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ABSTRACT The noise and complexity inherent to quantum communication networks leads to technical
challenges in designing quantum network protocols using classical methods. We address this issue with a
hybrid variational quantum optimization (VQO) framework that simulates quantum networks on quantum
hardware and optimizes the simulation using differential programming. We maximize nonlocality in noisy
quantum networks to showcase our VQO framework. Using a classical simulator, we investigate the noise ro-
bustness of quantum nonlocality. Our VQO methods reproduce known results and uncover novel phenomena.
We find that maximally entangled states maximize nonlocality in the presence of unital qubit channels, while
nonmaximally entangled states can maximize nonlocality in the presence of nonunital qubit channels. Thus,
we show VQO to be a practical design tool for quantum networks even when run on a classical simulator.
Finally, using IBM quantum computers, we demonstrate that our VQO framework can maximize nonlocality
on noisy quantum hardware. In the long term, our VQO techniques show promise of scaling beyond classical
approaches and can be deployed on quantum network hardware to optimize network protocols against their
inherent noise.

INDEX TERMS Design and simulation tools, noisy intermediate-scale quantum (NISQ) algorithms and

devices, quantum networking.

I. INTRODUCTION
Quantum information science and technology are
progressing rapidly toward the quantum internet [1], [2], [3],
[4], a global communication network of quantum processing
devices linked by quantum communication. Quantum
communication networks are predicted to revolutionize
science and technology by providing advantages in
distributed sensing [5], [6], [7], communications [8],
[9], [10], network security [11], [12], [13], [14], [15], and
distributed information processing [16], [17]. Unfortunately,
the presence of noise in existing quantum hardware prevents
the implementation of these technologies at the network
scale. Nevertheless, we are at the forefront of the quantum
internet because rudimentary quantum networks can be built
using existing technology, and as new technologies emerge,
these networks can be upgraded and scaled [3].

As quantum networks scale, technical challenges will
emerge in their characterization, simulation, and optimiza-
tion. A network protocol must be designed to be robust
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against the noise present in quantum network devices. Un-
fortunately, the difficulty of characterizing quantum noise
grows exponentially with the number of qubits [18], [19],
[20]. Furthermore, simulating and optimizing large quantum
systems is challenging. While tensor networks [21] are a
promising classical tool for these tasks, they may fail to
efficiently simulate or optimize networks that have complex
entanglement structures or devices that have many qubits.
Designing quantum networks will require characterization,
simulation, and optimization of large quantum systems, but
how can we develop the quantum internet if classical design
tools do not scale?

Quantum problems often have quantum solutions. A so-
lution with promising advantages in the quantum network
design is variational quantum optimization (VQO) [22], [23],
[24]. This hybrid algorithm combines the power of quan-
tum simulation with classical differential programming. Hy-
brid, quantum-classical algorithms have demonstrated suc-
cess across a wide range of simulation and optimization
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FIGURE 1. Example quantum network in the n-local setting. A quantum
network can be represented by a directed acyclic graph. Sources (green
ovals) correlate the nodes (blue rectangles). The double-line arrows
depict the classical inputs x; and outputs a;. The solid arrows depict
quantum communication between sources and nodes.

problems [24], [25], [26], and are predicted to yield practi-
cal advantages on noisy intermediate-scale quantum (NISQ)
devices [27]. Furthermore, hybrid optimization techniques
have been shown to be adaptive to hardware noise when
used to maximize nonlocality in simple photonic quantum
networks [28], [29].

To demonstrate the utility of VQO in a quantum network
design, we apply it to maximizing nonlocal correlations in
the n-local setting where quantum network devices are linked
only by entanglement (see Fig. 1). These quantum networks
are an essential step toward the quantum internet [1], [2], [3],
[4] because they enable entanglement distribution [30], [31],
[32] and long-distance quantum communication over re-
peater chains [33], [34]. The entanglement in the n-local set-
ting can be used to create stronger-than-classical correlations
between network devices [35], [36], [37], [38], [38], [39].
[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50].
These non-n-local correlations are important for certifying
quantum devices [51], [52], [53], [54], [55], securely running
protocols on uncharacterized devices [13], [15], [56], [57],
[58], [59], [60], [61], and distributed information process-
ing [16].

Unfortunately, non-n-locality deteriorates in the presence
of noise [62], [63], [64], making it difficult to preserve in
physical systems. To build quantum networks that are robust
to noise, it is crucial to understand how noise affects non-
n-local correlations. Classical machine learning has shown
success in solving complex optimization problems that arise
in the study of nonlocality [65], [66], [67]. While VQO tech-
niques share many similarities with classical machine learn-
ing, our approach is distinct from the numerical approaches
considered in previous works. To demonstrate the utility of
VQO, we apply it to the practical network design problem of
maximizing nonlocality in noisy quantum networks.

The rest of this article is organized as follows. In Sec-
tion II, we give an overview of quantum networks in the
n-local setting. In Section III, we describe our VQO frame-
work for noisy quantum networks. In Section IV, we discuss
quantum non-n-locality, its noise robustness, and how it can
be maximized using VQO. In Section V, we apply VQO
on a classical simulator to verify that it can successfully
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maximize non-n-locality in the presence of noise and report
upon interesting theoretical findings. In Section VI, we use
VQO to maximize non-n-locality on noisy IBM quantum
hardware. In summary, we use our VQO framework to re-
produce known nonlocality results, obtain new nonlocality
results, and show its potential promise of practical advantage
on quantum hardware.

We make our techniques accessible, transparent, and re-
producible through open-source software. Our framework
for VQO of quantum networks is built upon PennyLane [68]
and released as a Python package called qNetVO [69]. Our
data and numerics are available on GitHub in a supplemen-
tary codebase [70].

Il. NETWORKS IN THE N-LOCAL SETTING

In this section, we outline the theoretical model of quantum
and classical networks in the n-local setting. The experienced
reader may proceed to Section III, where our VQO frame-
work is discussed in detail.

A. CLASSICAL NETWORKS

A classical network in the n-local setting consists of n inde-
pendent sources Ay, ..., A, that distribute randomness to m
nonsignaling devices Ay, ..., A,, (see Fig. 1). The ith source
outputs classical value p; drawn randomly from the distribu-
tion QA with probability P(p;) and sends p; to all linked de-
vices. All sources in the network are assumed to be indepen-
dent such that P(Z) = [, P(ui), where i = (pi)i_, con-
tains the random value output from each independent source.
The sources {A;}_, each distribute their random value to the
nodes {A j}?=] through a collection of links {L }izl . The node
A j may receive multiple random values; thus, we denote with
i C i the set of random values received by node A ;.

The jth node has classical input and output alphabets
Xj:={1,...,|X]|} and A; :={1,...,|Aj|}, respectively,
where the input and output alphabets for the entire network
aredenoted X := X x --- x Apand A := A; x --- x Ay,
respectively. Hence, the network processes the classical in-
put ¥ € A to produce the classical output @ € A, where X =
(xj € X)L, and @ = (aj € A;)]_,. Since, the nodes are
nonsignaling, their joint probability distribution must satisfy

P (@ @) =[] P (ajlxj %) M
=1

forall¥e X,d e A and I € {QMN)2 .

We characterize networks using only their input—output
statistics. Hence, we consider a scenario where many iden-
tical and independent experiments are performed. In each
experiment, a classical input ¥ € A’ is drawn from a uniform
random distribution. The network processes the input X to
produce the output @ € A. After many repetitions, an approx-
imate conditional probability distribution {P(@]X)}zc 4 zcx is
constructed. These conditional probabilities fully character-
ize the network and are represented as a column stochastic
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matrix referred to as the network behavior

P=>%"%"P@mla)x @)
acAxeX
where {|X)}zcx and {|@)}zeq form classical orthonormal
bases over the input and output sets, respectively. The tran-
sition probabilities P(a]X) decompose as [43]

P@x= Y - Y, ]'[Pm,)]'[PanxJ,

,u.leﬂ“l pneQhn i=1

3

B. QUANTUM NETWORKS

In the quantum setting, each source prepares a quantum state
and sends it to the linked nodes. Each node receives and mea-
sures the quantum state sent from each of its linked sources.
The node outputs a classical value indicating the result of the
measurement.

This work models a quantum network in the n-local setting
as an N-qubit system where each qubit is indexed by an
integer g; € [N]. An M-qubit subsystem with M < N is ref-
erenced using the sequence (q,')‘}i | C [N]. Sources A;, nodes
Aj, and links L; are uniquely described by their local qubits,
Ai, Aj, L C [N]. Qubits cannot be shared between multiple
sources, links, or nodes; hence, A;NAy =@V i# i and
similarly for A; and L.

In the quantum setting, the n sources collectively prepare
the state |yNet) = ®‘_, [yAi), where [yN) € Hpe . We

define ’HN"" =QL, Hprep as the joint Hilbert space where
source 1ndependence is ensured by the separability across
states. For mixed states, we denote the density operator as
pli e D(Hﬁép).

Quantum channels model the noisy link between source
and measurement devices in the network. A quantum channel
is represented by the completely-positive trace-preserving
(CPTP) map [71] N : D(Hyk, ) — D(Hyl,,). Where the
L denotes the qubits on which the channel acts. For conve-
nience, the input and output Hilbert spaces have equal dimen-
sions. Independent quantum channels combine to describe
the network noise as VNt = ®)_ A%, where, in the noise-
less case, NNet(pNet) — jd(pNet) = N"" . Note that noise can
also be applied to the source or measurement devices.

The measurement occurs at node A; and is modeled as a
projection-valued measure (PVM) {njﬁx; la ieA; that forms

. e Aj

a set of orthogonal projectors satisfying ZGJE A I'[a;_’lxj =
I4i. The measurement device A j receives and measures the
qubits pli e D(?—E‘:,I;,‘as) In aggregate, the network applies the
projector l'lf;lrit =" =1 l'la I where the PVM applied at
each node is conditioned upon the classical input x; € A}.
Upon measurement, the classical output @ is obtained with
probability

P(@)%) = Tr | IYSANet (oo | )
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where any permutations needed to map HE;‘F, to HYS  are
included implicitly.

11l. VQO OF NOISY QUANTUM NETWORKS

This section introduces our VQO framework for quantum
networks. Ata high level, our framework simulates the quan-
tum network using a tunable quantum circuit. The quantum
circuit parameters are optimized using differential program-
ming techniques. Our VQO framework is implemented as a
Python package called gNetVO: the Quantum Network Vari-
ational Optimizer [69]. The gNetVO software is built upon
PennyLane, which is a free and open-source quantum differ-
ential programming framework [68]. PennyLane enables our
VQO framework to be easily run on a wide range of quantum
devices and classical simulators.

A. SIMULATING NOISY QUANTUM NETWORKS

A quantum network can be simulated on a quantum com-
puter. In the simulation, quantum circuits model the state
preparations, the communication, and the measurements of
network devices. A quantum network simulation is con-
structed modularly by combining the quantum circuit models
for each source, receiver, and noisy link. The quantum net-
work circuit is then run on a quantum computer to produce
statistics that are, ideally, indistinguishable from the simu-
lated network.

Formally, the quantum network circuit is represented by
the unitary operator UN"'t where the subscript X € X is the
classical input on whlch the network’s dynamics are condi-
tioned. The unitary Ug"'t acts upon the N-qubit zero state
|0y and is measured in the computational basis {|Z)}zcz,
where Z := {0, 1}V is the set of all N-bit strings. When a
fault-tolerant quantum computer executes the ansatz circuit,
the bit string 7 is output with probability

P@D = |@u 0| )

Using (2) and (5), we express the parameterized quantum
circuit behavior Pgc as the column stochastic matrix

Pc=Y Yldvo p@.  ®

feZ ieX

If the simulated quantum network does not output an N-bit
string, then a classical postprocessing map L: Z — A is
needed to map the | Z| outputs of the quantum circuit to the
|A| outputs of the quantum network. That is, the quantum
network behavior Png; is constructed as

Pnet =L Pgc (7

where Pqc is defined in (6), and the postprocessing map is
represented as a column stochastic matrix

L=) Y P@plaQ. ®)

acAzeZ
On a quantum computer, the network behavior Py is ob-
tained by repeatedly executing the ansatz circuit Uge‘ across
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all inputs ¥ € X to estimate the probabilities P(z]X) for all
inputs. Then, the postprocessing map L is applied to the
quantum circuit probabilities.

The network simulation circuit can be parameterized by
a set of real-valued settings Oy as UNet UNeY(©5). Each
scalar value € € ®y is continuous, dlfferentiable, and con-
trols dynamics of the network simulation circuit Ug"'t. For
each input ¥ € X, the collection of settings ®; may be
unique; hence, we can parameterize the network behavior
® = {Oz);cy, and it follows from (5) that

Poc(®) =Y 3 | U@ 0

7eZxeX

IZ') @

While this work focuses on networks in the n-local setting,
we remark that the simulation framework can apply more
generally. Hence, our approach and the tools provided by the
qNetVO software [69] can be applied beyond the scope of
this work.

1) SIMULATING NOISELESS N-LOCAL

QUANTUM NETWORKS

A noiseless quantum network ansatz decomposes into prepa-
ration and measurement layers

UN(O5) = UN=(G)U(¢) (10)
where each layer is modularized as
UPP(@) = QL UMi(4) 1
UM (0;) = @y Ui (6;) (12)
and the circuit parameters are organized as Gz = {(5 ﬁ},
where
— N — — m
¢= ( ");=1 = (9"1');=1 (13

parameterize the state preparations and measurements,
respectively. The network state preparation and measure-
ments are expressed as

‘wNel) — Uprep(‘;) |0}N (14)
Lt .
me = (VM=@) [ vM=@. a5
Combining (14) and (15) with (5) yields
l—[Net

P@Y) = (v |nje |y ™). (16)

In Table 2 of Appendix B, we provide a list of preparation
and measurement ansatzes used throughout this work.

2) SIMULATING NOISY QUANTUM NETWORKS

In a quantum circuit, the nonunitary dynamics of a noisy
channel AV are simulated using unitary evolution. By Stine-
spring’s theorem [72], any quantum channel can be expressed
in the system-environment representation [71], [72]

N(p)=Tez [Un(p®10...0)(0...0E W} a7)
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10)

FIGURE 2. Noisy network ansatz circuit. (Top) Quantum network with
two sources (green), communication noise (orange), and PVYM
measurements (blue). (Bottom) Three-layer quantum circuit ansatz that
simulates the network. In the source layer, the quantum state |y*i) is
prepared. In the noise layer, a static noise model A/% is applied. In the

A
measurement layer, the projector I'I,fu,j is a measurement in the

computational basis. The ansatz circuit is combined into a single unitary
UNet(@y) and the outcome probabilities are calculated using (5). When a
measurement includes multiple qubits, an Xor operation is used to map
the raw output to a single bit, e.g., b=z @ zs.

Pin Pout Pin - Pout
[0) —— Ry (8) — A 10) —— Ry (6) A

(a) (b)

FIGURE 3. Qubit dephasing and amplitude damping circuits [71]. (a)
Qubit dephasing channel P, is implemented using one ancillary qubit
and a controlled rotation about the y-axis. (b) Qubit amplitude damping
channel A, is implemented using one ancillary qubit and a controlled
rotation about the y-axis followed by a cnort gate. In both circuits, the

rotation parameter ¢ relates to the noise parameter y as 8 = 2sin™"' (/7).
(a) Dephasing. (b) Amplitude damping.

where E C [N’] is an ancillary set of qubits that represent
the environment, Trg[-] denotes the partial trace over the
environment, and Uy is a unitary applied to both system and
environment. Hence, noise can be implemented in a quantum
circuit as a unitary gate Ups applied across the system S and
an ancillary environment E (see Fig. 3). The Hilbert space
dimension of the environment is bounded as dp < d%, where
dyg is the dimension of the system. Thus, a simulation of a
noisy N-qubit network can require up to 2N ancillary qubits.

In some cases, it may be difficult to implement the unitary
Uy, as a quantum circuit. An alternative approach to model
the noise using the operator-sum representation of a quantum
channel is [71], [73]

N(p) = ZK,-pKf, where ZK;K; =1 (18)
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where the CPTP map N is expressed in terms of its Kraus
operators {K;};. The noise is simulated without using an-
cillary qubits by directly applying the Kraus operators to
the network state as N Nt(pNe) = 3, K ,ch""K,:f . The draw-
back is that quantum hardware typically does not support
nonunitary gates such as Kraus operators. In practice, sim-
ulating noise using the operator-sum representation requires
the use of a classical simulator such as Pennylane’s “de-
fault.mixed” mixed state simulator [68].

Certain detector errors can be modeled using a classical
postprocessing map E : A — A’ that acts upon the network
behavior as Py, = ENe'Py;. Here, E = Y aaP@la)aya
is a column stochastic matrix whose elements P(a’|@) de-
scribe the probability that the ideal network output & tran-
sitions to the output @. This noise model describes un-
flagged detector errors that occur without the experimenter’s
knowledge.

It is important to distinguish the noise models in our quan-
tum network simulation from the noise present in quantum
hardware. In the simulation, our objective is to precisely
reproduce the noise present in a quantum network. However,
evaluating a simulation circuit on noisy quantum hardware
adds more noise into the simulation. Thus, to achieve precise
noise modeling, we must rely upon classical simulators or
fault-tolerant quantum computers. If run on noisy quantum
hardware, careful consideration must be made regarding how
the hardware’s noise affects the simulation.

B. OPTIMIZING QUANTUM NETWORKS

The goal of our VQO framework is to find the optimal set-
tings ©* that yield a network behavior Pne (©*) that is op-
timal for a particular task, e.g., violating a Bell inequality.
We define a problem-specific cost function Cost(Pe(®))
that quantifies the network’s performance at this task. The
optimization objective is then expressed as a minimization
of the cost function

O* = arg ngn Cost(Pnet(@)). (19)

The cost function can quantify a wide range of network prop-
erties such as entropic quantities, the distance to a desired
network behavior, or the winning probability of a multipartite
game.

We solve the optimization problem in (19) using gradient
descent [74], [75] to find local optima of the cost function
by traversing the path of steepest descent. Formally, gradient
descent is an iterative procedure where, in each step, the
settings ® are updated as

@ = ©® — nVeCost(Pnu(®)) (20)

where n € R is the step size and VgCost(®) is the gra-
dient of the cost function evaluated at ©. The gradient
VeCost(Pne: (®)) is evaluated numerically using automatic
differentiation [76], [77].

In the gNetVO software, we use PennyLane to automati-
cally differentiate quantum network circuit ansatzes. When
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2) Variational Quantum Optimization Loop
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of parameter-shift settings {89} = Bps.
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2.b) Quantum: Simulate network for all
inputs ¥ € X and settings ©9 € Bpg.
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FIGURE 4. VQO. In this hybrid algorithm, the optimal settings ©* that
minimize the Cost(Pnet(©)) are computed. Steps 2.a) and 2.c) are
performed on a classical computer, while step 2.b) is performed on a
quantum computer.
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simulated on classical hardware, our software evaluates the
gradient of a quantum circuit using the chain rule in an
algorithm known as back propagation [77]. On quantum
hardware, our software computes the gradient of a quan-
tum circuit using the parameter-shift rule [78]. In practice,
the parameter-shift rule first runs the network simulation
over a collection of “shifted” settings {©%}; = Ops and then,
the classical optimizer uses the resulting circuit behaviors
{PQc(©%)}gecy, to construct the gradient.

C. VQO ALGORITHM

This section outlines our framework’s hybrid VQO pro-
cedure. The described algorithm is implemented by the
gNetVO software and can be run using remote quantum
hardware or a classical simulator [69]. As input, the VQO
algorithm requires a parameterized network ansatz U Net(@;)
and cost function Cost(Pne(®)). As hyperparameters, the
algorithm accepts the step size n and the number of gradient
descent iterations num_steps. The VQO algorithm then
proceeds as follows (see Fig. 4).

1) The network settings ®;y;; are randomly initialized.
2) The hybrid VQO loop repeats num_steps times. The
following actions are performed in each step.
a) The classical optimizer constructs the collection
of parameter-shift settings {©f}, = Ops.
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b) The quantum computer evaluates Pgoc(©#) for
all settings in ©% € Ops.

c) The classical optimizer evaluates the gradient
Ve Cost(Pne:(®)) using the parameter-shift rule
and updates the network settings using gradient
descent.

3) The VQO algorithm exits after num_ steps iterations
and outputs the optimal settings @'.

Our VQO algorithm is not guaranteed to find ©*, the
global minimum of the cost function. The algorithm instead
outputs settings ©’ that upper bounds the global minimum
as Cost(®") > Cost(©*). The bound can be improved by
repeating the optimization many times with randomly initial-
ized settings. Additionally, hyperparameters such as the step
size i can often be adjusted to improve the tightness of the
bound Cost(®) > Cost(@*).

IV. QUANTUM NON-N-LOCALITY

A. QUANTIFYING NON-N-LOCALITY

In the n-local scenario, entanglement between quantum net-
work devices can be used to create nonclassical correlations
referred to as non-n-local correlations. To formalize this con-
cept, we first introduce some notation. Let £N® and QN
denote, respectively, the sets of classical and quantum net-
work behaviors while Pye; denotes a network behavior as
defined in (2). If Pnet € LNet then the behavior is classi-
cal and its probabilities P(a]X) all can decompose as (3).
Likewise, if Pyo; € QN¢t, then the behavior is quantum and
its probabilities all can decompose as (4). In the noiseless
case, LNet € QNet, Formally, a quantum network behavior
P € QNetis non-n-local if and only if P ¢ LN, where both
classical and quantum networks have the same topology
[371, [38].

To decide whether a network behavior Pyg is non-n-
local or not, we use the fact that that £N¢t is closed, con-
nected, and bound by a set of inequalities referred to as n-
local Bell inequalities [37], [38]. We express an n-local Bell
inequality as

Spen(P) < B (21)

where Sgei(+) is a function referred to as the Bell score and
B is the upper bound for all P € LN, All classical behaviors
P < £N° satisfy the Bell inequalities that bound £N°. In
general, the Bell score Sgeji(P) is a nonlinear function of the
probabilities P(a@|x) [38], [39], [40], [41], [42], [43], [43],
[44], [45], [79], and [80].

The Bell inequalities bounding LNt can be used to wit-
ness quantum non-n-locality. That is, if Sge;(P) £ B, then
P ¢ LN, In this case, the Bell inequality is violated and
the behavior P is witnessed to be non-n-local. Therefore,
the study of quantum non-n-locality reduces to finding non-
n-local quantum behaviors P € QN that violate a particu-
lar Bell inequality. Fortunately, many Bell inequalities have
been derived that tightly bound the n-local correlations of
important network topologies including star [41], chain [42],
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and tree [43], [44], [45] topologies. Thus, non-n-locality can
be studied broadly without deriving new n-local bounds.

B. NOISE ROBUSTNESS OF QUANTUM NON-N-LOCALITY

Noise causes the set of quantum behaviors ONet to deform.
That is, QN = QN'(id") 5 QN(WN), where QN is
the set of noiseless quantum network behaviors and N/Net
is some noise model. Furthermore, if a sufficient amount
of noise is present, then QN*(AVNety < £Ne and the non-n-
locality of the network is said to be broken. We extend the
concept non-n-locality breaking from references [63], [64],
which introduce the general concept of nonlocality breaking
channels.

The amount of noise that can be tolerated by a quantum
network before its behaviors become n-local is the robust-
ness of the network’s non-n-locality. To quantify noise, a
quantum channel N }rf"" or classical postprocessing map E,,
is parameterized by the noise parameter y € [0, 1], where
y = 0 corresponds to the noiseless case. The robustness of
quantum non-n-locality can be quantified by the critical noise
parameter yp at which non-n-locality is broken, that is,

v =sup(y €[0,1] : QW) c L) (22)

where QNet (Nfet) is the set of quantum network behaviors
having noise model V).

In general, (22) is challenging to solve because proving
that QNet(ANety © £Net i the worst case requires every Bell
inequality bounding £N* to be derived and checked for viola-
tion. The practical approach taken in [63], [64] is to obtain the
critical noise parameter y at which the non-n-locality of the
network is broken with respect to a particular Bell inequality
SBell

Yo =sup{y [0, 1] : max

S P) < B). 23
pegratyy) Ba(P) < B} (23)

However, the challenge still remains of finding the maximal
Bell score for a given noisy network.

C. VQO OF QUANTUM NON-N-LOCALITY

We use VQO to maximize the non-n-locality in quantum
networks with respect to a particular Bell inequality Sgey(P)
and noise model A/N¢

max  Sgen(P). (24)
pEQNeLwNeL)

This optimization problem is important for understanding
the noise robustness of nonlocality in quantum networks as
shown in (23). Furthermore, optimizing nonlocality in noisy
quantum networks is a practical example for which to show-
case the quantum network VQO techniques developed in
Section III.

The maximization of non-n-locality in noisy quantum net-
works in (24) is well suited for our VQO framework. The
quantum network ansatz is constructed similarly to Fig. 2,
where the state preparations and measurements are modeled
by (11) and (12), respectively. Furthermore, the network
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FIGURE 5. Quantum networks. (a) Local network. (b) Bilocal network. (c) n-local chain. (d) n-local star. Sources are depicted as green ovals and nodes
are blue rectangles. The labels A; and B; distinguish between exterior and interior nodes, respectively.

noise AN'Net can be modeled as described in Section IT[-A2.
The cost function is expressed as

Cost(PNet(©)) = —SBel(Pnet(®)) (25)

where the minus sign transforms the minimization of the
cost into the maximization of the Bell score. It is then a
simple matter of using software such as qNetVO [69] to
perform the VQO algorithm shown in Fig. 4. Furthermore,
the network settings ® parameterize the state preparations
ot = ®™_, pAi and measurements 0?"" = Q7 Of;i .

We now formalize some notation used throughout the
work. First, let SBeu(Og"",N Net | pNet) pe the Bell score for
a fixed network state preparation N, noise model NN,
and observables OXIS"". We define the maximal Bell score for
fixed-state preparations as

Shen(p™) = max Spe (O3, id™, p™)  (26)
O_E.I
where the optimization is over all network observables and
idNt denotes a noiseless channel on all N = 2n qubits. Fur-
thermore, for a static noise model, we define

§’]'331] (NNet) — max S]*Bell (NNet(pNet)) (27)

pNete D(F{Net)

where the optimization is over all state preparations.

D. BELL INEQUALITIES FOR N-LOCAL NETWORKS

This work considers general n-local star [41] and chain [42]
networks (see Fig. 5). Star networks are important because
they can perform generalized entanglement swapping pro-
tocols [30], [31], [32], [41] where the exterior nodes in
the star become arbitrarily entangled based upon the mea-
surement applied in the central node. Similarly, chain net-
works are important because they model quantum repeater
chains that enable long-distance quantum communication
via relay nodes that perform entanglement swapping [33],
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[34]. In both cases, non-n-locality is important for device-
independent certification of the entanglement sources and
quantum measurements required to implement entanglement
swapping protocols and network security protocols [13],
[15], [60], [61].

To study quantum nonlocality, we quantify the correla-
tion across multiple measurement nodes using the formal-
ism of Hermitian observables. We focus on networks that
output a binary value a; € {1} at each measurement node.
Hence, the observable at the jth node is then expressed as

0’:}? = Y ajett1) ajl'la}'lxj,where I]Jr”lx)f
a PVM. In the qubit case, the observable is expressed in the
Pauli basis as Oi." = §'- &, where the Bloch vector §e R3
has elements s5; = Tr[Oi." o;] and the Pauli vector is g =
(st 0‘}‘7 JZ)'

For a fixed state p*i, the expectation of the observable is

A .
and l'l_lx_ constitute
)

(oﬁj)pﬂj —Tr [oﬁ;fp*‘f]: Y aP@jlx).  (28)

ajE:I:l

The correlation between network nodes is quantified by the
expectation of the m-partite correlator

(k... OM) v =Tr [(@?:1 of;') pN""] . (9)

Since the considered observables O‘:;’ are dichotomic, (29)
corresponds to the expectation value of the parity of the bit
string @ output from the network.

We now introduce the four quantum networks on which
this work focuses its investigation, local, bilocal, chain, and
star (see Fig. 5). When all measurement devices have binary
inputs and outputs, a class of nonlinear n-local Bell inequali-
ties is known to bound these quantum networks. For all con-
sidered networks, the optimal quantum violation is achieved
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in a noiseless setting using maximally entangled state prepa-
rations |¢) = |®+) = (]00) + |11))/+/2 and qubit mea-
surements with bases aligned in the xz-plane of Bloch sphere.

1) CHSH NETWORKS

Consider the local n = 1 case depicted in Fig. 5(a) having
one source and two nonsignaling measurement devices. This
simple two-qubit network is the fundamental example of
nonlocality and is commonly referred to as the Clauser—
Horne—Shimony—Holt (CHSH) scenario [37]. The set of
classical behaviors for this network Lcysy is bound by the
CHSH inequality [81]

1
Scusn=| Y. (~1y>(040f) <2.  (30)

x,y=0

The maximal violation of the CHSH inequality is .S”EHSH =

272 £ 2 [82].

2) BILOCAL NETWORKS

Consider the bilocal n = 2 network depicted in Fig. 5(b)
having two sources and three measurement devices. The
two sources each hold two-qubits, A} = (g1, ¢2) and Ay =
(g3, q4). The two exterior measurement node A = (g;) and
A2 = (g4) measure the first and last qubit, respectively. The
central node B = (g2, g3) jointly measures the qubits re-
ceived from sources A and A;. The set of classical bilo-
cal behaviors Lgjlc is bounded by the bilocal Bell inequal-
ity [39], [40]

Sgitoc = v/ |B2.y=0l + /|ly=1] < 1 (31)

where the quantity

hy= LY 1 (o ofok) |

IIXZ

is a linear combination of tripartite correlators on the network
state pBil°° = pA1 @ p™2. The maximal violation is S

V2 £ 1[40].

iloc

3) N-LOCAL CHAIN NETWORKS

As depicted in Fig. 5(c), the n-local chain network is an im-
portant extension of the bilocal network. In this network, the
n sources {A; = (q2i—1, qg;)}f;l connect a collection of m =
n+ 1 nonsignaling measurement devices in a chain struc-
ture. The exterior nodes A; = (q1) and Ay = (g2,) measure
the first and last qubits, respectively, while the interior nodes
{Bj = (q2j—2.92j—1 )}jf=2 each measure two qubits. The set
of n-local chain behaviors £,,_chain is bounded by the inequal-

ity [42]

= ‘\/'Jﬂ,}‘=0| + '\/|Jﬂ,y=l| =<1 (33)
where J, y = b, as defined in (32) when the observable Of

takes the form 03 = ®j=2 fo:},_ Here, Of;’:y — Ogl ® Og?,
is the two-qubit observable applied at each interior node

Sy-Chain
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in the chain while the observables {ij }?=2 jointly condi-
tioned on the input y € {0, 1}. The n-local chain Bell in-
equality is identical to bilocal inequality Sg;joc described
by (31) and the maximal quantum violation of (33) is
S;—Chain =V2 £ 1[42].

4) N-LOCAL STAR NETWORKS

The n-local star network depicted in Fig. 5(d) consists of
n, two-qubit sources {A; = (g;, q,,+,-)}:.’=1 and a collection of
m = n + 1 measurement nodes arranged in a star formation.
In this formation, the set of n exterior nodes {A; = (¢ j)}?=1
each measure one qubit and serve as points of the star. Each
exterior node A; is connected to a single central node B =
(Gn+ j)?=] using the entanglement source A;—;, where cen-
tral node jointly measures its local n-qubit state. The set of
classical n-local star network behaviors £, s, is bounded by
the n-local star Bell inequality defined as [41]

Spstar = nol/™ + [La1'" < 1 (34)

where the quantity

:% Z (_l)y(zjxj)(o:gll OA"OB pNet (35)
X seeesXnn

is an n-partite generalization of (32). The observables Oi)f
and Of are all assumed to be dichotomic. The maximal quan-
tum violation of the star inequality is S% g, = v/2 £ 1 [41].
Inthen = 1 and n = 2 cases, the n-local star network reduces
to the CHSH and bilocal networks, respectively. That is, it
can be shown that

—SCcHSH S2-Star = SBiloc- (36)

2

Hence, the star network, like the chain network, generalizes
the CHSH and bilocal networks.

S1-Star =

E. MAXIMAL N-LOCAL VIOLATIONS

In Section I'V-D, the optimal quantum strategies for non-n-
locality are described in the noiseless case. In the presence
of noise, these strategies are not guaranteed to be optimal.

] Aj
When a network measures local qubit observables, Ox; =

IA’ | Oﬁ" at all A;, the maximal n-local violation for star
and cham networks is [83]

1~ N
Stsur (P°) = 5 [T Stusu ()" (37)

i=1

n—1
S-Chain (PNet) = S5 s (PM @ ™) [[ri0 (39
i=2

where the maximal CHSH score is [84]

Stusu (™) = 2y %o+ - (39)

In these equations, 1 > t; 9 > 1;1 = Oare the two largest sin-
gular values of the two-qubit correlation matrix TpA‘- e R¥3
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having elements
(k) A
TGP = [p o' ® sz] (40)

where j, k € {x, y, z} index the Pauli matrices.

The maximal Bell scores in (37) and (38) do not ac-
count for entangled measurements or positive operator-
valued measures (POVMs). In general, the maximal n-local
star score is the geometric mean of independent CHSH viola-
tions, as shown in (37), and is achieved using measurements
separable across qubit systems. Thus, we do not expect en-
tangled measurements to improve the maximal n-local scores
beyond (37) and (38). For a general discussion regarding the
maximal qubit violation of n-locality in star and chain net-
works and the corresponding measurement strategies, please
to [83]. In Appendix C, we give concrete examples relating
the maximal n-local scores in (37) and (38) to the maximal
n-local scores derived in prior works [85], [86], [87].

V. USING VQO TO INVESTIGATE THE NOISE
ROBUSTNESS OF QUANTUM NON-N-LOCALITY

In this section, we demonstrate on a classical simulator that
VQO can reproduce the maximal n-local scores derived in
Appendix D. We begin with an overview of our use of VQO
to investigate the noise robustness of quantum non-n-locality.
Then, for unital and nonunital channel examples, we de-
rive the theoretical n-local scores and show that our VQO
methods can obtain these values. We find that network noise
models consisting of general unital qubit channels have their
non-n-locality maximized by maximally entangled states are
optimal. On the contrary, we show that when nonunital qubit
amplitude damping channels are considered, there exist non-
maximally entangled state preparations that outperform max-
imally entangled preparations.

A. VQO OF THE NOISE ROBUSTNESS OF
NON-N-LOCALITY

Our objectives are to verify that our VQO framework can
reproduce known and derived noise robustness results. Our
investigative approach to noise robustness is distinct from
previous works [63], [64] that evaluate the precise noise
parameters at which nonlocality is broken. Instead, we use
VQO to find maximal violations of a Bell inequality given
a static noise model N}B}ﬂ. By scanning through the noise
parameters, we create a picture of how the non-n-locality
deteriorates as the amount of noise increases. Hence, we are
able to easily compare the relative noise robustness across
different quantum network topologies.

We consider noise applied during the preparation, com-
munication, and measurement stages of a quantum network
in the n-local setting (see Fig. 6). Source noise occurs dur-
ing the state preparation at each source and is modeled
as NV }f"" = ®7_, N}i. Communication noise occurs dur-
ing the transmission of quantum states and is modeled as
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FIGURE 6. Noise models in quantum networks. (a) Source noise: A
quantum channel is applied to all qubits at a given source. (b)
Communication noise: A quantum channel is applied independently to
each qubit. (c) Detector noise: Classical postprocessing is applied to the
classical data output from the network.

Net _ </ Ly, : :
Nf = @,_; N, Detector noise occurs during measure-

ment and is modeled as El}f"" =@ Eﬁ;’ . Alternatively, de-
tector noise can be modeled as an adjoint channel applied to
the measurement A/ E“f(ﬂg?).

Our VQO approach can easily be extended to nonuniform
noise models as it introduces no additional computational
overhead in comparison to the uniform noise model. To sim-
plify our investigation, we characterize the network noise
using one parameter. First, we consider an ideal quantum
network that has a single faulty component such as a noisy
source, link, or measurement device. In this case, the noise
parameters take the form y, = (y,0,...,0). Second, we
consider quantum networks having noise applied uniformly
to all sources, links, or measurement devices. In this case, the
noise parameters are y, = (y,...,¥).

To evaluate the noise robustness, we begin with a static
noise model Nf"". To create a high-level overview of the
noise robustness, we scan through the noise parameter y €
[0, 1] using an interval of 0.05. For each y, we use VQO
to find the optimal state preparations and measurements that
maximize non-n-locality with respect to the Bell inequal-
ity Spey;. We repeat this procedure for all considered net-
work topologies depicted in Fig. 5 and compare their rel-
ative noise robustness. Furthermore, we compare the opti-
mized results with theoretical bounds on the max violation.
For some channels, we derive max violation directly and
show that our optimizations reproduce the expected results.
In other cases, we use (37), (38), and (39) to derive the
maximal violation for a fixed state such as the Bell state
D) = (100) + |11))/v/2.

We organize our investigation into two broad classes of
noise, unital and nonunital. In each case, we consider noise
applied to sources, qubit communication, and detectors. For
each noise model, we compare the n < 4 cases for the chain
and star n-local Bell inequalities expressed in (33) and (34),
respectively. We note that we label the n = 1 and n = 2 cases
as the CHSH and bilocal Bell inequalities due to the relations
expressed in (36). Finally, we explore a wide range of state
preparation and measurement ansatzes to broadly investigate
the relation between entanglement and noise robustness. For
details, refer to Table 1 in Appendix B.
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B. UNITAL CHANNELS

Unital channels model common types of hardware noise such
as depolarizing and dephasing. A quantum channel I{ is uni-
tal if and only if it satisfies U/(I) = I. Consequently, unital
noise cannot improve the purity of a general quantum state
p, that is, Tr[u(p)g] < Tr[,oz]. For more details on the theory
of unital channels, refer to Appendix D.

In the following sections, we demonstrate on a classical
simulator that our VQO framework can find the theoretically
maximal n-local violations in the presence of unital channels
such as qubit depolarizing noise, source depolarizing noise,
detector white noise, and qubit dephasing noise. We show
that network ansatzes allowing maximally entangled state
preparation and local qubit measurements can achieve the
theoretical maximum. Furthermore, we find no example of
entangled measurements or nonmaximally entangled states
achieving a larger Bell score. These numerical results pro-
vide evidence that maximally entangled state preparations
and local qubit measurements are optimal for general uni-
tal noise models on sources and measurements. Indeed, the
numerical VQO results in this section led to the derivation of
(37) and (38) in [83]; thus, our VQO framework can be used
to obtain novel theoretical insights.

1) QUBIT DEPOLARIZING NOISE ROBUSTNESS

A qubit depolarizing channel mixes white noise with the

input qubit state as

(I1-v)
2

where v is a parameter commonly referred to as the visibility.
The visibility relates to the noise parameter as

Dy(p) =vp + I,Tr [p] (41)

3
y=301-v). 42)

The qubit depolarizing channel’s Kraus operators are

Y
Ky=y1—-y1 K]:\/;Jx

Y %
Ky = \/; o, Ki= \/;az. (43)

In Proposition 1 of Appendix D1, we show that in the pres-
ence of qubit depolarizing noise, DY = @7, D‘:ji ® Df;i_
the maximal n-local star and chain scores are

1
"SH:-Star(DvNet) =2 (l_[ i UB;') (44)
i=1

1
n z
g:—Chain(Dvrjet) =2 (1_[ v "'B") : (45)
i=1

In Fig. 7, we find a close correspondence between the
theoretical maximal Bell scores given by (44) and (45) and
the maxima obtained using our VQO framework. In our
optimizations, we consider arbitrary preparation and mea-
surement ansatzes (see Table 2 in Appendix B). We find that
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Qubit Depolarizing Noise Robustness
Single Qubit Noise Uniform Qubit Noise
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FIGURE 7. Qubit depolarizing noise robustness of non-n-locality. (Left)
Qubit depolarizing noise is applied to qubit q,. (Right) Qubit
depolarizing noise is applied uniformly to all qubits. The markers show
the maximal Bell score achieved using VQO. The dashed lines show the
theoretical maximal given by (44) and (45), where the relation between
the visibility v and the noise parameter y is given by (42).

maximal violations can be achieved using the Bell state |®™)
and local qubit measurements.

2) SOURCE DEPOLARIZING NOISE ROBUSTNESS
Depolarizing noise on two-qubit sources is expressed as

(1—-v)
4

Dy(p) =vp + I4Tr [p] (46)

where the visibility v relates to the noise parameter as

_5 a7
y=1z(1-v). 7)

The Kraus operators for a two-qubit depolarizing channel are
expressed as

3
4
Koo=+y1—vls, (Kij= —Z0i®0; (48)

15 i,j=0
where all i and j are considered except i = j = 0. The
maximal Bell scores have previously been derived for n-
local star and chain networks having source depolarizing
noise. Namely, the maximal noisy Bell score for the star
network is S* ¢ (7, Dj,'}f) = V2([T%, v)/" [40], [41],
and the maximal noisy Bell score for the chain network is
S chain(@iz1 D,,Al.") = 2/TTZ, vi [42]. We use (47) to re-
define the maximal violations in terms of the noise parameter
as

n 1/n
St st @1 D) = V2 (]‘[\1 - %n\) 49)
i=1

$hchain @1 D) = V2 | T |1 - %}'*1' (50)
i=1

In Fig. 8, we show that there is a close correspondence be-
tween the theoretical maximal Bell scores given by (49) and
(50) and the maxima obtained using VQO optimization. In
our optimization, we consider source depolarizing noise and
a broad range of preparation and measurement ansatzes (see
Table 2 in Appendix B). We find that the state preparation
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FIGURE 8. Source depolarizing noise robustness of non-n-locality. (Left)
Depolarizing noise is applied to source A,. (Right) Depolarizing noise is
applied uniformly to all sources. The markers show the maximal Bell
score achieved using VQO. The dashed lines show the theoretical
maximal score from (49) and (50).

|@7) and local qubit measurements optimized over rotations
about the y-axis are sufficient for maximal violations in all
cases.

3) WHITE NOISE DETECTOR ERRORS
For a detector with binary outputs, we define a white noise
error as the classical postprocessing map

1 1
W, = (1 —y)llz+§ (1 1) (51)

where with probability y, the detector outputs a binary value
drawn from a uniform random distribution. Noting that (51)
is a convex combination of noiseless and white noise mea-
surements, we can equivalently express W,, as the POVM

Wiy = (1 —y)y + Wy, (52)

where Wy, = {;]IM are white noise POVM elements and
Iy, are projectors onto even (+) and odd (—) parity sub-
spaces that satisfy Tr[Ilix] = 2M=1. The projector onto
even and odd parity subspaces corresponds to the fact that
we use parity to coarse grain a multibit output into a single
bit.

In Proposition 3 of Appendix D3, we show that detector
white noise postprocessing map W,, is a unital process equiv-
alent to a depolarizing channel on the detector’s M-qubits

D?f_y)(X )=1—-y)X+ 2LM]12MTI' [X1. (53

Then, in Proposition 4 of Appendix D3, we find that given the
; N

network noise model V' = @',

local star and chain scores are

j . _
(i—y» the maximal n

1/n
n+1
Sh-Star (@?:1 D?f_yj)) =2 1_!(1 —vj) (54)
=

n+1

$:cuuin (®1 D1,p) =2 | [Ta - 9
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Detector White Noise Robustness
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FIGURE 9. Detector white noise robustness of non-n-locality. (Left)
Detector white noise is applied to measurement device A,. (Right)
Detector white noise is applied uniformly to all measurement devices.
The markers show the maximal Bell score achieved using VQO. The
dashed lines show the theoretical maximal score from (54) and (55).

In Fig. 9, we show that there is a close correspondence
between the theoretical maximal n-local violations given by
(54) and (55) and the maxima obtained using VQO. In our
optimizations, we consider a broad range of preparation and
measurement ansatzes (see Table 2 in Appendix B). For all
networks, we find that the state preparation |®*) and lo-
cal qubit measurements optimized over rotations about the
y-axis are sufficient to achieve the theoretical maximum.

4) QUBIT DEPHASING NOISE
Qubit dephasing noise is a unital channel that describes the
decoherence process as

1+ /1— 1
Py(p) = —5—Lp+

Y, g
ooz (56)

where the off-diagonal terms go to zero as the noise pa-
rameter y increases. The Kraus operators for the dephasing
channel] are

1 0 0 0
Ky = Ky = : (57)
0 J1—vy 0 /7
In Proposition 2 of Appendix D2, we show that, given a
network noise model PYt = @7, P4 ® P | the maxi-
v v yH
mal n-local star and chain scores are
n

G (pNet) “T[0+0-y*)(1- },B;))EIE (58)

i=1

S} Chain (??et) =55 star ( },' s, ® pAA ® :D},B,,) -

(39)

In Fig. 10, we show that there is a close correspondence
between the theoretical maximal n-local violations given by
(58) and (59) and the maxima obtained using VQO. In our
optimizations, we consider a broad range of preparation and
measurement ansatzes (see Table 2 in Appendix B). We find
that maximally entangled states and local qubit measure-
ments are sufficient for maximal n-local violation.
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Qubit Dephasing Noise Robustness
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FIGURE 10. Qubit dephasing noise robustness of non-n-locality. (Left)
Dephasing noise is applied to qubit q,. (Right) Dephasing noise is
applied uniformly to all qubits. The markers show the maximal Bell score
achieved using VQO. The dashed lines show the maximal scores
predicted by (58).

C. NONUNITAL NOISE

In this section, we investigate the noise robustness of
quantum non-n-locality with respect to nonunital noise.
A quantum channel is nonunital if and only if it does not
preserve the identity A'(I) # I, where important examples
include qubit amplitude damping, fixed errors on measure-
ments, and two-qubit colored noise. As opposed to unital
channels, we show that maximally entangled state prepara-
tions are not necessarily optimal in the presence of nonunital
noise. We verify that VQO can be used to find the optimal
state preparations and measurements for maximal n-local
violation results by comparing our numerical results with
the theoretical maximal noisy n-local scores derived in Ap-
pendix E.

1) QUBIT AMPLITUDE DAMPING NOISE

The qubit amplitude damping channel A, describes the en-
ergy dissipation process where the high-energy |1)(1| state
transitions into the low-energy |0)(0| state. The Kraus opera-
tors are defined as

1 0 0
o=fo ) 0=

where the effect on a qubit density matrix is

Aoy = (YT =¥Ipo VT=vpor) 61
() ( Vi—ypo (1—=y)pen ©b

In star and chain networks, we compare the noise robust-
ness of n-local violations for nonmaximally entangled states,
[¥2) = ~/A|00) + /T — A[11) for A € [0, 1], and maximally
entangled states [y, —1,2). We express the noisy maximally
entangled states as 1,= .Aﬁ ® Aﬁ(,oJL= 1 ), and noisy non-

maximally entangled states as g , = Aﬁ ®A§(,o;u). We
now prove through example that nonmaximally entangled
states achieve larger Bell scores than maximally entangled
states. Then, we verify that our VQO software can reproduce
our theoretical results.

VY
0 ) (60)
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First, consider the CHSH scenario with uniform qubit am-
plitude damping noise where the noise parameters are yA =
y8 = y. For maximally entangled states, we use Proposi-
tion 6 in Appendix E1 to find that the maximal CHSH score
is

Stusu(Py )

_ |2v2a -y vel0,3] (o)
2/ =y +Qy2 =2y +1)%, y €3, 1]

where Yed = 1/2 is the noise parameter at which the

crossover occurs between the two curves in (62) Further-
more, we see from (62) that the CHSH nonlocality is broken
for all maximally entangled states p, _ ! at the critical noise

=(1—-L
paramete.r Vo,é = (1 JE)' -
Next, in Proposition 7 of Appendix E1, we show that for
noisy nonmaximally entangled states, the maximal CHSH
score is

24/2(1 —y)?%, v €10, vl
- 2_ 2
Scusu(Prr.y )= 2\/(1 —y)? - (2},_4},22%: v €lve 31
2 y €[5, 11
(63)

where the optimal entanglement parameter is

1 y €10, vl

2?
)1 G-y (1—y) 1
V=12 (] T @ )P ) v €lye, 31 (64)

1, y el 1]

the crossover noise parameter is

1
1 (4 N (3\/1142— 32)F 1 | ) ©5)
6 23 (6+/114 — 64)3

and the nonlocality is broken with respect to the CHSH in-
equality wheny = yp = %.'Iherefore, in the presence of uni-
form qubit amplitude damping noise, maximally entangled
states maximize the CHSH score in the range y < [0, y.],
nonmaximally entangled states maximize the CHSH score
in the range y € (v, %), and the classical state |00)00|

Ye =

maximizes the CHSH score in the range y € [%, 1]. The
maximal separation between the CHSH scores of maxi-
mally and nonmaximally entangled states occurs at y =
(1— %), where the nonmaximally entangled state achieves

Stusu(Prr) = 2./ 15 (3 + 84/2) ~ 2.0222836 > 2. We plot
this data in Fig. 11, where we show that VQO successfully
finds the maximal CHSH score for both maximally entangled
and nonmaximally entangled state preparations.

We now generalize our uniform qubit amplitude damping
results to n-local star and chain networks. Using (37), we can
write

n P 1 ~
Sh-Star (®£=1 P;F;‘y) = ESEHSH (Brsy) - (66)
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Maximal CHSH Scores in the Presence of
Uniform Qubit Amplitude Damping Noise
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FIGURE 11. Uniform qubit amplitude damping in the CHSH scenario. We
plot the maximal CHSH scores obtained when uniform qubit amplitude
damping noise is applied to maximally entangled states (green) and
nonmaximally entangled states (red). (Left) Noise parameter y € [0, 1] is
scanned over an interval of 0.01. (Right) Noise parameter y € [0.25, 0.35]
is scanned over an interval of 0.001. The solid green line plots the
maximal CHSH score for maximally entangled states, as given by (62),
while the diamond markers plot numerical results obtained using VQO.
The solid red line plots the maximal CHSH score for nonmaximally
entangled states, as given by (63). The green and red dotted vertical lines
plot the crossover parameters at which the cases switch in (62) and (63),
respectively. Likewise, the green and red dash-dotted vertical lines plot
the critical parameters at which nonlocality is broken for maximally
entangled states and nonmaximally entangled states, respectively.

For the chain network, we note that A, ® A, (J00)00|) =
|00) 00}, that is, the |00)(00| state experiences no noise from
amplitude damping. Since for p = |00)(00|, the largest sin-
gular value of T, is g = 1, then (38) can be used to obtain

n - 1
S7-Chain (@i:lﬂhi‘y) 5 CHSH (Prry) - (67)

However, in the case of maximally entangled state prepara-
tions, the maximal singular value is 7p ,, = max{l — y, y2 +
(1 —y)?}; thus, by (38), we have

—1
. ! 5\ '
Sp-Chain (®?=1 P;,=é,y) = ESEHSH (91:%,,,) 1_[ (r0.y)7 -
i=2

(68)

We now consider the case where amplitude damping noise

is applied to a single qubit in the network. Like in the uniform
noise case, we start with the CHSH scenario and maximally
entangled states. Using Proposition 6 of Appendix E1 and
setting yB = 0 and y“‘ =y €0, 1], we find that 7p = 71 =

J1—y =1 =1—1y.Thus
SCus (f’l%‘y) =2
and by (37), we see that

1
S-Star (ﬁl:%,y ®?=2 |(D+)(¢’+ D = ((‘/E)n_lv 2(1 - }’)) !
(70)
Note that the n-local chain score is equivalent to (70) because
the interior chain nodes are not affected by the amplitude
damping noise.

2(I—-vy) (69)

VOLUME 4, 2023

Qubit Amplitude Damping Noise Robustness
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FIGURE 12. Qubit amplitude damping noise robustness. Amplitude
damping noise is applied to a single qubit (left column) and uniformly to
all qubits (right column). The markers show the maximal Bell score
achieved using VQO while the dashed lines show the theoretical
maximum. The top row plots the maximal n-local scores for maximally
entangled state preparations and local qubit measurements while the
bottom row plots the maximal n-local scores over arbitrary state
preparations and measurements. The theoretical scores are given by (70)
(top right), (66), and (68) for the n-local star and chain networks,
respectively (top left), (72) (bottom left), and (63) (bottom right).

When nonmaximally entangled states are considered we
use Proposition 8 of Appendix El to find that

220 =), VG[O 3]

71

Stusu(Prr,y) = [
where A* = % when y € [0, %] and A* = 1 wheny e [%, 1].
Thus, when amplitude damping is applied to a single qubit,
maximally entangled state preparations are optimal on the
range y € [0, {;] and the classical state preparation is optimal
for y €[4, 1]. Then, by (37), we find

St sir (1o, iz |0F) @)

:max{\/_";—l, («/E"_IM)%} . m)

In Figs. 11 and 12, we see a close correspondence be-
tween theoretical results and those found using VQO. In our
optimizations, we consider a range of preparation and mea-
surement ansatzes (see Table 2 in Appendix B). We find that
nonmaximally entangled state preparations and local qubit
measurements are sufficient for maximal n-local violation.

2) SOURCE COLORED NOISE

Colored noise is typically found on the singlet state |V ™) =
%UOI) —110)) produced by parametric down conver-
sion [62]. Colored noise is a two-qubit noise model repre-
senting depolarization on a preferred axis of the state

Cy(p) = (1 =y)p+ (W W] + [wr)w) (73)
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where [U¥) = (|01) +[10))/+/2. The Kraus operators for
colored noise are

Kg = -‘,/] — ]/]I
Kyz ot = /7y /2 |0E) (0|
Ky+ gt = /v /2 |UE) 0| (74)

where |®*) and |W*) constitute the Bell basis. Without loss
of generality, we focus colored noise on |W*) and |®+) Bell
states.

We begin by evaluating the CHSH score of the state
ﬁ}‘}' = Cp, (JwTYWwT)). It follows that the correlation matrix
is Tﬁ;p = diag(l —y,1 — y, —1). Then, we use (39) to ob-

tain SEHSH(,&;’) =2,/1+4 (1 — y)2. We note that this CHSH
score is equivalent to (58), the score obtained for uniform
qubit dephasing noise; hence, there is a direct correspon-
dence between uniform qubit dephasing and colored noise
applied to the | U+ )(WT| state.

For uniform-source colored noise, the maximal n-local
star score is given by (37) as

Shsi (®L1AY) =y1+ -2 (9

Since the maximal singular value of Tﬁg is p=1,

Sh Chain (@1 5)) = 53 star (1 Ay ). When colored noise
is applied to a single source, we find that

Sh-Star (ﬁ;" R |‘I’+)(‘I’+I) = (ﬁ"_l,u +(1— ;z)?)H .

(76)
Next, we evaluate the CHSH score of the state ﬁ}‘? =
C, (|®T)®T]). It follows that the correlation matrix is Tpo =
diag(1 — y, 1 — 2y, —1). Then, we use (39) to obtain

o) _ |2V20 —y), y €10,3]
Seus (77) = {2\/(1 —yP+ -2 yelz 1l
(77

When colored noise is applied uniformly to |®+)®+|
sources, it follows from (37) that

St (@ 2) = 3t (82) . (79)

Furthermore, using (38) in the presence of uniform colored
noise, we find that the n-local chain score is

n—1
S -Chain (@?:1 py ) = %SEHSH (ﬁ}? ) 1_[ Jo o (19
i=2

where 7p = 1 — . When colored noise is applied to a single
source in a star, we find that

==

~® -11 ~
Sp-Star (Py Rz |‘I’+)(‘I’+|) = (‘ﬁn ESEHSH (PV))
(80)
where the n-local chain score is given by the bilocal score.
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FIGURE 13. Colored noise is applied to a single source (left column) and
uniformly to all sources (right column). The markers show the maximal
Bell score achieved using VQO over |$+) state preparations and local
qubit measurements (top row) and over | ¥*) state preparations and
arbitrary measurements (bottom row). The dashed lines show the
theoretically maximal score. (Top) Theoretical lines are given by (80) for
single-source noise and by (78) and (79) for uniform-source noise.
(Bottom) Theoretical lines are given by (76) and (75) for single-source
and uniform-source noise.

In Fig. 13, we show that there is a close correspondence
between the theoretical maximal n-local violations in the
presence of colored noise and the maxima obtained using
VQO. We consider a range of preparation and measurement
ansatzes (see Table 2 in Appendix B). We find that | ¥ ™) is the
optimal state preparation and that local qubit measurements
are sufficient to achieve the maximal n-local violation in all
cases.

3) BIASED DETECTOR ERRORS
We define a biased detector error as the classical postprocess-
ing map

11
R, =(1-y)h+ 81
y=0-=-y)+y ( 0 0) (81)
where the fixed classical value of +-1 is output whenever an
error occurs. The biased detector error can be described by
the POVM with elements

My = (1 — y)gp + ylow (82)
O = (1 -y (83)

where I, |, and I1_|, constitute an M-qubit PVM. In Propo-
sition 9 of Appendix E2, we show that the postprocessing
map R, in (81) is nonunital and equivalent to a partial re-
placer channel

Ry (p*) =1 —y)ph +yolTe[p*]  (84)

applied to the local quantum state o"i, where the replacer

state p, is a density operator contained by the projective
i

subspace of I1 e
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FIGURE 14. Biased detector noise robustness. (Left) Biased detector
noise is applied to a single detector. (Right) Biased detector noise is
applied uniformly to all detectors. The markers show the maximal Bell
score achieved using VQO when using arbitrary state preparations. The
dashed lines show the maximal Bell score achieved using VQO with
respect to maximally entangled states.

In Fig. 14, we compare the VQO results of maximally
entangled state preparations and arbitrary state preparations.
We find significant improvements when arbitrary state prepa-
rations are considered, implying that nonmaximally entan-
gled states are optimal for n-local violations in the presence
of biased detector noise.

VL. VQO OF NON-N-LOCALITY ON

QUANTUM HARDWARE

In this section, we demonstrate that our VQO techniques can
maximize non-n-locality on IBM quantum computers, we
discuss how to scale our methods, and we discuss the advan-
tages of deploying our VQO methods on quantum network
hardware.

A. VQO OF NON-N-LOCALITY ON NOISY IBM

QUANTUM COMPUTERS

Using IBM quantum computers, we implement the VQO
algorithm depicted in Fig. 4. Using (24), we maximize the
CHSH score Scysuh, the bilocal score S7.siar, the trilocal
chain score S3.chain. and the trilocal star score Si_si.r. Each
optimization uses the quantum network ansatz depicted in
Fig. 15 having the Bell state |®+) = %UOO) + |11)) pre-
pared at each source and having local qubit measurements
whose bases are free to rotate in the xz-plane of the Bloch
sphere. This network ansatz reflects the capabilities of ex-
perimental setups of quantum networks [46], [47], [48], [49],
[50] where the free parameters are rotations applied to each
photon detection apparatus.

Our VQO results are shown in Fig. 16. In our optimiza-
tions, each circuit is evaluated using 6000 shots. Addition-
ally, the initial settings used in each optimization run are
selected from a uniform random distribution. The CHSH
case was optimized using the five-qubit ibmg belem
device while the bilocal, trilocal chain, and trilocal
star networks were optimized using the seven-qubit
ibmg casablanca and ibmg jakarta devices. The
CHSH plot shown in the upper-left of Fig. 16 aggregates
data from 11 separate optimizations using a step size of
n = 0.12. The bilocal plot shown in the upper-right plot of
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FIGURE 15. VQO hardware ansatz for bilocal network. When applying
VQO on hardware, we consider a simple ansatz. Each source (green)
prepares the Bell state |$*) using a Hadamard and cnoT gate. Each
nonsignaling device (blue) applies a local rotation about the y-axis to
each qubit before measurement in the computational basis. When a
measurement device contains more than one local qubit, the xor is taken
to convert the bit string into a binary output.

Fig. 16 aggregates data from five optimizations and using a
step size ranging from n = 1.4 to n = 1.5. The trilocal chain
plot shown in the bottom-left plot of Fig. 16 aggregates data
from six optimization using a step size ranging fromn = 1.6
to n = 2. The trilocal star plot shown in the bottom-right
plot of Fig. 16 aggregates data from five optimizations using
a step size ranging fromn = 1.6 to n = 1.8.

As a baseline measure of noise on the IBM quantum com-
puters, we calculate the theoretical score using the optimal
settings in the noiseless case described in Section IV-D. The
noise on quantum hardware deteriorates the non-n-local cor-
relations causing a separation from the noiseless quantum
bound. In particular, the bottom-left plot shows the theoret-
ical quantum violation of the trilocal chain inequality to be
close the classical bound, especially when compared with the
trilocal star network (bottom-right plot). This difference is
due to the fact that S,,_g,, is more robust to noise than S,_cpain
[41], [42]. Finally, the noise on the quantum computers is not
constant; it can fluctuate throughout the day [88]. hence, the
optimal settings in the noiseless case do not always produce
the same value.

All plots in Fig. 16 show that the mean optimized score ex-
ceeds the classical bound. Thus, VQO finds non-n-local set-
tings in all studied cases. In most cases, the error bars shrink
as the optimization step increases, indicating convergence to
an optimum. In the bilocal network optimization, the signif-
icant error bars on the final step are likely a result of the step
size being too large. In the trilocal chain and star optimiza-
tions, the mean optimization score converges to the mean
theoretical score showing that the optimization consistently
finds the theoretical maximum. In the bilocal and CHSH
optimizations, the mean optimization score does not reach
the mean theoretical score. This is the result of some opti-
mizations finding the local optimum of the classical bound.

In all plots, the max optimized score converges to a value

consistent with the max theoretical score. In all cases, except
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FIGURE 16. VQO of non-n-locality on IBM quantum computers. Non-n-locality is optimized in four different quantum networks. The x-axis shows the
step of the gradient descent optimization while the y-axis shows the Bell score. The noiseless quantum bound is shown by the solid blue line and the
classical bound is shown by the dashed orange line. For each Bell inequality, we aggregate data across several different optimization runs. At the end of
each optimization, the theoretically optimal score is evaluated on noisy hardware to serve as a baseline. The mean theoretical score is shown by the
dash-dotted brown line and the max theoretical score is shown by the dash-dot-dotted pink line. In each step, the max score across all optimization is
shown by the dotted red line with circle markers while the mean score across all optimizations is shown by the dotted purple line with error bars
showing the standard error. The dotted green line with diamond markers shows the noiseless optimal score obtained by running the settings for the

maximal score in each step on a noiseless classical simulator.

for the CHSH optimization, an optimized score is found that
exceeds the max theoretical score. While there is a statistical
chance that the optimized score may be larger than the max
theoretical score, it is also possible that our VQO framework
may be finding optimal settings tailored for the quantum
hardware. That is, there may be biases in the gate opera-
tions and measurement bases that VQO may be optimizing
against. On the other hand, the theoretical settings are naive
to any such hardware biases.

Finally, we find that the settings optimized on the IBM
hardware correspond to the optimal settings in the noiseless
case. In reference to Fig. 16, when we take the settings for the
maximal score in each optimization step and run them on a
noiseless classical simulator, they maximally violate the Bell
inequality in question. While this feature is remarkable, its
value is questionable. We may be able to obtain the optimal
settings on a large NISQ device, but the quantum computer
will still output a nonoptimal answer that cannot be checked
on a classical computer due to computing constraints. Further
study of this optimization feature is important as there may
exist an application where the optimal settings are valuable
to know on their own.

B. SCALING VQO FOR PRACTICAL ADVANTAGES ON
QUANTUM COMPUTERS

Scaling our VQO framework is largely limited by avail-
able quantum technology. As circuit network parameters
are added, the number of circuit executions required by the
parameter-shift rule grows polynomially [68], [78]. Further-
more, cost functions may require large numbers of circuit
evaluations for large networks. For example, the n-local star
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Bell inequality in (34) contains 2"+1 correlator terms that
each require a quantum circuit to be run or differentiated.
Unfortunately, additional circuit executions are a significant
overhead due to the latency of remote execution, queue wait
times, and serial circuit execution on a quantum computer.
We mitigate this overhead by reserving quantum hardware
and batching circuit executions; however, more can be done
to scale the optimizations.

First, we need wide parallelization across quantum com-
puters. In the worst case, a network cost function can require
|X] = ]_[f;’:] | Xj| unique circuit evaluations to construct the
network behavior Py (®) for all inputs ¥ € A'. Furthermore,
the parameter-shift rule scales the number of circuit execu-
tions polynomially. Fortunately, these circuits are indepen-
dent and can be run in parallel. Thus, if we wish to scale VQO
techniques, it will be exceedingly important to parallelize
circuit executions across many NISQ devices.

Second, to overcome the latency of remote execution, we
need classical and quantum hardware to be run in close prox-
imity. The quantum computing industry is taking steps in this
direction, for example, the Qiskit Runtime environment.

Third, larger NISQ devices will allow larger networks to
be simulated. In this regime, we may find practical simula-
tion advantages. However, NISQ devices have yet to show
a simulation advantage [89], [90], [91], [92], [93], [94].
Nevertheless, NISQ devices are predicted to provide sim-
ulation advantages in the near-term [27], [95] As an aside,
we note that larger networks can be simulated using smaller
quantum devices where an exponential increase in the
number of circuit evaluations is accrued [96], [97]. Such
methods are only feasible if wide parallelization across
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NISQ devices can offset the exponential increase in circuit
evaluations.

C. ADAPTING VQO TO QUANTUM NETWORK HARDWARE
In principle, the VQO framework depicted in Fig. 4 can be
run on a quantum network rather than a quantum computer.
The key requirement is that the network devices have free
parameters that can be tuned continuously, and are, therefore,
differentiable. In fact, hybrid optimization techniques on
photonic systems have previously demonstrated the ability
to maximize the violation of the CHSH inequality [28], [29].
Hence, our VQO framework could be extended to similar
photonic implementations of quantum networks [46], [47],
[48], [49], [50].

A key advantage of extending our VQO framework to
quantum network hardware is that network protocols can be
optimized against the noise inherent to the quantum network
hardware. That is, the noise and biases on quantum comput-
ers may not accurately reflect the noise and biases on quan-
tum network hardware. Hence, communications protocols
optimized on quantum network hardware will be more robust
because they are tailored specially for the hardware they run
on. Therefore, the cost of noise tomography [18], [19], [20]
can be avoided altogether.

Deploying VQO on quantum networks may provide a
means of automating device integration and maintenance
in quantum networks. Using VQO, quantum network de-
vices may be able to automatically align photon polarization
bases, maintain the communication capacity of channels, or
set up device-independent protocols. Such self-organization
amongst network devices may significantly reduce the man-
ual work and expertise needed to build, scale, and maintain
quantum networks.

VII. DISCUSSION

In this work, we introduce a hybrid, VQO framework for
noisy quantum communication networks. We implement our
optimization framework in the gNetVO Python package [69].
To showcase our optimization techniques, we maximize non-
n-locality in noisy quantum networks simulated on both clas-
sical and quantum hardware.

In Section V, we demonstrate on a classical simulator that
our VQO methods can find the maximal n-local violations in
the presence of a wide range of noise models. For each noise
model, we show a close correspondence between the theo-
retically maximal n-local violations derived in Appendix D
and the maximal n-local violations obtained via VQO. That
is, our VQO software leads to accurate theoretical results.

In Section VI, we demonstrate on a quantum computer
that our VQO techniques can maximize non-n-locality in a
quantum circuit run on noisy hardware. We show a close cor-
respondence between the amount of non-n-locality expressed
by the optimized circuit and the circuit designed using theo-
retically optimal parameters. Furthermore, we discuss how
parallelization and larger quantum computers can be used
to broadly improve the performance of VQO methods. In
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principle, our methods can be deployed on quantum network
hardware and used to optimize network protocols against the
inherent hardware noise. Such engineering paradigms could
be valuable for automating the setup and maintenance of
quantum networking applications.

In practice, our VQO techniques are both convenient to
apply and useful for gaining theoretical insights. For exam-
ple, the numerical results posted in a preprint of this work
led to the derivation of the maximal n-local star and chain
scores in (37) and (38) [83]. Therefore, our VQO methods
may be useful for other optimization problems in quantum
networking. As noisy quantum computers scale and improve,
our VQO techniques show promise of practical advantages
on quantum computers. Thus, it is conceivable that VQO and
other hybrid computing technologies will be essential to the
design and development of quantum networking protocols.

A. FUTURE DIRECTIONS

Our framework has proven itself useful to the study of nonlo-
cality in quantum networks having fewer than 20 qubits. We
expect that our VQO framework should also be able to obtain
interesting results when applied to optimization problems
of maximizing entropic quantities, winning probabilities of
multipartite games, or fidelity of quantum protocols. Addi-
tionally, our framework could be extended to allow local
operations and classical communication protocols such as
teleportation, superdense coding, and entanglement swap-
ping, which would increase its applicability immensely.

While we obtain the most valuable results from a classi-
cal simulator, practical advantage on NISQ devices may be
achievable if our methods are broadly parallelized, closely
integrated with quantum hardware, and scaled to the largest
available devices. On the noisy IBM quantum hardware, we
found an interesting feature where the settings optimized on
noisy hardware were optimal in the noiseless case. Investi-
gating the extent to which this feature holds may prove to
be important in the practical application of VQO of NISQ
devices. Finally, one advantage of our VQO framework is
that it can be implemented on network hardware to optimize
network protocols against uncharacterized hardware noise. It
is important to verify that VQO can, indeed, be deployed on
quantum network hardware.

Finally, the optimal state preparations for nonlocality in
the presence of unital and nonunital noise could be studied
more broadly by considering additional Bell inequalities and
noise models.

A. CODE AND DATA AVAILABILITY

Our VQO framework is released as a public Python package
called gNetVO [69]. All numerics and data are found in a
supplementary codebase on GitHub [70]. All optimizations
were run within a few minutes to hours on a 2018 MacBook
Pro having a 2.6-GHz 6-Core Intel Core i7 processor and
16-GB 2400-MHz DDR4 memory.
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APPENDIX

A. NOTATION GLOSSARY

TABLE 1 Glossary of Mathematical Notation Used Throughout This Work

Symbol Terminology Definition

A; Source device Labels the i'h source device that emits an M-qubit state. We treat AA; as the set of M qubits
A; C [N] emitted from the source where M = |A;|. Typically, we consider two-qubit states where
M = 2 in this work.

Aj Measurement device Labels the j™ measurement device. We treat A; as the set of M qubits A; C [N] measured by the
device where |A;| = M.

Ly Quantum link Labels the k™ link between a source and measurement device. We treat Ly, as the set of M qubits
L C [N] that are sent over the link where |Ly| = M.

X Set of classical inputs For a network with m measurement devices that each have classical input, the input alphabet is

for the network A = X1 % - % Xy All devices considered in this work have binary inputs such that |R:'j| =2
and |X'| = 2™. A classical input to the network is then £ € X’
A Set of classical outputs For a network with m measurement devices that each have a classical output, the output alphabet is
for the network A= A1 % -+ % A All devices considered in this work have binary outputs such that |A4;| = 2
and |.4| = 2™, A classical value output from the network is then @ € A.

|wphNet) Network pure state In total, a quantum network prepares the pure state |¢N‘? = @7, [¢ti), where the state output
from each source is defined on its own Hilbert space, |1,b \') € HM.

phet Network mixed state In the noisy setting, a quantum network prepares a mixed state pN* = @', p™¢, where each source
emits the state defined by the density operator pi € D(H™ ).

.;'\[-?“ Network noise model In total, the network’s noise is modeled by the CPTP ng) N};“ = ®L=1 N,ﬁ_"

We also consider noise on sources as N:.?"‘ = @7, N,;' and measurement
. " Aj
devices as .;'\fg" =@ N/
Hgle% Network measurement In total, the network measures projector-valued measure H;lﬂf = ;’;1 H:,"l > Where
7177
operator Yaca H?T} = I, for a network containing N qubits.

Pret Network behavior A column stochastic matrix, Pye = 3 aeA > fex P(d|%) |@)(Z|. For a quantum network, the
conditional probabilities are calculated as P(d|Z) = Tr [HET;..A?‘“ (N }]‘

E‘;‘* Detector error model A column stochastic post-processing map that adds error to a network behavior as Pfqﬂ = Eg"‘PNel.

zZ Set of qubit For a network simulated on IV qubits, the set of all NV-bit measurement outcomes is Z where

Measurement outcomes |Z| = 2. The output N-bit string is then Z' € Z.

UNe Network ansatz circuit The unitary operator that simulates a quantum network’s conditional probabilities
P(Z%) = | (Z]UN|0... 0} |? where UN = Upgeas UnrUprep decomposes into preparation, noise,
and measurement layers.

Cost(Pret) Network Cost Function A generic function on a network behavior that is minimized during optimization. The cost function
can be tailored to a wide range of optimization problems. Throughout this work, we minimize the
cost function Cost(Pnet) = —Sgei(Pnet) to maximize the Bell score,

LN Set of n-local network The set of network behaviors whose probabilities P(@|Z) all can decompose as Eq. (3).

behaviors

QNet (Am“) Set of quantum network The set of quantum network behaviors whose probabilities all can decompose as Eq. (4) for a fixed

behaviors noise model AN, In the noiseless case, we use QNet = QNet(jghety,

Og“ Network observable In total, the network measures the Hermitian observable Og“ = ®_‘1’."=1 Off .

Spent(P) < 8 Bell inequality An inequality that tightly bounds the n-local set. The quantity, SBe“j(\I;J is referred to as the Bell
score and /3 is the n-local bound. For convenience, we use S (Og“, et pNet) to denote the Bell
score for a fixed observables, noise model, and state preparation.

SN Maximal Bell score The maximal Bell score that can be achieved for a fixed state preparation,
max, Spen (ON% idNet, phet)

Ogﬂ BelllYz» 2 P :
§§°1| (NNety Maximal noisy Bell The maximal Bell score that can be achieved in the presence of a fixed noise model,
score max e e S(ON, NTet, pNety
ol et 51077, N,
Tp Two- qubit correlation The nonlocal content of a two-qubit state p is contained by its correlation matrix T, € R3*3 that
matrix has elements T,g”k) =Tr[o; ® op] where j, k € {z,y,z}.
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B. PREPARE AND MEASURE ANSATZES

TABLE 2 Various Preparation and Measurement Ansatzes Used Throughout This Work

Number of

Ansatz name Ansatz circuit parameters Ansatz Description
Parameterizes all M-qubit pure state
Arbitrary preparations. See the
M-Qubit Pure oMM K M - ArbitraryStatePreparation method in
State Preparation |0) 7 v (¢) 7= |¢| =M+l _9 PennyLane for implementation details.
|&+) State 0)—# F——
preparation None Prepares the state |[®) = (|00) + [11))/v/2.
|0)————
|w+) State o — H ——
preparation None Prepares the state |U) = (|01) + |10))/v/2.
|0) p—

Maximally (-) | Parameterizes all 2-qubit maximally entangled
Entangled State ID)_E Rot (¢ state preparations using an arbitrary qubit
Preparation |6 = rotation Rot($) = R.(¢1)Ry(d2) Rz (d3).

|0) D
Nonmaximally Parameterizes a family of separable through
0 R. |—0— .
Entangled State | >_| Ry(91) |_| (¢2) maximally entangled states as
Preparation |¢| =2 [} = cos(¢1/2)|00) + sin(¢s/2)e'*2 [11).
10) ©
Arbitrary
M-Qubit (1L, T }®M Parameterizes all M-qubit projective
Projective M i Tz measurements. See the ArbitraryUnitary
Measurement #— U (é) a Elz |l§] =22M _1 | method in PennyLane for implementation details.
Parameterizes all M-qubit projective
a R.(O
M-Qubit local R, %) measurements that decompose as
measurement : : : |3_] =M Hﬁi = @71, Ry(:) |2%)(2%].
|92 )— Ry (1)
Parameterizes all M-qubit projective
Arbitrary local |xb‘“} Rot(ﬂl) measuref‘l;ents that decompose as
A n - -
qubit ] M7 = @“1 Rot(g;) [2%) (2% | where
measurement : 6] = 3Mm Rot(¢) = Ro(¢1)Ry(d2) Rs(¢3).
[$%)— Rot(ds)

Notes: For each ansatz, we provide the circuit diagram, the number of tunable parameters, and a short description of the parameterization.
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C. N-LOCAL VIOLATIONS IN STAR AND CHAIN
NETWORKS WITH K CLASSICAL SOURCES

It is important to note that the maximal n-local violations
in (37) and (38) are larger than those reported in previous
works [85], [86], [87]

S s = T T2+ TIL 2 (85)

S Chain(PN) = \/ [Tiz1 70 + [ Tizi i (86)

that is, §% 5, (™) = S} 5,0 (PN) and 5} (PN =

.S""rl Chaln(pl'“r"'t) The key distinction these two maximal vi-

olations is that (85) and (86) assume that multiqubit mea-
surements are assumed to take the form Ogj = ®LA l o, and

0‘? I = L / ll o, whereas (37) and (38) assume general local

qubit observables OA; = lA | | OF.

We now outline two extreme eases where (37) and (38)
lead to n-local violations that are significantly larger than
those of (85) and (86). First, we consider networks that have
k < n sources that emit the classical state |00)(00|. In this
setting, we discuss two extreme examples where there is
a large separation between the maximal n-local violations
given by (37) and (38) and those given by (85) and (86).

Prediction 1: Consider an n-local star network that has
k classical sources {,o = |00){{]0|}‘EC , and n—k quan-
tum sources that each produce the Bell state {p =
|®*F)N®*|}2,, . Since the correlation matrix T|00}{00|
diag(1, 0, 0), (85) predicts that n—Star({p i 1) = 1. Thus,
if the n-local star network contains one or more classical
sources, then its non-n-locality is broken.

Counterexample 1: Suppose that for inputs x;, y € {0, 1},
the observables 0‘;‘; = (1 — x;)o; + x;0, and Of‘ = o, are
applied to each classical source p‘\" = |00)00|. The result-
ing two-body correlator is then (OﬁfO_f"}p.\‘- = (1 — x;). This
measurement strategy is equivalent to the classical protocol
where the interior node B; outputs 1 with certainty while the
exterior node A; outputs 1 if x; = 0, and otherwise, outputs
+1 with equal probability. The remaining n — k quantum
sources implement the optimal measurements for the viola-
tion of the n-local star inequality [41]. Then, using (35) and
the fact that all correlator terms with x; = 1 vanish due to the
uniformly random =+1 output from A;, we find that

1/ 1\
hy= 3 (E) (87)

from which it follows that

Sy Star = 2 (2—2 (%)_k) " (\/E)_k >1. (88)

Thus, we have described a partially classical strategy that
outperforms the “maximal” score predicted in Prediction 1
by using (85).

Prediction 2: Consider an n-local chain network
having exterior sources that prepare Bell states

4100127

oM = pM = |®+)®*| and interior sources that prepare
the classical states {pAf = |00}{00|}:;é Since the
correlation matrix Tjooyoo; = diag(1, 0,0), (86) predicts
that S‘:Chm({p i}i_,) = 1. Thus, we predict that if the
n-local chain network contains one or more classical
sources, it cannot generate non-n-local correlations.

Counterexample 2: Consider an n-local chain network
having N = 2n qubits where sources A; = (q;, gp) and
A, = (gn_1,qn) are quantum and the remaining sources
A; = (g2i, g2i4+1). If the Pauli observable 0? = o, is applied
to each qubit prepared at a classical source, then

N-2

(03} = (0108 gy (T
)y
= (onozo-on )|d>+¢+){d>+d>+| (90)
(OO g O

where the inputs and observables are relabeled in the last
line to yield the Bilocal network correlator. It follows that
if the optimal Bilocal measurement strategy is applied on
qubits (g1, g2. gnv_1. gn). then the maximal bilocal score is
S Chain = V2. Thus, we have described a partially classi-
cal strategy that outperforms the “maximal” n-local score
predicted in Prediction 2 by using (86). Furthermore, this
example is not limited to the classical state [00)(00|, but can
be extended to any state pi that satisfies Rank(T ;) where
the important requ1rement for this protocol is that expeetatlen
of the parity ]_[ —3 (O‘?J) a; = =1 is constant.

D. MAXIMAL N-LOCAL VIOLATIONS IN THE PRESENCE OF
UNITAL NOISE
In this section, we provide a theoretical analysis of the max-
imal n-local violations in star and chain networks that have
unital noise. In the following sections, we derive the maximal
n-local star and chain scores S" starV 1'q"") and S*  Chain NV Net)
that can be obtained in the presence of unital channels includ-
ing qubit depolarizing, qubit dephasing, source depolarizing,
and detector white noise.

In the qubit case, the theory of unital channels is well
known [98]. A unital qubit channel { can be expressed in
Pauli basis as a 3 x 3 matrix

3 Te[otde] 1l ©92)

i, jelx,y.z}

My =

where the operator My, is applied to the Bloch vector §of the
input state p as ¥ = My to produce 7 the Bloch vector of
the output states I/ (p). An important property of unital qubit
channels is that the matrix My, can always be diagonalized
using rotations Rj,, Ry, € SO(3) such that

RoutMMRin = diag(u(}, up, “2) = MM* (93)
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where the singular values are bound as 1 > uy, 4y, u; = Oand
can be permuted along the diagonal of My~ without loss of
generality.

By the isometry between SO(3) and SU(2), the rotation
operators R;, and R, correspond directly to unitaries Vi, and
Vout € SU(2) applied to U as

U*(p) = Vould (Vinp Vs Vel 94)

where u;0; = U(o;) is an eigenoperator of the unital channel
U. We use this property in the following theorem to derive the
maximal CHSH score that can be obtained in the presence of
unital qubit noise and projective measurements.

Lemma 1: Consider a CHSH scenario having a unital
qubit noise model NN = U4 @ YB. The maximal noisy
CHSH score is achieved using a maximally entangled state
preparation [)* = VA @ VB|®T), that is,

SensuU* @ UP) = Sty U @UE(Y) (W IY)). (95)

Proof: Consider a two-qubit mixed state p € DHA ®
HPB) and local qubit PVM observables, 0§ =d, -6 and

Of = Ey - &, where @ are 3}. Bloch vectors of unit length
\d@| = |by| = 1. The CHSH score is Scusp = Y50 (0%28)p.
where

0)" = 0} +(-1y0}) @ 0f (%)
= (@ + (—1)a@1)-6 ®b, - 5. 97)

Let o = UA @ UB(p™), then
(ogﬂ}ﬁA =Tr [oj}ﬂu" QUB (pA)] (98)
=Te[uM out® (0f%) | (99)
=Tr [5’;3 pA] (100)

where the adjoint of a unital channel is unital. The unital
qubit channels 244 and U® can be diagonalized as in (94)
such that My = diag(uf}, u’)?, u‘zq), whereu‘;,cl > u‘; > ug and
similarly for M;.z. Then, the correlation operator for observ-
able 0% is expressed in terms of Pauli vectors as Top =

|d@o + (— l)yal b | and the correlation operator of the noisy
observable OA is

Toan = Mypa |Go + (—1P@1)(ByIMyes (101

= |dy + (=17 a1)(B| (102)

where @, = (#day, u"a}, ula;) and By = (uBby, ufb ubb,).
We make the important observation that Rank(Tom) =1,
where the rank is 0 in only the case where the unital channel
is fully depolarizing uj = 0forall j € {x,y, z}. Furthermore,
since Tr[OAB OAB =11 = 0, the operators are linearly indepen-
dent, which implies that Rank(Tow + Toas ) =<2

Next, Proposition 1 from Zhang et al. [64] states that for
any 4 x 4 matrix M = Zl _j=11i,joi ® o; whose correlation

VOLUME 4, 2023

operator Ty = Zi,:':l t; jli)j| satisfies Rank(Ty) < 2, the
quantity Tr[Mp] is maximized by a maximally entangled
state p = |[¥ )|, where |¢) = VA ® VB|®T). 1t follows
from Proposition 1 that there exists a maximally entangled
state p = [yr)(y| that simultaneously maximizes Tr[OA

Tr[OABIp] and Tr[(045, + OAB 1)p] because the correlatlon
operators To‘lﬁ’ and Todg are orthogonal and each rank-one.

That is, the correlahon operator for a maximally entangled
state is diagonalized as T, = diag(1, —1, 1); hence, p can
simultaneously maximize two observables if their correlation
operators are orthogonal as Tr[TOAg TO;.B 1. Since there exists

amaximally entangled state, ||{/}(l{/ |A that maximizes the ex-
pectation of (0;‘3}9.\ for both y = 0, 1, maximally entangled
states are optimal for achieving the maximal CHSH score in
the presence of unital qubit noise. u

Lemma 1 shows that maximally entangled states achieve
the maximal CHSH violation in the presence of unital qubit
noise. However, maximally entangled states are not guar-
anteed to be optimal when multiqubit unital channels are
considered at sources or measurement as in Fig. 6(a) and (c).
Since the maximal n-local star and chain scores in (37) and
(38) factor as the maximal CHSH score on each independent
source, Lemma 1 can be extended to star and chain networks,
allowing us to derive their respective maximal n-local scores
in the presence of unital qubit noise.

Theorem 1: Consider an n-local star network having local
qubit PVM measurements and a unital qubit noise model on
each source N4 = YA ® UP. The maximal noisy n-local
star and chain scores are

Sh-Star (NNet) - ; [ 1Stusu @ ® uB")% (103)
=1
n—1
8 Chain (NNet) = S s WM N T Jubud
= (104)

where Sty @4 @ UP) = 2,y ufi? + (i and
up = uy are the two largest singular values of matrix My, as
in (92).

Proof: We begin by deriving the maximal noisy CHSH
score .S“(":HSH(L{A ® UP) for a single source. By Lemma 1, the
optimal state preparation for CHSH violation is a maximally
entangled state |r) = VA® VB|(D+), where the Bell state’s
correlation operator is Tj¢+ye+| = diag(1, —1, 1). Since we
allow qubit unitary freedom on the state preparation and
measurement, we can diagonalize the unital qubit channels
in the Pauli basis as My, = diag(u}, uf, uj) and Mys =
dlag(ul, 2 ""0) where ug > u; > up. Then, p =UA ®
UB(|@+)®T]) can be expressed as

Tpi‘\ = MMAT]¢+){¢+|M (]05)

= diag(ufuy, —ujus, ugug). (106)
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Noting that 7; = u'}‘u?, we use (39) to find

Stusu@* @UP) =2,/ hub)? + @i, (107)
Then, inserting Siye (U ® UP) into (37) and (38), we re-
cover (103) and (104), respectively. Finally, since T|¢+){¢+|,
ME‘:‘,, and Mg are diagonal, the singular values of 7, and the
resulting Bell scores are maximized. |

1) MAXIMAL N-LOCAL VIOLATIONS FOR QUBIT
DEPOLARIZING NOISE
Proposition 1: Consider a star or chain quantum net-
work having a qubit depolarizing noise model, Dvrfet =
X, D:;i_ ®'Df§‘_. The maximal n-local star and chain
scores are
1

St ser (DY) = V2 (ﬂ ”) (108)
i=1
n 3
Sh-cuain (D) =2 (H v“‘*‘vs") (109)
i=1

Proof: A qubit depolarizing channel is diagonalized in the
Pauli basis as Mp, = diag(v, v, v). (108) and (109) follow
directly from Theorem 1. |

2) MAXIMAL N-LOCAL VIOLATIONS FOR QUBIT
DEPHASING NOISE

Proposition 2: Consider a star or chain quantum network
having a qubit dephasing noise model ’PN"" X, 'P’A - ®

PBB'_. The maximal n-local star and chain scores are
¥

n

s (PF) =TT+ (=7 (1= 7%)% 10

Shcnain (PY) =S5 (P4, ©
(111)

Proof: A qubit dephasing channel is diagonalized in

the Pauli basis as Mp, = diag(y/1 —y, /1 — ¥, 1). Equa-
tions (110) and (111) follow directly from Theorem 1. W

3) MAXIMAL N-LOCAL VIOLATIONS FOR DETECTOR
WHITE NOISE

Proposition 3: The postprocessing map modeling white
noise detector errors

y (1 1
W, =(1—p)+=
y = V)+2(] 1)

is a unital channel because it is equivalent to the M-qubit
depolarizing channel

(112)

Da-p®) = (1= )X + JglwTr X1 (113)
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% ® P, ®Py3").

acting upon the detector’s local projective measurement Iy,
as

1
Wiy = DI]_};)(H:Hx) =(1— )y, + E]IM- (114)

Proof: The M-qubit depolarizing channel D(_,)(X) =
(1—y)X+ EJ;TIIMTr[X ] has Hermitian Kraus operators K; =

K; thus, Dy_y)(X) = D;_,,(X). Then

D, (Map) = (1 = y) gy + LM]IMTI' [My] (115)

1
= (1= y)g+ Sly (116)
= Wi,y (117)

[

Proposition 4: Consider a quantum network with a detec-
tor white noise model N Net — @™ i1 DA]" vy The maximal
noisy n-local scores for the star and chain networks are

g1 1/n
Stsi (V) =vZ [T =) (118)
j=1
Sronan (V) =V [T =7, (19)

Proof: As given by (52), white noise on each detector is
modeled by a POVM with elements Wy, ,, = (1 — ¥ )Py +
y Wi |x, where Py, are projectors onto even and odd par-
ity subspaces and Wy, is a white noise POVM. The corre-
sponding dichotomic observable having +1 eigenvalues is
constructed as

A.
WX_;'{?’j = W+|Xj|?‘j - W—Ixj‘?j (120)
= (1 =) (Pyx — Pp) (121)
A.
=(1- }/“,')OJ,E;I (122)

A, . .
where Ox}' is the observable in the noiseless case. By (29),
the m-partite correlators are written

(WNﬂ} Nt = I [(®?=1(1 - }Q,')Oﬂj!) pNet]

- E[]u - (o) .

where m = n + 1 is the number of measurement nodes in the
star and chain networks. Since |(ON¢t)| < 1, it must hold that
|{Wg;‘)| < [Tj=1(1 — y;), where the upper bound is only
achieved when the optimal strategy non-n-locality is used.
For the noisy quantum network, the quantity I, y defined in
(35) is bound as

(123)

(124)

n+1

| < 1‘[(

(125)
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Hence, the maximal noisy n-local star score is

n+1 1n

[Ta-v»
j=1

and achieved using the optimal noiseless strategy for the star
network [41]. Likewise, if the optimal strategy for the chain
inequality is used [42], then

8t s W) = V2 (126)

n+]
]_[(1 i) (127)
and the maximal noisy n-local chain score is
S:t NNE[ ‘/_ n+1
n-Chain ( 7 ) =2 szl(l — Vi) (128)
|

E. MAXIMAL N-LOCAL VIOLATIONS IN THE PRESENCE OF
NONUNITAL NOISE

In this section, we derive maximal violations of n-locality
in the presence of nonunital noise models. We begin with a
general discussion on nonunital qubit channels. It is useful
to note that upon local unitary rotations, as in (94), a qubit
nonunital channel can be represented in the Pauli basis as

1 0 0 O
0O u 0 0
Ty, = N 129
Ny 0 0 u 0 (129)
t; 0 0 u

where we write the 3 x 3 matrix block on the bottom right as
MN,, = diag(uy, uy, u;) similarly to the case of unital chan-
nels in (92).

Proposition 5: Consider two nonunital qubit channels
N* and N of the form in (129) acting upon an arbitrary
nonmaximally entangled state prepared as p; = |y V|,
where |;) = \/I|00} + /1 —A|11) and X € [0, 1]. Given
the noisy two-qubit state 5; = N4 ® NB(p,), the maximal
CHSH score is

2, [ B )2 + (ufuB 2, y €10, vl

Seas(Pre.y) =1 2 (WhuB? + (M8 + b’
1
(Bl (AP B\ 2
~Smgrmranay-) e <l
(130)

where A* = arg max;c(o,1] Stusu(fr), Ye is the crossover
noise parameter where the two cases in (130) are equal, and
[ux| = |uy| without loss of generality. Furthermore, A* = %
when y € [0, y,.] and when y € [y,, 1],

A+B AB AB B
(1 (218 + uluB)(tu +uAI)). 1

(tAub + u?rf)z (uhuB)?

1
==
2
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Proof: In the Pauli basis, p; = [ )(; | is expressed

1 0 0 22— 1
r | 0 2VAWT-X 0 0
SO 0 —2V/aT=%
22— 1 0 0 1
(132)

The qubit nonunital channels N4 and N'® are applied as

T5, = TpaT,, T s, where the singular values of Tj, are
7= 2B A (1 =) (133)
1y = 2uju/A(1 = 1) (134)
v, =B+ ulul + @0 — 1) (2B +u?iB). (135)

We find max; ¢[o, 1 ‘S?:HSH@U by checking the singular value
pairs (ty, Ty) and (7, ;) where it is assumed without loss of
generality that |z;| > |z,|. For the pair (y, 7y), we find

lré%g)%]r + ‘t = Ag;gﬁﬁk(l —A) ((u‘;,}r.«r?)2 + (ufuf)z)

)

where A* = :1! is the optimal entanglement parameter. Insert-
ing (136) into (39) recovers the y < [0, ] case of (130).
Next, we consider the singular value pair (z,, t;), where

max 2+’ = max 41(1 — A)(utuBy?
A€[0,1] T aeo,

+ (2 i + @r— ) ([ + ).

To maximize, we take the derivative of the RHS with respect
to A and set the result equal to 0. We solve for the critical point
A* and find it to be given by (131). Inserting A* into (137) and
rearranging the terms recovers the y € [y, 1] case of (130).

|

= (whuB)’ + (136)

(137)

1) MAXIMAL N-LOCAL VIOLATIONS FOR QUBIT AMPLITUDE
DAMPING NOISE

Proposition 6: Consider an n-local star network hav-
ing maximally entangled states pNet — Qi 1Y )|, where
|¥) = UA ® UB|®+), local qubit PVM measurements, and
an amplitude damping channel applied to each qubit as
N Net — @7, A 4; ® A_s;. The star network inequality in
(34) is violated 1f and only if

(=) (1 =r") = 3

and for yA" and yB" e [0,
is

(138)

%], the maximal n-local star score

1
S suar( D) = (Jz(l— f’h)(l—y&)) . (139)
ll

Proof: Let p = |®"){¢™| be a maximally entangled state

preparation and uy = Uy = /1 —y, u; = (1 —y),and t; =
y be the nonunital channel parameters for the amplitude
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damping channel. Substituting these values into the singular
value expressions listed in the proof of Proposition 5, we find

Tix = Tiy = \/(1 —yA)(1 —yBi)
A1 — P,

In the domain y4, y& € [0, %], the maximal singular values
are (ty, Ty). Therefore, (39) calculates the maximal CHSH
score as

(140)

Lo=yhiyBir -y (141)

Stusu(P) =221 —yH(1 —yB)  (142)

for which the CHSH inequality is violated if and only if
(1- yA)(l — yB) > 1. We then verify that for y € [;, 1]
and y c [0 1], no v1olat10ns occur because r + ‘t <1
and ‘t + r < 1 (and similarly for the values y € [0 1]
and y c [é, 1]). Thus, the CHSH inequality is violated only
when (1 — y‘”‘)(] — yB) > %.Since Ty = Ty are the two max-
imal eigenvalues of R, when y*, y® € [0, 11, (37) can be
applied to recover the n-local star score in (139). Finally, the
Bell state |®T)(®*| and amplitude damping channel are both
diagonal in the Pauli basis; therefore, the evaluated score is
maximal. ]

Proposition 7: Consider the CHSH scenario with uni-
form qubit amplitude damping noise A‘;‘, ® Af , where y4 =
yB = y. For a noisy nonmaximally entangled state prepa-
ration fy,;, = Aj ® AZ(12)(¥al)., where [v2) = v/A100) +
+/1 — A|11), the maximal CHSH score is

24/2(1 — )2,
Stusu(Prry) = \/(1 ¥} —

y € [Os yC]

Qr=rtll y e lye, 31

4y

y el3,1]
(143)

where the optimal entanglement parameter is

k] }} S [07 }}C]

2 2 _
(] _ i ad—y)2yd ?’))) y € [}"67 %] (144)

AY =
- Qy(1—y)2—(1-y)* |
y €l3,1]

— b= b =

the crossover noise parameter is

1 (3114 — 32)%
Ye = E 4+ 3 -
23

i ) (145)

(64/114 — 64)3
and the nonlocality is broken with respect to the CHSH in-
equality when y = yp = 3

Proof: Using Proposition 5, we first substitute the values
Uy =ty =/T—y,u; = (1 —y),andt; =y 1nt0(130) and
(131) to obtain (143) and (144). Note that when y € [3, 11,
then A* = 1 and the optimal state preparation corresponds
to the classical state |00)(00]. Setting A = 1 in (137) yields
Stusu(Pr=1) = 2, which implies that the CHSH nonlocality
is broken for all nonmaximally entangled states when y = %
Fory = l, the classical state preparation |00){00| is optimal
and achieves the classical bound.

4100127

We now solve for the crossover noise parameter y, at
which the optimal state preparation switches from being
maximally entangled to nonmaximally entangled. We thus
set the two cases in (63) to be equal and solve for y to find
(145). |

Proposition 8: Consider the CHSH scenario with single-
qubit amplitude damping noise .Aﬁ ®id®, where y4 =
y. For a noisy nonmaximally entangled state prepara-

tion, /.y = A} ® id%([yaXyal). where [y5) = VA|00) +
+/1 — A|11), the maximal CHSH score is
2./2(1 — 0
Sts(ie) = [ VET=7) v el0al (1)
7 }} € [21 ]-]

where A* = % when y € [0, %] and A* = 1 wheny € [%, 1].
Proof: When nonmaximally entangled states are consid-
ered, we use Proposition 5 to find that

L 1 (I—y)y )
ol d=v)y 147
2( y2—(1—-vy) (4
which yields
i (1—y)*y?
J— — —_ 2_—
SEHSH(pl)—zJ(I y)+d—y) 2_(1—y)
(148)

However, A* = 1 when y = :1! and within the domain y €
[0, %], it can be verified that

( -7y’
—(1=v)
Thus, when amplitude damping is applied to a single qubit,
maximally entangled state preparations are optimal on the
range y € [0, %] and the classical state preparation is optimal

fory €[4, 11. ]

A—y)=(1—y) - (149)

2) MAXIMAL N-LOCAL VIOLATIONS FOR BIASED
DETECTOR NOISE

Proposition 9: The biased detector error postprocessing
map

11
Ryz(l—y)Hery(O 0) (150)

is nonunital and equivalent to a partial replacer channel

Ryx(p") = A= y)p" +ypTe[p"] (151
that is applied to the quantum state p™i, where the replacer
state p, is a density operator contained by the projective

Aj
subspace of IT .
Proof: Consider an M-qubit partial replacer channel hav-
ing a pure replacer state p, = |y )}y;|. The Kraus operators
are

Vie[0,2Y), Ku = V1 -yl

(152)

K = /v |wi)il
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M
where {|i) }%=0_ ! form an orthonormal basis. Then, for a mea-
surement operator I1,, we find

Tr [, Ry (0)] = ZTr[nﬂxK,-ij] (153)
=Y T [@nﬂxmp] (154)
=Tr [R;‘,(Hﬂx)p] : (155)

If the replacer state [y.) lies within the projective subspace
of Iy such that (Y[ [T1 | [y;) = 1, thus

Ri (Myp) =Y KT K (156)
i
==y
M1
+y Y ] My [yl (157)
i=0
= (1= y)ype + y L. (158)
However, repeating the procedure for II_j, yields
R} (M) = (1 —y)[_pr because (Y|T_jx|¥;) = 0.
Thus, we recover the POVM in (82) from considered
replacer channel R, ;. |
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