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Abstract—Neutral atoms are a promising choice for scalable
quantum computing architectures. Features such as long distance
interactions and native multiqubit gates offer reductions in
communication costs and operation count. However, the trapped
atoms used as qubits can be lost over the course of computation
and due to adverse environmental factors. The value of a
lost computation qubit cannot be recovered and requires the
reloading of the array and rerunning of the computation, greatly
increasing the number of runs of a circuit. Software mitigation
strategies exist [1] but exhaust the original mapped locations of
the circuit slowly and create more spread out clusters of qubits
across the architecture decreasing the probability of success. We
increase flexibility by developing strategies that find all reachable
qubits, rather only adjacent hardware qubits. Second, we divide
the architecture into separate sections, and run the circuit in
each section, free of lost atoms. Provided the architecture is large
enough, this resets the circuit without having to reload the entire
architecture. This increases the number of effective shots before
reloading by a factor of two for a circuit that utilizes 30% of the
architecture. We also explore using these sections to parallelize
execution of circuits, reducing the overall runtime by a total 50%
for 30 qubit circuit. These techniques contribute to a dynamic
new set of strategies to combat the detrimental effects of lost
computational space.

Index Terms—quantum computing, neutral atoms, recompila-
tion

I. INTRODUCTION

If realized physically, scalable quantum computing could

dramatically affect what can be realistically computed. How-

ever, there is no obvious choice for quantum architectures

as we scale from Noisy Intermediate Scale Quantum (NISQ)

computing era and into fault tolerating quantum computing

[2]. There are several technologies in different phases of

development including superconducting [3], trapped ion [4]

and neutral atom [5] based architectures. All have shared chal-

lenges such as maximizing device and operation quality, but
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Initial Mapping After Atom Loss

Fig. 1: With current methods, as circuits are adapted to lost

atoms, qubits are spread across the architecture without high

usage of the architecture. This adds communication, reduces

probability of success and prevents full utilization of the

architecture prior to reloading the array.
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Initial Mapping and Sections After Atom Loss

Fig. 2: A new relocation strategy divides the architecture into

many distinct sections. The circuit is mapped and executed in

each section prior to reload. This allows for more full use of

the all atoms on the architecture.

each comes with their with unique scalability challenges. For

superconducting based architectures, fabrication consistency is

a limiting factor [3]. Trapped ions face a similar issue when

connecting different “chains” of qubits [4]. Larger neutral

atom architectures can lose atoms over the course of com-

putation. These are aspects of physical quantum computation

that must be resolved to realize scalable architectures.

Neutral atom based qubits are a potential basis for scalable

quantum devices. Architectures constructed from individual

atoms representing qubits, positioned in 1, 2 or 3 dimensional

arrays via trapping lasers, have been demonstrated. Neutral

Atom arrays in the 100s of qubits in both single [6], [7] and

mixed species arrays of qubits [8] are in development. Quan-

tum circuits executed on Neutral Atom architectures are able to

make use of several unique advantages including interactions
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with non-adjacent atoms. As explored in [1], these features

can be leveraged to significantly improve circuit execution by

reducing communication gate overheads and execution time.

The technology used to trap the qubits in the array is

not always able to hold the atoms in place from run to

run due to measurement [9] or from outside environmental

factors [10]. This occurrence is referred to as atom loss,

requiring a time-intensive reloading and retrapping of the atom

array. The extended reload time can be partially circumvented

through the use of recompilation or minor reconfiguration of

the compiled circuit. In particular, minor reconfigurations can

achieve similar probabilities of success when compared to full

recompilation with lower overhead time.

While effective at mitigating the initial set of lost atoms

to reduce overall run time, current techniques often choose

to reload the array prior to exhausting all the atoms on a

device due to decreases in success rate. This is called a

preventative reload. The strategies introduced in [1] move the

qubits away from the initial configuration of the compiled

circuit introducing communication and serialization requiring

preventative reloads of the array. Figure 1 demonstrates how

current techniques fail to make use of all the atoms on a

given architecture. If preventative reloads can be avoided, the

overhead time of running a quantum circuit on a neutral atom

architecture can be further reduced.

This work proposes extensions on previous software based

atom loss mitigation techniques by more fully utilizing the

atom array prior to a reload. These new strategies provide

significant improvements over previous methods without sig-

nificantly adding to the overhead time of implementing a

recovery strategy. In particular, major contributions of this

works are:

• Expanding on current techniques through a more flexible

interaction graph which can sustain more atom loss.

• Introducing a more deliberate approach to atom loss re-

covery. We divide the architecture into multiple sections,

and perform a pseudo-reload when any target metric for

reloading is met, see Figure 2. The compiled circuit is

remapped into a new section before the process is repeated

again. This full utilization reduces overhead time by at least

50% for a 30 qubit circuit on a 100 qubit device when

compared to previous methods and as much as 80% for a

10 qubit circuit on the same device.

• Exploring full parallelism and partial parallelism use by

running multiple instances of a circuit in several non-

overlapping sections of the architecture. By testing several

different levels of parallelism we achieve up to an additional

35% reduction in overhead time.

II. BACKGROUND

A. Quantum Computation

A qubit is the fundamental unit of computation in a quantum

system. In contrast to a classical system, where bits are in a 0

or an 1 value, a qubit exists in a linear superposition between

the |0〉 and |1〉 basis vectors described as |ψ〉 = α |0〉+ β |1〉,

where |α|2 + |β|2 = 1. When a qubit is measured, the

superposition collapses into either the classical state |0〉 with

probability |α|2 or |1〉 with probability |β|2. A quantum

program, usually specified as a quantum circuit, is a sequence

operations on sets of qubits. The operations on a quantum

circuit are gates, similar to a classical circuit. The circuits ends

with a final set of measurements on each qubit resulting in a

classical bitstring of the same length. As the number of qubits

in the quantum program increases, the number of potential

output bitstrings increases exponentially. Superposition and

entanglement allow us to explore the computational space

in a fundamentally different way than classical computing,

providing a potential way to solve classically hard problems.

A more complete introduction of quantum computing can be

found at [11].

B. Execution

Current devices have limited connectivity, relatively high

gate error rates and low coherence times. Limited connectivity

requires qubit positions to be adjusted through the use of

communication gates, such as the SWAP gate. Every new gate

inserted into the circuit reduces the chance of producing a

correct result. Additionally, the longer the time required to

execute these gates, the higher the probability that a qubit

will be be unable to maintain its state. These errors prevent a

single measurement of the system from being useful. Instead, a

circuit must be executed many, potentially thousands, of times

to generate a distribution of results. One of these executions

is referred to as a shot. These shots consist of an initialization

of the qubits, an execution of the circuit, and a measurement

into a classical bitstring. The most likely values from the

measurement distribution are considered the answers from a

run of the quantum program.

C. Compilation

Architecturally defined constraints must be taken into ac-

count when compiling a quantum circuit for a given architec-

ture. First and foremost, the compiler must adapt the given

circuit to be executable on the hardware’s topology. Some

operations are not executable if they interact too many qubits

simultaneously, but can be remedied by decomposing them

into simpler, lower-arity gates [12]. Given a hardware-defined

universal gate-set there always exists a decomposition. If gates

in the input circuit are not written in this gate set, it can be

rewritten into this gate-set if it is universal.

Connectivity constraints are typically satisfied by inserting

SWAP gates into the circuit to shift the location of a qubit from

one hardware qubit to another. Ideally, this is done with as few

gates as possible to avoid error. The process of mapping and

moving qubits on a device has been explored many times, and

many successful strategies have been developed to achieve low

SWAP insertion [13]–[16]. These generally use heuristics to

map program qubits to hardware qubits (a mapping) and route

qubits to keep qubits that interact often close together. These

mechanisms attempt to introduce as few sources of error as

possible, usually in the form of additional gates. Accurately
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estimating error for a quantum system is often difficult and

time intensive. Therefore, any transformations of a quantum

circuit typically aim to reduce proxy metrics, such as gate

count, circuit depth and runtime.

III. NEUTRAL ATOMS ARCHITECTURES

A. Construction

Neutral atom architectures use an atom as the computational

unit to represent a qubit. Atoms are trapped via reconfigurable

optical tweezers and can be arranged in arbitrary arrays of any

dimensions [17]. There have been demonstrations of arbitrary

configurations [18], and neutral atom arrays of up to 512 qubits

have been achieved [8]. However, the process of loading the

qubits into the configuration can be slow, on the order of

seconds. For Neutral Atoms |0〉 and |1〉 states are represented

by different energy levels and the transitions between states

are facilitated by optical tuning. For single qubit gates, we

use Raman transitions. Multiqubit gates are more complex.

The atoms are excited into a Rydberg state and are optically

coupled together, forming a strong dipole interaction between

the atoms. These interactions are not limited to adjacent qubits

but can interact with any qubits within a maximum distance,

defined by the device. This has significant effects on the

amount of communication required. However, long distance

interactions on Neutral Atom architecture have a drawback.

All qubits within a specific radius of the qubits involved

in the interaction cannot be used without interference. This

can induce a serializing effect on the circuit, but tends to be

balanced out by reduced communication costs [1].

B. Adapting Compilation

The principles of quantum computation do not change on

a neutral atom system, but we have a different set of tools

to help us build circuits for neutral atom devices. Compilers

for neutral atom systems follow the same basic algorithm for

compilation. With longer distance interactions, this provides

a much larger search space for choosing the “best” location

to move the new qubit to. Longer interaction distances lend

themselves towards shorter swap paths, lower gate counts

and circuit depths, all of which the compiler favors. The

compiler also attempts to avoid serialization by packing as

many operations that can be performed at the same time into

the same time step.

C. Atom Loss

Atoms can be lost from the array via multiple processes. The

first is due to environmental factors. Stray photons or elements

of an imperfect vacuum can knock an atom out of the array

rendering the atom unusable as a qubit [10]. The second is

contained to atoms that undergo measurement [9], [19]. More

frequently, when measured the atoms can be dropped from

the trapping mechanism. When an atom is lost, it cannot be

measured, meaning that the particular shot where the atom

was lost cannot be used towards the probability distribution.

These losses are detected via a fluorescence after each shot, a

process which takes on the order of milliseconds. Following

the fluorescence, if any computational atoms have been lost,

an adaptive strategy must be used to recover from the atom

loss. If the strategy fails the entire array is reloaded.

D. Mitigation Techniques

When an atom required for computation is lost from the

array, there are three options:

• Reload the Array. This is the most naive course of action is

ot reload and retrap the atoms. Reloading the array allows

each qubit to be used in the next shot. However, this is a

time intensive process.

• Recompile to avoid lost atoms. We inform the compiler of

the missing atoms and use the same compilation pipeline as

before. This method has the most information at its disposal

and can create the highest fidelity adaptations to the adjusted

architecture. However, recompilation is more time intensive

than reloading the array, more akin to running a whole new

circuit, so is often not the best choice.

• Adapt current compilation to lost atoms. Rather than using

full recompilation, adaptation strategies attempt to strike a

balance between overhead time while without adding extra

communication or serialization and withstanding significant

atom loss.

The most effective light-weight adaptive technique has two

steps. The first is virtual remapping. When an atom is lost,

we search each adjacent direction. We select the direction that

has the the most qubits that are not lost or previously mapped

to. The mapped qubits in the selected direction are moved

one atom in that direction. These changes are recorded. At

this point, the qubits are mapped to viable atoms. This can

be seen in 3c. However, some operations may not be able

to be executed since the newly remapped qubits could be

out of range of one another and requires rerouting. When we

find a set of qubits that are outside the maximum interaction

distance, we find the shortest path of non-lost atoms along the

possible interaction paths. We insert SWAPs into the circuit

along the path, perform the interaction and then swap back to

the original positions to maintain new mapping. This method

can recover any amount of atom loss, up to the number of extra

qubits available on the device as long as there is an available

path on device. This strategy, as explored in [1] is able to

efficiently reduce the overall time of running many shots of a

quantum circuit and maintain similar probabilities of success

as full recompilation. Additionally, we can compile circuits

as if the maximum interaction distance was smaller than the

actual maximum interaction distance reducing the need for

any rerouting since atoms will be moved away from qubits

the interact with less frequently.

IV. MOTIVATION

The mitigation techniques developed in [1] are effective at

keeping overhead time low as atoms are lost. One potential

drawback is that virtual remapping can only shift the qubits

in one of four directions. If there is no room to shift in these

directions, the recovery strategy will also fail. In situations

where most of the atoms in the architecture are in use or
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(a) Initial Mapping

Compilation
(b) Hardware

Remapping
(c) Interaction

Remapping
(d) Focused Use

Bounding
Boxes

(e) Focused Use
Post
Relocation

(f) Full Parallelism
Initial Mapping

Fig. 3: Examples of four different atom loss coping strategies. (a) Shows the initial configuration of qubits using the original

compiler that makes use of the entirety of the architecture. (b) shows the result of using the hardware graph to shift the

qubits away from a newly lost atom. (c) shows how the interaction graph could make a different decision, taking the shortest

interaction path to an open qubit. (d) demonstrates how the architecture can be divided such that we have multiple opportunities

to start in a section with fewer lost qubits. (e) shows how a wear levelling approach would appear after one remapping of the

circuit. (f) shows how these divided sections can be used to exploit some level of parallelism in the architecture.

lost, virtual remapping is inflexible. There may still be atoms

available for recovery. Atoms will be lost more frequently for

large circuits, requiring many more runs of the circuit. So, any

flexibility that mitigate reloading the array would be beneficial.

Additionally, a consequence of shifting partial columns of

atoms is qubit spread across the architecture. As seen in Figure

1, after many atoms are lost, the atoms have been shifted

far away from their original location. Based on our mapping

strategies, this also means that each qubit is further away from

the qubits it interacts with. While extra communication can

fix this, distribution across the architecture is not conducive to

successful execution. This also renders the originally mapped

location of the atoms unusable, so communication paths are

even longer. Rather than simply letting the circuit be mapped

and routed to any piece of the architecture, having focused use

of a specific sections of the architecture over time may improve

probabilities of success and prevent preemptive reloads.

V. METHODS

A. New Strategies

We build on the compiler, router, and atom loss strategies

developed in [1], found at [20], to build new methods for atom

loss mitigation upon previous strategies with greater flexibility

and focused use on a particular piece of an array.

• Remapping via Interactions. Previous virtual remapping

strategies have been limited to remapping atoms to directly

adjacent atom on the neutral atom array. This limits move-

ment. However, we can create an Interaction Graph where

every atom is a node, and edges are defined between any

atom within the maximum interaction distance of that atom,

seen in Figure 3c. When an atom is lost, rather than shifting

the row or column of qubits, we find the shortest path

along the interaction graph to an unused atom and shift

any mapped qubits towards the non-mapped atom along this

path. This widens the search space of available atoms, and

will ideally move fewer qubits.

• Focused Use and Migration. In the original compiler, a

circuit could be mapped and routed onto any qubit in the ar-

chitecture. This gives global scope, and finds good mapping

and routing solutions, but can lead to less dense mapping

across the architecture. Instead, we define a bounding box

big enough to hold the circuit, seen in in Figure 3d, where

for a six qubit circuit, we define a 2 by 3 bounding box.

This can be done in two ways: a loose or tight configuration.

The former defines both dimension by the ceiling of the

square root of the number of qubits. The latter defines

one dimension by the square root, and the second by the

number of qubits divided by the square root. This box

is then tiled across the architecture. In the event that the

bounding box does not neatly fit, some overlap is allowed.

The circuit is mapped and routed entirely within one of

these sections. When atoms are lost, we continue using

any recovery method previously defined. When the recovery

method fails, or the estimated probability of success falls

below a certain threshold, rather than resetting the array, we

directly remap the circuit to a new section of the architec-

ture, accounting for any previously lost atoms. The process

after one relocation is shown in Figure 3e. Since the atoms in

the new section have not been used for computation, fewer

will have been lost. We repeat this process until each section

has been visited once. Then, the entire array is reloaded

before restarting the process.

• Parallel Executions. The non-overlapping sections defined

for Focused Use can be treated as if each is its own

architecture. Instead of shifting the mapped circuit from one

defined region to the next, we can create a single aggregate

circuit [21] that contains multiple instances of the smaller

circuit. This is similar to [22] where multiple variational

circuits have been mapped onto a single architecture to

improve their performance. We map the circuit onto the

architecture multiple times, and run multiple shots of the

individual circuit in one run of the aggregate circuit. Then

any individual circuits that lost no computational atoms can

be treated as a successful shot. If an atom is lost, we can

use any recovery methods previously explored until it fails.

At this point, the array is reloaded.

• Focused Use + Partial Parallelism. Rather than filling every

section with qubits, we only fill some of the sections. Then,

when the recovery strategy fails, we use a different set of

the predefined sections. We are exploiting some amount
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of parallelism, but are giving more resources for the more

focused recovery strategies to make use of. This process

continues until each section has been used at least once.

The entire array is then reloaded.

B. Benchmarks

We examine four benchmarks which can be scaled to

an arbitrary number of qubits. We study how circuit-level

properties like parallelism and operation density affect the

performance of our recovery techniques. Higher interaction

density can be difficult to route without communication and

can potentially lead to more serialization. The specific circuits

we study are:

• Log-Depth Generalized Toffoli (CNU). This circuit is an

N-Controlled X gate that is generally used as a piece of

another circuit [23]. It can be performed in log(N) depth,

but requires many extra “scratch” qubits. The controls are

grouped into pairs, and target one of the scratch qubits

initialized to |0〉 with a Toffoli gate. This process is repeated

with the targets until we target the final qubit. The same set

of operation is performed in reverse. These pieces can be

performed in parallel before converging on the final target

operation.

• Cuccaro Adder. Another component circuit, the Cuccaro

Adder takes two N-bit numbers and adds them together,

requiring 2N+2 qubits in a heavily serialized circuit [24].

Corresponding qubits are grouped together in blocks of

operations, resulting in a carry-out bit to be used to the next

block, similar to a classical ripple-carry adder. This circuit

is also low density.

• Quantum Approximation Optimization Algorithm (QAOA).
QAOA is an algorithm that is used to solve certain kinds of

combinatorial problems such as the Max-Cut problem [25].

We use a version of this algorithm that uses a random graph

with edge density of 20% between N qubits to inform our

circuit. Each edge inserts a pair of CX gates surrounding a Z

Gate. QAOA is a somewhat dense graph, using 20% of N2

possible interactions. While it depends on the construction

of the graph, QAOA can be relatively parallel.

• Linear Variational Quantum Eigensolver Iteration (VQE).
VQE attempts to find the minimum eigenvalue of a wave

function encoded in parameterized rotation gates and entan-

gled qubits [26]. It is then run several times while tuning

the rotation gates. We test one of these iterations. We use

linear entanglement, meaning that the first qubit targets the

second, the second then targets the third, and so on. This

lends itself to very low density, highly serialized circuit.

C. Atom Loss Simulation

1) Architectural Configuration: We mainly focus on a

representative 10 by 10 neutral atom array of qubits with

varying maximum interaction distances. We focus on this style

of architecture, since in the near term, two dimensions are the

most practical form for a neutral atom architecture. We use

a grid, since this form of an array allows for easy reuse of

optical tweezers to capture rows of qubits. Other structures

would require an additional layer of complexity. While the

distances between adjacent qubits in a mesh could vary, the

distance between qubits is not the limiting factor. Rather, it

is how many qubits are reachable from another qubit within

the maximum interaction distance. The effect of a less dense

array can be approximated via the use of a smaller interaction

distance. For this architecture, we create zones of restriction

around each qubit with a radius equal to half the distance

between the qubits.

2) Error Rates and Probability of Success: At present,

NISQ architectures have relatively high error rates relative to

what will be required for fault-tolerant quantum computing.

Neutral atom architectures are still under heavy development

and have worse error rates than other NISQ architectures. At

present, we have seen fidelities of 99.6% for one qubit gates

and 96.5% for two qubit gates [27]. We estimate probability

of success for circuits based on these values.

However, neutral atoms do have one significant advantage in

terms of error. In the ground state, atoms are much less likely

to decohere, with T1 and T2 times on the order of 7 seconds

and 30 seconds, respectively [28]. When in the excited state,

the error from decoherence is accounted for by gate error rates.

This is a separate problem from atom loss and can occur in

both the excited state, when the qubit is being operated on,

and the ground state. We use a product of two items: the

product of the gate successes and the probability that no qubit

decoheres. We calculate the probability of decoherence in the

ground state. This is estimated via the following expression:

e−Δg/T1,g−Δg/T2,g where Δg is the time the qubit is in the

ground state.

3) Atom Loss Mitigation Rates: Recall that we must con-

sider two different kinds of atom loss: the less frequent loss

due to environmental factors that applies to any atom in the

array, and the more frequent loss due to interaction that only

applies to atoms involved in computation. Atom loss due to

environmental factors occurs at a 0.068% chance per atom,

per shot [10]. Atom loss due to measurement occurs at a 2%

chance per atom, per shot [19]. After each shot, we must check

if an atom has been lost through fluorescence, a process which

takes 6 ms. Reloading the entire array takes much longer, 320

ms. This will only occur when the recovery strategy fails.

To estimate any overhead time for mitigation techniques, we

consider them to be implemented in embedded hardware. Any

virtual remapping is implemented in a fast, hardware lookup

table which is estimated to handle reads at speeds of 40 ns, and

writes as 45 ns. Timing for mitigation algorithms are estimated

by using this hardware.

All of these experiments were performed on a machine

using Python 3.9 [29], Intel(R) Xeon(R) Silver 4110 2.10GHz,

132 GB of RAM, on Ubuntu 16.04 LTS. The initial compiler

and mitigation strategies were built on work from [20]. Any

error bars show one standard deviation from the mean.

VI. EVALUATION

As we lose atoms, we want a mitigation strategy that adheres

as closely to the success rate found for recompilation as
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Fig. 4: Decreases in success rate for different mitigation strategies for 30 qubit circuits. Each color is a different strategy,

solid lines are circuits with interaction distance 3, and dash lines are interaction distance 5. Run over 50 trials, each error bar

represents one standard deviation from the mean. We see decreases for all strategies, with full recompilation able to maintain

the highest probability of success and relocation better approximating recompilation than our baseline strategy.

Fig. 5: Decreases in success rate for different mitigation strategies for 90 qubit circuits. We exclude QAOA from this test as

the success rates are not meaningful at current error rate. Each error bar represents one standard deviation from the mean over

50 trials. We see the same patterns, with the exception that interaction remapping is often able to outperform other strategies.

possible. Recompilation maps and routes from scratch, with

access to global information to determine the best mapping

and routing for the situation and best adapt to lost atoms. We

also compare to compiling to a smaller interaction distance

with rerouting, one of the better strategies developed in [1].

A. Success Rate Resistance to Atom Loss

The mapping and routing found for the entire architecture

should have the highest probability of success and a successful

mitigation strategy works to maintain this success rate. In

general, this means inserting fewer extra gates and reducing

serialization induced by only moving interacting qubits further

away from one another when necessary.

1) Remapping Along Interactions: We first examine the

effects of remapping via the interaction graph rather than

via directly adjacent qubits on the hardware array. In the

30 qubit circuits, Figure 4, remapping and rerouting based

only on the interaction graph fails to improve probability

of success. When we remap qubits along the total hardware

interaction graph, we gain flexibility, but move qubits further

away from their original position. In doing so, we must insert

more communication to handle the extra distance, causing the

probability of success to decrease more rapidly.

On the other hand, remapping along the hardware array

often fails for larger circuits. For the 90 qubit circuits, Figure

5, we fail to find significant average probabilities of success

for several circuits after the loss of more than one or two

atoms when using our original strategies. They do not provide

enough flexibility to find available atoms at this size, which is

why some strategies cannot be seen on the graph. However,

when we shift along the interaction graph, we are able to

achieve much higher fidelities. Particularly for the Cuccaro

Adder, we see that at for a maximum interaction distance of

5, the interaction model based approach achieves much higher

probabilities of success. The non-recompilation counterparts

are not able to sustain a minimal amount of atom loss at this

size of circuit.

2) Focused Use and Relocation: While shifting along the

interaction graph provides benefits for larger circuits, we find

that focused use, and relocation to unmapped sections of the

architectures can improve probability of success across circuit

size, Figures 4 and 5. Initially, as atoms are lost, this strategies

maintains the same probability of success as our baseline. This

is expected since we are mapping into a specific section of

the architecture, we can still generate a similar mapping and

routing. However, after several atoms have been lost, we see
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Fig. 6: The average number of shots per reload 10, 20 and 30 qubit benchmarks at interaction distance four. Error bars

indicate one standard deviation from the mean. Each color is a different recovery strategy. We find that there is significant

improvement from our relocation strategies (red and green), greatly exceeding the baseline number of shots, more closely

matching recompilation.

Fig. 7: The average number of shots per reload 50, 70 and 90 qubit benchmarks at interaction distance four. Error bars indicate

one standard deviation from the mean. Each color is a different recovery strategy. We exclude QAOA since it is not a practical

circuit at this size.

an increase in the average probability of success indicating

a relocation to a new part of the architecture. Since there

have been fewer atoms lost in this new section there is less

adjustment, increasing the probability of success. Focused

use and relocation is able to more closely adhere to the

probabilities of success achieved via recompilation, making

it a more effective strategy from this perspective. While we

do not achieve strictly better probabilities of success in the 90

qubit circuits, we are able to maintain the same probabilities

of success. We do not see the same benefits since the tiles in

this circuit will need to be quite large, at least 9 qubits by

10 qubits. This requires significant overlap and relocation will

not have as great an effect. Additionally, this strategy does

not make use of the interaction graph remapping, and does

not benefit from the increased flexibility.

It should also be noted that we do not see a significant

difference between the loose and tight bounding boxes. Both

follow the same trend line in each of the benchmarks, indi-

cating that the circuit is mapped and routed similarly in each

case.
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Fig. 8: The normalized advantage of the relocation strategy to

rerouting and interaction distance four. Each color represents

a different circuit, and the advantage of relocation decreases

at a factor inversely proportional to the size of the circuit.

B. Successful Shots before Reload

Another metric to consider is how many successful shots can

be completed prior to reloading the entire array. Every shot

that can be performed without an additional reload reduces the

overall time to run a circuit. We analyze the average successful

shots per reload cycle for each mitigation method for each of

our benchmarks.

1) Remapping Along Interactions: As seen by the drasti-

cally smaller number of average shots per reload, Figure 6, at

smaller circuit sizes remapping by using the interaction graph

distance is not as effective as remapping via the architecture

graph. At circuit size 90, Figure 7, the interaction graph

remapping slightly outperforms the array-based remapping.

Increased flexibility still provides some recovery for more

dense use of the array.

2) Focused Use and Relocation: There is a much more

pronounced effect on average shots per reload when utilizing

the new relocation strategy over the rerouting strategy for

both large and small circuits, Figures 7 and 6. We find a

much higher rate of average shots per reload for relocation

based strategies. Once the array has been divided into several

different sections, when the circuit is relocated to a new section

it will be mostly free of atom loss. Any atoms lost will be

due to computational atoms being remapped into that space,

or the rare event of atoms lost to environmental factors and

will be much lower. All of which is conducive to much higher

probabilities of success and reduces reloads.

As the circuit size increases, we see diminishing returns

of the relocation strategy. As the circuit size increases, the

number of distinct sections that can be laid out on the

array without overlap, decreases. We do not have as many

opportunities to perform a pseudo-reload as the circuit uses

more qubits. We can even quantify this relationship. In Figure

8 we see the relationship between the increase in the number

Fig. 9: Overhead times for different recovery strategies at

different maximum interaction distances. The major color in

each bar represents time dedicated to reloading. As follows

from the significant advantage seen previously, relocation is a

very efficient strategy.

of shots against the number of times the circuit can be fit

onto the architecture. For each circuit, we follow the same

pattern. The advantage in the number of shots of relocation

to rerouting is roughly proportional to the size of the circuit.

For a 30 qubit circuit, this is up to 3.5x improvement. For

a 10 qubit circuit, this is up to a 8x improvement in average

shots per reload. Empirical results do not match the exact ratio

since the bounding box tiles do not fit always fit neatly onto

the array. Additionally, these bounding boxes are often larger

than the circuit, causing the advantage to be lower.

C. Overhead Time

While average shots per reload cycle is good indicator for a

strategy’s potential to recover efficiently, it does not take into

account the overhead time to determine the best course of

action. A strategy is only viable if it is faster than reloading

the array. If this cannot be achieved, it is more effective to

reload the atoms as it will give us the highest probability

of success. Full recompilation cannot be considered for this

reason. Previous work found large gains over reloading via

the compiling to a smaller interaction distance and rerouting.

We will be comparing against this strategy to determine

effectiveness.

In Figure 9, we examine the effects of different mitigation

strategies on the overhead time to execute 500 shots for a 30

qubit Generalized Toffoli circuit. While these strategies are

dependent on the length of the circuit, it will scale similarly for

each strategy. We see significant reduction in time dedicated

to reloading the entire array for our relocation strategies

and increases for interaction graph based strategies. However,
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Fig. 10: Decreases in success rate for different mitigation strategies for parallel 30 qubit circuits. Run over 50 trials, each

error bar represents one standard deviation from the mean. In general, we see that for higher interaction distances, increased

parallelism does not heavily affect the rate of decrease in probability of success rate.

Fig. 11: The average number of shots per reload for 10, 20 and 30 qubit benchmarks at interaction distance four at different

levels of parallelism. Error bars indicate one standard deviation from the mean. Each color is a level of parallelism. Parallel

indicates that as much the architecture is used as possible, and relocation means that only on instance is run at a time.

the increases in calculating the solutions for relocation do

not outweigh the overhead time saved by relocation. For

interaction distance four, our relocation strategy outperforms

the basic rerouting strategy by 55% in reload times, and 45%

overall.

As the maximum interaction distance increases, the mar-

gin of the overall time for each strategy decreases. As the

maximum interaction distance increases, we do not need to

add communication to recover from an incompatible circuit.

This reduces the number of reloads required for each recovery

method. The time dedicated to florescence does not decrease,

as each shot, successful or unsuccessful, still requires a fluo-

rescence.

D. Effects of Parallelism

The benefits of relocation could be improved upon by using

multiple non-overlapping sections of the device at the same

time. In doing so, we use as much the architecture as possible.

For example, using 90 qubits to run three concurrent 30

qubit circuits. Since we are using almost all of the qubits,

we will use the interaction graph based remapping as it

has proven to be more effective in situations where most

of the architecture has been filled. We examine the average

probability of success for three concurrent 30 qubit circuits in

Figure 10. This strategy can only withstand 10 lost qubits at

the most since we can only recover as many qubits as those

that have been unmapped. Any increased serialization from

running circuits in parallel does not substantially impact the
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Benchmark Baseline Relocation 2 Parallel % Fluorescence
Time (s) Time (s) Time (s) Decrease

Cuccaro-10 10.91 4.67 3.13 51.22
Cuccaro-20 13.82 9.58 8.24 54.02
Cuccaro-30 26.19 17.05 14.80 40.71
CNU-10 7.98 4.59 2.82 50.60
CNU-20 24.09 8.68 10.50 53.12
CNU-30 30.61 16.58 15.15 35.80
QAOA-10 5.83 4.41 2.66 51.05
QAOA-20 14.83 7.54 7.49 52.70
QAOA-30 42.67 16.43 18.68 35.48
Linear VQE-10 6.26 4.16 2.42 50.83
Linear VQE-20 8.77 6.61 5.01 53.75
Linear VQE-30 15.93 9.79 9.56 36.12

TABLE I: Full Runtimes with Two Instances of Parallelism

decrease in probability of success as compared to previous

mitigation strategies.

We also analyze the effects of this strategy on the number

of average shots per reload cycle in Figure 11. By packing

as many instances of circuits as possible into the array, there

is no space to shift the qubits causing the recovery strategy

to fail quickly and requiring a reload. This frequency will

increase the overhead time, indicating that full parallel usage

of a neutral atom architecture is not viable at current atom

loss rates.

E. Parallelism with Relocation

Without extra atoms to recover from atom loss, full paral-

lelism is not effective. For smaller circuits, we do not need to

fill the entire architecture. By choosing to only use a portion of

the previously defined bounding boxes, we can take advantage

of partial parallelism. By reducing parallelism, we have the

opportunity to make use of relocation as well, potentially

adding to the overhead time gains we have already found.

In Figure 11 we examine multiple levels of parallelism for

10, 20 and 30 qubit circuits. The percentage of parallelism

indicates what percentage of the architecture we are using at

a time, 30% parallelism means that three instances of a 10

qubit circuit are being run at a time, with 3 different areas to

relocate these three 10 qubit circuits. We can achieve similar

shots per reload to the relocation strategy when running up to

four instances of a 10 qubit circuit, and up to two instances

of a 20 qubit circuit or 30 qubit circuit.

Since setting up parallelism occurs during the initial com-

pilation phase, this strategy will realize the same gains as

relocation in terms of reduction of overhead time due to reload

time. However, by running multiple circuits at the same time,

we are executing several shots per fluorescence cycle. We will

have successfully reduced the overhead time from fluorescence

by a factor of the number of circuits run at the same time.

This can be seen in Table I for two parallel instances for 10,

20 and 30 qubit circuits. Put together with the gains from

relocation, we see total reductions in overhead time for each

of our benchmarks of up to 70% for a 10 qubit circuit, 60%

for a 20 qubit circuit, and 50% for a 30 qubit circuit, seen in

Table I.

VII. DISCUSSION AND CONCLUSION

Neutral atom systems are a potential contender for scalable

quantum computing. However, the underlying technology is

not without its problems. Atom loss is a challenge towards

reaching scalability. As architecture and viable circuit sizes

increase, atom loss prevents fast execution of repeated suc-

cessful shots. Through software techniques this overhead can

be mitigated.

Initial techniques for reducing overhead focus on adjusting

the initial mapping and routing of a circuit on a device. This is

effective when there is enough open space on an architecture.

As resources become more constrained, we require more

flexible techniques. By exploiting the unique feature of long

distance interactions, we can make use of a small number of

atoms to improve how many successful shots can be achieved

before reloading the circuit via the interaction graph. This

flexibility gives an escape valve for more edge case circuits.

However, we do not only focus on adjusting the initial

mapping and routing. By changing the initial mapping and

routing while focusing on effectively using all of an archi-

tecture and more actively avoiding lost atoms, we can further

reduce overhead time. Through the creation of tiled bounding

boxes, dividing the array into several small architectures, and

fully exhausting each of these sections before moving into a

new section without atom loss overhead time due to reloading

the array is reduced by a factor of the number of times the

circuit fits on the architecture. This can all be done while

keeping the probability of success high and without significant

increases in the time to adapt the circuit to the lost atoms.

Finally, we also use these bounding box sections to exploit

parallelism. While using every available atom on a device is

not effective due to space constraints, using less than 100% of

the architecture combined with relocation achieves the same

number of shots per reload while also reducing the number

of runs of the array required. This reduces the overhead

time dedicated to florescence, further improving our ability

to quickly run repeated shots on the neutral atom device.

Together, these techniques build a more complete set of

strategies to handle different program sizes and circuit struc-

tures as neutral atoms are further developed. One strategy is

not usually enough to handle every case and this ensemble of

techniques use the unique aspects of the architecture to help

realize its full potential.
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Vladan Vuletić, Hannes Pichler, et al. Parallel implementation of high-
fidelity multiqubit gates with neutral atoms. Physical review letters,
123(17):170503, 2019.

[28] Manuel Endres, Hannes Bernien, Alexander Keesling, Harry Levine,
Eric R. Anschuetz, Alexandre Krajenbrink, Crystal Senko, Vladan
Vuletic, Markus Greiner, and Mikhail D. Lukin. Atom-by-atom as-
sembly of defect-free one-dimensional cold atom arrays. Science,
354(6315):1024–1027, 2016.

[29] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual.
CreateSpace, Scotts Valley, CA, 2009.

576

Authorized licensed use limited to: University of Illinois. Downloaded on June 22,2023 at 16:05:59 UTC from IEEE Xplore.  Restrictions apply. 


