdh) =

2σn−1

p
‖u‖pLp

where σn−1 is the surface area of Sn−1. This result will be compared to Theorem 6 below.

4. Difference quotient characterizations

Our first result is a characterization of ‖∇u‖Lp for u ∈ C∞
c (Rn). We use the notations of

difference and difference quotient introduced in (4) and (5).

Theorem 1 (see [7]). Let n ≥ 1, 1 ≤ p < ∞ and u ∈ C∞
c (Rn). Then

(9) ‖∇u‖Lp ≃ [Q1+n
p
u]Lp,∞(R2n,dx dh) =

[ ∆hu

|h|1+
n
p

]

Lp,∞(R2n,dx dh)
.

In other words, for λ > 0 and b ∈ R, denote by

(10) Eλ,b[u] :=
{

(x, h) ∈ R2n : Qbu(x, h) > λ
}

the superlevel set of Qbu at height λ. Then

‖∇u‖pLp ≃ sup
λ>0

(

λpL2n
(

Eλ,1+n
p
[u]

)

)

.

In fact, we also have

(11)
k(p, n)

n
‖∇u‖pLp = lim

λ→+∞

(

λpL2n
(

Eλ,1+n
p
[u]

)

)

.

Here k(p, n) is given by (7).

2The original BBM formula was stated and proved for bounded domains in [1], but the result extends
easily to the whole Rn. See e.g. [2, Appendix A].
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A few remarks are in order. First, the power 1 + n
p

is dictated by dilation invariance: if

[Qbu]Lp,∞(R2n,dx dh) scales like ‖∇u‖Lp upon replacing u(x) by u(tx) for t > 0, then b = 1+ n
p
.

Next, the limit equality (11) can be proved using Taylor expansion, in a way somewhat

reminiscent to the proof of the BBM formula. In fact, Q1+n
p
u is approximately |h|−n/p|∇u(x)·

h
|h|
| when |h| is small, and heuristically Eλ,1+n

p
[u] can be approximated by the set

Ẽλ,1+n
p
[u] :=

{

(x, h) ∈ R2n : |h|−n/p
∣

∣

∣
∇u(x) ·

h

|h|

∣

∣

∣
> λ

}

when λ is big. But for all λ > 0,

λpL2n
(

Ẽλ,1+n
p
[u]

)

=
k(p, n)

n
‖∇u‖pLp.

This heuristic can be turned into an actual proof for (11).

Moreover, in light of the limit equality (11), to prove (9), we only need to prove an upper

bound for a weak-Lp norm, namely

[Q1+n
p
u]Lp,∞(R2n,dx dh) . ‖∇u‖Lp,

which can be done using a Vitali covering lemma (plus the method of rotations in dimensions

n > 1). It is somewhat reminiscient of the proof that the Hardy-Littlewood maximal function

is bounded from L1 to weak-L1; see also work of Dai, Lin, Yang, Yuan and Zhang [11] who

extended our proof to some metric-measure spaces of homogeneous type.

Finally, the weak-Lp quasi-norm in the theorem cannot be replaced by any (bigger) Lorentz

Lp,r quasi-norm where r < ∞.

Theorem 2 (see [8]). (i) If u is measurable on Rn and

[Q1+n
p
u]Lp,r(R2n,dx dh) < ∞

for some 1 ≤ p, r < ∞, then u is a.e. a constant.

(ii) Indeed, if u is measurable on Rn and

lim
λ→+∞

λpL2n
{

(x, h) ∈ R2n : Q1+n
p
u(x, h) > λ

}

= 0

for some 1 ≤ p < ∞, then u is a.e. a constant.

The difficulty here is that we only know u is measurable. If we already know u ∈ C∞
c ,

the conclusion of Theorem 2 follows from Theorem 1; if we already know u ∈ Ẇ 1,p, then

the conclusion follows from our next two theorems. The case p = 1 relies on a result of

Poliakovsky [20].

Theorem 1 provided a way of computing the Ẇ 1,p norm of a function u ∈ C∞
c (Rn) up to a

multiplicative constant. It turns out there is a natural one-parameter family of such formulae

for ‖∇u‖Lp(Rn), for general u ∈ Ẇ 1,p or u ∈ ḂV (not just for u ∈ C∞
c ); in applications often

6



the question at hand determines which formula one uses within this family. To state such

formulae, let γ ∈ R. Define the measure

(12) dνγ := |h|γ−n dx dh

on R2n. (The case γ = n corresponds to the Lebesgue measure dx dh = L2n we used earlier.)

Then we have two theorems, the first dealing with the case p > 1, the second dealing with

the case p = 1; again we use the constant k(p, n) defined in (7).

Theorem 3 (see [6]). Let n ≥ 1, 1 < p < ∞ and u ∈ Ẇ 1,p(Rn). Then for γ 6= 0,

(13) ‖∇u‖Lp ≃ [Q1+ γ
p
u]Lp,∞(R2n, νγ) =

[ ∆hu

|h|1+
γ
p

]

Lp,∞(R2n, νγ)
.

Furthermore, if Eλ,b[u] is the superlevel set of Qbu at height λ given in (10), then

(14)
k(p, n)

|γ|
‖∇u‖pLp =







limλ→+∞

(

λpνγ
(

Eλ,1+ γ
p
[u]

)

)

if γ > 0,

limλ→0+

(

λpνγ
(

Eλ,1+ γ
p
[u]

)

)

if γ < 0.

The case γ = −p of the above limit equality (14) is due to Nguyen [19].

Next, for the case p = 1 we have a similar theorem for ḂV, but with a number of additional

twists!

Theorem 4 (see [6]). Suppose n ≥ 1. Then for γ ∈ R \ [−1, 0] and u ∈ ḂV(Rn),

(15) ‖u‖ḂV = ‖∇u‖M ≃ [Q1+γu]L1,∞(R2n, νγ) =
[ ∆hu

|h|1+γ

]

L1,∞(R2n,νγ)
.

Furthermore, if Eλ,b[u] is the superlevel set of Qbu at height λ given in (10), then the formula

(16)
k(1, n)

|γ|
‖∇u‖M =







limλ→+∞

(

λνγ
(

Eλ,1+γ[u]
)

)

if γ > 0

limλ→0+

(

λνγ
(

Eλ,1+γ[u]
)

)

if γ < −1

holds for u ∈ Ẇ 1,1 but can fail for u ∈ ḂV (e.g. if u = 1Ω where Ω ⊂ Rn is any bounded

domain with smooth boundary, then the limits above exist but is equal instead to k(1,n)
|γ+1|

‖∇u‖M).

For γ ∈ [−1, 0),

(17) sup
u∈C∞

c (Rn), ‖∇u‖L1(Rn)=1

[Q1+γu]L1,∞(R2n, νγ) = +∞;

furthermore, the formula

(18)
k(1, n)

|γ|
‖∇u‖L1 = lim

λ→0+

(

λνγ (Eλ,1+γ[u])
)

remains true for all u ∈ C1
c (R

n), but fails for u ∈ Ẇ 1,1(Rn), and the failure is generic in the

sense of Baire category, despite the fact that for all u ∈ Ẇ 1,1(Rn) we do have

(19)
k(1, n)

|γ|
‖∇u‖L1 ≤ lim inf

λ→0+

(

λνγ (Eλ,1+γ[u])
)

.

7



Note that the range of γ allowed in (15) in Theorem 4 is smaller than that in Theorem 3;

in fact, (17) shows that (15) is false when γ ∈ [−1, 0), even if one only restricts to functions

in C∞
c . The case γ = −1 of the limiting formula (18) has already been established by Brezis

and Nguyen [5]: they have already shown that (18) remains true for all u ∈ C1
c (R

n), but fails

for general u ∈ Ẇ 1,1(Rn). On the other hand, the counterexamples in the case γ ∈ (−1, 0)

relies on the construction of a Cantor set of dimension 1 + γ; in fact in this range of γ, one

may choose approximations of the associated Cantor-Lebesgue function (similar to the one

in the proof of Theorem 7(ii) below) to establish (17), and use sums of such functions to

construct counterexamples to (18) in Ẇ 1,1.

We remark again once νγ is fixed (by fixing γ), the powers 1 + γ
p

and 1 + γ in the de-

nominators of the difference quotients in Theorem 3 and Theorem 4 are dictated by dilation

invariance. Also, the two theorems do not address what happens if γ = 0; it turns out

things fail strikingly in the case γ = 0. It can be shown [6, Theorem 1.5] that if both

u,∇u ∈ L1
loc
(Rn) then

inf{λ > 0: ν0(Eλ,1[u]) < ∞} = ‖∇u‖L∞;

in particular, if in addition [Q1u]Lp,∞(R2n,ν0) < ∞ for some 1 ≤ p < ∞, then u is a.e. a

constant.

It may be fitting to comment a bit on the proofs of the positive results in Theorem 3 and

Theorem 4. Let n ≥ 1 and 1 ≤ p < ∞. The issue here is that C1
c (R

n) is dense in Ẇ 1,p(Rn)

only when n > 1 and p ≥ 1, or when n = 1 and p > 1. In other words, C1
c (R) is not dense

in Ẇ 1,1(R). Fortunately it is always possible to approximate a general function in Ẇ 1,p(Rn)

in norm by C1 functions whose gradients are compactly supported. Let C denote this latter

set of functions. We have

C1
c ( C ( Ẇ 1,p,

and it is no harder to prove, for u ∈ C than for u ∈ C1
c , the upper bound for [Q1+ γ

p
u]Lp,∞(νγ)

for all γ ∈ R \ {0}, or the required upper bound for lim supλ→+∞

(

λpνγ
(

Eλ,1+ γ
p
[u]

))

when

γ > 0. Thus we can pass to limits and conclude the same for a general function in Ẇ 1,p(Rn)

(an additional argument allows us to conclude the same upper bound for [Q1+γu]L1,∞(νγ) for

all u ∈ ḂV and all γ ∈ R \ {0}). On the other hand, when γ < 0, it is not too hard to

establish the desired upper bound for lim supλ→0+

(

λpνγ
(

Eλ,1+ γ
p
[u]

))

for all u ∈ C1
c (R

n). If in

addition p > 1, or n ≥ 2 and γ < −1, then we can use the density of C1
c (R

n) in Ẇ 1,p(Rn)

mentioned above, together with the upper bound for [Q1+ γ
p
u]Lp,∞(νγ) already proven, to pass

to limit to obtain the same conclusion for general u ∈ Ẇ 1,p(Rn). The remaining case is then

n = p = 1 and γ < −1; in this case, one needs to first establish the desired upper bound for

lim supλ→0+

(

λνγ
(

Eλ,1+γ[u]
))

for the bigger class u ∈ C before passing to limit to a general

u ∈ Ẇ 1,1(R). Finally, one can establish directly, for all u ∈ Ẇ 1,p(Rn), the desired lower

bound for lim infλ→+∞

(

λpνγ
(

Eλ,1+ γ
p
[u]

))

if γ > 0, and that for lim infλ→0+
(

λpνγ
(

Eλ,1+ γ
p
[u]

))

8



if γ < 0. This completes our discussion of all positive results regarding the limiting formulae

in Theorem 3 and Theorem 4.

Note that if p > 1, the lower bound for [Q1+ γ
p
u]Lp,∞(νγ) for u ∈ Ẇ 1,p in (13) follows from

the limiting formulae (14). On the other hand, when p = 1, γ ∈ R \ [−1, 0], the limiting

formulae (16) can fail for u ∈ ˙BV. Thus to prove the lower bound for [Q1+γu]L1,∞(νγ) in (15)

for all u ∈ ˙BV, one must proceed differently. The BBM formula comes to our rescue; in fact,

the same argument also proves the following theorem, which characterizes Ẇ 1,p (1 < p < ∞)

and ḂV:

Theorem 5 (see [6]). Let n ≥ 1, u ∈ L1
loc
(Rn), γ ∈ R. If [Q1+ γ

p
u]Lp,∞(R2n, νγ) < ∞, then

u ∈

{

Ẇ 1,p(Rn) if 1 < p < ∞

˙BV(Rn) if p = 1.

See also Poliakovsky [20, Theorem 1.3], who proved, among other things, the same result

for γ = n under an additional hypothesis u ∈ Lp(Rn); in fact, in that case the hypothesis

[Q1+n
p
u]Lp,∞(R2n, νn) < ∞ can be weakened to

lim sup
λ→+∞

(

λpL2n
(

Eλ,1+n
p
[u]

)

)

< ∞.

It may be instructive to contrast Theorem 5 with Theorem 3 and Theorem 4: note that

Theorem 3 and Theorem 4 do not address what happens unless u ∈ Ẇ 1,p or u ∈ ḂV.

To summarize, Theorem 3, Theorem 4 and Theorem 5 imply that for u ∈ L1
loc
(Rn), 1 <

p < ∞ and γ 6= 0,

u ∈ Ẇ 1,p ⇐⇒
[ ∆hu

|h|1+
γ
p

]

Lp,∞(R2n,νγ)
= [Q1+ γ

p
u]Lp,∞(R2n, νγ) < ∞.

Similarly, for u ∈ L1
loc
(Rn) and γ ∈ R \ [−1, 0],

u ∈ ḂV ⇐⇒
[ ∆hu

|h|1+γ

]

L1,∞(R2n,νγ)
= [Q1+γu]L1,∞(R2n, νγ) < ∞.

In a slightly different direction, in place of ‖∇u‖Lp(Rn), one can also obtain a similar one

parameter family of formulae for ‖u‖Lp(Rn).

Theorem 6. Let n ≥ 1, 1 ≤ p < ∞ and u ∈ Lp(Rn). Then for γ 6= 0,

(20) ‖u‖Lp ≃ [Qγ
p
u]Lp,∞(R2n, νγ) =

[∆hu

|h|
γ
p

]

Lp,∞(R2n, νγ)
.

Furthermore, if Eλ,b[u] is the superlevel set of Qbu at height λ given in (10), then

(21)
2σn−1

|γ|
‖u‖pLp =

{

limλ→0+
(

λpνγ
(

Eλ, γ
p
[u]

))

if γ > 0

limλ→+∞

(

λpνγ
(

Eλ, γ
p
[u]

))

if γ < 0.
9



where σn−1 is the surface area of Sn−1.

In this limiting formula (21), we let λ → 0+ if γ > 0, and let λ → +∞ if γ < 0, contrarily

to what happened in Theorem 3 and Theorem 4. Also, in the limiting formulae in Theorem 3

and Theorem 4, we had a constant k(p, n)/|γ|, and here we had a constant 2σn−1/|γ|; these

should be compared, respectively, to the constant k(p, n)/p in the BBM formula (6), and

the constant 2σn−1/p in the Maz’ya–Shaposhnikova formula (8). The case γ = n of (21)

was proved in [16]. Note that we do not obtain a characterization of Lp(Rn), contrarily to

Theorem 5: the Lp,∞(νγ) norms of Qγ
p
u are finite (in fact zero) when u is a non-zero constant.

We also note that the differences ∆hu(x) in Theorem 6 can be replaced by other expressions,

such that the sums Shu(x) := u(x+ h) + u(x), as we will see in the proof below.

Proof of Theorem 6. We consider two cases.

Case 1: Suppose γ > 0. In this case, to prove the upper bound in (20), note that

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

⊂
{

(x, h) : |h|γ/p <
2|u(x)|

λ

}

⋃

{

(x, h) : |h|γ/p <
2|u(x+ h)|

λ

}

so for any λ > 0,

νγ

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

≤ 2νγ

{

(x, h) : |h|γ/p <
2|u(x)|

λ

}

.
1

λp

∫

Rn

|u(x)|p dx.

To prove (21), and hence the lower bound in (20), first assume u has compact support in

BR(0). Then

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

=
{

(x, h) : |x| ≤ R, |h| > 2R, |h|γ/p <
|u(x)|

λ

}

⋃

{

(x, h) : |x+ h| ≤ R, |h| > 2R, |h|γ/p <
|u(x+ h)|

λ

}

⋃

{

(x, h) : |h| ≤ 2R, |h|γ/p <
|∆hu(x)|

λ

}

where all three sets are disjoint. We have

νγ

{

(x, h) : |x+ h| ≤ R, |h| > 2R, |h|γ/p <
|u(x+ h)|

λ

}

= νγ

{

(x, h) : |x| ≤ R, |h| > 2R, |h|γ/p <
|u(x)|

λ

}

=
σn−1

γ

∫

|x|≤R

( |u(x)|p

λp
− (2R)γ

)

+
dx

10



so

lim
λ→0+

λpνγ

{

(x, h) : |x+ h| ≤ R, |h| > 2R, |h|γ/p <
|u(x+ h)|

λ

}

= lim
λ→0+

λpνγ

{

(x, h) : |x| ≤ R, |h| > 2R, |h|γ/p <
|u(x)|

λ

}

= lim
λ→0+

σn−1

γ

∫

|x|≤R

(

|u(x)|p − λp(2R)γ
)

+
dx =

σn−1

γ

∫

Rn

|u(x)|p dx.

We also have

lim sup
λ→0+

λpνγ

{

(x, h) : |h| ≤ 2R, |h|γ/p <
|∆hu(x)|

λ

}

≤ lim sup
λ→0+

λpνγ

{

(x, h) : |x| ≤ R, |h| ≤ 2R
}

= 0.

Together this establishes (21) when u has compact support.

If now u is a general Lp function, we approximate by a sequence of compactly supported

functions uj, so that ‖uj − u‖Lp(Rn) → 0 as j → +∞. Then for any ε > 0, j ≥ 1,

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

⊂
{

(x, h) :
|∆huj(x)|

|h|γ/p
> λ(1−ε)

}

⋃

{

(x, h) :
|∆h(uj − u)(x)|

|h|γ/p
> λε

}

so using the previous result for uj,

lim sup
λ→0+

λpνγ

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

≤
1

(1− ε)p

∫

Rn

|uj(x)|
p dx+

C

εp

∫

Rn

|uj(x)− u(x)|p dx.

Similarly,

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

⊃
{

(x, h) :
|∆huj(x)|

|h|γ/p
> λ(1+ ε)

}

\
{

(x, h) :
|∆h(uj − u)(x)|

|h|γ/p
> λε

}

so

lim inf
λ→0+

λpνγ

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

≥
1

(1 + ε)p

∫

Rn

|uj(x)|
p dx−

C

εp

∫

Rn

|uj(x)− u(x)|p dx.

We let j → +∞ before letting ε → 0+ in these inequalities to obtain (21).

Case 2: Suppose γ < 0. To prove the upper bound in (20), note that

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

⊂
{

(x, h) : |h||γ|/p >
λ

2|u(x)|

}

⋃

{

(x, h) : |h||γ|/p >
λ

2|u(x+ h)|

}

so for any λ > 0,

νγ

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

≤ 2νγ

{

(x, h) : |h||γ|/p >
λ

2|u(x)|

}

.
1

λp

∫

Rn

|u(x)|p dx.

11



To prove (21), and hence the lower bound in (20), first assume u ∈ L∞, say |u| ≤ M , with

compact support in BR(0). Then for λ > 2M(2R)|γ|/p, we have

|∆hu(x)|

|h|γ/p
> λ =⇒ 2M |h||γ|/p > 2M(2R)|γ|/p =⇒ |h| > 2R,

in which case at most one of x, x+ h can be in BR(0). So

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

=
{

(x, h) : |x| ≤ R, |h| > 2R, |h||γ|/p >
λ

|u(x)|

}

⋃

{

(x, h) : |x+ h| ≤ R, |h| > 2R, |h||γ|/p >
λ

|u(x+ h)|

}

where the two sets in the union are disjoint. Hence

νγ

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

= 2

∫

|x|≤R

∫

|h|>max{2R,( λ
|u(x)|

)p/|γ|}

|h|γ−n dh dx

=
2σn−1

|γ|

∫

|x|≤R

min
{

(2R)−|γ|,
|u(x)|p

λp

}

dx

which says

λpνγ

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

=
2σn−1

|γ|

∫

|x|≤R

min
{

λp(2R)−|γ|, |u(x)|p
}

dx

→
2σn−1

|γ|

∫

|x|≤R

|u(x)|p dx

as λ → +∞ by monotone convergence.

If now u is a general Lp function, we approximate by a sequence of bounded, compactly

supported functions uj, so that ‖uj − u‖Lp(Rn) → 0 as j → +∞. Then for any ε > 0, j ≥ 1,

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

⊂
{

(x, h) :
|∆huj(x)|

|h|γ/p
> λ(1−ε)

}

⋃

{

(x, h) :
|∆h(uj − u)(x)|

|h|γ/p
> λε

}

so using the previous result for uj,

lim sup
λ→∞

λpνγ

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

≤
1

(1− ε)p

∫

Rn

|uj(x)|
p dx+

C

εp

∫

Rn

|uj(x)− u(x)|p dx.

Similarly,

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

⊃
{

(x, h) :
|∆huj(x)|

|h|γ/p
> λ(1+ ε)

}

\
{

(x, h) :
|∆h(uj − u)(x)|

|h|γ/p
> λε

}

so

lim inf
λ→∞

λpνγ

{

(x, h) :
|∆hu(x)|

|h|γ/p
> λ

}

≥
1

(1 + ε)p

∫

Rn

|uj(x)|
p dx−

C

εp

∫

Rn

|uj(x)− u(x)|p dx.

We let j → +∞ before letting ε → 0+ in these inequalities to obtain (21). �
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5. Applications to Gagliardo-Nirenberg interpolation

The existence of a one-parameter family of characterizations in the previous section is

not just natural, but useful in applications. For instance, Cohen, Dahmen, Daubechies and

DeVore [9] proved that for any 0 < t < 1 and any 1 < q < ∞, if

(22) t < 1
q
,

and if (1
p
, s) = (1− θ)(1

q
, t) + θ(1, 1) for some 0 < θ < 1, then for any u ∈ ḂV∩Ẇ t,q, one has

the interpolation inequality

(23) ‖u‖Ẇ s,p . ‖u‖1−θ

Ẇ t,q‖u‖
θ
ḂV

.

s

1/p

ḂV

Ẇ t,q

Ẇ s,p

slope > 1

Their proof uses bounds for coefficients of wavelet expansions of a general function in

ḂV(Rn). Indeed, let ψ0 := ϕ and ψ̃0 := ϕ̃ be a pair of one-dimensional compactly supported

scaling functions which are in duality:
∫

R

ϕ(t)ϕ̃(t− k) dt = δ(k), k ∈ Z,

where δ is the Kronecker delta, and let ψ1 := ψ, ψ̃1 := ψ̃ be their corresponding univariate

wavelets. Define, for any e ∈ E := {0, 1}n \ {(0, 0, . . . , 0)},

ψ̃e(x) := ψ̃e1(x1) . . . ψ̃
en(xn), x = (x1, . . . , xn);

also define, for any e ∈ E and any dyadic cube I = 2−j(k + [0, 1]n),

ψ̃e
I(x) := 2jnψ̃e(2jx− k).

For any γ ∈ R, one can also define a measure ν̃γ on the product of E with the set of all

dyadic cubes {I}, so that

ν̃γ({(e, I)}) := 2−j(γ+n)

if e ∈ E and I has side length ℓ(I) = 2−j . A result in [9] says that if u ∈ ḂV(Rn) and

ue
I :=

∫

Rn

u(x)ψ̃e
I(x) dx,

13



then for any γ ∈ R \ [−1, 0], the sequence (
ue
I

ℓ(I)1+γ ) indexed by e and I is in weak-ℓ1 with

respect to ν̃γ , with

(24)
[( ue

I

ℓ(I)1+γ

)]

ℓ1,∞(ν̃γ)
. ‖u‖ḂV .

∥

∥

∥

( ue
I

ℓ(I)1+γ

)
∥

∥

∥

ℓ1(ν̃γ)
.

Using (24), a proof of (23) was given in [9]; indeed a stronger result was proved there, namely

(25) [Ẇ t,q, ḂV]θ,p = Ẇ s,p.

The inequality (24) bears a superficial resemblance to our difference quotient characteri-

zation (15) for the ḂV norm. Indeed even the proofs are somewhat similar: both relies on

covering lemmas in the range γ ∈ R \ [−n, 0], and the range γ ∈ [−n,−1) for (23) was dealt

with in [9] using the coarea formula, while the same range for (15) was dealt with in [6] using

the method of rotation. While we did not manage to use (15) to recover a proof of (25),

the characterization (15) does allow us to give a simple alternative proof of (23), which we

describe as follows.

Proof of (23). Let γ0 be −1 times the slope connecting the points (1, 1) and (1
q
, t), i.e.

(26) γ0 := −
1− t

1− 1
q

.

The assumption (22) shows that γ0 < −1. Let u ∈ ḂV∩Ẇ t,q. Our characterization for the

ḂV norm (see Theorem 4) shows that

(27) ‖u‖ḂV ≃ [Q1+γ0u]L1,∞(νγ0 )
.

On the other hand,

(28) ‖u‖Ẇ t,q = ‖Qt+
γ0
q
u‖Lq(νγ0 )

because from (12)

(

∫∫

R2n

|∆hu|
q

|h|tq+n
dx dh

)
1
q
=

(

∫∫

R2n

|∆hu|
q

|h|tq+γ0
dνγ0

)
1
q
.

Similarly

(29) ‖u‖Ẇ s,p = ‖Qs+
γ0
p
u‖Lp(νγ0 )

.

But since 1
p
= (1− θ)1

q
+ θ, we have, for any measurable function F , that

(30) ‖F‖Lp(νγ0 )
. ‖F‖1−θ

Lq(νγ0 )
[F ]θL1,∞(νγ0 )

;
14



indeed, for any λ > 0,
∫

|F |p dνγ0 =

∫

|F |≥λ

|F |p dνγ0 +

∫

|F |<λ

|F |p dνγ0

≤
1

λq−p

∫

|F |q dνγ0 +

∫ λ

0

sp−1νγ0{|F | > s} ds

≤
1

λq−p
‖F‖qLq(νγ0 )

+
λp−1

p− 1
[F ]L1,∞(νγ0 )

,

so choosing λ for which

1

λq−p
‖F‖qLq(νγ0 )

=
λp−1

p− 1
[F ]L1,∞(νγ0 )

we obtain (30). We apply (30) to the function F := Qs+
γ0
p
u = Qt+

γ0
q
u = Q1+γ0u; note that

our choice of γ0 ensures s+ γ0
p
= t+ γ0

q
= 1+ γ0 (they are all equal to the y-intercept of the

line joining (1, 1) and (1
q
, t)). Using (27), (28) and (29), we obtain (23), as desired.

We note that the γ0 we used above when invoking Theorem 4 is dictated by the points

(1
q
, t) and (1, 1), and this proof does not work if we had chosen other values of γ0. �

The previous proof made crucial use of the assumption t < 1
q

in (22), because (27) only

holds when γ0 /∈ R \ [−1, 0]. In fact as was shown in [4], the inequality (23) does not hold

when t ≥ 1
q
. Nevertheless, a simple adaptation of the above proof of (23) yields part (i) of

the following theorem:

s

1/p

ḂV

Ẇ t,q

/∈ Ẇ s,p

0 < slope ≤ 1, i.e. γ0 ∈ [−1, 0)

Theorem 7. Let n ≥ 1, 0 < t < 1, 1 < q < ∞. Suppose t ≥ 1
q

and (1
p
, s) = (1 − θ)(1

q
, t) +

θ(1, 1) for some 0 < θ < 1. Let γ ∈ R \ [−1, 0]. Then the following hold.

(i) Let r = q
1−θ

. For any u ∈ ˙BV∩Ẇ t,q, one has the interpolation inequality

(31) [Qs+ γ
p
u]Lp,r(νγ) . ‖u‖1−θ

Ẇ t,q‖u‖
θ
ḂV

.

(ii) The inequality (31) fails for some u ∈ C∞
c if r < q

1−θ
.
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The case γ = n was already proved in [8]. The proof of the general case is similar, once

Theorem 4 is established.

Proof of Theorem 7. (i) Note that since (1
p
, s) = (1− θ)(1

q
, t) + θ(1, 1), we have

s+
γ

p
= (1− θ)(t+

γ

q
) + θ(1 + γ)

for any γ ∈ R. In particular,

Qs+ γ
p
u = (Qt+ γ

q
u)1−θ(Q1+γu)

θ.

It remains to apply Hölder’s inequality for Lorentz spaces: since (1
p
, 1
r
) = (1−θ)(1

q
, 1
q
)+θ(1, 0)

for r = q
1−θ

, we have

[F 1−θGθ]Lp,r(νγ) . ‖F‖1−θ
Lq(νγ)

[G]θL1,∞(νγ)

for any non-negative measurable functions F and G. Applying this to F = Qt+ γ
q
u and

G = Q1+γu, and then invoking (27) and (28) with γ ∈ R \ [−1, 0] in place of γ0, yields the

desired inequality (31).

(ii) The optimality of the above choice of r follows the same proof as in [8, Lemma 5.1], which

in turn was based on a construction in [4]; a related example also appeared in [6, Proof of

Proposition 6.1]. We reproduce some of the constructions for the convenience of the readers.

We first consider the case when the dimension n = 1. Let 0 < t < 1 and 1 < q < ∞.

Suppose first t > 1
q
. As in (26) we define γ0 = − 1−t

1− 1
q

; this time γ0 ∈ (−1, 0). If (1
p
, s) =

(1 − θ)(1
q
, t) + θ(1, 1) for some 0 < θ < 1, then 1 + γ0 = s + γ0

p
whose common value we

denote by α. Let ε := 2−1/α ∈ (0, 1/2). Let g0 be an increasing, C∞ function on R such that

g0(x) = 0 for x < 0, g0(x) = 1 for x > 1. For j ≥ 1, let gj be defined on R by

gj(x) :=
1

2

(

gj−1(ε
−1x) + gj−1(1− ε−1(1− x))

)

.

The failure of (31) when r < q
1−θ

can be seen from the inequalities

(32) ‖gj‖Ẇ 1,1(R) = 1,

(33) ‖gj‖Ẇ t,q(R) . j1/q,

and

(34) [Qs+ γ
p
gj ]Lp,r(R×R,νγ) & j1/r

for all γ 6= γ0. To see that these inequalities hold, note that g′j ≥ 0, from which (32) follows.

Also, if

L1 = [−(1
2
− ε), 1

2
], L2 = [1

2
, 3
2
− ε],

then if |x− y| ≥ 1
2
− ε and gj(x) 6= gj(y) one must have (x, y) ∈ (L1 × L1) ∪ (L2 × L2) (one

can first show if gj(x) 6= gj(y) and |x− y| < 1
2
− ε, then both x and y belong to L1 ∪L2; one
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can then show that if (x, y) ∈ (L1 ×L2)∪ (L2 ×L1) with |x− y| < 1
2
− ε then gj(x) = gj(y)).

Hence

‖gj‖
q

Ẇ t,q(R)
≤ ‖gj‖

q

Ẇ t,q(L1)
+ ‖gj‖

q

Ẇ t,q(L2)
+

∫∫

|x−y|≥ 1
2
−ε

1

|x− y|1+tq
dx dy

≤ 21−qε1−tq‖gj−1‖
q

Ẇ t,q(R)
+O(1)

(we used tq > 1 to estimate the last integral) whereas

21−qε1−tq = ε−(1+γ0)(1−q)+1−tq = ε−γ0(
1
q
−1)q+(1−t)q = 1;

the estimate (33) now follows by induction on j. It remains to establish (34). We fix γ 6= γ0,

and define, for j ≥ 0 and λ > 0,

Aj,λ := νγ
{

(x, h) ∈ [0, 1]× [0, 1] : x+ h ∈ [0, 1], |Qs+ γ
p
gj(x, h)| > λ

}

.

Then for j ≥ 1 and λ > 0, we have

(35) Aj,λ ≥ εγ−γ0Aj−1,λε(γ−γ0)/p

because if I1 := [0, ε] and I2 := [1− ε, 1], then

Aj,λ ≥
2

∑

i=1

νγ
{

(x, h) ∈ Ii × [0, ε] : x+ h ∈ Ii, |Qs+ γ
p
gj(x, h)| > λ

}

= 2ε1+γνγ
{

(x′, h′) ∈ [0, 1]× [0, 1] : x′ + h′ ∈ [0, 1], |Qs+ γ
p
gj−1(x

′, h′)| > 2εs+
γ
pλ

}

= 2ε1+γA
j−1,2ε

s+
γ
p λ

whereas

2εs+
γ
p = 2εs+

γ0
p ε

γ−γ0
p = 2εαε

γ−γ0
p = ε

γ−γ0
p ,

2ε1+γ = 2ε1+γ0εγ−γ0 = 2εαεγ−γ0 = εγ−γ0.

Set B = B(γ, γ0) := ε−(γ−γ0) so that (35) reads Aj,λ ≥ B−1Aj−1,λB−1/p. Then for ℓ = 1, . . . , j

and λ ≤ 1
2
Bℓ/p, we may apply (35) ℓ times and invoke Aj−ℓ,1/2 & 1 to obtain

(36) νγ{(x, h) ∈ [0, 1]× [0, 1] : x+ h ∈ [0, 1], |Qs+ γ
p
gj(x, h)| > λ} & B−ℓ.

If γ > γ0, then B > 1, and hence

[Qs+ γ
p
gj]Lp,r(νγ) &

(

j
∑

ℓ=1

∫ 1
2
Bℓ/p

1
2
B(ℓ−1)/p

λr−1B−ℓr/pdλ

)1/r

≃ j1/r.

If on the other hand γ < γ0, then B < 1, and hence

[Qs+ γ
p
gj ]Lp,r(νγ) &

(

j
∑

ℓ=1

∫ 1
2
Bℓ/p

1
2
B(ℓ+1)/p

λr−1B−ℓr/pdλ

)1/r

≃ j1/r.

This proves (34) in either case.

Next, suppose still n = 1, and assume t = 1
q

so that s + γ
p
= 1+γ

p
. Then we define

instead gj(x) := g0(2
jx)g0(2

j(2 − x)) where g0 is as above. We then have ‖gj‖Ẇ 1,1(R) = 2,
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and ‖gj‖Ẇ t,q(R) . j1/q. The failure of (31) when r < q
1−θ

follows once we can show that

[Qs+ γ
p
gj]Lp,r(R×R,νγ) & j1/r for all sufficiently large j (depending only on γ), which we achieve

below by considering the cases γ > 0 and γ < −1 separately. If γ > 0, then when 1 ≤ λ ≤

(2
j−1γ
1+γ

)
1+γ
p , we have

νγ
{

(x, h) : x ≤ 0, x+ h ≥ 2−j,Qs+ γ
p
gj(x, h) > λ

}

≥

∫ λ
−

p
1+γ

0

∫ 0

2−j−h

hγ−1 dx dh =
λ−p

γ + 1
−

λ−pγ/(1+γ)

γ2j

≥
λ−p

2(γ + 1)
,

the last inequality following from our choice of λ. It follows that for j sufficiently large,

[Qs+ γ
p
gj ]Lp,r(νγ)

&

(
∫ (

2j−1γ
1+γ

)
1+γ
p

1

λr−1νγ{(x, h) : x ≤ 0, x+ h ≥ 2−j,Qs+ γ
p
gj(x, h) > λ}r/p dλ

)1/r

&

(
∫ (

2j−1γ
1+γ

)
1+γ
p

1

λ−1 dλ

)1/r

≃ j1/r.

On the other hand, if γ < −1, then when (2
j−2γ
1+γ

)
1+γ
p ≤ λ ≤ 2−

1
p

νγ{(x, h) : x ≤ 0, x+ h ≥ 2−j ,Qs+ γ
p
gj(x, h) > λ}

≥

∫ 1

λ
−

p
1+γ

∫ 0

2−j−h

hγ−1 dx dh =
λ−p − 1

|γ + 1|
−

λ−pγ/(1+γ) − 1

|γ|2j

≥
λ−p

2|γ + 1|
−

λ−pγ/(1+γ)

|γ|2j
≥

λ−p

4|γ + 1|
.

(In the penultimate inequality, we used λ−p − 1 ≥ 1
2
λ−p which holds since λ ≤ 2−

1
p ; in the

last inequality, we used (2
j−2γ
1+γ

)
1+γ
p ≤ λ.) It follows that for j sufficiently large,

[Qs+ γ
p
gj]Lp,r(νγ)

&

(
∫ 2

− 1
p

( 2
j−2γ
1+γ

)
1+γ
p

λr−1νγ
{

(x, h) : x ≤ 0, x+ h ≥ 2−j,Qs+ γ
p
gj(x, h) > λ

}r/p
dλ

)1/r

&

(
∫ 2

− 1
p

( 2
j−2γ
1+γ

)
1+γ
p

λ−1 dλ

)1/r

≃ j1/r.

This completes our proof of the optimality of r in the case where the dimension n = 1.

Finally, to pass to higher dimensions n > 1, we define

uj(x) := gj(x1)η1(x1) . . . η1(xn) ∈ C∞
c

18



where η1 ∈ C∞
c ((−1, 2)) takes values in [0, 1] and is such that η1 = 1 on (−1/2, 3/2). Then

one has

‖uj‖Ẇ 1,1(Rn) . ‖gj‖L1(R) + ‖gj‖Ẇ 1,1(R) . 1,

and if we write η′(x2, . . . , xn) := η1(x2) . . . η1(xn), then

‖uj‖Ẇ t,q(Rn) .
(

‖g1η1‖
q
Lq(R)‖η

′‖q
Ẇ t,q(Rn−1)

+ ‖g1η1‖
q

Ẇ t,q(R)
‖η′‖qL(Rn−1)

)1/q

. j1/q

Furthermore, the argument in [6, Section 6.3], together with our estimates above for gj,

shows that for j sufficiently large (depending only on γ),

[Qs+ γ
p
uj]Lp,r(Rn×Rn,νγ) & j1/r.

Hence if (31) were to hold for all u ∈ C∞
c , then r ≥ q

1−θ
. �

6. Related works and further directions

The left hand side of the inequality (31) involves the quasi-norm [Qs+ γ
p
u]Lp,r(νγ), which

arises in a number of different contexts in [14]. In fact, let {Lk}k∈Z be an appropriate family

of Littlewood-Paley projections, and µγ be the measure on Rn × Z given by
∫

Rn×Z

F (x, k) dµγ :=
∑

k∈Z

2−kγ

∫

Rn

F (x, k) dx

for all F ∈ Cc(R
n × Z). For 0 < s < 1, 1 < p < ∞, 1 ≤ r ≤ ∞ and γ ∈ R, one defines

Ḃs
p(γ, r) to be the space of all tempered distributions u on Rn modulo polynomials, for which

[2k(s+
γ
p
)Lku]Lp,r(µγ ) < ∞; the set of all measurable functions u on Rn for which [Qs+ γ

p
u]Lp,r(νγ)

is finite can then be identified with the space Ḃs
p(γ, r), which also arises in e.g. Krepkogorskĭı

[17] as interpolation spaces between the fractional Sobolev spaces. Various embedding and

non-embedding results for Ḃs
p(γ, r) were also established in [14]; an application towards

nonlinear approximation was also given there.

In [12], Domínguez and Milman extended some of the above results for Ẇ 1,p in an abstract

framework. They proved for instance that if (X, ν) is a σ-finite measure space, 1 ≤ p < ∞

and {Tt}t>0 is a family of sublinear operators on Lp(X), then for all f ∈ Lp(X) satisfying

‖Ttf − f‖L∞(X) .f t1/p for all t > 0,

one has

lim
λ→∞

(

λ (ν ×L1)(Eλ)
1/p

)

= ‖f‖Lp(X),

where

Eλ :=
{

(x, t) ∈ X × (0,∞) :
|Ttf(x)|

t1/p
> λ

}

.

They found an impressive list of applications, ranging from formulae for ‖∆u‖Lp(Rn) and

‖∂x1∂x2u‖Lp(R2), to relations between ‖f‖Lp(Rn) with level set estimates for spherical averages

of f for p > n
n−1

, to ergodic theory, etc. In [20], Poliakovsky established some of our earlier
19



results on Lipschitz domains on Rn. The works of Dai, Lin, Yang, Yuan and Zhang [10, 11]

contain other generalizations of some of the above results to situations where the gradient of

a function on Rn is in a weighted Lp space (which can then be extrapolated), and the case

where Rn is replaced by some suitable metric measure spaces.

In [13], Domínguez and Milman revisited the BBM and the Maz’ya-Shaposhnikova formu-

lae from the points of view of interpolation and extrapolation, putting in context certain

results from [2].

A number of interesting questions remain regarding this circle of ideas. For instance, for

γ < 0, if u ∈ L1
loc

and the lim inf on the right hand side of (19) is finite, must it be true that

u ∈ ḂV? If u ∈ ḂV, must ‖u‖ḂV be bounded by a multiple (depending only on n and γ)

of the liminf on the right hand side of (19)? Some similar questions remain open for γ > 0

and for Ẇ 1,p in place of ḂV. For γ ∈ R \ {0}, can one understand the failure of (16) for

u ∈ ˙BV using the concept of Γ–convergence? A more detailed description of these questions,

including discussions of partial results, can be found in [6, Section 7]. Also it is conceivable

that one may be able to recover the Sobolev inequality, and its Lorentz refinement, namely

‖u‖Lp∗,p . ‖∇u‖Lp, 1 ≤ p < n,
1

p∗
=

1

p
−

1

n

out of Theorem 4.
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