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Abstract—On today’s noisy imperfect quantum devices, execu-
tion fidelity tends to collapse dramatically for most applications
beyond a handful of qubits. It is therefore imperative to employ
novel techniques that can boost quantum fidelity in new ways.

This paper aims to boost quantum fidelity with Clifford canary
circuits by proposing Quancorde: Quantum Canary Ordered
Diverse Ensembles, a fundamentally new approach to identifying
the correct outcomes of extremely low-fidelity quantum applica-
tions. It is based on the key idea of diversity in quantum devices
- variations in noise sources, make each (portion of a) device
unique, and therefore, their impact on an application’s fidelity,
also unique.

Quancorde utilizes Clifford canary circuits (which are classi-
cally simulable, but also resemble the target application structure
and thus suffer similar structural noise impact) to order a
diverse ensemble of devices or qubits/mappings approximately
along the direction of increasing fidelity of the target application.
Quancorde then estimates the correlation of the ensemble-wide
probabilities of each output string of the application, with the
canary ensemble ordering, and uses this correlation to weight
the application’s noisy probability distribution. The correct
application outcomes are expected to have higher correlation
with the canary ensemble order, and thus their probabilities are
boosted in this process.

Doing so, Quancorde improves the fidelity of evaluated quan-
tum applications by a mean of 8.9x/4.2x (wrt. different baselines)
and up to a maximum of 34x.

I. INTRODUCTION

Quantum computing is a revolutionary computational model

that takes advantage of quantum mechanical phenomena to

solve intractable problems. Quantum computers can poten-

tially leverage superposition, interference, and entanglement

to give significant computing advantage in chemistry [22],

optimization [27], machine learning [6] etc.

In near-term quantum computing, we expect to work with

machines which comprise 100-1000s of imperfect qubits [35].

These machines suffer from high error rates in the form of

state preparation and measurement (SPAM) errors, gate errors,

qubit decoherence, crosstalk, etc. While, in the near future, it

is clear that we will be unable to execute large-scale quantum

algorithms like Shor’s Factoring [41] and Grover Search [20],

which would require error correction comprised of millions
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Fig. 1. Quancorde intuition for a trivial example: A target quantum circuit
is executed on a diverse ensemble (eg., on different machines) as shown
by the different colors. Then, for each output bitstring produced in noisy
circuit execution (from ‘00’ - ‘11’), all machines are ordered by that string’s
occurrence probability - these are the first 4 columns. Next, Quancorde runs a
‘canary’ circuit (which resembles the target circuit structure and is classically
simulable) on the ensemble to obtain a canary ordering, i.e., the machine
ordering that increases the occurrence of the correct canary output. The canary
ordering is expected to be a close match to the ordering created by the correct
outcome for the original circuit - this is because the two circuits have the same
structure and suffer fairly similar noise effects. Thus, the output string from
the original circuit that produces a machine ordering closely correlated with
the canary ordering is likely to be the correct original outcome. This is ‘11’
in the figure. A full-fledged design illustration is shown in Fig.2.

of qubits to create fault-tolerant quantum systems [32], it is

important to uncover some potential for quantum advantage

in the near-term.

Classical computing today is able to perfectly simulate

quantum systems up to around 50 qubits (with the help

of supercomputers, if required) [7], [14], [21], [26], [49].

Thus, advancing today’s quantum computing to the doorstep

of quantum advantage would require us to solve quantum

applications of around 50 qubits with reasonable fidelity1.

However, on today’s quantum devices, execution fidelity tends

to collapse dramatically for most circuits beyond a handful of

qubits.

Multiple error mitigation techniques have been explored

recently. These techniques reduce the effect of noise on circuit

execution on the quantum machine. Several promising strate-

1fidelity: the probability of finding the correct outcome or set of outcomes
from the output distribution produced by a noisy quantum circuit.
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Fig. 2. Quancorde overview. (1) A canary circuit for the target application is constructed by replacing the non-Clifford gates in the target (orange) with the
nearest Clifford gates (green). (2) The target circuit is executed on the diverse noisy quantum ensemble R1-R5 (e.g. different machines or qubits/mappings).
(3) In parallel, the canary is also executed on the same noisy ensemble. (4) The correct output of the canary is obtained by running it ideally (noise-free)
on a classical machine - possible since Clifford circuits are efficiently classically simulable. (5) Since the correct canary outcome is known, the ensemble is
ordered based on the noisy execution fidelity of the canary - . (6) The noisy distribution on any machine is selected as the
baseline - the correct answer ‘11’ has low probability. (7) Ensemble orderings are produced for the different noisy outputs (of non-negligible probability) of
the original circuit and are compared with the canary ordering (like in Fig.1) to estimate a correlation value for each output 0 ‘11’ has a high correlation. (8)
The correlations are then used to weight the baseline distribution to produce a new distribution in which the ‘11’ probability is boosted to become the winner.

gies have recently emerged [4], [8], [9], [12], [15], [15], [18],
[24], [29], [30], [34], [39], [42]–[44], [46]–[48], [50], [51].
However, the resulting execution fidelity is still minuscule for
most circuits beyond 10 qubits, let alone real-world use cases.
Thus, while we must continue to innovate across the hardware
and software stack to improve the fidelity we can get out of any
given quantum device, it is also imperative to ponder entirely
different techniques that are able to boost quantum application
fidelity in new ways, beyond the fundamental limitations of
today’s noisy quantum devices. Only then can we advance
quantum frontiers in the near future.

This work proposes one such fundamentally new approach
to identifying the correct outcomes of extremely low fidelity
quantum applications. It is based on the key idea of diversity
in quantum devices - no two quantum devices are identical.
Today’s device errors stem from multiple noise sources such
as the imperfect classical control of the device, thermal
fluctuations, destructive qubit coupling, imperfect insulation
of the qubits, quasi-particles, and other external stimuli [10],
[23], [25], [28], [40]. Because current fabrication techniques
lack the precision to make homogeneous batches of quantum
devices, the noise properties are distinct for each device. Fur-
thermore, the dynamic nature of quantum systems causes these
noise sources to suffer from spatial and temporal variation.
Thus, each (portion of a) device is unique, and its impact on
an application’s execution / fidelity, is also unique.

Simply put, a device which is known to be ‘better’ for the
target application would produce higher application fidelity
(compared to other devices). In other words, it would produce
a higher probability of occurrence of the correct application
outcomes in its output distribution. Extending this notion

further, every output string that an application might produce
in noisy execution, will have a unique ordering of devices
that increases the string’s probability of occurrence from low
to high. If one of these orderings is somehow known to
be the ‘correct’ device ordering that improves the fidelity
of the application, then the bitstrings that produce this (or
similar) device orders would most likely be among the correct
outcomes of the application. Of course, knowing this correct
ordering is not trivial, but in this work we show that this is
very feasible. Note: this diversity could also be different qubit
mappings within a single device.

We propose Quancorde: Boosting fidelity with Quantum
Canary Ordered Diverse Ensembles. Quancorde exploits di-
versity and ordering, as expressed above, to identify the correct
outcome of a target application. It is introduced in Fig.1.
In Quancorde, a target quantum circuit is executed on a
diverse ensemble of resources, (eg., on different machines)
as shown by the different colored blocks in the figure. Then,
for each output bitstring of the circuit (of non-negligible
occurrence), machines are ordered by the string’s probability
of occurrence. Each bitstring can produce a unique ordering as
shown for 4 different output strings (‘00’,‘01’,‘10’ and ‘11’)
for a 2-qubit circuit in the figure. Now, the critical step is to
identify the (nearly) correct ensemble ordering that improves
the application fidelity.

To do so, Quancorde constructs a quantum ‘canary’ circuit
(inspired in name by prior classical canary circuits [16]).
The canary circuit is important in two ways: 1 First, the
canary circuit is made up of only Clifford gates and is
constructed by replacing all non-Clifford gates in the target
circuit with the ‘nearest’ Clifford gates. A circuit made up
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of only Clifford gates is efficiently classically simulable [19],
and thus the correct output of the canary circuit is obtained
via ideal classical simulation. 2 Second, the canary circuit
maintains the exact device-mapped circuit structure of the
original circuit - it has the same circuit critical depth/paths,
the same 2-qubit CNOT gates, and the same measurement
bits. Thus, it suffers from the same noise sources, and their
relative impact on its circuit fidelity is similar to that on the
original circuit, even if the quantum states explored by the
two circuits are different. Next, Quancorde runs this canary
circuit on the ensemble to obtain a canary ordering, i.e. the
ensemble ordering for the correct canary output (which is
known from 1 ) - this is shown to the right of the figure.
The canary ordering is expected to be a close match to the
ordering created by the correct output for the original circuit
(as discussed in 2 ). Next, the ensemble order produced by
each noisy output string of the application is correlated against
the canary ordering. A correlation distribution is obtained in
which the correct outcome of the application is likely to have
a strong correlation to the canary order (again, from 2 ). In the
figure, this corresponds to the ‘11’ string, whose ordering is
almost identical to the canary ordering. Finally, this correlation
distribution is used to weight the original application noisy
distribution. Since the likely correct outcomes are weighted
higher, this tremendously boosts application fidelity. More the
diversity of the ensemble, greater is the uniqueness of the
ensemble order. This creates a more well defined correlation
distribution, leading to a larger boost to application fidelity
via the Quancorde approach. A step-by-step breakdown of
Quancorde is shown in Fig.2.

Overall, we make the following contributions:
1 We propose a fundamentally new approach to identify-

ing the correct outcomes of extremely low fidelity quantum
applications by exploiting quantum device diversity.

2 We propose Clifford canary circuits to order a diverse
ensemble of devices or qubits/mappings along the direction of
increasing fidelity of the target application.

3 We then identify the correlation of the application
outputs’ ensemble orderings with the canary order, and use
this to weight the application output distribution, resulting in
boosted application fidelity.

4 The above ideas are presented as Quancorde, which
improves the fidelity of our evaluated quantum applications
(with baseline fidelity as low as 0.1%) by a mean of 8.9x/4.2x
(wrt. different baselines) and a maximum of 34x.

5 Importantly, Quancorde can surpass fundamental limita-
tions of any particular noisy quantum device and thus improve
application fidelity beyond the capability of any single device.

II. BACKGROUND AND MOTIVATION

A. Fidelity in the noisy quantum era

Today’s quantum devices are error-prone and up to around
100 qubits in size [35]. Multiple error mitigation strategies
have been proposed to correct different forms of quantum
errors. These include, but are not limited to, noise-aware
compilation [29], [47], scheduling for crosstalk [15], [30],
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Fig. 3. Sorted probability of occurrence for output trings produced by a 9-bit
circuit executed on IBMQ Montreal. The correct outcome is indicated in red.
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Fig. 4. Diversity in IBM Quantum machine characteristics, obtained from
[1] on 04/17/2022 — T1 times across the qubits on IBM Quantum Hanoi and
Montreal respectively. The bottom 2 figures show CNOT and Readout errors
for each qubit on Montreal.

1Q gate scheduling in idle windows [42], dynamical decou-
pling [34], [43], [50], zero-noise extrapolation [18], [24],
[48], readout error mitigation [9], [46], exploiting quantum
reversibility [33], [42] and many more [4], [8], [12], [18], [24],
[39], [44], [48], [51]. In addition, some of these can be used
in conjunction to achieve better fidelity [38]. However, the
resulting fidelity is still insufficient for most circuits beyond
10 qubits, with the correct circuit outcome(s) often not being
among the most dominant in the output distribution.

Fig.3 shows the sorted probability of the output bitstrings
obtained from a 9-qubit circuit executed on IBM Quantum
Montreal with the highest noise-aware compiler optimizations.
The correct outcome is shown in red. Not only is the probabil-
ity of the correct output (i.e., fidelity) very low at 4%, it is also
2x lower than the probability of the highest occurring output.
Furthermore, the output distribution has nearly 40 bitstrings
with occurrence probabilities higher than that of the correct
outcome. It is evident that for circuits such as this, and those
of greater complexity, today’s machines will be very limited
in the fidelity they achieve. While error mitigation techniques
improve fidelity and will continue to do so as more novel
solutions are proposed, it is clear that noisy quantum machines
will be fundamentally limited, and we require entirely novel
approaches to identify the correct outcomes of applications of
real-world criticality. In this work, we turn to diversity.

B. Diversity in Quantum Devices

Even if QCs are manufactured in a highly controlled setting,
unavoidable variation results in intrinsic properties that impact
performance. Fig.4 shows data on IBM Quantum machine
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Fig. 5. Simulating Clifford circuits on the IBMQ Stabilizer Simulator [1]
run on a laptop. The linear scaling with number of gates is clearly visible.
Circuits with 300 qubits / 50,000 gates can be simulated in 30 seconds.

characteristics obtained from [1] on 04/17/2022. The figures
show T1 coherence times across the 27 qubits on IBM
Quantum Hanoi and Montreal, respectively. These coherence
times are indicative of the circuit durations at which amplitude
damping occurs. In the data shown, the average coherence time
of Hanoi is lower than that of Montreal, indicating a higher
likelihood of damping. Furthermore, some qubits are much
worse than others. On Montreal, a 4-qubit circuit mapped to
qubits (2, 3, 5, 6) would decohere faster than one mapped to
(9, 10, 12, 13). Thus, clearly the circuit fidelity (especially
for deeper circuits) could be very different across these two
mappings and devices. Similar diversity is present in other
forms of error such as gate errors and readout errors [37].

From the above discussion, it is intuitive that the same
application executed on different machines or on different
qubits/mappings within a machine, will experience different
noise characteristics and therefore produce different output
probability distributions. Finally, it is important to recognize
that for circuits of even reasonable complexity, the fidelity
impact cannot be directly inferred simply by observing error
rates and decoherence times. We discuss this further in Fig.10
and Section IV-B, but this is intuitive, since if this were pos-
sible, then noise-aware quantum simulators would be perfect
at mimicking real device fidelity (which they are not).

C. Clifford Circuits

Classical simulation of quantum problems usually requires
exponential resources (otherwise the need for quantum com-
puters is obviated). Even using high-performance supercom-
puters, the simulation is restricted to around 50 qubits [7],
[14], [21], [26], [49]. An exception to the above is the
classical simulation of the Clifford space which is a subset
of the total quantum Hilbert space. Circuits made up of only
Clifford operations can be exactly simulated in polynomial
time (almost linear in the number of gates and qubits) as stated
by the Gottesman-Knill theorem [19].

We quantitatively showcase this in Fig.5. The figure shows
simulation time for purely Clifford circuits of up to 50,000
gates and 300 qubits. These are simulated on the IBM Sta-
bilizer Simulator [1] run on a laptop computer. Clearly the
simulation time is seen to scale fairly linearly in the number
of gates. Further, even the largest circuits are simulated in
roughly 30 seconds.

While the Clifford group operations do not provide a
universal set of quantum gates, they have many benefits. In
this work, Clifford circuits are used to construct canary circuits
that closely resemble the structure of the target application.
By being classically simulable, the correct outcomes of the
canary circuits can be estimated on a classical computer in
an efficient manner. This is then utilized towards ordering the
diverse ensemble.

III. LEVERAGING ORDERED ENSEMBLES

In this section, we discuss how ensemble ordering enables
the boosting of noisy application fidelity. This section assumes
that an ensemble order that is well correlated to the fidelity of
the target application is known; the practical implementation
of this, with canary circuits, is discussed in Section IV.

Fig.6.a shows a 2-qubit circuit that exploits phase kickback
(integral to applications like Bernstein-Vazirani [5]) to produce
‘11’ as the correct outcome. When executing on real machines,
such a circuit would suffer from noise and thus, the output
distribution produced is a set of many bitstrings, which in
this case are ‘00’, ‘01’, ‘10’ and ‘11’. Our goal is to identify
that ‘11’ is the correct outcome. Note that in the presence
of significant noise, ‘11’ is not necessarily the most probable
output (similar to Fig.3), so simply capturing the output with
highest probability is often insufficient.

In this experiment, we execute this 2-qubit circuit on a
diverse ensemble of 20 diverse simulated ‘machines’ - 20 sim-
ulations with varying error characteristics. For this experiment,
we assume that the ensemble ordering that is well correlated
with the circuit’s fidelity is known (i.e., we have an intuition
for the ordering of machines that improves the fidelity of the
application, even if we don’t know the correct outcome of the
application). All errors increase uniformly from machines 1
to 20, so we assume that the reverse ordering will be well
correlated with application fidelity.

Now, recall that we still do not know the correct outcome
of our target circuit. Next, we plot the probability of occur-
rence of each output string against the error-ordered machine
ensemble. This is shown in Fig.6.b. Clearly the probability
of the ‘11’ outcome (green) falls almost monotonically as
we go from best (1) to worst (20) machines, showing high
(nearly perfect) positive correlation with the ‘correct’ machine
order. On the other hand, the ‘00’ outcome probability (blue)
increases as machine quality worsens (negative correlation)
and the ‘10’ and ‘01’ outcomes (yellow / plum) have no
discernible correlation.

Next, we use these correlations to weight the original
application’s output probability distribution (this weighting
is similar to Bayesian Reconstruction [13]). Outputs with
high positive correlation are boosted, those with low positive
correlation are diminished, and those with negative correlation
are simply removed. This can be done for the application’s
output distribution on any machine or every machine or a
known fairly good machine. We show this for every machine in
Fig.6.c. Clearly, the ‘11’ outcome probability is tremendously
improved due to its high positive correlation. Now, from this
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Fig. 6. Leveraging an ordered diverse ensemble to boost application fidelity. (a) 2-qubit circuit with a ‘11’ correct output. (b) The 2-qubit circuit is executed
on 20 simulated machines with increasing noise, and the output bitstring probabilities are plotted. The probability of the correct bitstring ‘11’ decreases in
high positive correlation with decreasing machine quality, whereas other bitstrings have low / negative correlation. (c) The correlations are used to weight the
output probabilities. The correct bitstring is boosted due to high correlation, while others are diminished. Thus, it stands out as the clear estimated outcome.
(d) Flow chart of the Quancorde proposal assuming a given canary-ordered ensemble.
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Fig. 7. Generating Clifford canary circuits. The top circuit shows a target
4-qubit circuit after mapping to an IBM Quantum device. The bottom circuit
shows a Clifford canary generated for the target circuit.

figure, it is easy to identify that ‘11’ is the correct application
outcome since it clearly stands apart from other outputs. The
resulting fidelity boost is significant for any machine in the
ensemble, and clearly showcases the capability of Quancorde.
A flow chart of the Quancorde proposal, generalizing the steps
to exploit a diverse ensemble is shown in Fig.6.d and Fig.2.

Greater diversity and size of the ensemble are likely to imply
more comprehensible identification of the correct outcome or
a smaller subset of outcomes. Note that the ensemble does not
have to be unique devices, it could also be different sets of
qubits or different mapping of qubits with a single device or
both - thus ensemble size can be increased.

IV. CANARIES FOR ENSEMBLE ORDERING

In Section III, we discussed how knowing an ensemble
ordering that is well correlated with the fidelity of the target
application can help identify the correct application outcome.
While a ‘good’ ensemble ordering is fairly trivial to estimate
for very simple circuits (roughly proportional to a product of
different noise impacts), this is not the case for more complex
circuits, for which fidelity is dependent on more complex
interactions among the qubits and among the different noise
sources. Thus, to help find an appropriate ensemble ordering
we propose ‘canary’ circuits, which are designed with two
insights.

1 First, we observe that the impact of noise on the fidelity
of a circuit is closely tied to the device-mapped structure of
the circuit: how many 2-qubit CNOT gates are present and on
which qubits they are placed; which qubits in the circuit are

involved in critically long, potentially decohering paths; which
qubits contribute to worse readout errors, etc. Thus, a canary
circuit that closely mimics the device-mapped structure of the
original circuit, plus has as much overlap as possible with the
original output state, could be useful for understanding the
ensemble-wide impact of noise on the original circuit. But for
this to be feasible, the correct outcome of the canary circuit
should be known.

2 Thus, second, we construct these canary circuits with
only Clifford gates, by replacing all non-Clifford gates in
the target circuit with the ‘nearest’ Clifford gates. A purely
Clifford circuit is efficiently classically simulable (Section
II-C), thus the correct output of the canary circuit is obtained
via ideal classical simulation. Note that the correct output of
the canary is almost always different from that of the original
circuit (however, choosing the nearest Cliffords helps maintain
state overlap to the best extent possible). But importantly, it
still maintains the structure of the original circuit since only
specific 1-qubit gates in the circuit have to be replaced by
Clifford gates. Since the correct canary output is known, the
ensemble can be ordered by the improving fidelity order of the
canary circuit on the ensemble. This is estimated by running
the canary circuit over the noisy ensemble and evaluating the
probability of the correct canary output that they each produce.
Then, as discussed above, this ordering is considered to be well
suited to the original circuit (and we empirically show this to
be the case). This ordering is then utilized as described in
Section III to deduce the correct outcome of the target circuit.
Construction and use of canaries is also illustrated in Fig.2.

A. Designing clifford canary circuits

Fig.7 shows a circuit example of Clifford canary generation.
The top circuit shows a target 4-qubit circuit after mapping to
a IBM Quantum device. On these devices, the basis gates are
CX, ID, RZ, SX, X [1]. These basis gates are such the only
non-Clifford gates are rotational gates about the Z-axis (RZ)
with angles that are not multiples of . Any number of such
gates can be present in a circuit. The bottom circuit shows a
Clifford canary generated for the target circuit. It is generated
by ‘rounding’ the non-Clifford RZ gates to the nearest Clifford
gates (i.e., to nearest multiple of ). Since all gates in the
canary are Clifford, it can be efficiently classically simulated
(Section II-C), and thus the canary correct outcome is known.
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Fig. 8. Fidelity over a noisy ensemble for a 10-qubit circuit. Figure shows - a)
‘Original Farthest’: circuit with all 1-qubit gates midway between Cliffords, b)
‘Original Near’: same circuit structure, with all 1-qubit gates as near-Cliffords,
c) ‘Closest Clifford’: with all 1-qubit gates as the closest Cliffords to the prior,
d) ‘Random Clifford’: with all 1-qubits as random Cliffords.

Also, it is evident from the figure that the circuit structure
is maintained in the canary circuit. As discussed earlier, the
structural similarity leads to similar fidelity trends across the
ensemble for both the original and the canary.

We quantify these observations in Fig.8. All the lines
represent a 10-qubit circuit with 50-CX gates and 50 1-qubit
gates, simulated on 10 different levels of noise. The blue line
‘Original Farthest’ represents a circuit in which all the 1-qubit
gate angles are midway between Cliffords i.e., they have gate
rotations: ∗ — hence these angles are
farthest away from Cliffords. The red line ‘Original Near’ has
the same circuit structure as above, but all the 1-qubit gates
have only a small deviation from Cliffords: ∗ .
The green line ‘Closest Clifford’ circuit has the same structure,
but with all angles as the nearest Clifford to the above:

∗ . The yellow line ‘Random Clifford’ circuit
has the same structure, but with all angles as random Cliffords:

∗ .
The first point to note is that the ‘Random Clifford’ only

captures the Original circuit’s fidelity trend very loosely —
this alone is insufficient for our goals — this circuit is far
from the Original, with insignificant state overlap. On the
other hand, the ‘Closest Clifford’ is excellent at capturing
the fidelity trend, closely mimicking the two Original circuits.
Unsurprisingly, it almost overlaps the red line, since the angle
difference (and hence the output state difference) between the
two is marginal, but most importantly it also closely captures
the trend of the blue line, which is the state that is farthest
away from it. This is clearly indicative that even though the
states of the two circuits are not the same, the impact of
structural noise is significant enough to create similar fidelity
trends as long as there is some non-trivial state overlap.

B. Quantifying canary ordering capabilities

Now, we show the capability of the canary circuits to
capture fidelity trends of real applications on real devices.
Fig.9 shows the high correlation in ensemble-wide fidelity be-
tween a 10-qubit adder circuit (orange) and its corresponding
canary circuit (green) generated by the methodology described
earlier. The comparison is performed across an ensemble of 50
different mappings on IBMQ Montreal. Note that, while this
figure assumes that the output of the original adder circuit (and
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Fig. 9. High correlation in ensemble-wide fidelity between a 10q adder
(orange) and its canary (green), across an ensemble of 50 mappings on IBM
Quantum Montreal.
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Fig. 10. A 4-qubit QAOA circuit’s fidelity across an ensemble of 3
mappings each on 7 IBM Quantum machines is shown (orange). Fidelity
of the corresponding canary is also shown (green) and achieves near-perfect
correlation with the original. Also shown is the poorly predicted fidelity by a
simulated noise model (blue) that uses the day’s machine calibration data.

therefore its fidelity) is known, this would not be the case for
real-world quantum applications.

First, observe that the outputs produced by the two circuits
are different (as shown in the legend) - this is expected from
prior discussion. Second, note that the fidelity of both the
original and the canary circuits are very low, under 4% - these
are hard to execute circuits on today’s quantum devices. Third,
within this ensemble, it is unclear which mapping will produce
the highest fidelity. It is not the ‘optimal’ mapping chosen by
the Qiskit transpiler, which is the first instance shown in the
figure, and is clearly lower in fidelity compared to a couple
of other instances. Though the output produced by the circuits
are different and at low fidelity, maintaining the same circuit
structure (as seen in Fig.7) enables the circuits to experience
similar noise effects across the ensemble. The two trends are
fairly similar across the ensemble, even if there are some
instances of non-negligible deviation. The fidelity correlation
between the two circuits is 87%, indicating that the canary is
highly accurate in predicting a good ensemble order for this
relatively low-fidelity original circuit.

Although it is evident from Fig.9 that the canary circuit
can produce a good ensemble ordering for the target circuit,
it would be fair to ask if an equally good ordering can be
produced by simpler techniques, such as simply using the
static noise information about the circuit. After all, the mapped
qubits are known and the corresponding coherence times and
gate errors are available from the device’s most recent cali-
bration (roughly performed once a day for IBMQ machines).
Perhaps this noise data can be used to construct some fidelity
heuristic? We argue that this is insufficient for fairly complex
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Fig. 11. Spearman correlation (varies from -1 to 1) between the canary-
produced ensemble ordering and the ideal ordering for the target circuit, shown
for 40 circuits (from real machine execution). The circuits are ordered by
increasing size from 4-14 qubits. Green (fidelity > 10%) / Blue ( 2− 10%)
/ Orange ( < 2%). Circuits always show (very) strong correlation.

circuits and/or real device execution, for two reasons. First,

the noise data obtained from the devices are stale - the devices

are characterized only at coarse granularities of time (usually

at the time of calibration) because per-qubit characterization

is very time-consuming, and the noise characteristics of the

qubits tend to drift over time [36]. Second, even if noise data

were accurate, it is non-trivial to actually obtain the impact

of these noise characteristics on the fidelity of a circuit of

any reasonable complexity. This would require understanding

every stage of the circuit’s execution, which is as complex as

the circuit execution itself (and thus classically inefficient).

To quantify this argument, we perform an experiment with

a fairly simple 4-qubit QAOA circuit in Fig.10. The fidelity

of the circuit across an ensemble of 3 mappings, each on 7

IBM Quantum machines, is shown in orange. The fidelity of

the corresponding canary circuit across the ensemble is shown

in green and is seen to achieve near-perfect correlation with

the original circuit. This circuit is of low width and depth, and

this is a fairly easy task for the canary. In addition, the fidelity

predicted by the Qiskit simulation noise model is shown in

blue. This noise model uses the day’s calibration data from the

machines’ qubits and gates. Clearly, the fidelity trend from the

noise model is poorly correlated (only 24%) with the original,

even for a simple circuit. The peaks and valleys of the original

circuit’s fidelity across the ensemble are not captured and, thus,

this is poor for ensemble ordering. Further, we argue that this

noise model based simulation is a loose upper bound on the

accuracy that any noise based fidelity heuristic can produce.

A more simple heuristic might multiply different error rates

and coherence times, whereas the noise model is actually

simulating the circuit with the noise data. Note that this noise

model simulation is itself not a scalable approach. Thus, it

is clear that noise data based heuristic predictions of fidelity

are inaccurate even for simple circuits, clearly motivating the

canary approach to order the ensemble.

Next, Fig.11 quantifies the high-accuracy ensemble order-

ings that our canary circuits are able to produce for a variety

of applications. The figure shows the Spearman correlation

between the canary-produced ensemble order and the ideal

ensemble order for the target circuit (which would be un-

known for complex non-simulable circuits), for 40 circuits.

The circuits are ordered by increasing size from 4-14 qubits.

Green (fidelity > 10%) / Blue ( 1− 10%) / Orange ( < 1%).

Moderate correlation

Strong correlation

Very strong  correlation

Weak correlation

Fig. 12. Spearman correlation (varies from -1 to 1) between the canary-
produced ensemble ordering and the ideal ordering for the target circuit, shown
for 8 deep 12q circuits with many gates (in simulation).

Spearman correlation measures the strength and direction of

monotonic association between two variables and varies from

-1 to 1. Positive values, especially those closer to one, indicate

a very strong positive correlation. Correlations for all circuits

are in the strong to very strong range, clearly indicating the

effectiveness of Clifford canaries on real machines, even for

circuits which are close to random output distributions.

C. Scaling to more complex circuits

To evaluate the capabilities of the Clifford canaries on more

complex circuits, we perform experiments in noisy simulation

on very deep, reasonably wide, circuits. In Fig.12, we show

12-qubit circuits with circuit depth ranging from 195-1,300 CX

gates and with the total number of non-Clifford gates ranging

from 96-656. It can be observed that the correlation between

the Clifford canaries and the original circuits is always in the

very strongly correlated range. This is a clear indicator of the

scalability of this approach to more complex circuits, as and

when they can be run on quantum devices with non-negligible

fidelity. Note that the correlations seen here are generally

higher than those in Fig.11 - this is because real machine

noise is more erratic than noisy simulation. Nevertheless, the

utility of the Clifford canaries is evident.

V. METHODOLOGY

A. Applications

Our benchmarks are representative of real-world usecases,

and are described below and detailed in Table I. All appli-

cations have average baseline fidelity at 10% or lower - i.e.,

we are primarily interested in applications for which correct

outcomes are relatively hard to identify.

Ripple Carry Adder: Adders are a critical building block

for quantum logic. We implement linear-depth ripple-carry

adder quantum circuits for 2-6 bits that utilize 6-14 qubits

respectively [11].

Quantum Fourier Transform: QFT is a circuit used as a

building block for applications such as Shor’s factoring and

phase estimation. It converts a quantum state from the com-

putational basis to the Fourier basis through the introduction

of phase. QFT was constructed for 6-8 qubits [31].

Quantum Approximate Optimization Algorithm: QAOA [17]

is a variational quantum-classical algorithm to solve combi-

natorial optimization problems. We use QAOA ansatz con-

structed for 6 qubits for 4 different input graphs.
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App Q Output Depth MaxFid AvgFid
QAOA6 1 6 101011+011000 41 29% 11.0%
ADD6 1 6 110000 29 32% 10.0%
ADD6 2 6 111100 29 25% 9.0%
QFT6 6 Equal superposn. 36 42% 7.0%
QAOA6 2 6 011001+001000 93 10% 5.0%
ADD8 1 8 00111100 41 13% 3.7%
QAOA6 3 6 001001+001000 243 5% 3.7%
QAOA6 4 6 011001+001000 283 6% 3.7%
ADD8 2 8 11111100 41 11% 2.6%
ADD10 1 10 0011000000 53 3.5% 1.0%
QFT8 8 Equal superposn. 52 1.7% 0.9%
ADD10 2 10 1111110000 53 2% 0.4%
ADD12 1 12 000011001100 65 0.7% 0.5%
ADD14 1 14 00000011110000 77 0.5% 0.4%
ADD12 2 12 111111111100 65 0.5% 0.35%

TABLE I
EVALUATED ADDER, QAOA, AND QFT BENCHMARKS. CIRCUIT

OUTPUTS, PRE-MAPPING CX DEPTH, MAXIMUM FIDELITY, AND AVERAGE
FIDELITY ACROSS ALL ENSEMBLES ARE SHOWN.

B. Infrastructure / Overheads

Quancorde is implemented to interface with Qiskit [3] and is
evaluated on IBMQ [2] devices. Canary circuits are efficiently
constructed on classical compute.

Intra-device evaluations: Our intra-device evaluations tar-
get the 27-qubit IBM Quantum Montreal and we run 50
different circuit instances across the device. One instance is
that which is mapped and routed to the device by the Qiskit
transpiler when run with highest optimizations enabled. The
other 49 are random mappings.

Inter-device evaluations: Our inter-device evaluations tar-
get 7 IBM Quantum devices: Montreal (27q), Toronto (27q),
Guadalupe (16q), Hanoi (27q), Cairo (27q), Mumbai (27q) and
Brooklyn (65q). Only one circuit is run per device, mapped
and routed to the device by the Qiskit transpiler when run with
highest optimizations enabled.

Correlation post-processing: The correlation processing
step involves calculating the correlation of the ensemble
ordering for each output string in the baseline probability
distribution with the canary ordering. At first glance, it may
seem that output strings are possible, but this is not the case
and the cost is not exponential. There are two upper bounds
that can be established on the number of strings which have to
be analyzed. The trivial upper-bound is ∗
i.e., the number of unique strings produced cannot be more
than number of shots run over all the devices - this number
would be reached if each device produced a purely random
distribution, and each machines distribution was mutually
exclusive. The number of shots is not exponential (if it
were, quantum computing would be infeasible) and can be
derived from the target decipherable fidelity on the quantum
devices. There is an even lower upper-bound that can be
derived directly from a minimum baseline fidelity target. If
we establish that the minimum application fidelity we are
interested in boosting is, say, (since in this region,
the output distribution starts becoming purely random), then
we would at most have to analyze only the top (= 1000
for ) unique strings in terms of their probability
of occurrence. This is because there cannot be more than

999 strings which have probability of occurrence greater than
or equal to than the correct outcome, because if it were so,
that would mean that the fidelity would have to be less than
0.1%. This can be trivially reasoned mathematically. Thus, the
correct outcome will have to be among the top 1000 strings.
Or more generally, among the top strings for a target
lower bound baseline fidelity . This reasoning can similarly
be extended to multi bit-string scenarios as well, but again,
clearly it is non exponential.

C. Evaluation Metrics

We evaluate Quancorde benefits through 2 metrics:
1 Rank of correct outcome: This metric indicates the

ranking of the correct outcome among the correlations of all
possible outcomes with the canary-produced ensemble order.
We refer to this as ‘Rank’. If Quancorde works perfectly, the
rank of the correct outcome is 1. But for more challenging
circuits, the rank is not always 1. Note that while a rank
nearer to 1 is always more beneficial, it is not required
for Quancorde’s success - even lower ranks allow significant
fidelity improvements over the baseline.

2 Fidelity: This metric is a standard evaluation metric
that indicates the likelihood of finding the correct outcome
of a quantum application. We show the benefits of Quancorde
against: a) the maximum baseline fidelity obtained for a target
application across all mappings and machines, and b) the
average benefits across the entire ensemble. Practical benefits
can lie somewhere in between.

VI. EVALUATION

A. Single-application 10-qubit adder analysis

Fig.13 is a real machine / application example of the benefits
produced by Quancorde, with an intra-machine ensemble. It
shows the analysis for a 10-qubit adder which has a baseline
machine fidelity of under 1% - the correct answer is a single
bitstring ‘1111110000’. In all 3 graphs, the x-axis shows all
the different 10-bit strings. The top figure shows the output
probability distribution for the baseline. The correct outcome
is indicated. Note that the probability of its occurrence (i.e.,
fidelity) is very low, only 1.7%. Further, it is not the output
string with the highest probability. Clearly, the correct outcome
cannot be identified. The middle figure shows Quancorde’s
correlation analysis - the correlations vary from -1 to 1, with
near 1 indicating high positive correlation. The correlation
of the correct outcome is indicated and it has the highest
correlation of nearly 0.9. Next, the bottom figure shows the
weighted output distribution by incorporating the correlation
into the baseline distribution. Only a few strings remain, and
the correct outcome’s probability is boosted by 10x, to 20%.
Further, it is a clear winner among all the strings.

B. Outcome Ranks and Correlation Strings

Figure 14 shows two Quancorde results for 15 applications.
The results are averaged across 3 trials of intra-machine and
inter-machine ensembles.
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Fig. 13. Bitstring distribution produced by the baseline for a 10-q adder is
shown in red. The probability of the correct outcome is low in magnitude (2%)
and also lower than other strings. The Correlation distribution produced by
Quancorde (blue), with an intra-machine ensemble, shows the correct outcome
to have the highest correlation with the canary ensemble. When this is used
to weight the original distribution, the Output distribution produced (green)
has the correct outcome at 20% probability and is a clear winner.
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Fig. 14. Left axis / bars: Rank produced by Quancorde for 15 applications.
Right axis / line: Number of output strings (with occurrence probability greater
than 0.1%) analyzed for correlation.

First, we look at the left axis / green columns, which
shows the rank of the correct outcome in the correlation
distribution. As discussed in Section V-C, a rank closer to
1 can improve fidelity further, since this would imply the
correct outcome having a higher correlation compared to other
outputs, thus boosting it further in the final output distribution.
But lower ranks can still produce substantial benefits. It is
evident that many of the relatively smaller circuits (6 qubits)
have perfect Rank. The larger more complicated circuits (8
qubits and greater) have Ranks in the range of 1-30. Even
the worst-case Rank 30 occurs for a distribution which has
4096 potential outputs, clearly showcasing the potential for
harnessing correlation. Mean ranks across the applications
show that the correct outcome usually occurs in the top
2-3 outputs in the correlation distribution. Also, we noted

that Quancorde performs marginally better on inter-machine
diversity compared to intra-machine diversity. The difference
is small enough to suggest that any form of diversity is useful.

Next, we look at the right axis / orange line, which shows
the number of strings analyzed in correlation processing. As
discussed in Section V, with a target baseline fidelity lower
bound of 0.1%, the maximum strings analyzed would be 1000.
From the figure, we see that the actual number only goes up
to 316. The smaller circuits have nearly all their bitstrings
with a fidelity greater than 0.1% , whereas the large circuits,
like the 14-qubit adder, have less than 2% of their strings
worthy of correlation processing. This clearly shows that the
cost of correlation processing is very small, making Quancorde
a computationally scalable approach.

C. Fidelity benefits
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Fig. 15. Fidelity improvements of Quancorde compared to the baseline.
Results are averaged over inter- and intra-machine ensembles. Comparison
to EDM is also shown.

Next, we show the fidelity improvements of Quancorde
compared to the baseline. Results are averaged over inter- and
intra-machine ensembles. Two sets of fidelity improvements
are shown — ‘Mean’ and ‘vs Best’ — these were discussed in
Section V. Quancorde achieves considerable fidelity boosting,
especially for the larger applications. For smaller applications,
the baseline mean fidelity is already around 10% and as high
as 42%, so the boosting potential is limited. Nevertheless,
Quancorde achieves very high fidelity after boosting. For
larger applications, Quancorde’s benefits are very attractive.
The improvements are as high as 15x / 34x (‘Mean’ and
‘vs Best’ respectively) for the 12-qubit Adder, which had a
correct outcome rank of under 5, out of 4k bitstrings. On
average, fidelity boosting of 8.9x / 4.2x is achieved, which
is higher than typical error mitigation techniques, clearly
highlighting Quancorde’s novel capability of harness a diverse
ensemble. Note that considerable improvements are achieved
even on uniform multi-output distributions like QFT. Non-
uniform distributions are discussed separately in Section VI-D.

We also show comparison against EDM [45], another en-
sembling approach, albeit for a different goal of avoiding
specific occurrences of correlated errors. We use an ensemble
size of 4 best mappings (which is the default setting). We
observe fidelity improvements from EDM to be substantially
lower than that obtained from Quancorde - 1.1x on average
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Fig. 16. Quancorde benefits in non-uniformly weighted multi-outcome
applications, shown for a 7-qubit circuit with 17 outputs. The Quancorde
output distribution closely matches the Ideal distribution, while the baseline
distribution does not. Some correct / incorrect peaks are indicated.

Fig. 17. Rank of correct outcome improves as size of intra-machine ensemble
increases, for a 10-qubit adder on IBM Quantum Montreal.

and a maximum of 1.6x. EDM is seen to provide benefits

primarily in scenarios of reasonably high baseline fidelity -

the top 5-6 benchmarks in Table I. To our knowledge, this

is likely because EDM is suited to reducing the probability

of occurrence of very specific competing incorrect bitstrings

which have uncharacteristically high occurrence due to unique

correlated errors. Such scenarios are unlikely near the thresh-

old of device capability, at which point, the impact of all

qubits, their gate errors and coherence times are all significant.

D. Non-uniform Multi-output usecase

Quancorde can also achieve substantial benefits for appli-

cations with non-uniformly weighted multi-outcomes. Fig.16

shows Quancorde benefits for a 7-qubit circuit with a correct

outcome distribution comprising of a superposition of 17 7-bit

strings. The experiment is run with an intra-machine ensemble

on Montreal. The baseline distribution (orange) is far off from

the ideal distribution in purple. For example, peak (2) in the

baseline is absent in the ideal, and other peaks can be similarly

inferred. Quancorde’s correlation processing identified all 17

strings amongst its top 24 Ranks. The weighted output is

shown in green. Clearly it bears good resemblance to the Ideal

with peaks such as (1). While still imperfect, a fidelity boosting

of 4.6x / 2.1x (‘Mean’ / ‘vs Best’, respectively) is achieved

over the baseline.

E. Sensitivity to ensemble size

Greater diversity and larger ensemble sizes could increase

the potential for correct outcome identification. Fig.17 shows

how the Rank of the correct outcome for a 10-qubit adder

circuit improves as we increase the size of its intra-machine

Quancorde ensemble. The experiment is performed on IBM Q

Montreal. Even a small ensemble of just five mappings is fairly

successful in achieving a top-30 Rank. As is evident, increas-

ing the ensemble size improves the Rank. This is because a

large ensemble has more diverse mappings or machines. This

means that there are more diverse noise effects over which

the occurrence probabilities of the different output strings

are evaluated. Consequently, the correlation of the unique

ensemble order for the correct outcome, with the canary-

produced ensemble order, is relatively magnified, thus boosting

fidelity further. The benefits reach the maximum (Rank = 1)

at an ensemble size of 30 mappings. The optimal size of the

ensemble is not directly related to the size of the circuit and

is more tied to the baseline fidelity.

VII. CONCLUSION

Quancorde is a novel approach to identifying the correct

outcomes of extremely low fidelity quantum applications by

exploiting quantum device diversity. It uses Clifford canary cir-

cuits to order a diverse ensemble of devices or qubits/mappings

along the direction of increasing fidelity of the target ap-

plication. It then identifies the correlation of the application

outputs’ ensemble ordering with the canary order, and uses

this to weight the application output distribution, resulting

in boosted application fidelity. Quancorde is especially useful

when diversity is significant, and applications’ ideal outcomes

are hard to produce. Quancorde can have a revolutionary

impact on the way noisy quantum resources are leveraged to

boost the fidelity of real-world quantum use cases.
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[43] A. M. Souza, G. A. Álvarez, and D. Suter, “Robust dynamical decou-
pling,” Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 370, no. 1976, pp. 4748–4769,
2012.

[44] R. Takagi, S. Endo, S. Minagawa, and M. Gu, “Fundamental limits of
quantum error mitigation,” 2021.

[45] S. S. Tannu and M. Qureshi, “Ensemble of diverse mappings:
Improving reliability of quantum computers by orchestrating dissimilar
mistakes,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’52. New York, NY,
USA: Association for Computing Machinery, 2019, p. 253–265.
[Online]. Available: https://doi.org/10.1145/3352460.3358257

[46] S. S. Tannu and M. K. Qureshi, “Mitigating measurement errors in quan-
tum computers by exploiting state-dependent bias,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 279–290.

[47] ——, “Not all qubits are created equal: a case for variability-aware
policies for nisq-era quantum computers,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2019, pp. 987–999.

[48] K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-
depth quantum circuits,” Physical review letters, vol. 119, no. 18, p.
180509, 2017.

[49] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson, “The variational
quantum eigensolver: a review of methods and best practices,” 2021.

[50] L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open
quantum systems,” Physical Review Letters, vol. 82, no. 12, p. 2417,
1999.

[51] S. Wang, P. Czarnik, A. Arrasmith, M. Cerezo, L. Cincio, and P. J.
Coles, “Can error mitigation improve trainability of noisy variational
quantum algorithms?” 2021.

77

Authorized licensed use limited to: University of Illinois. Downloaded on June 22,2023 at 16:07:11 UTC from IEEE Xplore.  Restrictions apply. 


