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Abstract

We define a notion of height for rational points with respect to a vector bundle on a proper algebraic stack with
finite diagonal over a global field, which generalizes the usual notion for rational points on projective varieties. We
explain how to compute this height for various stacks of interest (for instance: classifying stacks of finite groups,
symmetric products of varieties, moduli stacks of abelian varieties, weighted projective spaces). In many cases, our
uniform definition reproduces ways already in use for measuring the complexity of rational points, while in others
it is something new. Finally, we formulate a conjecture about the number of rational points of bounded height (in
our sense) on a stack X, which specializes to the Batyrev—Manin conjecture when X’ is a scheme and to Malle’s
conjecture when X is the classifying stack of a finite group.
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1. Introduction

Two subjects of central importance in arithmetic statistics are the enumeration of number fields of
bounded discriminant (governed by Malle’s conjecture) and the enumeration of rational points of
bounded height on varieties (governed by the Batyrev—Manin conjecture).

More specifically, if G is a subgroup of S, denote by N (B) the number of degree n number fields
K /Q whose Galois closure has Galois group G and whose discriminant has absolute value at most B.
Similarly, if X is a projective Fano variety, denote by Nx (B) the number of rational points in X (Q)
whose height is at most B. Malle’s conjecture predicts that Ng (B) is asymptotic to cB*(9) (log B)?(9),
where a(G) and b(G) are explicitly computable constants. The Batyrev—Manin conjecture predicts that
Nx (B) is asymptotic to cB*X) (log B)?X), where a(X) and b(X) are explicitly computable constants.
(The prediction of ¢ is much more delicate: see Peyre [56, Définition 2.1] for the Batyrev—Manin case,
and Bhargava [10] for the Malle case, in the special case G = S,. We make no attempt in the present
paper to study the constants in our generalization of Batyrev—Manin—Malle, and we say only a bit about
the powers of log B; we confine our concrete predictions to the exponents a.)

The similarity between these two asymptotic predictions has not gone unremarked. The relation
between the two conjectures becomes even closer upon making the observation that a Galois G-
extension of Q actually is a rational point: not a rational point on a variety, but a rational point on an
algebraic stack, in this case the classifying stack BG. It is thus natural to ask how one might formulate a
conjecture about counting rational points of bounded height on a stack &', which would specialize both
to the Batyrev—Manin conjecture (when &’ is a Fano variety) and to Malle’s conjecture (when &’ is the
classifying stack of a finite group).

An obstacle appears immediately: There is no agreed-upon definition of the height of a rational point
on a stack. The conventional definition of height, due to Weil, is a real-valued function on X (Q), where
X is a projective variety. It suffices to define height on P"(Q) because, given the projective embedding
t: X—P", we simply define hty (x) to be htpn (¢(x)) for every point x € X(Q). But a stack which, like
BG, is not a scheme does not embed in projective space.

The goal of the present paper is to propose a definition of height for rational points on stacks over
arbitrary global fields K, and, using this definition, to formulate a conjecture of Batyrev—Manin—Malle
type for the number of rational points on a stack X of height at most B (under certain assump-
tions which guarantee this number is finite). Having made the definition, we find that our notion of
height applies to many interesting stacks which are neither schemes nor classifying spaces of finite
groups (e.g., weighted projective spaces, moduli spaces, symmetric powers of varieties). In many cases,
our definition agrees with ad hoc notions of ‘size’ of a rational point which already appear in the
literature.

We remark on some existing work concerning heights on stacks. One proposed definition for the
height of a point on a Deligne-Mumford stack is given and used by Abramovich and Vérilly-Alvarado
in [2, 3, 1]; this notion of height is useful for moduli spaces but does not, for example, extend to an
interesting height on BG. Beshaj, Gutierrez and Shaska [9] have a definition of height on weighted
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projective space which agrees with ours in that case, as does the earlier preprint of Deng [23]. Starr and
Xu [68, §1.4 of arXiv v1] have another definition whose relation to the one used in the present work
is roughly that between the minimal slope in the Harder—Narasimhan filtration of a vector bundle and
the slope of that vector bundle. And in very recent work, Nasserden and Xiao [54] offer an alternative
definition for stacky curves, and Ratko Darda [20, Theorem 1.5.7.1] has proposed a definition for
weighted projective stacks.

We have seen above that one cannot define the height of a rational point of a stack by imitating the
standard definition for rational points on varieties. Before sketching our definition, we explain some
further reasons for the difficulty of defining heights on stacks.

Failure of additivity

A central feature of the theory of heights on varieties is additivity. Given a proper variety X, we can
define a height function ht; on X(Q) corresponding to any line bundle £ on X, and we have

htzgrr (x) = htz (x) + hte (x) (1.1)

for any pair £, £’ of line bundles on X and any x € X(Q).

It turns out there is no choice but to discard this useful feature when we extend the theory of heights
to stacks. The following example shows why. Let X = B(Z/2Z), and let K = Q. A line bundle £ on X
is a representation of Z/2Z; we choose C to be the nontrivial one-dimensional representation. Then the
tensor product of £ with itself is the trivial line bundle; that is, L& £ = O in Pic(X'). Thus, htz g (x) =0
for all x € X(Q). If our height functions satisfied equation (1.1), we would have 2 ht, (x) = 0, and thus
ht, would be identically 0, and thus uninteresting.!

Failure of valuative criterion of properness

Suppose K = F,(t), and Xo/K is a projective variety. In this case, the height of a point x € Xy(K) has
a very nice geometric interpretation. We may choose an projective integral model X /P! whose generic
fiber is X,. By the valuative criterion of properness, we can extend x to a section X: P'—X. Then the
height of x is just the degree of the line bundle ¥*Ox (1) on P!. (Note that the height may depend on
the choice of integral model.) When X is a proper stack instead of a projective scheme, the valuative
criterion of properness does not allow us to ‘spread out’ a rational point in this fashion. For instance, an
4 (¢)-point of B(Z/2Z) is a quadratic extension of F (¢). On the other hand, a map from P! to B(Z/2Z)
is an étale double cover of P!, which can only be the disjoint union of two copies of P!. In particular, the
fiber of such a map over the generic point Spec I, (f) must correspond to the trivial quadratic extension
F, (1) @ F,(2).

Modification of Northcott property

A useful feature of the height on a variety X attached to an ample line bundle L is the Northcott property;
the set of points x in X (K) with & (x) < B and which are defined over an extension K’ /K of degree at
most d is finite. We will often consider heights here which we want to consider ‘positive’ but which do
not have this property. For example, when x € B(Z/2Z)(K) is a point corresponding to an everywhere
unramified G-extension of K, and L is a (the!) nontrivial line bundle on B(Z/2Z), we will see below
that i1y (x) = 0. But there are infinitely many distinct degree-d extensions of Q which have everywhere
unramified double covers, so the Northcott property cannot hold in its usual sense. What will typically
be true, on the other hand, is that the heights of greatest interest to us will admit only finitely many
points of bounded height over any individual global field. This is the notion of Northcott we will use in
the present paper, though it does not quite follow the usual convention.

1One might suggest abandoning the requirement that height functions be real-valued instead of abandoning additivity. This
feels like a bad idea to us: For one thing, if our goal is to count points of bounded height we want the target of the height function
to carry a natural ordering.
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Vector bundles

The usual height machine assigns a height function on X(K) to any line bundle on X. For rational
points on a stack A, it turns out that this point of view is not quite sufficient for our purposes. Consider
again the example of BG, where G is a finite group. The line bundles on BG are the one-dimensional
representations of Gj; in particular, the line bundles only ‘see’ the abelianization of G, not all of G.
When G is nonabelian, this turns out to imply that no height function coming from a line bundle on X’
can compute the discriminant of the G-extension L/K corresponding to a K-rational point. Rather, we
need access to the entire representation theory of G, which is to say we need to study heights associated
to vector bundles of higher rank on BG.

Our definitions of heights on stacks

We now sketch the main idea of our definition. Suppose K is a global field. If X is a function field, let C
be the smooth projective curve with function field K; if K is a number field, let C be Spec Ok . Given a
rational point x: Spec K— X', we may not, as mentioned above, be able to extend x to a morphism from
C to X. However, it turns out that we can extend x to a map x: C—X, where C is a so-called funing
stack over C. When C is P! /F,, for instance, C is a ‘stacky P"> which is generically isomorphic to P!
but has some points with nontrivial finite inertia groups. In general, the structure map 7: C—C will be
a coarse moduli map.

Suppose V is a vector bundle on X', which we take to be metrized at Archimedean places if K is a
number field. Then X*V is a vector bundle on the tuning stack C, and m,x*) is a vector bundle on C,
whose determinant is a line bundle on C. We now define

hty (x) = — deg(det(m.x*V")).

In the number field case, —det(m.x*V") is a metrized line bundle on C, and degree means Arakelov
degree.

We note that the reason for the failure of additivity is now apparent: While the pullback X" is
compatible with tensor product of vector bundles, the pushforward . is not. Moreover, it really is
crucial to include the push forward 7,; otherwise, line bundles on BG, which are all torsion in the
Picard group, would all give trivial height functions!

In the Section 2, we define hty, rigorously and show that it does not depend on the choice of tuning
stack. In Section 3, we compute several examples, which show that this notion captures arithmetic
quantities of interest in many cases. In particular, we show that if

o Gis a subgroup of S,

o V is the corresponding n-dimensional permutation representation of G,

o and x is a point of BG(Q), corresponding to a degree-n extension K/Q whose Galois closure has
Galois group G,

the height hty,(x) is precisely the discriminant of K/Q; see Subsection 3.1. This realizes the goal of
expressing the discriminant of a field extension as the height of a rational point on the classifying stack
of a finite group.

We also work out in varying levels of detail several examples of natural stacks: stacks birational to
P!, weighted projective spaces, symmetric powers of projective spaces and moduli stacks of abelian
varieties.

Finally, we turn to conjectures about point-counting in Section 4. Using geometric intuition derived
from the function field case, we propose a heuristic rate of growth for the function N ) (B), the number
of rational points x of a stack X such that hty(x) < B. There is one further technical hurdle worthy
of note in the introduction: in the case of the Batyrev—Manin conjecture for schemes X, the expected
growth rate B is governed by the anticanonical height ht_g, ; in the case of stacks, one cannot simply
import the same formula since for many stacks of interest, for example, X = BG, the anticanonical
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bundle is trivial! Thus, we introduce a new function (see Definition 4.5) which replaces the anticanonical
height function on stacks; it can be viewed as a suitable perturbation of the anticanonical height. Our
point-counting conjecture 4.14 includes (the weak versions of) both the Batyrev—Manin conjecture and
Malle’s conjecture as special cases, but it makes many more predictions as well, which we hope will be
the subject of future research.

1.1. Notation and conventions

Throughout this paper, we treat the arithmetic and the geometric settings in unison, letting C denote
either Spec Ok for a number field K or a smooth proper curve over a field k in which case we set
K = k(C). In the number field case, we implicitly assume that all vector bundles are metrized. Finally,
if L/K is a finite extension of function fields corresponding to a map f: C’ — C, we let disc(L/K) be
the degree of the ramification divisor.

2. Heights of rational points on stacks

Recalling our notation and conventions (Section 1.1), let K be either a number field or a function field
of transcendence degree 1 over k. In the former case, let C = Spec Ok and in the latter case, let C be
the smooth proper curve over k with K = k(C). Next, let p: X — C be a normal proper Artin stack
over C with finite diagonal. This implies by [18] that there is a coarse space morphism g: X — X.

A K-rational point x € X (K) is a section

x: SpecK — X

of p over the generic point 57 := Spec K of C, and an integral point is a section x: C — X of p. Now
in the case of proper schemes, the valuative criterion tells us that every rational point extends uniquely
to an integral point. However, this is no longer true for proper stacks; instead there exists a (possibly
ramified) surjection C’ — C such that the point x": Spec k(C’) — X extends to an integral point
C’ — X.lItis precisely this phenomenon that leads to difficulties in defining heights on stacks.

Before discussing how to define heights of rational points on stacks, let us start by describing heights
of integral points. This is actually rather simple and not different from the case of schemes. Given a
vector bundle V on X, we let the height hty,(X) of an integral point X: C — X be —deg(x*V"). (In the
arithmetic setting, V is metrized, and we mean the Arakelov degree.) The notion of height of an integral
point satisfies Weil’s height machine, in that

ht£®n (E) =n htL ()_c)

for a line bundle £. As mentioned above, for proper schemes there is no difference between rational
points and integral points, so for schemes it is enough to define heights for integral points. For stacks,
we must now deal with rational points that do not extend to integral points.

Let us now outline the general case of how we define heights of rational points on stacks. Given a
rational pointx: C --» X, we know it extends to an integral point after allowing for a ramified extension
of C. Unfortunately, there are many choices of such ramified extensions and so our first task is to
construct a ‘minimal’ such extension; this extension is no longer a curve, but rather a stack, which we
call a tuning stack. Precisely, we construct a commutative diagram

"

SpecK—>C—Y>X

N
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where 7: C — C is a birational coarse space map, and x: C — X is a representable morphism of
stacks which extends the rational point x: Spec K — X. We can therefore think of C as being a ‘stacky
version’ of C and can think of X as an integral point of X'. We then define the stable height of the rational
point x € X' (K) with respect to V) to be

ht} (x) := —deg(x"V")

and define the unstable height (which we will refer to as simply the height) of the rational pointx € X' (K)
with respect to V to be

hty (x) = — deg(m.x*V").

In Subsection 2.1, we show that tuning stacks exist and discuss their basic properties. We then turn to the
study of heights in Subsection 2.2, and in Subsections 2.3 and 2.4 discuss some details of the practical
computation of heights. In Appendix B, we gather technical facts about one dimensional normal Artin
stacks with finite diagonal (i.e., the types of stacks that occur as tuning stacks).

2.1. Tuning stacks and tuning sheaves

Throughout we let K, C and X be as at the start of Section 2. Motivated by the tuning module of
Yasuda—Wood [74, Definition 3.3], we begin by defining the central object of this subsection.

Definition 2.1. Given x € X' (K), we say that (C, X, 7) is a tuning stack for x if C is a normal Artin stack
with finite diagonal, 7: C — C is a birational coarse space map, and the diagram

X

T

SpecKHCi>X

N

-/

commutes. A morphism (C’,x’,n") — (C,Xx, n) of tuning stacks for x is a map f: C’ — C such that
mof=n"andXo f =X’ Finally, if (C, X, 7r) is terminal among all tuning stacks, we say C is a universal
tuning stack for x.

We show the existence of a universal tuning stack after some preliminaries.

Remark 2.2. Given a rational point x: Spec K — X, there exists a nonempty open subset U C C and
amap U — X over C that extends the morphism x. Since X is of finite type over C, this follows, for
example, from [62, Proposition B.1].

Lemma 2.3. Let x € X(K), and suppose (C,x,n) and (C’',x’,n’) are tuning stacks for x. Then the
following hold.

1. If C" =3 C are two morphisms of tuning stacks, then f and g are isomorphic up to unique 2-
g
isomorphism.

2. If f: C" — C is a representable morphism of tuning stacks, then f is an isomorphism.
3. Ifx and X' are representable, then any map f: C' — C of tuning stacks is an isomorphism.

Proof. We start with (1). Since 7 and 7’ are birational, there is a nonempty open subset U C C over
which both 7 and n” are isomorphisms. Then f|y = gly. Since C is normal and C’ is separated, [29,
Proposition A.1] tells us there is a unique 2-isomorphism f =~ g.

We now turn to (2) and (3). Since X’ = X o f, if X and X’ are representable then [19, Corollary
2.2.7] shows f is also representable. Thus, (3) reduces to (2). To handle case (2), note that 7 and 7’ are
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birational, proper, and quasi-finite, so f is as well. Then f is a birational, proper, quasi-finite morphism
of normal stacks, hence an isomorphism by Zariski’s main theorem. O

The next result makes use of relative normalization for morphisms of stacks. We refer the reader to
[52, Definition 5.3].

Lemma 24. Let f: Y — Z be a quasi-compact quasi-separated morphism of stacks with finite
diagonal. Let Y’ — Z be the relative normalization of f. If Y is normal, then )’ is normal.

Proof. By definition of the relative normalization, f factors as ) — )’ := SpecZO’ — Z, where the
sheaf O’ is the integral closure of Oz in f.Oy (i.e., the integral closure relative to the morphism of
sheaves Oz — f.Oy induced by the map f). Letting Z — Z be a smooth cover by a scheme, we have
a Cartesian diagram

W—mW ——7Z

L

y——V —Z,

where )V may not be a scheme since we have not assumed f is representable. Since relative normalization
commutes with smooth base change, W’ — Z is the relative normalization of W — Z. Since W’ — )’
is a smooth cover, to show normality of )’ it suffices to prove W’ is normal. We have therefore reduced
to the case where Z is a scheme, which we will denote by Z.

We are now in the situation where f: ) — Z and Z is a scheme. Notice that )’ — Z is affine, and

so )V’ =Y’ is a scheme. Since Z is a scheme, we know that f factors as Ty 5, Z, where 7 is a
coarse space map (which exists since ) has finite diagonal). By definition, O’ is the integral closure of
Oz in f,0y = g.1.0Oy = g.0Oy where the last equality holds because r is Stein. Thus, Y’ — Z is the
relative normalization of Y — Z. Since ) is normal, Y is as well so Y’ is normal by [66, Tag 035L]. O

We are now ready to show the existence of universal tuning stacks. We thank Martin Olsson for
suggesting this construction.

Proposition 2.5 (Universal tuning stacks exist). Let x € X (K). If U — X is any extension of x as in
Remark 2.2, then its relative normalization x: C — X is a universal tuning stack, and it is independent
of the choice of extension U — X.

Proof. We abusively refer to the extended map U — X’ as x. By definition of the relative normalization,
x factors as

U—C:= SpecX(’)' =, X,

where the sheaf OO’ is the integral closure relative to the morphism of sheaves Oy — x.Op induced
by the map x. Lemma 2.4 shows that C is normal. Since ¥ is representable, integral and of finite type, it
follows from [66, Tag 01WJ] that it is finite. Then finiteness of the diagonal for C follows from finiteness
of the diagonal for X'. Thus, C has a coarse space map w: C — C’. Since C is normal, C’ is as well. The
morphism X induces a map g: C’ — C.

We next show that C — C is an isomorphism over U. Consider the Cartesian diagram

a B Y

T
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Since relative normalization commutes with smooth base change, 8: Cy — Ay is the relative normal-
ization of Boa: U — Xy . Note that y o o = idy is proper quasi-finite and y: Xy — U is separated,
so B o «a is proper quasi-finite, hence finite as it is representable. Thus, Sa is integral so its relative
normalization a: U — Cy is an isomorphism. As a result, y o 8: Cy — U is an isomorphism.

Now that we have established C — C is an isomorphism over U, it follows that ¢g: C’ — C is
an isomorphism over U. So, ¢ is a birational map of normal curves (or Dedekind schemes), hence an
isomorphism. This shows that 7: C — C’ =~ C is a birational coarse space map, and hence C is a tuning
stack.

Before turning to the claim concerning universality, we show that x: C — X is independent of the
choice of open subset U and extension U — X of x. To see this, it suffices to show thatifi: V — U is the
inclusion of a nonempty open subset, then the relative normalizations of x: U - X andxoi: V - X
are the same. Letting X: C — X be the former normalization and X": C’ — X be the latter one, by
functoriality of the relative normalization we obtain a morphism f: C’ — C of tuning stacks. Lemma
2.3 (3) shows f is an isomorphism.

To prove universality, let (C’,X’, n’) be another tuning stack. By Lemma 2.3 (1), we need only

—n

show the existence of a map f: C’ — C of tuning stacks. We let C’ — C” 2 X be the relative
normalization of X’. Since & and n” are birational, we can choose a nonempty open subset U C C over
which 7 and 7" are isomorphisms. We have just showed that C is independent of the choice of U, so we
have a commutative diagram

UHC,HC’/

7
s 7
/‘5/ <’
—
- —

C/ X X’

where we obtain the morphism g: C — C” (shown as a dotted arrow above) from the universal property
of the relative normalization of x: U — X. By Lemma 2.4, we know C”’ is normal. We also know
that X"’ is representable, integral and of finite type, hence finite by [66, Tag 01WJ]. Then C”’ has finite
diagonal, so it has a coarse space. Since n’ is an isomorphism over U, we see C”’ — C is a coarse space
which is an isomorphism over U; this follows from the same argument used to establish this fact for
C — C. So, C” is a tuning stack for x. Finally, Lemma 2.3 (3) shows that g is an isomorphism, and so

-1
g ) . .
C’ — C” = C is our desired map of tuning stacks. O

Corollary 2.6. Let (C’, X', n’) be a tuning stack. Then (C’,X’, n’) is a universal tuning stack if and only
if X' is representable.

Proof. Let (C,X, ) be the universal tuning stack constructed in Proposition 2.5. By construction, X is
representable. Now, if (C’,X’,7’) is a universal tuning stack, by definition of universality, there is an
isomorphism f: C’ — C of tuning stacks. Then X’ = X o f shows that X’ is representable.

Conversely, if (C’,x’, x’) is a tuning stack, then by universality of C, we have a morphism f: C’ — C
of tuning stacks. The result then follows from Lemma 2.3 (3). O

Remark 2.7. We note that the universal tuning stack C inherits many properties of X'. For instance, if
X is Deligne—-Mumford, then so is C (since the map C — X is representable); similarly, C is separated.

Example 2.8 (Root stacks). Cadman [17, Section 2] introduced the notion of a root stack, which we
will use repeatedly both in examples and in proofs. Given an algebraic stack ¥ and an effective Cartier
divisor E on Y, the root stack ¥ — Y of order r is obtained by formally adjoining an rth root E of E; in
other words, for a scheme 7 and amap f: T — Y, a lift of f to Y corresponds to an effective Cartier
divisor E’ on T and an equivalence rE’ ~ f*E.

Remark 2.9. Not every tuning stack is universal. For example, given any tuning stack (C,x, ) and a
smooth nonstacky closed point P of C, let f: C’ — C be a root stack along P; then f is an isomorphism
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away from P and the composite X o f: C’ — X is not representable. So Corollary 2.6 shows that
(C',x o f,mo f) is a tuning stack which is not universal.

Occasionally, we will need to work with the universal tuning stack itself, for example, in Section 4
where we define the essential deformation dimension. However, we prove in Proposition 2.13 that our
notion of height is independent of the choice of tuning stack. In practice, it is frequently more convenient
to construct a tuning stack via a more direct procedure than relative normalization, such as taking a
quotient stack, or as a root stack; see Section 3 for examples.

Definition 2.10. Let V be a vector bundle on X. If x € X' (K) and (C, X, 7r) is a choice of tuning stack,
then we refer to 7,.x* V" (which is a vector bundle by Corollary B.4) as the tuning sheaf associated to x,
V, and C.

2.2. Heights

We are now ready to give the definition of the height of a rational point on a stack (with respect to a given
vector bundle). We define the height to be the degree of any associated tuning sheaf. The tuning sheaf
is, in general, a vector bundle, so by degree we mean the degree of the top wedge power, which is now a
line bundle (metrized in the arithmetic case) on C. We show that this is well defined in Proposition 2.13.

Definition 2.11. Let X’ be astack over C, and let K = K(C). Let ) be a vector bundle on X and x € X (K)
be a rational section. If C is any tuning stack for x and 7 y ¢ is the associated tuning sheaf, we let
hty (x) = — deg(7x,v.c)- In other words, the height of the rational point x € X'(K) with respect to V is

hty (x) = —deg(m.X*VY),

where (C, X, 7r) is any choice of tuning stack for x.

If L is a finite extension of K, we can define the height of a point of X'(L) by letting C’ be Spec Of,
(if K is a number field) or the smooth projective curve with function field L (if K is a function field),
and consider X’ = X X¢ C’, which carries a vector bundle obtained by pulling back V. Then we define
the height of a point of X'(L) to be the height of the corresponding point of X’ (L).

At this point, we need to comment on a piece of notation. When C is a curve over a finite field , the
degree of adivisor D = P; +---+ P, on C is understood to be }; log |k p, |, where k p, is the residue field
of the closed point P;. In particular, deg D does not lie in Z but in (log ¢)Z, where g = |k|. This choice
of notation is most natural in a context, as here, where we want to write down theorem statements and
arguments which treat the case of number fields and function fields at once. The reader who wants to
work in the context where C is a curve over a fixed finite field k and avoid the number field case is free to
take heights to be integers, which just modifies everything in this paper by a multiplicative factor of log g.

The reader may wonder why the height is defined as the negative of the degree of a bundle obtained
from V", rather than as the degree of a bundle obtained from V itself. The answer is that, in cases
arising naturally, the heights as defined here will typically be bounded below (Northcott property) while
a height defined to be deg(m.x*)V) will often take values unbounded both above and below, or only
bounded above (Southcott property).

Another natural question: Why do we not define the height of x as deg. X"V (where degree is defined
in Definition B.5), which would be more similar to the usual definition? The main reason is that, as we
shall see, deg, X*V is identically zero for many choices of X and nontrivial V (e.g., for any line bundle
on BG). Nonetheless, this function will play a key role for us (it will differ from hty,(x) by local terms
supported on the stacky locus of C, as we will see in §2.3), so we give it a name here.

Definition 2.12. Let X', )V and K be as in Definition 2.11. Then stable height ht% (x) is defined by
ht}} (x) = — deg, X"V

for any choice of tuning stack C.
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We justify the name ‘stable height’ in Proposition 2.14 below. When x is an integral point of X, we
may take C itself to be the tuning stack; in this case, 7 is the identity and ht(x) and ht*'(x) agree.

Proposition 2.13 (Height and stable height are independent of tuning stack). If (Ci,X;,m1) and
(Ca,X2,m2) are two choices of tuning stacks for x € X(K), then —deg(n1.x7V") = —deg(m.x5V")
and —deg(x1VY) = —deg(x5V") for all vector bundles V on X.

In fact we show more: Not only the height, but the isomorphism class of the tuning sheaf is independent
of the choice of tuning stack.

Proof. Let (C,X, ) be the universal tuning stack for x whose existence we have shown in Proposition
2.5. By the universal property, there exist unique morphisms f;: C; — C of tuning stacks. Thus, we
reduce immediately to the case where C; is universal and f: C; — C; is a map of tuning stacks. Now, let

C» — Spec £.O¢, — Ci

be the Stein factorization. Then Spec f.O¢, — C; is a birational, finite, representable map with normal
codomain and hence an isomorphism by Zariski’s main theorem.

In particular f is Stein (i.e. the map O¢, — f.Oc, is an isomorphism). Then for any vector bundle
W onC 1s

W =~ Ocl ®ocl W =~ f*Ocz ®(9cl W =~ f*f*W,

where the third isomorphism is the projection formula. Applying 7. to the above isomorphism with
W =x]VY, we see m1,x] VY = 12, %,V and so height is independent of the choice of tuning stack. (In
the Arakelov case, we note that the tuning stacks are all birational so that the metric does not change.)
Independence of the stable height follows from Lemma B.9 applied to f;. O

The justification for the name ‘stable height’ is as follows. As we shall see, the height hty, (x) does not
behave well under ramified base change. That is: If L/K is a finite extension, and x, the point of X' (L)
obtained by composing x: Spec K— & with the structure map p: Spec L— Spec K, the relationship
between hty, (x) and hty,(x) is not in general very transparent. For example, if X = BG and x € X (K)
corresponds to a Galois extension L/K with Galois group G, then hty,(xz) = 0, but hty,(x) # 0 in
general. For stable height, by contrast, the situation is much as we are used to from heights on schemes.

Proposition 2.14 (Stable height is stable under base change). With X, V, x and x, as above, and L/K
is a separable extension, then

ht}(xz) = [L : K] htf5(x).

Proof. 1If Lis a number field, then let C’ = Spec O ; if L is a function field, then let C” be the projective
normal curve with function field L. Let C be a tuning stack for xg. Then the normalization C’ of the
fiber product C X¢ C’ is a tuning stack for xy,, and we compute that

ht§i(x) := degX; V = deg g - degx*V = [L : K] ht{}(x),

where g is the projection C’ — C and the middle inequality is Lemma B.9. O

When X is a scheme, we can take C = C and so stable height and height are the same. More generally,
height agrees with stable height whenever the vector bundle V is pulled back from a vector bundle on a
scheme.

Proposition 2.15. Suppose f: X—Y is a morphism over C, where Y is a scheme. Let V be a vector
bundle on Y. Then, for all x € X(K),

htf-y (x) = ht}t*v (x).



Forum of Mathematics, Sigma 11

Proof. Let C be a tuning stack for x, and let x: C— X" be an extension of x to C. The map f ox: C—Y
factors as g o & for some g: C—Y, by the universal property of the coarse space. So the vector bundle
X" f*V can be written as 7*g*V. Noting that duality commutes with pullback, we now have

hts-y (x) = —dege m.*g* VY
and
ht?.y (x) = —dege 77g"V" = —degc gV

(where the last equality follows from Lemma B.9 since deg m = 1). The result now follows from the fact
that for any bundle W on C,

W = O¢ ®oc W = r,.0¢ R0c W = m.n'W,

the last isomorphism is the projection formula, and the middle follows since the coarse map is Stein [61,
Theorem 6.12]. ]

Remark 2.16. Similarly, if f: X — ) is a morphism of stacks and V is a vector bundle on )/, then for
any x € X(K),

hty+y(x) =hty(f ox)
since a tuning stack for x is also a tuning stack for f o x.

Definition 2.17. We say that a vector bundle V on A’/ K satisfies the Northcott property if for every finite
extension L/K and every integer B,

{x e X(L): hty(x) < B}

is finite.

This definition is slightly unsatisfactory because it will be too lenient for some choices of X'. For
instance, if X' is a curve of genus at least 2, it has finitely many points over every global field, so under this
definition the Northcott property will be satisfied by every vector bundle. In the present paper, however,
we will almost always be considering stacks X'/ K which have infinitely many K-rational points. Under
such circumstances we expect V to satisfy the Northcott property if V is ‘positive enough’, which we
demonstrate through several examples; see Section 3. (Be warned, however, that the Northcott vector
bundles do not form a cone in any sense. For instance, it is possible that a line bundle £ is Northcott but
positive multiples £®" of it are not; the nontrivial line bundle on By has this property.) It is in order to
ensure that natural examples exhibit the Northcott property that we use V¥ rather than V when defining
height.

Definition 2.18. Let X', V and K be as in Definition 2.11, with V Northcott. We define the counting
function associated to V and K to be

Ny .k (B) :=#{x € X(K): Hty(x) < B}.

Remark 2.19. In case V is a vector bundle of rank greater than 1, it would probably be better still to
consider a definition of height which associates to x the tuning sheaf 7 y ¢ itself, rather than its degree.
One might call such a height a “lattice height.” For instance, the lattice height of a Q-point on X would
be a lattice A in R™ Y rather than a real number; the height we study in the present paper would be
the covolume of A. This point of view is interesting even when X is a scheme; see for instance the
notion of slopes of a rational point introduced by Peyre in [57, §4.2] and [58], and the related work of
Browning and Sawin in the Hardy—Littlewood regime [16]. On the other hand, when X" is BG and V
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is a permutation representation G < S, the lattice height of a rational point of X’ corresponding to a
degree-n number field L/Q is the ring of integers of Oy, considered as a lattice in L ®q R; the covolume
of this lattice is the absolute value of the discriminant of the number field, which is indeed the height
in the sense considered in this paper. This lattice is often called the ‘shape’ of the number field, and
the problem of counting number fields subject to constraints on shape is already an area of substantial
activity; see, for instance, [39, 38].

2.3. Computing heights: local discrepancies

‘We now turn to the problem of practical computation of heights of points on stacks.

As above, let C be the spectrum of the ring of integers of a number field or a smooth curve over a
finite field, let K be the fraction field of C and let X a normal proper Artin stack over C with finite
diagonal. Let V be a vector bundle on X', where we recall once again that, if K is a number field, V is a
metrized vector bundle, as defined in §A 4.

Letx: Spec K— X be a rational point of X, let C be a tuning stack, 7: C—C the coarse moduli map
and x: C— X an integral extension of x.

By Definition 2.11, the height of x is

hty (x) = —deg 71, x* VY,
and by Definition 2.12 we have
ht}}(x) = —degx"V".

Our goal in this section is to study the difference between height and stable height. To this end, we recall
the natural map of vector bundles on C

PP PR VA ol VAd (2.20)

whose cokernel is a sheaf M (x*V") on C with trivial generic fiber. This map is the counit of adjunction
and we claim that it is injective. Indeed, we can check injectivity locally and assume that C is affine, in
which case 7,.x*VY = I'(x*V"), and the map (2.20) is thus the inclusion

rxvY) ®oe Oc — XV

of global sections.

Let C’ be a smooth proper curve (or in the arithmetic case, Spec O, for some étale algebra L/K)
endowed with a finite flat surjection p: C'—C whose degree we denote by m; such a C’ exists by
Proposition B.3. The sheaf p*M (x*V"Y) is now a generically trivial and finitely generated sheaf on
C’, which is to say it is a finite abelian group with the structure of an O¢/-module. It follows from
Proposition B.10 and exactness of p* that

log |[p*M(x*VY)| = deg p*x* VY — deg p*n*m. X VY
=m(degx* V¥ —degn* . X V)
= m(hty (x) — ht{j(x)).

Now, p*M (x*VV) is a finite O¢-module and as such has a canonical decomposition as a finite direct
sum @, p*M (x*VV),,, where v varies over non-Archimedean places of C’.

Definition 2.21. With all notation as above, the local discrepancy dy., is defined as

L s o bp (5
6vin (¥) = — log [p" M(F V), |
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We thus arrive at the formula

bty (x) = he§§ (x) + ) 6y (x). (2.22)

One can think of the structural information imparted by equation (2.22) as follows. The height hty, is
a nonadditive function which changes under field extensions and lacks a canonical decomposition into
local terms. However, it canonically decomposes into two pieces; one of which, ht%, is additive and
stable under field extensions, while the other, };, dy.,, canonically decomposes into local terms. These
good features of the summands often make it manageable to compute them individually.

Concretely, we may think of local discrepancy as follows. Write K,, for the completion of K at v.
Define L, = K, ®c C’ so that L, is an étale algebra over K,. We can thus write C; = Spec O, .
Choose an identification of X*V" [spec x, With K7 Then the generic stalk of p*x*V" is identified with
L",, and we can think of p*x*V" as a C} -lattice A in the vector space L!,. Then the Ok, -module 7. X" VY
is AN K7, and so p**m. X"V is

(ANK}) ®og, OL, CA

and

A
(ANKY) ®oy, Or, |

1
vy (x) = ; log

Remark 2.23. One particularly illustrative example is when L, is a degree d Galois extension of K,, with
Galois group G C Sy, andx*V" is the G-representation obtained from the permutation representation of
Sa4. In this case, A is the Oy, -module (’)EB" and o € G acts on the i-th basis vector e; by o(¢e;) = ey ).
Since A is G-linearized, it follows that o-(a/e ) = o(@)ey(;) for any a € L,. Said another way, A is
the G-linearized Oy, -module given by the skew group ring G * O, . If we label the elements of G by
01,...,0q4: L, — L, then we see ANKY = A is the set of sums of the form ; o (a)e; witha € L,.
From this description, it is clear that the permutation representation is related to the discriminant. This
relation will be further expanded upon in §3.1.

Proposition 2.24. Let E,, be an unramified extension of K., of degree d, let x be a point of X (K, and
let xg be the corresponding point of X (E,,). Then

Oy (XE) = doy,y (x).

Proof. (This proof is essentially the same as that of the ‘geometric’ part of [74, Lemma 3.4].)
Write Ag for (A ®oy, OE,). Observe first that

AgNE, =(ANK)) ®o, OE,

since the condition of being in K" is cut out by K-linear conditions on L" considered as a K-module;
the same linear conditions applied to (L ®k E)" cut out E”. We then get an equality

A
(ANK]) ®op, Or,| m

Ag
8 (ANKS) ®0r, OL, o, Or, |

1
dby, (x) = d— log
m

On the other hand, writing F', for the etale algebra £, ®x, L,, we have

AE
(AENEY) ®op, OFV

Ag
(ANKY) ®o, Or, |

1 1
Oy (XE) = - log log

The desired equality now follows from the fact that, since E, /K, is unramified, we have Of, =
OL, ®oy, OE,.
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There will be some cases where our life is simpler if we can ignore a specified finite set of primes.
The following proposition is useful when we need to show this negligence does not perturb our height
functions by very much.

Proposition 2.25. Suppose K is a number field. There is a constant C(X,V,v) such that
6V§V (x) S C(X’ V’ V)

forall x in X (K,).

Proof. (The following proof is adapted from a nice proof of Hilbert 90 that we learned from [8, Lemma
3.31)

There is some constant B such that every point x € X'(K,) extends to an integral point of X' (L)
for some finite Galois extension L of K of degree at most B; this follows from the fact that X has a
finite cover by a scheme; see [62, Theorem B]. Since K is a number field, there are only finitely many
isomorphism classes of extensions of K, of degree at most B. We may thus prove the required bound
for a single choice of L, .

Write G for Gal(L/K). Write a1, . .., @, for a subset of Oy, which freely spans O, as an Ok, -

module. Let A be an element of A, and for each iin 1, ..., m define
/1,' = Z (a','/l)g.
geG

The action of G permutes the summands above, so 4; is fixed by G and thus lies in A N K.
We can also write

A=) (@)(). (2.26)
geG
Write A for the m X m matrix in with rows indexed by a1, ..., @, and columns by the elements of G;
_)
by Dedekind’s lemma this matrix lies in GL,,(L,). Write A for the vector Ay, ...,4,, € L7 and 77 for
the vector whose entries are {A% }¢ . With this notation, equation (2.26) becomes
q=A7
which we can rewrite as
Z=4a"1.
In particular, we can write
A= Z ail;, (2.27)

where a; are entries of A~!. But note that A depends only on the choice of ;; in particular, there is some
constant C such that the entries of A~! lie in C~! OL, - Thus, equation (2.27) expresses an arbitrary 1 € A
as a linear combination of the A;, which lie in A N K7, with coefficients in C ‘IOLV. We conclude that

Ac C(ANK)) ®o, OL,]
which provides a bound for

A
(ANK?) ®oy, Or,

depending only on L,,, as required. O
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We note that Proposition 2.25 does not hold in general when K has characteristic p. For instance,
we will see that the local discrepancy at v for a point of BG, with V the regular representation of G,
computes the discriminant of the local extension: but we know that the discriminant of a Z/ pZ-extension
of F,((¢)) can be arbitrarily large, by contrast with the discriminant of a Z/pZ-extension of Q,,.

2.4. Computing heights: line bundles on X with globally generated powers

In this section, we consider the special case where V is a line bundle L. It turns out that, speaking
loosely, if some tensor power £ has “enough sections,” we can use these sections to compute heights
of rational points on X" with little explicit reference to stacks. (Whether this is a virtue depends on the
reader’s taste.)

Suppose X is a stack over C, L is a metrized line bundle on X, and sy, . . ., 5 are sections of £. We
say L is generically globally generated by sy, .. ., s¢ if the cokernel F of the corresponding morphism
of sheaves

0%k

vanishes over the generic point of C. In particular, this implies that F is supported at finitely many
places v of C. More specifically: For each non-Archimedean v with uniformizer 7, € O¢,, there is an
integer m,, such that the restriction of F to X x¢ Oc, is killed by " (since X is finite type, it suffices
to check this on a finite flat cover). In the case where C has no Archimedean places, we say L is globally
generated by s, ..., s when the map from (’);‘;" to L is surjective. We write g, for the order of the
residue field at v, if v is a non-Archimedean place; when v is Archimedean, we can take ¢, = e.

Proposition 2.28. Suppose X is a stack, and suppose L is a metrized line bundle on X such that

some power L" is generically globally generated by sections sy, . . ., si. Let K be a global field, and let
x: Spec K— X be a point of X(K). Choose an identification of x*L (whence also x*L™) with K, and
write X1, . .., Xk for the pullbacks of s1, ..., Sk by x. Then

hte(x) = > [(1/n)log,, max(jxily, .., [xcl)]log gy + E(x),

v

where E(x) is a function bounded above and below on X (K). When C has no Archimedean places and
L™ is globally generated by sy, . . ., sy we have

hiz(x) = Y [(1/n) log,, max(fxily.. ... Ixxly)]log g

%
exactly.

From now on, we denote a bounded function on X'(K) by Ox(k)(1). Note that, when K = Q,
we may take xi,...,X; to be integers, with the property that, for every p, there is some x; which is
not a multiple of p”. We say such a tuple (xy,...,xx) € Z* is in minimal form. Suppose (x1, .. .,xx)
corresponds to a point x of X'(Q) as in Proposition 2.28. The hypothesis of minimal form implies that
the non-Archimedean contributions all vanish, and we are left with

htz (x) = (1/n) logmax |x;[g + Ox (k) (1) (2.29)

up to a function bounded on X' (Q). (The ceiling function can now be neglected since, having restricted
to a single summand, the difference between a number and its floor is bounded and can be absorbed into
the error term.)

We now prove Proposition 2.28.
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Proof. We note, first of all, that we have not specified the choice of metric on £ at Archimedean places,
but this choice can be absorbed in the error term; if £ and £’ are line bundles which differ only with
respect to the Archimedean metric, it is easy to see from the proof below that ht; —htz = O x (k) (1).
(At the moment when we say ‘Fubini—Study metric on O(1) on complex projective space’, just insert
your own favorite metric, which differs from Fubini—Study by a bounded function.)

We begin by computing the degree of x*£" on C. Let L/K be a finite extension of some degree
m such that the pullback of x to Spec L extends to a morphism y: C’'— X, where C’ is the curve (or
Dedekind domain) with fraction field L. We then have a commutative diagram:

SpecL—>C’—>X

ek

SpecKHCHX

|-

C

Now, deg, x"L" = (1/m) deg, p*x*L". The latter is a metrized line bundle on Oy, whose degree
we can compute by means of a section. For ease of notation, write A for p*x*L".

dege p*X*L" = log |A/51 0L | - Z 151 or-
o: L-C

Write A’ for the submodule of A spanned by sy, . . ., sg. By hypothesis, there is a bound independent of
x for the size of A/A’. Thus, we may replace A with A’ and get

dege, ¥ L" =1og|A /5100l = > |07 s1lo + O xx) (1),
o: L-C

Now, the torsion Op-module A’/s1Op can be broken up into v-adic components 7),, one for each
non-Archimedean place v of K, and by the explicit description of A’ we have

log|T, | = m(log ml_ax |x;]y — log |x1]y)-
Thus, we have

log|A'/s101] = ) m(log max xil, ~log |xily).

vico

We now turn to the Archimedean places, which requires us to specify the metric on £". The sections
S1,...,Sp provide a map of complex manifolds f: X'(C)—P*~!(C), and £"|X (C) is pulled back from
O(1) under f. So we may choose for our metric on £L"| X (C) the pullback of the Fubini—Study metric
on O(1). Having done so, we have

D 1o sile = )" m(loglxily — logmax [x;|,) + O x(x) (1)
o: L-C v |oo !

To sum up, we have computed that

log|A'/s10L] = Y lo"silo == > mlxily + ) mlogmax fxil, = ) logmax xily + O () (1),
v v %
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whence

degc, "X L" = () mlogmax xily) + O () (1),
\4

whence

degc ¥'L" = ~(1/n)( ] logmax xily) + O () (1).

We note that, in the case where K is a function field and sy,...,s; globally generate L£", the
expression (3, m log max; |x;|,) is just the usual expression for the degree of a line bundle pulled back
from O(1) on P*~! by a morphism with coordinates (x; : ... : xg).

Having computed this degree, which is the negative of the stable height ht% (x), we can compute
ht. (x) by adding local discrepancies as in the previous section. First of all, if v is one of the finitely
many non-Archimedean places where £" is not generated by sy, ..., sk, we observe that d., (x) is
O x (k) (1) by Proposition 2.25, and since the number of such places is bounded independently of x, we
can absorb the contribution of those local discrepancies d .., (x) into the error term.

So let v be a non-Archimedean place where £" is generated by sy, . . ., sx. Then, given our choice of
identification of x*£" with K, and writing L., for the etale algebra L ®k K, we can write Xx* L™ as the
Galois-stable lattice / in L,, spanned as an Of,,-module by x1, . . ., xx. ThenX* L is the submodule / ~1/n
of L, consisting of all & € L, such that oI c OL,. The pushforward 7.x*L" is then the submodule
I"'" N K, of K,, consisting of all 8 € K, with 8"x; C Ok, for all i, which is to say it is the fractional
ideal m$”, where

¢y = [=(1/n) minord, x;] = [(1/n) log,, max|x;|,].
So
60 (x) = (1/m)log |17/ /17" A K| = (log ¢, (1/n) logg, max ], ] = (1/n) log max fril,-
Recalling from above that

hef (x) = (1/m) ) logmax |x;ly + Ok (1),
v

we conclude that

ht,(x) = htSt(x) + Z Orw(x) = Zf(l/n) logqv ml?lx |xilv1log g + OX(K)(I)

which was the desired result. ]

3. Examples

In this section, we show how to compute heights of points on various stacks that often arise in practice,
emphasizing the fact that in these cases the output of our definition often recovers an invariant which
was already widely used to measure the ‘size’ of the objects parametrized by rational points on those
stacks.
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3.1. Heights on BG

Let G be a constant finite group scheme over C, let X be the classifying stack BG/C, and let g: C—BG
be the universal G-cover. Let x: Spec K— X be a rational point, and let x: C— BG be the extension of
x to a tuning stack. Then we have a commutative diagram

cr <. c

Pk

¢ — > BG,

where C’ is a smooth proper curve (not necessarily irreducible) whose fiber over Spec K is an étale
G-algebra L/K.

Let V be a vector bundle of rank » on BG; in other words, V is an r-dimensional representation V of
G over C. Then, by equation (2.22), we have

bty (x) = ht§s (x) + ) 6y (x).

First of all, note that p*x* V" = x¢,q*V is a vector bundle on C” pulled back from the trivial bundle
on C, and thus has degree 0. So

ht§} (x) = —degX*V" = —(deg p)~' deg p*T*V" = 0.

We have thus reduced ourselves to the local problem of computing §y.,, (x) at the finite set of non-
Archimedean places v of K where L/K is ramified. Let v be such a place.

The pullback of V¥ along x., from C to C"is Ocr ®o V.

Thus, locally, the G-stable lattice A, C L!, we use to compute the local discrepancy can be written as

OL, Qok, VY.

We note that this is precisely the G-module studied by Yasuda and Wood in section 3 of [74]. (The
free rank 7Oy, -module we call A, is identified with O} in their notation.) In particular, the free rank
rOk,-module A is precisely the tuning submodule in [74, Def 3.1], and the local discrepancy 6y, (x)
is exactly the quantity denoted v (p) in [74, Def 3.3]. Thus, we can make use of their results to compute
the local discrepancies explicitly.

The case where V is a permutation representation is an important example; in this case, we find that
the discriminant of a field extension can be understood as a height on BG in the sense of this paper. In
particular: When V is a degree-n permutation representation of G, and x is a point of BG(K), we can
associate to x a map

px: Gal(K)—»G—S,

which in turn specifies a degree-n étale algebra L/K.

Proposition 3.1. Let V be a vector bundle on BG corresponding to a degree-n permutation represen-
tation p of G, let x be a point in BG(K) and let L/K be the algebra corresponding to x as described
above. Then

hty (x) = (1/2) log |Ap/k |. (3.2)
Proof. Tt follows from [74, Theorem 4.8] that

vy ()C) = (1/2)av (px)’
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where a, is the Artin conductor of py|k, , which is precisely the local component at v of A k. Thus,
hity(x) = > 6vu (x) = (1/2) log |A k|, (3.3)
v

where by |Ar kx| we mean the absolute norm of the discriminant, that is, the order of the finite group
OC /A L/K- [m}

In other words, the general definition of height introduced here, when applied to a G-extension
(thought of as a point of BS,,), recovers the discriminant. Of course, a point of BS,, can be thought of as
a G-extension in different ways; one might have in mind a degree-n extension, the Galois S,,-extension
obtained by applying Galois closure or some other number field with the same Galois closure. Each such
field corresponds to a permutation representation of S,, (in the first and second case above, the standard
representation and the regular representation) and the discriminant of the field is computed by the height
with respect to the vector bundle V specified by the corresponding permutation representation.

The case X = BG demonstrates the necessity of computing heights with respect to vector bundles of
arbitrary rank, not only line bundles. Line bundles on BG correspond to one-dimensional representations
of G. If, for example, G is a finite group with trivial abelianization, there are no nontrivial line bundles
at all. In order to have a theory of heights rich enough to capture the invariants of G-extensions, we have
no alternative than to consider vector bundles of higher rank on BG.

The work of Yasuda and Wood is not limited to permutation representations. For example, Wood
and Yasuda work out in [74, Example 4.10] the example where G = Z/pZ, K is a function field of
characteristic p and V is the two-dimensional nonsemisimple representation of Z/pZ over K. A rational
point of BG corresponds to a Z/pZ-extension L/K. If v is a place of K, we denote by j, the largest
integer i such that the higher ramification group G; at v surjects onto Z/pZ. Then Yasuda and Wood’s
computation shows

bty () = 14 V—J 3.4
p

When K = F,(¢) with g a power of p, the points of B(Z/pZ)(K) correspond to Artin—Schreier curves,
and the height of an Artin—Schreier curve with respect to this V is the sum of the local terms (3.4) over
all places v of F, (#) which are ramified in the Artin—Schreier cover. We do not know if this notion of
height of an Artin—Schreier curve corresponds to anything that has appeared in previous literature, but
we note that the expression above is closely related to that appearing in the computation of dimensions
of irreducible components of moduli space for Artin—Schreier curves of specified p-rank in the work of
Pries and Zhu [60, Theorem 1.1].

This example also illustrates the important point that the height function hty, is not determined by
the class of V in K of the category of vector bundles; the vector bundle above is an extension of the
trivial line bundle by the trivial line bundle, but its associated height function is not zero.?

3.2. Heights on Bu,

Suppose X = Bu,, and L is the line bundle on By, corresponding to the standard one-dimensional
representation y,, —Gy,. In that case, £" is the trivial bundle on X" and thus admits a generating section
s. On the other hand, if x is a K-point of By, the pullback x*L is isomorphic to K. The obstruction
to x*s € I'(Spec K, x*L") being an nth power of an nonzero section of x*£ now yields a class in
K*/(K*)". Put another way: Choosing an identification of x*£ with K induces an identification of x*L"
with K, under which x*s is identified with an element xy € K*, which represents the class in K*/(K*)"
corresponding to x. Note that a change in the choice of s will apply a translation to the identification

2This is specifically due to the fact that B(Z/pZ) is not a tame stack over F, (¢), so 7, is not exact. Although X*V" is an
extension of O¢ by itself, 7, X*V" is no longer the extension of O¢ by itself.
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Bu, (K) = K*/(K*)", but such a change will modify heights by a bounded quantity, and if K is a function
field over a finite field k£ and we require s to globally generate £, the ambiguity in s imposes translation
by k*, which will not change the heights we compute at all. (If we want to remove this ambiguity entirely,
we can fix for all time a choice of universal u,-torsor g: Spec K— By, /K and an identification of ¢* L
with K; having done so, we can require that s pull back under g to an element of (K*)".)

We note that the above setup applies even when char K divides n.

In particular: Proposition 2.28 yields

1
htz (x) = Zh log,, |x0|v}10g qv-
v

We note that our formula for ht, (x) is unchanged, as it must be, when x( is modified by an element of
(K*)n'

By the computation above, when K = Q we see that the height of a point x of By, (Q) = Q*/(Q*)"
is obtained as follows: The class of Q*/(Q*)" corresponding to x is represented uniquely by an integer
N with no nth power divisor, and as in equation (2.29) we have

htz(x) = log |[N|'/".

(In the examples, we will often suppress the O x (k) (1) error term when no confusion is likely.)

Once again, the height recovers the measure of complexity most frequently used in practice; when
enumerating the elements of Q*/(Q*)", one typically identifies the elements of the group with nth
power-free integers and lists in order of absolute value.

Of course, this choice L is not the only option. Suppose, for instance, K = Q and n = 3; then there
are two equally good choices of nontrivial line bundle on X', namely £ and £2. Suppose x € Buz(Q)
corresponds to NM? € Q*/(Q*)3, with N and M coprime and squarefree. Then, as we have already
observed above,

htz(x) = log INM?|'3 = (1/3)1og N + (2/3) log M.

On the other hand, consider £ = £2. Then, having chosen s as above, s? is a generating section of
(£’)3, so we can take x; to be x*s?, which corresponds to N>M* € Q*. Putting this integer in minimal

form modifies it to N>M, and another application of equation (2.29) shows that
hter(x) = (2/3)log N + (1/3) log M.

As a final illustration, we can see how the above two computations combine to yield Proposition 3.1
for Bus. Let V be the vector bundle £ & £> & Ox. Then

hty,(x) =log N + log M

which we note is also (1/2)A/q, where L = Q((NM?)!/3) = Q((N*M)!/3) is the cubic extension of
Q arising from x. This is as it must be, as we now explain. First, note that htﬁ; (x) = 0 for all x just as in
the case X = BG, because V pulls back to a trivial bundle on a finite cover of Bus. So

bty (x) = > 6y (x).

Now, the size of §y.3(x) is bounded by Proposition 2.25, so at the expense of a bounded error term we
can write

bty (x) = > Gvu (x).

v#3
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Let x’ be the point of B(u3)(Q({3)) obtained by base change from x. Since every prime other than 3 is
unramified in Q(Z3)/Q, Proposition 2.24 tells us that

hty () =2 ) 8y () = 2Rty (x).

v#£3

On the other hand, over Q(¢3), there is an isomorphism between B(u3) and B(Z/3Z), which carries V
to the reduced permutation representation of Z/3Z, which we denote by W. In fact, this isomorphism
extends to Z[{3][1/3]. Let y be the point of B(Z/3Z)(Q({3)) corresponding to x” under this isomor-
phism, which we can also think of as the point associated to the Galois Z/3Z-extension L(3)/Q(43).
Then

Sy (y) = Syryy (x")

for all places v of Q(¢3) not dividing 3. We conclude that (as always, up to bounded error)

hiw () = Y 6w (¥) = D 6ury () = 2htyy ().

v#3 v#3

On the other hand, by equation (3.3) we have

hty (y) = (1/2) log |Ar(z) /02| = logArq

which shows that hty, (x) = (1/2) log |Ar /.

3.3. Heights on weighted projective space and weighted projective stacks

In this section, we consider rational points on the weighted projective space X = P(ay, ..., ay). This
stack is, by definition, the quotient [A**! \ 0/G,,,] where G,, acts by the rule

A (Xos .., Xx) = (19X, ..., A% X).

Then P(ay, . . ., ax) is a smooth proper stack, and AX*1\ 0 is the total space of a line bundle on X', whose
dual is the tautological bundle Op(q, ... a,)(1); for simplicity of notation, we denote the tautological
bundle by L for the rest of this section. The coordinate function X; is a section of £%. Writing A for
the least common multiple of the a;, the k + 1 sections le“/ % of LA generate £4. So we can compute
heights of points in P(ay, . . ., ax) (K) by applying Proposition 2.28, as we now explain.

Let x be a point of P(ay,...,ax)(K). As in Proposition 2.28, we choose an identification of x* L
with K; this assigns a value in K to each of the k + 1 coordinates, which values we denote x, . . ., Xg.
Changing the identification of x*£ with K modifies this tuple by elementwise multiplication by tuples
of the form 490, ..., 1% and we say that two tuples xy, . .., xy are equivalent if they differ by such a
transformation. Then Proposition 2.28 tells us that

hte(x) = ZHquv max %1197 log g (3.5)

v
In particular, when K = Q, a rational point x of P!(aq, . ..,ar)(Q) can be identified with a tuple of
integers (My : ... : My) such that there is no prime p with p%|M; for all i. Given a tuple which is in

minimal form in this sense, the non-Archimedean primes contribute nothing to equation (3.5), and we
get

ht. (x) = log max | M;|'/4 (3.6)
1
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We note that this definition recovers the notion called ‘naive height’ for points of weighted projective
space in [9].

Here is another means by which it is often practical to compute heights on weighted projective space
when K is a global function field. Let F be a section of £A—for instance, it might be leq/ 4 for some
i—and let y be the pullback of F along x to x*£*, which we have identified with K. We define the
minimal valuation of F at a place v of K as follows. Let 7, € K* be an element which is a uniformizer
at v, and define

¢y, =min|(1/a;)ord, x;].

Note that ¢, = 0 if and only if all the x; are integral at v and there is some i such that ord, x; < a;. In
this case, we say that (xo, ..., xx) is in minimal form. If (xo, . .., xg) is not in minimal form, we find an
equivalent tuple in minimal form by modifying each x; by 7, “/“*; the effect of this transformation on y
is multiplication by n;AC”. We therefore define the minimal valuation of F to be

OrdI“?inF = ord, y - Ac, =ord, y = Amlnl_(l/al) ord, xiJ-

We note that this quantity does not depend on the identification of x*£ with K, but only on F and v.
Furthermore, we have

Z ord™" F = Z ord, y — Z Amin|(1/a;)ord, x;.| = A Z max[(1/a;)log, max|x;|,]logqy

v

and, by Proposition 2.28, this last quantity, taking Xl.M % to be the sections generating £4, is exactly
Aht, x. We conclude that

htzx = (1/A) Z ord™™ Flog g, . 3.7

The classical theory of Weil heights is often set up by defining heights on projective spaces, and then
defining a height hty 1y on X (K) for other projective schemes X by restriction. In a similar manner, one
can define height functions on weighted projective stacks P(ay, ..., a,) and obtain a height function
ht; on X (K) whenever L is a generically globally generated power as in Section 2.4. However, we
stress that this naive approach does not apply to all stacks of interest. Indeed, if X is any stack with a
nonabelian stabilizer group, it does not embed into a weighted projective stack, hence the necessity of
our construction of heights given in Section 2.2.

One example of weighted projective stacks which is of great interest is the moduli stack of elliptic
curves Hl,l. If K is a field of characteristic not equal to 2 or 3, this stack is isomorphic over K
to the weighted projective line P(4,6): concretely, given an elliptic curve E/K, we can write it in
Weierstrass form y? = x> + Ax + B with A, B in K. This Weierstrass form is unique up to transformations
(A, B)—(1*A,1°B). So (A : B) is a well-defined point on P(4, 6). Moreover, the isomorphism takes
the line bundle O(1) on P(4, 6) to the Hodge bundle £ on Ml,l (the bundle whose kth powers have
weight 2k modular forms as sections). We conclude that, if E/K is an elliptic curve over a global field
of characteristic at least 5, with Weierstrass equation y2 =x>+Ax+B, thought of as a K-point of /\_/11, 1,
we have

htz E = log max(|A|'/4, |B|'/9).

In other words, the familiar ‘naive height’ of an elliptic curve is indeed a height in the sense of this paper.

When K is a number field, the identification of M ;/Q with P(4, 6)/Q does not extend to Spec Z but
only to Spec Z[1/6]. However, this is enough to ensure that £!? is still generically globally generated by
A3 and B? in the sense of Proposition 2.28, and so equation (3.3) still holds up to a bounded error term.
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When K is a global function field of characteristic at least 5, we can also apply equation (3.7); here,
A =lcm(4,6) = 12 and the discriminant A is a natural section of £!? to use. So we find

1 .
hio £ = = Z ord™" A, (3.8)

v

where ord™" A is the valuation of the discriminant of a Weierstrass equation for E which is minimal at v.
We will return to the interesting case where K is a global function field of characteristic 2 or 3 in
Section 3.4.
More generally, the moduli space of hyperelliptic curves over K with a marked Weierstrass point can
be thought of as a weighted projective space as long as the characteristic of K is large enough: If Y —P!
is the hyperelliptic map, we can move the image of the marked Weierstrass point to co and (assuming
the characteristic of K is not 2) complete the square in y so that the curve has affine equation

2g+1

y2=x +a1x2g+~~-+a2g+1

a
2g+1

then (again throwing out a finite set of characteristics for K) modify by the automorphism x—x +

of P! in order to make a; = 0. We now have an equation for ¥ of the form

2 a7 ot agea (3.9)

VP =x
which is unique up to the operation of multiplying a; by A% for 1 € K*. In other words, the moduli stack
of hyperelliptic curves with marked Weierstrass point is isomorphic over K to the weighted projective
(2¢g — 1)-space P(4,6,8,...,4g +2). So a hyperelliptic curve over K can be thought of as a point x on
P(4,6,8,...,4g + 2), whose height with respect to O(1) we have computed above. In particular, if ¥
is a hyperelliptic curve over Q with Weierstrass equation (3.9), where the a; are chosen to be integers
so that there is no prime p with p*|a;, the height of Y is log max |a;|'/*, which again is equivalent to
the notion of height typically used for hyperelliptic curves with a specified Weierstrass point as in, for
example, the work of Bhargava and Gross [11].

Question 3.10. A weighted projective space is an example of a toric stack, as in [32]. What is the height
of a rational point on a more general toric stack?

3.4. Heights of abelian varieties

We have established above in equation (3.3) that, when K is a glotm_lﬁeld of characteristic at least 5,
the height of an elliptic curve with respect to the Hodge bundle on M ; is the same as the customary
naive height. There is another natural height on an elliptic curve over a global field: the Faltings height
htgy (E). In this section, we study the extent to which Faltings height can be seen as a height in the sense
of the present paper.

We note first that Faltings height satisfies some of the same formal properties as the heights
defined in this paper do. For example: If L/K is a field extension, it is not necessarily the case
that htgy(E/L) is [L : K] htgy(E/K); however, this equality does hold if E/K has everywhere
semistable reduction, so we can define a stable Faltings height hty(E/K) to be [L : K]|~! htgy(E/L)
for any L/K such that E/L has everywhere semistable reduction. The height hty, for any vector
bundle on /71,1 has the same properties, since an elliptic curve over L = K(C’) with everywhere
semistable reduction is an integral point of HM, that is, a morphism from C’ to Ml,l. Lastly,
htg, (E/K) — htg(E/K) has a canonical local decomposition, just as does hty, (E/K) — htﬁE(E /K); see
(2.22).
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It is thus natural to ask whether Faltings height is hty, for some vector bundle V or at least whether
the two heights differ by a bounded function. One can even guess which vector bundle one might use;
for everywhere semistable E /K, or in other words morphisms f: C— M |, we have

htFa](E) = deg f*ﬁ,

where L is the Hodge bundle Ql £/, and & the universal semielliptic curve over the moduli stack.

So does htgy differ from ht, by a bounded function? Unfortunately, the answer is in general no—
remember, in the number field case, ht, is naive height, and the difference between the naive height
and the Faltings height of an elliptic curve over a number field K is nor bounded, as one can see, for
instance, in the proof of [55, Lemma 3.2].

The reason for this is the following. When K is a number field, the specification of the degree above
requires a choice of metrization on £ at the Archimedean places; for Faltings height, the appropriate
Hermitian norm actually has a singularity at the cusp of moduli space, and in the present paper we have
not considered metrized line bundles in this level of generality; rather, we have assumed that our choice
of metrization on L is defined on all of mu (C), including the cusp.

However, when K is a global function field, this Archimedean issue is absent, and we find the
following.

Proposition 3.11. Let K be a global function field of characteristic at least 5, and let L be the Hodge
bundle on M 1 as above. Then

htgy (E) = ht(E)

for all elliptic curves E [K.

Proof. For global function fields of characteristic larger than 3, the Faltings height of E/K is (1/12)
times the sum over all places of the valuation of a minimal discriminant; see for example, [6, Def 2.2].
We have already seen in equation (3.8) that ht (E) is given by the same expression. O

The case of small characteristic is a different story. Let K be the function field of a curve C in
characteristic p. Then the Faltings height of an elliptic curve over K is still the valuation of a minimal
discriminant divisor on C, even if the characteristic of K is 2 or 3, and the Faltings height has the
Northcott property.>

On the other hand, ht is not Northcott in this setting, Note for instance that /Vu /F3 contains as a
closed substack a copy of BG lying over the coarse point j = 0 = 1728, where G is the automorphism
group scheme of an elliptic curve with j-invariant O in characteristic 3. The group scheme G has order
12 and sits in an exact sequence

1-5A-G—-us—1,

where A = Z/37Z (see, for instance, [65, Exercise A.1]) and 4 € puy4 acts on A by multiplication by
A%. The pullback of £ to BG is a line bundle on BG, which is necessarily trivial _on the commutator
subgroup A. So £ pulls back to the zero bundle under the composition BA—BG— M 1, which means
that any point x in the image of BA(K) —>M1,1 (K) has hty(x) = 0. There are infinitely many such
points, corresponding to the Z/3Z-extensions of K. Concretely, elliptic curves given by Weierstrass
equations of the form

yi=x—x—f(1) (3.12)

all have height O with respect to £. Another way to see this is to observe that the space of sections
of £12—that is, of weight-12 modular forms of level 1 in characteristic 3—is two-dimensional and is

3We do not know a citation for this fact in the published literature but learned it via personal communication from Xinyi Yuan.
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spanned by A and b,, where b, is the Hasse invariant. [22, Prop 6.2]. Any Weierstrass equation of type
(3.12) has bp(E) = 0and A(E) = 1 ([65, Appendix A, Prop 1.1. b)]). So by Proposition 2.28, using the
fact that A is constant, we see again that ht, (E) = O for any such E.

This does not mean, however, that Faltings height is a different kind of height from those discussed
in this paper; it only means it does not agree with the height arising from the Hodge bundle or any of its
powers. But, as explained in a paper of Meier [51], there are other vector bundles! When K is a field of
characteristic greater than 3, every vector bundle on Ml,l is isomorphic to a direct sum of line bundles,
which can only be powers of the Hodge bundle [51, Cor 3.6]), essentially because Ml,l is a weighted
projective line in this case. But in characteristic 2 and 3, Meier constructs indecomposable higher-rank
vector bundles on M ;/K.* Thus, the following question still makes sense.

Question 3.13 (A. Landesman). When K is a global field of characteristic 2 or 3, is there a vector bundle
V on M. 1/K such that hty, = ¢ htgy for some ¢ € Z.?

We originally asked this question with ¢ = 1; that is, is the Faltings height itself a height in our
sense? Landesman showed in his thesis [45] that this is too much to hope for; in characteristic 3, there
is no vector bundle V on mm/ F3 with hty, = htg,y. However, Landesman then raises the question
stated above, which remains open: Is there a vector bundle which computes some integer multiple of
the Faltings height in characteristic 3? For that matter, is there even a vector bundle whose associated
height is Northcott?

Furthermore, one may ask the same question about abelian varieties of higher dimension. The Faltings
height is usually thought of as being related to the Hodge bundle on the moduli stack /_lg. But the stacky
height associated to this line bundle, or any line bundle, will not be Northcott on Ag, for the same
reason it failed to be Northcott for Ml,l in low characteristic; there are abelian varieties of dimension
d with nonabelian automorphism group, which give rise to maps BG — /_tg for nonabelian G, and no
line bundle on BG can be Northcott. This problem can be avoided by computing heights on A, with
respect to the rank-g vector bundle V = 6*9,14 JA, where A is the universal principally polarized abelian
variety over the moduli stack, rather than with respect to its determinant, the Hodge bundle. There will
still be problems in low characteristic, as we have seen from the case of elliptic curves. One way of
understanding the difficulty with curves of the form (3.12) is that a wildly ramified extension of K is
necessary in order to arrive at a curve with semistable reduction; this cannot be the case for elliptic
curves over fields of characteristic 5 or greater. The following question thus seems reasonable.

Question 3.14. When K is a global function field, V is the vector bundle e*Q}L‘/z on ./Ttg, and A/K is
8

an abelian variety that becomes semistable over an everywhere tamely ramified extension of K, is it the
case that

hty,(A) = htgy (A)?

If Questions 3.13 and 3.14 both have a positive answer, one might well ask the common descendant
of both questions: are there “exotic” vector bundles on A in small (relative to g) characteristic which
compute the Faltings height of abelian varieties that require a wild extension to become semistable?

Finally, we return for a moment to the number field case. Because of the singularity at the boundary
of 7‘3 of the Faltings metric, we cannot expect hty to match htg, exactly. But there is a way to ask
whether the two heights agree ‘apart from the Archimedean place.” Namely, we can ask the following.

Question 3.15. Let K be a global field, let v be a non-Archimedean place of K, and let A/K be an
abelian variety which becomes semistable over a tamely ramified extension of K,,. Is the component at
v of htgy (A) — hty(A) equal to §y., (A)?

This is a purely local question which has to do with the behavior of the tangent space to the Néron
model of A under ramified base change. A positive answer to Question 3.15 would imply a positive

“Meier only describes these bundles on M ;. but it is not hard to show they extend to the compactification.
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answer to Question 3.14, as follows. The stable Faltings height ht;(A) agrees with ht% in this setting,
because both are given by the degree of the pullback of the Hodge bundle to an integral point C ’—>7lg,
where C’ is a cover of C. And since there are no Archimedean places, the positive answer to Question
3.15 shows that

htf!(A) — hty(A) = Z Sy (A) = hty (A) — htSh (A).

3.5. Heights on footballs

A football® F(a, b) is a P! rooted at 0 and oo, with residual gerbes u, and uy,, respectively. Let K
be a global field; we emphasize that K is allowed to have any characteristic, including characteristics
dividing a or b. (When K has one of these characteristics, F(a, b) is a tame Artin stack but not a
Deligne-Mumford stack.) As an illustration of the (moderate) subtlety of the Northcott condition in the
stacky case, we will work out which line bundles on F(a, b) are Northcott.

There are three kinds of K-points of F(a, b), which may be treated separately.

o The points supported at O; these are naturally identified with K-points of B(u,), which are in turn
identified with the set K*/(K*)4;

o The points supported at co; these are naturally identified with K-points of B(up), which are in turn
identified with the set K*/(K*)?;

o The rest of the points, which are naturally identified with the points on P!(K) other than 0 and co;
that is, these points are in bijection with K*.

Any divisor on F(a, b) is linearly equivalent to one of the form d[P] + n[0] + m[co], where P
is some point on Gy,,; such a divisor has degree d + n/a + m/b. This expression is not unique but is
subject to the relations a[0] ~ b[oo] ~ [P]. Take L to be the line bundle on F(a, b) corresponding to
d[P] + n[0] + m[oo]. We now explain how to compute ht, (x) for x € F(a, b)(K).

For the first two types of points, this computation of height has already been carried out in Section
2.4. For a point x of the first type, d and m are irrelevant. The class in K*/(K*)“ associated to x is
represented by a function f € K*, and the height of x is a sum over places of K:

hte () = Y[ ord, (f)]:

Similarly, for a point of the second type, represented by the class of g in K*/(K*)? the height is

hte (1) = [ 7 ord, (g)],

We now treat points of the third, or generic type. For simplicity of description, take K to be the
function field of a smooth proper curve C/F,. Then x affords a rational map ¢ from C to F(a, b). Write
¢.: C—P! for the composition of ¢ with the coarse moduli map, denote deg ¢ = deg ¢ by e, and write
2. e; P; for the divisor ¢ [0] and }; e/Q; for the divisor ¢y [co]. Then X, e; deg P; = X e/ deg Q; = e.

We may take C to be a root stack with residual gerbe u, at the P; and pp, at the Q;. Then x* LY is the
divisor

ein eim
—ldp ' (P)+ > =P+ Y ——0;
¢<>Za Zbg
whose degree, as it must be, is —e deg L.

SThe ‘football’ here is understood to be an American football, which has two singular points. In the professional sporting
context, the residual gerbes at these points are not specified.
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We then have

hty(x) = —degm,x"L = —(—ed+ Zl—ec’llJ deg P; + Z
i i

- (ed+2[e;l-‘degPi+Zrl{7mwdegQi)logq. 3.17)

In particular, we note that htz(x) > eloggqdeg £, with equality holding just when every e; is a
multiple of @ and every e is a multiple of b, which is to say, when x actually extends to an integral point
of F(a,b).

This description suffices to tell us which line bundles have the Northcott property. We already see
that the set of Northcott line bundles does not form a cone because it is not closed under addition.
(Indeed, we could have already seen that from the case B(Z/2Z), where the nontrivial line bundle L is
Northcott and £%2, which is trivial, is not Northcott.)

em
—ITJ degQi) log g (3.16)

Proposition 3.18. Choose a, b coprime integers, and let K be the function field of a curve C. A divisor
L =d +n[0] + m[eo] on F(a, b) is Northcott if and only if deg L > 0 and (n,a) = (m,b) = 1.

Proof. Suppose (n,a) = r > 1. Then any point of P(a, b) of the first type which corresponds to
f e (K (K*)* c K*/(K*)* has height 0 with respect to L, which contradicts Northcott. The
argument is just the same if (m, b) > 1.

We observe that there are infinitely many maps P!—F(a, b); namely, those whose coarse map
P'—P! is of the form [B(s,1)” : A(s,t)%]. Any such map, pulled back to C via a map C—P!, gives an
integral point C—F (a, b) of some coarse degree e, whose height is e deg L; we can make e as large as
we want, which shows that L cannot be Northcott if deg L < 0.

Suppose, on the other hand, that all three conditions are met. We have already shown that points x
of the third type have ht; (x) > elog g deg L; since deg L is positive, ht; (x) gives an upper bound for
e, which makes the set of possible x finite. For points of the first type represented by f € (K*)/(K*)4,

we observe that
hte(0) = [ Zord, (/)| = D {2 ordy ()],

the latter equality following from },, ord, (f) = 0. So a bound on the height of x yields a bound on the
number of places, where g ord,, (f) is not an integer; since (n, a) = 1, this bounds the number of places
where (more precisely: the degree of the divisor where) ord,, (f) is not a multiple of a. Bounding this
quantity places f within a finite set of cosets of (K*)¢, so we are done. The case of points of the second
type is exactly the same. O

3.5.1. Consistency check: footballs and weighted projective lines

When a and b are relatively prime, the football F(a, b) is isomorphic to the weighted projective line
P(a, b); on K-points, the isomorphism ¢ from P(a, b) to F(a, b) sends (s : 1) to the point t%/s” when
st # 0. Let m, n be integers such that ma + nb = 1; then the line bundle £ = n[0] + m[co] on F(a, b)
has degree 1/ab, and its pullback to P(a, b) is the tautological bundle Op(, p)(1). If x is a point of
P(a, b)(K), we have

hto,, ,, (1) (x) =htz (¥ (x)).

This provides an opportunity to check consistency between the formulas we have given for the height
of a point on weighted projective space and the height of a point on a football. Let x = (s : f) be a point
of P(a, b). Then by equation (3.5), we have

hto,, , (1 (x) = ) Tlog, max(|sh,/,[¢};/)]log .. (3.19)
v
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We now compute ht. (i (x)). Recall that ¢ (x) is the point on F(a, b) corresponding to the point ¢ /s”
of P!(K). In the notation of the above section, the points P; correspond to those places v of K, where
aord, t —bord, s > 0, and the points Q; to those places where aord, t — bord, s < 0. When v is a
prime with a ord, r — b ord,, s > 0, we have, again maintaining the notation of equation (3.17),

e;=aord, t—bord, s
and
deg P; = log g, /logq.

So the contribution of v to equation (3.17) is

(aord, t — bord, s)n nbord, s
p logg, =|nord, t — — log g

d
= (nordvt+mordvs— {or 4 s})logqv.
a

By a similar argument, one shows that when a ord,,  — b ord, s < 0 one gets a contribution of

d, ¢
(n ord, ¢ + mord, s — {orbv D logg,.

Since the first case obtains exactly when ord, s/a < ord, t/b, we can express the contribution of v
uniformly as

(n ord, t + mord, s — {min(oriv S, %)D logqy.

Summing over v, the first two terms vanish by the product formula, and we are left with

ECIEEY min(ﬁ‘;v ﬂ, {"“;V ﬂ) log ¢,

which is just equation (3.19) in another form.

3.6. Heights on symmetric powers of varieties

There is a substantial literature about points on varieties of bounded algebraic degree. We explain
how these questions look through the lens of heights on stacks. Let X be a smooth proper scheme of
dimension n over K. A point on X of algebraic degree m over K can be thought of as a K-point on
the stack Sym™ X = [X™/S,,]. In this section, we explain how to compute the height of such a point.
Slightly more generally, let G be a subgroup of S,,, and let X" be the quotient [ X™/G]; when G = S,,,
our stack X’ is Sym™ X.

In order to talk about height, we need to choose a vector bundle V on X’; this is the same thing as an
G-equivariant vector bundle on X™. The choice we make is as follows: Let Vj; be some vector bundle
ofrank ron X, and let 7y, . .., m,, : X" — X be the m projections. Then V= ea,-n:.‘Vo is an G-equivariant
vector bundle of rank mr, which descends to a vector bundle V of rank mr on X.

Let x be a point of X' (K). We begin by computing the stable height hts;(x). The Cartesian square

Spec L S xm

|

Spec K ——— X
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provides an étale algebra L over K which carries an S,,-action and a rational point x; which extends to
an integral point C—X"". By Proposition 2.14,

ht$(x) = [L : K]7' bt (xz).

(Should L be an étale algebra which is not a field but rather a direct sum @; F;, our convention is that
the height of a point of X" (L) is };; ht(P;), where P; € X" (F;) are the points corresponding to the
restriction of xy : Spec L—X™ to connected components of Spec L.)

Since X™ is a scheme, we have

ht% (xp) = htV (xr).

The latter quantity is a very natural one, what you might call the ‘absolute height’ of x. Suppose, for
instance, that L/K is a field extension, necessarily Galois with Galois group G. Then xy, is a point of
X™(L) on which Gal(L/K) acts by permutations; in other words, it is an element (a1, . . ., @;,), where
the a; are conjugate and each «; is contained in a degree-m extension L;/K whose Galois closure is L.
The (unordered) set a1, . . ., @;, can be thought of as a K-rational Galois orbit of points on X, and the
height of xy, is then given by the usual Weil height on X:

ht‘7(xL) = th\/();L ;i = mhtvo;]_ al,
i

where the subscript L is indicating that the height of «; is understood to mean the height of @; as a point
of X(L), not of X(L;); to sum up, this means that

ht§h(x) = |G| hty (x2) = m|G| ™ htyyr @; = hty, @

which is the same for every i. In fact, the reader will note that nothing we did actually used the
hypothesis that L was a field, so the description of the stable height of x is valid also in the case where
L is an étale algebra other than a field. For instance, if L splits completely as a product of copies of
K, then L; is isomorphic to K™, and our point x € X' (K) may be thought of as an unordered m-tuple
{01,...,0m} C X(K); in that case,

m
ht}}(x) = htyyr, (Q1, ... Om) = Z hty,.x Q;.
p

We now consider the discrepancy 6y (x) = hty (x) — ht$; (x).
Proposition 3.20. The value of 6y (x) is the same for any Vo and V;j of the same rank r.

Proof. We write \7’, Y’ for the vector bundles on X" and X respectively obtained from V(; as 17, V were
obtained from V.

The discrepancy is a sum of local terms ¢,,.),(x) where v ranges over a finite list of non-Archimedean
places v of C where x does not extend to an Ok -point; in particular, this list depends only on x, not on
the choice of V. Choose such a v; denoting by C, the infinitesimal neighborhood of the tuning stack C
over v, we have a commutative diagram

Spec O, —2> X
pecOp, —= X

| .

X,
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where L, denotes L ®k K,, so Or, is a disjoint union of dvrs. Composing Xz, with the projection
maps pi, ..., Py yieldsmaps gi, ..., gm: Spec O, —X which are permuted by composition with the
action of G on Spec Oy,,. We may take U C X to be an open subscheme containing the image of the g;
on which Vp and V] become isomorphic (and indeed we may choose U to make both isomorphic to OF, ).

Now, )_c*Lv V can be described as ®;q; Vo, where the action of G permutes the factors; we note that this
is G-equivariantly isomorphic to X V' = ®:q;V};. Thus, the vector bundle X} V), which is the descent
of X7 V, is isomorphic to Xk, V'. Since 6,;y(x) depends only on X V, we conclude that

6V;V('x) = 6V;V' (x)
as desired. ]

Given Proposition 3.20, we are free to take Vo = O% when computing 6y, (x). In this case, V is the
direct sum of r copies of the vector bundle on X’ obtained by taking Vy = Ox; so we may simply take
Vo = Ox and multiply by r at the end.

In this case, we can describe V' very concretely; in the diagram

Xmﬁ*

L

X —+ BG

we have that hty, (x) = ht, (c o x), where c o x is the morphism from Spec K to BG corresponding to the
etale G-extension L/K. It follows from Proposition 3.1 that ht, (c o x) = (1/2) log Ay, /x (which is the
same for all 7). The pullback of p to * is trivial, so ht;,t is identically 0, whence the discrepancy ¢, (c o x)
is also (1/2)log A, /x . We can now conclude from the discussion above that, for any choice of Vj,

oy(x) = (r/2)logAr, k.

Combining this with our computation of ht(;, we finally arrive at a description of the height of a rational
point on X’ with respect to ). Recall that a point x € X'(K) provides us with a degree-m etale extension
Li/K and apoint @; € X(L). Denote by ht{‘: (@) the usual Weil height of @; under the map X (L;)—R
afforded by Vj. Then

hty (x) = ht} (1) + (r/2) log Ap, k-

4. Counting rational points by height: a conjecture of Batyrev—Manin—Malle type

In this section, we formulate a conjecture of Batyrev—Manin—Malle type for rational points of bounded
height on a stack X'. When X is a scheme, we recover the weak Batyrev—Manin conjecture about rational
points on schemes; when we take X = BG, we recover the weak Malle conjecture. We thus think of
our conjecture as interpolating between the two conjectures, while at the same time generating many
new cases of interest. As was the case for the original Batyrev—Manin, we develop our heuristics by
consideration of the case K = k(t) and the corresponding geometric problem of studying spaces of
rational curves on X.

By ‘weak’ in the above paragraph we mean that we propose conjectures that bound counting functions
between X“ and X“*€ for a specified exponent a. The ‘strong’ versions of Batyrev—Manin and Malle
make a more precise conjecture, that counting functions are asymptotic to X“(log X)? for specified
a, b. In work posted after the original version of this paper was released, Darda and Yasuda [21] have
proposed a ‘strong’ conjecture about point-counting on stacks, with an explicit predicted power of log X.

One could go further still and ask whether the counting functions discussed here are of the form
cX%(log X)? + 0o(X“(log X)?), with an explicit constant c; this has been quite an active area of
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investigation in both the Batyrev—Manin and the Malle context. One remark in this regard: To get
constants right, it is presumably important to remember that X' (K) is naturally not a set but a groupoid,
and counts of points should probably be weighted inversely to the size of the point’s automorphism
group. But issues of this kind will not be relevant for the coarser heuristics considered here.

4.1. Expected deformation dimension: stacky anticanonical height

In the Batyrev—Manin conjecture for a scheme X, when counting rational points with respect to a line
bundle £, the expected growth rate is given by B*(“), where the Fujita invariant a(L) is the infimum of
all a for which a£ + Kx is effective. A technical hurdle we must overcome in defining a (L) for stacks
X is that for many stacks of interest, for example X = BG, the canonical bundle Ky is trivial! Thus,
the anticanonical height is not suitable for the purposes of obtaining the expected growth rate of point
counts on stacks. Our solution is to introduce a new quantity, the expected deformation dimension (or
edd), which is a suitable perturbation of the anticanonical height.

Before giving the definition of edd, we wish to sufficiently motivate it through geometric intuition.
In the case of a proper scheme X over a function field C(¢), a rational point x: Spec C(¢) — X, by
the valuative criterion, extends to a map x: P! — X. By Riemann-Roch, the anticanonical height
ht_g, (x) = deg(x*Tx) differs from y (¥*Tx) by a constant, and y (x*Tx) is the expected dimension of
the deformation space of x*.

The deformation theoretic point of view serves as our launching point for the definition of edd. Given
a rational point x: Spec K — X of a stack, we can extend x to a universal tuning stack x: C — X’; see
Definition 2.1. The expected deformation dimension of x is then given by X(L%[l]), where Lx is the
cotangent complex for the representable map x. For the sake of motivational purposes, suppose both X’
and C are smooth tame Deligne-Mumford stacks, in which case the tangent complexes L. and L} are
vector bundles, denoted by 7y and 7. Then

X(L[1]) = x(X'Tx) = x(Te),
which up to constants are the same as
deg(m.x"Ty) — deg(m.Te). 4.1)

Note that deg(m.Xx*Tx) = —htg,. (x). We next calculate deg(n.T¢). Letting 7: C — C be the coarse
space, we have

ol =rale 06(2(1 - e;,l)p) (4.2)
by [71, Lemma 5.5.3 and Proposition 5.5.6]. So,

7o =Te ® Oc( Y |e; = 1]p) = Te (=R

since the floors are equal to —1 if e, is nontrivial and O otherwise, R is the divisor given by the ramified
points taken without multiplicity. So, up to constants, deg(x.T¢) = —deg(R).

In practice, however, we will want to consider stacks Ay over K for which we do not have in mind a
particular model X'/C which is normal and Deligne-Mumford or for which we do have in mind a model
but it isn’t Deligne-Mumford; for example, we don’t want to exclude a stack like By, /Spec Z which
fails to be Deligne—Mumford in characteristics dividing n. Tuning stacks for rational points of such
stacks are also generally not Deligne—-Mumford. Presumably a more complicated definition involving
the tangent complex would work, but in the interest of simplicity we have chosen for now to apply a
technical workaround.

First, the universal tuning stack C of a rational point x € X' (K) is generically a scheme (and thus
generically Deligne-Mumford). The coarse space map n: C — C is birational and C is normal; if C
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is tame, then it is a root stack. To promote our working definition of edd (equation 4.1) to the general
setting we are tempted to define

Qé’fake = n*Qlc ® O¢ (Z(l - el_,l)p).

If p is a Deligne-Mumford point of C but is not tame, then one defines ¢, via wild ramification [43,
Proposition 7.1]. But if p is not a Deligne-Mumford point it is unclear how to define e,,. If p is tame,
then the stabilizer of p is isomorphic to u,, for some integer m, and it is tempting to define e, to be
1/m. This is ad hoc, but worse, not general enough: The stabilizer could be a group which is neither
étale nor tame (such as u, x Z/pZ).

Our perspective is that the precise definition of e, does not matter, as long as it is nontrivial at a
stacky point. What we mean is: For the part of the definition of edd that relies on the universal tuning
stack we only ever consider the quantity ‘deg(.T¢)’. Since T¢ is the dual of Qé’fake,

I =Tc ® (’)C(Z I_el_,l - IJp).

In particular, since we are taking floors the quantity |_e,‘,1 - 1J is 0 is p is not stacky and is —1 otherwise.
In equation 4.1, we thus abstain from defining T¢ and instead replace deg(m.T¢) with the following
quantity.

Definition 4.3 (Reduced discriminant). Let 7: C — C be a tuning stack of a rational point x € X' (K).
We define the reduced discriminant rDisc(x) of x to be the sum

rDisc(x) = Z log g,
over the stacky points v of C, where ¢, is the cardinality of the residue field of the point v.

To make sense more generally of the other term of equation 4.1, for the rest of this section, in addition
to the assumptions of Subsection 1.1 and Section 2, we assume that the generic fiber Xx of our proper
Artin stack p: X — C is Deligne-Mumford so that it makes sense to talk about the canonical sheaf
K, of the generic fiber.

Definition 4.4. We say a line bundle on X is generically canonical if its restriction to Xx is Ky, .
We now define edd as follows, guided by the motivation above.

Definition 4.5 (Expected deformation dimension). Let K be a global field, and let C be either Spec Ok
in the number field case or a smooth proper curve with function field K in the function field case. Let
X be a proper Artin stack over C with finite diagonal such that X is a smooth proper Deligne—Mumford
stack over K. Let K be a generically canonical line bundle on X. Given x € X (K), let (C,X, «) be its
universal tuning stack. The expected deformation dimension of x is

edd(x) := —htg (x) + rDisc(x).

Remark 4.6. Implicit in this definition is a conjecture: That the definition is independent of choices.
More precisely, we expect that, given two different models of Xk, and two different extensions of K x,
to these models, the two functions edd(x) would differ by a function that is bounded as x ranges over
X (K). In the examples that follow, we will simply choose a model X’ and choose a generically canonical
line bundle on X.

Remark 4.7. If X = X is a scheme, then the universal tuning stack is a curve, and edd agrees with
the anticanonical height since edd(x) := — htk,, (x) = deg(X*Tx) = ht_g, (x). On the other extreme, if
X = BG, then Ky is trivial, so edd(x) is the reduced discriminant of the field extension corresponding
to x.
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Example 4.8 (Extending a stacky curve and its canonical bundle). Let X, be a smooth tame Deligne—
Mumford stacky curve over K, and suppose that the coarse space map ¢o: Xy — Xp is birational
(equivalently, &p has trivial generic inertia). By [33, Theorem 1 and Remark 4], such an &} is isomorphic
to a root stack over its coarse space. Let p1,..., px € Xo be the ramification locus of ¢q; since Xy is a
root stack, the stabilizer group over each p; is isomorphic to u., for some integer ¢; > 2, and Aj is the
root stack of X rooted along each p; with order e;.

The coarse space Xy is a smooth proper curve over K and extends to a proper relative curve X — C.
Let D; be the closure of p;. After a possible normalization and sequence of blowups, we can assume
that X is regular and that the D; do not intersect each other or the singular points of the fibers of X — C.
Define ¢: X — X to be the root stack of X rooted along each D; with order e;. The relative stacky
curve X is a model of A} and is tame. If there is some point v of C and some i such that the residue
characteristic of v divides e;, then X is an Artin stack which is not Deligne—-Mumford; if C = Spec Ok
for some number field K, then there is always some such v and i.

As discussed above (see Equation 4.2) the canonical sheaf of X) is

QL = 650k ® Ox, (Z(l - ei_l)pi).
Define

Qk,fake = ¢*wx/c ® 0/‘\{(2(1 - ei_l)Di)

by the same ‘formula’. Then in’fake is a generically canonical sheaf.

We have seen in Remark 4.7 that when X is a scheme, edd agrees with anticanonical height, that
is, the height of the tangent bundle. It turns out that the same identity holds when X’ is a smooth, tame
Deligne—-Mumford stacky curve with no generic inertia, at least away from the accumulating subvarieties.

Proposition 4.9 (Curves with stacky points). Let Xy be a smooth tame Deligne—Mumford stacky curve
over K, and suppose that Xy is birational to its coarse space. Let X be the model of Xy given by
extending the root data as in Example 4.8, and let Tx be the dual of the generically canonical bundle
from Example 4.8. Let x be a point of X (K). Then

edd(x) = htr, (x).

Proof. Let C be a tuning stack and X: C— X the extension of x, as usual. The pullback X*T7, is a line
bundle on C. We first note that

iz, (x) +htry () = > (70 (x) + 075, (X))

since
hLSTtX (x) + htSTt)Z (x)=0.

For each closed point v of C, the point x either reduces to a nonstacky point or reduces to a unique
stacky point p with stabilizer group u,, for some integer m > 2. Let k be the multiplicity of the reduction
of x to p (i.e., the multiplicity of the intersection of the images of x and p in the coarse space X). If m
divides k, then we can take the tuning stack C to be a scheme in a neighborhood of v, in which case
the discrepancies are 0. Otherwise, C, is a root stack which can be resolved by adjoining to K, an mth
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root of a uniformizer. Denote the resulting field extension by L,,. So as in Section 2.3, the restriction of
X'Tx to Ok, is identified with an ideal A in Oy, and we have

OT v (x) =(1/m) log

(ANK,) ®o,, OL, |
Taking 7, to be a uniformizer of O, we may write A = 7,XOp_, and so
07w (X) = ((=k/m) — |-k/m])log q,.
The restriction )?*T)\é, by the same argument, is identified with the ideal n’fv OL,,- We conclude that

0T (X) + 67y (x) = ((=k/m) = | =k/m] + k[m — | k/m])logq,

which is log ¢,, unless m|k, in which case it is zero. In other words,

iz, (x) + iz (x) = D (0700 (¥) + 57 (1) = Disc(x)

v

since rDisc(x) is precisely the sum of log ¢, over the stacky points v of C. We conclude that
edd(x) = —htry (x) + 1Disc(x) = htr,, (x)

as claimed. O

Remark 4.10. If X’ is a second model of the stacky curve Aj from Proposition 4.9 and if X’ is tame, one
can show that away from finitely many points of C, X’ is a root stack and isomorphic to X’; shrinking C
further the generically canonical sheaves agree. By Proposition 2.25, the value of dr,,,., (x) + 6T;/ 2 (x)
is bounded on X’ (K), and thus the edd associated to the model X will only differ by a constant which
depends on X)) and K.

4.2. Weak form of the stacky Batyrev—-Manin—Malle conjecture

Having now defined edd, we are ready to state a heuristic for counting rational points of bounded height
on a stack. We then show that our heuristic recovers the weak form of the Batyrev—Manin when X is a
scheme and recovers the weak form of the Malle conjecture when X = BG.

Of course, we cannot expect to count points of bounded height unless the height function satisfies
some kind of positivity property. In the Batyrev—Manin setting, this is achieved by restricting to heights
corresponding to ample line bundles. One does not have as clear a geometric picture of vector bundles
on stacks as one does in the setting of line bundles on schemes, so we use for the moment the following
definition. We recall that stable height is well behaved under field extension (Proposition 2.14), so we
can define an absolute hti}abs as a function on X' (K) by the usual rule:

he5 ™ (x) = [L : K]7" hth (x)

for points of X'(L).

Definition 4.11. We say a vector bundle V on a stack X is semipositive if the quantity htifabs

bounded below on X (K).

(x) is

We note that the property of being semipositive is stable under field extensions by Remark 2.16.

Definition 4.12. Let f be a real-valued function on X' (K). We say f is generically bounded below if
there is a proper closed substack Z of X and a constant B such that the set of x € X'(K) such that
f(x) < [K(x) : K] - B is contained in Z(K), where K(x) is the residue field of x.
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Suppose V is a semipositive vector bundle on X. We consider the function
D, y(x) = ahty(x) —edd(x)
on X (K). We note that if a’ > a, then

Dary(x) = Day(x) +(a’ = a) hty(x) 2 Da v (x) + (¢’ - @) hty (x)
= Da,V(x) + (a’ - a) [K(X) : K| hti;;abs(x).

Since V is semipositive, for fixed a’ and a the quantity
(@’ —a)[K(x): K] ht:;;abs (x) > (a’ - a) ht:;;abs )

is bounded below on X (K). It follows that if D,y is generically bounded below, so is D 1. So the set
of a such that D, y(x) is generically bounded below is an interval, extending infinitely in the positive
direction.

Definition 4.13. With notation as above, the Fujita invariant a()) of a semipositive V is the infimum of
all positive real numbers a such that D, y is generically bounded below. If D, y is never generically
bounded below we take a = oo.

The main goal of this section is to propose a heuristic for counting points of bounded height on
stacks. If X is a stack over C, U is an open dense substack of X’ and V is a Northcott vector bundle (as
in Definition 2.17) on X, define a counting function

Nu,y k(B) = [{x e U(K) : hty(x) < log B}|.

The Batyrev—Manin conjecture is customarily stated for Fano varieties, those with ample anticanon-
ical bundle. As mentioned above, it is not clear what the right analogue of this condition is for stacks.
For instance, we certainly do not want to exclude stacks like BG, on which all vector bundles have de-
gree 0 and are thus in some sense not ‘strictly positive,” but we do want to exclude stacks like abelian
varieties, whose anticanonical bundle is trivial. To this end, we make the following defintion. Let X is a
smooth proper Deligne—-Mumford stack over a number field K, let m > 0 and B be real numbers, and let
d > 1 an integer. We then define S(X, m, d, B) to be the set of pairs (L, P) with L a degree-d extension
and P € X (L), satisfying

Cdd(P) +mAL/K < B.

We provisionally say X" is Fanoish if S(X,m, d, B) is finite for all m, d and B.
We are now ready to state the heuristic that motivates this part of the paper.

Conjecture 4.14. Let K be a number field, and let C = Spec Ok. Let X be a stack over C whose generic
fiber Xk is a smooth proper Deligne—Mumford stack over K. Suppose further that Xk is Fanoish and
that X (K) is Zariski dense in Xk. If V is a semipositive vector bundle on X, then there exists an open
dense substack U of X such that, for every € > 0, there is a nonzero constant c ¢ such that

C;lBa(v) < Nyy.k(B) < CEBa(V)+E,

where a(V) is the Fujita invariant defined in Definition 4.13.

Remark 4.15. Our point of view throughout has been to let K be a global field of any characteristic;
however, in Conjecture 4.14 we restrict to the case where K has characteristic 0. The reason for this
is that we aim to emulate the Batyrev—Manin conjecture, and the form that conjecture should take for
global fields of characteristic p is not fully settled. Indeed, there are counterexamples to the most naive
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formulations of Batyrev—Manin, even for the anticanonical height; see Starr-Tian—Zong [67, Lemma
5.1] and recent work of Beheshti, Lehmann, Riedl and Tanimoto [7].

Remark 4.16. The condition that X' (K) is Zariski dense is present to handle cases where, for instance,
X (K) is empty or supported on a closed subvariety due to a local obstruction.

Remark 4.17 (Accumulating loci can be zero-dimensional). One difference between this case and the
traditional Batyrev—Manin conjecture is that the accumulating locus X'\U{ can be zero-dimensional;
indeed, on a stacky P!, the stacky points are accumulating subvarieties. An example of this phenomenon
can be seen in the recent paper of Pizzo, Pomerance and Voight [59], which counts points on the moduli
stack X (3) with respect to (in our language) the height arising from the Hodge bundle. They find that
the preponderance of points are those supported at the single (stacky) point over j = 0, and compute a
lower-order asymptotic for points on the complement ¢/ of this point.

Remark 4.18. Conjecture 4.14 corresponds to the weak version of the Batyrev—Manin conjecture. An
analogue of the strong version would be an assertion that Ny, y x (B) is asymptotic to a constant multiple
of B4V (log B)?V-K) for some explicit constant (), K). Getting the power of log B correct (not even
to speak of the constant!) is very subtle even in the Batyrev—Manin setting where X is a scheme; we
will not attempt to pin it down here, but it seems a rich problem for further investigation.

Remark 4.19. One could, in the same way, propose a heuristic for counting points on X of bounded
stable height. Just above, one could define th’v(x) to be ht% (x) —edd(x) and define the stable Fujita
invariant to be the infimum of those a such that th,v is generically bounded below. This gives nothing
new in the case where X is a scheme (where stable height and height are the same) or where X = BG
(in which case stable height is 0) but is of interest in other cases: See Section 3.6 for an example. In
the same vein, and in some sense analogously to the central case of Batyrev—Manin where we count
by anticanonical height, one could count the number of points x of X'(K) with edd(x) < log B, even
though edd is not always a height in the sense of this paper. One could reasonably expect this count to
be bounded between constant multiples of B and B'*€. For example, when X = BS3 and K = Q, this
would amount to counting cubic fields L/Q such that the product of the primes ramified in L is at most
log B. This counting problem will be addressed in forthcoming work of Shankar and Thorne, where it
is shown that the count is on order B log B.

4.3. The case where X is a scheme: the Batyrev—Manin conjecture

Suppose X is a scheme X. Then, since hty, = ht,ry for any rank r vector bundle V on X', we may assume
V is a line bundle £. We have seen in Remark 4.7 that edd(x) = ht_g, (x) for any x € X(K). So if X
is Fano, it is Fanoish because the anticanonical height is an ample height and thus has the Northcott
property. It is not immediately obvious that a Fanoish scheme is Fano, but it is also not unreasonable to
hope so. To begin, —Kx is nef: if there were a curve C on X with —Kx|c of negative degree, then for
some d, there is a degree-d map C — P! which provides many degree-d algebraic points with more and
more negative —Kx-height, not counteracted by mA x if we make m small enough. We also note that
a variety with trivial canonical sheaf may be expected not to be Fanoish; a K3 surface, for instance, is
expected (though not in general known) to have a Zariski-dense set of points over some extension L of
K, which implies that X is non-Fanoish since all these point have —Kx-height 0 and A7k fixed.

The question of which schemes ‘should’ satisfy the Batyrev—Manin conjecture is not wholly under-
stood but is probably not limited to Fano schemes alone; if it turns out that ‘Fanoish’ delineates a class
of schemes including some to which Batyrev—Manin does not apply, we will narrow the notion.

The condition that £ is semipositive simply says that £ is nef; a nef height is bounded below, and if
L is not nef, there is a curve on which £ has negative degree, whose K-points thus have heights which
are not bounded below.
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Now,
Dee(x) = ahte (x) - edd(x) = htgzriy (%)

and a (L) is the minimal a such that ht, .k, (x) is generically bounded below.

What does this say about the line bundle a £ + Kx ? First of all, if M is a big line bundle on X, then the
map ¢y : X—PN* induced by the global sections of £* is a birational embedding for some sufficiently
large k. It is then immediate that the absolute height ht; (x) is bounded below on X (K) away from the
locus Z contracted by ¢, and that there are only finitely many points of X (K)\Z(K) with height below
any given bound. So %j, is generically bounded below. On the other hand, the pseudoeffective cone
is dual to the cone of moving curves by by a theorem of Boucksom, Demaily, Patin and Peternell [14,
Th 0.2] (see [30, Th 2.22] for the case of characteristic p). So if M is not pseudoeftective, there is a
moving curve Y on X on which M has negative degree; if Z is any closed locus, we can move Y to not
be contained in Z, and then Y (K) has points away from Z of arbitrarily negative height; in particular,
hps is not generically bounded below.

Since the pseudoeffective cone is the closure of the big cone, we conclude that the infimum of a
such that ht, .k, (x) is generically bounded below is the same as the infimal a such that a£ + Kx is
pseudoeftective, which is the same as the infimal a such that a£ + Kx is big. And this a(L) is just the
usual Fujita invariant appearing in the Batyrev—Manin conjecture for Fano varieties. So Conjecture 4.14
recovers the (weak form of the) Batyrev—Manin conjecture.

4.4. The case where X is BG: Malle’s conjecture

Now, suppose X = BG over a number field K, and V is a vector bundle, that is, a representation of G.
In particular, let us assume V is a faithful permutation representation corresponding to an embedding
G < S,. Each point x of BG corresponds to a G-extension of K (possibly an étale algebra), and, via
the embedding of G into S, a degree-n extension L/K whose Galois closure is G. We have already
computed that

hty(x) = (1/2) log|ALx| = ) ey logqy,
vER

where R is the set of non-Archimedean places of K ramified in L/K, and e, is the local degree of
the discriminant. If v is a place where L/K is tamely ramified, so that tame inertia acts on {1,...,n}
through a cyclic subgroup () < S, the ramification e, is just the index ind(x), the difference between
n and the number of orbits of 7.

First of all, note that V' is semipositive since ht% is identically 0.

It follows from Remark 4.7 that for any extension E/K and any point x € BG(E) corresponding to
a degree-n extension F'/E, we have

edd(x) = Z loggy,
14

where the sum is over non-Archimedean places v of E which are ramified in F/E. Note in particular

that, because this is positive, BG is Fanoish; the set of (L,x € BG(L)) with edd(x) + mA;;x < B

involves only the finite set of extensions L/K with discriminant at most B/m, and for each L, the set of

x € BG(L) with edd(x) < B is finite since it consists of G-extensions of L with bounded discriminant.
Thus,

Day(x) = ahty(x) —edd(x) = > ((1/2)ae, - 1)logq,.

Suppose a > 2max g ind(7)~!. Then (1/2)ae, — 1 > 0 for all tame primes v. The contribution of
nontame primes is bounded below by a constant depending only on [E : K]. Thus, the Fujita invariant
of V is at most 2 max ¢ ind ()"
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Suppose, on the other hand, that a is strictly smaller than 2ind(x)~! for some 7 € G. If E/K is
an extension of K and L/E a G-extension such that every ramified prime is tame and has tame inertia
acting via mr, then the point x has

edd(x) = > ((1/2)ae, - 1)log gy

which is bounded above by a negative constant multiple of }}, log g, . Heuristically, it seems safe to
suppose one can choose such (E, L) with }; log ¢, as large as one likes, which would mean that D
was not generically bounded below. But this is perhaps not completely obvious: For instance, when
G = S, one is saying that there are many field extensions with squarefree discriminant. One certainly
expects this to be the case, but the fact, for example, that there are arbitrarily large squarefree integers
which are discriminants of degree-n extensions of Q is a recent result of Kedlaya [40]. In fact, all we
need is that for some extension K’ of K there are extensions L/K’ with larger and larger discriminants
whose ramification is entirely or almost entirely drawn from the minimal-index conjugacy class in G.
One can presumably construct such extensions using the method of regular extensions popular in work
on the inverse Galois problem; using the Riemann existence theorem you write down a cover of curves
X _>P1E with Galois group G and all ramification drawn from the minimal-index conjugacy class, then

descend the picture to Xo—>P}<, for some finite extension K’ /K, then show that specialization to points
of P!(K’) yields many extensions of K’ with the desired properties. Since we are just formulating
conjectures here, we will not push this argument through in detail.

An argument of the sort sketched in the above paragraph is necessary due to the fact that we
defined the Fujita invariant in terms of heights of points over extension fields of K; presumably, a more
conceptual geometric definition of the Fujita invariant of a vector bundle with zero stable height would
automatically assign V the value 2 max ¢ ind ()"

At any rate, if we grant the heuristic argument on the Fujita invariant above, we find that Conjecture
4.14 predicts that the number of degree-n extensions L/K with Galois group G and discriminant at most
B—in other words, the number of points x on BG(K) such that

hty (x) = (1/2)log|Ar k| < (1/2) log B

is bounded between c;lB“ and ¢ B%*€, where a = max g ind(7)~!. This is exactly the weak Malle
conjecture.

Remark 4.20. When V is a representation of G which is not a permutation representation, one still has
some conjugacy-invariant function f from G to R, and an expression

hty, (x) = Z ¢y logqy,

VER

where, for every tamely ramified prime v, the coefficient c,, is the value of f at an element of G generating
the tame inertia group at v. In this case, Conjecture 4.14 asserts that the number of points x € BG(X)
with hty,(x) < log B should be on order B4, where « is the reciprocal of the minimal value taken by
f(v) on nonidentity elements of G. Heuristics of this kind are well-known folk generalizations of Malle
(see, e.g., [28, §4.2]) and have begun to be proved in some cases. For instance, the striking work of
Altiig, Shankar, Varma and Wilson [5] can be thought of as proving Conjecture 4.14 in the case where
X = BD4 and V corresponds to the two-dimensional action of D4 by rigid motions of the square. (What
they prove is much more refined than what Conjecture 4.14; they not only compute the power of B, but
the power of log B, and even the constant!)

The recent work of Alberts [4] on counting classes in H'(Gal(Q), A), where A is an abelian group
with Galois action, can perhaps also be thought of in this way. Here, A corresponds to an étale but
possibly nonconstant group scheme, so the stack BA is geometrically the classifying stack of the finite
abelian group underlying A. In this case, the points of BA(Q) are just the classes in H'(Gal(Q), A).
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The “m-discriminant” of [4, Lemma 1.4] is the height attached to the vector bundle on BA descended
from the regular representation of the finite group underlying A.

4.5. Symmetric powers of P"

Let X be the stack Sym™ P" = [(P")™/S,,], and let K be a global field of characteristic 0 or greater
than m. For x a point of X'(K), we have

edd(x) = — htry (x) + rDisc(x).

Note that we can associate to x a degree-m extension L of K and a point y of P"(Ly).

The cotangent bundle TY,, considered as an S,,-equivariant bundle on (P")™, is the direct sum of
the m pullbacks of the cotangent bundle from the m projections P", and the height associated to the
cotangent bundle on P" is just the usual height associated to its determinant O(—n — 1). So we are in
the situation of Section 3.6, and we have

htyy (x) = hto(n-) () + (2/2) log Ar, /&

Thus,

edd(x) = htogun () + (1= (1/2)e,) log gy,
VER

where, as in §4.4, R is the set of tamely ramified places and e, is the power of v in the discriminant of
L;/K; the contribution of the wildly ramified places, as in Section 4.4, is bounded by a constant (and if
x varies over X' (L) for some extension E /K, the wild contribution is bounded by a constant depending
only on [E : K]).

We also have

htr, (1) = htoren) (3) + (2/2) log Az, x = edd(x) + Y (ne, — 1) log gy
VER

In particular, htr,, (x) —edd(x) is always nonnegative, and htr,, (x) = edd(x) whenever x is a point of
X in the image of the projection from (P")™(K) to Sym™ P"(K). This shows that the Fujita invariant
a(Ty) is 1. Conjecture 4.14 thus suggests that, away from some proper closed substack, the number of
rational points on Sym™ P"(X) with tangential height at most B is between B!~€ and B!*€.

There is a large existing literature about counting points on projective spaces of fixed algebraic degree
and bounded height [63, 31, 49, 50, 73, 46, 36, 37]. Most typically, the question being asked is: How
many points are there in P”(K) which have absolute Weil height at most B and which are defined over
afield L, /K of degree m? As we have seen in §3.6, we can interpret this question as follows. Let V' be
the vector bundle on Sym™ P" obtained as in §3.6 taking Vy as Opn (1). If y is a point of P"(L;) and x
the corresponding point of Sym™ P", we have

he§y,) (v) = m™ he (x).
So we are in the situation of Remark 4.19. In order to compute the stable Fujita invariant of }, we need
to study the function

D, (x) = aht§}(x) - edd(x) = (a —n — 1) hto(1) (¥) - 2(1 —(n/2)ey)logqy.
VER

When n > 2, we note that the local term }’, .z (1 — (n/2)e,) log g, is always nonpositive and is O
when L, is K™; in particular, the set of x in Sym” P"(K) with edd(x) = (a —n—1) ht% (x) is Zariski
dense for every K. Thus, Dsat 1 Will be generically bounded below for any @ > n+ 1 but is not generically
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bounded below for any smaller a. So the stable Fujita invariant is n + 1. For each y in P"(K) with
[K(y) : K] = m, we write x, for the point of Sym™ P". Then Conjecture 4.14 suggests that for every
n > 2 we should expect that, for some open dense U € Sym™ P",

B <y e PU(K) : [K(y) : K] = m,,xy € UK),ht™(y) < B} < cB""D*e,

When n = 1, the situation is more complicated. We now have

Dy, ,(x) = (a =2)hto) () = Z(l/Z)ev loggy = (a=2)hto)(y) — (1/2)log AL,k
VER

with equality when L;/K has squarefree discriminant. In order to understand how large a needs to be
for Dsat’v (x) to be generically bounded below, we need to know how large log Az, /x can be relative to
hto (1) (y). A point y of P! (L) has a minimal binary m-ic form F = agX" +- - - +a,,Y"", where the height
of the point (ag : ... : a,) in P"(L) is on order m ht(y) since each coefficient is a monomial of degree
m in the coordinates of y. The discriminant of L;/K is at most the discriminant of F, with equality if
disc F is squarefree. The discriminant of F is a product of m(m — 1) terms of the form «;8; — a;B;,
where (@; : B;) and («; : B;) are conjugates of y in P'(K). So the log of disc F, considered as an
element of Oy, is on order 2m(m — 1) hty (y) and the log of disc F' considered as an element of O is
thus 2(m — 1) ht(y). We conclude that

D}, (x) = (a—=2)hto1)(y) = (m = 1) hto(1) () = (@ —m = 1) hto(1) (y).

So Dsal,v is generically bounded below when a > m + 1, and as long as there is a Zariski-dense set of
choices of y with disc F squarefree (perhaps this is obvious, but at any rate it follows from standard
conjectures) D,y is not generically bounded below for any smaller a. So the stable Fujita invariant in
this case is m + 1 and Conjecture 4.14 asserts that, for some open dense U,

!B < #(y e PUK) : [K(y) : K] =m,,x, € UK),ht™ (y) < B} < c.B™™D+e (4.21)

In fact, equation (4.21) follows from a theorem of Masser and Vaaler [50], who prove a much more
refined asymptotic, with U the whole of Sym” P!:

#y € P'(K) : [K(y) : K] = m, bt (y) < B} ~ A, B"™D

with an explicit constant A, k. Of course to compute the constant in the case where K is a number field,
one has to be careful about the metrization on O(1) in a way we are not attempting here. Le Rudulier
[46] generalized the Masser—Vaaler result to the case of an arbitrary metrized line bundle on P'.

When n > 2, the asymptotics for points of bounded height on projective n-space with algebraic

degree m is still the subject of active research. If n is large enough relative to m, the heuristic (4.5) is
known to be correct; indeed, one has

#{y e P*(K) : [K(y) : K] = m,ht*®(y) < B} ~ Appn.x BV

when K is a number field and n > (5/2)m + O(1), by a result of Widmer [73] and when n > m + 1 with
m prime by a result of Guignard [37]. For the function field case, the result is proved by Thunder and
Widmer [69] when n > 2m +4 (and generalized from P" to smooth projective toric varieties by Bourqui
in [15]). Schmidt in [64] showed that equation (4.5) holds in case K = Q, m = 2 and n = 2; indeed,
in that case, the growth rate is B®log B, showing that the € in the exponent is sometimes necessary.
Mainziteanu [48] extended Schmidt’s result to function fields K of odd characteristic.

On the other hand, Schmidt in [63] gives a lower bound

#{y e P"(K) : [K(y) : K] = m, ht*™ (y) < B} > Ay B
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valid for all » and all sufficiently large B. When m > n, this is a larger exponent than that predicted in
equation (4.5). But this does not contradict Conjecture 4.14. The source of Schmidt’s lower bound is the
simple observation that any choice of line in P" yields an injection of Sym” P!(K) into Sym™ P"(K),
and the former already contains B™("*1) points of height at most B. But any such point lies on the
proper closed substack Z c Sym™ P"(K) lying under the locus in (P")" parametrizing ordered m-
tuples of collinear points. Thus, it remains possible that when some accumulating locus is removed,
the asymptotic growth rate of the number of points is smaller. And indeed, Guignard [37, Theorem
1.2.3] shows exactly this in the case where K is a number field, m = 3 and n = 2. In this setting,
Schmidt’s lower bound shows that the number of cubic points on P? with absolute height at most B is
at least ¢B'?. Guignard shows that if you exclude those cubic points which lie on a K-rational line, the
number of rational points that remain is bounded above by ¢ B%*€, precisely the exponent predicted by
Conjecture 4.14.

We thus see that the present viewpoint is useful for understanding phenomena of accumulation in a
uniform way. The algebraic points witnessing Schmidt’s lower bound are clearly ‘nongeneric’ in some
sense, but, considered as points of P"(K), they are Zariski dense. Considering these points instead as
points on Sym™ P" shows that the accumulation is a phenomenon that can be repaired by stripping out
a proper closed subvariety, exactly as in the Batyrev—Manin setting. Of course, one does not need to
invoke stacks to adopt this point of view—for instance, see §33.2 of Le Rudulier’s thesis [46], where
a degree-m algebraic point of P? is thought of as a point on the coarse moduli scheme of Sym™ P?
rather than the stack itself; since the two are birational, the observation that the collinear m-tuples lie
on a subvariety on which rational points accumulate takes the same form for Le Rudulier as it does
for us.

4.6. Footballs and multifootballs

Proposition 4.9 shows that edd agrees with tangential height hty,, when X is a smooth proper one-
dimensional stack over a number field K which is birational to a curve. In particular, Proposition
4.9 applies when X is a stacky curve birational to P! which has r stacky points isomorphic to

B(ftm,)s - - - » B(itm, ). For short we will call such a curve an (my,...,m,)-rooted P'. The football
F(a,b) asin §3.5 is then an (a, b)-rooted curve.
Let X be an (my,...,m,)-rooted P!. Now, Conjecture 4.14 predicts that, for some open dense U in
X, we have
c.'B < Nyry.x(B) < ceB™E. (4.22)

First of all, U is obtained by removing a finite set of points from &', so we can interpret the above
asymptotic as a heuristic for the number of points of X’ of bounded height which are not supported on
the stacky locus.

The coarse map X —P! is a birational isomorphism, and so without serious ambiguity we can denote
a point x on X'(K) not contained in stacky locus by its image (a : b) in P'(K). We will now compute
tangential height explicitly. The tangent sheaf Ty is 2P + Y,;(1/m; — 1) P;, where P; is the i’th stacky
point and P is some other point on X’; the degree of Ty is thus d =2 —r+ Y;(1/m;). If N is an multiple
of every m;, then NTy is linearly equivalent to Nd copies of P; in other words, it is pulled back from
O(Nd) on the coarse space P!. We thus have

ht%X (x) = (1/N) ht;t,TX(x) = (1/N)htova)(a : b) =dhtoy(a: b).

We note, in particular, that Ty is not semipositive unless d > 0, so we assume this from now on.

For expositional simplicity, we now restrict to the case K = Q. So the stable height of x is
dlogmax(|al, |b|), where a and b are now taken to be coprime integers. It remains to compute the
local discrepancies. The local discrepancy &, (a : b) can be computed as follows. The tangent bundle
Tx has local degree 1/m; € Q/Z at P;, so the degree of x*T7. at the point of the tuning stack C over a
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place v is —k/m;, where k = ord,, L;(a : b). Thus, the local degree of the pushforward 7,x*Tx on C is
l—k/m;| = —[k/m;], and so the local discrepancy is given by

Oy = (I-k/ml-l - k/ml) IOgQV-

Throw out the bounded contribution of any prime v where two distinct P; intersect, and denote by L;
the linear form whose zero is at P;. Then for each prime p, there is at most one L;(a, b) vanishing at p,
and the local discrepancy is (1/m;) log p€, where c is the least integer such that the p-adic valuation of
p€Li(a,b) is a multiple of m;.

Definition 4.23. For integers m, N, define ®@,,(N) to be the unique m-th power free integer such that
N®,,(N) is an mth power. Alternatively,

<I>m(N) — l_[ pm!'ord,, N /m]-ord), N.
P

When m = 2, we have that ®,(N) is the squarefree part of N, denoted sqf(N).
Putting this all together, we find

htr, (a : b) = > (1/m;)log @y, (Li(a, b)) + (2= r+ > 1/m;)logmax(lal, |b]).

When r is small, it is straightforward to see that equation (4.22) is satisfied. For example, consider a
P! rooted only at 0 with a copy of Bus (that is, » = 1 and m; = 3). Then (taking I/ to be the complement
of the stacky locus) Ny ...k (B) is the number of pairs of coprime a, b such that

®;(a)'® max(|al, |b))** < B.

We can write a uniquely as c3d,d?, where dy, dy are coprime and squarefree, and clearly bounded above

by a power of B. Then ®3(a) = d%dz and we find that up to constants we are counting the positive
¢, dy, d>, b such that

&P d) max(c*diPdP b4y = max(c*d2d3, b*PaTP ) < B.

For a given choice of coprime d, d», we see that the number of choices for c is B 14q 1_1/ 2d2_ 3 4, while the

number of choices for b is B3/4dl_l/2d2_1/4, so the number of choices for the pair (c, b) is just Bdl_ldz‘l;
summing this over all coprime pairs di, d> up to some power of B gives an asymptotic for Ny 1, .k (B)
on order B log? B, which agrees with the heuristic prediction (4.22).

John Yin has shown (personal communication) that equation (4.22) holds for a (2, 2)-rooted P!; in
fact, he addresses the more general case where the degree-2 stacky locus is irreducible over Q rather
than being supported at two rational points, as in the cases discussed here.

Things get more difficult as r grows. Consider the case of a (2,2, 2)-rooted P! with the half-points
located at 0, —1, and oo. Then

htr, (a : b) = (1/2) log(sqf(a) sqf (b) sqf (a + b) max(|al, |b))
$0 Ny, 1, .k (B) is the number of pairs of coprime a, b such that
sqf (a) sqf(b) sqf (a + b) max(|al, |b]) < B.

This set contains all pairs of coprime integers in [0, VB], so it has size at least ¢B, as predicted.
In fact, in recent work, Pierre Le Boudec (in personal communication) and Nasserden—Xiao [53] have
independently shown that Ny, 7, x (B) is bounded above and below by constant multiples of B log B
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This seems a very interesting case to explore further; can one obtain an asmyptotic Ny 7, x (B) ~
cB log3 B, and if so, what is the constant?

We also note that some footballs are weighted projective lines; in recently announced work, Darda
[20] proves counting results for weighted projective spaces.

4.7. When edd is negative: A stacky Lang—Vojta conjecture

Conjecture 4.14 is meant to apply to those ‘Fanoish’ stacks X', where edd is positive in some appropriate
sense. In this section, we consider the opposite scenario: where edd(x) is negative. When X is a scheme,
this is the situation where the canonical bundle Kx is ample so that X is of general type; in this case, and
assuming K is a number field, Lang’s conjecture suggests that X (K) should be supported on a proper
closed subvariety of X. (When K is a global field of characteristic p, the situation is more subtle—the
famous examples of Shioda show, for instance, that a variety can be of general type and also unirational!
‘We thus restrict to the number field case for the remainder of the discussion.)

More precisely, conjectures of Vojta say that, for any X, any ample line bundle L, and any real 6 > 0,
the set of rational points on X (K) such that

ht_g, (x) + dhtp(x) <0

should be supported on a proper closed subvariety.

This suggests that one might tentatively propose a ‘Vojta conjecture for stacks’ as follows: Let A’ be
a stack over a number field K, let L be a line bundle on & pulled back from an ample line bundle on the
coarse space of X and let § > 0 a real number.

Conjecture 4.24. The set of rational points of X (K) such that
edd(x) +dhty(x) <0

is supported on a proper closed substack of X.

For example, if X is a (4, 4, 4)-rooted P! with the (1/4)th-points at 0, 1, co, then we have
edd(a : b) = log ®4(a)/*@4(b)*®y(a + b)'* max(|al, |b|)~"/*
and the claim is then that the inequality
®4(a)®4(b)Pa(a +b) < max(|al, |b])'~°

holds for only finitely many pairs of coprime integers a, b.

Another interesting case is that of a (2,2, 2,2,2)-rooted P! with the half-points at 0,1,2,3,4. In
this case, Conjecture 4.24 says there are only finitely many five-term arithmetic progressions ay, . . ., as
such that

sqf(a1azazasas) < max(ay, a5)1_5.

As Nasserden and Xiao explain in [54, Theorem 1.4], the assertion that Conjecture 4.24 holds for
all stacky curves is equivalent to the abc conjecture, with a key ingredient being a result of Granville
[34]; indeed, Granville’s result shows immediately that the two examples above satisfy Conjecture 4.24
conditional on abc. What is the relation between Vojta’s ‘more general abc conjecture’ from [72] applied
to a divisor D on a scheme X, and Conjecture 4.24 for a stack obtained by rooting a scheme X at D?°
One may hope that individual cases of Conjecture 4.24, like those described above, might not be as far
out of reach as abc and its generalizations.

We are grateful to Aaron Levin for useful discussions concerning this connection.
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We note that a conjecture akin to Conjecture 4.24 also appears in the work of Abramovich and Vérilly
[1, Proposition 3.2]; they show their conjecture follows from the Vojta conjecture for schemes and derive
from this a finiteness theorem, conditional on Vojta, for principally polarized abelian varieties with full
m-level structure for large enough m. Their conjecture is expressed in terms of a height on A which, in
the language of this paper, is hts_‘KX. And their conjecture, like Conjecture 4.24, can be expressed as an
assertion that the set of points x € X' (K) with

ht'y, (x) + 6 hty (x) + Z ay(x) <0

is not Zariski dense, for some local nonnegative contributions «, supported at the points where x fails
to extend to an integral point of X. (In fact, their conjecture says more, making an assertion about all
algebraic points of a fixed degree r.) The conjecture of Abramovich and Vdrilly is compatible with
Conjecture 4.24 but is not identical to it. One interesting case where they differ is that of X = A/+1,
with A an abelian variety of dimension g over a number field K. Let x be a point of (A/+1)(K), which
is to say a quadratic extension F/K and a point of A(F) with trace zero in A(K). The stable height
can be computed on the pullback to the étale cover A, where the canonical divisor on X is zero, so the
Abramovich—Virilly conjecture bounds the set of x € X'(K) such that

Shty (x) + Z @, (x) < 0.

But the left-hand side is positive for all but finitely many x by the ampleness of L, so this is easy. On the
other hand, Conjecture 4.24 says more. We have

edd(x) = — htzy +1Disc(x).

Near a stacky point v, the tuning stack looks like [(Spec O, )/+1] and A, as in §2.3, is given by
Of’gv, where the +1-action sends the i-th basis vector e; to —e;; hence, if we let @ denote the quadratic
conjugate of @ € F),, we see awe; maps to —ae;. It follows that if v is not of characteristic 2, then AN L,
is the set of sums Y}; @;e; with a; of trace zero. An easy computation then shows the local discrepancy

atvis (1/2)glogq,. We conclude that
htyy = ht, +(g/2) logdiscrkx = (g/2) logdiscr k-
X

Furthermore (still setting aside the bounded contribution of 2), the conductor | Supp R,/ is just equal to
log discr/k . So Conjecture 4.24 says that the set of x with

(1-g/2)logdiscp/x +6hty(x) <0

is supported on a closed subvariety, for any real 6 > 0. When g > 2 this is vacuous, but when g > 3 it
has content. By changing § we can absorb the constant on the right-hand side and say that the prediction
is as follows: For any abelian variety A/K of dimension at least 3, and any real § > 0, there is a
closed subvariety Zs C A such that, for any trace-zero quadratic point P € A(K)\Z(K), the absolute
logarithmic height of P € A(K) is at least 6! log discr/k.

This formulation may seem a bit cumbersome, but it is necessary. Suppose, for example, that A is
the Jacobian of a hyperelliptic curve X over K, and suppose X has a rational Weierstrass point so it
embeds into A via an Abel-Jacobi map. Then X provides many quadratic points P on A whose heights
are bounded above by clogdisck (p)/x for some real c. So if § < c1, the exceptional set Zs needs
to include X. But if we take 6 < (1/m)c™!, then every quadratic point on A lying on the curve [m]X
satisfies log disck (p),x +0 ht(x) < 0, so we need to include not only X but [2]X, [3]X,..., [m]X in
the exceptional locus Zs. On the other hand, no matter what ¢ is, there should be many quadratic points
in A\Zs because (at least under modest assumption on A) the functional equation of quadratic twists
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of A will vary in sign with the twist, which means there will be many quadratic twists Ag of A which
under Birch—Swinnerton-Dyer have positive rank. The heuristics here would suggest that the nontorsion
points on such an A, have very large height relative to d. Is this reasonable?

4.8. Further questions

There are many questions about the subject matter here which in the interests of length and time we
have not addressed.

o How does one compute edd(x) explicitly when K is the function field of a curve in finite characteristic
and & is not tame?

o Is Conjecture 4.14 geometrically consistent in the sense of Lehmann, Sengupta and Tanimoto [47]?

o How should one estimate the asymptotic growth of points on X which are integral with respect to a
divisor D?

o As mentioned earlier in the paper, one might, rather than defining height in terms of the degree of
7. X"V, simply keep track of the vector bundle 7,.X*V itself. When K = Q this metrized vector bundle
is a lattice of the same rank as V. When X" is a scheme, this point of view has been advanced by
Peyre [58] as a more refined means of studying rational points on varieties. When X = BG and V
is a permutation representation of G, this lattice is related to the shape of the integer lattice in the
G-extension L/Q corresponding to x; the variation of these lattices as one ranges over G-extensions
of bounded discriminant has been an object of much recent interest [12, 39, 13]. What can be said
about intermediate cases, like Sym™ P"?

Appendix A. Metrized vector bundles on stacks over number fields
A.l. Linear Algebra

An Hermitian pairing on a complex vector space V is a bilinear map (,): V — C such that for all
v,w €V, (w,v) =(v,w) (whence (v,v) € Ry¢). We define the associated Hermitian norm [|-|[: V — R
via [|[v]| 1= +/{v,v). We call such a pair V := (V, ||-]|y/) (or equivalently, (V, {, )y )) an Hermitian space.

For r € R5( we define the ball of radius r to be B(V, r) :={v e V¢ |v| <r} (andreferto B(V, 1) as the

unit ball in V). We define the standard Hermitian space to be C" := (C", (, )), where (x, V) =Xy
A morphism ¢ € Hom(V, W) of Hermitian spaces is a linear map ¢: V — W such that [[¢(v)|ly, <
[[v]ly forall v € V. The space Hom(V, W) admits a pairing

(@)= sup (p(v).¥(V)w-

veB(V,1)

The associated norm is ||¢|| = sup,, eB(V.1) [l¢(V)|lw; we let Hom (V, W) be the associated Hermitian
space, whence Hom(\_/, W) = B(Hom(v, W), 1). ‘We define the dual 1_/V of V to be Hom(\_/, @).

Let V be an Hermitian space, and let 0 — V' — V %, Vv = 0 be an exact sequence of complex
vector spaces. Then the restriction of ||-||, to V’ is an Hermitian norm ||-||y,» on V’. The orthogonal
complement (V)" of V" is naturally identified with V", inducing a pairing {, )1,» on V" via restriction
of (,)y and this identification; the induced quotient norm ||-||y;» on V' can thus be computed as

I¥llys = inf et Il o
Let V and W be Hermitian spaces. We define the direct sum Ve W := (Ve W, ||-|ly gw) via the

declaration (v, w)y gw = Oforv € V,w € W; one then computes that ||[v & w||y gw = w/llvll%, + ||w||%v.

We define the tensor product Ve W = (V@ W, Il ew) via the formula (vi ® wi,v2 @ W2)y gw =
(v1,v2)y - (Wi, wa)y; one then computes that |[v @ w|ly ow = |[vIly - [lwllw . We define the alternating
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product A"V via (Vi A~ AV, Wi A -+ Awp) = det((vi, wj>); this is not exactly equal to the quotient
norm of ||-||ye. along the map V& — A"V, but rather is Vn! times the quotient norm.

A.2. Analytic spaces

Let X be a complex analytic space (as in [35]), and let )V be a vector bundle on X. Let Cx denote the
sheaf of continuous functions on X valued in R>o. An Hermitian norm | - | on V is a morphism of sheaves

[-]1: V—>Cx
such that

1. |s|(x) = 0if and only if s(x) =0,

2. forall f € Ox(U), we have |fs| = |f]|s|, and

3. for every complex point x: % — X, the restriction of | - | to x*) is Hermitian (when viewed as a norm
on HO(x,x*V)),

where, in condition (2), | f| is the trivial norm on the line bundle Ox (i.e., f € Ox (U) corresponds to a
continuous function f: U — C, and we define | f|: U — R by | f](x) = | f(x)|). We call such a pair
V :=(V, |- |) a metrized vector bundle on the analytic space X.

We define direct sums, tensor products, alternating products and duals via the formulas from (A.1)
(locally, and if necessary, we sheafify); for example, given metrized vector bundles (Vy,] - |;) and
V2, ] - 12), we define

[-|: VieW, = Cx,

as
2 2 1/2
v @2l () 1= (il (07 + (v (x)?)

Given a morphism g: X — Y of analytic spaces and a metrized vector bundle V=W, | onY, we
define the pull back g*V to be the pair ((g*V), g*| - |), where g*| - | is adjoint to the composition

YV — Cy — g.Cx,

and where the second map is given by composition of functions. If g is unramified and finite (in
particular, g.) is a vector bundle), we define the direct image g.) to be the pair ((g+)), g«| - |), where
g+«| - | is defined via the composition

gV — g.Cx — Cy,

and where g.Cx — Cy is defined by summation on fibers; in other words, for an open subset U C Y and

a function h € Cx(g~'(U)), we define a map U — R via the formula y — ‘,erg—l(y) h(x)2. For

a complex point x: * — X with image y: * — Y, the natural map (g*V), — V), is an isomorphism,
and the norm is ‘the same’ on these fibers. In contrast, the fiber (g.)), of the direct image is naturally

isomorphic to @, ¢g-1(y) Vx, and the norm on this fiber is the direct sum norm defined in (A.1).

A.3. Schemes

By a variety over S, we mean a scheme of finite type over S. To a variety X over Spec C and vector
bundle V on X, associate the complex analytification (X", V") (as in [35]). (We note that one can also
associate an analytic space, functorially, to an algebraic space which is locally separated and locally of
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finite type over C [42, Ch. I, 5.17], and that the setup here extends to that generality without any further
modification.)

Let K be a number field, let X be a Spec Ok variety and let VV on X be a vector bundle on X. For an
embedding o: K — C (i.e., amap o : SpecC — Spec K), we let X, := X Xk o C and let V- denote
the pullback of V to X-. We define a metrized vector bundle on X to be a vector bundle V together with
a choice of Hermitian norm | - | on V3! for every embedding o: K — C, with the following property:
for every Zariski open U C X and section s € V(U), we have |c*s|,(p) = [0 s|z(P).

We define direct sums, tensor products, alternating products, and duals via the formulas from (A.2).
Given a morphism g: X — Y of Spec Ok varieties and an embedding o: K — C, the diagram

8o
Xo —Yo

b

commutes. Given a metrized vector bundle V = (V,| - |) on Y, it follows that (g*V) is canonically
isomorphic to g5 (V. ), and we define the pull back ¢*V to have underlying vector bundle g*) and
metrics g5, | - | defined via (A.2). Similarly, if g is finite, flat, and generically étale (and in particular
locally free so that g, ) is a vector bundle), we define the direct image g.V to have underlying bundle
g+V and metrics g4 .| - | defined via (A.2).

There is an alternative type of direct image, which highlights the choice of base in our definition. Let
K c L be an inclusion of number fields. Let X — Spec O, be an Oy, variety, and let V be a metrized
vector bundle on X. We define the restriction of scalars of (X, 1_2) to be the pair (Resz x X,Resz/x 9),
where Res; g X is the usual restriction of scalars (i.e., X itself, viewed as an Ok variety via the
composition X — Spec Oy — Spec Ok ) and where Resy /x Y has the same underlying vector bundle
V and is endowed with a metric in the following way. Given an embedding o: K < C, the space
(Resp/x X )a is isomorphic to [] |, X, where the coproduct is taken over the set of c’: L <— C
extending o; similarly, (Res L/K V) - is the vector bundle whose restriction to X, is V.- (note that, by
the sheaf axioms, I'(X», Vo) = B I'(Xs, Vo)), and the norm

o'|lo
an
| : |0': (ReSL/K V)o’ - C(ResL/K X)i‘:

is the one whose restriction to X, C (Resz/x X) s |- |o.

Similarly, if K < L is an extension of number fields, X is an Oy, variety, and V is a metrized
vector bundle on X considered as an Ok variety (equivalently, a metrized bundle on Res; x X), we
define base extension V; as follows. The underlying bundle is V; for a place o’ of L with restriction
o =0'|g,the map ¢: X, — Res X of C varieties is an isomorphism, and we define | - | to be the
same as | - | (under the identification ¢).

The degree of a metrized line bundle (V, | - |) on Spec Ok (considered as an Ok -variety) is defined
to be

deg(V, |- 1) =loglT(V)/Ok -s| = > log|o™sle, (A1)
o: K—-C

where s € T'(V) is any nonzero section. Implicit here is that this definition is independent of the
choice of s. When (V,| - |) is a metrized vector bundle of rank r > 1, the degree of (V,]| - |) is by
definition the degree of the metrized vector bundle A”(V,| - |). If K — L is an extension of number
fields and (V, | - |) is a metrized line bundle on Spec Of considered as an Ok -variety, then we define
deg(V,| - ]) :=deg(VL,| - |), where Vy is the base extension of V to K.
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If K c L is adegree n extension of number fields, then the following direct computation shows that
deg(Vp,|-|) = n-deg(V. |- ). (A2)

Indeed, pullbacks commute with top wedge power, so it suffices to check the equality when V is a line
bundle, in which case

Z log |(0)* s = Z Zlog|o-*s|(r = Z n-log|o*s|e

o’: L-C o: K-C\o'|o o: K-C
and, since Oy is a flat Ok -module,

[(T(V) ®ox OL)/Or - s| =T’ (V)/Ok -5) @0, Orl=n-|I'(V)/Ok - 5.

A4. Stacks

This generalizes to stacks in the following fairly formal way. .

Let X be an algebraic stack, finite type over Spec Ok . We define a metrized vector bundle V on X' to
be a vector bundle V on X together with, for every map f: X — X from a variety X, a choice of metric
on f*V (in the sense of A.3) which we denote by f*| - |, and which is compatible with compositions in
the following sense: For a map g: X’ — X from an Ok -variety X’, there is a canonical isomorphism
g (f*V) > (f o g)*V, and we require that this isomorphism identifies g*(f*| - |) with (f o g)*| - |.

We again define direct sums, tensor products, alternating products and duals via the formulas from
(A.1). Given a morphism g: X — ) and a metrized vector bundle V on )/, we define the pullback g*V
to have underlying bundle g*V and, for a map f: X — X from an Ok -variety X, define f* (g*?) =
(g © f)*V. For direct images, we restrict to the following special cases. Let V = (V, ] - |) be a metrized
vector bundle on X. If g is finite, flat and generically €étale (and in particular representable), we define
the direct image g. ) to be the metrized vector bundle on ) which, foramap f: ¥ — ) from a variety
Y with corresponding fiber product

£

—_—

X
g’J/
v f

P,

=

8

-~

<

pulls back to f* (g*v) =g f V. If instead g is proper, quasi-finite and birational, and ) is isomorphic

to Spec Ok, then g is an isomorphism on a nonempty open subset U < X’; we define g*v to have
underlying bundle g.}V (which is a vector bundle by Proposition B.4) and the metric defined by g*| - |.

A.5. A detailed example

Let K be a number field, and let X = Spec Ok, considered as an Ok variety. We consider the trivial
metrized vector bundle (Oy, | - |) (where the trivial norms are defined in Subsection A.2). Explicitly,
for an embedding o : K — C, the scheme X, is simply Spec C, and the norm

|- lo: O;l(ng-_’CXfﬁ‘
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is the complex absolute value C — R¢. Given a section s € Ok, |0"s|s is equal to the complex
absolute value |0 (s)|. Taking s = 1, we compute that the degree

deg(V.|-]) = loglO /O - 1|~ > loglo"lly =0~ > 0

o: K—-C o: K—C

is 0, as one would expect of a trivial bundle.

Next, let K be a number field, and again let X = Spec Ok, but now considered as a variety over
Z. We consider the ‘trivial’ metrized vector bundle (Oy, | - |) (where the trivial norms are defined in
Subsection A.2). This is the same as the pullback of the trivial bundle on Spec Z along the map (of Z
varieties) Spec Og — Spec Z. Explicitly, there is only one embedding o-: Q < C, and the scheme X,
is isomorphic to the disjoint union [] |, X, where the coproduct is taken over the set of embeddings
o’: K — Cof K and where X, = X Xk o C (i.e., considered as an Ok scheme); X is thus a disjoint
union of [K : Q] copies of Spec C. The norm

| lo: Oé)l(n,g— — Cxan

is locally (on X ) again given by the complex absolute value. Label the embeddings o7, . . ., 0, and let
s € Ok. Then o*s is equal to the tuple (o (s), ..., 0, (s)). Given our choice of base, it does not make
sense to compute the degree. Note that this description is also the same as the restriction of scalars (as
in Subsection A.3) of the trivial metrized bundle on Spec Ok (as an Ok variety) from the previous
paragraph.

Now, let X = Spec Ok and Y = SpecZ, and let 7: X — Y be the structure map. Consider the direct
image 7.Ox = (71.Ox, 7.|-|), where we consider X as a variety over Z and where |- | is the trivial metric.
Then 7.Ox = Ok and 7.| - | has the following description. Again, since our base is Spec Z, there is
only one embedding o : Q < C; the scheme Y, is isomorphic to a single copy of Spec C, and the norm

(7] - |)o': (”*OX,O')an - CYf}“

is now a map of sheaves on a topological space which is a single point, and thus determined by the map
of global sections

Ok ®7 C = HC—)]Rz(),

o'|lo

where the product is taken over the set of embeddings o’ : K < C of K, which we label as o, . .., 0y,.
The map [] /|, C — Ry is given by

@1eeszn) oy ) L2l
and the isomorphism Ok ®z C = [, C is given by
a®l (o(a),...,on(a)).

We now compute the degree of 7.0x. Let V := \"m,0Ox be the top wedge power of 7.Ox, and
choose a Z basis a1, ..., a, of Og. Then A" Ok is a free Z module of rank 1 generated by the section
s =aj| A--- A a,. We then compute that the degree is

logIlT(V)/Z - s| —log |o"s|e = 0 —log|o"s|s-
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Next, we compute log |c*s|.-. The norm A" .| - | is given by the composition

(/YE\OK)Q@ZCE/\(OK@ZC)E/YI\ HCEC_)RZW

o'|lo
following s through these maps

(ar A ANay) @l (@ ®D)A---A(a; ® 1)
H(Jl(al)9 s ,O'n(all)) ASRRA (0'1((1’"), e ’O—n(a'n))
=det(oj(a;)) - (1A---A1)
ldet(o; ()] = [Ax '

we conclude that |0-*s|, = |Ag |'/? and that the degree of 7, Ok is —log |Ax|"/2.
— —\V
Finally: Let C = SpecZ, and let BG = [C/G], with quotient map p: C — BG. LetV = (p*(’)c) ,

where O is the trivial metrized line bundle on C. (We dualize to facilitate the following quick global
computation.) Let x: SpecQ — BG be a rational point corresponding to an extension Q C K, and
assume for this example that K is a number field (rather than just an étale algebra). We will now show
that hty;(x) = log |Ax|'2. Let C = [Spec Ok /G]. Then C is a tuning stack for x, summarized by the
following diagram.

Spec K — Spec Ok —f.c

|k

SpecQ C a BG
SpecZ .

—\V R _ _
By definition, ()_c* V) = pl.g*Oc¢. Moreover, the tuning sheaf 7. p, g*O¢ is isomorphic to (p’on).g*Oc,
and g*O_c is the trivial metrized line bundle on Spec Ok (as aZ variety). The height is then, by definition,

hty7(x) = —deg((p’ o ﬂ')*g*O_c);

we conclude that hty-(x) = log Ak |2,

Appendix B. One-dimensional Artin stacks with finite diagonal

In this appendix, we discuss a few technical aspects of the types of stacks that appear as the tuning stack
of a rational point (Definition 2.1).

Fix a base scheme S. An Artin stack C (finite type over S) with finite diagonal admits a coarse
space map . C — C [41, Corollary 1.3 (1)], which is (by definition) universal for maps to algebraic
spaces and is a bijection on geometric points, and is moreover Stein (i.e., 7.O¢ = O¢) and a universal
homeomorphism [61, Theorem 6.12]. If S = Spec k for some field &, then we say that C is geometric; if
S — SpecZ is finite and flat, then we say that C is arithmetic.

Definition B.1. A stacky curve is a normal, one-dimensional Artin stack C with finite diagonal such
that the coarse space map n: C — C is birational and such that C/S is a proper curve if C is geometric
and finite over S if C is arithmetic.



Forum of Mathematics, Sigma 51

Normality of C follows from normality of C, so C/k is a smooth proper curve in the geometric case
and C = [] Spec Ok, for some number fields K; in the arithmetic case. This is somewhat more general
than the notion of stacky curve from [71, Chapter 5].

Our beginning lemma was pointed out to us by Sid Mathur.

Lemma B.2. Let C be a stacky curve. Then C is regular.

Proof. Since C is an Artin stack, it has a smooth cover p: U — C. Let y € C(Q) be a geometric point.
Then n(y) is a geometric point of C. Since C has dimension at most 1, the point 7(y) has codimension at
most 1 in C. Therefore, there exists a point z € U(Q) with 7 o p(z) = m(y) such that z has codimension
at most 1 in U. Since 7 is a coarse space map, p(z) = y.

Since C is normal, U is as well and so z is a regular point of U. Therefore, there is an open
neighborhood V C U of z such that V is regular. Since the image of p|y : V — C contains p(z) ~ y, we
have found a smooth cover of a neighborhood of y € C(Q) by a regular scheme. O

Proposition B.3. There exists a finite flat surjection p: C' — C with C’ regular and with irreducible
connected components. The composition o p: C' — C is finite and flat.

Proof. We may assume that C is connected. Since C has finite diagonal, we know from [25, Theorem
2.7] that there is a finite surjective map p: C’ — C, where C’ is a scheme. We can assume C’ is normal
by replacing it with its normalization. Since & is proper and quasi-finite, ¢ := 7 o p is proper and
quasi-finite, hence finite. Since C is of dimension 1, so is C’. As C’ is normal, it is regular. Since g is
surjective, we can replace C’ by one of its irreducible components which surjects onto C; note that this
maintains surjectivity of p, as 7 is a bijection on geometric points. Since C and C’ are regular, ¢ is flat
by [26, Corollary 18.17]. Similarly, since C is regular, letting U — C be any smooth cover by a scheme,
we see the pullback py : C’ X¢ U — U is a finite map between regular schemes. Again, [26, Corollary
18.17] tells us that py; is flat and hence p is flat. )

Corollary B.4. Let £ be a vector bundle on C. Then n.€ is a vector bundle.

Proof. We can assume that C is connected. We claim that the canonical map O — p.Oc is injective.
It suffices to check this after passing to a smooth cover Spec A — C. We see C’ X¢ Spec A — Spec A
is finite, so the fiber product is of the form Spec B. The induced map Spec B — Spec A is surjective,
hence dominant, and Spec A is regular, hence reduced, so A — B is injective, proving our claim.

To finish the proof, tensor the injective map O¢c — p.O¢: by with £. This yields an injection
E - £ p.Oc = p.p*E (where the isomorphism is the projection formula) and hence an injection
m.€ — q.p*E. Since p*& is a vector bundle and ¢ is finite flat, we see ¢g.p*& is a vector bundle, so 7,.£
is torsion-free and coherent. As C is regular of dimension 1, this implies 7.£ is a vector bundle. ml

We now address generalities about of the degree of a line bundle on an Artin stack. In the geometric
case, if C is Deligne-Mumford, then Vistoli [70] developed a more general theory of intersection theory
(see also [71, Chapter 5] for just the case of line bundles). In general, degrees of O-cycles on stacks are
not defined (see [24]), and in the Arakelov setting (as in A.1) some additional attention is needed even
in the Deligne—Mumford case. However, we have shown in Proposition B.3 that every connected stacky
curve C admits a finite flat surjection C’ — C with C’ regular and irreducible, and by [25, Remark 2.8]
this is all that one needs to develop intersection theory in our setting.

Definition B.5. Let £ be a line bundle (resp. torsion sheaf) on C, and let p: C’ — C be a finite and
flat surjection from a regular scheme C’. We define the degree (resp. length) of £ to be deg L =

d_eg](p) deg p* L (resp. length £ = deglw length p*L).

Again, we emphasize the fact that in the arithmetic setting £ is an Hermitian line bundle and we mean
the Arakelov degree. For a torsion sheaf, the Archimedean contributions are O so there is no distinction.

Lemma B.6. The degree (resp. length) of L is independent of the choice of p.
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Proof. Let p;: C; — C be two such covers, and let C3 be the normalization of some irreducible
component of C; X¢ C; such that the maps ¢;: C3 — C; are both surjective (and thus finite and flat).
We then have

degpiL B degqipiL _ deggipi L B deg p5 L B.7)
degpi  (degqi)(degpi) (degga)(degpy)  degpr '
The proof for length is identical. O

Definition B.8. Let f: C’ — C be a quasi-finite map of stacky curves. We define the degree of f to be
the degree of the induced map C’ — C of coarse spaces.

Lemma B.9. Ler f: C' — C be a quasi-finite map of stacky curves, and let L be a line bundle (resp.
torsion sheaf) on C. Then deg f*L = deg f - deg L (resp. length f*L = deg f - length £).

Proof. 1f C’ is a scheme, then this follows from the definitions of degree. Let p: C’ — C’ be a finite
flat cover by a regular scheme C’. By [66, Tag OCPT], f is proper; the composition f o p is thus proper,
quasi-finite and flat, and in particular finite. We then have

degpf*L _ eg f degp*f*L
degp 2 (degp)(deg f)

The proof for length is identical. O

deg f*L = =deg f-degL.

Proposition B.10. Ler 0 —» V' — V — M — 0 be an exact sequence, where V' — V is a map of
vector bundles (metrized, in the Arakelov case) and M is a finitely generated torsion sheaf on C. Then

degV =degV’ +length M.

Proof. In the geometric case, this is well known. In the Arakelov case, by Lemma B.9 we may assume
that C = Spec Ok for some number field K. Since M is a torsion sheaf and thus has no Archimedean
metric, the proof follows from the definition of degree (Equation A.1). O
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