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We experimentally investigate the properties of hyperentangled states displaying simultaneous entan-

glement in multiple degrees of freedom and find that Bell tests beyond the standard Clauser-Horne-

Shimony-Holt inequality can reveal a higher-dimensional nature in a device-independent way. Specifi-

cally, we show that hyperentangled states possess more than just simultaneous entanglement in separate

degrees of freedom but also entanglement in a higher-dimensional Hilbert space. We also verify the

steerability of hyperentangled quantum states by steering different photonic degrees of freedom.
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I. INTRODUCTION

Entanglement—evincing nonlocal correlations that

exceed what is possible according to any local realistic

model, i.e., local hidden variables—is at the very foun-

dation of quantum mechanics and underlies much of the

new quantum information revolution. In the 1960s, John

Bell developed a test to distinguish such hidden-variable

theories from quantum mechanical ones [1] by specifying

a quantity that had different maximal bounds in the two

models. Since their advent, Bell tests have been a focus

of fundamental research in physics, providing a means

to demonstrate the nonlocal effects present in quantum

mechanics [2], verify the presence of entanglement [3],

and even explore the limits of ultranonlocal theories, which

can predict correlations stronger than those allowed by

standard quantum mechanics [4]. Other techniques, such

as quantum steering [5–8], expand the applicability of

entanglement verification to a wider set of scenarios with

differing assumptions. Initially, these tests of nonlocality

were conceived of as “thought experiments” that revealed

unexpected (or to some, illogical) features of quantum

mechanics; however, repeated experimental verification of

the correlations that are the hallmark of entangled states

has left little doubt that “spooky action at a distance” is a

part of reality. The refinement of these measurement tech-

niques has culminated in a trio of “loophole-free” tests of

nonlocality using Bell inequalities, providing compelling

evidence that Nature is truly nonlocal [9–11]. Meanwhile,

*kwiat@illinois.edu

loophole-free versions of quantum steering have also been

reported [12]. The fundamental importance of such exper-

iments testing the features of nonlocality has been won-

derfully highlighted by the recent Nobel Prize in Physics

awarded to pioneers in the field John F. Clauser, Alain

Aspect, and Anton Zeilinger [13].

Now that the original purpose of Bell tests, to provide

a measurable criterion for separating local and nonlocal

theories, has been largely fulfilled, a new era for Bell

tests is unfolding, in which they are used as tools for

probing and verifying the properties of quantum states.

Most recently, Bell tests have emerged as a resource for

generating provably random number strings [14,15] and

as a means to ensure cryptographic security in “device-

independent” quantum-key-distribution protocols without

needing to trust all the devices [16,17]. The ability to draw

conclusions about a measured quantum state without need-

ing to trust the devices used to make the measurement

or prepare the state is a defining feature of Bell tests and

can be used to distinguish them from other methods of

verifying entanglement. Quantum steering represents an

intermediate case [8], in which one of the measurement

devices must be trusted, while no assumptions are made

about the second measurement device.

Most Bell tests to date have used some version of

the Clauser-Horne-Shimony-Holt (CHSH) inequality [2]

applied to qubits but the space of possible tests and states

to test is much larger [4], including, e.g., bipartite sys-

tems of higher dimensionality, which have been partially

explored [18–21]. In photonic systems, there have been

experimental demonstrations of quantum steering for both
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qubit-entangled states [22–24] and higher-dimensional

ones [25–29]. However, in all such previous steering

demonstrations, the entanglement has been shared on a

single degree of freedom (DOF) of the photon (e.g., polar-

ization, frequency, position-momentum, etc.). Using mul-

tiple DOFs, a single photon is able to carry more than just

a qubit of quantum information and when two photons

are entangled in more than one DOF, higher-dimensional

entanglement can be realized, a phenomenon known as

hyperentanglement [30,31]. The use of multiple photonic

DOFs and hyperentangled states has already shown advan-

tages in tasks such as state discrimination [32], entangle-

ment distribution [33] and distillation [34], teleportation

[35], and quantum error correction [36]. Thus, hyper-

entanglement is a promising candidate for achieving more

efficient and noise-robust quantum communication.

In this paper, we investigate nonlocality tests on hyper-

entangled quantum states. By coherently controlling two

DOFs on each photon, we can certify genuine higher-

dimensional entanglement, a task that can otherwise be

quite demanding to achieve experimentally. After describ-

ing our experimental setup, we discuss results of a higher-

dimensional Bell inequality, where we certify entangle-

ment with dimensionality larger than just two qubits.

Polarization and path hyperentanglement have been used

previously in several tests of nonlocality [37,38]. Our

source uses polarization and time-bin hyperentanglement

for optimal applicability to the space-to-earth channel [39,

40]. We also optimize the choice of higher-dimensional

inequality and characterize the violation as a function of

added decoherence. Finally, we display quantum steer-

ing of our hyperentangled two-particle state, i.e., steering

across multiple DOFs of an entangled photon, also as a

function of decoherence.

II. EXPERIMENTAL METHODS

The time-bin and polarization-hyperentangled photon-

pair source, shown in Fig. 1, is driven by a 532-nm

pulsed laser (Spectra Physics Vanguard 2.5 W 355 laser,

frequency doubled from 1064 nm) with an 80-MHz repeti-

tion rate. The pump laser is sent through an unbalanced

Mach-Zehnder interferometer to put each pulse into a

superposition of an early and a late time bin, separated

by 2.4 ns, large compared to the 7-ps pump-pulse dura-

tion. After the interferometer, the polarization of the pump

beam is prepared using wave plates (WPs), after which the

pump enters a polarizing Sagnac interferometer [41,42].

The Sagnac interferometer contains a periodically poled

lithium niobate (PPLN) crystal (poling period 7.5 µm),

inside which the pump undergoes type-0 phase-matched

spontaneous parametric down-conversion. The horizontal

(vertical) component of the pump traverses the Sagnac

loop clockwise (counterclockwise) to produce a pair of

horizontally polarized photons with wavelengths 810 nm

FIG. 1. A schematic of the hyperentangled photon system. The

pump is prepared in a superposition of timing modes so that,

when it passes through the Sagnac polarization-entanglement

source, the output is entangled in both polarization and time

bin. The photons are then separated by a dichroic mirror for

further analysis. The measurement system combines two stan-

dard polarization-analysis systems with a polarization-dependent

unbalanced interferometer. This leads to coupling between the

polarization and timing modes, so that timing measurements

can be controlled with polarization optics. This measurement

system is duplicated for both photons, with the 810-nm pho-

tons being detected by APDs and the 1550-nm photons being

detected by SNSPDs. The liquid crystals in the 810-nm mea-

surement system are used to tune the phases in the generated

state and of the measurement system: HWP, half-wave plate;

QWP, quarter-wave plate; WP, wave plate; PBS, polarizing beam

splitter; PPLN, periodically poled lithium niobate; LC, liquid

crystal; APD, avalanche photodiode; SNSPD, superconducting-

nanowire single-photon detector.

and 1550 nm. The interferometer also contains a Fres-

nel rhomb, acting as a broadband half-wave plate (HWP),

causing the output of the clockwise path to be verti-

cally polarized, while the counterclockwise path’s output

is horizontally polarized (because the counterclockwise-

propagating vertical-polarization pump is converted to

horizontal polarization before the PPLN crystal), leading

to polarization entanglement. A 4.1-cm piece of calcite

(Thorlabs BD40) in the Sagnac (after the transmitted port

of the PBS) acts as temporal compensation, to counter-

act the wavelength-dependent delay of the Fresnel rhomb.

After the Sagnac, in the 1550-nm path, there is another

small piece of calcite (0.5 mm long) to fix the delay mis-

match more precisely between the horizontal and vertical

polarizations exiting the Sagnac. Due to dispersion, only

the 1550-nm side needs extra temporal compensation out-

side of the Sagnac. For more information on this source,

see Ref. [39].

In general, there will be relative phases between the

two polarization modes, the two-timing modes, and the
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polarization and timing modes:

|ψ〉 = 1

2
(|HH 〉 + eiφp |VV〉) ⊗ (|t1t1〉 + eiφt |t2t2〉) (1)

= 1

2
(|00〉 + eiφt |11〉 + eiφp |22〉 + ei(φt+φp )|33〉), (2)

where in our system we assign |0〉 ≡ |Ht1〉, |1〉 ≡
|Ht2〉, |2〉 ≡ |Vt1〉, and |3〉 ≡ |Vt2〉. In our experiments,

these phases are set using liquid-crystal elements acting on

the 810-nm photons.

After exiting the Sagnac interferometer, the down-

conversion photons are separated from the pump and

each other using dichroic mirrors, before being routed

to the measurement system. The measurement system is

designed so that both the time and polarization measure-

ments can be carried out using polarization optics. This

requires a coupling between the polarization and time

modes, achieved using another unbalanced Mach-Zehnder

interferometer that contains a final PBS (see Fig. 2): the

PBS couples the timing and polarization modes, allowing

the analysis timing mode to be effectively controlled using

WPs.

In Fig. 2, we denote HWP1 and QWP1 as the pair of

WPs before the analyzer interferometer; HWP2 and QWP2

as the pair of WPs after the interferometer but before the

PBS in front of detectors 1 and 2; and HWP3 and QWP3

as the pair of WPs after the interferometer but before the

PBS in front of detectors 3 and 4. For example, with QWP2

and HWP2 at 0◦ (with respect to the horizontal), detector

1 will project onto the first timing mode, with the polar-

ization mode set by QWP1 and HWP1; with HWP1 and

QWP1 at 0◦, for instance, the measurement state for detec-

tor 1 is 〈Ht1| or, with HWP1 at 22.5◦, 〈Dt1|. With HWP2

FIG. 2. Detail of the analyzer interferometer, with photons

entering from the top. Here, we show the naming convention of

the WPs used as part of the measurement system.

at 22.5◦, detector 1 will project onto an equal superposition

of both timing modes with orthogonal polarizations; e.g.,

with QWP1 and HWP1 at 0◦, the measurement state will

be (〈Ht1| + 〈Vt2|)/
√

2). In this way, the relevant ampli-

tude and phase between the measured timing modes can

be controlled with HWP2 and QWP2, while the measured

polarization state is controlled by HWP1 and QWP1.

Due to the probabilistic nature of the first nonpolarizing

beam splitter in this interferometer, three possible mea-

surement time bins are generated. The early (late) time

bin arises from photon pairs created by the pump pulse

that go through the short (long) arm of the pump interfer-

ometer and are subsequently sorted into the short (long)

arm of the analysis interferometer; the middle time bin

corresponds to photons that take the short path in one inter-

ferometer and the long path in the other. In this work, we

postselect on this middle time bin [43]. Because we match

the path-length differences (long path minus short) in the

two interferometers, these “short-long” and “long-short”

processes are indistinguishable and, therefore, can inter-

fere. To preserve the relative phase of the time modes, it

is necessary to actively stabilize these measurement inter-

ferometers to match the pump interferometer. This active

stabilization is carried out by sending a portion of the pump

laser backward through each measurement interferome-

ter and measuring its intensity on photodiodes (Thorlabs

PDA36A) [39]. This feedback signal is then used to adjust

the length of the long arm of the measurement interferome-

ters using a piezoelectric element (Thorlabs AE0505D16F

with Thorlabs TPZ001 driver) to vary the exact positions

of the mirrors in the long arm; this discrete-time stabiliza-

tion system has an output rate of about 100 Hz and yields

an average phase stability of about 3◦ [39].

The 810-nm photons are detected using four silicon

avalanche photodiodes (Excelitas SPCM-AQ4C) with a

measured detection efficiency of about 45% at 810 nm

and a timing jitter of about 600 ps. The 1550-nm photons

are detected with four superconducting-nanowire single-

photon detectors (SNSPDs) with an efficiency of about

80% and a timing jitter of less than 100 ps. The outputs

of these detectors are then sent to a time-bin discrimina-

tion circuit [40] and then to fast time-tagging electronics

(UQDevices UDQ-Logic-16), yielding a net coincidence

timing resolution of about 700 ps. The resulting time tags

are processed to determine coincidence events correspond-

ing to detections in the middle time bin, which is then

easily distinguished from the early and late time bins at

±2400 ps, using the sorting capability of the time-bin

discrimination circuit. Unfortunately, for steering measure-

ments in Fig. 4 with visibility below 0.6, the time-bin

discrimination circuit channel for detector A4 is not func-

tional, so each measurement is repeated twice—the second

time, a HWP is used to direct the A4 events to the func-

tional detector A3. This does not present an issue because

our measurement system is not attempting to close any

054025-3



ZEITLER, CHAPMAN, CHITAMBAR, and KWIAT PHYS. REV. APPLIED 18, 054025 (2022)

loopholes and our system is stable over longer than the

time to take multiple measurements.

III. VERIFYING HIGHER-DIMENSIONAL

HYPERENTANGLEMENT

Bell inequalities can be characterized by the number of

bases measured and the number of outcomes of those mea-

surements; in general, these values can be different for the

two parties making measurements, so bipartite inequalities

require four parameters to be classified [44]. The CHSH

Bell inequality uses two measurement bases and two mea-

surement outcomes on each side and can be referred to

as I2222. For that particular set of parameters, there is

only one possible inequality (ignoring trivial permutations)

and this cannot distinguish between entangled qubits and

higher-dimensional entanglement. In contrast, for bases

and outcomes above 2, there can be multiple inequalities

for a given set of parameters. Here, we verify the higher-

dimensional entanglement of the hyperentangled time bin

and polarization state by making a Bell-inequality mea-

surement that can produce different violations depending

on state dimensionality. Specifically, we focus on the sym-

metric case of using four measurement bases and two

measurement outcomes for both photons in the pair (I4422),

because some of these inequalities display different quan-

tum bounds for qubits and qutrits [45]. With these param-

eters, there are at least 27 known inequalities [44]. For

completeness, we also perform standard CHSH inequality

measurements on pairs of photons entangled in polariza-

tion and separate measurements on pairs of photons entan-

gled in time-bin modes but these alone are insufficient to

say that the state possesses higher-dimensional entangle-

ment. For a description of the CHSH measurements and

results, see Appendix A.

Both observed CHSH Bell parameters nevertheless indi-

cate that the source is entangled in each degree of freedom

separately. Notably, however, measurement of a CHSH

inequality of this type cannot be used to infer that the

state is entangled in both degrees of freedom simultane-

ously, because formally the CHSH inequality can always

exhibit a violation even if the source is only entangled in

one degree of freedom; this is true even if the measure-

ment settings are chosen to depend on both polarization

and time mode, instead of measuring each degree of free-

dom separately. Unless an assumption is made that the

states onto which Alice and Bob project are indeed the ones

they intend (or have announced that they will measure),

it is not possible to conclude that the state is hyperentan-

gled from just a CHSH Bell measurement. However, an

important feature of Bell tests is that they need not rely

on such an assumption about what measurements are actu-

ally carried out; because the Bell test can be interpreted

solely as a mathematical game on boxes with local realistic

constraints [3], it does not depend on what quantum states

might violate it. Consider the scenario in which Alice and

Bob both try to measure in a hybrid basis between polar-

ization and time bin that should only yield a violation for

truly hyperentangled states, but problems in their mea-

surement devices make their results insensitive to timing

information, so the actual bases used depend only on polar-

ization. In this case, a state only entangled in polarization

would lead Alice and Bob to incorrectly conclude that they

shared a hyperentangled state, because their assumption

about what measurement basis they used was violated. The

synthesis of a Bell parameter and any conclusions drawn

from it rely only on the correlations between Alice’s and

Bob’s results and, in this way, the CHSH inequality can-

not provide information about the dimensionality of a state.

To provide dimensionality information via Bell tests, it is

therefore critical that the conclusion does not depend on

trust of the measurement devices used.

In order to select an optimal higher-dimensional

inequality to measure using our experimental system

(which cannot measure all states), we carry out numeri-

cal simulations of the maximum Bell parameter attainable

with our system for each of the known 27 inequalities (for a

short discussion of the limitations on inequality choice, see

Appendix B), using a maximally entangled ququart state as

an input:

|�4〉 = 1

2
(|00〉 + |11〉 + |22〉 + |33〉), (3)

where in our system we assign |0〉 ≡ |Ht1〉, |1〉 ≡
|Ht2〉, |2〉 ≡ |Vt1〉, and |3〉 ≡ |Vt2〉. Based on this analysis,

we choose to measure I 18
4422, which is the inequality with the

largest difference between the violation of our system (con-

strained by our available measurements) using entangled

ququarts and the theoretical bound using entangled qubits.

With optimized wave-plate settings (for optimal settings,

see Appendix B), our system can theoretically achieve a

Bell parameter of 0.46, while a local model is limited to a

value of 0 and a qubit-entangled state is limited to 0.18

[44,45]. Note that I 18
4422 is also the I4422 inequality that

has the largest separation between qubit and qutrit perfor-

mance for any allowed measurement basis [46]; however,

our system cannot create arbitrary measurements, so it is

not able to reach the maximum quantum bound of 0.64

[45].

We measure this I 18
4422 inequality using our best approx-

imation to the maximally entangled ququart state given in

Eq. (3). With optimal source tuning, we observe a param-

eter of I 18
4422 = 0.45 ± 0.03 after measuring 85 000 coinci-

dence events (summed over all measurement-basis combi-

nations), very close to the expected maximum value given

our measurement limitations, proving that the dimension-

ality of the state must be larger than that of a qubit-

entangled state. Since the state in Eq. (3) is actually com-

posed of four-dimensional subsystems, one may wonder
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whether our data can verify this; unfortunately, as shown

in Ref. [45], the I 18
4422 inequality is already saturated by

entangled qutrits, i.e., it cannot distinguish between higher-

dimensional systems.

We next investigate the robustness of this Bell parameter

to state imperfections by reducing the amount of entangle-

ment in the time-bin degree of freedom. This leads to a

state of the form

ρ(λpol, λtime)

=
(

λpol

2
|φ+

p 〉〈φ+
p | + 1 − λpol

2
(|H 〉〈H |⊗2 + |V〉〈V|⊗2)

)

(4)

⊗
(

λtime

2
|φ+

t 〉〈φ+
t | + 1−λtime

2
(|t1〉〈t1|⊗2 + |t2〉〈t2|⊗2)

)

,

(5)

where |φ+〉 ≡ (|00〉 + |11〉)/
√

2, with |0〉 and |1〉 being

computational basis states in the given DOF. We imple-

ment decoherence in time-bin qubits by slightly shifting

the timing modes in time relative to each other. In com-

bination with the measurement method, this functions

as an approximation of decoherence [47]. Because these

measurements already involved adding noise to a max-

imally entangled state, efforts are not made to perfectly

tune the polarization state, so λpol ≈ 0.9 for these mea-

surements. As seen in Fig. 3, we are able to observe an

I 18
4422 Bell parameter over the qubit-entangled limit while

FIG. 3. The measured I 18
4422 values showing the Bell-parameter

visibility dependence. The visibility of the temporal qubit is

changed by unbalancing the path-length difference of the mea-

surement interferometer relative to the pump. In the bottom red

region, there is no evidence of nonlocality. In the yellow region,

the state is nonlocal but could be a pair of entangled qubits. In

the top green region, the state is nonlocal and must have a dimen-

sionality higher than that of a pair of qubits, i.e., at least a pair of

qutrits.

the temporal visibility is above 0.75; in addition, a Bell

violation excluding all local realistic models is observed

for temporal visibilities of above 0.53, both in agree-

ment with theory after accounting for our produced input

state.

IV. REMOTE STEERING OF HYPERENTANGLED

STATES

Next, we verify the ability of one photon in the pair to

“steer” the other photon using a two-basis steering scheme.

At a high level, quantum steering can be understood as a

game in which Alice’s goal is to convince Bob that she

has distributed to him half of an entangled state. She does

this by allowing him to measure his particle in a basis of

his choice, which he reports back to her; based on this

information, she then measures her particle in a corre-

sponding basis and reports the result back to Bob. Only

if the correlations violate a steering inequality will Bob

be convinced of the entanglement in the original state [8].

To make this more precise, suppose that Alice and Bob

share a bipartite state ρAB. In the simplest steering test, Bob

chooses between a pair of two-outcome projective mea-

surements labeled by index y ∈ {1, 2}. The collection of

Alice’s postmeasurement states is described by the assem-

blage {ρb|y : b = ±1, y = 1, 2}, for which we can write

the steering inequality [48]

SStr ≡ 1

2
(Tr [F0X1 ⊕ X2] + Tr [F1Z1 ⊕ Z2]) ≤ 1√

2
, (6)

where Fy = ρ+1|y − ρ−1|y are formed from the untrusted

assemblage and {X1, Z1} and {X2, Z2} are Pauli observables

measured on orthogonal qubit subspaces, given that X and

Z are Alice’s Pauli observables in the x̂ and ẑ directions

of a qubit space (for the steering-inequality derivation, see

Appendix C). The maximal value of SSteer is 1.

To apply Eq. (6) to our hyperentangled setup, we first

generate the state |�4〉 = 1
2
(|00〉 + eiφr |11〉 + eiφr |22〉 −

|33〉), with the computational basis states representing the

same polarization-time states as in Eq. (3), where φr is

an uncalibrated random phase to which the steering mea-

surements are insensitive. Note that the sign difference on

the last term ensures that the state is not factorizable with

respect to the two subsystems (one for each degree of free-

dom). Let X1 and Z1 denote Pauli observables in the qubit

subspace H1 = span{|Ht1〉, |Vt2〉} and, likewise, let X2 and

Z2 denote Pauli observables in the qubit subspace H2 =
span{|Ht2〉, |Vt1〉}. In the steering protocol, Bob measures

either X1 ⊕ X2 or Z1 ⊕ Z2, in each case obtaining a ±1

outcome. Because of the symmetric nature of their shared

state, Alice’s optimal strategy is to measure the same

observable as Bob. We achieve a steering parameter of

0.93 ± 0.02 > 1/
√

2, thereby indicating Alice’s ability to

steer Bob’s measurement and the entangled nature of the
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shared state. Accounting for previous measurements of the

quality of the entangled state [39], we would predict this

system to produce a steering parameter of 0.95, in good

agreement with the value measured.

We then investigate the robustness of the steering

parameter to Werner-state-like entanglement [49]. Specifi-

cally, we produce states of the form

ρ4 = λ|�4〉〈�4| + 1 − λ

4

(

(|H 〉〈H |⊗2 + |V〉〈V|⊗2)

⊗ (|t1〉〈t1|⊗2 + |t2〉〈t2|⊗2)

)

, (7)

the steerability bound of which for ρ4 is λ > 1
2

[50]. We

remark that the noisy state in Eq. (7) differs from stan-

dard Werner states that mix a maximally entangled state

with white noise. In contrast, ρ4 reflects dephasing noise

applied to |�4〉 that still maintains classical correlations

between the two photons. This state also differs slightly

from the one generated in the previous Bell measurements

above, in that the degree of purity in the timing and polar-

ization modes are here intended to be the same. In order

to achieve this, simultaneous noise has to be added to both

the time-bin and polarization degrees of freedom. In the

polarization degree of freedom, the λpol parameter is tuned

by inserting quartz crystals of varied thicknesses into the

810-nm path after the source, leading the two polarization

components to walk off temporally from each other; alter-

natively, this can be interpreted as a frequency-dependent

birefringent phase shift—tracing over the 0.4-nm full-

width-at-half-maximum spectral bandwidth of the 810-nm

photons leaves the pairs in a partially mixed state. λtime is

set in the same manner as for the four-setting Bell tests, by

unbalancing the interferometers relative to each other [51].

Special care must be taken when applying this method

in conjunction with polarization-decoherence techniques

using birefringence, because both methods rely on displac-

ing modes relative to each other in time; if polarization

and timing modes are coupled (as they are in our partic-

ular measurement system), it is possible for these effects

to act in opposite directions, leading to reduced effective

decoherence in both modes.

Because the quartz elements produce discrete changes

in λpol, we tune the path-length difference of Alice’s mea-

surement interferometer to produce a value of λtime in

the time mode that closely matches that of the polar-

ization. Note that the phase of the complete entan-

gled state depends on the relative path-length differences

of the interferometers: |�φ

4 〉 = 1
2
(|00〉 + ei(φe1

+φr)|11〉 +
eiφr |22〉 + eiφe2 |33〉). Hence the phases of the entangled

state have to be readjusted to match |�4〉 for each noise

value measured, using liquid crystals after the PBS of

the measurement interferometer. This readjustment pro-

cess becomes more challenging for small values of λtime

(mostly mixed states), as the phase-insensitive noise dom-

inates, leading to slightly different values for the entangle-

ment phases at each noise level, despite efforts to retune

this phase to zero between measurements. In order to

accurately predict the steering parameter observed at each

level, it is therefore necessary to take this phase vari-

ation into account. Thus, for each noise level, we use

the steering measurements to determine the entanglement

phase

φe2
= arccos(4(p2 − p1)), (8)

where p1 is the coincidence probability of Alice measuring

−1 and Bob measuring +1 in basis 2 and p2 is the proba-

bility of Alice and Bob both measuring −1 in basis 2. Note

that the measurements are insensitive to φe1
and φr.

As seen in Fig. 4, our steering-measurement results

show that the effects of this phase retuning are significant,

as a model assuming that this phase is zero does not accu-

rately predict the observed steering parameter. When this

phase is included, the model is able to accurately predict

the observed results. These results are the first to demon-

strate quantum steering over multiple degrees of freedom

using hyperentanglement. Quantum steering generally pro-

vides a more robust method for certifying entanglement

than violation of some Bell inequality. Our results demon-

strate this fact for hyperentangled photons. In particular,

for λ < 0.65, the state ρ4 cannot violate any Bell inequal-

ity using projective measurements [50,52], whereas we are

FIG. 4. The measured steering-parameter values. The blue the-

ory curve assumes a state exactly of the form given in Eq. (7),

while the “theory with phase” predictions accounts for the entan-

glement phase given in Eq. (8), as determined from a subset of

the measurements. The error bars represent one standard devi-

ation, assuming Poissonian counting statistics for the theory,

and is calculated using five measured samples for the measured

data.
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still able to verify its entanglement for part of this region

via quantum steering up to λ < 0.5.

V. CONCLUSIONS

In this paper, we show a number of ways to detect and

quantify entanglement in a hyperentangled photonic state.

The use of Bell tests beyond the CHSH inequality gives

a device-independent indication of the higher-dimensional

nature of the generated state with fewer measurements

compared to a full state tomography. It also provides more

reliable certification of higher-dimensional entanglement

than other methods of entanglement certification and/or

verification [53,54], at the cost of more measurements.

This feature could be more useful with increased study

on the theoretical bounds of these inequalities. For exam-

ple, our present work only shows that observation of a

sufficiently large Bell parameter provides evidence that

the state is more than qubit entangled, instead of indi-

cating a specific dimension; if the spectrum of maximum

Bell parameters as a function of entangled state dimen-

sion was known, then a more precise conclusion about

the state dimension could be reached. It is an open, inter-

esting, and relevant theoretical question whether, and to

what extent, diagnostic metrics such as Bell and steer-

ing violations mirror the usability of the imperfect states

for quantum information applications. For example, we

find that our intentionally decohered ququart state cannot

achieve a beyond-qubit violation when the visibility in the

time degree of freedom is < 0.75. For example, are these

also the values at which the benefit from using higher-

dimensional states for quantum error correction vanishes?

If so, then these metrics may play a key role in monitor-

ing the performance capabilities of elements in a quantum

network.

Further investigation into these less commonly mea-

sured Bell inequalities could thus lead to improved

state-characterization techniques. Further, we demonstrate

the ability to steer hyperentangled states, which could

potentially enable a broad range of quantum applica-

tions that involve a trusted measurement system, such as

measurement-device independent quantum key distribu-

tion. To the extent that higher-dimensional quantum states

are found to be (in)valuable resources for advanced quan-

tum protocols, nonlocality-characterization methods such

as those presented here should enable more efficient state

characterization and dimensionality estimation than a full

quantum state tomography, which has an exponentially

increasing number of measurements for increasing state

dimension.
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APPENDIX A: VERIFICATION WITH CHSH

INEQUALITY

For reference, we first measure a CHSH inequality [2]

on each of the degrees of freedom (DOFs) individually.

The CHSH Bell parameter can be calculated from the

quantum correlations between measurement results made

in different bases for the two photons:

S = E(a, b) + E(a′, b) + E(a′, b) − E(a′, b′). (A1)

For local realistic states, |S| ≤ 2 and for quantum states,

|S| ≤ 2
√

2 [55]. E(a, b) can be calculated from the coin-

cidences between Alice’s and Bob’s detector pairs when

Alice measures in basis a and Bob measures in basis b:

E(a, b) ≡ N11 + N22 − N12 − N21

N11 + N22 + N12 + N21

. (A2)

Here, Nij is the number of events for which Alice’s mea-

surement outcome is i and Bob’s measurement outcome is

j . For the polarization DOF measurements, outcome 1 (2)

corresponds to detections on detectors 1 or 2 (3 or 4) in Fig

1; for the timing DOF measurements, 1 (2) corresponds to

detections on detector 1 (4).

For these measurements, the entanglement source is

adjusted to display entanglement in only one DOF at a

time. To generate photon pairs that are only entangled in

polarization, the long arm of the pump interferometer is

blocked so that the nonlinear crystal is driven by only one

time mode. We also adjust the pump HWPs to optimize the

state for the CHSH measurements, i.e., minimizing 〈DA|
coincidences [56]. To measure pairs entangled only in time

bin, we rotate the first pump HWP so that mostly the clock-

wise process in the Sagnac source is activated and most

of the down-conversion photons have a definite horizon-

tal polarization. We also insert a HWP and polarizer on
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Bob’s side to project the polarization onto 〈H | and then to

rotate it to 〈D|, since the analyzer projects onto states such

as (〈Ht1| ± 〈Vt2|)/
√

2 and (〈Vt1| ± 〈Ht2|)/
√

2. We then

carry out a Bell measurement using the optimal measure-

ment settings for a maximally entangled state (a = 0◦, a′ =
45◦, b = 22.5◦, and b′ = 67.5◦) [57]. For the polarization-

basis measurements, these values are set using the HWPs

before each measurement interferometer; for the time-bin

basis measurements, they are set by the HWPs after each

measurement interferometer. We observe a Bell parameter

of 2.58 ± 0.02 for the polarization-entangled state and of

2.40 ± 0.02 for the time-bin entangled state. From earlier

measurements on the quality of the source entanglement

[39], we would expect a polarization Bell parameter of

2.75 and a time-bin Bell parameter of 2.68. The lower

observed values are explainable by imperfect phase tun-

ing and imperfect PBS extinction. The time-bin value is

further lowered due to residual phase averaging caused

by path-length fluctuations in the interferometers, as well

as slight static mismatches between the three unbalanced

interferometers.

APPENDIX B: BELL-INEQUALITY

OPTIMIZATION ANALYSIS

Like the standard Bell parameter, the I4422 inequalities

are a synthesis of three types of probabilities. The first type

of probability is the chance that Alice observes a particu-

lar measurement outcome (e.g., 1) when she measures in

a particular basis (e.g., a). Similarly, the second type of

probability is the chance that Bob observes a particular

measurement outcome when he measures in a particu-

lar basis. The final type of probability is the chance that

Alice and Bob both measure particular outcomes when

they measure in particular bases. The inequality then con-

sists of a set of coefficients for these probabilities, such

that the sum of the probabilities multiplied by their respec-

tive coefficients cannot exceed a certain limit in a local

theory (e.g., I 18
4422 ≤ 0). In our measurement protocol, for

simplicity we take outcome 1 to be a detection event

on detector 1 and outcome 2 to be a detection event on

any of the other three detectors. Of course, we could

assign any detector to outcome 1 and the other three to

outcome 2.

Our measurement system cannot project onto an arbi-

trary ququart state (e.g., we cannot project onto |H 〉 ⊗
(|t1〉 + |t2〉)/

√
2 because the two time modes always have

orthogonal polarizations in our system); thus it is not pos-

sible to obtain a violation for some of the inequalities

and for those with a violation, the maximum violation

achievable with our system does not necessarily reach

the theoretical limit of the inequality. For this reason, we

explore all known I4422 inequalities and not just those

with the largest theoretical difference for qubit and qutrit

states.

TABLE I. The numerically optimized settings for the I 18
4422 Bell

inequality for the experimental setup in Fig. 1. While the opti-

mization is carried out over all HWP and QWP settings, for the

optimum, all QWP settings are 0◦. With these settings, the system

can achieve a Bell parameter of up to 0.46, while a local model

is limited to a value of 0 and a qubit-entangled state is limited to

0.18 [44,45].

Basis 1 Basis 2 Basis 3 Basis 4

(deg) (deg) (deg) (deg)

Alice’s HWP 1 45 24 58 8

Alice’s HWP 2 12 43 22 15

Bob’s HWP 1 12 42 7 −33

Bob’s HWP 2 20 49 22 15

After choosing the inequality,

I 18
4422 = 2Pr(a1, b1) + 2Pr(a1, b2) + 2Pr(a1, b3)

− Pr(a1, b4) + 2Pr(a2, b1) + Pr(a2, b2)

− 2Pr(a2, b3) + 2Pr(a2, b4) + 2Pr(a3, b1)

− 2Pr(a3, b2) − 2Pr(a3, b3) − 2Pr(a3, b4)

− Pr(a4, b1) + 2Pr(a4, b2) − 2Pr(a4, b3)

− Pr(a4, b4) − 2Pr(a1) − 2Pr(a2) − 2Pr(b1)

− 2Pr(b2) ≤ 0, (B1)

we optimize the experimental measurement settings for

the best violation by our system with that inequality; the

optimal settings are given in Table I.

APPENDIX C: PROOF OF STEERING

INEQUALITY

Suppose that Alice and Bob share a bipartite state

ρAB. In the simplest steering test, Bob chooses between a

pair of two-outcome projective measurements, with mea-

surement y ∈ {1, 2} described by orthogonal projectors

{B+1|y , B−1|y}. The collection of Alice’s postmeasurement

states is described by the assemblage {ρb|y : b = ±1, y =
1, 2}, where

ρA
b|y = TrB

[

I ⊗ Bb|yρ
AB

]

. (C1)

(in general, any collection of positive operators {ρb|y}b,y

such that
∑

b=±1 Tr[ρb|y] = 1 for all y is called a state

assemblage).

If ρAB is not entangled, then it can be expressed in

separable form as ρAB =
∑

λ p(λ)|αλ〉〈αλ|A ⊗ |βλ〉〈βλ|B.

Substituting this into Eq. (C1) yields

ρb|y =
∑

λ

p(b|y, λ)|αλ〉〈αλ|A, (C2)

where p(b|y, λ) := 〈βλ|Bb|y |βλ〉p(λ). Any state assem-

blage that can be expressed in the form of Eq. (C2)
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is known to satisfy a local-hidden-state (LHS) model.

Note that measuring one half of a separable state always

yields an LHS assemblage but the converse is not

true [7].

This discussion shows that every nonentangled state

generates an LHS assemblage when measured on one

side. Conversely, if the postmeasurement assemblage does

not satisfy a LHS model, then the original state ρAB

was entangled. This method of entanglement detection is

“semi-device-independent,” since the only trusted device

is Alice’s measurement apparatus in testing the gener-

ated assemblage {ρb|y}b,y . For the simplest case of two

dichotomic measurement choices on Bob’s side, it has

been shown in Ref. [48] that all assemblages satisfying a

LHS model obey the steering inequality

1

2
(Tr [F0X ] + Tr [F1Z]) ≤ 1√

2
, (C3)

where Fy = ρ+1|y − ρ−1|y are formed from the untrusted

assemblage and X and Z are Alice’s Pauli observables

in the x̂ and ẑ directions of her qubit space. If {X1, Z1}
and {X2, Z2} are Pauli observables measuring on orthog-

onal qubit subspaces, then the previous inequality can be

extended to read

SSteer := 1

2
(Tr [F0X1 ⊕ X2] + Tr [F1Z1 ⊕ Z2]) ≤ 1√

2
.

(C4)

We prove this inequality by first noting that

Tr[F0X1 ⊕ X2] = Tr[
1F0
1X1] + Tr[
2F0
2X2]

(C5)

Tr[F1Z1 ⊕ Z2] = Tr[
1F1
1X1] + Tr[
2F1
2X2],

(C6)

where 
i is a projector onto the {Xi, Zi} qubit subspace.

Since Fy = TrB

[

I ⊗ (B+|y − B−|y)ρAB
]

, we have


iFy
i = piTrB

[

I ⊗ (B+|y − B−|y)ρ
AB
i

]

=: piFi,y , (C7)

where ρAB
i = (
i ⊗ I)ρAB(
i ⊗ I)/pi is a normalized state

with pi = Tr[(
i ⊗ I)ρAB]. Therefore,

Tr[F0X1 ⊕ X2] + Tr[F1Z1 ⊕ Z2]

= p1(Tr[X1F1,0] + Tr[Z1F1,1]) + p2(Tr[X1F2,0]

+ Tr[Z1F2,1])

≤
√

2, (C8)

by Eq. (C3) above.
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