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Abstract—In 2004, Dai, Lathrop, Lutz, and Mayordomo de-
fined and investigated the finite-state dimension (a finite-state
version of algorithmic dimension) of a sequence S and, in 2018,
Case and Lutz defined and investigated the mutual (algorithmic)
dimension between two sequences S and T . In this paper, we
propose a definition for the lower and upper finite-state mutual
dimensions mdimFS(S : T ) and MdimFS(S : T ) between two
sequences S and T . Intuitively, the finite-state dimension of
a sequence S represents the density of finite-state information
contained within S, while the finite-state mutual dimension
between two sequences S and T represents the density of finite-
state information shared by S and T . Thus “finite-state mutual
dimension” can be viewed as a “finite-state” version of mutual
dimension and as a “mutual” version of finite-state dimension.

The main results of this investigation are as follows. First,
we show that finite-state mutual dimension, defined using
information-lossless finite-state compressors, has all of the proper-
ties expected of a measure of mutual information. Next, we prove
that finite-state mutual dimension may be characterized in terms
of block mutual information rates. Finally, we provide necessary
and sufficient conditions for two normal sequences R1 and R2

to achieve mdimFS(R1 : R2) = MdimFS(R1 : R2) = 0.
Index Terms—finite-state compression, Shannon entropy, mu-

tual information, finite-state dimension, normality, independence

I. INTRODUCTION

The study of algorithmic dimension has yielded various
mechanisms for quantifying the density of information con-
tained within infinite objects, such as points in Euclidean
space [19] and sequences [15]. Recent investigations into
the dimensions of points and sequences have produced new
characterizations of classical Hausdorff dimension [11, 17,
18] and insights into self-similar fractal geometry [8, 10, 19],
among other results. Originally defined in terms of gales (a
generalization of martingales) [15], the dimension dim(S) and
strong dimension Dim(S) of a sequence S ∈ Σ∞ were shown
to have the characterizations

dim(S) = lim inf
n→∞

K(S ↾ n)
n log |Σ|

and

Dim(S) = lim sup
n→∞

K(S ↾ n)
n log |Σ|

,

where K(S ↾ n) is the Kolmogorov complexity of the first
n symbols of S [2, 20]. These characterizations show that
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dim(S) and Dim(S) can be thought of as the lower and
upper densities of algorithmic information contained within
S. The algorithmic dimension and algorithmic randomness of
sequences have been shown to have interesting relationships.
For example, if a sequence S ∈ Σ∞ is (algorithmically)
random, then dim(S) = 1. However, not all sequences that
achieve dim(S) = 1 are necessarily random [15].

The notion of the dimension of a sequence has been
adapted to operate within different contexts in the fields
of computability and information theory. For example, Dai,
Lathrop, Lutz, and Mayordomo developed the notion of finite-
state dimension, which is a finite-state version of algorithmic
dimension [7]. In their paper, the authors define finite-state
dimension in terms of finite-state gamblers. In [7] and [2]
the authors show that the finite-state dimension dimFS(S)
and finite-state strong dimension DimFS(S) of a sequence
S ∈ Σ∞ may be characterized by

dimFS(S) = lim
r→∞

lim inf
n→∞

ρr(S ↾ n)

and (1)
DimFS(S) = lim

r→∞
lim sup
n→∞

ρr(S ↾ n),

where ρr(S ↾ n) is defined by

ρr(S ↾ n) = min
{ |C(S ↾ n)|

n log |Σ|

∣∣∣∣C is an ILFSC that has r states
}
,

and C is an information-lossless finite-state compressor (IL-
FSC) and |C(S ↾ n)| is the length of the output that C
produces when given the first n symbols of S as input. These
quantities can be thought of as the lower and upper densities of
finite-state information contained within S and are also known
as the lower and upper compression ratios of S as studied by
Ziv and Lempel [23].

Other characterizations of finite-state dimension have been
shown. For example, Bourke, Hitchcock, and Vinodchandran
proved that the lower and upper finite-state dimensions of a
sequence S ∈ Σ∞ are equal to the lower and upper block
entropy rates of S, respectively (i.e., the lower and upper
limiting normalized entropies of the frequencies of aligned
blocks of symbols contained within S) [4]. In a recent paper,
Kozachinskiy and Shen show that finite-state dimension can
also be characterized in terms of the entropy rates of non-
aligned blocks of symbols and in terms of superadditive
calibrated functions on strings [13].

There have been several interesting explorations into the
relationships between finite-state dimension and the concept
of normality, which was introduced by Borel in 1909 [9]. A
sequence S ∈ Σ∞ is normal if every string of the same length
occurs with the same limiting frequency within S. Normality



can be viewed as a weaker form of randomness, since every
algorithmically random sequence is also normal but not vice-
versa. In fact, it has been shown that a sequence S ∈ Σ∞ is
normal if and only if dimFS(S) = 1 [4, 7]. Thus the normal
sequences can be completely characterized as the sequences
that achieve finite-state dimension one. This equivalence has
recently been quantitatively refined using the Kullback-Leibler
divergence [12].

Another way in which the dimensions of sequences have
been adapted to fit other contexts within information theory
can be found in the development of mutual dimension, which
was introduced in 2015 by the present authors in [5]. In
this paper, the authors defined the mutual dimension between
two points in Euclidean space and showed that it has all the
properties expected of a measure of mutual information, in-
cluding several data processing inequalities. In 2018, the same
authors extended this framework to sequences and defined
the lower and upper mutual dimensions, mdim(S : T ) and
Mdim(S : T ), respectively, between two sequences S ∈ Σ∞

and T ∈ Σ∞ by

mdim(S) = lim inf
n→∞

I(S ↾ n : T ↾ n)
n log |Σ|

and

Mdim(S) = lim sup
n→∞

I(S ↾ n : T ↾ n)
n log |Σ|

,

where I(S ↾ n : T ↾ n) is the algorithmic mutual information
between the first n bits of S and T [6]. The algorithmic mutual
information I(u : w) between two strings u ∈ Σ∗ and w ∈ Σ∗

is
I(u : w) = K(w)−K(w |u),

where K(w |u) is the Kolmogorov complexity of w given u.
However, this quantity can also be characterized by

I(u : w) = K(u) +K(w)−K(u,w) + o(|u|), (2)

where K(u,w) is the joint Kolmogorov complexity of u and
w. (The interested reader may refer to [14] for an in-depth
discussion on algorithmic mutual information.) Therefore, we
can view the lower and upper mutual dimensions as the lower
and upper densities of algorithmic information shared by two
sequences. In the same paper, the authors demonstrate that,
if two sequences S ∈ Σ∞ and T ∈ Σ∞ are independently
random, then Mdim(S : T ) = 0. However, they also show
that not all pairs of sequences that achieve mutual dimension
zero are necessarily independently random [6].

The goal of this article is to develop a notion of finite-state
mutual dimension (which includes using information-lossless
finite-state compressors in the definition) in order to
provide a mechanism in which to reason about the “mutual
compressibility” of two sequences. Given the quantities found
in (1) and (2), a natural way one might define the lower
and upper finite-state mutual dimensions between sequences
S ∈ Σ∞ and T ∈ Σ∞ is

lim
r→∞

lim inf
n→∞

[
ρr(S ↾ n) + ρr(T ↾ n)− ρr(S ↾ n, T ↾ n)

]
and

lim
r→∞

lim sup
n→∞

[
ρr(S ↾ n) + ρr(T ↾ n)− ρr(S ↾ n, T ↾ n)

]
,

respectively. However, it is unclear whether or not the limits
in the proposed definitions above even exist and, if they
do, whether or not these definitions possess the appropriate
properties for a measure of mutual information. In this article,
we take a different (and less natural) approach to developing
these definitions, one that makes use of iterated limits as
the number of states goes to infinity. Ultimately, we will
demonstrate the robustness of these definitions by relating
them to block entropy rates and to the concept of normality.

The outline of this article is as follows. In Section II, we
discuss the Shannon entropy of a particular class of probability
measures that quantify the block frequencies of strings. Using
Ziv and Lempel’s Generalized Kraft Inequality [23], we are
able to establish upper bounds on the difference between
the normalized entropy of these probability measures and
the compression ratio of strings. We use these bounds to
prove the basic properties of the mutual compression ratio
between two strings. In Section III, we extend the notion of
the mutual compression ratio to infinite sequences and use it to
define the lower and upper finite-state mutual dimensions. We
prove an important theorem regarding the interchangeability of
the iterated limits within the definition of finite-state mutual
dimension, which we then use to prove the properties of
finite-state mutual dimension. In Section IV, we introduce
the lower and upper block mutual information rates between
two sequences S ∈ Σ∞ and T ∈ Σ∞ and show that
they are equal to the lower and upper finite-state mutual
dimensions, respectively. In Section V, we obtain a result
regarding the independence of sequences at the finite-state
level. Specifically, we prove that, if R1 ∈ Σ∞ and R2 ∈ Σ∞

are normal, then the sequence (R1, R2) ∈ (Σ×Σ)∞ is normal
if and only if MdimFS(R1 : R2) = 0, where (R1, R2) is the
sequence obtained by pairing the symbols of R1 and R2 at
the same index.

II. ENTROPY, BLOCK FREQUENCIES, AND MUTUAL
COMPRESSION

In this section, we define and investigate the mutual com-
pression ratio between two strings. To do this, we make use of
some relationships between compression ratios and entropies
of the relative frequencies of strings that were originally
established by Ziv and Lempel [23] and further examined by
Sheinwald [22].

In this paper, we assume that Σ is an alphabet consisting of
k symbols. We write Σ∗ to represent the set of all strings over
Σ and Σ∞ to represent the set of all sequences over Σ. The
length of a string u ∈ Σ∗ is denoted by |u| and we represent
the set of all strings of length n ∈ N by Σn. The empty string
(the string of length zero) is denoted by λ. For any sequence
S ∈ Σ∞, we write S ↾ n for the first n ∈ N symbols of S.



For any string u ∈ Σ∗ and sequence S ∈ Σ∞, we write u[i]
and S[i] for the ith symbol of u and the ith symbol of S,
respectively. For any two strings u ∈ Σn and w ∈ Σn, we
write (u,w) to represent the string

(u,w) = (u[1], w[1])(u[2], w[2]) · · · (u[n], w[n]) ∈ (Σ× Σ)n.

Note that the lengths of u and w must be equal in order
to use the notation (u,w) for strings. Similarly, for any two
sequences S ∈ Σ∞ and T ∈ Σ∞, we write (S, T ) to represent
the sequence

(S, T ) = (S[1], T [1])(S[2], T [2]) · · · ∈ (Σ× Σ)∞.

We will write log for the base-2 logarithm function and logk
for the base-k logarithm function.

A discrete probability measure α on a finite set X is a
function α : X → [0, 1] such that∑

x∈X
α(x) = 1.

Definition. Let α be a discrete probability measure on X . The
Shannon entropy of α is

H(α) =
∑
x∈X

α(x) log
1

α(x)
.

If α is a discrete probability measure on X × X (sometimes
called a joint probability measure on X ), we will write α(x, y)
to denote the value α((x, y)) assigned to the pair (x, y) by α.
The first and second marginal probability measures of α are
the probability measures α1 and α2 on X defined by

α1(a) =
∑
b∈X

α(a, b) and α2(b) =
∑
a∈X

α(a, b),

respectively.
For any n, ℓ ∈ Z+ such that n is a multiple of ℓ and all x ∈

Σℓ and u ∈ Σn, we denote the number of block occurrences
of x in u by

#□(x, u) =

∣∣∣∣{m ≤ |u|
|x|

∣∣∣u[m|x|+ 1 . . . (m+ 1)|x|] = x

}∣∣∣∣,
where u[i . . . j] is the substring of u starting at index i and
ending at index j, for all i, j ∈ Z+ such that i ≤ j. We
represent the block frequency of x in u by πu(x), where the
function πu : Σ∗ → Q[0,1] is defined by

πu(x) =
l

n
#□(x, u)

and Q[0,1] is the set of all rationals in [0, 1]. For all n, ℓ ∈ Z+

such that n is a multiple of ℓ and u ∈ Σn, we denote the
restriction of πu to strings in Σℓ by π

(ℓ)
u . It is important to

note that π(ℓ)
u represents a discrete probability measure on the

finite set Σℓ.
For all x, y ∈ Σℓ and u,w ∈ Σn, we represent the joint

block frequency of x in u and y in w by πu,w(x, y), where
the function πu,w : Σ∗ × Σ∗ → Q[0,1] is defined by

πu,w(x, y) =
ℓ

n
#□((x, y), (u,w)).

We denote the restriction of πu,w to the pairs of strings in
Σℓ ×Σℓ by π

(ℓ)
u,w. Once again, we note that π(ℓ)

u,w is a discrete
probability measure on Σℓ × Σℓ. It is easy see that, for all
x, y ∈ Σℓ, π(ℓ)

(u,w)((x, y)) = π
(ℓ)
u,w(x, y). Also, it is important to

observe that the first and second marginal probability measures
of π(ℓ)

u,w are π
(ℓ)
u and π

(ℓ)
w , respectively.

To prove the main theorem of this section, we must examine
relationships between the Shannon entropy H(πℓ

u) of the
probability measure πℓ

u and the finite-state compressibility of
u ∈ Σ∗. We will also revisit the entropy of block frequencies
and joint block frequencies of strings in Section IV.

A finite-state compressor (FSC) C on Σ is a 4-tuple

C = (Q, δ, ν, q0),

where Q is a nonempty finite set of states, δ : Q × Σ → Q
is the transition function, ν : Q × Σ → {0, 1}∗ is the output
function, and q0 is the initial state. We define the extended
transition function δ∗ : Q× Σ∗ → Q by the recursion

δ∗(q, λ) = q,

δ∗(q, ua) = δ(δ∗(q, u), a),

for all q ∈ Q, u ∈ Σ∗, and a ∈ Σ. The output function ν is
defined by the recursion

ν(q, λ) = λ,

ν(q, ua) = ν(q, u)ν(δ∗(q, u), a),

for all q ∈ Q, u ∈ Σ∗ and a ∈ Σ. The output of C on
the input string u ∈ Σ∗ is denoted by C(u) = ν(q0, u). An
information-lossless finite-state compressor (ILFSC) C is an
FSC where the function f : Σ∗ → {0, 1}∗ × Q, defined by
f(u) = (C(u), δ∗(q0, u)), is one-to-one. Thus we are able to
recover the input string u given knowledge of the output string
C(u) and the last state C entered δ∗(q0, u) after processing
u from the initial state q0. (We note that there exist other
equivalent notions of information-losslessness. For example,
Ziv and Lempel used a slightly different definition that allows
the FSC to start in any state, and when given knowledge of the
output string, the last state entered, and the starting state, the
input string can be recovered. Our definition has been used
by other authors (e.g., [4, 7]) and is equivalent to the one
provided by Ziv and Lempel. Proving this equivalence is a
simple exercise that we leave to the reader.)

The compression ratio of u ∈ Σn attained by an ILFSC C
on Σ is

ρC(u) =
|C(u)|
n log k

.

Likewise, the joint compression ratio of u ∈ Σn and w ∈ Σn

attained by an ILFSC C on Σ× Σ is

ρC(u,w) =
|C((u,w))|
n log k

.

Definition. The r-state compression ratio of u ∈ Σn is

ρr(u) = min
{
ρC(u) |C is an ILFSC on Σ that has r states

}
.

Definition. The r-state joint compression ratio of u ∈ Σn



and w ∈ Σn is
ρr(u,w) =

min
{
ρC(u,w) |C is an ILFSC on Σ× Σ that has r states

}
.

It is important to note that ρr((u,w)) is the r-state compres-
sion ratio of the string (u,w) ∈ (Σ × Σ)n and ρr(u,w) is
the r-state joint compression ratio of u ∈ Σn and w ∈ Σn.
Observe that ρr(u,w) = 2ρr((u,w)), since the definition of
ρr(u,w) divides the compressor’s output by n log k and the
definition of ρr((u,w)) divides the compressor’s output by
n log k2.

We proceed to define the mutual compression ratio between
two strings and explore its properties.

Definition. Let r, t ∈ Z+. The r, t-state mutual compression
ratio between u ∈ Σn and w ∈ Σn is

ρr,t(u : w) = ρt(u) + ρt(w)− ρr(u,w).

The main theorem of this section (Theorem 4) lists the prop-
erties of r, t-state mutual compression ratios between strings.
Proving this theorem requires that we examine relationships
between the individual compression ratios of the strings u ∈
Σ∗ and w ∈ Σ∗ and the joint compression ratio of u and
w. We develop these relationships by converting compression
ratios to entropies of block frequencies (and vice-versa) while
taking into account negligible error terms. To do this, we make
use of an important lemma from Ziv and Lempel.

Lemma 1 (Generalized Kraft Inequality [23]). For any ILFSC
C on Σ with a state set Q = {q1, q2, . . . , qs},∑

w∈Σr

2−LC(w) ≤ s2
(
1 + log

s2 + kr

s2

)
,

where
LC(w) = min

q∈Q
{|Cq(w)|}

and Cq is the ILFSC that is like C except that it uses q as the
initial state.

We also make use of the following inequality that was noted
by Sheinwald in [22]. Originally, Ziv and Lempel noted a
similar inequality in [23].

Lemma 2 (Sheinwald [22]). Let C be an ILFSC on Σ. For
every ℓ, n ∈ Z+ and u ∈ Σn such that n is a multiple of ℓ,

ρC(u) ≥
1

ℓ log k

∑
x∈Σℓ

π(ℓ)
u (x)LC(x).

It is worth noting that Ziv and Lempel and Sheinwald
originally used the notation P (x, u) in place of π(ℓ)

u (x).
Using Lemmas 1 and 2, we are able to establish the

following upper bound on the difference between the nor-
malized entropy of the block frequencies of strings and the
compression ratio of strings.

Lemma 3. Let C be an ILFSC on Σ with s ∈ Z+ states. For

every ℓ, n ∈ N and u ∈ Σn such that ℓ ≤ n,

H(π
(ℓ)
uℓ )

ℓ log k
− ρC(u) ≤

⌊n
ℓ

⌋−1

+ fk
s (ℓ),

where uℓ = u ↾
⌊
n
ℓ

⌋
· ℓ and limm→∞ fk

s (m) = 0.

Using this upper bound (and other similar bounds) we are
able to prove the main theorem of this section.

Theorem 4 (Properties of Mutual Compression Ratios). For
every r, t, n ∈ Z+ and every u ∈ Σn and w ∈ Σn such that
n ≥ max{t′, r′},

1) ρr,t(u : w) ≤ min{ρt(u), ρt(w)}+
⌊
n
t′

⌋−1

+ gkr (t
′)

and lim
m→∞

gkr (m) = 0,

2) ρr,t(u : w) + 2
⌊

n
r′

⌋−1

+ hk
t (r

′) ≥ 0

and lim
m→∞

hk
t (m) = 0,

3) ρr,t(u : u) +
⌊

n
r′

⌋−1

+ ikt (r
′) ≥ ρt(u)

and lim
m→∞

ikt (m) = 0,

4) ρr,t(u : u) ≤ ρt(u) +
⌊
n
t′

⌋−1

+ jkr (t
′)

and lim
m→∞

jkr (m) = 0,
5) ρr,t(u : w) = ρr,t(w : u), and

6) ρr,t(u : w) ≤ ρt,r(u : w) + 3
⌊
n
t′

⌋−1

+ ekr (t
′)

and lim
m→∞

ekr (m) = 0,

where r′ = ⌊logk r⌋ and t′ = ⌊logk t⌋.

III. FINITE-STATE MUTUAL DIMENSION

In this section we define the lower and upper mutual
compression ratios and the lower and upper finite-state mutual
dimensions between sequences and explore their properties.

We begin by discussing the finite-state dimension
dimFS(S) of a sequence S ∈ Σ∞, which was originally
defined in 2003 by Dai, Lathrop, Lutz, and Mayordomo
in [7] using finite-state gamblers. In the same paper, the
authors proved a characterization of finite-state dimension
using finite-state compressors. In 2007, Athreya, Hitchcock,
Lutz, and Mayordomo defined the finite-state strong dimension
DimFS(S) of a sequence S ∈ Σ∞ using finite-state gamblers
and proved that it can also be characterized using finite-state
compressors [2]. In this section, we will use the compressor
characterization of finite-state dimension and finite-state strong
dimension and refer to them as the lower and upper finite-state
dimensions, respectively.

We proceed to discuss compression ratio characterizations
of the lower and upper finite-state dimensions.

Definition. Let r ∈ Z+. The lower and upper r-state com-
pression ratios of S ∈ Σ∞ are

ρr(S) = lim inf
n→∞

ρr(S ↾ n)

and

ρ̂r(S) = lim sup
n→∞

ρr(S ↾ n),



respectively.

Definition. The lower and upper finite-state compression ra-
tios of S ∈ Σ∞ are

ρ(S) = lim
r→∞

ρr(S)

and

ρ̂(S) = lim
r→∞

ρ̂r(S),

respectively.

In the following theorem, the first equality was proven by
Dai, Lathrop, Lutz, and Mayordomo in [7] and the second
equality was proven by Athreya, Hitchcock, Lutz, and May-
ordomo in [2].

Theorem 5 ([2, 7]). For all S, T ∈ Σ∞,

dimFS(S) = ρ(S)

and

DimFS(S) = ρ̂(S).

We now define “joint” versions of finite-state compression
ratios.

Definition. Let r ∈ Z+. The lower and upper r-state joint
compression ratios of S ∈ Σ∞ and T ∈ Σ∞ are

ρr(S, T ) = lim inf
n→∞

ρr(S ↾ n, T ↾ n)

and

ρ̂r(S, T ) = lim sup
n→∞

ρr(S ↾ n, T ↾ n),

respectively.

Definition. The lower and upper joint finite-state compression
ratios of S ∈ Σ∞ and T ∈ Σ∞ are

ρ(S, T ) = lim
r→∞

ρr(S, T )

and

ρ̂(S, T ) = lim
r→∞

ρ̂r(S, T ),

respectively.

The following corollary follows directly from Theorem 5.

Corollary 6. For all S, T ∈ Σ∞,

dimFS(S, T ) = ρ(S, T )

and

DimFS(S, T ) = ρ̂(S, T ).

Next, we introduce the lower and upper r, t-state mutual
compression ratios between sequences.

Definition. Let r, t ∈ Z+. The lower and upper r, t-state
mutual compression ratios between S ∈ Σ∞ and T ∈ Σ∞

are
ρr,t(S : T ) = lim inf

n→∞
ρr,t(S ↾ n : T ↾ n)

and

ρ̂r,t(S : T ) = lim sup
n→∞

ρr,t(S ↾ n : T ↾ n),

respectively.

We now present the definitions of the lower and upper finite-
state mutual dimensions between sequences.

Definition. The lower and upper finite-state mutual dimen-
sions between S ∈ Σ∞ and T ∈ Σ∞ are

mdimFS(S : T ) = lim
r→∞

lim
t→∞

ρr,t(S : T )

and

MdimFS(S : T ) = lim
r→∞

lim
t→∞

ρ̂r,t(S : T ),

respectively.

The first limit in the definitions above exists because both
ρr,t(S : T ) and ρ̂r,t(S : T ) are decreasing in t since ρt(S ↾ n)
and ρt(T ↾ n) are decreasing in t. The second limit also exists
because both

lim
t→∞

ρr,t(S : T ) and lim
t→∞

ρ̂r,t(S : T )

are increasing in r, since −ρr(S ↾ n, T ↾ n) is increasing in
r.

Our first theorem of this section is an important result
that allows for the interchanging of the iterated limits within
the definitions of the lower and upper finite-state mutual
dimensions. The proof of the properties of finite-state mutual
dimensions (Theorem 8) rely on this result.

Theorem 7. For all S, T ∈ Σ∞,

mdimFS(S : T ) = lim
r→∞

lim
t→∞

ρr,t(S : T )

= lim
t→∞

lim
r→∞

ρr,t(S : T )

and

MdimFS(S : T ) = lim
r→∞

lim
t→∞

ρ̂r,t(S : T )

= lim
t→∞

lim
r→∞

ρ̂r,t(S : T ).

The final theorem of this section describes the basic prop-
erties of finite-state mutual dimension.

Theorem 8 (Properties of Finite-State Mutual Dimensions).
For all S, T ∈ Σ∞,

1) mdimFS(S : T )≥dimFS(S)+dimFS(T )−DimFS(S, T ),
mdimFS(S : T )≤DimFS(S)+DimFS(T )−DimFS(S, T ).

2) MDimFS(S : T )≥dimFS(S)+dimFS(T )−dimFS(S, T ),
MDimFS(S : T )≤DimFS(S)+DimFS(T )−dimFS(S, T ).

3) mdimFS(S : T ) ≤ min{dimFS(S), dimFS(T )},
MdimFS(S : T ) ≤ min{DimFS(S), DimFS(T )}.

4) 0 ≤ mdimFS(S : T ) ≤ MdimFS(S : T ) ≤ 1.
5) mdimFS(S : S) = dimFS(S),

MdimFS(S : S) = DimFS(S).
6) mdimFS(S : T ) = mdimFS(T : S),

MdimFS(S : T ) = MdimFS(T : S).



IV. BLOCK MUTUAL INFORMATION RATES

In this section, we introduce the notion of block mutual
information rates between sequences and prove that the lower
and upper finite-state mutual dimensions can be characterized
in terms of block mutual information rates.

Originally, Ziv and Lempel proved that the upper finite-
state compression ratio of a sequence may be characterized
in terms of the entropy rates of non-aligned block frequen-
cies [23] within the sequence. Sheinwald proved a similar
characterization of the upper compression ratio using the
entropy rates of aligned block frequencies [22]. Later, Bourke,
Hitchcock, and Vindochandran proved a characterization of
the lower and upper finite-state dimensions of sequences [4]
in terms of (aligned) block entropy rates. Kozachinskiy and
Shen recently proved that the lower finite-state dimension can
also be characterized using the entropy rates of non-aligned
block frequencies [13].

We begin by discussing the block entropy rates of se-
quences. For any n,m ∈ Z+, x ∈ Σm, and S ∈ Σ∞, we
denote the nth block frequency of x in S by the function
πS,n : Σ∗ → Q[0,1], defined by

πS,n(x) = πS↾nm(x) =
#□(x, S ↾ nm)

n
.

For each ℓ ∈ Z+, we denote the restriction of πS,n to the
strings in Σℓ by π

(ℓ)
S,n.

Definition. Let ℓ ∈ Z+. The ℓth lower and upper block
entropy rates of S ∈ Σ∞ are

Hℓ(S) =
1

ℓ log k
lim inf
n→∞

H(π
(ℓ)
S,n)

and

Ĥℓ(S) =
1

ℓ log k
lim sup
n→∞

H(π
(ℓ)
S,n)

respectively.

Definition. The lower and upper block entropy rates of S ∈
Σ∞ are

H(S) = lim
ℓ→∞

Hℓ(S)

and

Ĥ(S) = lim
ℓ→∞

Ĥℓ(S),

respectively.

Using the frameworks developed in [23] and [7], Bourke,
Hitchcock, and Vinodchandran proved the following theorem
in [4].

Theorem 9 ([4]). For every S ∈ Σ∞,

dimFS(S) = H(S)

and

DimFS(S) = Ĥ(S).

We now define “joint” versions of block entropy rates of
sequences. For any n,m ∈ Z+, x, y ∈ Σm, and S, T ∈ Σ∞,
we denote the nth joint block frequency of x in S and y in T
by the function πS,T,n : Σ∗ × Σ∗ → Q[0,1], defined by

πS,T,n(x, y) = πS↾nm,T ↾nm(x) =
#□((x, y), (S, T ) ↾ nm)

n
.

As before, for each ℓ ∈ Z+, we denote the restriction of πS,T,n

to the pairs of strings in Σℓ × Σℓ by π
(ℓ)
S,T,n.

Definition. Let ℓ ∈ Z+. The ℓth lower and upper joint block
entropy rates of S ∈ Σ∞ and T ∈ Σ∞ are

Hℓ(S, T ) =
1

ℓ log k
lim inf
n→∞

H(π
(ℓ)
S,T,n)

and

Ĥℓ(S, T ) =
1

ℓ log k
lim sup
n→∞

H(π
(ℓ)
S,T,n)

respectively.

We make note that the ℓth lower and upper block entropy
rates Hℓ((S, T )) and Ĥℓ((S, T )) of (S, T ) ∈ (Σ × Σ)∞ are
normalized by ℓ log k2 and the ℓth lower and upper joint block
entropy rates Hℓ(S, T ) and Ĥℓ(S, T ) of S ∈ Σ∞ and T ∈ Σ∞

are normalized by ℓ log k.

Definition. The lower and upper joint block entropy rates of
S ∈ Σ∞ and T ∈ Σ∞ are

H(S, T ) = lim
ℓ→∞

Hℓ(S, T )

and

Ĥ(S, T ) = lim
ℓ→∞

Ĥℓ(S, T ),

respectively.

The following corollary follows directly from Theorem 9.

Corollary 10. For every S, T ∈ Σ∞,

dimFS(S, T ) = H(S, T )

and

DimFS(S, T ) = Ĥ(S, T ).

We proceed to introduce the lower and upper block mutual
information rates between sequences. To do this, we make use
of Shannon mutual information.

Definition. Let α be a discrete probability measure on X×X .
The Shannon mutual information between α1 and α2 is

I(α1;α2) = H(α1) + H(α2)− H(α).

Definition. Let ℓ ∈ Z+. The ℓth lower and upper block mutual
information rates between S ∈ Σ∞ and T ∈ Σ∞ are

Iℓ(S;T ) =
1

ℓ log k
lim inf
n→∞

I(π(ℓ)
S,n;π

(ℓ)
T,n)

and



Îℓ(S;T ) =
1

ℓ log k
lim sup
n→∞

I(π(ℓ)
S,n;π

(ℓ)
T,n)

respectively.

Definition. The lower and upper block mutual information
rates between S ∈ Σ∞ and T ∈ Σ∞ are

I(S;T ) = lim
ℓ→∞

Iℓ(S;T )

and

Î(S;T ) = lim
ℓ→∞

Îℓ(S;T ),

respectively.

We now present the main theorem of this section, which
states that the lower and upper block mutual information
rates coincide with the lower and upper finite-state mutual
dimensions, respectively.

Theorem 11. For all S, T ∈ Σ∞,

mdimFS(S : T ) = I(S;T )

and

MdimFS(S : T ) = Î(S;T ).

The final result of this section regarding the properties
of block-mutual information rates between sequences follows
directly from Theorem 8, Theorem 9, Corollary 10, and
Theorem 11.

Theorem 12 (Properties of Block Mutual Information Rates).
For all S, T ∈ Σ∞,

1) H(S)+H(T )−Ĥ(S, T )≤I(S;T )≤Ĥ(S)+Ĥ(T )−Ĥ(S, T ).
2) H(S)+H(T )−H(S, T )≤Î(S;T )≤Ĥ(S)+Ĥ(T )−H(S, T ).
3) I(S;T )≤min{H(S),H(T )}, Î(S;T )≤min{Ĥ(S), Ĥ(T )}.
4) 0 ≤ I(S;T ) ≤ Î(S;T ) ≤ 1.
5) I(S;S) = H(S), Î(S;S) = Ĥ(S).
6) I(S;T ) = I(T ;S), Î(S;T ) = Î(T ;S).

V. FINITE-STATE MUTUAL DIMENSION AND
INDEPENDENCE

In this section we explore some of the relationships between
finite-state mutual dimension and normal sequences. More
specifically, we provide necessary and sufficient conditions
for when two normal sequences achieve finite-state mutual
dimension zero.

Becher, Carton, and Heiber provided a notion of finite-state
independence using the conditional compression ratio of a
sequence given another sequence. Specifically, they define two
sequences S ∈ Σ∞ and T ∈ Σ∞ to be finite-state independent
if the conditional compression ratio ρ(S |T ) of S given T
is equal to the compression ratio ρ(S) of S, the conditional
compression ratio ρ(T |S) of T given S is equal to the com-
pression ratio ρ(T ) of T , and both ρ(S) and ρ(T ) are greater
than zero. In their investigation they showed that, for any two
normal sequences R1 ∈ Σ∞ and R2 ∈ Σ∞, if R1 and R2 are
finite-state independent, then (R1, R2) is normal. However,
they also showed that the converse does not hold, i.e., there

are two normal sequences R1 and R2 such that (R1, R2) is
normal and not finite-state independent [3]. Alvarez, Becher,
and Carton also proved several characterizations of finite-state
independence using various kinds of Büchi automata [1].

We now proceed to discuss the concept of normality and its
relationship to finite-state dimension. A probability measure α
on Σ is positive if, for every a ∈ Σ, α(a) > 0. A probability
measure on Σ∞ is a function ν : Σ∗ → [0, 1] with the
following two properties.

1) ν(λ) = 1.
2) For all w ∈ Σ∗, ν(w) =

∑
a∈Σ

ν(wa).

Intuitively, ν(w) is the probability that w ⊑ S (w is a prefix
of S) when S ∈ Σ∞ is “chosen according to” the probability
measure ν. Every probability measure α on Σ induces the
probability measure α on Σ∞ defined by

α(w) =

|w|∏
i=1

α(w[i]),

for all w ∈ Σ∗.

Definition. Let α be a probability measure on Σ, S ∈ Σ∞,
and ℓ ∈ Z+.

1) S is α-ℓ-normal if, for all x ∈ Σℓ,

lim
n→∞

πS,n(x) = α(x).

2) S is α-normal if S is α-ℓ-normal for all ℓ ∈ Z+.
3) S is normal if S is µ-normal, where µ is the uniform

probability measure on Σ.

Lutz proved the following theorem about α-normal sequences
[16].

Theorem 13 ([16]). If α is a probability measure on Σ, then,
for every α-normal sequence R ∈ Σ∞,

dimFS(R) = DimFS(R) =
H(α)

log k
.

Our first theorem of this section is a “mutual” version of
Theorem 13.

Theorem 14. If α is a probability measure on Σ × Σ, then,
for every α-normal sequence (R1, R2) ∈ (Σ× Σ)∞,

mdimFS(R1 : R2) = MdimFS(R1 : R2) =
I(α1;α2)

log k
.

Schnorr and Stimm proved a characterization of normal
sequences in terms of finite-state gamblers [21]. Later, Dai,
Lathrop, Lutz, and Mayordomo showed that any normal se-
quence achieves finite-state dimension one [7], while Bourke,
Hitchcock, and Vinodchandran showed that any sequence that
achieves finite-state dimension one is normal [4]. Therefore, a
sequence is normal if and only if dimFS(S) = 1.

The main theorem of this section provides a similar charac-
terization for pairs of normal sequences that achieve finite-state



mutual dimension zero. Note that, in this theorem, the product
probability measure (α1 × α2) on Σ× Σ is defined by

(α1 × α2)(a, b) = α1(a)α2(b),

for all a, b ∈ Σ.

Theorem 15. Let α1 and α2 be positive probability measures
on Σ. If R1 ∈ Σ∞ is α1-normal and R2 ∈ Σ∞ is α2-
normal, then (R1, R2) is (α1 × α2)-normal if and only if
MdimFS(R1 : R2) = 0.

When α1 = α2 = µ in the above theorem, we obtain the
following corollary.

Corollary 16. For all normal sequences R1, R2 ∈ Σ∞,
(R1, R2) is normal if and only if MdimFS(R1 : R2) = 0.

Thus finite-state mutual dimension provides a mechanism in
which to reason about the degree to which two sequences are
independent of one another at the finite-state level.
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