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Abstract
We define a notion of height for rational points with respect to a vector bundle on a proper algebraic stack with
finite diagonal over a global field, which generalizes the usual notion for rational points on projective varieties. We
explain how to compute this height for various stacks of interest (for instance: classifying stacks of finite groups,
symmetric products of varieties, moduli stacks of abelian varieties, weighted projective spaces). In many cases, our
uniform definition reproduces ways already in use for measuring the complexity of rational points, while in others
it is something new. Finally, we formulate a conjecture about the number of rational points of bounded height (in
our sense) on a stack X , which specializes to the Batyrev–Manin conjecture when X is a scheme and to Malle’s
conjecture when X is the classifying stack of a finite group.
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1. Introduction

Two subjects of central importance in arithmetic statistics are the enumeration of number fields of
bounded discriminant (governed by Malle’s conjecture) and the enumeration of rational points of
bounded height on varieties (governed by the Batyrev–Manin conjecture).

More specifically, if G is a subgroup of 𝑆𝑛, denote by 𝑁𝐺 (𝐵) the number of degree n number fields
𝐾/Q whose Galois closure has Galois group G and whose discriminant has absolute value at most B.
Similarly, if X is a projective Fano variety, denote by 𝑁𝑋 (𝐵) the number of rational points in 𝑋 (Q)
whose height is at most B. Malle’s conjecture predicts that 𝑁𝐺 (𝐵) is asymptotic to 𝑐𝐵𝑎 (𝐺) (log 𝐵)𝑏 (𝐺) ,
where 𝑎(𝐺) and 𝑏(𝐺) are explicitly computable constants. The Batyrev–Manin conjecture predicts that
𝑁𝑋 (𝐵) is asymptotic to 𝑐𝐵𝑎 (𝑋 ) (log 𝐵)𝑏 (𝑋 ) , where 𝑎(𝑋) and 𝑏(𝑋) are explicitly computable constants.
(The prediction of c is much more delicate: see Peyre [56, Définition 2.1] for the Batyrev–Manin case,
and Bhargava [10] for the Malle case, in the special case 𝐺 = 𝑆𝑛. We make no attempt in the present
paper to study the constants in our generalization of Batyrev–Manin–Malle, and we say only a bit about
the powers of log 𝐵; we confine our concrete predictions to the exponents a.)

The similarity between these two asymptotic predictions has not gone unremarked. The relation
between the two conjectures becomes even closer upon making the observation that a Galois G-
extension of Q actually is a rational point: not a rational point on a variety, but a rational point on an
algebraic stack, in this case the classifying stack 𝐵𝐺. It is thus natural to ask how one might formulate a
conjecture about counting rational points of bounded height on a stack X , which would specialize both
to the Batyrev–Manin conjecture (when X is a Fano variety) and to Malle’s conjecture (when X is the
classifying stack of a finite group).

An obstacle appears immediately: There is no agreed-upon definition of the height of a rational point
on a stack. The conventional definition of height, due to Weil, is a real-valued function on 𝑋 (Q), where
X is a projective variety. It suffices to define height on P𝑛 (Q) because, given the projective embedding
𝜄 : 𝑋→P𝑛, we simply define ht𝑋 (𝑥) to be htP𝑛 (𝜄(𝑥)) for every point 𝑥 ∈ 𝑋 (Q). But a stack which, like
𝐵𝐺, is not a scheme does not embed in projective space.

The goal of the present paper is to propose a definition of height for rational points on stacks over
arbitrary global fields K, and, using this definition, to formulate a conjecture of Batyrev–Manin–Malle
type for the number of rational points on a stack X of height at most B (under certain assump-
tions which guarantee this number is finite). Having made the definition, we find that our notion of
height applies to many interesting stacks which are neither schemes nor classifying spaces of finite
groups (e.g., weighted projective spaces, moduli spaces, symmetric powers of varieties). In many cases,
our definition agrees with ad hoc notions of ‘size’ of a rational point which already appear in the
literature.

We remark on some existing work concerning heights on stacks. One proposed definition for the
height of a point on a Deligne–Mumford stack is given and used by Abramovich and Várilly-Alvarado
in [2, 3, 1]; this notion of height is useful for moduli spaces but does not, for example, extend to an
interesting height on 𝐵𝐺. Beshaj, Gutierrez and Shaska [9] have a definition of height on weighted
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projective space which agrees with ours in that case, as does the earlier preprint of Deng [23]. Starr and
Xu [68, §1.4 of arXiv v1] have another definition whose relation to the one used in the present work
is roughly that between the minimal slope in the Harder–Narasimhan filtration of a vector bundle and
the slope of that vector bundle. And in very recent work, Nasserden and Xiao [54] offer an alternative
definition for stacky curves, and Ratko Darda [20, Theorem 1.5.7.1] has proposed a definition for
weighted projective stacks.

We have seen above that one cannot define the height of a rational point of a stack by imitating the
standard definition for rational points on varieties. Before sketching our definition, we explain some
further reasons for the difficulty of defining heights on stacks.

Failure of additivity

A central feature of the theory of heights on varieties is additivity. Given a proper variety X, we can
define a height function htL on 𝑋 (Q) corresponding to any line bundle L on X, and we have

htL⊗L′ (𝑥) = htL (𝑥) + htL′ (𝑥) (1.1)

for any pair L,L′ of line bundles on X and any 𝑥 ∈ 𝑋 (Q).
It turns out there is no choice but to discard this useful feature when we extend the theory of heights

to stacks. The following example shows why. Let X = 𝐵(Z/2Z), and let 𝐾 = Q. A line bundle L on X
is a representation of Z/2Z; we choose C to be the nontrivial one-dimensional representation. Then the
tensor product ofLwith itself is the trivial line bundle; that is,L⊗L = O in Pic(X ). Thus, htL⊗L′ (𝑥) = 0
for all 𝑥 ∈ X (Q). If our height functions satisfied equation (1.1), we would have 2 htL (𝑥) = 0, and thus
htL would be identically 0, and thus uninteresting.1

Failure of valuative criterion of properness

Suppose 𝐾 = F𝑞 (𝑡), and 𝑋0/𝐾 is a projective variety. In this case, the height of a point 𝑥 ∈ 𝑋0(𝐾) has
a very nice geometric interpretation. We may choose an projective integral model 𝑋/P1 whose generic
fiber is 𝑋0. By the valuative criterion of properness, we can extend x to a section 𝑥 : P1→𝑋 . Then the
height of x is just the degree of the line bundle 𝑥∗O𝑋 (1) on P1. (Note that the height may depend on
the choice of integral model.) When X is a proper stack instead of a projective scheme, the valuative
criterion of properness does not allow us to ‘spread out’ a rational point in this fashion. For instance, an
F𝑞 (𝑡)-point of 𝐵(Z/2Z) is a quadratic extension of F𝑞 (𝑡). On the other hand, a map from P1 to 𝐵(Z/2Z)
is an étale double cover of P1, which can only be the disjoint union of two copies of P1. In particular, the
fiber of such a map over the generic point Spec F𝑞 (𝑡) must correspond to the trivial quadratic extension
F𝑞 (𝑡) ⊕ F𝑞 (𝑡).

Modification of Northcott property

A useful feature of the height on a variety X attached to an ample line bundle L is the Northcott property;
the set of points x in 𝑋 (𝐾) with ℎ𝐿 (𝑥) < 𝐵 and which are defined over an extension 𝐾 ′/𝐾 of degree at
most d is finite. We will often consider heights here which we want to consider ‘positive’ but which do
not have this property. For example, when 𝑥 ∈ 𝐵(Z/2Z) (𝐾) is a point corresponding to an everywhere
unramified G-extension of K, and L is a (the!) nontrivial line bundle on 𝐵(Z/2Z), we will see below
that ℎ𝐿 (𝑥) = 0. But there are infinitely many distinct degree-d extensions of Q which have everywhere
unramified double covers, so the Northcott property cannot hold in its usual sense. What will typically
be true, on the other hand, is that the heights of greatest interest to us will admit only finitely many
points of bounded height over any individual global field. This is the notion of Northcott we will use in
the present paper, though it does not quite follow the usual convention.

1One might suggest abandoning the requirement that height functions be real-valued instead of abandoning additivity. This
feels like a bad idea to us: For one thing, if our goal is to count points of bounded height we want the target of the height function
to carry a natural ordering.
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Vector bundles

The usual height machine assigns a height function on 𝑋 (𝐾) to any line bundle on X. For rational
points on a stack X , it turns out that this point of view is not quite sufficient for our purposes. Consider
again the example of 𝐵𝐺, where G is a finite group. The line bundles on 𝐵𝐺 are the one-dimensional
representations of G; in particular, the line bundles only ‘see’ the abelianization of G, not all of G.
When G is nonabelian, this turns out to imply that no height function coming from a line bundle on X
can compute the discriminant of the G-extension 𝐿/𝐾 corresponding to a K-rational point. Rather, we
need access to the entire representation theory of G, which is to say we need to study heights associated
to vector bundles of higher rank on 𝐵𝐺.

Our definitions of heights on stacks

We now sketch the main idea of our definition. Suppose K is a global field. If K is a function field, let C
be the smooth projective curve with function field K; if K is a number field, let C be SpecO𝐾 . Given a
rational point 𝑥 : Spec𝐾→X , we may not, as mentioned above, be able to extend x to a morphism from
C to X . However, it turns out that we can extend x to a map 𝑥 : C→X , where C is a so-called tuning
stack over C. When C is P1/F𝑞 , for instance, C is a ‘stacky P1’ which is generically isomorphic to P1

but has some points with nontrivial finite inertia groups. In general, the structure map 𝜋 : C→𝐶 will be
a coarse moduli map.

Suppose V is a vector bundle on X , which we take to be metrized at Archimedean places if K is a
number field. Then 𝑥∗V is a vector bundle on the tuning stack C, and 𝜋∗𝑥

∗V is a vector bundle on C,
whose determinant is a line bundle on C. We now define

htV (𝑥) = − deg(det(𝜋∗𝑥∗V∨)).

In the number field case, − det(𝜋∗𝑥∗V∨) is a metrized line bundle on C, and degree means Arakelov
degree.

We note that the reason for the failure of additivity is now apparent: While the pullback 𝑥∗ is
compatible with tensor product of vector bundles, the pushforward 𝜋∗ is not. Moreover, it really is
crucial to include the push forward 𝜋∗; otherwise, line bundles on 𝐵𝐺, which are all torsion in the
Picard group, would all give trivial height functions!

In the Section 2, we define htV rigorously and show that it does not depend on the choice of tuning
stack. In Section 3, we compute several examples, which show that this notion captures arithmetic
quantities of interest in many cases. In particular, we show that if

◦ G is a subgroup of 𝑆𝑛,
◦ V is the corresponding n-dimensional permutation representation of G,
◦ and x is a point of 𝐵𝐺 (Q), corresponding to a degree-n extension 𝐾/Q whose Galois closure has

Galois group G,

the height htV (𝑥) is precisely the discriminant of 𝐾/Q; see Subsection 3.1. This realizes the goal of
expressing the discriminant of a field extension as the height of a rational point on the classifying stack
of a finite group.

We also work out in varying levels of detail several examples of natural stacks: stacks birational to
P1, weighted projective spaces, symmetric powers of projective spaces and moduli stacks of abelian
varieties.

Finally, we turn to conjectures about point-counting in Section 4. Using geometric intuition derived
from the function field case, we propose a heuristic rate of growth for the function 𝑁X ,V (𝐵), the number
of rational points x of a stack X such that htV (𝑥) ≤ 𝐵. There is one further technical hurdle worthy
of note in the introduction: in the case of the Batyrev–Manin conjecture for schemes X, the expected
growth rate 𝐵𝑎 is governed by the anticanonical height ht−𝐾𝑋 ; in the case of stacks, one cannot simply
import the same formula since for many stacks of interest, for example, X = 𝐵𝐺, the anticanonical
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bundle is trivial! Thus, we introduce a new function (see Definition 4.5) which replaces the anticanonical
height function on stacks; it can be viewed as a suitable perturbation of the anticanonical height. Our
point-counting conjecture 4.14 includes (the weak versions of) both the Batyrev–Manin conjecture and
Malle’s conjecture as special cases, but it makes many more predictions as well, which we hope will be
the subject of future research.

1.1. Notation and conventions

Throughout this paper, we treat the arithmetic and the geometric settings in unison, letting C denote
either SpecO𝐾 for a number field K or a smooth proper curve over a field k in which case we set
𝐾 = 𝑘 (𝐶). In the number field case, we implicitly assume that all vector bundles are metrized. Finally,
if 𝐿/𝐾 is a finite extension of function fields corresponding to a map 𝑓 : 𝐶 ′ → 𝐶, we let disc(𝐿/𝐾) be
the degree of the ramification divisor.

2. Heights of rational points on stacks

Recalling our notation and conventions (Section 1.1), let K be either a number field or a function field
of transcendence degree 1 over k. In the former case, let 𝐶 = SpecO𝐾 and in the latter case, let C be
the smooth proper curve over k with 𝐾 = 𝑘 (𝐶). Next, let 𝑝 : X → 𝐶 be a normal proper Artin stack
over C with finite diagonal. This implies by [18] that there is a coarse space morphism 𝑞 : X → 𝑋 .

A K-rational point 𝑥 ∈ X (𝐾) is a section

𝑥 : Spec𝐾 → X

of p over the generic point 𝜂 := Spec𝐾 of C, and an integral point is a section 𝑥 : 𝐶 → X of p. Now
in the case of proper schemes, the valuative criterion tells us that every rational point extends uniquely
to an integral point. However, this is no longer true for proper stacks; instead there exists a (possibly
ramified) surjection 𝐶 ′ → 𝐶 such that the point 𝑥 ′ : Spec 𝑘 (𝐶 ′) → X extends to an integral point
𝐶 ′ → X . It is precisely this phenomenon that leads to difficulties in defining heights on stacks.

Before discussing how to define heights of rational points on stacks, let us start by describing heights
of integral points. This is actually rather simple and not different from the case of schemes. Given a
vector bundle V on X , we let the height htV (𝑥) of an integral point 𝑥 : 𝐶 → X be − deg

(
𝑥∗V∨) . (In the

arithmetic setting, V is metrized, and we mean the Arakelov degree.) The notion of height of an integral
point satisfies Weil’s height machine, in that

htL⊗𝑛 (𝑥) = 𝑛 htL (𝑥)

for a line bundle L. As mentioned above, for proper schemes there is no difference between rational
points and integral points, so for schemes it is enough to define heights for integral points. For stacks,
we must now deal with rational points that do not extend to integral points.

Let us now outline the general case of how we define heights of rational points on stacks. Given a
rational point 𝑥 : 𝐶 � X , we know it extends to an integral point after allowing for a ramified extension
of C. Unfortunately, there are many choices of such ramified extensions and so our first task is to
construct a ‘minimal’ such extension; this extension is no longer a curve, but rather a stack, which we
call a tuning stack. Precisely, we construct a commutative diagram

Spec𝐾

���
��

��
��

��
��

𝑥

��
C 𝑥 ��

𝜋

��

X

𝑝
����
��
��
��

𝐶 ,
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where 𝜋 : C → 𝐶 is a birational coarse space map, and 𝑥 : C → X is a representable morphism of
stacks which extends the rational point 𝑥 : Spec𝐾 → X . We can therefore think of C as being a ‘stacky
version’ of C and can think of 𝑥 as an integral point of X . We then define the stable height of the rational
point 𝑥 ∈ X (𝐾) with respect to V to be

htstV (𝑥) := − deg(𝑥∗V∨)

and define the unstable height (which we will refer to as simply the height) of the rational point 𝑥 ∈ X (𝐾)
with respect to V to be

htV (𝑥) := − deg(𝜋∗𝑥∗V∨).

In Subsection 2.1, we show that tuning stacks exist and discuss their basic properties. We then turn to the
study of heights in Subsection 2.2, and in Subsections 2.3 and 2.4 discuss some details of the practical
computation of heights. In Appendix B, we gather technical facts about one dimensional normal Artin
stacks with finite diagonal (i.e., the types of stacks that occur as tuning stacks).

2.1. Tuning stacks and tuning sheaves

Throughout we let K, C and X be as at the start of Section 2. Motivated by the tuning module of
Yasuda–Wood [74, Definition 3.3], we begin by defining the central object of this subsection.
Definition 2.1. Given 𝑥 ∈ X (𝐾), we say that (C, 𝑥, 𝜋) is a tuning stack for x if C is a normal Artin stack
with finite diagonal, 𝜋 : C → 𝐶 is a birational coarse space map, and the diagram

Spec𝐾

���
��

��
��

��
��

𝑥

��
C 𝑥 ��

𝜋

��

X

����
��
��
��

𝐶

commutes. A morphism (C ′, 𝑥 ′, 𝜋′) → (C, 𝑥, 𝜋) of tuning stacks for x is a map 𝑓 : C ′ → C such that
𝜋 ◦ 𝑓 = 𝜋′ and 𝑥 ◦ 𝑓 = 𝑥 ′. Finally, if (C, 𝑥, 𝜋) is terminal among all tuning stacks, we say C is a universal
tuning stack for x.

We show the existence of a universal tuning stack after some preliminaries.
Remark 2.2. Given a rational point 𝑥 : Spec𝐾 → X , there exists a nonempty open subset 𝑈 ⊆ 𝐶 and
a map 𝑈 → X over C that extends the morphism x. Since X is of finite type over C, this follows, for
example, from [62, Proposition B.1].
Lemma 2.3. Let 𝑥 ∈ X (𝐾), and suppose (C, 𝑥, 𝜋) and (C ′, 𝑥 ′, 𝜋′) are tuning stacks for x. Then the
following hold.

1. If C ′
𝑓

−−→−−→
𝑔

C are two morphisms of tuning stacks, then f and g are isomorphic up to unique 2-

isomorphism.
2. If 𝑓 : C ′ → C is a representable morphism of tuning stacks, then f is an isomorphism.
3. If 𝑥 and 𝑥 ′ are representable, then any map 𝑓 : C ′ → C of tuning stacks is an isomorphism.
Proof. We start with (1). Since 𝜋 and 𝜋′ are birational, there is a nonempty open subset 𝑈 ⊆ 𝐶 over
which both 𝜋 and 𝜋′ are isomorphisms. Then 𝑓 |𝑈 = 𝑔 |𝑈 . Since C is normal and C ′ is separated, [29,
Proposition A.1] tells us there is a unique 2-isomorphism 𝑓 � 𝑔.

We now turn to (2) and (3). Since 𝑥 ′ = 𝑥 ◦ 𝑓 , if 𝑥 and 𝑥 ′ are representable then [19, Corollary
2.2.7] shows f is also representable. Thus, (3) reduces to (2). To handle case (2), note that 𝜋 and 𝜋′ are
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birational, proper, and quasi-finite, so f is as well. Then f is a birational, proper, quasi-finite morphism
of normal stacks, hence an isomorphism by Zariski’s main theorem. �

The next result makes use of relative normalization for morphisms of stacks. We refer the reader to
[52, Definition 5.3].

Lemma 2.4. Let 𝑓 : Y → Z be a quasi-compact quasi-separated morphism of stacks with finite
diagonal. Let Y ′ → Z be the relative normalization of f. If Y is normal, then Y ′ is normal.

Proof. By definition of the relative normalization, f factors as Y → Y ′ := Spec
Z
O′ → Z , where the

sheaf O′ is the integral closure of OZ in 𝑓∗OY (i.e., the integral closure relative to the morphism of
sheaves OZ → 𝑓∗OY induced by the map f ). Letting 𝑍 → Z be a smooth cover by a scheme, we have
a Cartesian diagram

W ��

��

𝑊 ′ ��

��

𝑍

��
Y �� Y ′ �� Z ,

whereW may not be a scheme since we have not assumed f is representable. Since relative normalization
commutes with smooth base change, 𝑊 ′ → 𝑍 is the relative normalization of W → 𝑍 . Since 𝑊 ′ → Y ′

is a smooth cover, to show normality of Y ′ it suffices to prove 𝑊 ′ is normal. We have therefore reduced
to the case where Z is a scheme, which we will denote by Z.

We are now in the situation where 𝑓 : Y → 𝑍 and Z is a scheme. Notice that Y ′ → 𝑍 is affine, and
so Y ′ = 𝑌 ′ is a scheme. Since Z is a scheme, we know that f factors as Y 𝜋−→ 𝑌

𝑔
−→ 𝑍 , where 𝜋 is a

coarse space map (which exists since Y has finite diagonal). By definition, O′ is the integral closure of
O𝑍 in 𝑓∗OY = 𝑔∗𝜋∗OY = 𝑔∗O𝑌 where the last equality holds because 𝜋 is Stein. Thus, 𝑌 ′ → 𝑍 is the
relative normalization of 𝑌 → 𝑍 . Since Y is normal, Y is as well so 𝑌 ′ is normal by [66, Tag 035L]. �

We are now ready to show the existence of universal tuning stacks. We thank Martin Olsson for
suggesting this construction.

Proposition 2.5 (Universal tuning stacks exist). Let 𝑥 ∈ X (𝐾). If 𝑈 → X is any extension of x as in
Remark 2.2, then its relative normalization 𝑥 : C → X is a universal tuning stack, and it is independent
of the choice of extension 𝑈 → X .

Proof. We abusively refer to the extended map𝑈 → X as x. By definition of the relative normalization,
x factors as

𝑈 −→ C := Spec
X
O′ 𝑥−→ X ,

where the sheaf O′ is the integral closure relative to the morphism of sheaves OX → 𝑥∗O𝑈 induced
by the map x. Lemma 2.4 shows that C is normal. Since 𝑥 is representable, integral and of finite type, it
follows from [66, Tag 01WJ] that it is finite. Then finiteness of the diagonal for C follows from finiteness
of the diagonal for X . Thus, C has a coarse space map 𝜋 : C → 𝐶 ′. Since C is normal, 𝐶 ′ is as well. The
morphism 𝑥 induces a map 𝑞 : 𝐶 ′ → 𝐶.

We next show that C → 𝐶 is an isomorphism over U. Consider the Cartesian diagram

𝑈
𝛼 �� C𝑈

𝛽 ��

��

X𝑈
𝛾 ��

��

𝑈

��
𝑈 �� C �� X �� 𝐶.
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Since relative normalization commutes with smooth base change, 𝛽 : C𝑈 → X𝑈 is the relative normal-
ization of 𝛽◦𝛼 : 𝑈 → X𝑈 . Note that 𝛾 ◦ 𝛽◦𝛼 = id𝑈 is proper quasi-finite and 𝛾 : X𝑈 → 𝑈 is separated,
so 𝛽 ◦ 𝛼 is proper quasi-finite, hence finite as it is representable. Thus, 𝛽𝛼 is integral so its relative
normalization 𝛼 : 𝑈 → C𝑈 is an isomorphism. As a result, 𝛾 ◦ 𝛽 : C𝑈 → 𝑈 is an isomorphism.

Now that we have established C → 𝐶 is an isomorphism over U, it follows that 𝑞 : 𝐶 ′ → 𝐶 is
an isomorphism over U. So, q is a birational map of normal curves (or Dedekind schemes), hence an
isomorphism. This shows that 𝜋 : C → 𝐶 ′ � 𝐶 is a birational coarse space map, and hence C is a tuning
stack.

Before turning to the claim concerning universality, we show that 𝑥 : C → X is independent of the
choice of open subset U and extension𝑈 → X of x. To see this, it suffices to show that if 𝑖 : 𝑉 → 𝑈 is the
inclusion of a nonempty open subset, then the relative normalizations of 𝑥 : 𝑈 → X and 𝑥 ◦ 𝑖 : 𝑉 → X
are the same. Letting 𝑥 : C → X be the former normalization and 𝑥 ′ : C ′ → X be the latter one, by
functoriality of the relative normalization we obtain a morphism 𝑓 : C ′ → C of tuning stacks. Lemma
2.3 (3) shows f is an isomorphism.

To prove universality, let (C ′, 𝑥 ′, 𝜋′) be another tuning stack. By Lemma 2.3 (1), we need only
show the existence of a map 𝑓 : C ′ → C of tuning stacks. We let C ′ −→ C ′′ 𝑥′′−→ X be the relative
normalization of 𝑥 ′. Since 𝜋 and 𝜋′ are birational, we can choose a nonempty open subset 𝑈 ⊆ 𝐶 over
which 𝜋 and 𝜋′ are isomorphisms. We have just showed that C is independent of the choice of U, so we
have a commutative diagram

𝑈 ��

��

C ′ �� C ′′

𝑥′′

��
C 𝑥 ��

𝑔

���������� X ,

where we obtain the morphism 𝑔 : C → C ′′ (shown as a dotted arrow above) from the universal property
of the relative normalization of 𝑥 : 𝑈 → X . By Lemma 2.4, we know C ′′ is normal. We also know
that 𝑥 ′′ is representable, integral and of finite type, hence finite by [66, Tag 01WJ]. Then C ′′ has finite
diagonal, so it has a coarse space. Since 𝜋′ is an isomorphism over U, we see C ′′ → 𝐶 is a coarse space
which is an isomorphism over U; this follows from the same argument used to establish this fact for
C → 𝐶. So, C ′′ is a tuning stack for x. Finally, Lemma 2.3 (3) shows that g is an isomorphism, and so

C ′ −→ C ′′ 𝑔−1

−→ C is our desired map of tuning stacks. �

Corollary 2.6. Let (C ′, 𝑥 ′, 𝜋′) be a tuning stack. Then (C ′, 𝑥 ′, 𝜋′) is a universal tuning stack if and only
if 𝑥 ′ is representable.

Proof. Let (C, 𝑥, 𝜋) be the universal tuning stack constructed in Proposition 2.5. By construction, 𝑥 is
representable. Now, if (C ′, 𝑥 ′, 𝜋′) is a universal tuning stack, by definition of universality, there is an
isomorphism 𝑓 : C ′ → C of tuning stacks. Then 𝑥 ′ = 𝑥 ◦ 𝑓 shows that 𝑥 ′ is representable.

Conversely, if (C ′, 𝑥 ′, 𝜋′) is a tuning stack, then by universality of C, we have a morphism 𝑓 : C ′ → C
of tuning stacks. The result then follows from Lemma 2.3 (3). �

Remark 2.7. We note that the universal tuning stack C inherits many properties of X . For instance, if
X is Deligne–Mumford, then so is C (since the map C → X is representable); similarly, C is separated.

Example 2.8 (Root stacks). Cadman [17, Section 2] introduced the notion of a root stack, which we
will use repeatedly both in examples and in proofs. Given an algebraic stack Y and an effective Cartier
divisor E on Y, the root stack 𝑌 → 𝑌 of order r is obtained by formally adjoining an rth root 𝐸 of E; in
other words, for a scheme T and a map 𝑓 : 𝑇 → 𝑌 , a lift of f to 𝑌 corresponds to an effective Cartier
divisor 𝐸 ′ on T and an equivalence 𝑟𝐸 ′ ∼ 𝑓 ∗𝐸 .

Remark 2.9. Not every tuning stack is universal. For example, given any tuning stack (C, 𝑥, 𝜋) and a
smooth nonstacky closed point P of C, let 𝑓 : C ′ → C be a root stack along P; then f is an isomorphism
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away from P and the composite 𝑥 ◦ 𝑓 : C ′ → X is not representable. So Corollary 2.6 shows that
(C ′, 𝑥 ◦ 𝑓 , 𝜋 ◦ 𝑓 ) is a tuning stack which is not universal.

Occasionally, we will need to work with the universal tuning stack itself, for example, in Section 4
where we define the essential deformation dimension. However, we prove in Proposition 2.13 that our
notion of height is independent of the choice of tuning stack. In practice, it is frequently more convenient
to construct a tuning stack via a more direct procedure than relative normalization, such as taking a
quotient stack, or as a root stack; see Section 3 for examples.

Definition 2.10. Let V be a vector bundle on X . If 𝑥 ∈ X (𝐾) and (C, 𝑥, 𝜋) is a choice of tuning stack,
then we refer to 𝜋∗𝑥

∗V∨ (which is a vector bundle by Corollary B.4) as the tuning sheaf associated to x,
V , and C.

2.2. Heights

We are now ready to give the definition of the height of a rational point on a stack (with respect to a given
vector bundle). We define the height to be the degree of any associated tuning sheaf. The tuning sheaf
is, in general, a vector bundle, so by degree we mean the degree of the top wedge power, which is now a
line bundle (metrized in the arithmetic case) on C. We show that this is well defined in Proposition 2.13.

Definition 2.11. LetX be a stack over C, and let𝐾 = 𝐾 (𝐶). LetV be a vector bundle onX and 𝑥 ∈ X (𝐾)
be a rational section. If C is any tuning stack for x and T𝑥,V ,C is the associated tuning sheaf, we let
htV (𝑥) = − deg(T𝑥,V ,C). In other words, the height of the rational point 𝑥 ∈ X (𝐾) with respect to V is

htV (𝑥) := − deg(𝜋∗𝑥∗V∨),

where (C, 𝑥, 𝜋) is any choice of tuning stack for x.

If L is a finite extension of K, we can define the height of a point of X (𝐿) by letting 𝐶 ′ be SpecO𝐿

(if K is a number field) or the smooth projective curve with function field L (if K is a function field),
and consider X ′ = X ×𝐶 𝐶 ′, which carries a vector bundle obtained by pulling back V . Then we define
the height of a point of X (𝐿) to be the height of the corresponding point of X ′(𝐿).

At this point, we need to comment on a piece of notation. When C is a curve over a finite field k, the
degree of a divisor 𝐷 = 𝑃1 + · · · +𝑃𝑟 on C is understood to be

∑
𝑖 log |𝑘𝑃𝑖 |, where 𝑘𝑃𝑖 is the residue field

of the closed point 𝑃𝑖 . In particular, deg 𝐷 does not lie in Z but in (log 𝑞)Z, where 𝑞 = |𝑘 |. This choice
of notation is most natural in a context, as here, where we want to write down theorem statements and
arguments which treat the case of number fields and function fields at once. The reader who wants to
work in the context where C is a curve over a fixed finite field k and avoid the number field case is free to
take heights to be integers, which just modifies everything in this paper by a multiplicative factor of log 𝑞.

The reader may wonder why the height is defined as the negative of the degree of a bundle obtained
from V∨, rather than as the degree of a bundle obtained from V itself. The answer is that, in cases
arising naturally, the heights as defined here will typically be bounded below (Northcott property) while
a height defined to be deg(𝜋∗𝑥∗V) will often take values unbounded both above and below, or only
bounded above (Southcott property).

Another natural question: Why do we not define the height of x as degC 𝑥
∗V (where degree is defined

in Definition B.5), which would be more similar to the usual definition? The main reason is that, as we
shall see, degC 𝑥

∗V is identically zero for many choices of X and nontrivial V (e.g., for any line bundle
on 𝐵𝐺). Nonetheless, this function will play a key role for us (it will differ from htV (𝑥) by local terms
supported on the stacky locus of C, as we will see in §2.3), so we give it a name here.

Definition 2.12. Let X , V and K be as in Definition 2.11. Then stable height htstV (𝑥) is defined by

htstV (𝑥) = − degC 𝑥
∗V∨

for any choice of tuning stack C.
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We justify the name ‘stable height’ in Proposition 2.14 below. When x is an integral point of X , we
may take C itself to be the tuning stack; in this case, 𝜋 is the identity and ht(𝑥) and htst (𝑥) agree.

Proposition 2.13 (Height and stable height are independent of tuning stack). If (C1, 𝑥1, 𝜋1) and
(C2, 𝑥2, 𝜋2) are two choices of tuning stacks for 𝑥 ∈ X (𝐾), then − deg(𝜋1∗𝑥

∗
1V∨) = − deg(𝜋2∗𝑥

∗
2V∨)

and − deg(𝑥∗1V∨) = − deg(𝑥∗2V∨) for all vector bundles V on X .

In fact we show more: Not only the height, but the isomorphism class of the tuning sheaf is independent
of the choice of tuning stack.

Proof. Let (C, 𝑥, 𝜋) be the universal tuning stack for x whose existence we have shown in Proposition
2.5. By the universal property, there exist unique morphisms 𝑓𝑖 : C𝑖 → C of tuning stacks. Thus, we
reduce immediately to the case where C1 is universal and 𝑓 : C2 → C1 is a map of tuning stacks. Now, let

C2 → Spec 𝑓∗OC2 → C1

be the Stein factorization. Then Spec 𝑓∗OC2 → C1 is a birational, finite, representable map with normal
codomain and hence an isomorphism by Zariski’s main theorem.

In particular f is Stein (i.e. the map OC1 → 𝑓∗OC2 is an isomorphism). Then for any vector bundle
W on C1,

W � OC1 ⊗OC1
W � 𝑓∗OC2 ⊗OC1

W � 𝑓∗ 𝑓
∗W ,

where the third isomorphism is the projection formula. Applying 𝜋1∗ to the above isomorphism with
W = 𝑥∗1V∨, we see 𝜋1∗𝑥

∗
1V∨ � 𝜋2∗𝑥

∗
2V∨ and so height is independent of the choice of tuning stack. (In

the Arakelov case, we note that the tuning stacks are all birational so that the metric does not change.)
Independence of the stable height follows from Lemma B.9 applied to 𝑓𝑖 . �

The justification for the name ‘stable height’ is as follows. As we shall see, the height htV (𝑥) does not
behave well under ramified base change. That is: If 𝐿/𝐾 is a finite extension, and 𝑥𝐿 the point of X (𝐿)
obtained by composing 𝑥 : Spec𝐾→X with the structure map 𝑝 : Spec 𝐿→ Spec𝐾 , the relationship
between htV (𝑥) and htV (𝑥𝐿) is not in general very transparent. For example, if X = 𝐵𝐺 and 𝑥 ∈ X (𝐾)
corresponds to a Galois extension 𝐿/𝐾 with Galois group G, then htV (𝑥𝐿) = 0, but htV (𝑥) ≠ 0 in
general. For stable height, by contrast, the situation is much as we are used to from heights on schemes.

Proposition 2.14 (Stable height is stable under base change). With X , V , x and 𝑥𝐿 as above, and 𝐿/𝐾
is a separable extension, then

htstV (𝑥𝐿) = [𝐿 : 𝐾] htstV (𝑥).

Proof. If L is a number field, then let 𝐶 ′ = SpecO𝐿 ; if L is a function field, then let 𝐶 ′ be the projective
normal curve with function field L. Let C be a tuning stack for 𝑥𝐾 . Then the normalization C ′ of the
fiber product C ×𝐶 𝐶 ′ is a tuning stack for 𝑥𝐿 , and we compute that

htstV (𝑥𝐿) := deg 𝑥∗𝐿V = deg 𝑔 · deg 𝑥∗V = [𝐿 : 𝐾] htstV (𝑥),

where g is the projection C ′ → C and the middle inequality is Lemma B.9. �

When X is a scheme, we can take C = 𝐶 and so stable height and height are the same. More generally,
height agrees with stable height whenever the vector bundle V is pulled back from a vector bundle on a
scheme.

Proposition 2.15. Suppose 𝑓 : X→𝑌 is a morphism over C, where Y is a scheme. Let V be a vector
bundle on Y. Then, for all 𝑥 ∈ 𝑋 (𝐾),

ht 𝑓 ∗𝑉 (𝑥) = htst𝑓 ∗𝑉 (𝑥).
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Proof. Let C be a tuning stack for x, and let 𝑥 : C→X be an extension of x to C. The map 𝑓 ◦ 𝑥 : C→𝑌
factors as 𝑔 ◦ 𝜋 for some 𝑔 : 𝐶→𝑌 , by the universal property of the coarse space. So the vector bundle
𝑥∗ 𝑓 ∗𝑉 can be written as 𝜋∗𝑔∗𝑉 . Noting that duality commutes with pullback, we now have

ht 𝑓 ∗𝑉 (𝑥) = − deg𝐶 𝜋∗𝜋
∗𝑔∗𝑉∨

and

htst𝑓 ∗𝑉 (𝑥) = − degC 𝜋∗𝑔∗𝑉∨ = − deg𝐶 𝑔∗𝑉∨

(where the last equality follows from Lemma B.9 since deg 𝜋 = 1). The result now follows from the fact
that for any bundle W on C,

𝑊 � O𝐶 ⊗O𝐶 𝑊 � 𝜋∗OC ⊗O𝐶 𝑊 � 𝜋∗𝜋
∗𝑊 ;

the last isomorphism is the projection formula, and the middle follows since the coarse map is Stein [61,
Theorem 6.12]. �

Remark 2.16. Similarly, if 𝑓 : X → Y is a morphism of stacks and V is a vector bundle on Y , then for
any 𝑥 ∈ X (𝐾),

ht 𝑓 ∗V (𝑥) = htV ( 𝑓 ◦ 𝑥)

since a tuning stack for x is also a tuning stack for 𝑓 ◦ 𝑥.

Definition 2.17. We say that a vector bundle V on X /𝐾 satisfies the Northcott property if for every finite
extension 𝐿/𝐾 and every integer B,

{𝑥 ∈ X (𝐿) : htV (𝑥) ≤ 𝐵}

is finite.

This definition is slightly unsatisfactory because it will be too lenient for some choices of X . For
instance, ifX is a curve of genus at least 2, it has finitely many points over every global field, so under this
definition the Northcott property will be satisfied by every vector bundle. In the present paper, however,
we will almost always be considering stacks X /𝐾 which have infinitely many K-rational points. Under
such circumstances we expect V to satisfy the Northcott property if V is ‘positive enough’, which we
demonstrate through several examples; see Section 3. (Be warned, however, that the Northcott vector
bundles do not form a cone in any sense. For instance, it is possible that a line bundle L is Northcott but
positive multiples L⊗𝑛 of it are not; the nontrivial line bundle on 𝐵𝜇2 has this property.) It is in order to
ensure that natural examples exhibit the Northcott property that we use V∨ rather than V when defining
height.

Definition 2.18. Let X , V and K be as in Definition 2.11, with V Northcott. We define the counting
function associated to V and K to be

𝑁V ,𝐾 (𝐵) := #{𝑥 ∈ X (𝐾) : HtV (𝑥) ≤ 𝐵}.

Remark 2.19. In case V is a vector bundle of rank greater than 1, it would probably be better still to
consider a definition of height which associates to x the tuning sheaf T𝑥,V ,C itself, rather than its degree.
One might call such a height a “lattice height.” For instance, the lattice height of a Q-point on X would
be a lattice Λ in RrankV , rather than a real number; the height we study in the present paper would be
the covolume of Λ. This point of view is interesting even when X is a scheme; see for instance the
notion of slopes of a rational point introduced by Peyre in [57, §4.2] and [58], and the related work of
Browning and Sawin in the Hardy–Littlewood regime [16]. On the other hand, when X is 𝐵𝐺 and V
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is a permutation representation 𝐺 ↩→ 𝑆𝑛, the lattice height of a rational point of X corresponding to a
degree-n number field 𝐿/𝑄 is the ring of integers of O𝐿 considered as a lattice in 𝐿 ⊗Q R; the covolume
of this lattice is the absolute value of the discriminant of the number field, which is indeed the height
in the sense considered in this paper. This lattice is often called the ‘shape’ of the number field, and
the problem of counting number fields subject to constraints on shape is already an area of substantial
activity; see, for instance, [39, 38].

2.3. Computing heights: local discrepancies

We now turn to the problem of practical computation of heights of points on stacks.
As above, let C be the spectrum of the ring of integers of a number field or a smooth curve over a

finite field, let K be the fraction field of C and let X a normal proper Artin stack over C with finite
diagonal. Let V be a vector bundle on X , where we recall once again that, if K is a number field, V is a
metrized vector bundle, as defined in §A.4.

Let 𝑥 : Spec𝐾→X be a rational point of X , let C be a tuning stack, 𝜋 : C→𝐶 the coarse moduli map
and 𝑥 : C→X an integral extension of x.

By Definition 2.11, the height of x is

htV (𝑥) = − deg 𝜋∗𝑥∗V∨,

and by Definition 2.12 we have

htstV (𝑥) = − deg 𝑥∗V∨.

Our goal in this section is to study the difference between height and stable height. To this end, we recall
the natural map of vector bundles on C

𝜋∗𝜋∗𝑥
∗V∨→𝑥∗V∨ (2.20)

whose cokernel is a sheaf 𝑀 (𝑥∗V∨) on C with trivial generic fiber. This map is the counit of adjunction
and we claim that it is injective. Indeed, we can check injectivity locally and assume that C is affine, in
which case 𝜋∗𝑥∗V∨ = Γ(𝑥∗V∨), and the map (2.20) is thus the inclusion

Γ(𝑥∗V∨) ⊗O𝐶 OC → 𝑥∗V∨

of global sections.
Let 𝐶 ′ be a smooth proper curve (or in the arithmetic case, SpecO𝐿 for some étale algebra 𝐿/𝐾)

endowed with a finite flat surjection 𝑝 : 𝐶 ′→C whose degree we denote by m; such a 𝐶 ′ exists by
Proposition B.3. The sheaf 𝑝∗𝑀 (𝑥∗V∨) is now a generically trivial and finitely generated sheaf on
𝐶 ′, which is to say it is a finite abelian group with the structure of an O𝐶′-module. It follows from
Proposition B.10 and exactness of 𝑝∗ that

log |𝑝∗𝑀 (𝑥∗V∨)| = deg 𝑝∗𝑥∗V∨ − deg 𝑝∗𝜋∗𝜋∗𝑥
∗V∨

= 𝑚(deg 𝑥∗V∨ − deg 𝜋∗𝜋∗𝑥∗V∨)
= 𝑚(htV (𝑥) − htstV (𝑥)).

Now, 𝑝∗𝑀 (𝑥∗V∨) is a finite O𝐶′-module and as such has a canonical decomposition as a finite direct
sum ⊕𝑣 𝑝

∗𝑀 (𝑥∗V∨)𝑣 , where v varies over non-Archimedean places of 𝐶 ′.

Definition 2.21. With all notation as above, the local discrepancy 𝛿V;𝑣 is defined as

𝛿V;𝑣 (𝑥) =
1
𝑚

log |𝑝∗𝑀 (𝑥∗V∨)𝑣 |.
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We thus arrive at the formula

htV (𝑥) = htstV (𝑥) +
∑
𝑣

𝛿V;𝑣 (𝑥). (2.22)

One can think of the structural information imparted by equation (2.22) as follows. The height htV is
a nonadditive function which changes under field extensions and lacks a canonical decomposition into
local terms. However, it canonically decomposes into two pieces; one of which, htstV , is additive and
stable under field extensions, while the other,

∑
𝑣 𝛿V;𝑣 , canonically decomposes into local terms. These

good features of the summands often make it manageable to compute them individually.
Concretely, we may think of local discrepancy as follows. Write 𝐾𝑣 for the completion of K at v.

Define 𝐿𝑣 = 𝐾𝑣 ⊗𝐶 𝐶 ′ so that 𝐿𝑣 is an étale algebra over 𝐾𝑣 . We can thus write 𝐶 ′
𝑣 = SpecO𝐿𝑣 .

Choose an identification of 𝑥∗V∨|Spec𝐾𝑣 with 𝐾𝑟
𝑣 . Then the generic stalk of 𝑝∗𝑥∗V∨ is identified with

𝐿𝑟
𝑣 , and we can think of 𝑝∗𝑥∗V∨ as a𝐶 ′

𝑣 -lattice Λ in the vector space 𝐿𝑟
𝑣 . Then the O𝐾𝑣 -module 𝜋∗𝑥∗V∨

is Λ ∩ 𝐾𝑟
𝑣 , and so 𝑝∗𝜋∗𝜋∗𝑥

∗V∨ is

(Λ ∩ 𝐾𝑟
𝑣 ) ⊗O𝐾𝑣

O𝐿𝑣 ⊂ Λ

and

𝛿V;𝑣 (𝑥) =
1
𝑚

log
���� Λ
(Λ ∩ 𝐾𝑟

𝑣 ) ⊗O𝐾𝑣
O𝐿𝑣

����.
Remark 2.23. One particularly illustrative example is when 𝐿𝑣 is a degree d Galois extension of𝐾𝑣 with
Galois group𝐺 ⊂ 𝑆𝑑 , and 𝑥∗V∨ is the G-representation obtained from the permutation representation of
𝑆𝑑 . In this case, Λ is the O𝐿𝑣 -module O⊕𝑑

𝐿𝑣
and 𝜎 ∈ 𝐺 acts on the i-th basis vector 𝑒𝑖 by 𝜎(𝑒𝑖) = 𝑒𝜎 (𝑖) .

Since Λ is G-linearized, it follows that 𝜎(𝛼𝑒𝑖) = 𝜎(𝛼)𝑒𝜎 (𝑖) for any 𝛼 ∈ 𝐿𝑣 . Said another way, Λ is
the G-linearized O𝐿𝑣 -module given by the skew group ring 𝐺 ∗O𝐿𝑣 . If we label the elements of G by
𝜎1, . . . , 𝜎𝑑 : 𝐿𝑣 → 𝐿𝑣 , then we seeΛ∩𝐾𝑑

𝑣 = Λ𝐺 is the set of sums of the form
∑

𝑖 𝜎𝑖 (𝛼)𝑒𝑖 with 𝛼 ∈ 𝐿𝑣 .
From this description, it is clear that the permutation representation is related to the discriminant. This
relation will be further expanded upon in §3.1.
Proposition 2.24. Let 𝐸𝑣 be an unramified extension of 𝐾𝑣 of degree d, let x be a point of X (𝐾𝑣 ) and
let 𝑥𝐸 be the corresponding point of X (𝐸𝑣 ). Then

𝛿V;𝑣 (𝑥𝐸 ) = 𝑑𝛿V;𝑣 (𝑥).

Proof. (This proof is essentially the same as that of the ‘geometric’ part of [74, Lemma 3.4].)
Write Λ𝐸 for (Λ ⊗O𝐾𝑣

O𝐸𝑣 ). Observe first that

Λ𝐸 ∩ 𝐸𝑟
𝑣 = (Λ ∩ 𝐾𝑟

𝑣 ) ⊗O𝐾𝑣
O𝐸𝑣

since the condition of being in 𝐾𝑟 is cut out by K-linear conditions on 𝐿𝑟 considered as a K-module;
the same linear conditions applied to (𝐿 ⊗𝐾 𝐸)𝑟 cut out 𝐸𝑟 . We then get an equality

𝑑𝛿V;𝑣 (𝑥) = 𝑑
1
𝑚

log
���� Λ
(Λ ∩ 𝐾𝑟

𝑣 ) ⊗O𝐾𝑣
O𝐿𝑣

���� = 1
𝑚

log
���� Λ𝐸

(Λ ∩ 𝐾𝑟
𝑣 ) ⊗O𝐾𝑣

O𝐿𝑣 ⊗O𝐾𝑣
O𝐸𝑣

����.
On the other hand, writing 𝐹𝑣 for the etale algebra 𝐸𝑣 ⊗𝐾𝑣 𝐿𝑣 , we have

𝛿V;𝑣 (𝑥𝐸 ) =
1
𝑚

log
���� Λ𝐸

(Λ𝐸 ∩ 𝐸𝑟
𝑣 ) ⊗O𝐸𝑣

O𝐹𝑣

���� = 1
𝑚

log
���� Λ𝐸

(Λ ∩ 𝐾𝑟
𝑣 ) ⊗O𝐾𝑣

O𝐹𝑣

����.
The desired equality now follows from the fact that, since 𝐸𝑣/𝐾𝑣 is unramified, we have O𝐹𝑣 =
O𝐿𝑣 ⊗O𝐾𝑣

O𝐸𝑣 . �
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There will be some cases where our life is simpler if we can ignore a specified finite set of primes.
The following proposition is useful when we need to show this negligence does not perturb our height
functions by very much.

Proposition 2.25. Suppose K is a number field. There is a constant 𝐶 (X ,V , 𝑣) such that

𝛿V;𝑣 (𝑥) ≤ 𝐶 (X ,V , 𝑣)

for all x in X (𝐾𝑣 ).

Proof. (The following proof is adapted from a nice proof of Hilbert 90 that we learned from [8, Lemma
3.3].)

There is some constant B such that every point 𝑥 ∈ X (𝐾𝑣 ) extends to an integral point of X (𝐿𝑣 )
for some finite Galois extension L of K of degree at most B; this follows from the fact that X has a
finite cover by a scheme; see [62, Theorem B]. Since K is a number field, there are only finitely many
isomorphism classes of extensions of 𝐾𝑣 of degree at most B. We may thus prove the required bound
for a single choice of 𝐿𝑣 .

Write G for Gal(𝐿/𝐾). Write 𝛼1, . . . , 𝛼𝑚 for a subset of O𝐿𝑣 which freely spans O𝐿𝑣 as an O𝐾𝑣 -
module. Let 𝜆 be an element of Λ, and for each i in 1, . . . , 𝑚 define

𝜆𝑖 =
∑
𝑔∈𝐺

(𝛼𝑖𝜆)𝑔 .

The action of G permutes the summands above, so 𝜆𝑖 is fixed by G and thus lies in Λ ∩ 𝐾𝑟
𝑣 .

We can also write

𝜆𝑖 =
∑
𝑔∈𝐺

(𝛼𝑔
𝑖 ) (𝜆

𝑔). (2.26)

Write A for the 𝑚 × 𝑚 matrix in with rows indexed by 𝛼1, . . . , 𝛼𝑚 and columns by the elements of G;
by Dedekind’s lemma this matrix lies in GL𝑚(𝐿𝑣 ). Write −→𝜆 for the vector 𝜆1, . . . , 𝜆𝑚 ∈ 𝐿𝑚

𝑣 and −→𝜇 for
the vector whose entries are {𝜆𝑔}𝑔∈𝐺 . With this notation, equation (2.26) becomes

−→
𝜆 = 𝐴−→𝜇

which we can rewrite as

−→𝜇 = 𝐴−1−→𝜆 .

In particular, we can write

𝜆 =
∑

𝑎𝑖𝜆𝑖 , (2.27)

where 𝑎𝑖 are entries of 𝐴−1. But note that A depends only on the choice of 𝛼𝑖; in particular, there is some
constant C such that the entries of 𝐴−1 lie in𝐶−1O𝐿𝑣 . Thus, equation (2.27) expresses an arbitrary 𝜆 ∈ Λ
as a linear combination of the 𝜆𝑖 , which lie in Λ ∩ 𝐾𝑟

𝑣 , with coefficients in 𝐶−1O𝐿𝑣 . We conclude that

Λ ⊂ 𝐶−1 [(Λ ∩ 𝐾𝑟
𝑣 ) ⊗O𝐾𝑣

O𝐿𝑣 ]

which provides a bound for ���� Λ
(Λ ∩ 𝐾𝑟

𝑣 ) ⊗O𝐾𝑣
O𝐿𝑣

����
depending only on 𝐿𝑣 , as required. �
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We note that Proposition 2.25 does not hold in general when K has characteristic p. For instance,
we will see that the local discrepancy at v for a point of 𝐵𝐺, with V the regular representation of G,
computes the discriminant of the local extension: but we know that the discriminant of a Z/𝑝Z-extension
of F𝑝 ((𝑡)) can be arbitrarily large, by contrast with the discriminant of a Z/𝑝Z-extension of Q𝑝 .

2.4. Computing heights: line bundles on X with globally generated powers

In this section, we consider the special case where V is a line bundle L. It turns out that, speaking
loosely, if some tensor power L𝑚 has “enough sections,” we can use these sections to compute heights
of rational points on X with little explicit reference to stacks. (Whether this is a virtue depends on the
reader’s taste.)

Suppose X is a stack over C, L is a metrized line bundle on X , and 𝑠1, . . . , 𝑠𝑘 are sections of L. We
say L is generically globally generated by 𝑠1, . . . , 𝑠𝑘 if the cokernel F of the corresponding morphism
of sheaves

O⊕𝑘
X →L

vanishes over the generic point of C. In particular, this implies that F is supported at finitely many
places v of C. More specifically: For each non-Archimedean v with uniformizer 𝜋𝑣 ∈ O𝐶𝑣 , there is an
integer 𝑚𝑣 such that the restriction of F to X ×𝐶 O𝐶𝑣 is killed by 𝜋𝑚𝑣

𝑣 (since X is finite type, it suffices
to check this on a finite flat cover). In the case where C has no Archimedean places, we say L is globally
generated by 𝑠1, . . . , 𝑠𝑘 when the map from O⊕𝑘

X to L is surjective. We write 𝑞𝑣 for the order of the
residue field at v, if v is a non-Archimedean place; when v is Archimedean, we can take 𝑞𝑣 = 𝑒.

Proposition 2.28. Suppose X is a stack, and suppose L is a metrized line bundle on X such that
some power L𝑛 is generically globally generated by sections 𝑠1, . . . , 𝑠𝑘 . Let K be a global field, and let
𝑥 : Spec𝐾→X be a point of X (𝐾). Choose an identification of 𝑥∗L (whence also 𝑥∗L𝑛) with K, and
write 𝑥1, . . . , 𝑥𝑘 for the pullbacks of 𝑠1, . . . , 𝑠𝑘 by x. Then

htL (𝑥) =
∑
𝑣

⌈
(1/𝑛) log𝑞𝑣 max(|𝑥1 |𝑣 , . . . , |𝑥𝑘 |𝑣 )

⌉
log 𝑞𝑣 + 𝐸 (𝑥),

where 𝐸 (𝑥) is a function bounded above and below on X (𝐾). When C has no Archimedean places and
L𝑛 is globally generated by 𝑠1, . . . , 𝑠𝑘 we have

htL (𝑥) =
∑
𝑣

⌈
(1/𝑛) log𝑞𝑣 max(|𝑥1 |𝑣 , . . . , |𝑥𝑘 |𝑣 )

⌉
log 𝑞𝑣

exactly.

From now on, we denote a bounded function on X (𝐾) by 𝑂X (𝐾 ) (1). Note that, when 𝐾 = Q,
we may take 𝑥1, . . . , 𝑥𝑘 to be integers, with the property that, for every p, there is some 𝑥𝑖 which is
not a multiple of 𝑝𝑛. We say such a tuple (𝑥1, . . . , 𝑥𝑘 ) ∈ Z𝑘 is in minimal form. Suppose (𝑥1, . . . , 𝑥𝑘 )
corresponds to a point x of X (Q) as in Proposition 2.28. The hypothesis of minimal form implies that
the non-Archimedean contributions all vanish, and we are left with

htL(𝑥) = (1/𝑛) log max
𝑖

|𝑥𝑖 |R +𝑂X (𝐾 ) (1) (2.29)

up to a function bounded on X (Q). (The ceiling function can now be neglected since, having restricted
to a single summand, the difference between a number and its floor is bounded and can be absorbed into
the error term.)

We now prove Proposition 2.28.
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Proof. We note, first of all, that we have not specified the choice of metric on L at Archimedean places,
but this choice can be absorbed in the error term; if L and L′ are line bundles which differ only with
respect to the Archimedean metric, it is easy to see from the proof below that htL − htL′ = 𝑂X (𝐾 ) (1).
(At the moment when we say ‘Fubini–Study metric on O(1) on complex projective space’, just insert
your own favorite metric, which differs from Fubini–Study by a bounded function.)

We begin by computing the degree of 𝑥∗L𝑛 on C. Let 𝐿/𝐾 be a finite extension of some degree
m such that the pullback of x to Spec 𝐿 extends to a morphism 𝑦 : 𝐶 ′→X , where 𝐶 ′ is the curve (or
Dedekind domain) with fraction field L. We then have a commutative diagram:

Spec 𝐿 𝜄 ��

𝜙

��

𝐶 ′ 𝑦 ��

𝑝

��

𝑋

𝑞

��
Spec𝐾 ��

𝑥

��C 𝑥 ��

𝜋

��

X

𝐶 .

Now, degC 𝑥
∗L𝑛 = (1/𝑚) deg𝐶′ 𝑝∗𝑥∗L𝑛. The latter is a metrized line bundle on O𝐿 whose degree

we can compute by means of a section. For ease of notation, write Λ for 𝑝∗𝑥∗L𝑛.

deg𝐶′ 𝑝∗𝑥∗L𝑛 = log |Λ/𝑠1O𝐿 | −
∑

𝜎 : 𝐿→C
|𝜎∗𝑠1 |𝜎 .

Write Λ′ for the submodule of Λ spanned by 𝑠1, . . . , 𝑠𝑘 . By hypothesis, there is a bound independent of
x for the size of Λ/Λ′. Thus, we may replace Λ with Λ′ and get

deg𝐶′ 𝑝∗𝑥∗L𝑛 = log |Λ′/𝑠1O𝐿 | −
∑

𝜎 : 𝐿→C
|𝜎∗𝑠1 |𝜎 +𝑂X (𝐾 ) (1).

Now, the torsion O𝐿-module Λ′/𝑠1O𝐿 can be broken up into v-adic components 𝑇𝑣 , one for each
non-Archimedean place v of K, and by the explicit description of Λ′ we have

log |𝑇𝑣 | = 𝑚(log max
𝑖

|𝑥𝑖 |𝑣 − log |𝑥1 |𝑣 ).

Thus, we have

log |Λ′/𝑠1O𝐿 | =
∑
𝑣�∞

𝑚(log max
𝑖

|𝑥𝑖 |𝑣 − log |𝑥1 |𝑣 ).

We now turn to the Archimedean places, which requires us to specify the metric on L𝑛. The sections
𝑠1, . . . , 𝑠𝑛 provide a map of complex manifolds 𝑓 : X (C)→P𝑘−1(C), and L𝑛 |X (C) is pulled back from
O(1) under f. So we may choose for our metric on L𝑛 |X (C) the pullback of the Fubini–Study metric
on O(1). Having done so, we have∑

𝜎 : 𝐿→C
|𝜎∗𝑠1 |𝜎 =

∑
𝑣 |∞

𝑚(log |𝑥1 |𝑣 − log max
𝑖

|𝑥𝑖 |𝑣 ) +𝑂X (𝐾 ) (1).

To sum up, we have computed that

log |Λ′/𝑠1O𝐿 | −
∑

𝜎 : 𝐿→𝐶

|𝜎∗𝑠1 |𝜎 = −
∑
𝑣

𝑚 |𝑥𝑖 |𝑣 +
∑
𝑣

𝑚 log max
𝑖

|𝑥𝑖 |𝑣 =
∑
𝑣

log max
𝑖

|𝑥𝑖 |𝑣 +𝑂X (𝐾 ) (1),
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whence

deg𝐶′ 𝑝∗𝑥∗L𝑛 = (
∑
𝑣

𝑚 log max
𝑖

|𝑥𝑖 |𝑣 ) +𝑂X (𝐾 ) (1),

whence

deg𝐶 𝑥∗L∨ = −(1/𝑛) (
∑
𝑣

log max
𝑖

|𝑥𝑖 |𝑣 ) +𝑂X (𝐾 ) (1).

We note that, in the case where K is a function field and 𝑠1, . . . , 𝑠𝑘 globally generate L𝑛, the
expression (

∑
𝑣 𝑚 log max𝑖 |𝑥𝑖 |𝑣 ) is just the usual expression for the degree of a line bundle pulled back

from O(1) on P𝑘−1 by a morphism with coordinates (𝑥1 : . . . : 𝑥𝑘 ).
Having computed this degree, which is the negative of the stable height htstL (𝑥), we can compute

htL (𝑥) by adding local discrepancies as in the previous section. First of all, if v is one of the finitely
many non-Archimedean places where L𝑛 is not generated by 𝑠1, . . . , 𝑠𝑘 , we observe that 𝛿L;𝑣 (𝑥) is
𝑂X (𝐾 ) (1) by Proposition 2.25, and since the number of such places is bounded independently of x, we
can absorb the contribution of those local discrepancies 𝛿L;𝑣 (𝑥) into the error term.

So let v be a non-Archimedean place where L𝑛 is generated by 𝑠1, . . . , 𝑠𝑘 . Then, given our choice of
identification of 𝑥∗L𝑛 with K, and writing 𝐿𝑣 for the etale algebra 𝐿 ⊗𝐾 𝐾𝑣 , we can write 𝑥∗L𝑛 as the
Galois-stable lattice I in 𝐿𝑣 spanned as anO𝐿𝑣 -module by 𝑥1, . . . , 𝑥𝑘 . Then 𝑥∗L∨ is the submodule 𝐼−1/𝑛

of 𝐿𝑣 consisting of all 𝛼 ∈ 𝐿𝑣 such that 𝛼𝑛𝐼 ⊂ O𝐿𝑣 . The pushforward 𝜋∗𝑥
∗L∨ is then the submodule

𝐼−1/𝑛 ∩ 𝐾𝑣 of 𝐾𝑣 consisting of all 𝛽 ∈ 𝐾𝑣 with 𝛽𝑛𝑥𝑖 ⊂ O𝐾𝑣 for all i, which is to say it is the fractional
ideal 𝑚𝑐𝑣

𝑣 , where

𝑐𝑣 = �−(1/𝑛) min
𝑖

ord𝑣 𝑥𝑖� = �(1/𝑛) log𝑞𝑣 max
𝑖

|𝑥𝑖 |𝑣� .

So

𝛿L;𝑣 (𝑥) = (1/𝑚) log |𝐼−1/𝑛/𝐼−1/𝑛 ∩ 𝐾 | = (log 𝑞𝑣 ) �(1/𝑛) log𝑞𝑣 max
𝑖

|𝑥𝑖 |𝑣� − (1/𝑛) log max
𝑖

|𝑥𝑖 |𝑣 .

Recalling from above that

htstL (𝑥) = (1/𝑛)
∑
𝑣

log max
𝑖

|𝑥𝑖 |𝑣 +𝑂X (𝐾 ) (1),

we conclude that

htL(𝑥) = htst (𝑥) +
∑
𝑣

𝛿L;𝑣 (𝑥) =
∑
𝑣

�(1/𝑛) log𝑞𝑣 max
𝑖

|𝑥𝑖 |𝑣� log 𝑞𝑣 +𝑂X (𝐾 ) (1)

which was the desired result. �

3. Examples

In this section, we show how to compute heights of points on various stacks that often arise in practice,
emphasizing the fact that in these cases the output of our definition often recovers an invariant which
was already widely used to measure the ‘size’ of the objects parametrized by rational points on those
stacks.
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3.1. Heights on 𝐵𝐺

Let G be a constant finite group scheme over C, let X be the classifying stack 𝐵𝐺/𝐶, and let 𝑞 : 𝐶→𝐵𝐺
be the universal G-cover. Let 𝑥 : Spec𝐾→X be a rational point, and let 𝑥 : C→𝐵𝐺 be the extension of
x to a tuning stack. Then we have a commutative diagram

𝐶 ′ 𝑥𝐶′ ��

𝑝

��

𝐶

𝑞

��
C 𝑥 �� 𝐵𝐺,

where 𝐶 ′ is a smooth proper curve (not necessarily irreducible) whose fiber over Spec𝐾 is an étale
G-algebra 𝐿/𝐾 .

Let V be a vector bundle of rank r on 𝐵𝐺; in other words, V is an r-dimensional representation V of
G over C. Then, by equation (2.22), we have

htV (𝑥) = htstV (𝑥) +
∑
𝑣

𝛿V;𝑣 (𝑥).

First of all, note that 𝑝∗𝑥∗V∨ = 𝑥∗𝐶′𝑞
∗V is a vector bundle on 𝐶 ′ pulled back from the trivial bundle

on C, and thus has degree 0. So

htstV (𝑥) = − deg 𝑥∗V∨ = −(deg 𝑝)−1 deg 𝑝∗𝑥∗V∨ = 0.

We have thus reduced ourselves to the local problem of computing 𝛿V;𝑣 (𝑥) at the finite set of non-
Archimedean places v of K where 𝐿/𝐾 is ramified. Let v be such a place.

The pullback of V∨ along 𝑥∗𝐶′ from C to 𝐶 ′ is O𝐶′ ⊗O𝐶 𝑉∨.
Thus, locally, the G-stable lattice Λ𝑣 ⊂ 𝐿𝑟

𝑣 we use to compute the local discrepancy can be written as

O𝐿𝑣 ⊗O𝐾𝑣
𝑉∨.

We note that this is precisely the G-module studied by Yasuda and Wood in section 3 of [74]. (The
free rank 𝑟O𝐿𝑣 -module we call Λ𝑣 is identified with O𝑟

𝐿𝑣
in their notation.) In particular, the free rank

𝑟O𝐾𝑣 -module Λ𝐺 is precisely the tuning submodule in [74, Def 3.1], and the local discrepancy 𝛿V;𝑣 (𝑥)
is exactly the quantity denoted v𝜏 (𝜌) in [74, Def 3.3]. Thus, we can make use of their results to compute
the local discrepancies explicitly.

The case where V is a permutation representation is an important example; in this case, we find that
the discriminant of a field extension can be understood as a height on 𝐵𝐺 in the sense of this paper. In
particular: When V is a degree-n permutation representation of G, and x is a point of 𝐵𝐺 (𝐾), we can
associate to x a map

𝜌𝑥 : Gal(𝐾)→𝐺→𝑆𝑛

which in turn specifies a degree-n étale algebra 𝐿/𝐾 .

Proposition 3.1. Let V be a vector bundle on 𝐵𝐺 corresponding to a degree-n permutation represen-
tation 𝜌 of G, let x be a point in 𝐵𝐺 (𝐾) and let 𝐿/𝐾 be the algebra corresponding to x as described
above. Then

htV (𝑥) = (1/2) log |Δ𝐿/𝐾 |. (3.2)

Proof. It follows from [74, Theorem 4.8] that

𝛿V;𝑣 (𝑥) = (1/2)𝑎𝑣 (𝜌𝑥),
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where 𝑎𝑣 is the Artin conductor of 𝜌𝑥 |𝐾𝑣 , which is precisely the local component at v of Δ𝐿/𝐾 . Thus,

htV (𝑥) =
∑
𝑣

𝛿V;𝑣 (𝑥) = (1/2) log |Δ𝐿/𝐾 |, (3.3)

where by |Δ𝐿/𝐾 | we mean the absolute norm of the discriminant, that is, the order of the finite group
O𝐶/Δ𝐿/𝐾 . �

In other words, the general definition of height introduced here, when applied to a G-extension
(thought of as a point of 𝐵𝑆𝑛), recovers the discriminant. Of course, a point of 𝐵𝑆𝑛 can be thought of as
a G-extension in different ways; one might have in mind a degree-n extension, the Galois 𝑆𝑛-extension
obtained by applying Galois closure or some other number field with the same Galois closure. Each such
field corresponds to a permutation representation of 𝑆𝑛 (in the first and second case above, the standard
representation and the regular representation) and the discriminant of the field is computed by the height
with respect to the vector bundle V specified by the corresponding permutation representation.

The case X = 𝐵𝐺 demonstrates the necessity of computing heights with respect to vector bundles of
arbitrary rank, not only line bundles. Line bundles on 𝐵𝐺 correspond to one-dimensional representations
of G. If, for example, G is a finite group with trivial abelianization, there are no nontrivial line bundles
at all. In order to have a theory of heights rich enough to capture the invariants of G-extensions, we have
no alternative than to consider vector bundles of higher rank on 𝐵𝐺.

The work of Yasuda and Wood is not limited to permutation representations. For example, Wood
and Yasuda work out in [74, Example 4.10] the example where 𝐺 = Z/𝑝Z, K is a function field of
characteristic p and V is the two-dimensional nonsemisimple representation of Z/𝑝Z over K. A rational
point of 𝐵𝐺 corresponds to a Z/𝑝Z-extension 𝐿/𝐾 . If v is a place of K, we denote by 𝑗𝑣 the largest
integer i such that the higher ramification group 𝐺𝑖 at v surjects onto Z/𝑝Z. Then Yasuda and Wood’s
computation shows

ht𝑣 (𝑥) = 1 +
⌊
𝑗𝑣
𝑝

⌋
. (3.4)

When 𝐾 = F𝑞 (𝑡) with q a power of p, the points of 𝐵(Z/𝑝Z) (𝐾) correspond to Artin–Schreier curves,
and the height of an Artin–Schreier curve with respect to this V is the sum of the local terms (3.4) over
all places v of F𝑞 (𝑡) which are ramified in the Artin–Schreier cover. We do not know if this notion of
height of an Artin–Schreier curve corresponds to anything that has appeared in previous literature, but
we note that the expression above is closely related to that appearing in the computation of dimensions
of irreducible components of moduli space for Artin–Schreier curves of specified p-rank in the work of
Pries and Zhu [60, Theorem 1.1].

This example also illustrates the important point that the height function htV is not determined by
the class of V in 𝐾0 of the category of vector bundles; the vector bundle above is an extension of the
trivial line bundle by the trivial line bundle, but its associated height function is not zero.2

3.2. Heights on 𝐵𝜇𝑛

Suppose X = 𝐵𝜇𝑛, and L is the line bundle on 𝐵𝜇𝑛 corresponding to the standard one-dimensional
representation 𝜇𝑛→G𝑚. In that case, L𝑛 is the trivial bundle on X and thus admits a generating section
s. On the other hand, if x is a K-point of 𝐵𝜇𝑛, the pullback 𝑥∗L is isomorphic to K. The obstruction
to 𝑥∗𝑠 ∈ Γ(Spec𝐾, 𝑥∗L𝑛) being an nth power of an nonzero section of 𝑥∗L now yields a class in
𝐾∗/(𝐾∗)𝑛. Put another way: Choosing an identification of 𝑥∗L with K induces an identification of 𝑥∗L𝑛

with K, under which 𝑥∗𝑠 is identified with an element 𝑥0 ∈ 𝐾∗, which represents the class in 𝐾∗/(𝐾∗)𝑛
corresponding to x. Note that a change in the choice of s will apply a translation to the identification

2This is specifically due to the fact that 𝐵 (Z/𝑝Z) is not a tame stack over F𝑞 (𝑡) , so 𝜋∗ is not exact. Although 𝑥∗V∨ is an
extension of OC by itself, 𝜋∗𝑥∗V∨ is no longer the extension of O𝐶 by itself.
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𝐵𝜇𝑛 (𝐾) � 𝐾∗/(𝐾∗)𝑛, but such a change will modify heights by a bounded quantity, and if K is a function
field over a finite field k and we require s to globally generate L𝑛, the ambiguity in s imposes translation
by 𝑘∗, which will not change the heights we compute at all. (If we want to remove this ambiguity entirely,
we can fix for all time a choice of universal 𝜇𝑛-torsor 𝑞 : Spec𝐾→𝐵𝜇𝑛/𝐾 and an identification of 𝑞∗L
with K; having done so, we can require that s pull back under q to an element of (𝐾∗)𝑛.)

We note that the above setup applies even when char𝐾 divides n.
In particular: Proposition 2.28 yields

htL (𝑥) =
∑
𝑣

⌈
1
𝑛

log𝑞𝑣 |𝑥0 |𝑣
⌉
log 𝑞𝑣 .

We note that our formula for htL (𝑥) is unchanged, as it must be, when 𝑥0 is modified by an element of
(𝐾∗)𝑛.

By the computation above, when 𝐾 = Q we see that the height of a point x of 𝐵𝜇𝑛 (Q) = Q×/(Q×)𝑛
is obtained as follows: The class of Q×/(Q×)𝑛 corresponding to x is represented uniquely by an integer
N with no nth power divisor, and as in equation (2.29) we have

htL(𝑥) = log |𝑁 |1/𝑛 .

(In the examples, we will often suppress the 𝑂X (𝐾 ) (1) error term when no confusion is likely.)
Once again, the height recovers the measure of complexity most frequently used in practice; when

enumerating the elements of Q∗/(Q∗)𝑛, one typically identifies the elements of the group with nth
power-free integers and lists in order of absolute value.

Of course, this choice L is not the only option. Suppose, for instance, 𝐾 = Q and 𝑛 = 3; then there
are two equally good choices of nontrivial line bundle on X , namely L and L2. Suppose 𝑥 ∈ 𝐵𝜇3(Q)
corresponds to 𝑁𝑀2 ∈ Q×/(Q×)3, with N and M coprime and squarefree. Then, as we have already
observed above,

htL (𝑥) = log |𝑁𝑀2 |1/3 = (1/3) log 𝑁 + (2/3) log 𝑀.

On the other hand, consider L′ = L2. Then, having chosen s as above, 𝑠2 is a generating section of
(L′)3, so we can take 𝑥1 to be 𝑥∗𝑠2, which corresponds to 𝑁2𝑀4 ∈ Q×. Putting this integer in minimal
form modifies it to 𝑁2𝑀 , and another application of equation (2.29) shows that

htL′ (𝑥) = (2/3) log 𝑁 + (1/3) log 𝑀.

As a final illustration, we can see how the above two computations combine to yield Proposition 3.1
for 𝐵𝜇3. Let V be the vector bundle L ⊕ L2 ⊕ OX . Then

htV (𝑥) = log 𝑁 + log 𝑀

which we note is also (1/2)Δ𝐿/Q, where 𝐿 = Q((𝑁𝑀2)1/3) = Q((𝑁2𝑀)1/3) is the cubic extension of
Q arising from x. This is as it must be, as we now explain. First, note that htstV (𝑥) = 0 for all x just as in
the case X = 𝐵𝐺, because V pulls back to a trivial bundle on a finite cover of 𝐵𝜇3. So

htV (𝑥) =
∑
𝑣

𝛿V;𝑣 (𝑥).

Now, the size of 𝛿V;3(𝑥) is bounded by Proposition 2.25, so at the expense of a bounded error term we
can write

htV (𝑥) =
∑
𝑣≠3

𝛿V;𝑣 (𝑥).
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Let 𝑥 ′ be the point of 𝐵(𝜇3) (Q(𝜁3)) obtained by base change from x. Since every prime other than 3 is
unramified in Q(𝜁3)/Q, Proposition 2.24 tells us that

htV (𝑥 ′) = 2
∑
𝑣≠3

𝛿V;𝑣 (𝑥) = 2 htV (𝑥).

On the other hand, over Q(𝜁3), there is an isomorphism between 𝐵(𝜇3) and 𝐵(Z/3Z), which carries V
to the reduced permutation representation of Z/3Z, which we denote by W . In fact, this isomorphism
extends to Z[𝜁3] [1/3]. Let y be the point of 𝐵(Z/3Z) (Q(𝜁3)) corresponding to 𝑥′ under this isomor-
phism, which we can also think of as the point associated to the Galois Z/3Z-extension 𝐿(𝜁3)/Q(𝜁3).
Then

𝛿W;𝑣 (𝑦) = 𝛿V′;𝑣 (𝑥 ′)

for all places v of Q(𝜁3) not dividing 3. We conclude that (as always, up to bounded error)

htW (𝑦) =
∑
𝑣≠3

𝛿W;𝑣 (𝑦) =
∑
𝑣≠3

𝛿V′;𝑣 (𝑥 ′) = 2 htV (𝑥).

On the other hand, by equation (3.3) we have

htW (𝑦) = (1/2) log |Δ𝐿 (𝜁3)/Q(𝜁3) | = logΔ𝐿/Q

which shows that htV (𝑥) = (1/2) log |Δ𝐿/Q |.

3.3. Heights on weighted projective space and weighted projective stacks

In this section, we consider rational points on the weighted projective space X = P(𝑎0, . . . , 𝑎𝑘 ). This
stack is, by definition, the quotient [A𝑘+1 \ 0/G𝑚] where G𝑚 acts by the rule

𝜆 · (𝑋0, . . . , 𝑋𝑘 ) = (𝜆𝑎0𝑋0, . . . , 𝜆
𝑎𝑘 𝑋𝑘 ).

Then P(𝑎0, . . . , 𝑎𝑘 ) is a smooth proper stack, andA𝑘+1 \0 is the total space of a line bundle on X , whose
dual is the tautological bundle OP(𝑎0 ,...,𝑎𝑘 ) (1); for simplicity of notation, we denote the tautological
bundle by L for the rest of this section. The coordinate function 𝑋𝑖 is a section of L𝑎𝑖 . Writing A for
the least common multiple of the 𝑎𝑖 , the 𝑘 + 1 sections 𝑋𝐴/𝑎𝑖

𝑖 of L𝐴 generate L𝐴. So we can compute
heights of points in P(𝑎0, . . . , 𝑎𝑘 ) (𝐾) by applying Proposition 2.28, as we now explain.

Let x be a point of P(𝑎0, . . . , 𝑎𝑘 ) (𝐾). As in Proposition 2.28, we choose an identification of 𝑥∗L
with K; this assigns a value in K to each of the 𝑘 + 1 coordinates, which values we denote 𝑥0, . . . , 𝑥𝑘 .
Changing the identification of 𝑥∗L with K modifies this tuple by elementwise multiplication by tuples
of the form 𝜆𝑎0 , . . . , 𝜆𝑎𝑘 , and we say that two tuples 𝑥0, . . . , 𝑥𝑘 are equivalent if they differ by such a
transformation. Then Proposition 2.28 tells us that

htL (𝑥) =
∑
𝑣

�log𝑞𝑣 max
𝑖

|𝑥𝑖 |1/𝑎𝑖𝑣 � log 𝑞𝑣 . (3.5)

In particular, when 𝐾 = Q, a rational point x of P1 (𝑎0, . . . , 𝑎𝑘 ) (Q) can be identified with a tuple of
integers (𝑀0 : . . . : 𝑀𝑘 ) such that there is no prime p with 𝑝𝑎𝑖 |𝑀𝑖 for all i. Given a tuple which is in
minimal form in this sense, the non-Archimedean primes contribute nothing to equation (3.5), and we
get

htL (𝑥) = log max
𝑖

|𝑀𝑖 |1/𝑎𝑖 . (3.6)
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We note that this definition recovers the notion called ‘naive height’ for points of weighted projective
space in [9].

Here is another means by which it is often practical to compute heights on weighted projective space
when K is a global function field. Let F be a section of L𝐴—for instance, it might be 𝑋𝐴/𝑎𝑖

𝑖 for some
i—and let y be the pullback of F along x to 𝑥∗L𝐴, which we have identified with K. We define the
minimal valuation of F at a place v of K as follows. Let 𝜋𝑣 ∈ 𝐾∗ be an element which is a uniformizer
at v, and define

𝑐𝑣 = min�(1/𝑎𝑖) ord𝑣 𝑥𝑖� .

Note that 𝑐𝑣 = 0 if and only if all the 𝑥𝑖 are integral at v and there is some i such that ord𝑣 𝑥𝑖 < 𝑎𝑖 . In
this case, we say that (𝑥0, . . . , 𝑥𝑘 ) is in minimal form. If (𝑥0, . . . , 𝑥𝑘 ) is not in minimal form, we find an
equivalent tuple in minimal form by modifying each 𝑥𝑖 by 𝜋−𝑎𝑖𝑐𝑣𝑣 ; the effect of this transformation on y
is multiplication by 𝜋−𝐴𝑐𝑣𝑣 . We therefore define the minimal valuation of F to be

ordmin
𝑣 𝐹 = ord𝑣 𝑦 − 𝐴𝑐𝑣 = ord𝑣 𝑦 − 𝐴min�(1/𝑎𝑖) ord𝑣 𝑥𝑖� .

We note that this quantity does not depend on the identification of 𝑥∗L with K, but only on F and v.
Furthermore, we have∑

𝑣

ordmin
𝑣 𝐹 =

∑
𝑣

ord𝑣 𝑦 −
∑
𝑣

𝐴min�(1/𝑎𝑖) ord𝑣 𝑥𝑖 .� = 𝐴
∑
𝑣

max�(1/𝑎𝑖) log𝑞𝑣 max |𝑥𝑖 |𝑣� log 𝑞𝑣

and, by Proposition 2.28, this last quantity, taking 𝑋𝐴/𝑎𝑖
𝑖 to be the sections generating L𝐴, is exactly

𝐴 htL 𝑥. We conclude that

htL 𝑥 = (1/𝐴)
∑
𝑣

ordmin
𝑣 𝐹 log 𝑞𝑣 . (3.7)

The classical theory of Weil heights is often set up by defining heights on projective spaces, and then
defining a height htO (1) on 𝑋 (𝐾) for other projective schemes X by restriction. In a similar manner, one
can define height functions on weighted projective stacks P(𝑎0, . . . , 𝑎𝑛) and obtain a height function
htL on X (𝐾) whenever L is a generically globally generated power as in Section 2.4. However, we
stress that this naive approach does not apply to all stacks of interest. Indeed, if X is any stack with a
nonabelian stabilizer group, it does not embed into a weighted projective stack, hence the necessity of
our construction of heights given in Section 2.2.

One example of weighted projective stacks which is of great interest is the moduli stack of elliptic
curves M1,1. If K is a field of characteristic not equal to 2 or 3, this stack is isomorphic over K
to the weighted projective line P(4, 6): concretely, given an elliptic curve 𝐸/𝐾 , we can write it in
Weierstrass form 𝑦2 = 𝑥3 + 𝐴𝑥 +𝐵 with 𝐴, 𝐵 in K. This Weierstrass form is unique up to transformations
(𝐴, 𝐵)→(𝜆4𝐴, 𝜆6𝐵). So (𝐴 : 𝐵) is a well-defined point on P(4, 6). Moreover, the isomorphism takes
the line bundle O(1) on P(4, 6) to the Hodge bundle L on M1,1 (the bundle whose kth powers have
weight 2𝑘 modular forms as sections). We conclude that, if 𝐸/𝐾 is an elliptic curve over a global field
of characteristic at least 5, with Weierstrass equation 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵, thought of as a K-point of M1,1,
we have

htL 𝐸 = log max(|𝐴|1/4, |𝐵|1/6).

In other words, the familiar ‘naive height’ of an elliptic curve is indeed a height in the sense of this paper.
When K is a number field, the identification ofM1,1/Q with P(4, 6)/Q does not extend to Spec Z but

only to Spec Z[1/6]. However, this is enough to ensure that L12 is still generically globally generated by
𝐴3 and 𝐵2 in the sense of Proposition 2.28, and so equation (3.3) still holds up to a bounded error term.
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When K is a global function field of characteristic at least 5, we can also apply equation (3.7); here,
𝐴 = lcm(4, 6) = 12 and the discriminant Δ is a natural section of L12 to use. So we find

htL 𝐸 =
1
12

∑
𝑣

ordmin
𝑣 Δ , (3.8)

where ordmin
𝑣 Δ is the valuation of the discriminant of a Weierstrass equation for E which is minimal at v.

We will return to the interesting case where K is a global function field of characteristic 2 or 3 in
Section 3.4.

More generally, the moduli space of hyperelliptic curves over K with a marked Weierstrass point can
be thought of as a weighted projective space as long as the characteristic of K is large enough: If 𝑌→P1

is the hyperelliptic map, we can move the image of the marked Weierstrass point to ∞ and (assuming
the characteristic of K is not 2) complete the square in y so that the curve has affine equation

𝑦2 = 𝑥2𝑔+1 + 𝑎1𝑥
2𝑔 + · · · + 𝑎2𝑔+1

then (again throwing out a finite set of characteristics for K) modify by the automorphism 𝑥→𝑥 + 𝑎1
2𝑔+1

of P1 in order to make 𝑎1 = 0. We now have an equation for Y of the form

𝑦2 = 𝑥2𝑔+1 + 𝑎2𝑥
2𝑔−1 + · · · + 𝑎2𝑔+1 (3.9)

which is unique up to the operation of multiplying 𝑎𝑖 by 𝜆2𝑖 for 𝜆 ∈ 𝐾∗. In other words, the moduli stack
of hyperelliptic curves with marked Weierstrass point is isomorphic over K to the weighted projective
(2𝑔 − 1)-space P(4, 6, 8, . . . , 4𝑔 + 2). So a hyperelliptic curve over K can be thought of as a point x on
P(4, 6, 8, . . . , 4𝑔 + 2), whose height with respect to O(1) we have computed above. In particular, if Y
is a hyperelliptic curve over Q with Weierstrass equation (3.9), where the 𝑎𝑖 are chosen to be integers
so that there is no prime p with 𝑝2𝑖 |𝑎𝑖 , the height of Y is log max |𝑎𝑖 |1/2𝑖 , which again is equivalent to
the notion of height typically used for hyperelliptic curves with a specified Weierstrass point as in, for
example, the work of Bhargava and Gross [11].

Question 3.10. A weighted projective space is an example of a toric stack, as in [32]. What is the height
of a rational point on a more general toric stack?

3.4. Heights of abelian varieties

We have established above in equation (3.3) that, when K is a global field of characteristic at least 5,
the height of an elliptic curve with respect to the Hodge bundle on M1,1 is the same as the customary
naive height. There is another natural height on an elliptic curve over a global field: the Faltings height
htFal(𝐸). In this section, we study the extent to which Faltings height can be seen as a height in the sense
of the present paper.

We note first that Faltings height satisfies some of the same formal properties as the heights
defined in this paper do. For example: If 𝐿/𝐾 is a field extension, it is not necessarily the case
that htFal(𝐸/𝐿) is [𝐿 : 𝐾] htFal(𝐸/𝐾); however, this equality does hold if 𝐸/𝐾 has everywhere
semistable reduction, so we can define a stable Faltings height ht𝑠 (𝐸/𝐾) to be [𝐿 : 𝐾]−1 htFal(𝐸/𝐿)
for any 𝐿/𝐾 such that 𝐸/𝐿 has everywhere semistable reduction. The height htV for any vector
bundle on M1,1 has the same properties, since an elliptic curve over 𝐿 = 𝐾 (𝐶 ′) with everywhere
semistable reduction is an integral point of M1,1, that is, a morphism from 𝐶 ′ to M1,1. Lastly,
htFal(𝐸/𝐾) − ht𝑠 (𝐸/𝐾) has a canonical local decomposition, just as does htV (𝐸/𝐾) − htstV (𝐸/𝐾); see
(2.22).
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It is thus natural to ask whether Faltings height is htV for some vector bundle V or at least whether
the two heights differ by a bounded function. One can even guess which vector bundle one might use;
for everywhere semistable 𝐸/𝐾 , or in other words morphisms 𝑓 : 𝐶→M1,1, we have

htFal(𝐸) = deg 𝑓 ∗L,

where L is the Hodge bundle Ω1
E/M1,1

and E the universal semielliptic curve over the moduli stack.
So does htFal differ from htL by a bounded function? Unfortunately, the answer is in general no—

remember, in the number field case, htL is naive height, and the difference between the naive height
and the Faltings height of an elliptic curve over a number field K is not bounded, as one can see, for
instance, in the proof of [55, Lemma 3.2].

The reason for this is the following. When K is a number field, the specification of the degree above
requires a choice of metrization on L at the Archimedean places; for Faltings height, the appropriate
Hermitian norm actually has a singularity at the cusp of moduli space, and in the present paper we have
not considered metrized line bundles in this level of generality; rather, we have assumed that our choice
of metrization on L is defined on all of M1,1(C), including the cusp.

However, when K is a global function field, this Archimedean issue is absent, and we find the
following.

Proposition 3.11. Let K be a global function field of characteristic at least 5, and let L be the Hodge
bundle on M1,1 as above. Then

htFal(𝐸) = htL(𝐸)

for all elliptic curves 𝐸/𝐾 .

Proof. For global function fields of characteristic larger than 3, the Faltings height of 𝐸/𝐾 is (1/12)
times the sum over all places of the valuation of a minimal discriminant; see for example, [6, Def 2.2].
We have already seen in equation (3.8) that htL (𝐸) is given by the same expression. �

The case of small characteristic is a different story. Let K be the function field of a curve C in
characteristic p. Then the Faltings height of an elliptic curve over K is still the valuation of a minimal
discriminant divisor on C, even if the characteristic of K is 2 or 3, and the Faltings height has the
Northcott property.3

On the other hand, htL is not Northcott in this setting, Note for instance that M1,1/F3 contains as a
closed substack a copy of 𝐵𝐺 lying over the coarse point 𝑗 = 0 = 1728, where G is the automorphism
group scheme of an elliptic curve with j-invariant 0 in characteristic 3. The group scheme G has order
12 and sits in an exact sequence

1→𝐴→𝐺→𝜇4→1,

where 𝐴 � Z/3Z (see, for instance, [65, Exercise A.1]) and 𝜆 ∈ 𝜇4 acts on A by multiplication by
𝜆2. The pullback of L to 𝐵𝐺 is a line bundle on 𝐵𝐺, which is necessarily trivial on the commutator
subgroup A. So L pulls back to the zero bundle under the composition 𝐵𝐴→𝐵𝐺→M1,1, which means
that any point x in the image of 𝐵𝐴(𝐾)→M1,1 (𝐾) has htL(𝑥) = 0. There are infinitely many such
points, corresponding to the Z/3Z-extensions of K. Concretely, elliptic curves given by Weierstrass
equations of the form

𝑦2 = 𝑥3 − 𝑥 − 𝑓 (𝑡) (3.12)

all have height 0 with respect to L. Another way to see this is to observe that the space of sections
of L12—that is, of weight-12 modular forms of level 1 in characteristic 3—is two-dimensional and is

3We do not know a citation for this fact in the published literature but learned it via personal communication from Xinyi Yuan.
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spanned by Δ and 𝑏2, where 𝑏2 is the Hasse invariant. [22, Prop 6.2]. Any Weierstrass equation of type
(3.12) has 𝑏2(𝐸) = 0 and Δ (𝐸) = 1 ([65, Appendix A, Prop 1.1. b)]). So by Proposition 2.28, using the
fact that Δ is constant, we see again that htL (𝐸) = 0 for any such E.

This does not mean, however, that Faltings height is a different kind of height from those discussed
in this paper; it only means it does not agree with the height arising from the Hodge bundle or any of its
powers. But, as explained in a paper of Meier [51], there are other vector bundles! When K is a field of
characteristic greater than 3, every vector bundle on M1,1 is isomorphic to a direct sum of line bundles,
which can only be powers of the Hodge bundle [51, Cor 3.6]), essentially because M1,1 is a weighted
projective line in this case. But in characteristic 2 and 3, Meier constructs indecomposable higher-rank
vector bundles on M1,1/𝐾 .4 Thus, the following question still makes sense.
Question 3.13 (A. Landesman). When K is a global field of characteristic 2 or 3, is there a vector bundle
V on M1,1/𝐾 such that htV = 𝑐 htFal for some 𝑐 ∈ Z?

We originally asked this question with 𝑐 = 1; that is, is the Faltings height itself a height in our
sense? Landesman showed in his thesis [45] that this is too much to hope for; in characteristic 3, there
is no vector bundle V on M1,1/F3 with htV = htFal. However, Landesman then raises the question
stated above, which remains open: Is there a vector bundle which computes some integer multiple of
the Faltings height in characteristic 3? For that matter, is there even a vector bundle whose associated
height is Northcott?

Furthermore, one may ask the same question about abelian varieties of higher dimension. The Faltings
height is usually thought of as being related to the Hodge bundle on the moduli stack Ā𝑔. But the stacky
height associated to this line bundle, or any line bundle, will not be Northcott on Ā𝑔, for the same
reason it failed to be Northcott for M1,1 in low characteristic; there are abelian varieties of dimension
d with nonabelian automorphism group, which give rise to maps 𝐵𝐺 ↩→ Ā𝑔 for nonabelian G, and no
line bundle on 𝐵𝐺 can be Northcott. This problem can be avoided by computing heights on Ā𝑔 with
respect to the rank-g vector bundle V = 𝑒∗Ω1

𝐴/Ā𝑔
, where A is the universal principally polarized abelian

variety over the moduli stack, rather than with respect to its determinant, the Hodge bundle. There will
still be problems in low characteristic, as we have seen from the case of elliptic curves. One way of
understanding the difficulty with curves of the form (3.12) is that a wildly ramified extension of K is
necessary in order to arrive at a curve with semistable reduction; this cannot be the case for elliptic
curves over fields of characteristic 5 or greater. The following question thus seems reasonable.
Question 3.14. When K is a global function field, V is the vector bundle 𝑒∗Ω1

𝐴/A𝑔
on A𝑔, and 𝐴/𝐾 is

an abelian variety that becomes semistable over an everywhere tamely ramified extension of K, is it the
case that

htV (𝐴) = htFal(𝐴)?

If Questions 3.13 and 3.14 both have a positive answer, one might well ask the common descendant
of both questions: are there “exotic” vector bundles on A𝑔 in small (relative to g) characteristic which
compute the Faltings height of abelian varieties that require a wild extension to become semistable?

Finally, we return for a moment to the number field case. Because of the singularity at the boundary
of A𝑔 of the Faltings metric, we cannot expect htV to match htFal exactly. But there is a way to ask
whether the two heights agree ‘apart from the Archimedean place.’ Namely, we can ask the following.
Question 3.15. Let K be a global field, let v be a non-Archimedean place of K, and let 𝐴/𝐾 be an
abelian variety which becomes semistable over a tamely ramified extension of 𝐾𝑣 . Is the component at
v of htFal(𝐴) − ht𝑠 (𝐴) equal to 𝛿V;𝑣 (𝐴)?

This is a purely local question which has to do with the behavior of the tangent space to the Néron
model of A under ramified base change. A positive answer to Question 3.15 would imply a positive

4Meier only describes these bundles on M1,1. but it is not hard to show they extend to the compactification.
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answer to Question 3.14, as follows. The stable Faltings height ht𝑠 (𝐴) agrees with htstV in this setting,
because both are given by the degree of the pullback of the Hodge bundle to an integral point 𝐶 ′→A𝑔,
where 𝐶 ′ is a cover of C. And since there are no Archimedean places, the positive answer to Question
3.15 shows that

htFal(𝐴) − ht𝑠 (𝐴) =
∑
𝑣

𝛿V;𝑣 (𝐴) = htV (𝐴) − htstV (𝐴).

3.5. Heights on footballs

A football5 F (𝑎, 𝑏) is a P1 rooted at 0 and ∞, with residual gerbes 𝜇𝑎 and 𝜇𝑏 , respectively. Let K
be a global field; we emphasize that K is allowed to have any characteristic, including characteristics
dividing a or b. (When K has one of these characteristics, F (𝑎, 𝑏) is a tame Artin stack but not a
Deligne–Mumford stack.) As an illustration of the (moderate) subtlety of the Northcott condition in the
stacky case, we will work out which line bundles on F (𝑎, 𝑏) are Northcott.

There are three kinds of K-points of F (𝑎, 𝑏), which may be treated separately.

◦ The points supported at 0; these are naturally identified with K-points of 𝐵(𝜇𝑎), which are in turn
identified with the set 𝐾∗/(𝐾∗)𝑎;

◦ The points supported at ∞; these are naturally identified with K-points of 𝐵(𝜇𝑏), which are in turn
identified with the set 𝐾∗/(𝐾∗)𝑏;

◦ The rest of the points, which are naturally identified with the points on P1(𝐾) other than 0 and ∞;
that is, these points are in bijection with 𝐾∗.

Any divisor on F (𝑎, 𝑏) is linearly equivalent to one of the form 𝑑 [𝑃] + 𝑛[0] + 𝑚 [∞], where P
is some point on G𝑚; such a divisor has degree 𝑑 + 𝑛/𝑎 + 𝑚/𝑏. This expression is not unique but is
subject to the relations 𝑎[0] ∼ 𝑏[∞] ∼ [𝑃]. Take L to be the line bundle on F (𝑎, 𝑏) corresponding to
𝑑 [𝑃] + 𝑛[0] + 𝑚 [∞]. We now explain how to compute htL (𝑥) for 𝑥 ∈ F (𝑎, 𝑏) (𝐾).

For the first two types of points, this computation of height has already been carried out in Section
2.4. For a point x of the first type, d and m are irrelevant. The class in 𝐾∗/(𝐾∗)𝑎 associated to x is
represented by a function 𝑓 ∈ 𝐾∗, and the height of x is a sum over places of K:

htL (𝑥) =
∑
𝑣

⌈𝑛
𝑎

ord𝑣 ( 𝑓 )
⌉
.

Similarly, for a point of the second type, represented by the class of g in 𝐾∗/(𝐾∗)𝑏 the height is

htL (𝑥) =
∑
𝑣

⌈𝑚
𝑏

ord𝑣 (𝑔)
⌉
.

We now treat points of the third, or generic type. For simplicity of description, take K to be the
function field of a smooth proper curve 𝐶/F𝑞 . Then x affords a rational map 𝜙 from C to F (𝑎, 𝑏). Write
𝜙𝑐 : 𝐶→P1 for the composition of 𝜙 with the coarse moduli map, denote deg 𝜙𝑐 = deg 𝜙 by e, and write∑
𝑒𝑖𝑃𝑖 for the divisor 𝜙∗𝑐 [0] and

∑
𝑒′𝑖𝑄𝑖 for the divisor 𝜙∗𝑐 [∞]. Then

∑
𝑒𝑖 deg 𝑃𝑖 =

∑
𝑒′𝑖 deg𝑄𝑖 = 𝑒.

We may take C to be a root stack with residual gerbe 𝜇𝑎 at the 𝑃𝑖 and 𝜇𝑏 at the 𝑄𝑖 . Then 𝑥∗L∨ is the
divisor

−
(
𝑑𝜙−1(𝑃) +

∑
𝑖

𝑒𝑖𝑛

𝑎
𝑃𝑖 +

∑
𝑖

𝑒′𝑖𝑚

𝑏
𝑄𝑖

)
whose degree, as it must be, is −𝑒 degL.

5The ‘football’ here is understood to be an American football, which has two singular points. In the professional sporting
context, the residual gerbes at these points are not specified.
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We then have

htL (𝑥) = − deg 𝜋∗𝑥∗L = −
(
−𝑒𝑑 +

∑
𝑖

⌊
− 𝑒𝑖𝑛

𝑎

⌋
deg 𝑃𝑖 +

∑
𝑖

⌊
−
𝑒′𝑖𝑚

𝑏

⌋
deg𝑄𝑖

)
log 𝑞 (3.16)

=

(
𝑒𝑑 +

∑
𝑖

⌈ 𝑒𝑖𝑛
𝑎

⌉
deg 𝑃𝑖 +

∑
𝑖

⌈
𝑒′𝑖𝑚

𝑏

⌉
deg𝑄𝑖

)
log 𝑞. (3.17)

In particular, we note that htL (𝑥) ≥ 𝑒 log 𝑞 degL, with equality holding just when every 𝑒𝑖 is a
multiple of a and every 𝑒′𝑖 is a multiple of b, which is to say, when x actually extends to an integral point
of F (𝑎, 𝑏).

This description suffices to tell us which line bundles have the Northcott property. We already see
that the set of Northcott line bundles does not form a cone because it is not closed under addition.
(Indeed, we could have already seen that from the case 𝐵(Z/2Z), where the nontrivial line bundle L is
Northcott and L⊗2, which is trivial, is not Northcott.)

Proposition 3.18. Choose 𝑎, 𝑏 coprime integers, and let K be the function field of a curve C. A divisor
𝐿 = 𝑑 + 𝑛[0] + 𝑚 [∞] on F (𝑎, 𝑏) is Northcott if and only if deg 𝐿 > 0 and (𝑛, 𝑎) = (𝑚, 𝑏) = 1.

Proof. Suppose (𝑛, 𝑎) = 𝑟 > 1. Then any point of P(𝑎, 𝑏) of the first type which corresponds to
𝑓 ∈ (𝐾∗)𝑎/𝑟/(𝐾∗)𝑎 ⊂ 𝐾∗/(𝐾∗)𝑎 has height 0 with respect to L, which contradicts Northcott. The
argument is just the same if (𝑚, 𝑏) > 1.

We observe that there are infinitely many maps P1→F (𝑎, 𝑏); namely, those whose coarse map
P1→P1 is of the form [𝐵(𝑠, 𝑡)𝑏 : 𝐴(𝑠, 𝑡)𝑎]. Any such map, pulled back to C via a map 𝐶→P1, gives an
integral point 𝐶→F (𝑎, 𝑏) of some coarse degree e, whose height is 𝑒 deg 𝐿; we can make e as large as
we want, which shows that L cannot be Northcott if deg 𝐿 ≤ 0.

Suppose, on the other hand, that all three conditions are met. We have already shown that points x
of the third type have ht𝐿 (𝑥) ≥ 𝑒 log 𝑞 deg 𝐿; since deg 𝐿 is positive, ht𝐿 (𝑥) gives an upper bound for
e, which makes the set of possible x finite. For points of the first type represented by 𝑓 ∈ (𝐾∗)/(𝐾∗)𝑎,
we observe that

htL (𝑥) =
∑
𝑣

⌈𝑛
𝑎

ord𝑣 ( 𝑓 )
⌉
=

∑
𝑣

{ 𝑛
𝑎

ord𝑣 ( 𝑓 )
}
,

the latter equality following from
∑

𝑣 ord𝑣 ( 𝑓 ) = 0. So a bound on the height of x yields a bound on the
number of places, where 𝑛

𝑎 ord𝑣 ( 𝑓 ) is not an integer; since (𝑛, 𝑎) = 1, this bounds the number of places
where (more precisely: the degree of the divisor where) ord𝑣 ( 𝑓 ) is not a multiple of a. Bounding this
quantity places f within a finite set of cosets of (𝐾∗)𝑎, so we are done. The case of points of the second
type is exactly the same. �

3.5.1. Consistency check: footballs and weighted projective lines
When a and b are relatively prime, the football F (𝑎, 𝑏) is isomorphic to the weighted projective line
P(𝑎, 𝑏); on K-points, the isomorphism 𝜓 from P(𝑎, 𝑏) to F (𝑎, 𝑏) sends (𝑠 : 𝑡) to the point 𝑡𝑎/𝑠𝑏 when
𝑠𝑡 ≠ 0. Let 𝑚, 𝑛 be integers such that 𝑚𝑎 + 𝑛𝑏 = 1; then the line bundle L = 𝑛[0] + 𝑚 [∞] on F(𝑎, 𝑏)
has degree 1/𝑎𝑏, and its pullback to P(𝑎, 𝑏) is the tautological bundle OP(𝑎,𝑏) (1). If x is a point of
P(𝑎, 𝑏) (𝐾), we have

htOP(𝑎,𝑏) (1) (𝑥) = htL (𝜓(𝑥)).

This provides an opportunity to check consistency between the formulas we have given for the height
of a point on weighted projective space and the height of a point on a football. Let 𝑥 = (𝑠 : 𝑡) be a point
of P(𝑎, 𝑏). Then by equation (3.5), we have

htOP(𝑎,𝑏) (1) (𝑥) =
∑
𝑣

�log𝑞𝑣 max(|𝑠 |1/𝑎𝑣 , |𝑡 |1/𝑏𝑣 )� log 𝑞𝑣 . (3.19)
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We now compute htL (𝜓(𝑥)). Recall that 𝜓(𝑥) is the point on F(𝑎, 𝑏) corresponding to the point 𝑡𝑎/𝑠𝑏
of P1(𝐾). In the notation of the above section, the points 𝑃𝑖 correspond to those places v of K, where
𝑎 ord𝑣 𝑡 − 𝑏 ord𝑣 𝑠 > 0, and the points 𝑄𝑖 to those places where 𝑎 ord𝑣 𝑡 − 𝑏 ord𝑣 𝑠 < 0. When v is a
prime with 𝑎 ord𝑣 𝑡 − 𝑏 ord𝑣 𝑠 > 0, we have, again maintaining the notation of equation (3.17),

𝑒𝑖 = 𝑎 ord𝑣 𝑡 − 𝑏 ord𝑣 𝑠

and

deg 𝑃𝑖 = log 𝑞𝑣/log 𝑞.

So the contribution of v to equation (3.17) is⌈
(𝑎 ord𝑣 𝑡 − 𝑏 ord𝑣 𝑠)𝑛

𝑎

⌉
log 𝑞𝑣 =

(
𝑛 ord𝑣 𝑡 −

⌈
𝑛𝑏 ord𝑣 𝑠

𝑎

⌉)
log 𝑞𝑣

=

(
𝑛 ord𝑣 𝑡 + 𝑚 ord𝑣 𝑠 −

⌈
ord𝑣 𝑠

𝑎

⌉)
log 𝑞𝑣 .

By a similar argument, one shows that when 𝑎 ord𝑣 𝑡 − 𝑏 ord𝑣 𝑠 < 0 one gets a contribution of(
𝑛 ord𝑣 𝑡 + 𝑚 ord𝑣 𝑠 −

⌈
ord𝑣 𝑡

𝑏

⌉)
log 𝑞𝑣 .

Since the first case obtains exactly when ord𝑣 𝑠/𝑎 < ord𝑣 𝑡/𝑏, we can express the contribution of v
uniformly as (

𝑛 ord𝑣 𝑡 + 𝑚 ord𝑣 𝑠 −
⌈
min

(
ord𝑣 𝑠

𝑎
,
ord𝑣 𝑡

𝑏

)⌉)
log 𝑞𝑣 .

Summing over v, the first two terms vanish by the product formula, and we are left with

htL (𝜓(𝑥)) = −
∑
𝑣

min
(⌈

ord𝑣 𝑠

𝑎

⌉
,

⌈
ord𝑣 𝑡

𝑏

⌉)
log 𝑞𝑣

which is just equation (3.19) in another form.

3.6. Heights on symmetric powers of varieties

There is a substantial literature about points on varieties of bounded algebraic degree. We explain
how these questions look through the lens of heights on stacks. Let X be a smooth proper scheme of
dimension n over K. A point on X of algebraic degree m over K can be thought of as a K-point on
the stack Sym𝑚 𝑋 = [𝑋𝑚/𝑆𝑚]. In this section, we explain how to compute the height of such a point.
Slightly more generally, let G be a subgroup of 𝑆𝑚, and let X be the quotient [𝑋𝑚/𝐺]; when 𝐺 = 𝑆𝑚,
our stack X is Sym𝑚 𝑋 .

In order to talk about height, we need to choose a vector bundle V on X ; this is the same thing as an
G-equivariant vector bundle on 𝑋𝑚. The choice we make is as follows: Let 𝑉0 be some vector bundle
of rank r on X, and let 𝜋1, . . . , 𝜋𝑚 : 𝑋𝑚→𝑋 be the m projections. Then 𝑉 = ⊕𝑖𝜋

∗
𝑖𝑉0 is an G-equivariant

vector bundle of rank 𝑚𝑟, which descends to a vector bundle V of rank 𝑚𝑟 on X .
Let x be a point of X (𝐾). We begin by computing the stable height htstV (𝑥). The Cartesian square

Spec 𝐿 𝑥𝐿 ��

��

𝑋𝑚

��
Spec𝐾 𝑥 �� X
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provides an étale algebra L over K which carries an 𝑆𝑚-action and a rational point 𝑥𝐿 which extends to
an integral point 𝐶→𝑋𝑚. By Proposition 2.14,

htstV (𝑥) = [𝐿 : 𝐾]−1 htst
𝑉
(𝑥𝐿).

(Should L be an étale algebra which is not a field but rather a direct sum ⊕𝑖𝐹𝑖 , our convention is that
the height of a point of 𝑋𝑚 (𝐿) is

∑
𝑖 ht(𝑃𝑖), where 𝑃𝑖 ∈ 𝑋𝑚 (𝐹𝑖) are the points corresponding to the

restriction of 𝑥𝐿 : Spec 𝐿→𝑋𝑚 to connected components of Spec 𝐿.)
Since 𝑋𝑚 is a scheme, we have

htst
𝑉
(𝑥𝐿) = ht𝑉 (𝑥𝐿).

The latter quantity is a very natural one, what you might call the ‘absolute height’ of x. Suppose, for
instance, that 𝐿/𝐾 is a field extension, necessarily Galois with Galois group G. Then 𝑥𝐿 is a point of
𝑋𝑚 (𝐿) on which Gal(𝐿/𝐾) acts by permutations; in other words, it is an element (𝛼1, . . . , 𝛼𝑚), where
the 𝛼𝑖 are conjugate and each 𝛼𝑖 is contained in a degree-m extension 𝐿𝑖/𝐾 whose Galois closure is L.
The (unordered) set 𝛼1, . . . , 𝛼𝑚 can be thought of as a K-rational Galois orbit of points on X, and the
height of 𝑥𝐿 is then given by the usual Weil height on X:

ht𝑉 (𝑥𝐿) =
∑
𝑖

ht𝑉0;𝐿 𝛼𝑖 = 𝑚 ht𝑉0;𝐿 𝛼1,

where the subscript L is indicating that the height of 𝛼𝑖 is understood to mean the height of 𝛼𝑖 as a point
of 𝑋 (𝐿), not of 𝑋 (𝐿𝑖); to sum up, this means that

htstV (𝑥) = |𝐺 |−1 ht𝑉 (𝑥𝐿) = 𝑚 |𝐺 |−1 ht𝑉0;𝐿 𝛼𝑖 = ht𝑉0;𝐿𝑖 𝛼𝑖

which is the same for every i. In fact, the reader will note that nothing we did actually used the
hypothesis that L was a field, so the description of the stable height of x is valid also in the case where
L is an étale algebra other than a field. For instance, if L splits completely as a product of copies of
K, then 𝐿𝑖 is isomorphic to 𝐾𝑚, and our point 𝑥 ∈ X (𝐾) may be thought of as an unordered m-tuple
{𝑄1, . . . , 𝑄𝑚} ⊂ 𝑋 (𝐾); in that case,

htstV (𝑥) = ht𝑉0;𝐿𝑖 (𝑄1, . . . 𝑄𝑚) =
𝑚∑
𝑖=1

ht𝑉0;𝐾 𝑄𝑖 .

We now consider the discrepancy 𝛿V (𝑥) = htV (𝑥) − htstV (𝑥).

Proposition 3.20. The value of 𝛿V (𝑥) is the same for any 𝑉0 and 𝑉 ′
0 of the same rank r.

Proof. We write 𝑉 ′,V ′ for the vector bundles on 𝑋𝑚 and X respectively obtained from 𝑉 ′
0 as 𝑉,V were

obtained from 𝑉0.
The discrepancy is a sum of local terms 𝛿𝑣;V (𝑥) where v ranges over a finite list of non-Archimedean

places v of C where x does not extend to an O𝐾𝑣 -point; in particular, this list depends only on x, not on
the choice of V . Choose such a v; denoting by C𝑣 the infinitesimal neighborhood of the tuning stack C
over v, we have a commutative diagram

SpecO𝐿𝑣

𝑥𝐿𝑣 ��

��

𝑋𝑚

��
C𝑣

𝑥𝐾𝑣 �� X ,
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where 𝐿𝑣 denotes 𝐿 ⊗𝐾 𝐾𝑣 , so O𝐿𝑣 is a disjoint union of dvrs. Composing 𝑥𝐿𝑣 with the projection
maps 𝑝1, . . . , 𝑝𝑚 yields maps 𝑞1, . . . , 𝑞𝑚 : SpecO𝐿𝑣→𝑋 which are permuted by composition with the
action of G on SpecO𝐿𝑣 . We may take 𝑈 ⊂ 𝑋 to be an open subscheme containing the image of the 𝑞𝑖
on which𝑉0 and𝑉 ′

0 become isomorphic (and indeed we may choose U to make both isomorphic to O𝑟
𝑈 ).

Now, 𝑥∗𝐿𝑣
𝑉 can be described as ⊕𝑖𝑞

∗
𝑖𝑉0, where the action of G permutes the factors; we note that this

is G-equivariantly isomorphic to 𝑥∗𝐿𝑣
𝑉 ′ = ⊕𝑖𝑞

∗
𝑖𝑉

′
0. Thus, the vector bundle 𝑥∗𝐾𝑣

V , which is the descent
of 𝑥∗𝐿𝑣

𝑉 , is isomorphic to 𝑥∗𝐾𝑣
V ′. Since 𝛿𝑣;V (𝑥) depends only on 𝑥∗𝐿𝑣

𝑉 , we conclude that

𝛿𝑣;V (𝑥) = 𝛿𝑣;V′ (𝑥)

as desired. �

Given Proposition 3.20, we are free to take 𝑉0 = O𝑟
𝑋 when computing 𝛿V (𝑥). In this case, V is the

direct sum of r copies of the vector bundle on X obtained by taking 𝑉0 = O𝑋 ; so we may simply take
𝑉0 = O𝑋 and multiply by r at the end.

In this case, we can describe V very concretely; in the diagram

𝑋𝑚 ��

��

∗

��
X 𝑐 �� 𝐵𝐺

we have that htV (𝑥) = ht𝜌 (𝑐 ◦ 𝑥), where 𝑐 ◦ 𝑥 is the morphism from Spec𝐾 to 𝐵𝐺 corresponding to the
etale G-extension 𝐿/𝐾 . It follows from Proposition 3.1 that ht𝜌 (𝑐 ◦ 𝑥) = (1/2) logΔ𝐿𝑖/𝐾 (which is the
same for all i). The pullback of 𝜌 to ∗ is trivial, so htst𝜌 is identically 0, whence the discrepancy 𝛿𝜌 (𝑐 ◦ 𝑥)
is also (1/2) logΔ𝐿𝑖/𝐾 . We can now conclude from the discussion above that, for any choice of 𝑉0,

𝛿V (𝑥) = (𝑟/2) logΔ𝐿𝑖/𝐾 .

Combining this with our computation of htstV , we finally arrive at a description of the height of a rational
point on X with respect to V . Recall that a point 𝑥 ∈ X (𝐾) provides us with a degree-m etale extension
𝐿1/𝐾 and a point 𝛼1 ∈ 𝑋 (𝐿1). Denote by ht𝑊𝐿1

(𝛼1) the usual Weil height of 𝛼1 under the map 𝑋 (𝐿1)→R
afforded by 𝑉0. Then

htV (𝑥) = ht𝑊𝐿1
(𝛼1) + (𝑟/2) logΔ𝐿1/𝐾 .

4. Counting rational points by height: a conjecture of Batyrev–Manin–Malle type

In this section, we formulate a conjecture of Batyrev–Manin–Malle type for rational points of bounded
height on a stackX . WhenX is a scheme, we recover the weak Batyrev–Manin conjecture about rational
points on schemes; when we take X = 𝐵𝐺, we recover the weak Malle conjecture. We thus think of
our conjecture as interpolating between the two conjectures, while at the same time generating many
new cases of interest. As was the case for the original Batyrev–Manin, we develop our heuristics by
consideration of the case 𝐾 = 𝑘 (𝑡) and the corresponding geometric problem of studying spaces of
rational curves on X .

By ‘weak’ in the above paragraph we mean that we propose conjectures that bound counting functions
between 𝑋𝑎 and 𝑋𝑎+𝜖 for a specified exponent a. The ‘strong’ versions of Batyrev–Manin and Malle
make a more precise conjecture, that counting functions are asymptotic to 𝑋𝑎 (log 𝑋)𝑏 for specified
𝑎, 𝑏. In work posted after the original version of this paper was released, Darda and Yasuda [21] have
proposed a ‘strong’ conjecture about point-counting on stacks, with an explicit predicted power of log 𝑋 .

One could go further still and ask whether the counting functions discussed here are of the form
𝑐𝑋𝑎 (log 𝑋)𝑏 + 𝑜(𝑋𝑎 (log 𝑋)𝑏), with an explicit constant c; this has been quite an active area of
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investigation in both the Batyrev–Manin and the Malle context. One remark in this regard: To get
constants right, it is presumably important to remember that X (𝐾) is naturally not a set but a groupoid,
and counts of points should probably be weighted inversely to the size of the point’s automorphism
group. But issues of this kind will not be relevant for the coarser heuristics considered here.

4.1. Expected deformation dimension: stacky anticanonical height

In the Batyrev–Manin conjecture for a scheme X, when counting rational points with respect to a line
bundle L, the expected growth rate is given by 𝐵𝑎 (L) , where the Fujita invariant 𝑎(L) is the infimum of
all a for which 𝑎L + 𝐾𝑋 is effective. A technical hurdle we must overcome in defining 𝑎(L) for stacks
X is that for many stacks of interest, for example X = 𝐵𝐺, the canonical bundle 𝐾X is trivial! Thus,
the anticanonical height is not suitable for the purposes of obtaining the expected growth rate of point
counts on stacks. Our solution is to introduce a new quantity, the expected deformation dimension (or
edd), which is a suitable perturbation of the anticanonical height.

Before giving the definition of edd, we wish to sufficiently motivate it through geometric intuition.
In the case of a proper scheme X over a function field C(𝑡), a rational point 𝑥 : SpecC(𝑡) → 𝑋 , by
the valuative criterion, extends to a map 𝑥 : P1 → 𝑋 . By Riemann–Roch, the anticanonical height
ht−𝐾𝑋 (𝑥) = deg(𝑥∗𝑇𝑋 ) differs from 𝜒(𝑥∗𝑇𝑋 ) by a constant, and 𝜒(𝑥∗𝑇𝑋 ) is the expected dimension of
the deformation space of 𝑥∗.

The deformation theoretic point of view serves as our launching point for the definition of edd. Given
a rational point 𝑥 : Spec𝐾 → X of a stack, we can extend x to a universal tuning stack 𝑥 : C → X ; see
Definition 2.1. The expected deformation dimension of 𝑥 is then given by 𝜒(𝐿∨

𝑥
[1]), where 𝐿𝑥 is the

cotangent complex for the representable map 𝑥. For the sake of motivational purposes, suppose both X
and C are smooth tame Deligne–Mumford stacks, in which case the tangent complexes 𝐿∨

X and 𝐿∨
C are

vector bundles, denoted by 𝑇X and 𝑇C . Then

𝜒(𝐿∨
𝑥 [1]) = 𝜒(𝑥∗𝑇X ) − 𝜒(𝑇C),

which up to constants are the same as

deg(𝜋∗𝑥∗𝑇X ) − deg(𝜋∗𝑇C). (4.1)

Note that deg(𝜋∗𝑥∗𝑇X ) = − ht𝐾X (𝑥). We next calculate deg(𝜋∗𝑇C). Letting 𝜋 : C → 𝐶 be the coarse
space, we have

Ω1
C = 𝜋∗Ω1

𝐶 ⊗ OC
(∑

(1 − 𝑒−1
𝑝 )𝑝

)
(4.2)

by [71, Lemma 5.5.3 and Proposition 5.5.6]. So,

𝜋∗𝑇C = 𝑇𝐶 ⊗ O𝐶

(∑⌊
𝑒−1
𝑝 − 1

⌋
𝑝
)
= 𝑇𝐶 (−𝑅);

since the floors are equal to −1 if 𝑒𝑝 is nontrivial and 0 otherwise, R is the divisor given by the ramified
points taken without multiplicity. So, up to constants, deg(𝜋∗𝑇C) = − deg(𝑅).

In practice, however, we will want to consider stacks X0 over K for which we do not have in mind a
particular model X /𝐶 which is normal and Deligne–Mumford or for which we do have in mind a model
but it isn’t Deligne–Mumford; for example, we don’t want to exclude a stack like 𝐵𝜇𝑛/Spec Z which
fails to be Deligne–Mumford in characteristics dividing n. Tuning stacks for rational points of such
stacks are also generally not Deligne–Mumford. Presumably a more complicated definition involving
the tangent complex would work, but in the interest of simplicity we have chosen for now to apply a
technical workaround.

First, the universal tuning stack C of a rational point 𝑥 ∈ X (𝐾) is generically a scheme (and thus
generically Deligne–Mumford). The coarse space map 𝜋 : C → 𝐶 is birational and C is normal; if C
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is tame, then it is a root stack. To promote our working definition of edd (equation 4.1) to the general
setting we are tempted to define

Ω1,fake
C = 𝜋∗Ω1

𝐶 ⊗ OC
(∑

(1 − 𝑒−1
𝑝 )𝑝

)
.

If p is a Deligne–Mumford point of C but is not tame, then one defines 𝑒𝑝 via wild ramification [43,
Proposition 7.1]. But if p is not a Deligne–Mumford point it is unclear how to define 𝑒𝑝 . If p is tame,
then the stabilizer of p is isomorphic to 𝜇𝑚 for some integer m, and it is tempting to define 𝑒𝑝 to be
1/𝑚. This is ad hoc, but worse, not general enough: The stabilizer could be a group which is neither
étale nor tame (such as 𝜇𝑝 × Z/𝑝Z).

Our perspective is that the precise definition of 𝑒𝑝 does not matter, as long as it is nontrivial at a
stacky point. What we mean is: For the part of the definition of edd that relies on the universal tuning
stack we only ever consider the quantity ‘deg(𝜋∗𝑇C)’. Since 𝑇C is the dual of Ω1,fake

C ,

𝜋∗𝑇C = 𝑇𝐶 ⊗ O𝐶

(∑⌊
𝑒−1
𝑝 − 1

⌋
𝑝
)
.

In particular, since we are taking floors the quantity
⌊
𝑒−1
𝑝 − 1

⌋
is 0 is p is not stacky and is −1 otherwise.

In equation 4.1, we thus abstain from defining 𝑇C and instead replace deg(𝜋∗𝑇C) with the following
quantity.

Definition 4.3 (Reduced discriminant). Let 𝜋 : C → 𝐶 be a tuning stack of a rational point 𝑥 ∈ X (𝐾).
We define the reduced discriminant rDisc(𝑥) of x to be the sum

rDisc(𝑥) =
∑

log 𝑞𝑣

over the stacky points v of C, where 𝑞𝑣 is the cardinality of the residue field of the point v.

To make sense more generally of the other term of equation 4.1, for the rest of this section, in addition
to the assumptions of Subsection 1.1 and Section 2, we assume that the generic fiber X𝐾 of our proper
Artin stack 𝑝 : X → 𝐶 is Deligne–Mumford so that it makes sense to talk about the canonical sheaf
𝐾X𝐾 of the generic fiber.

Definition 4.4. We say a line bundle on X is generically canonical if its restriction to X𝐾 is 𝐾X𝐾 .

We now define edd as follows, guided by the motivation above.

Definition 4.5 (Expected deformation dimension). Let K be a global field, and let C be either Spec𝑂𝐾

in the number field case or a smooth proper curve with function field K in the function field case. Let
X be a proper Artin stack over C with finite diagonal such that X is a smooth proper Deligne–Mumford
stack over K. Let 𝐾 be a generically canonical line bundle on X . Given 𝑥 ∈ X (𝐾), let (C, 𝑥, 𝜋) be its
universal tuning stack. The expected deformation dimension of x is

edd(𝑥) := − ht𝐾 (𝑥) + rDisc(𝑥).

Remark 4.6. Implicit in this definition is a conjecture: That the definition is independent of choices.
More precisely, we expect that, given two different models of X𝐾 , and two different extensions of 𝐾X𝐾

to these models, the two functions edd(𝑥) would differ by a function that is bounded as x ranges over
X (𝐾). In the examples that follow, we will simply choose a model X and choose a generically canonical
line bundle on X .

Remark 4.7. If X = 𝑋 is a scheme, then the universal tuning stack is a curve, and edd agrees with
the anticanonical height since edd(𝑥) := − ht𝐾𝑋 (𝑥) = deg(𝑥∗𝑇𝑋 ) = ht−𝐾𝑋 (𝑥). On the other extreme, if
X = 𝐵𝐺, then 𝐾X is trivial, so edd(𝑥) is the reduced discriminant of the field extension corresponding
to x.
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Example 4.8 (Extending a stacky curve and its canonical bundle). Let X0 be a smooth tame Deligne–
Mumford stacky curve over K, and suppose that the coarse space map 𝜙0 : X0 → 𝑋0 is birational
(equivalently,X0 has trivial generic inertia). By [33, Theorem 1 and Remark 4], such anX0 is isomorphic
to a root stack over its coarse space. Let 𝑝1, . . . , 𝑝𝑘 ∈ 𝑋0 be the ramification locus of 𝜙0; since X0 is a
root stack, the stabilizer group over each 𝑝𝑖 is isomorphic to 𝜇𝑒𝑖 for some integer 𝑒𝑖 ≥ 2, and X0 is the
root stack of 𝑋0 rooted along each 𝑝𝑖 with order 𝑒𝑖 .

The coarse space 𝑋0 is a smooth proper curve over K and extends to a proper relative curve 𝑋 → 𝐶.
Let 𝐷𝑖 be the closure of 𝑝𝑖 . After a possible normalization and sequence of blowups, we can assume
that X is regular and that the 𝐷𝑖 do not intersect each other or the singular points of the fibers of 𝑋 → 𝐶.
Define 𝜙 : X → 𝑋 to be the root stack of X rooted along each 𝐷𝑖 with order 𝑒𝑖 . The relative stacky
curve X is a model of X0 and is tame. If there is some point v of C and some i such that the residue
characteristic of v divides 𝑒𝑖 , then X is an Artin stack which is not Deligne–Mumford; if 𝐶 = SpecO𝐾

for some number field K, then there is always some such v and i.
As discussed above (see Equation 4.2) the canonical sheaf of X0 is

Ω1
X0

= 𝜙∗0Ω
1
𝑋0

⊗ OX0

(∑
(1 − 𝑒−1

𝑖 )𝑝𝑖
)
.

Define

Ω1,fake
X = 𝜙∗𝜔𝑋/𝐶 ⊗ OX

(∑
(1 − 𝑒−1

𝑖 )𝐷𝑖

)
by the same ‘formula’. Then Ω1,fake

X is a generically canonical sheaf.

We have seen in Remark 4.7 that when X is a scheme, edd agrees with anticanonical height, that
is, the height of the tangent bundle. It turns out that the same identity holds when X is a smooth, tame
Deligne–Mumford stacky curve with no generic inertia, at least away from the accumulating subvarieties.

Proposition 4.9 (Curves with stacky points). Let X0 be a smooth tame Deligne–Mumford stacky curve
over K, and suppose that X0 is birational to its coarse space. Let X be the model of X0 given by
extending the root data as in Example 4.8, and let 𝑇X be the dual of the generically canonical bundle
from Example 4.8. Let x be a point of X (𝐾). Then

edd(𝑥) = ht𝑇X (𝑥).

Proof. Let C be a tuning stack and 𝑥 : C→X the extension of x, as usual. The pullback 𝑥∗𝑇∨
X is a line

bundle on C. We first note that

ht𝑇X (𝑥) + ht𝑇 ∨
X
(𝑥) =

∑
𝑣

(𝛿𝑇X ;𝑣 (𝑥) + 𝛿𝑇 ∨
X ;𝑣 (𝑥))

since

htst𝑇X (𝑥) + htst
𝑇 ∨
X
(𝑥) = 0.

For each closed point v of C, the point x either reduces to a nonstacky point or reduces to a unique
stacky point p with stabilizer group 𝜇𝑚 for some integer 𝑚 ≥ 2. Let k be the multiplicity of the reduction
of x to p (i.e., the multiplicity of the intersection of the images of x and p in the coarse space X). If m
divides k, then we can take the tuning stack C to be a scheme in a neighborhood of v, in which case
the discrepancies are 0. Otherwise, C𝑣 is a root stack which can be resolved by adjoining to 𝐾𝑣 an mth
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root of a uniformizer. Denote the resulting field extension by 𝐿𝑤 . So as in Section 2.3, the restriction of
𝑥∗𝑇X to O𝐾𝑣 is identified with an ideal Λ in O𝐿𝑤 , and we have

𝛿𝑇X ;𝑣 (𝑥) = (1/𝑚) log
���� Λ
(Λ ∩ 𝐾𝑣 ) ⊗O𝐾𝑣

O𝐿𝑤

����.
Taking 𝜋𝑤 to be a uniformizer of O𝐿𝑤 , we may write Λ = 𝜋−𝑘𝑤 O𝐿𝑤 , and so

𝛿𝑇X ;𝑣 (𝑥) = ((−𝑘/𝑚) − �−𝑘/𝑚�) log 𝑞𝑣 .

The restriction 𝑥∗𝑇∨
X , by the same argument, is identified with the ideal 𝜋𝑘

𝑤O𝐿𝑤 . We conclude that

𝛿𝑇X ;𝑣 (𝑥) + 𝛿𝑇 ∨
X ;𝑣 (𝑥) = ((−𝑘/𝑚) − �−𝑘/𝑚� + 𝑘/𝑚 − �𝑘/𝑚�) log 𝑞𝑣

which is log 𝑞𝑣 unless 𝑚 |𝑘 , in which case it is zero. In other words,

ht𝑇X (𝑥) + ht𝑇 ∨
X
(𝑥) =

∑
𝑣

(𝛿𝑇X ;𝑣 (𝑥) + 𝛿𝑇 ∨
X ;𝑣 (𝑥)) = rDisc(𝑥)

since rDisc(𝑥) is precisely the sum of log 𝑞𝑣 over the stacky points v of C. We conclude that

edd(𝑥) = − ht𝑇 ∨
X
(𝑥) + rDisc(𝑥) = ht𝑇X (𝑥)

as claimed. �

Remark 4.10. IfX ′ is a second model of the stacky curveX0 from Proposition 4.9 and ifX ′ is tame, one
can show that away from finitely many points of C, X ′ is a root stack and isomorphic to X ; shrinking C
further the generically canonical sheaves agree. By Proposition 2.25, the value of 𝛿𝑇X ′ ;𝑣 (𝑥) + 𝛿𝑇 ∨

X ′ ;𝑣 (𝑥)
is bounded on X ′(𝐾), and thus the edd associated to the model X ′ will only differ by a constant which
depends on X0 and K.

4.2. Weak form of the stacky Batyrev–Manin–Malle conjecture

Having now defined edd, we are ready to state a heuristic for counting rational points of bounded height
on a stack. We then show that our heuristic recovers the weak form of the Batyrev–Manin when X is a
scheme and recovers the weak form of the Malle conjecture when X = 𝐵𝐺.

Of course, we cannot expect to count points of bounded height unless the height function satisfies
some kind of positivity property. In the Batyrev–Manin setting, this is achieved by restricting to heights
corresponding to ample line bundles. One does not have as clear a geometric picture of vector bundles
on stacks as one does in the setting of line bundles on schemes, so we use for the moment the following
definition. We recall that stable height is well behaved under field extension (Proposition 2.14), so we
can define an absolute htst;abs

V as a function on X (𝐾) by the usual rule:

htst;abs
V (𝑥) = [𝐿 : 𝐾]−1 htstV (𝑥)

for points of X (𝐿).

Definition 4.11. We say a vector bundle V on a stack X is semipositive if the quantity htst;abs
V (𝑥) is

bounded below on X (𝐾).

We note that the property of being semipositive is stable under field extensions by Remark 2.16.

Definition 4.12. Let f be a real-valued function on X (𝐾). We say f is generically bounded below if
there is a proper closed substack Z of X and a constant B such that the set of 𝑥 ∈ X (𝐾) such that
𝑓 (𝑥) < [𝐾 (𝑥) : 𝐾] · 𝐵 is contained in Z (𝐾), where 𝐾 (𝑥) is the residue field of x.
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Suppose V is a semipositive vector bundle on X. We consider the function

𝐷𝑎,V (𝑥) = 𝑎 htV (𝑥) − edd(𝑥)

on X (𝐾). We note that if 𝑎′ > 𝑎, then

𝐷𝑎′,V (𝑥) = 𝐷𝑎,V (𝑥) + (𝑎′ − 𝑎) htV (𝑥) ≥ 𝐷𝑎,V (𝑥) + (𝑎′ − 𝑎) htstV (𝑥)
= 𝐷𝑎,V (𝑥) + (𝑎′ − 𝑎) [𝐾 (𝑥) : 𝐾] htst;abs

V (𝑥).

Since V is semipositive, for fixed 𝑎′ and a the quantity

(𝑎′ − 𝑎) [𝐾 (𝑥) : 𝐾] htst;abs
V (𝑥) > (𝑎′ − 𝑎) htst;abs

V (𝑥)

is bounded below on X (𝐾). It follows that if 𝐷𝑎,V is generically bounded below, so is 𝐷𝑎′,V . So the set
of a such that 𝐷𝑎,V (𝑥) is generically bounded below is an interval, extending infinitely in the positive
direction.

Definition 4.13. With notation as above, the Fujita invariant 𝑎(V) of a semipositive V is the infimum of
all positive real numbers a such that 𝐷𝑎,V is generically bounded below. If 𝐷𝑎,V is never generically
bounded below we take 𝑎 = ∞.

The main goal of this section is to propose a heuristic for counting points of bounded height on
stacks. If X is a stack over C, U is an open dense substack of X and V is a Northcott vector bundle (as
in Definition 2.17) on X , define a counting function

𝑁U ,V ,𝐾 (𝐵) = |{𝑥 ∈ U (𝐾) : htV (𝑥) ≤ log 𝐵}|.

The Batyrev–Manin conjecture is customarily stated for Fano varieties, those with ample anticanon-
ical bundle. As mentioned above, it is not clear what the right analogue of this condition is for stacks.
For instance, we certainly do not want to exclude stacks like 𝐵𝐺, on which all vector bundles have de-
gree 0 and are thus in some sense not ‘strictly positive,’ but we do want to exclude stacks like abelian
varieties, whose anticanonical bundle is trivial. To this end, we make the following defintion. Let X is a
smooth proper Deligne–Mumford stack over a number field K, let 𝑚 > 0 and B be real numbers, and let
𝑑 ≥ 1 an integer. We then define 𝑆(X , 𝑚, 𝑑, 𝐵) to be the set of pairs (𝐿, 𝑃) with L a degree-d extension
and 𝑃 ∈ X (𝐿), satisfying

edd(𝑃) + 𝑚Δ𝐿/𝐾 < 𝐵.

We provisionally say X is Fanoish if 𝑆(X , 𝑚, 𝑑, 𝐵) is finite for all 𝑚, 𝑑 and B.
We are now ready to state the heuristic that motivates this part of the paper.

Conjecture 4.14. Let K be a number field, and let𝐶 = SpecO𝐾 . Let X be a stack over C whose generic
fiber X𝐾 is a smooth proper Deligne–Mumford stack over K. Suppose further that X𝐾 is Fanoish and
that X (𝐾) is Zariski dense in X𝐾 . If V is a semipositive vector bundle on X , then there exists an open
dense substack U of X such that, for every 𝜖 > 0, there is a nonzero constant 𝑐𝜖 such that

𝑐−1
𝜖 𝐵𝑎 (V) ≤ 𝑁U ,V ,𝐾 (𝐵) ≤ 𝑐𝜖 𝐵

𝑎 (V)+𝜖 ,

where 𝑎(V) is the Fujita invariant defined in Definition 4.13.

Remark 4.15. Our point of view throughout has been to let K be a global field of any characteristic;
however, in Conjecture 4.14 we restrict to the case where K has characteristic 0. The reason for this
is that we aim to emulate the Batyrev–Manin conjecture, and the form that conjecture should take for
global fields of characteristic p is not fully settled. Indeed, there are counterexamples to the most naive
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formulations of Batyrev–Manin, even for the anticanonical height; see Starr–Tian–Zong [67, Lemma
5.1] and recent work of Beheshti, Lehmann, Riedl and Tanimoto [7].

Remark 4.16. The condition that X (𝐾) is Zariski dense is present to handle cases where, for instance,
X (𝐾) is empty or supported on a closed subvariety due to a local obstruction.

Remark 4.17 (Accumulating loci can be zero-dimensional). One difference between this case and the
traditional Batyrev–Manin conjecture is that the accumulating locus X \U can be zero-dimensional;
indeed, on a stacky P1, the stacky points are accumulating subvarieties. An example of this phenomenon
can be seen in the recent paper of Pizzo, Pomerance and Voight [59], which counts points on the moduli
stack 𝑋0 (3) with respect to (in our language) the height arising from the Hodge bundle. They find that
the preponderance of points are those supported at the single (stacky) point over 𝑗 = 0, and compute a
lower-order asymptotic for points on the complement U of this point.

Remark 4.18. Conjecture 4.14 corresponds to the weak version of the Batyrev–Manin conjecture. An
analogue of the strong version would be an assertion that 𝑁U ,V ,𝐾 (𝐵) is asymptotic to a constant multiple
of 𝐵𝑎 (V) (log 𝐵)𝑏 (V ,𝐾 ) for some explicit constant 𝑏(V , 𝐾). Getting the power of log 𝐵 correct (not even
to speak of the constant!) is very subtle even in the Batyrev–Manin setting where X is a scheme; we
will not attempt to pin it down here, but it seems a rich problem for further investigation.

Remark 4.19. One could, in the same way, propose a heuristic for counting points on X of bounded
stable height. Just above, one could define 𝐷st

𝑎,V (𝑥) to be htstV (𝑥) − edd(𝑥) and define the stable Fujita
invariant to be the infimum of those a such that 𝐷st

𝑎,V is generically bounded below. This gives nothing
new in the case where X is a scheme (where stable height and height are the same) or where X = 𝐵𝐺
(in which case stable height is 0) but is of interest in other cases: See Section 3.6 for an example. In
the same vein, and in some sense analogously to the central case of Batyrev–Manin where we count
by anticanonical height, one could count the number of points x of X (𝐾) with edd(𝑥) < log 𝐵, even
though edd is not always a height in the sense of this paper. One could reasonably expect this count to
be bounded between constant multiples of B and 𝐵1+𝜖 . For example, when X = 𝐵𝑆3 and 𝐾 = Q, this
would amount to counting cubic fields 𝐿/Q such that the product of the primes ramified in L is at most
log 𝐵. This counting problem will be addressed in forthcoming work of Shankar and Thorne, where it
is shown that the count is on order 𝐵 log 𝐵.

4.3. The case where X is a scheme: the Batyrev–Manin conjecture

Suppose X is a scheme X. Then, since htV = ht∧𝑟V for any rank r vector bundle V on X , we may assume
V is a line bundle L. We have seen in Remark 4.7 that edd(𝑥) = ht−𝐾𝑋 (𝑥) for any 𝑥 ∈ 𝑋 (𝐾). So if X
is Fano, it is Fanoish because the anticanonical height is an ample height and thus has the Northcott
property. It is not immediately obvious that a Fanoish scheme is Fano, but it is also not unreasonable to
hope so. To begin, −𝐾𝑋 is nef: if there were a curve C on X with −𝐾𝑋 |𝐶 of negative degree, then for
some d, there is a degree-d map 𝐶 → P1 which provides many degree-d algebraic points with more and
more negative −𝐾𝑋 -height, not counteracted by 𝑚Δ𝐿/𝐾 if we make m small enough. We also note that
a variety with trivial canonical sheaf may be expected not to be Fanoish; a K3 surface, for instance, is
expected (though not in general known) to have a Zariski-dense set of points over some extension L of
K, which implies that X is non-Fanoish since all these point have −𝐾𝑋 -height 0 and Δ𝐿/𝐾 fixed.

The question of which schemes ‘should’ satisfy the Batyrev–Manin conjecture is not wholly under-
stood but is probably not limited to Fano schemes alone; if it turns out that ‘Fanoish’ delineates a class
of schemes including some to which Batyrev–Manin does not apply, we will narrow the notion.

The condition that L is semipositive simply says that L is nef; a nef height is bounded below, and if
L is not nef, there is a curve on which L has negative degree, whose 𝐾-points thus have heights which
are not bounded below.
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Now,

𝐷𝑎,L (𝑥) = 𝑎 htL (𝑥) − edd(𝑥) = ht𝑎L+𝐾𝑋 (𝑥)

and 𝑎(L) is the minimal a such that ht𝑎L+𝐾𝑋 (𝑥) is generically bounded below.
What does this say about the line bundle 𝑎L+𝐾𝑋? First of all, if M is a big line bundle on X, then the

map 𝜙𝑘 : 𝑋→P𝑁𝑘 induced by the global sections of L𝑘 is a birational embedding for some sufficiently
large k. It is then immediate that the absolute height ht𝑀 (𝑥) is bounded below on 𝑋 (𝐾) away from the
locus Z contracted by 𝜙𝑘 and that there are only finitely many points of 𝑋 (𝐾)\𝑍 (𝐾) with height below
any given bound. So ℎ𝑀 is generically bounded below. On the other hand, the pseudoeffective cone
is dual to the cone of moving curves by by a theorem of Boucksom, Demaily, Paŭn and Peternell [14,
Th 0.2] (see [30, Th 2.22] for the case of characteristic p). So if M is not pseudoeffective, there is a
moving curve Y on X on which M has negative degree; if Z is any closed locus, we can move Y to not
be contained in Z, and then 𝑌 (𝐾) has points away from Z of arbitrarily negative height; in particular,
ℎ𝑀 is not generically bounded below.

Since the pseudoeffective cone is the closure of the big cone, we conclude that the infimum of a
such that ht𝑎L+𝐾𝑋 (𝑥) is generically bounded below is the same as the infimal a such that 𝑎L + 𝐾𝑋 is
pseudoeffective, which is the same as the infimal a such that 𝑎L + 𝐾𝑋 is big. And this 𝑎(L) is just the
usual Fujita invariant appearing in the Batyrev–Manin conjecture for Fano varieties. So Conjecture 4.14
recovers the (weak form of the) Batyrev–Manin conjecture.

4.4. The case where X is 𝐵𝐺: Malle’s conjecture

Now, suppose X = 𝐵𝐺 over a number field K, and V is a vector bundle, that is, a representation of G.
In particular, let us assume V is a faithful permutation representation corresponding to an embedding
𝐺 < 𝑆𝑛. Each point x of 𝐵𝐺 corresponds to a G-extension of K (possibly an étale algebra), and, via
the embedding of G into 𝑆𝑛, a degree-n extension 𝐿/𝐾 whose Galois closure is G. We have already
computed that

htV (𝑥) = (1/2) log |Δ𝐿/𝐾 | =
∑
𝑣 ∈𝑅

𝑒𝑣 log 𝑞𝑣 ,

where R is the set of non-Archimedean places of K ramified in 𝐿/𝐾 , and 𝑒𝑣 is the local degree of
the discriminant. If v is a place where 𝐿/𝐾 is tamely ramified, so that tame inertia acts on {1, . . . , 𝑛}
through a cyclic subgroup 〈𝜋〉 < 𝑆𝑛, the ramification 𝑒𝑣 is just the index ind(𝜋), the difference between
n and the number of orbits of 𝜋.

First of all, note that V is semipositive since htstV is identically 0.
It follows from Remark 4.7 that for any extension 𝐸/𝐾 and any point 𝑥 ∈ 𝐵𝐺 (𝐸) corresponding to

a degree-n extension 𝐹/𝐸 , we have

edd(𝑥) =
∑
𝑣

log 𝑞𝑣 ,

where the sum is over non-Archimedean places v of E which are ramified in 𝐹/𝐸 . Note in particular
that, because this is positive, 𝐵𝐺 is Fanoish; the set of (𝐿, 𝑥 ∈ 𝐵𝐺 (𝐿)) with edd(𝑥) + 𝑚Δ𝐿/𝐾 < 𝐵
involves only the finite set of extensions 𝐿/𝐾 with discriminant at most 𝐵/𝑚, and for each L, the set of
𝑥 ∈ 𝐵𝐺 (𝐿) with edd(𝑥) < 𝐵 is finite since it consists of G-extensions of L with bounded discriminant.

Thus,

𝐷𝑎,V (𝑥) = 𝑎 htV (𝑥) − edd(𝑥) =
∑
𝑣

((1/2)𝑎𝑒𝑣 − 1) log 𝑞𝑣 .

Suppose 𝑎 ≥ 2 max𝜋∈𝐺 ind(𝜋)−1. Then (1/2)𝑎𝑒𝑣 − 1 ≥ 0 for all tame primes v. The contribution of
nontame primes is bounded below by a constant depending only on [𝐸 : 𝐾]. Thus, the Fujita invariant
of V is at most 2 max𝜋∈𝐺 ind(𝜋)−1.
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Suppose, on the other hand, that a is strictly smaller than 2 ind(𝜋)−1 for some 𝜋 ∈ 𝐺. If 𝐸/𝐾 is
an extension of K and 𝐿/𝐸 a G-extension such that every ramified prime is tame and has tame inertia
acting via 𝜋, then the point x has

edd(𝑥) =
∑
𝑣

((1/2)𝑎𝑒𝑣 − 1) log 𝑞𝑣

which is bounded above by a negative constant multiple of
∑

𝑣 log 𝑞𝑣 . Heuristically, it seems safe to
suppose one can choose such (𝐸, 𝐿) with

∑
log 𝑞𝑣 as large as one likes, which would mean that 𝐷𝑎,V

was not generically bounded below. But this is perhaps not completely obvious: For instance, when
𝐺 = 𝑆𝑛, one is saying that there are many field extensions with squarefree discriminant. One certainly
expects this to be the case, but the fact, for example, that there are arbitrarily large squarefree integers
which are discriminants of degree-n extensions of Q is a recent result of Kedlaya [40]. In fact, all we
need is that for some extension 𝐾 ′ of K there are extensions 𝐿/𝐾 ′ with larger and larger discriminants
whose ramification is entirely or almost entirely drawn from the minimal-index conjugacy class in G.
One can presumably construct such extensions using the method of regular extensions popular in work
on the inverse Galois problem; using the Riemann existence theorem you write down a cover of curves
𝑋→P1

𝐾
with Galois group G and all ramification drawn from the minimal-index conjugacy class, then

descend the picture to 𝑋0→P1
𝐾 ′ for some finite extension 𝐾 ′/𝐾 , then show that specialization to points

of P1 (𝐾 ′) yields many extensions of 𝐾 ′ with the desired properties. Since we are just formulating
conjectures here, we will not push this argument through in detail.

An argument of the sort sketched in the above paragraph is necessary due to the fact that we
defined the Fujita invariant in terms of heights of points over extension fields of K; presumably, a more
conceptual geometric definition of the Fujita invariant of a vector bundle with zero stable height would
automatically assign V the value 2 max𝜋∈𝐺 ind(𝜋)−1.

At any rate, if we grant the heuristic argument on the Fujita invariant above, we find that Conjecture
4.14 predicts that the number of degree-n extensions 𝐿/𝐾 with Galois group G and discriminant at most
B—in other words, the number of points x on 𝐵𝐺 (𝐾) such that

htV (𝑥) = (1/2) log |Δ𝐿/𝐾 | < (1/2) log 𝐵

is bounded between 𝑐−1
𝜖 𝐵𝑎 and 𝑐𝜖 𝐵

𝑎+𝜖 , where 𝑎 = max𝜋∈𝐺 ind(𝜋)−1. This is exactly the weak Malle
conjecture.
Remark 4.20. When V is a representation of G which is not a permutation representation, one still has
some conjugacy-invariant function f from G to R>0 and an expression

htV (𝑥) =
∑
𝑣 ∈𝑅

𝑐𝑣 log 𝑞𝑣 ,

where, for every tamely ramified prime v, the coefficient 𝑐𝑣 is the value of f at an element of G generating
the tame inertia group at v. In this case, Conjecture 4.14 asserts that the number of points 𝑥 ∈ 𝐵𝐺 (𝑋)
with htV (𝑥) < log 𝐵 should be on order 𝐵𝑎, where a is the reciprocal of the minimal value taken by
𝑓 (𝑣) on nonidentity elements of G. Heuristics of this kind are well-known folk generalizations of Malle
(see, e.g., [28, §4.2]) and have begun to be proved in some cases. For instance, the striking work of
Altüg, Shankar, Varma and Wilson [5] can be thought of as proving Conjecture 4.14 in the case where
X = 𝐵𝐷4 and V corresponds to the two-dimensional action of 𝐷4 by rigid motions of the square. (What
they prove is much more refined than what Conjecture 4.14; they not only compute the power of B, but
the power of log 𝐵, and even the constant!)

The recent work of Alberts [4] on counting classes in 𝐻1 (Gal(Q), 𝐴), where A is an abelian group
with Galois action, can perhaps also be thought of in this way. Here, A corresponds to an étale but
possibly nonconstant group scheme, so the stack 𝐵𝐴 is geometrically the classifying stack of the finite
abelian group underlying A. In this case, the points of 𝐵𝐴(Q) are just the classes in 𝐻1 (Gal(Q), 𝐴).



Forum of Mathematics, Sigma 39

The “𝜋-discriminant” of [4, Lemma 1.4] is the height attached to the vector bundle on 𝐵𝐴 descended
from the regular representation of the finite group underlying A.

4.5. Symmetric powers of P𝑛

Let X be the stack Sym𝑚 P𝑛 = [(P𝑛)𝑚/𝑆𝑚], and let K be a global field of characteristic 0 or greater
than m. For x a point of X (𝐾), we have

edd(𝑥) = − ht𝑇 ∨
X
(𝑥) + rDisc(𝑥).

Note that we can associate to x a degree-m extension 𝐿1 of K and a point y of P𝑛 (𝐿1).
The cotangent bundle 𝑇∨

X , considered as an 𝑆𝑚-equivariant bundle on (P𝑛)𝑚, is the direct sum of
the m pullbacks of the cotangent bundle from the m projections P𝑛, and the height associated to the
cotangent bundle on P𝑛 is just the usual height associated to its determinant O(−𝑛 − 1). So we are in
the situation of Section 3.6, and we have

ht𝑇 ∨
X
(𝑥) = htO (−𝑛−1) (𝑦) + (𝑛/2) logΔ𝐿1/𝐾 .

Thus,

edd(𝑥) = htO (𝑛+1) (𝑦) +
∑
𝑣 ∈𝑅

(1 − (𝑛/2)𝑒𝑣 ) log 𝑞𝑣 ,

where, as in §4.4, R is the set of tamely ramified places and 𝑒𝑣 is the power of v in the discriminant of
𝐿𝑖/𝐾; the contribution of the wildly ramified places, as in Section 4.4, is bounded by a constant (and if
x varies over X (𝐿) for some extension 𝐸/𝐾 , the wild contribution is bounded by a constant depending
only on [𝐸 : 𝐾]).

We also have

ht𝑇X (𝑥) = htO (𝑛+1) (𝑦) + (𝑛/2) logΔ𝐿1/𝐾 = edd(𝑥) +
∑
𝑣 ∈𝑅

(𝑛𝑒𝑣 − 1) log 𝑞𝑣 .

In particular, ht𝑇X (𝑥) − edd(𝑥) is always nonnegative, and ht𝑇X (𝑥) = edd(𝑥) whenever x is a point of
X in the image of the projection from (P𝑛)𝑚(𝐾) to Sym𝑚 P𝑛 (𝐾). This shows that the Fujita invariant
𝑎(𝑇X ) is 1. Conjecture 4.14 thus suggests that, away from some proper closed substack, the number of
rational points on Sym𝑚 P𝑛 (𝑋) with tangential height at most B is between 𝐵1−𝜖 and 𝐵1+𝜖 .

There is a large existing literature about counting points on projective spaces of fixed algebraic degree
and bounded height [63, 31, 49, 50, 73, 46, 36, 37]. Most typically, the question being asked is: How
many points are there in P𝑛 (𝐾) which have absolute Weil height at most B and which are defined over
a field 𝐿1/K of degree m? As we have seen in §3.6, we can interpret this question as follows. Let V be
the vector bundle on Sym𝑚 P𝑛 obtained as in §3.6 taking 𝑉0 as OP𝑛 (1). If y is a point of P𝑛 (𝐿1) and x
the corresponding point of Sym𝑚 P𝑛, we have

htabs
O (1) (𝑦) = 𝑚−1 htstV (𝑥).

So we are in the situation of Remark 4.19. In order to compute the stable Fujita invariant of V , we need
to study the function

𝐷st
𝑎,V (𝑥) = 𝑎 htstV (𝑥) − edd(𝑥) = (𝑎 − 𝑛 − 1) htO (1) (𝑦) −

∑
𝑣 ∈𝑅

(1 − (𝑛/2)𝑒𝑣 ) log 𝑞𝑣 .

When 𝑛 ≥ 2, we note that the local term
∑

𝑣 ∈𝑅 (1 − (𝑛/2)𝑒𝑣 ) log 𝑞𝑣 is always nonpositive and is 0
when 𝐿1 is 𝐾𝑚; in particular, the set of x in Sym𝑚 P𝑛 (𝐾) with edd(𝑥) = (𝑎 − 𝑛 − 1) htstV (𝑥) is Zariski
dense for every K. Thus, 𝐷st

𝑎,V will be generically bounded below for any 𝑎 ≥ 𝑛+1 but is not generically
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bounded below for any smaller a. So the stable Fujita invariant is 𝑛 + 1. For each y in P𝑛 (𝐾) with
[𝐾 (𝑦) : 𝐾] = 𝑚, we write 𝑥𝑦 for the point of Sym𝑚 P𝑛. Then Conjecture 4.14 suggests that for every
𝑛 ≥ 2 we should expect that, for some open dense 𝑈 ∈ Sym𝑚 P𝑛,

𝑐−1
𝜖 𝐵𝑚(𝑛+1) < #{𝑦 ∈ P𝑛 (𝐾) : [𝐾 (𝑦) : 𝐾] = 𝑚, , 𝑥𝑦 ∈ 𝑈 (𝐾), htabs(𝑦) < 𝐵} < 𝑐𝜖 𝐵

𝑚(𝑛+1)+𝜖 .

When 𝑛 = 1, the situation is more complicated. We now have

𝐷st
𝑎,V (𝑥) ≥ (𝑎 − 2) htO (1) (𝑦) −

∑
𝑣 ∈𝑅

(1/2)𝑒𝑣 log 𝑞𝑣 = (𝑎 − 2) htO (1) (𝑦) − (1/2) logΔ𝐿1/𝐾

with equality when 𝐿1/𝐾 has squarefree discriminant. In order to understand how large a needs to be
for 𝐷st

𝑎,V (𝑥) to be generically bounded below, we need to know how large logΔ𝐿1/𝐾 can be relative to
htO (1) (𝑦). A point y of P1 (𝐿1) has a minimal binary m-ic form 𝐹 = 𝑎0𝑋

𝑚+· · ·+𝑎𝑚𝑌𝑚, where the height
of the point (𝑎0 : . . . : 𝑎𝑚) in P𝑚 (𝐿) is on order 𝑚 ht(𝑦) since each coefficient is a monomial of degree
m in the coordinates of y. The discriminant of 𝐿1/𝐾 is at most the discriminant of F, with equality if
disc 𝐹 is squarefree. The discriminant of F is a product of 𝑚(𝑚 − 1) terms of the form 𝛼𝑖𝛽 𝑗 − 𝛼 𝑗 𝛽𝑖 ,
where (𝛼𝑖 : 𝛽𝑖) and (𝛼 𝑗 : 𝛽 𝑗 ) are conjugates of y in P1(𝐾). So the log of disc 𝐹, considered as an
element of O𝐿 , is on order 2𝑚(𝑚 − 1) ht𝐿 (𝑦) and the log of disc 𝐹 considered as an element of O𝐾 is
thus 2(𝑚 − 1) ht(𝑦). We conclude that

𝐷st
𝑎,V (𝑥) ≥ (𝑎 − 2) htO (1) (𝑦) − (𝑚 − 1) htO (1) (𝑦) = (𝑎 − 𝑚 − 1) htO (1) (𝑦).

So 𝐷st
𝑎,V is generically bounded below when 𝑎 ≥ 𝑚 + 1, and as long as there is a Zariski-dense set of

choices of y with disc 𝐹 squarefree (perhaps this is obvious, but at any rate it follows from standard
conjectures) 𝐷𝑎,V is not generically bounded below for any smaller a. So the stable Fujita invariant in
this case is 𝑚 + 1 and Conjecture 4.14 asserts that, for some open dense U,

𝑐−1
𝜖 𝐵𝑚(𝑚+1) < #{𝑦 ∈ P1 (𝐾) : [𝐾 (𝑦) : 𝐾] = 𝑚, , 𝑥𝑦 ∈ 𝑈 (𝐾), htabs(𝑦) < 𝐵} < 𝑐𝜖 𝐵

𝑚(𝑚+1)+𝜖 . (4.21)

In fact, equation (4.21) follows from a theorem of Masser and Vaaler [50], who prove a much more
refined asymptotic, with U the whole of Sym𝑚 P1:

#{𝑦 ∈ P1 (𝐾) : [𝐾 (𝑦) : 𝐾] = 𝑚, htabs(𝑦) < 𝐵} ∼ 𝐴𝑚,𝐾 𝐵
𝑚(𝑚+1)

with an explicit constant 𝐴𝑚,𝐾 . Of course to compute the constant in the case where K is a number field,
one has to be careful about the metrization on O(1) in a way we are not attempting here. Le Rudulier
[46] generalized the Masser–Vaaler result to the case of an arbitrary metrized line bundle on P1.

When 𝑛 ≥ 2, the asymptotics for points of bounded height on projective n-space with algebraic
degree m is still the subject of active research. If n is large enough relative to m, the heuristic (4.5) is
known to be correct; indeed, one has

#{𝑦 ∈ P𝑛 (𝐾) : [𝐾 (𝑦) : 𝐾] = 𝑚, htabs(𝑦) < 𝐵} ∼ 𝐴𝑚,𝑛,𝐾 𝐵
𝑚(𝑛+1)

when K is a number field and 𝑛 > (5/2)𝑚 +𝑂 (1), by a result of Widmer [73] and when 𝑛 > 𝑚 + 1 with
m prime by a result of Guignard [37]. For the function field case, the result is proved by Thunder and
Widmer [69] when 𝑛 > 2𝑚 +4 (and generalized from P𝑛 to smooth projective toric varieties by Bourqui
in [15]). Schmidt in [64] showed that equation (4.5) holds in case 𝐾 = Q, 𝑚 = 2 and 𝑛 = 2; indeed,
in that case, the growth rate is 𝐵6 log 𝐵, showing that the 𝜖 in the exponent is sometimes necessary.
Mânzăteanu [48] extended Schmidt’s result to function fields K of odd characteristic.

On the other hand, Schmidt in [63] gives a lower bound

#{𝑦 ∈ P𝑛 (𝐾) : [𝐾 (𝑦) : 𝐾] = 𝑚, htabs(𝑦) < 𝐵} > 𝐴𝑚,𝑛,𝐾 𝐵
𝑚(𝑚+1)
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valid for all n and all sufficiently large B. When 𝑚 > 𝑛, this is a larger exponent than that predicted in
equation (4.5). But this does not contradict Conjecture 4.14. The source of Schmidt’s lower bound is the
simple observation that any choice of line in P𝑛 yields an injection of Sym𝑚 P1(𝐾) into Sym𝑚 P𝑛 (𝐾),
and the former already contains 𝐵𝑚(𝑚+1) points of height at most B. But any such point lies on the
proper closed substack 𝑍 ⊂ Sym𝑚 P𝑛 (𝐾) lying under the locus in (P𝑛)𝑚 parametrizing ordered m-
tuples of collinear points. Thus, it remains possible that when some accumulating locus is removed,
the asymptotic growth rate of the number of points is smaller. And indeed, Guignard [37, Theorem
1.2.3] shows exactly this in the case where K is a number field, 𝑚 = 3 and 𝑛 = 2. In this setting,
Schmidt’s lower bound shows that the number of cubic points on P2 with absolute height at most B is
at least 𝑐𝐵12. Guignard shows that if you exclude those cubic points which lie on a K-rational line, the
number of rational points that remain is bounded above by 𝑐𝜖 𝐵

9+𝜖 , precisely the exponent predicted by
Conjecture 4.14.

We thus see that the present viewpoint is useful for understanding phenomena of accumulation in a
uniform way. The algebraic points witnessing Schmidt’s lower bound are clearly ‘nongeneric’ in some
sense, but, considered as points of P𝑛 (𝐾), they are Zariski dense. Considering these points instead as
points on Sym𝑚 P𝑛 shows that the accumulation is a phenomenon that can be repaired by stripping out
a proper closed subvariety, exactly as in the Batyrev–Manin setting. Of course, one does not need to
invoke stacks to adopt this point of view—for instance, see §33.2 of Le Rudulier’s thesis [46], where
a degree-m algebraic point of P2 is thought of as a point on the coarse moduli scheme of Sym𝑚 P2

rather than the stack itself; since the two are birational, the observation that the collinear m-tuples lie
on a subvariety on which rational points accumulate takes the same form for Le Rudulier as it does
for us.

4.6. Footballs and multifootballs

Proposition 4.9 shows that edd agrees with tangential height ht𝑇X when X is a smooth proper one-
dimensional stack over a number field K which is birational to a curve. In particular, Proposition
4.9 applies when X is a stacky curve birational to P1 which has r stacky points isomorphic to
𝐵(𝜇𝑚1 ), . . . , 𝐵(𝜇𝑚𝑟 ). For short we will call such a curve an (𝑚1, . . . , 𝑚𝑟 )-rooted P1. The football
F (𝑎, 𝑏) as in §3.5 is then an (𝑎, 𝑏)-rooted curve.

Let X be an (𝑚1, . . . , 𝑚𝑟 )-rooted P1. Now, Conjecture 4.14 predicts that, for some open dense U in
X , we have

𝑐−1
𝜖 𝐵 ≤ 𝑁U ,𝑇X ,𝐾 (𝐵) ≤ 𝑐𝜖 𝐵

1+𝜖 . (4.22)

First of all, U is obtained by removing a finite set of points from X , so we can interpret the above
asymptotic as a heuristic for the number of points of X of bounded height which are not supported on
the stacky locus.

The coarse map X→P1 is a birational isomorphism, and so without serious ambiguity we can denote
a point x on X (𝐾) not contained in stacky locus by its image (𝑎 : 𝑏) in P1 (𝐾). We will now compute
tangential height explicitly. The tangent sheaf 𝑇X is 2𝑃 +

∑
𝑖 (1/𝑚𝑖 − 1)𝑃𝑖 , where 𝑃𝑖 is the i’th stacky

point and P is some other point on X ; the degree of 𝑇X is thus 𝑑 = 2− 𝑟 +
∑

𝑖 (1/𝑚𝑖). If N is an multiple
of every 𝑚𝑖 , then 𝑁𝑇X is linearly equivalent to 𝑁𝑑 copies of P; in other words, it is pulled back from
O(𝑁𝑑) on the coarse space P1. We thus have

htst𝑇X (𝑥) = (1/𝑁) htst𝑁𝑇X
(𝑥) = (1/𝑁) htO (𝑁𝑑) (𝑎 : 𝑏) = 𝑑 htO (1) (𝑎 : 𝑏).

We note, in particular, that 𝑇X is not semipositive unless 𝑑 ≥ 0, so we assume this from now on.
For expositional simplicity, we now restrict to the case 𝐾 = Q. So the stable height of x is

𝑑 log max(|𝑎 |, |𝑏 |), where a and b are now taken to be coprime integers. It remains to compute the
local discrepancies. The local discrepancy 𝛿𝑣 (𝑎 : 𝑏) can be computed as follows. The tangent bundle
𝑇X has local degree 1/𝑚𝑖 ∈ Q/Z at 𝑃𝑖 , so the degree of 𝑥∗𝑇∨

X at the point of the tuning stack C over a
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place v is −𝑘/𝑚𝑖 , where 𝑘 = ord𝑣 𝐿𝑖 (𝑎 : 𝑏). Thus, the local degree of the pushforward 𝜋∗𝑥
∗𝑇X on C is

�−𝑘/𝑚𝑖� = −�𝑘/𝑚𝑖�, and so the local discrepancy is given by

𝛿𝑣 = (�𝑘/𝑚𝑖� − 𝑘/𝑚𝑖) log 𝑞𝑣 .

Throw out the bounded contribution of any prime v where two distinct 𝑃𝑖 intersect, and denote by 𝐿𝑖

the linear form whose zero is at 𝑃𝑖 . Then for each prime p, there is at most one 𝐿𝑖 (𝑎, 𝑏) vanishing at p,
and the local discrepancy is (1/𝑚𝑖) log 𝑝𝑐 , where c is the least integer such that the p-adic valuation of
𝑝𝑐𝐿𝑖 (𝑎, 𝑏) is a multiple of 𝑚𝑖 .

Definition 4.23. For integers 𝑚, 𝑁 , define Φ𝑚(𝑁) to be the unique m-th power free integer such that
𝑁Φ𝑚(𝑁) is an mth power. Alternatively,

Φ𝑚(𝑁) =
∏
𝑝

𝑝𝑚 �ord𝑝 𝑁 /𝑚�−ord𝑝 𝑁 .

When 𝑚 = 2, we have that Φ2(𝑁) is the squarefree part of N, denoted sqf(𝑁).
Putting this all together, we find

ht𝑇X (𝑎 : 𝑏) =
∑
𝑖

(1/𝑚𝑖) logΦ𝑚𝑖 (𝐿𝑖 (𝑎, 𝑏)) + (2 − 𝑟 +
∑
𝑖

1/𝑚𝑖) log max(|𝑎 |, |𝑏 |).

When r is small, it is straightforward to see that equation (4.22) is satisfied. For example, consider a
P1 rooted only at 0 with a copy of 𝐵𝜇3 (that is, 𝑟 = 1 and 𝑚1 = 3). Then (taking U to be the complement
of the stacky locus) 𝑁U ,𝑇X ,𝐾 (𝐵) is the number of pairs of coprime 𝑎, 𝑏 such that

Φ3(𝑎)1/3 max(|𝑎 |, |𝑏 |)4/3 < 𝐵.

We can write a uniquely as 𝑐3𝑑1𝑑
2
2, where 𝑑1, 𝑑2 are coprime and squarefree, and clearly bounded above

by a power of B. Then Φ3(𝑎) = 𝑑2
1𝑑2 and we find that up to constants we are counting the positive

𝑐, 𝑑1, 𝑑2, 𝑏 such that

𝑑2/3
1 𝑑1/3

2 max(𝑐4𝑑4/3
1 𝑑8/3

2 , 𝑏4/3) = max(𝑐4𝑑2
1𝑑

3
2 , 𝑏

4/3𝑑2/3
1 𝑑1/3

2 ) < 𝐵.

For a given choice of coprime 𝑑1, 𝑑2, we see that the number of choices for c is 𝐵1/4𝑑−1/2
1 𝑑−3/4

2 , while the
number of choices for b is 𝐵3/4𝑑−1/2

1 𝑑−1/4
2 , so the number of choices for the pair (𝑐, 𝑏) is just 𝐵𝑑−1

1 𝑑−1
2 ;

summing this over all coprime pairs 𝑑1, 𝑑2 up to some power of B gives an asymptotic for 𝑁U ,𝑇X ,𝐾 (𝐵)
on order 𝐵 log2 𝐵, which agrees with the heuristic prediction (4.22).

John Yin has shown (personal communication) that equation (4.22) holds for a (2, 2)-rooted P1; in
fact, he addresses the more general case where the degree-2 stacky locus is irreducible over Q rather
than being supported at two rational points, as in the cases discussed here.

Things get more difficult as r grows. Consider the case of a (2, 2, 2)-rooted P1 with the half-points
located at 0,−1, and ∞. Then

ht𝑇X (𝑎 : 𝑏) = (1/2) log(sqf (𝑎) sqf (𝑏) sqf (𝑎 + 𝑏) max(|𝑎 |, |𝑏 |))

so 𝑁U ,𝑇X ,𝐾 (𝐵) is the number of pairs of coprime 𝑎, 𝑏 such that

sqf (𝑎) sqf (𝑏) sqf (𝑎 + 𝑏) max(|𝑎 |, |𝑏 |) < 𝐵2.

This set contains all pairs of coprime integers in [0,
√
𝐵], so it has size at least 𝑐𝐵, as predicted.

In fact, in recent work, Pierre Le Boudec (in personal communication) and Nasserden–Xiao [53] have
independently shown that 𝑁U ,𝑇X ,𝐾 (𝐵) is bounded above and below by constant multiples of 𝐵 log 𝐵3.
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This seems a very interesting case to explore further; can one obtain an asmyptotic 𝑁U ,𝑇X ,𝐾 (𝐵) ∼
𝑐𝐵 log3 𝐵, and if so, what is the constant?

We also note that some footballs are weighted projective lines; in recently announced work, Darda
[20] proves counting results for weighted projective spaces.

4.7. When edd is negative: A stacky Lang–Vojta conjecture

Conjecture 4.14 is meant to apply to those ‘Fanoish’ stacks X , where edd is positive in some appropriate
sense. In this section, we consider the opposite scenario: where edd(𝑥) is negative. When X is a scheme,
this is the situation where the canonical bundle 𝐾𝑋 is ample so that X is of general type; in this case, and
assuming K is a number field, Lang’s conjecture suggests that 𝑋 (𝐾) should be supported on a proper
closed subvariety of X. (When K is a global field of characteristic p, the situation is more subtle—the
famous examples of Shioda show, for instance, that a variety can be of general type and also unirational!
We thus restrict to the number field case for the remainder of the discussion.)

More precisely, conjectures of Vojta say that, for any X, any ample line bundle L, and any real 𝛿 > 0,
the set of rational points on 𝑋 (𝐾) such that

ht−𝐾𝑋 (𝑥) + 𝛿 ht𝐿 (𝑥) < 0

should be supported on a proper closed subvariety.
This suggests that one might tentatively propose a ‘Vojta conjecture for stacks’ as follows: Let X be

a stack over a number field K, let L be a line bundle on X pulled back from an ample line bundle on the
coarse space of X and let 𝛿 > 0 a real number.

Conjecture 4.24. The set of rational points of X (𝐾) such that

edd(𝑥) + 𝛿 ht𝐿 (𝑥) < 0

is supported on a proper closed substack of X .

For example, if X is a (4, 4, 4)-rooted P1 with the (1/4)th-points at 0, 1,∞, then we have

edd(𝑎 : 𝑏) = logΦ4(𝑎)1/4Φ4(𝑏)1/4Φ4(𝑎 + 𝑏)1/4 max(|𝑎 |, |𝑏 |)−1/4

and the claim is then that the inequality

Φ4(𝑎)Φ4(𝑏)Φ4(𝑎 + 𝑏) < max(|𝑎 |, |𝑏 |)1−𝛿

holds for only finitely many pairs of coprime integers 𝑎, 𝑏.
Another interesting case is that of a (2, 2, 2, 2, 2)-rooted P1 with the half-points at 0, 1, 2, 3, 4. In

this case, Conjecture 4.24 says there are only finitely many five-term arithmetic progressions 𝑎1, . . . , 𝑎5
such that

sqf (𝑎1𝑎2𝑎3𝑎4𝑎5) < max(𝑎1, 𝑎5)1−𝛿 .

As Nasserden and Xiao explain in [54, Theorem 1.4], the assertion that Conjecture 4.24 holds for
all stacky curves is equivalent to the abc conjecture, with a key ingredient being a result of Granville
[34]; indeed, Granville’s result shows immediately that the two examples above satisfy Conjecture 4.24
conditional on abc. What is the relation between Vojta’s ‘more general abc conjecture’ from [72] applied
to a divisor D on a scheme X, and Conjecture 4.24 for a stack obtained by rooting a scheme X at D?6
One may hope that individual cases of Conjecture 4.24, like those described above, might not be as far
out of reach as abc and its generalizations.

6We are grateful to Aaron Levin for useful discussions concerning this connection.
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We note that a conjecture akin to Conjecture 4.24 also appears in the work of Abramovich and Várilly
[1, Proposition 3.2]; they show their conjecture follows from the Vojta conjecture for schemes and derive
from this a finiteness theorem, conditional on Vojta, for principally polarized abelian varieties with full
m-level structure for large enough m. Their conjecture is expressed in terms of a height on X which, in
the language of this paper, is htst−𝐾𝑋

. And their conjecture, like Conjecture 4.24, can be expressed as an
assertion that the set of points 𝑥 ∈ X (𝐾) with

htst−𝐾𝑋
(𝑥) + 𝛿 ht𝐿 (𝑥) +

∑
𝑣

𝛼𝑣 (𝑥) < 0

is not Zariski dense, for some local nonnegative contributions 𝛼𝑣 supported at the points where x fails
to extend to an integral point of X . (In fact, their conjecture says more, making an assertion about all
algebraic points of a fixed degree r.) The conjecture of Abramovich and Várilly is compatible with
Conjecture 4.24 but is not identical to it. One interesting case where they differ is that of X = 𝐴/±1,
with A an abelian variety of dimension g over a number field K. Let x be a point of (𝐴/±1) (𝐾), which
is to say a quadratic extension 𝐹/𝐾 and a point of 𝐴(𝐹) with trace zero in 𝐴(𝐾). The stable height
can be computed on the pullback to the étale cover A, where the canonical divisor on X is zero, so the
Abramovich–Várilly conjecture bounds the set of 𝑥 ∈ X (𝐾) such that

𝛿 ht𝐿 (𝑥) +
∑
𝑣

𝛼𝑣 (𝑥) < 0.

But the left-hand side is positive for all but finitely many x by the ampleness of L, so this is easy. On the
other hand, Conjecture 4.24 says more. We have

edd(𝑥) = − ht𝑇 ∨
X
+ rDisc(𝑥).

Near a stacky point v, the tuning stack looks like [(SpecO𝐹,𝑣 )/±1] and Λ, as in §2.3, is given by
O⊕𝑔

𝐹,𝑣 , where the ±1-action sends the i-th basis vector 𝑒𝑖 to −𝑒𝑖; hence, if we let 𝛼 denote the quadratic
conjugate of 𝛼 ∈ 𝐹𝑣 , we see 𝛼𝑒𝑖 maps to −𝛼𝑒𝑖 . It follows that if v is not of characteristic 2, then Λ∩ 𝐿𝑣

is the set of sums
∑

𝑖 𝛼𝑖𝑒𝑖 with 𝛼𝑖 of trace zero. An easy computation then shows the local discrepancy
at v is (1/2)𝑔 log 𝑞𝑣 . We conclude that

ht𝑇 ∨
X
= htst

𝑇 ∨
X
+(𝑔/2) log disc𝐹/𝐾 = (𝑔/2) log disc𝐹/𝐾 .

Furthermore (still setting aside the bounded contribution of 2), the conductor | Supp 𝑅𝜋 | is just equal to
log disc𝐹/𝐾 . So Conjecture 4.24 says that the set of x with

(1 − 𝑔/2) log disc𝐹/𝐾 +𝛿 ht𝐿 (𝑥) < 0

is supported on a closed subvariety, for any real 𝛿 > 0. When 𝑔 ≥ 2 this is vacuous, but when 𝑔 ≥ 3 it
has content. By changing 𝛿 we can absorb the constant on the right-hand side and say that the prediction
is as follows: For any abelian variety 𝐴/𝐾 of dimension at least 3, and any real 𝛿 > 0, there is a
closed subvariety 𝑍𝛿 ⊂ 𝐴 such that, for any trace-zero quadratic point 𝑃 ∈ 𝐴(𝐾)\𝑍 (𝐾), the absolute
logarithmic height of 𝑃 ∈ 𝐴(𝐾) is at least 𝛿−1 log disc𝐹/𝐾 .

This formulation may seem a bit cumbersome, but it is necessary. Suppose, for example, that A is
the Jacobian of a hyperelliptic curve X over K, and suppose X has a rational Weierstrass point so it
embeds into A via an Abel–Jacobi map. Then X provides many quadratic points P on A whose heights
are bounded above by 𝑐 log disc𝐾 (𝑃)/𝐾 for some real c. So if 𝛿 < 𝑐−1, the exceptional set 𝑍𝛿 needs
to include X. But if we take 𝛿 < (1/𝑚)𝑐−1, then every quadratic point on A lying on the curve [𝑚]𝑋
satisfies log disc𝐾 (𝑃)/𝐾 +𝛿 ht(𝑥) < 0, so we need to include not only X but [2]𝑋, [3]𝑋, . . . , [𝑚]𝑋 in
the exceptional locus 𝑍𝛿 . On the other hand, no matter what 𝛿 is, there should be many quadratic points
in 𝐴\𝑍𝛿 because (at least under modest assumption on A) the functional equation of quadratic twists
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of A will vary in sign with the twist, which means there will be many quadratic twists 𝐴𝑑 of A which
under Birch–Swinnerton-Dyer have positive rank. The heuristics here would suggest that the nontorsion
points on such an 𝐴𝑑 have very large height relative to d. Is this reasonable?

4.8. Further questions

There are many questions about the subject matter here which in the interests of length and time we
have not addressed.

◦ How does one compute edd(𝑥) explicitly when K is the function field of a curve in finite characteristic
and X is not tame?

◦ Is Conjecture 4.14 geometrically consistent in the sense of Lehmann, Sengupta and Tanimoto [47]?
◦ How should one estimate the asymptotic growth of points on X which are integral with respect to a

divisor D?
◦ As mentioned earlier in the paper, one might, rather than defining height in terms of the degree of
𝜋∗𝑥

∗V , simply keep track of the vector bundle 𝜋∗𝑥∗V itself. When 𝐾 = Q this metrized vector bundle
is a lattice of the same rank as V . When X is a scheme, this point of view has been advanced by
Peyre [58] as a more refined means of studying rational points on varieties. When X = 𝐵𝐺 and V
is a permutation representation of G, this lattice is related to the shape of the integer lattice in the
G-extension 𝐿/Q corresponding to x; the variation of these lattices as one ranges over G-extensions
of bounded discriminant has been an object of much recent interest [12, 39, 13]. What can be said
about intermediate cases, like Sym𝑚 P𝑛?

Appendix A. Metrized vector bundles on stacks over number fields

A.1. Linear Algebra

An Hermitian pairing on a complex vector space V is a bilinear map 〈 , 〉 : 𝑉 → C such that for all
𝑣, 𝑤 ∈ 𝑉 , 〈𝑤, 𝑣〉 = 〈𝑣, 𝑤〉 (whence 〈𝑣, 𝑣〉 ∈ R≥0). We define the associated Hermitian norm ‖·‖ : 𝑉 → R
via ‖𝑣‖ :=

√
〈𝑣, 𝑣〉. We call such a pair 𝑉 := (𝑉, ‖·‖𝑉 ) (or equivalently, (𝑉, 〈 , 〉𝑉 )) an Hermitian space.

For 𝑟 ∈ R≥0 we define the ball of radius r to be 𝐵
(
𝑉, 𝑟

)
:= {𝑣 ∈ 𝑉 � ‖𝑣‖ ≤ 𝑟} (and refer to 𝐵

(
𝑉, 1

)
as the

unit ball in 𝑉). We define the standard Hermitian space to be C𝑛 := (C𝑛, 〈 , 〉), where 〈𝑥, 𝑦〉 :=
∑
𝑥𝑖𝑦𝑖 .

A morphism 𝜙 ∈ Hom
(
𝑉,𝑊

)
of Hermitian spaces is a linear map 𝜙 : 𝑉 → 𝑊 such that ‖𝜙(𝑣)‖𝑊 ≤

‖𝑣‖𝑉 for all 𝑣 ∈ 𝑉 . The space Hom(𝑉,𝑊) admits a pairing

〈𝜙, 𝜓〉 := sup
𝑣 ∈𝐵(𝑉 ,1)

〈𝜙(𝑣), 𝜓(𝑣)〉𝑊 .

The associated norm is ‖𝜙‖ = sup𝑣 ∈𝐵(𝑉 ,1) ‖𝜙(𝑣)‖𝑊 ; we let Hom
(
𝑉,𝑊

)
be the associated Hermitian

space, whence Hom
(
𝑉,𝑊

)
:= 𝐵

(
Hom

(
𝑉,𝑊

)
, 1

)
. We define the dual 𝑉

∨ of 𝑉 to be Hom
(
𝑉,C

)
.

Let 𝑉 be an Hermitian space, and let 0 → 𝑉 ′ → 𝑉
𝜋−→ 𝑉 ′′ → 0 be an exact sequence of complex

vector spaces. Then the restriction of ‖·‖𝑉 to 𝑉 ′ is an Hermitian norm ‖·‖𝑉 ′ on 𝑉 ′. The orthogonal
complement (𝑉 ′)⊥ of 𝑉 ′ is naturally identified with 𝑉 ′′, inducing a pairing 〈 , 〉𝑉 ′′ on 𝑉 ′′ via restriction
of 〈 , 〉𝑉 and this identification; the induced quotient norm ‖·‖𝑉 ′′ on 𝑉 ′′ can thus be computed as
‖𝑣‖𝑉 ′′ = inf𝑤 ∈𝜋−1 (𝑣) ‖𝑤‖𝑉 .

Let 𝑉 and 𝑊 be Hermitian spaces. We define the direct sum 𝑉 ⊕ 𝑊 := (𝑉 ⊕ 𝑊, ‖·‖𝑉 ⊕𝑊 ) via the

declaration 〈𝑣, 𝑤〉𝑉 ⊕𝑊 = 0 for 𝑣 ∈ 𝑉, 𝑤 ∈ 𝑊 ; one then computes that ‖𝑣 ⊕ 𝑤‖𝑉 ⊕𝑊 =
√
‖𝑣‖2

𝑉 + ‖𝑤‖2
𝑊 .

We define the tensor product 𝑉 ⊗ 𝑊 := (𝑉 ⊗ 𝑊, ‖·‖𝑉 ⊗𝑊 ) via the formula 〈𝑣1 ⊗ 𝑤1, 𝑣2 ⊗ 𝑤2〉𝑉 ⊕𝑊 =
〈𝑣1, 𝑣2〉𝑉 · 〈𝑤1, 𝑤2〉𝑊 ; one then computes that ‖𝑣 ⊗ 𝑤‖𝑉 ⊗𝑊 = ‖𝑣‖𝑉 · ‖𝑤‖𝑊 . We define the alternating
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product
∧𝑛 𝑉 via 〈𝑣1 ∧ · · · ∧ 𝑣𝑛, 𝑤1 ∧ · · · ∧ 𝑤𝑛〉 = det

(〈
𝑣𝑖 , 𝑤 𝑗

〉)
; this is not exactly equal to the quotient

norm of ‖·‖𝑉 ⊗𝑛 along the map 𝑉 ⊗𝑛 →
∧𝑛 𝑉 , but rather is

√
𝑛! times the quotient norm.

A.2. Analytic spaces

Let X be a complex analytic space (as in [35]), and let V be a vector bundle on X. Let C𝑋 denote the
sheaf of continuous functions on X valued in R≥0. An Hermitian norm | · | on V is a morphism of sheaves

| · | : V → C𝑋

such that

1. |𝑠 | (𝑥) = 0 if and only if 𝑠(𝑥) = 0,
2. for all 𝑓 ∈ O𝑋 (𝑈), we have | 𝑓 𝑠 | = | 𝑓 | |𝑠 |, and
3. for every complex point 𝑥 : ∗ → 𝑋 , the restriction of | · | to 𝑥∗V is Hermitian (when viewed as a norm

on 𝐻0(∗, 𝑥∗V)),

where, in condition (2), | 𝑓 | is the trivial norm on the line bundle O𝑋 (i.e., 𝑓 ∈ O𝑋 (𝑈) corresponds to a
continuous function 𝑓 : 𝑈 → C, and we define | 𝑓 | : 𝑈 → R≥0 by | 𝑓 | (𝑥) = | 𝑓 (𝑥) |). We call such a pair
V := (𝑉, | · |) a metrized vector bundle on the analytic space X.

We define direct sums, tensor products, alternating products and duals via the formulas from (A.1)
(locally, and if necessary, we sheafify); for example, given metrized vector bundles (V1, | · |1) and
(V2, | · |2), we define

| · | : V1 ⊕ V2 → C𝑋 ,

as

|𝑣1 ⊕ 𝑣2 | (𝑥) :=
(
( |𝑣1 |1 (𝑥))2 + (|𝑣2 |2 (𝑥))2

)1/2
.

Given a morphism 𝑔 : 𝑋 → 𝑌 of analytic spaces and a metrized vector bundle V = (V , | · |) on Y, we
define the pull back 𝑔∗V to be the pair ((𝑔∗V), 𝑔∗ | · |), where 𝑔∗ | · | is adjoint to the composition

V → C𝑌 → 𝑔∗C𝑋 ,

and where the second map is given by composition of functions. If g is unramified and finite (in
particular, 𝑔∗V is a vector bundle), we define the direct image 𝑔∗V to be the pair ((𝑔∗V), 𝑔∗ | · |), where
𝑔∗ | · | is defined via the composition

𝑔∗V → 𝑔∗C𝑋 → C𝑌 ,

and where 𝑔∗C𝑋 → C𝑌 is defined by summation on fibers; in other words, for an open subset𝑈 ⊂ 𝑌 and
a function ℎ ∈ C𝑋 (𝑔−1(𝑈)), we define a map 𝑈 → R≥0 via the formula 𝑦 ↦→

√∑
𝑥∈𝑔−1 (𝑦) ℎ(𝑥)2. For

a complex point 𝑥 : ∗ → 𝑋 with image 𝑦 : ∗ → 𝑌 , the natural map (𝑔∗V)𝑥 → V𝑦 is an isomorphism,
and the norm is ‘the same’ on these fibers. In contrast, the fiber (𝑔∗V)𝑦 of the direct image is naturally
isomorphic to ⊕𝑥∈𝑔−1 (𝑦)V𝑥 , and the norm on this fiber is the direct sum norm defined in (A.1).

A.3. Schemes

By a variety over S, we mean a scheme of finite type over S. To a variety X over SpecC and vector
bundle V on X, associate the complex analytification (𝑋an,Van) (as in [35]). (We note that one can also
associate an analytic space, functorially, to an algebraic space which is locally separated and locally of
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finite type over C [42, Ch. I, 5.17], and that the setup here extends to that generality without any further
modification.)

Let K be a number field, let X be a SpecO𝐾 variety and let V on X be a vector bundle on X. For an
embedding 𝜎 : 𝐾 → C (i.e., a map 𝜎 : SpecC→ Spec𝐾), we let 𝑋𝜎 := 𝑋 ×𝐾,𝜎 C and let V𝜎 denote
the pullback of V to 𝑋𝜎 . We define a metrized vector bundle on X to be a vector bundle V together with
a choice of Hermitian norm | · |𝜎 on Van

𝜎 for every embedding 𝜎 : 𝐾 → C, with the following property:
for every Zariski open 𝑈 ⊂ 𝑋 and section 𝑠 ∈ V (𝑈), we have |𝜎∗𝑠 |𝜎 (𝑝) = |𝜎∗𝑠 |𝜎 (𝑝).

We define direct sums, tensor products, alternating products, and duals via the formulas from (A.2).
Given a morphism 𝑔 : 𝑋 → 𝑌 of SpecO𝐾 varieties and an embedding 𝜎 : 𝐾 → C, the diagram

𝑋𝜎
𝑔𝜎 ��

��

𝑌𝜎

��
𝑋

𝑔 �� 𝑌

commutes. Given a metrized vector bundle V = (V , | · |) on Y, it follows that (𝑔∗V)𝜎 is canonically
isomorphic to 𝑔∗𝜎 (V𝜎), and we define the pull back 𝑔∗V to have underlying vector bundle 𝑔∗V and
metrics 𝑔∗𝜎 | · |𝜎 defined via (A.2). Similarly, if g is finite, flat, and generically étale (and in particular
locally free so that 𝑔∗V is a vector bundle), we define the direct image 𝑔∗V to have underlying bundle
𝑔∗V and metrics 𝑔𝜎,∗ | · |𝜎 defined via (A.2).

There is an alternative type of direct image, which highlights the choice of base in our definition. Let
𝐾 ⊂ 𝐿 be an inclusion of number fields. Let 𝑋 → SpecO𝐿 be an O𝐿 variety, and let V be a metrized
vector bundle on X. We define the restriction of scalars of (𝑋,V) to be the pair (Res𝐿/𝐾 𝑋,Res𝐿/𝐾 V),
where Res𝐿/𝐾 𝑋 is the usual restriction of scalars (i.e., X itself, viewed as an O𝐾 variety via the
composition 𝑋 → SpecO𝐿 → SpecO𝐾 ) and where Res𝐿/𝐾 V has the same underlying vector bundle
V and is endowed with a metric in the following way. Given an embedding 𝜎 : 𝐾 ↩→ C, the space(
Res𝐿/𝐾 𝑋

)
𝜎 is isomorphic to

∐
𝜎′ |𝜎 𝑋𝜎′ , where the coproduct is taken over the set of 𝜎′ : 𝐿 ↩→ C

extending 𝜎; similarly,
(
Res𝐿/𝐾 V

)
𝜎 is the vector bundle whose restriction to 𝑋𝜎′ is V𝜎 (note that, by

the sheaf axioms, Γ(𝑋𝜎 ,V𝜎) =
⊕

𝜎′ |𝜎 Γ(𝑋𝜎′ ,V𝜎′ )), and the norm

| · |𝜎 :
(
Res𝐿/𝐾 V

)an
𝜎 → C(Res𝐿/𝐾 𝑋)an

𝜎

is the one whose restriction to 𝑋𝜎′ ⊂
(
Res𝐿/𝐾 𝑋

)
𝜎 is | · |𝜎′ .

Similarly, if 𝐾 ↩→ 𝐿 is an extension of number fields, X is an O𝐿 variety, and V is a metrized
vector bundle on X considered as an O𝐾 variety (equivalently, a metrized bundle on Res𝐿/𝐾 𝑋), we
define base extension V𝐿 as follows. The underlying bundle is V; for a place 𝜎′ of L with restriction
𝜎 := 𝜎′ |𝐾 , the map 𝜙 : 𝑋𝜎′ → Res 𝑋𝜎 of C varieties is an isomorphism, and we define | · |𝜎′ to be the
same as | · |𝜎 (under the identification 𝜙).

The degree of a metrized line bundle (V , | · |) on SpecO𝐾 (considered as an O𝐾 -variety) is defined
to be

deg(V , | · |) = log|Γ(V)/O𝐾 · 𝑠 | −
∑

𝜎 : 𝐾→C
log |𝜎∗𝑠 |𝜎 , (A.1)

where 𝑠 ∈ Γ(V) is any nonzero section. Implicit here is that this definition is independent of the
choice of s. When (V , | · |) is a metrized vector bundle of rank 𝑟 > 1, the degree of (V , | · |) is by
definition the degree of the metrized vector bundle ∧𝑛 (V , | · |). If 𝐾 ↩→ 𝐿 is an extension of number
fields and (V , | · |) is a metrized line bundle on SpecO𝐿 considered as an O𝐾 -variety, then we define
deg(V , | · |) := deg(V𝐿 , | · |), where V𝐿 is the base extension of V to K.
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If 𝐾 ⊂ 𝐿 is a degree n extension of number fields, then the following direct computation shows that

deg(V𝐿 , | · |) = 𝑛 · deg(V , | · |). (A.2)

Indeed, pullbacks commute with top wedge power, so it suffices to check the equality when V is a line
bundle, in which case

∑
𝜎′ : 𝐿→C

log | (𝜎′)∗𝑠 |𝜎 =
∑

𝜎 : 𝐾→C

$%&
∑
𝜎′ |𝜎

log |𝜎∗𝑠 |𝜎
'() =

∑
𝜎 : 𝐾→C

𝑛 · log |𝜎∗𝑠 |𝜎

and, since O𝐿 is a flat O𝐾 -module,

| (Γ(V) ⊗O𝐾 O𝐿)/O𝐿 · 𝑠 | = | (Γ(V)/O𝐾 · 𝑠) ⊗O𝐾 O𝐿 | = 𝑛 · |Γ(V)/O𝐾 · 𝑠 |.

A.4. Stacks

This generalizes to stacks in the following fairly formal way.
Let X be an algebraic stack, finite type over SpecO𝐾 . We define a metrized vector bundle V on X to

be a vector bundle V on X together with, for every map 𝑓 : 𝑋 → X from a variety X, a choice of metric
on 𝑓 ∗V (in the sense of A.3) which we denote by 𝑓 ∗ | · |, and which is compatible with compositions in
the following sense: For a map 𝑔 : 𝑋 ′ → 𝑋 from an O𝐾 -variety 𝑋 ′, there is a canonical isomorphism
𝑔∗( 𝑓 ∗V) → ( 𝑓 ◦ 𝑔)∗V , and we require that this isomorphism identifies 𝑔∗( 𝑓 ∗ | · |) with ( 𝑓 ◦ 𝑔)∗ | · |.

We again define direct sums, tensor products, alternating products and duals via the formulas from
(A.1). Given a morphism 𝑔 : X → Y and a metrized vector bundle V on Y , we define the pullback 𝑔∗V
to have underlying bundle 𝑔∗V and, for a map 𝑓 : 𝑋 → X from an O𝐾 -variety X, define 𝑓 ∗(𝑔∗V) :=
(𝑔 ◦ 𝑓 )∗V . For direct images, we restrict to the following special cases. Let V = (V , | · |) be a metrized
vector bundle on X . If g is finite, flat and generically étale (and in particular representable), we define
the direct image 𝑔∗V to be the metrized vector bundle on Y which, for a map 𝑓 : 𝑌 → Y from a variety
Y with corresponding fiber product

𝑋
𝑓 ′

��

𝑔′

��

X
𝑔

��
𝑌

𝑓 �� Y

pulls back to 𝑓 ∗
(
𝑔∗V

)
:= 𝑔′∗ 𝑓

′∗V . If instead g is proper, quasi-finite and birational, and Y is isomorphic

to SpecO𝐾 , then g is an isomorphism on a nonempty open subset 𝑈 ↩→ X ; we define 𝑔∗V to have
underlying bundle 𝑔∗V (which is a vector bundle by Proposition B.4) and the metric defined by 𝑔∗ | · |.

A.5. A detailed example

Let K be a number field, and let 𝑋 = SpecO𝐾 , considered as an O𝐾 variety. We consider the trivial
metrized vector bundle (O𝑋 , | · |) (where the trivial norms are defined in Subsection A.2). Explicitly,
for an embedding 𝜎 : 𝐾 ↩→ C, the scheme 𝑋𝜎 is simply SpecC, and the norm

| · |𝜎 : Oan
𝑋,𝜎 → C𝑋 an

𝜎
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is the complex absolute value C → R≥0. Given a section 𝑠 ∈ O𝐾 , |𝜎∗𝑠 |𝜎 is equal to the complex
absolute value |𝜎(𝑠) |. Taking 𝑠 = 1, we compute that the degree

deg(V , | · |) = log|O𝐾 /O𝐾 · 1| −
∑

𝜎 : 𝐾→C
log |𝜎∗1|𝜎 = 0 −

∑
𝜎 : 𝐾→C

0

is 0, as one would expect of a trivial bundle.
Next, let K be a number field, and again let 𝑋 = SpecO𝐾 , but now considered as a variety over

Z. We consider the ‘trivial’ metrized vector bundle (O𝑋 , | · |) (where the trivial norms are defined in
Subsection A.2). This is the same as the pullback of the trivial bundle on SpecZ along the map (of Z
varieties) SpecO𝐾 → SpecZ. Explicitly, there is only one embedding 𝜎 : Q ↩→ C, and the scheme 𝑋𝜎

is isomorphic to the disjoint union
∐

𝜎′ |𝜎 𝑋𝜎′ , where the coproduct is taken over the set of embeddings
𝜎′ : 𝐾 ↩→ C of K and where 𝑋𝜎′ = 𝑋 ×𝐾,𝜎′ C (i.e., considered as an O𝐾 scheme); 𝑋𝜎 is thus a disjoint
union of [𝐾 : Q] copies of SpecC. The norm

| · |𝜎 : Oan
𝑋,𝜎 → C𝑋 an

𝜎

is locally (on 𝑋𝜎) again given by the complex absolute value. Label the embeddings 𝜎1, . . . , 𝜎𝑛, and let
𝑠 ∈ O𝐾 . Then 𝜎∗𝑠 is equal to the tuple (𝜎1(𝑠), . . . , 𝜎𝑛 (𝑠)). Given our choice of base, it does not make
sense to compute the degree. Note that this description is also the same as the restriction of scalars (as
in Subsection A.3) of the trivial metrized bundle on SpecO𝐾 (as an O𝐾 variety) from the previous
paragraph.

Now, let 𝑋 = SpecO𝐾 and 𝑌 = SpecZ, and let 𝜋 : 𝑋 → 𝑌 be the structure map. Consider the direct
image 𝜋∗O𝑋 = (𝜋∗O𝑋 , 𝜋∗ | · |), where we consider X as a variety over Z and where | · | is the trivial metric.
Then 𝜋∗O𝑋 � Õ𝐾 and 𝜋∗ | · | has the following description. Again, since our base is SpecZ, there is
only one embedding 𝜎 : Q ↩→ C; the scheme𝑌𝜎 is isomorphic to a single copy of SpecC, and the norm

(𝜋∗ | · |)𝜎 :
(
𝜋∗O𝑋,𝜎

)an → C𝑌 an
𝜎

is now a map of sheaves on a topological space which is a single point, and thus determined by the map
of global sections

O𝐾 ⊗Z C �
∏
𝜎′ |𝜎
C→ R≥0,

where the product is taken over the set of embeddings 𝜎′ : 𝐾 ↩→ C of K, which we label as 𝜎1, . . . , 𝜎𝑛.
The map

∏
𝜎′ |𝜎 C→ R≥0 is given by

(𝑧1, . . . , 𝑧𝑛) ↦→
√∑

|𝑧𝑖 |2

and the isomorphism O𝐾 ⊗Z C �
∏

𝜎′ |𝜎 C is given by

𝛼 ⊗ 1 ↦→ (𝜎1(𝛼), . . . , 𝜎𝑛 (𝛼)).

We now compute the degree of 𝜋∗O𝑋 . Let V :=
∧𝑛 𝜋∗O𝑋 be the top wedge power of 𝜋∗O𝑋 , and

choose a Z basis 𝛼1, . . . , 𝛼𝑛 of O𝐾 . Then
∧𝑛 O𝐾 is a free Z module of rank 1 generated by the section

𝑠 = 𝛼1 ∧ · · · ∧ 𝛼𝑛. We then compute that the degree is

log|Γ(V)/Z · 𝑠 | − log |𝜎∗𝑠 |𝜎 = 0 − log |𝜎∗𝑠 |𝜎 .
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Next, we compute log |𝜎∗𝑠 |𝜎 . The norm
∧𝑛 𝜋∗ | · | is given by the composition(

𝑛∧
O𝐾

)
⊗Z C �

𝑛∧
(O𝐾 ⊗Z C) �

𝑛∧ ∏
𝜎′ |𝜎
C � C→ R≥0;

following s through these maps

(𝛼1 ∧ · · · ∧ 𝛼𝑛) ⊗ 1 ↦→(𝛼1 ⊗ 1) ∧ · · · ∧ (𝛼𝑛 ⊗ 1)
↦→(𝜎1 (𝛼1), . . . , 𝜎𝑛 (𝛼1)) ∧ · · · ∧ (𝜎1(𝛼𝑛), . . . , 𝜎𝑛 (𝛼𝑛))
= det(𝜎𝑗 (𝛼𝑖)) · (1 ∧ · · · ∧ 1)
↦→

��det(𝜎𝑗 (𝛼𝑖))
�� = |Δ𝐾 |1/2

we conclude that |𝜎∗𝑠 |𝜎 = |Δ𝐾 |1/2 and that the degree of 𝜋∗O𝐾 is − log |Δ𝐾 |1/2.
Finally: Let 𝐶 = SpecZ, and let 𝐵𝐺 = [𝐶/𝐺], with quotient map 𝑝 : 𝐶 → 𝐵𝐺. Let V =

(
𝑝∗O𝐶

)∨
,

where O𝐶 is the trivial metrized line bundle on C. (We dualize to facilitate the following quick global
computation.) Let 𝑥 : SpecQ → 𝐵𝐺 be a rational point corresponding to an extension Q ⊂ 𝐾 , and
assume for this example that K is a number field (rather than just an étale algebra). We will now show
that htV (𝑥) = log |Δ𝐾 |1/2. Let C = [SpecO𝐾 /𝐺]. Then C is a tuning stack for x, summarized by the
following diagram.

Spec𝐾 ��

��

SpecO𝐾
𝑔 ��

𝑝′

��

𝐶

𝑝

��
SpecQ ��

		��
���

���
��

C 𝑥 ��

𝜋

��

𝐵𝐺



���
���

���
�

SpecZ .

By definition,
(
𝑥∗V

)∨
= 𝑝′∗𝑔

∗O𝐶 . Moreover, the tuning sheaf 𝜋∗𝑝′∗𝑔∗O𝐶 is isomorphic to (𝑝′◦𝜋)∗𝑔∗O𝐶 ,

and 𝑔∗O𝐶 is the trivial metrized line bundle on SpecO𝐾 (as aZ variety). The height is then, by definition,

ht𝑉 (𝑥) := − deg
(
(𝑝′ ◦ 𝜋)∗𝑔∗O𝐶

)
;

we conclude that ht𝑉 (𝑥) = log |Δ𝐾 |1/2.

Appendix B. One-dimensional Artin stacks with finite diagonal

In this appendix, we discuss a few technical aspects of the types of stacks that appear as the tuning stack
of a rational point (Definition 2.1).

Fix a base scheme S. An Artin stack C (finite type over S) with finite diagonal admits a coarse
space map 𝜋 : C → 𝐶 [41, Corollary 1.3 (1)], which is (by definition) universal for maps to algebraic
spaces and is a bijection on geometric points, and is moreover Stein (i.e., 𝜋∗OC � O𝐶 ) and a universal
homeomorphism [61, Theorem 6.12]. If 𝑆 = Spec 𝑘 for some field k, then we say that C is geometric; if
𝑆 → SpecZ is finite and flat, then we say that C is arithmetic.

Definition B.1. A stacky curve is a normal, one-dimensional Artin stack C with finite diagonal such
that the coarse space map 𝜋 : C → 𝐶 is birational and such that 𝐶/𝑆 is a proper curve if C is geometric
and finite over S if C is arithmetic.
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Normality of C follows from normality of C, so 𝐶/𝑘 is a smooth proper curve in the geometric case
and 𝐶 �

∐
SpecO𝐾𝑖 for some number fields 𝐾𝑖 in the arithmetic case. This is somewhat more general

than the notion of stacky curve from [71, Chapter 5].
Our beginning lemma was pointed out to us by Sid Mathur.

Lemma B.2. Let C be a stacky curve. Then C is regular.

Proof. Since C is an Artin stack, it has a smooth cover 𝑝 : 𝑈 → C. Let 𝑦 ∈ C (Ω) be a geometric point.
Then 𝜋(𝑦) is a geometric point of C. Since C has dimension at most 1, the point 𝜋(𝑦) has codimension at
most 1 in C. Therefore, there exists a point 𝑧 ∈ 𝑈 (Ω) with 𝜋 ◦ 𝑝(𝑧) = 𝜋(𝑦) such that z has codimension
at most 1 in U. Since 𝜋 is a coarse space map, 𝑝(𝑧) � 𝑦.

Since C is normal, U is as well and so z is a regular point of U. Therefore, there is an open
neighborhood 𝑉 ⊆ 𝑈 of z such that V is regular. Since the image of 𝑝 |𝑉 : 𝑉 → C contains 𝑝(𝑧) � 𝑦, we
have found a smooth cover of a neighborhood of 𝑦 ∈ C (Ω) by a regular scheme. �

Proposition B.3. There exists a finite flat surjection 𝑝 : 𝐶 ′ → C with 𝐶 ′ regular and with irreducible
connected components. The composition 𝜋 ◦ 𝑝 : 𝐶 ′ → 𝐶 is finite and flat.

Proof. We may assume that C is connected. Since C has finite diagonal, we know from [25, Theorem
2.7] that there is a finite surjective map 𝑝 : 𝐶 ′ → C, where 𝐶 ′ is a scheme. We can assume 𝐶 ′ is normal
by replacing it with its normalization. Since 𝜋 is proper and quasi-finite, 𝑞 := 𝜋 ◦ 𝑝 is proper and
quasi-finite, hence finite. Since C is of dimension 1, so is 𝐶 ′. As 𝐶 ′ is normal, it is regular. Since q is
surjective, we can replace 𝐶 ′ by one of its irreducible components which surjects onto C; note that this
maintains surjectivity of p, as 𝜋 is a bijection on geometric points. Since C and 𝐶 ′ are regular, q is flat
by [26, Corollary 18.17]. Similarly, since C is regular, letting𝑈 → C be any smooth cover by a scheme,
we see the pullback 𝑝𝑈 : 𝐶 ′ ×C 𝑈 → 𝑈 is a finite map between regular schemes. Again, [26, Corollary
18.17] tells us that 𝑝𝑈 is flat and hence p is flat. �

Corollary B.4. Let E be a vector bundle on C. Then 𝜋∗E is a vector bundle.

Proof. We can assume that C is connected. We claim that the canonical map OC → 𝑝∗O𝐶′ is injective.
It suffices to check this after passing to a smooth cover Spec 𝐴 → C. We see 𝐶 ′ ×C Spec 𝐴 → Spec 𝐴
is finite, so the fiber product is of the form Spec 𝐵. The induced map Spec 𝐵 → Spec 𝐴 is surjective,
hence dominant, and Spec 𝐴 is regular, hence reduced, so 𝐴 → 𝐵 is injective, proving our claim.

To finish the proof, tensor the injective map OC → 𝑝∗O𝐶′ by with E . This yields an injection
E → E ⊗ 𝑝∗O𝐶′ � 𝑝∗𝑝

∗E (where the isomorphism is the projection formula) and hence an injection
𝜋∗E → 𝑞∗𝑝

∗E . Since 𝑝∗E is a vector bundle and q is finite flat, we see 𝑞∗𝑝∗E is a vector bundle, so 𝜋∗E
is torsion-free and coherent. As C is regular of dimension 1, this implies 𝜋∗E is a vector bundle. �

We now address generalities about of the degree of a line bundle on an Artin stack. In the geometric
case, if C is Deligne–Mumford, then Vistoli [70] developed a more general theory of intersection theory
(see also [71, Chapter 5] for just the case of line bundles). In general, degrees of 0-cycles on stacks are
not defined (see [24]), and in the Arakelov setting (as in A.1) some additional attention is needed even
in the Deligne–Mumford case. However, we have shown in Proposition B.3 that every connected stacky
curve C admits a finite flat surjection 𝐶 ′ → C with 𝐶 ′ regular and irreducible, and by [25, Remark 2.8]
this is all that one needs to develop intersection theory in our setting.

Definition B.5. Let L be a line bundle (resp. torsion sheaf) on C, and let 𝑝 : 𝐶 ′ → C be a finite and
flat surjection from a regular scheme 𝐶 ′. We define the degree (resp. length) of L to be degL =

1
deg(𝑝) deg 𝑝∗L (resp. lengthL = 1

deg(𝑝) length 𝑝∗L).

Again, we emphasize the fact that in the arithmetic settingL is an Hermitian line bundle and we mean
the Arakelov degree. For a torsion sheaf, the Archimedean contributions are 0 so there is no distinction.

Lemma B.6. The degree (resp. length) of L is independent of the choice of p.
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Proof. Let 𝑝𝑖 : 𝐶𝑖 → C be two such covers, and let 𝐶3 be the normalization of some irreducible
component of 𝐶1 ×C 𝐶2 such that the maps 𝑞𝑖 : 𝐶3 → 𝐶𝑖 are both surjective (and thus finite and flat).
We then have

deg 𝑝∗1L
deg 𝑝1

=
deg 𝑞∗1𝑝

∗
1L

(deg 𝑞1) (deg 𝑝1)
=

deg 𝑞∗2𝑝
∗
2L

(deg 𝑞2) (deg 𝑝2)
=

deg 𝑝∗2L
deg 𝑝2

. (B.7)

The proof for length is identical. �

Definition B.8. Let 𝑓 : C ′ → C be a quasi-finite map of stacky curves. We define the degree of f to be
the degree of the induced map 𝐶 ′ → 𝐶 of coarse spaces.

Lemma B.9. Let 𝑓 : C ′ → C be a quasi-finite map of stacky curves, and let L be a line bundle (resp.
torsion sheaf) on C. Then deg 𝑓 ∗L = deg 𝑓 · degL (resp. length 𝑓 ∗L = deg 𝑓 · lengthL).

Proof. If C ′ is a scheme, then this follows from the definitions of degree. Let 𝑝 : 𝐶 ′ → C ′ be a finite
flat cover by a regular scheme 𝐶 ′. By [66, Tag 0CPT], f is proper; the composition 𝑓 ◦ 𝑝 is thus proper,
quasi-finite and flat, and in particular finite. We then have

deg 𝑓 ∗L =
deg 𝑝∗ 𝑓 ∗L

deg 𝑝
= deg 𝑓

deg 𝑝∗ 𝑓 ∗L
(deg 𝑝) (deg 𝑓 ) = deg 𝑓 · degL.

The proof for length is identical. �

Proposition B.10. Let 0 → V ′ → V → 𝑀 → 0 be an exact sequence, where V ′ → V is a map of
vector bundles (metrized, in the Arakelov case) and M is a finitely generated torsion sheaf on C. Then

degV = degV ′ + length 𝑀.

Proof. In the geometric case, this is well known. In the Arakelov case, by Lemma B.9 we may assume
that C = SpecO𝐾 for some number field K. Since M is a torsion sheaf and thus has no Archimedean
metric, the proof follows from the definition of degree (Equation A.1). �
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