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Christopher K. Zeitler®,?> Joseph C. Chapman®,'%? Eric Chitambar,'* and Paul G. Kwiat®!>"

' Minois Quantum Information Science and Technology Center, University of Illinois Urbana-Champaign,
, Urbana, Illinois 61801, USA
Department of Physics, University of lllinois Urbana-Champaign, Urbana, Illinois 61801, USA
*Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

4Department of Electrical & Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
61801, USA

® (Received 20 July 2022; revised 17 October 2022; accepted 24 October 2022; published 9 November 2022)

We experimentally investigate the properties of hyperentangled states displaying simultaneous entan-
glement in multiple degrees of freedom and find that Bell tests beyond the standard Clauser-Horne-
Shimony-Holt inequality can reveal a higher-dimensional nature in a device-independent way. Specifi-
cally, we show that hyperentangled states possess more than just simultaneous entanglement in separate
degrees of freedom but also entanglement in a higher-dimensional Hilbert space. We also verify the
steerability of hyperentangled quantum states by steering different photonic degrees of freedom.
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I. INTRODUCTION

Entanglement—evincing nonlocal correlations that
exceed what is possible according to any local realistic
model, i.e., local hidden variables—is at the very foun-
dation of quantum mechanics and underlies much of the
new quantum information revolution. In the 1960s, John
Bell developed a test to distinguish such hidden-variable
theories from quantum mechanical ones [1] by specifying
a quantity that had different maximal bounds in the two
models. Since their advent, Bell tests have been a focus
of fundamental research in physics, providing a means
to demonstrate the nonlocal effects present in quantum
mechanics [2], verify the presence of entanglement [3],
and even explore the limits of ultranonlocal theories, which
can predict correlations stronger than those allowed by
standard quantum mechanics [4]. Other techniques, such
as quantum steering [5—8], expand the applicability of
entanglement verification to a wider set of scenarios with
differing assumptions. Initially, these tests of nonlocality
were conceived of as “thought experiments” that revealed
unexpected (or to some, illogical) features of quantum
mechanics; however, repeated experimental verification of
the correlations that are the hallmark of entangled states
has left little doubt that “spooky action at a distance” is a
part of reality. The refinement of these measurement tech-
niques has culminated in a trio of “loophole-free” tests of
nonlocality using Bell inequalities, providing compelling
evidence that Nature is truly nonlocal [9—11]. Meanwhile,
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loophole-free versions of quantum steering have also been
reported [12]. The fundamental importance of such exper-
iments testing the features of nonlocality has been won-
derfully highlighted by the recent Nobel Prize in Physics
awarded to pioneers in the field John F. Clauser, Alain
Aspect, and Anton Zeilinger [13].

Now that the original purpose of Bell tests, to provide
a measurable criterion for separating local and nonlocal
theories, has been largely fulfilled, a new era for Bell
tests is unfolding, in which they are used as tools for
probing and verifying the properties of quantum states.
Most recently, Bell tests have emerged as a resource for
generating provably random number strings [14,15] and
as a means to ensure cryptographic security in “device-
independent” quantum-key-distribution protocols without
needing to trust all the devices [16,17]. The ability to draw
conclusions about a measured quantum state without need-
ing to trust the devices used to make the measurement
or prepare the state is a defining feature of Bell tests and
can be used to distinguish them from other methods of
verifying entanglement. Quantum steering represents an
intermediate case [8], in which one of the measurement
devices must be trusted, while no assumptions are made
about the second measurement device.

Most Bell tests to date have used some version of
the Clauser-Horne-Shimony-Holt (CHSH) inequality [2]
applied to qubits but the space of possible tests and states
to test is much larger [4], including, e.g., bipartite sys-
tems of higher dimensionality, which have been partially
explored [18-21]. In photonic systems, there have been
experimental demonstrations of quantum steering for both
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qubit-entangled states [22-—24] and higher-dimensional
ones [25-29]. However, in all such previous steering
demonstrations, the entanglement has been shared on a
single degree of freedom (DOF) of the photon (e.g., polar-
ization, frequency, position-momentum, etc.). Using mul-
tiple DOFs, a single photon is able to carry more than just
a qubit of quantum information and when two photons
are entangled in more than one DOF, higher-dimensional
entanglement can be realized, a phenomenon known as
hyperentanglement [30,31]. The use of multiple photonic
DOFs and hyperentangled states has already shown advan-
tages in tasks such as state discrimination [32], entangle-
ment distribution [33] and distillation [34], teleportation
[35], and quantum error correction [36]. Thus, hyper-
entanglement is a promising candidate for achieving more
efficient and noise-robust quantum communication.

In this paper, we investigate nonlocality tests on hyper-
entangled quantum states. By coherently controlling two
DOFs on each photon, we can certify genuine higher-
dimensional entanglement, a task that can otherwise be
quite demanding to achieve experimentally. After describ-
ing our experimental setup, we discuss results of a higher-
dimensional Bell inequality, where we certify entangle-
ment with dimensionality larger than just two qubits.
Polarization and path hyperentanglement have been used
previously in several tests of nonlocality [37,38]. Our
source uses polarization and time-bin hyperentanglement
for optimal applicability to the space-to-earth channel [39,
40]. We also optimize the choice of higher-dimensional
inequality and characterize the violation as a function of
added decoherence. Finally, we display quantum steer-
ing of our hyperentangled two-particle state, i.e., steering
across multiple DOFs of an entangled photon, also as a
function of decoherence.

II. EXPERIMENTAL METHODS

The time-bin and polarization-hyperentangled photon-
pair source, shown in Fig. 1, is driven by a 532-nm
pulsed laser (Spectra Physics Vanguard 2.5 W 355 laser,
frequency doubled from 1064 nm) with an 80-MHz repeti-
tion rate. The pump laser is sent through an unbalanced
Mach-Zehnder interferometer to put each pulse into a
superposition of an early and a late time bin, separated
by 2.4 ns, large compared to the 7-ps pump-pulse dura-
tion. After the interferometer, the polarization of the pump
beam is prepared using wave plates (WPs), after which the
pump enters a polarizing Sagnac interferometer [41,42].
The Sagnac interferometer contains a periodically poled
lithium niobate (PPLN) crystal (poling period 7.5 pum),
inside which the pump undergoes type-0 phase-matched
spontaneous parametric down-conversion. The horizontal
(vertical) component of the pump traverses the Sagnac
loop clockwise (counterclockwise) to produce a pair of
horizontally polarized photons with wavelengths 810 nm
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FIG. 1. A schematic of the hyperentangled photon system. The
pump is prepared in a superposition of timing modes so that,
when it passes through the Sagnac polarization-entanglement
source, the output is entangled in both polarization and time
bin. The photons are then separated by a dichroic mirror for
further analysis. The measurement system combines two stan-
dard polarization-analysis systems with a polarization-dependent
unbalanced interferometer. This leads to coupling between the
polarization and timing modes, so that timing measurements
can be controlled with polarization optics. This measurement
system is duplicated for both photons, with the 810-nm pho-
tons being detected by APDs and the 1550-nm photons being
detected by SNSPDs. The liquid crystals in the 810-nm mea-
surement system are used to tune the phases in the generated
state and of the measurement system: HWP, half-wave plate;
QWP, quarter-wave plate; WP, wave plate; PBS, polarizing beam
splitter; PPLN, periodically poled lithium niobate; LC, liquid
crystal; APD, avalanche photodiode; SNSPD, superconducting-
nanowire single-photon detector.

and 1550 nm. The interferometer also contains a Fres-
nel rhomb, acting as a broadband half-wave plate (HWP),
causing the output of the clockwise path to be verti-
cally polarized, while the counterclockwise path’s output
is horizontally polarized (because the counterclockwise-
propagating vertical-polarization pump is converted to
horizontal polarization before the PPLN crystal), leading
to polarization entanglement. A 4.1-cm piece of calcite
(Thorlabs BD40) in the Sagnac (after the transmitted port
of the PBS) acts as temporal compensation, to counter-
act the wavelength-dependent delay of the Fresnel thomb.
After the Sagnac, in the 1550-nm path, there is another
small piece of calcite (0.5 mm long) to fix the delay mis-
match more precisely between the horizontal and vertical
polarizations exiting the Sagnac. Due to dispersion, only
the 1550-nm side needs extra temporal compensation out-
side of the Sagnac. For more information on this source,
see Ref. [39].

In general, there will be relative phases between the
two polarization modes, the two-timing modes, and the
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polarization and timing modes:
1 ) )
V) = SUHH) + e V) ® (nn) + e lnn) (1)
1 . . )
= S100) + € [11) + e |22) + @4 133)), (2)

where in our system we assign |0) = |Ht),|1) =
|Ht,),|2) = |Vt)), and |3) = |Vt,). In our experiments,
these phases are set using liquid-crystal elements acting on
the 810-nm photons.

After exiting the Sagnac interferometer, the down-
conversion photons are separated from the pump and
each other using dichroic mirrors, before being routed
to the measurement system. The measurement system is
designed so that both the time and polarization measure-
ments can be carried out using polarization optics. This
requires a coupling between the polarization and time
modes, achieved using another unbalanced Mach-Zehnder
interferometer that contains a final PBS (see Fig. 2): the
PBS couples the timing and polarization modes, allowing
the analysis timing mode to be effectively controlled using
WPs.

In Fig. 2, we denote HWP1 and QWP1 as the pair of
WPs before the analyzer interferometer; HWP2 and QWP2
as the pair of WPs after the interferometer but before the
PBS in front of detectors 1 and 2; and HWP3 and QWP3
as the pair of WPs after the interferometer but before the
PBS in front of detectors 3 and 4. For example, with QWP2
and HWP2 at 0° (with respect to the horizontal), detector
1 will project onto the first timing mode, with the polar-
ization mode set by QWP1 and HWP1; with HWP1 and
QWP1 at 0°, for instance, the measurement state for detec-
tor 1 is (Ht| or, with HWP1 at 22.5°, (Dt;|. With HWP2

B3

FIG. 2. Detail of the analyzer interferometer, with photons
entering from the top. Here, we show the naming convention of
the WPs used as part of the measurement system.

at 22.5°, detector 1 will project onto an equal superposition
of both timing modes with orthogonal polarizations; e.g.,
with QWP1 and HWP1 at 0°, the measurement state will
be ((Ht| + (Vta]) /ﬁ). In this way, the relevant ampli-
tude and phase between the measured timing modes can
be controlled with HWP2 and QWP2, while the measured
polarization state is controlled by HWP1 and QWP1.

Due to the probabilistic nature of the first nonpolarizing
beam splitter in this interferometer, three possible mea-
surement time bins are generated. The early (late) time
bin arises from photon pairs created by the pump pulse
that go through the short (long) arm of the pump interfer-
ometer and are subsequently sorted into the short (long)
arm of the analysis interferometer; the middle time bin
corresponds to photons that take the short path in one inter-
ferometer and the long path in the other. In this work, we
postselect on this middle time bin [43]. Because we match
the path-length differences (long path minus short) in the
two interferometers, these “short-long” and “long-short”
processes are indistinguishable and, therefore, can inter-
fere. To preserve the relative phase of the time modes, it
is necessary to actively stabilize these measurement inter-
ferometers to match the pump interferometer. This active
stabilization is carried out by sending a portion of the pump
laser backward through each measurement interferome-
ter and measuring its intensity on photodiodes (Thorlabs
PDA36A) [39]. This feedback signal is then used to adjust
the length of the long arm of the measurement interferome-
ters using a piezoelectric element (Thorlabs AE0505D16F
with Thorlabs TPZ001 driver) to vary the exact positions
of the mirrors in the long arm; this discrete-time stabiliza-
tion system has an output rate of about 100 Hz and yields
an average phase stability of about 3° [39].

The 810-nm photons are detected using four silicon
avalanche photodiodes (Excelitas SPCM-AQ4C) with a
measured detection efficiency of about 45% at 810 nm
and a timing jitter of about 600 ps. The 1550-nm photons
are detected with four superconducting-nanowire single-
photon detectors (SNSPDs) with an efficiency of about
80% and a timing jitter of less than 100 ps. The outputs
of these detectors are then sent to a time-bin discrimina-
tion circuit [40] and then to fast time-tagging electronics
(UQDevices UDQ-Logic-16), yielding a net coincidence
timing resolution of about 700 ps. The resulting time tags
are processed to determine coincidence events correspond-
ing to detections in the middle time bin, which is then
easily distinguished from the early and late time bins at
42400 ps, using the sorting capability of the time-bin
discrimination circuit. Unfortunately, for steering measure-
ments in Fig. 4 with visibility below 0.6, the time-bin
discrimination circuit channel for detector A4 is not func-
tional, so each measurement is repeated twice—the second
time, a HWP is used to direct the A4 events to the func-
tional detector A3. This does not present an issue because
our measurement system is not attempting to close any
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loopholes and our system is stable over longer than the
time to take multiple measurements.

II1. VERIFYING HIGHER-DIMENSIONAL
HYPERENTANGLEMENT

Bell inequalities can be characterized by the number of
bases measured and the number of outcomes of those mea-
surements; in general, these values can be different for the
two parties making measurements, so bipartite inequalities
require four parameters to be classified [44]. The CHSH
Bell inequality uses two measurement bases and two mea-
surement outcomes on each side and can be referred to
as Ipyy. For that particular set of parameters, there is
only one possible inequality (ignoring trivial permutations)
and this cannot distinguish between entangled qubits and
higher-dimensional entanglement. In contrast, for bases
and outcomes above 2, there can be multiple inequalities
for a given set of parameters. Here, we verify the higher-
dimensional entanglement of the hyperentangled time bin
and polarization state by making a Bell-inequality mea-
surement that can produce different violations depending
on state dimensionality. Specifically, we focus on the sym-
metric case of using four measurement bases and two
measurement outcomes for both photons in the pair (/4427),
because some of these inequalities display different quan-
tum bounds for qubits and qutrits [45]. With these param-
eters, there are at least 27 known inequalities [44]. For
completeness, we also perform standard CHSH inequality
measurements on pairs of photons entangled in polariza-
tion and separate measurements on pairs of photons entan-
gled in time-bin modes but these alone are insufficient to
say that the state possesses higher-dimensional entangle-
ment. For a description of the CHSH measurements and
results, see Appendix A.

Both observed CHSH Bell parameters nevertheless indi-
cate that the source is entangled in each degree of freedom
separately. Notably, however, measurement of a CHSH
inequality of this type cannot be used to infer that the
state is entangled in both degrees of freedom simultane-
ously, because formally the CHSH inequality can always
exhibit a violation even if the source is only entangled in
one degree of freedom; this is true even if the measure-
ment settings are chosen to depend on both polarization
and time mode, instead of measuring each degree of free-
dom separately. Unless an assumption is made that the
states onto which Alice and Bob project are indeed the ones
they intend (or have announced that they will measure),
it is not possible to conclude that the state is hyperentan-
gled from just a CHSH Bell measurement. However, an
important feature of Bell tests is that they need not rely
on such an assumption about what measurements are actu-
ally carried out; because the Bell test can be interpreted
solely as a mathematical game on boxes with local realistic
constraints [3], it does not depend on what quantum states

might violate it. Consider the scenario in which Alice and
Bob both try to measure in a hybrid basis between polar-
ization and time bin that should only yield a violation for
truly hyperentangled states, but problems in their mea-
surement devices make their results insensitive to timing
information, so the actual bases used depend only on polar-
ization. In this case, a state only entangled in polarization
would lead Alice and Bob to incorrectly conclude that they
shared a hyperentangled state, because their assumption
about what measurement basis they used was violated. The
synthesis of a Bell parameter and any conclusions drawn
from it rely only on the correlations between Alice’s and
Bob’s results and, in this way, the CHSH inequality can-
not provide information about the dimensionality of a state.
To provide dimensionality information via Bell tests, it is
therefore critical that the conclusion does not depend on
trust of the measurement devices used.

In order to select an optimal higher-dimensional
inequality to measure using our experimental system
(which cannot measure all states), we carry out numeri-
cal simulations of the maximum Bell parameter attainable
with our system for each of the known 27 inequalities (for a
short discussion of the limitations on inequality choice, see
Appendix B), using a maximally entangled ququart state as
an input:

1
[Wa) = Z(100) + [11) + [22) + [33)), 3)

where in our system we assign |0) = |Ht),|l) =
|Ht,),|2) = |Vt), and |3) = |Vt,). Based on this analysis,
we choose to measure 1.5,,, which is the inequality with the
largest difference between the violation of our system (con-
strained by our available measurements) using entangled
ququarts and the theoretical bound using entangled qubits.
With optimized wave-plate settings (for optimal settings,
see Appendix B), our system can theoretically achieve a
Bell parameter of 0.46, while a local model is limited to a
value of 0 and a qubit-entangled state is limited to 0.18
[44,45]. Note that 1,5, is also the Iup inequality that
has the largest separation between qubit and qutrit perfor-
mance for any allowed measurement basis [46]; however,
our system cannot create arbitrary measurements, so it is
not able to reach the maximum quantum bound of 0.64
[45].

We measure this 7,%,, inequality using our best approx-
imation to the maximally entangled ququart state given in
Eq. (3). With optimal source tuning, we observe a param-
eter of 1%, = 0.45 £ 0.03 after measuring 85000 coinci-
dence events (summed over all measurement-basis combi-
nations), very close to the expected maximum value given
our measurement limitations, proving that the dimension-
ality of the state must be larger than that of a qubit-
entangled state. Since the state in Eq. (3) is actually com-
posed of four-dimensional subsystems, one may wonder
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whether our data can verify this; unfortunately, as shown
in Ref. [45], the 1,},, inequality is already saturated by
entangled qutrits, i.e., it cannot distinguish between higher-
dimensional systems.

We next investigate the robustness of this Bell parameter
to state imperfections by reducing the amount of entangle-
ment in the time-bin degree of freedom. This leads to a
state of the form

Y ()\pol, )\time)

Ao 1 —Apo
_ (%Wﬁ(‘ﬁﬂ + Tpl(|H)(H|®2 + |V)(Vl®2)>

4)

)\ime — A
® <t7|¢,+><¢,+| - htime (141) (£ %2 + |t2><r2|®2>> :
()

where |¢) = (]00) + |11))/+/2, with |0) and |1) being
computational basis states in the given DOF. We imple-
ment decoherence in time-bin qubits by slightly shifting
the timing modes in time relative to each other. In com-
bination with the measurement method, this functions
as an approximation of decoherence [47]. Because these
measurements already involved adding noise to a max-
imally entangled state, efforts are not made to perfectly
tune the polarization state, so Ay, ~ 0.9 for these mea-
surements. As seen in Fig. 3, we are able to observe an
1,3, Bell parameter over the qubit-entangled limit while

0.4 T .
——Theory
© Measured
0.3 |—Bell Bound
Qubit Bound
N
o S
v—\q- 02
o
|5}
€ 041
g
o
o
K]
m

0.0 /
—-0.1¢

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temporal Visibility A time

FIG. 3. The measured / 322 values showing the Bell-parameter
visibility dependence. The visibility of the temporal qubit is
changed by unbalancing the path-length difference of the mea-
surement interferometer relative to the pump. In the bottom red
region, there is no evidence of nonlocality. In the yellow region,
the state is nonlocal but could be a pair of entangled qubits. In
the top green region, the state is nonlocal and must have a dimen-
sionality higher than that of a pair of qubits, i.e., at least a pair of
qutrits.

the temporal visibility is above 0.75; in addition, a Bell
violation excluding all local realistic models is observed
for temporal visibilities of above 0.53, both in agree-
ment with theory after accounting for our produced input
state.

IV. REMOTE STEERING OF HYPERENTANGLED
STATES

Next, we verify the ability of one photon in the pair to
“steer” the other photon using a two-basis steering scheme.
At a high level, quantum steering can be understood as a
game in which Alice’s goal is to convince Bob that she
has distributed to him half of an entangled state. She does
this by allowing him to measure his particle in a basis of
his choice, which he reports back to her; based on this
information, she then measures her particle in a corre-
sponding basis and reports the result back to Bob. Only
if the correlations violate a steering inequality will Bob
be convinced of the entanglement in the original state [8].
To make this more precise, suppose that Alice and Bob
share a bipartite state p#. In the simplest steering test, Bob
chooses between a pair of two-outcome projective mea-
surements labeled by index y € {1,2}. The collection of
Alice’s postmeasurement states is described by the assem-
blage {pop, : b= =£1,y = 1,2}, for which we can write
the steering inequality [48]

1 1
Ssir = 3 (Tr[FoX1 @ Xo] + Tr[F12, © 43]) < E, (6)

where F), = py1), — p—1), are formed from the untrusted
assemblage and {X}, Z,} and {X3, Z,} are Pauli observables
measured on orthogonal qubit subspaces, given that X and
Z are Alice’s Pauli observables in the X and Z directions
of a qubit space (for the steering-inequality derivation, see
Appendix C). The maximal value of Ssteer 15 1.

To apply Eq. (6) to our hyperentangled setup, we first
generate the state |d4) = 1(|00) + €r|11) + €r|22) —
|33)), with the computational basis states representing the
same polarization-time states as in Eq. (3), where ¢, is
an uncalibrated random phase to which the steering mea-
surements are insensitive. Note that the sign difference on
the last term ensures that the state is not factorizable with
respect to the two subsystems (one for each degree of free-
dom). Let X; and Z; denote Pauli observables in the qubit
subspace H| = span{|Ht,), | V't;)} and, likewise, let X, and
Z, denote Pauli observables in the qubit subspace H, =
span{|Ht,), |Vt1)}. In the steering protocol, Bob measures
either X; @ X, or Z, @ Z,, in each case obtaining a +1
outcome. Because of the symmetric nature of their shared
state, Alice’s optimal strategy is to measure the same
observable as Bob. We achieve a steering parameter of
0.93 +0.02 > 1/+/2, thereby indicating Alice’s ability to
steer Bob’s measurement and the entangled nature of the
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shared state. Accounting for previous measurements of the
quality of the entangled state [39], we would predict this
system to produce a steering parameter of 0.95, in good
agreement with the value measured.

We then investigate the robustness of the steering
parameter to Werner-state-like entanglement [49]. Specifi-
cally, we produce states of the form

1—A
pa = M| Dy) (Dy] + T<<|H><H|®2 +N(1®%
® (1) {H]%* + |rz><tz|®2>>, (7

the steerability bound of which for p4 is A > % [50]. We
remark that the noisy state in Eq. (7) differs from stan-
dard Werner states that mix a maximally entangled state
with white noise. In contrast, p4 reflects dephasing noise
applied to |®,4) that still maintains classical correlations
between the two photons. This state also differs slightly
from the one generated in the previous Bell measurements
above, in that the degree of purity in the timing and polar-
ization modes are here intended to be the same. In order
to achieve this, simultaneous noise has to be added to both
the time-bin and polarization degrees of freedom. In the
polarization degree of freedom, the A, parameter is tuned
by inserting quartz crystals of varied thicknesses into the
810-nm path after the source, leading the two polarization
components to walk off temporally from each other; alter-
natively, this can be interpreted as a frequency-dependent
birefringent phase shift—tracing over the 0.4-nm full-
width-at-half-maximum spectral bandwidth of the 810-nm
photons leaves the pairs in a partially mixed state. Ame 1S
set in the same manner as for the four-setting Bell tests, by
unbalancing the interferometers relative to each other [51].
Special care must be taken when applying this method
in conjunction with polarization-decoherence techniques
using birefringence, because both methods rely on displac-
ing modes relative to each other in time; if polarization
and timing modes are coupled (as they are in our partic-
ular measurement system), it is possible for these effects
to act in opposite directions, leading to reduced effective
decoherence in both modes.

Because the quartz elements produce discrete changes
in Apo1, we tune the path-length difference of Alice’s mea-
surement interferometer to produce a value of Aype in
the time mode that closely matches that of the polar-
ization. Note that the phase of the complete entan-
gled state depends on the relative path-length differences
of the interferometers: |®%) = 3100y + & @ato|11) +
€%r|22) + €%22|33)). Hence the phases of the entangled
state have to be readjusted to match |®,4) for each noise
value measured, using liquid crystals after the PBS of
the measurement interferometer. This readjustment pro-
cess becomes more challenging for small values of Ame

(mostly mixed states), as the phase-insensitive noise dom-
inates, leading to slightly different values for the entangle-
ment phases at each noise level, despite efforts to retune
this phase to zero between measurements. In order to
accurately predict the steering parameter observed at each
level, it is therefore necessary to take this phase vari-
ation into account. Thus, for each noise level, we use
the steering measurements to determine the entanglement
phase

¢62 = arCCOS(4(p2 _pl))7 (8)

where p; is the coincidence probability of Alice measuring
—1 and Bob measuring +1 in basis 2 and p; is the proba-
bility of Alice and Bob both measuring —1 in basis 2. Note
that the measurements are insensitive to ¢,, and ¢,..

As seen in Fig. 4, our steering-measurement results
show that the effects of this phase retuning are significant,
as a model assuming that this phase is zero does not accu-
rately predict the observed steering parameter. When this
phase is included, the model is able to accurately predict
the observed results. These results are the first to demon-
strate quantum steering over multiple degrees of freedom
using hyperentanglement. Quantum steering generally pro-
vides a more robust method for certifying entanglement
than violation of some Bell inequality. Our results demon-
strate this fact for hyperentangled photons. In particular,
for A < 0.65, the state p4 cannot violate any Bell inequal-
ity using projective measurements [50,52], whereas we are

1.0 I
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FIG. 4. The measured steering-parameter values. The blue the-
ory curve assumes a state exactly of the form given in Eq. (7),
while the “theory with phase” predictions accounts for the entan-
glement phase given in Eq. (8), as determined from a subset of
the measurements. The error bars represent one standard devi-
ation, assuming Poissonian counting statistics for the theory,
and is calculated using five measured samples for the measured
data.
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still able to verify its entanglement for part of this region
via quantum steering up to A < 0.5.

V. CONCLUSIONS

In this paper, we show a number of ways to detect and
quantify entanglement in a hyperentangled photonic state.
The use of Bell tests beyond the CHSH inequality gives
a device-independent indication of the higher-dimensional
nature of the generated state with fewer measurements
compared to a full state tomography. It also provides more
reliable certification of higher-dimensional entanglement
than other methods of entanglement certification and/or
verification [53,54], at the cost of more measurements.
This feature could be more useful with increased study
on the theoretical bounds of these inequalities. For exam-
ple, our present work only shows that observation of a
sufficiently large Bell parameter provides evidence that
the state is more than qubit entangled, instead of indi-
cating a specific dimension; if the spectrum of maximum
Bell parameters as a function of entangled state dimen-
sion was known, then a more precise conclusion about
the state dimension could be reached. It is an open, inter-
esting, and relevant theoretical question whether, and to
what extent, diagnostic metrics such as Bell and steer-
ing violations mirror the usability of the imperfect states
for quantum information applications. For example, we
find that our intentionally decohered ququart state cannot
achieve a beyond-qubit violation when the visibility in the
time degree of freedom is < 0.75. For example, are these
also the values at which the benefit from using higher-
dimensional states for quantum error correction vanishes?
If so, then these metrics may play a key role in monitor-
ing the performance capabilities of elements in a quantum
network.

Further investigation into these less commonly mea-
sured Bell inequalities could thus lead to improved
state-characterization techniques. Further, we demonstrate
the ability to steer hyperentangled states, which could
potentially enable a broad range of quantum applica-
tions that involve a trusted measurement system, such as
measurement-device independent quantum key distribu-
tion. To the extent that higher-dimensional quantum states
are found to be (in)valuable resources for advanced quan-
tum protocols, nonlocality-characterization methods such
as those presented here should enable more efficient state
characterization and dimensionality estimation than a full
quantum state tomography, which has an exponentially
increasing number of measurements for increasing state
dimension.
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APPENDIX A: VERIFICATION WITH CHSH
INEQUALITY

For reference, we first measure a CHSH inequality [2]
on each of the degrees of freedom (DOFs) individually.
The CHSH Bell parameter can be calculated from the
quantum correlations between measurement results made
in different bases for the two photons:

S=E(a,b) +E@,b)+E(,b) —EW,b). (Al)
For local realistic states, |S| < 2 and for quantum states,
IS| < 2+/2 [55]. E(a, b) can be calculated from the coin-
cidences between Alice’s and Bob’s detector pairs when
Alice measures in basis @ and Bob measures in basis b:

Ni1 + Ny — Nip — Ny
Nii + Ny + Nip + Noy -

E(a,b) = (A2)

Here, N;; is the number of events for which Alice’s mea-
surement outcome is i and Bob’s measurement outcome is
j . For the polarization DOF measurements, outcome 1 (2)
corresponds to detections on detectors 1 or 2 (3 or 4) in Fig
1; for the timing DOF measurements, 1 (2) corresponds to
detections on detector 1 (4).

For these measurements, the entanglement source is
adjusted to display entanglement in only one DOF at a
time. To generate photon pairs that are only entangled in
polarization, the long arm of the pump interferometer is
blocked so that the nonlinear crystal is driven by only one
time mode. We also adjust the pump HWPs to optimize the
state for the CHSH measurements, i.e., minimizing (DA |
coincidences [56]. To measure pairs entangled only in time
bin, we rotate the first pump HWP so that mostly the clock-
wise process in the Sagnac source is activated and most
of the down-conversion photons have a definite horizon-
tal polarization. We also insert a HWP and polarizer on
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Bob’s side to project the polarization onto (H| and then to
rotate it to (D], since the analyzer projects onto states such
as ((Ht| £ (Vt:))/~/2 and ((Vt,| £ (Ht:])/~/2. We then
carry out a Bell measurement using the optimal measure-
ment settings for a maximally entangled state (a = 0°,4" =
45° b =22.5°,and b’ = 67.5°) [57]. For the polarization-
basis measurements, these values are set using the HWPs
before each measurement interferometer; for the time-bin
basis measurements, they are set by the HWPs after each
measurement interferometer. We observe a Bell parameter
of 2.58 £ 0.02 for the polarization-entangled state and of
2.40 £ 0.02 for the time-bin entangled state. From earlier
measurements on the quality of the source entanglement
[39], we would expect a polarization Bell parameter of
2.75 and a time-bin Bell parameter of 2.68. The lower
observed values are explainable by imperfect phase tun-
ing and imperfect PBS extinction. The time-bin value is
further lowered due to residual phase averaging caused
by path-length fluctuations in the interferometers, as well
as slight static mismatches between the three unbalanced
interferometers.

APPENDIX B: BELL-INEQUALITY
OPTIMIZATION ANALYSIS

Like the standard Bell parameter, the /447, inequalities
are a synthesis of three types of probabilities. The first type
of probability is the chance that Alice observes a particu-
lar measurement outcome (e.g., 1) when she measures in
a particular basis (e.g., a). Similarly, the second type of
probability is the chance that Bob observes a particular
measurement outcome when he measures in a particu-
lar basis. The final type of probability is the chance that
Alice and Bob both measure particular outcomes when
they measure in particular bases. The inequality then con-
sists of a set of coefficients for these probabilities, such
that the sum of the probabilities multiplied by their respec-
tive coefficients cannot exceed a certain limit in a local
theory (e.g., ijzz < 0). In our measurement protocol, for
simplicity we take outcome 1 to be a detection event
on detector 1 and outcome 2 to be a detection event on
any of the other three detectors. Of course, we could
assign any detector to outcome 1 and the other three to
outcome 2.

Our measurement system cannot project onto an arbi-
trary ququart state (e.g., we cannot project onto |H) ®
(t) + 1)/ V/2 because the two time modes always have
orthogonal polarizations in our system); thus it is not pos-
sible to obtain a violation for some of the inequalities
and for those with a violation, the maximum violation
achievable with our system does not necessarily reach
the theoretical limit of the inequality. For this reason, we
explore all known Iy, inequalities and not just those
with the largest theoretical difference for qubit and qutrit
states.

TABLE 1. The numerically optimized settings for the 75, Bell
inequality for the experimental setup in Fig. 1. While the opti-
mization is carried out over all HWP and QWP settings, for the
optimum, all QWP settings are 0°. With these settings, the system
can achieve a Bell parameter of up to 0.46, while a local model
is limited to a value of 0 and a qubit-entangled state is limited to
0.18 [44,45].

Basis 1 Basis 2 Basis 3 Basis 4
(deg) (deg) (deg) (deg)
Alice’s HWP 1 45 24 58 8
Alice’s HWP 2 12 43 22 15
Bob’s HWP 1 12 42 7 -33
Bob’s HWP 2 20 49 22 15

After choosing the inequality,

1Y, = 2Pr(ay, by) + 2Pr(ay, by) + 2Pr(ay, b3)
— Pr(ay, bs) + 2Pr(ay, by) + Pr(as, by)
— 2Pr(ay, b3) + 2Pr(ay, by) + 2Pr(as, by)
— 2Pr(as, by) — 2Pr(as, b3) — 2Pr(as, bs)
— Pr(ay, b1) + 2Pr(as, by) — 2Pr(ay, b3)
— Pr(ay4, by) — 2Pr(a;) — 2Pr(ay) — 2Pr(b;)
—2Pr(by) <0, (B1)

we optimize the experimental measurement settings for
the best violation by our system with that inequality; the
optimal settings are given in Table I.

APPENDIX C: PROOF OF STEERING
INEQUALITY

Suppose that Alice and Bob share a bipartite state
8. In the simplest steering test, Bob chooses between a
pair of two-outcome projective measurements, with mea-
surement y € {1,2} described by orthogonal projectors
{B41)y, B-1}y}. The collection of Alice’s postmeasurement
states is described by the assemblage {0z, : b = £1,y =
1,2}, where

pglly = TI'B []I X Bb‘y,OAB] . (Cl)
(in general, any collection of positive operators {pp|, }s,,
such that ", ., Tr[pp,] =1 for all y is called a state
assemblage).

If p#8 is not entangled, then it can be expressed in

separable form as p*% = 3", p(M)la) (e’ ® [B)(Bil®.
Substituting this into Eq. (C1) yields

oy = Y p(bly, Mla) o |,
A

(€2)

where p(bly, L) := (Br|Bpy|Br)p(X). Any state assem-
blage that can be expressed in the form of Eq. (C2)
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is known to satisfy a local-hidden-state (LHS) model.
Note that measuring one half of a separable state always
yields an LHS assemblage but the converse is not
true [7].

This discussion shows that every nonentangled state
generates an LHS assemblage when measured on one
side. Conversely, if the postmeasurement assemblage does
not satisfy a LHS model, then the original state p8
was entangled. This method of entanglement detection is
“semi-device-independent,” since the only trusted device
is Alice’s measurement apparatus in testing the gener-
ated assemblage {pp|,}s,. For the simplest case of two
dichotomic measurement choices on Bob’s side, it has
been shown in Ref. [48] that all assemblages satisfying a
LHS model obey the steering inequality

(Tr [FoX]+ Tr[F,Z] (C3)

f

where F), = py1), — p—1}, are formed from the untrusted
assemblage and X and Z are Alice’s Pauli observables
in the x and Z directions of her qubit space. If {X7,Z;}
and {X;,Z,} are Pauli observables measuring on orthog-
onal qubit subspaces, then the previous inequality can be
extended to read

Ssteer 1= = (Tr [FoXi @ Xo] + Tr [F1Z) & Z3))

7
(C4)

We prove this inequality by first noting that
Tr[FoX; ® Xo] = Tr[I11 FoIl, X,] + Tr[I1,FI1,.X5]
(C5)
TI'[F]Z] &) Zz] = TI'[H]F] H]X]] + TI'[HQF] H2X2],
(Co)

where I1; is a projector onto the {X;, Z;} qubit subspace.
Since Fy, = Trg [I ® (B4, — B_,)p*?], we have
F, T = piTrg [I® (Byy — B_yy) o}

= p,'F,"y N (C7)

where ,oiAB = (IT; ® ) p*B(I1; ® 1) /p; is a normalized state
with p; = Tr[(IT; ® I) p*2]. Therefore,
Tr[FoX) © Xo] + Tr[F12, & 23]
= p1(Tr[ X1 F1 0] + Tr[Z1F11]) + pa(Tr[ X1 F2 ]
+ Tr[ZF>,1])

< V2,

by Eq. (C3) above.

(C¥)

[17 J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys.
Phys. Fiz. 1, 195 (1964).

[2] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed Experiment to Test Local Hidden-Variable Theo-
ries, Phys. Rev. Lett. 23, 880 (1969).

[3] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[4] B. G. Christensen, Y.-C. Liang, N. Brunner, N. Gisin, and
P. G. Kwiat, Exploring the Limits of Quantum Nonlocality
with Entangled Photons, Phys. Rev. X 5, 041052 (2015).

[5] E. Schrddinger, Discussion of probability relations between
separated systems, Math. Proc. Cambridge Philos. Soc. 31,
555 (1935).

[6] E. Schrodinger, Probability relations between separated
systems, Math. Proc. Cambridge Philos. Soc. 32, 446
(1936).

[71 H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steer-
ing, Entanglement, Nonlocality, and the Einstein-Podolsky-
Rosen Paradox, Phys. Rev. Lett. 98, 140402 (2007).

[8] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Giihne,
Quantum steering, Rev. Mod. Phys. 92, 015001 (2020).

[9] L. K. Shalm et al. Strong Loophole-Free Test of Local
Realism, Phys. Rev. Lett. 115, 250402 (2015).

[10] M. Giustina, et al., Significant-Loophole-Free Test of
Bell’S Theorem with Entangled Photons, Phys. Rev. Lett.
115, 250401 (2015).

[11] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N.
Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R.
N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W.
Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S.
Wehner, T. H. Taminiau, and R. Hanson, Loophole-free
Bell inequality violation using electron spins separated by
1.3 km, Nature 526, 682 EP (2015).

[12] B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Lang-
ford, N. Brunner, H. M. Wiseman, R. Ursin, and A.
Zeilinger, Loophole-free Einstein-Podolsky-Rosen exper-
iment via quantum steering, New J. Phys. 14, 053030
(2012).

[13] The Royal Swedish Academy of Sciences: The Nobel
Prize in Physics 2022, https://www.nobelprize.org/prizes/
physics/2022/press-release/ NobelPrize.org (2022).

[14] L. P. Lamoureux, E. Brainis, D. Amans, J. Barrett, and S.
Massar, Provably Secure Experimental Quantum Bit-String
Generation, Phys. Rev. Lett. 94, 050503 (2005).

[15] B. G. Christensen, K. T. McCusker, J. B. Altepeter, B.
Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y.
Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin,
and P. G. Kwiat, Detection-Loophole-Free Test of Quan-
tum Nonlocality, and Applications, Phys. Rev. Lett. 111,
130406 (2013).

[16] H.-K. Lo, M. Curty, and B. Qi, Measurement-Device-
Independent Quantum Key Distribution, Phys. Rev. Lett.
108, 130503 (2012).

[17] A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and
V. Scarani, Device-Independent Security of Quantum Cryp-
tography against Collective Attacks, Phys. Rev. Lett. 98,
230501 (2007).

[18] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and
E. Andersson, Experimental high-dimensional two-photon
entanglement and violations of generalized Bell inequali-
ties, Nat. Phys. 7, 677 (2011).

054025-9



ZEITLER, CHAPMAN, CHITAMBAR, and KWIAT

PHYS. REV. APPLIED 18, 054025 (2022)

[19] A.C.Dada and E. Andersson, On Bell inequality violations
with high-dimensional systems, Int. J. Quantum Inf. 9, 1807
(2011).

[20] H.-P. Lo, C.-M. Li, A. Yabushita, Y.-N. Chen, C.-W. Luo,
and T. Kobayashi, Experimental violation of Bell inequal-
ities for multi-dimensional systems, Sci. Rep. 6, 22088
(2016).

[21] M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara,
B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little,
D. J. Moss, L. Caspani, J. Azafia, and R. Morandotti,
On-chip generation of high-dimensional entangled quan-
tum states and their coherent control, Nature 546, 622
(2017).

[22] D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J.
Pryde, Experimental EPR-steering using Bell-local states,
Nat. Phys. 6, 845 (2010).

[23] A. J. Bennet, D. A. Evans, D. J. Saunders, C. Bran-
ciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde,
Arbitrarily Loss-Tolerant Einstein-Podolsky-Rosen Steer-
ing Allowing a Demonstration over 1 km of Optical Fiber
with No Detection Loophole, Phys. Rev. X 2, 031003
(2012).

[24] H. Yang, F. Zhao, X.-G. Fan, Z.-Y. Ding, D. Wang, X.-K.
Song, H. Yuan, C.-J. Zhang, and L. Ye, Estimating quan-
tum steering and Bell nonlocality through quantum entan-
glement in two-photon systems, Opt. Express 29, 26822
(2021).

[25] Q. Zeng, B. Wang, P. Li, and X. Zhang, Experimental High-
Dimensional Einstein-Podolsky-Rosen Steering, Phys. Rev.
Lett. 120, 030401 (2018).

[26] C. Lee, D. Bunandar, M. Pavlovich, M. Grein, R. Murphy,
S. Hamilton, D. Englund, and P. B. Dixon, in Conference on
Lasers and Electro-Optics (Optica Publishing Group, State
is San Jose, California, 2018), p. FW4F.4.

[27] S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W.
McCutcheon, M. Malik, and N. Brunner, Genuine High-
Dimensional Quantum Steering, Phys. Rev. Lett. 126,
200404 (2021).

[28] R. Qu, Y. Wang, M. An, F. Wang, Q. Quan, H. Li, H.
Gao, F. Li, and P. Zhang, Retrieving High-Dimensional
Quantum Steering from a Noisy Environment with »
Measurement Settings, Phys. Rev. Lett. 128, 240402
(2022).

[29] V. Srivastav, N. H. Valencia, W. McCutcheon, S. Leedum-
rongwatthanakun, S. Designolle, R. Uola, N. Brunner, and
M. Malik, Noise-robust and loss-tolerant quantum steering
with qudits, Preprint ArXiv:2202.09294 (2022).

[30] P. G. Kwiat, Hyper-entangled states, J. Mod. Opt. 44, 2173
(1997).

[31] J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G.
Kwiat, Generation of Hyperentangled Photon Pairs, Phys.
Rev. Lett. 95, 260501 (2005).

[32] N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, Distinguisha-
bility of hyperentangled Bell states by linear evolution and
local projective measurement, Phys. Rev. A 84, 022340
(2011).

[33] N. Lo Piparo, W. J. Munro, and K. Nemoto, Quantum
multiplexing, Phys. Rev. A 99, 022337 (2019).

[34] S. Ecker, P. Sohr, L. Bulla, M. Huber, M. Bohmann, and
R. Ursin, Experimental Single-Copy Entanglement Distil-
lation, Phys. Rev. Lett. 127, 040506 (2021).

[35] T. M. Graham, H. J. Bernstein, T.-C. Wei, M. Junge, and P.
G. Kwiat, Superdense teleportation using hyperentangled
photons, Nat. Commun. 6, 7185 EP (2015)..

[36] N. Lo Piparo, M. Hanks, C. Gravel, K. Nemoto, and
W. J. Munro, Resource Reduction for Distributed Quan-
tum Information Processing Using Quantum Multiplexed
Photons, Phys. Rev. Lett. 124, 210503 (2020).

[37] M. Barbieri, F. De Martini, P. Mataloni, G. Vallone, and A.
Cabello, Enhancing the Violation of the Einstein-Podolsky-
Rosen Local Realism by Quantum Hyperentanglement,
Phys. Rev. Lett. 97, 140407 (2006).

[38] L. Aolita, R. Gallego, A. Acin, A. Chiuri, G. Vallone, P.
Mataloni, and A. Cabello, Fully nonlocal quantum correla-
tions, Phys. Rev. A 85, 032107 (2012).

[39] J.C. Chapman, T. M. Graham, C. K. Zeitler, H. J. Bernstein,
and P. G. Kwiat, Time-Bin and Polarization Superdense
Teleportation for Space Applications, Phys. Rev. Appl. 14,
014044 (2020).

[40] J. C. Chapman, C. C. W. Lim, and P. G. Kwiat, Hyperentan-
gled Time-Bin and Polarization Quantum Key Distribution,
Phys. Rev. Appl. 18, 044027 (2022).

[41] B.S. Shiand A. Tomita, Generation of a pulsed polarization
entangled photon pair using a Sagnac interferometer, Phys.
Rev. A 69, 013803 (2004).

[42] T. Kim, M. Fiorentino, and F. N. C. Wong, Phase-stable
source of polarization-entangled photons using a polar-
ization Sagnac interferometer., Phys. Rev. A 73, 012316
(2000).

[43] A polarization-independent optical switch [58,59] could be
used to always route the early (late) photons to the long
(short) paths, leading to a 4 times enhancement in the
interference coincidence terms.

[44] N. Brunner and N. Gisin, Partial list of bipartite Bell
inequalities with four binary settings, Phys. Lett. A 372,
3162 (2007).

[45] K. F. Pal and T. Vértesi, Efficiency of higher-dimensional
hilbert spaces for the violation of Bell inequalities, Phys.
Rev. A 77, 042105 (2008).

[46] N. Brunner, M. Navascués, and T. Vértesi, Dimension Wit-
nesses and Quantum State Discrimination, Phys. Rev. Lett.
110, 150501 (2013).

[47] Note that because the state can be made pure again by
delaying one pulse relative to the other to achieve total
overlap, the effective decoherence is actually reversible.
However, this is often true of dephasing-based decoher-
ence: in principle, it could be undone if one knew the
correct “antiphase” fluctuations to apply.

[48] D. Cavalcanti and P. Skrzypczyk, Quantum steering: A
review with focus on semidefinite programming, Rep.
Progr. Phys. 80, 024001 (2016).

[49] R. F. Werner, Quantum states with Einstein-Podolsky-
Rosen correlations admitting a hidden-variable model,
Phys. Rev. A 40, 4277 (1989).

[50] R. Augusiak, M. Demianowicz, J. Tura, and A. Acin,
Entanglement and Nonlocality Are Inequivalent for Any
Number of Parties, Phys. Rev. Lett. 115, 030404
(2015).

[51] For convenience, we use the measurement interferometers
to impose these shifts; however, the result is completely
equivalent to having such decoherence induced by the
communication channel used to transmit the photons.

054025-10



ENTANGLEMENT VERIFICATION...

PHYS. REV. APPLIED 18, 054025 (2022)

[52] A. Acin, N. Gisin, and B. Toner, Grothendieck’s constant
and local models for noisy entangled quantum states, Phys.
Rev. A 73, 062105 (20006).

[53] N. Friis, G. Vitagliano, M. Malik, and M. Huber, Entan-
glement certification from theory to experiment, Nat. Rev.
Phys. 1, 72 (2019).

[54] Y. Chen, S. Ecker, J. Bavaresco, T. Scheidl, L. Chen,
F. Steinlechner, M. Huber, and R. Ursin, Verification
of high-dimensional entanglement generated in quantum
interference, Phys. Rev. A 101, 032302 (2020).

[55] B. S. Cirel’son (Tsirelson), Quantum generalizations
of Bell’s inequality, Lett. Math. Phys. 4, 93
(1980).

[56] The first HWP is rotated normally (about the propagation
axis) to change the probability between |H) and | V) and the

other WP is tilted about the vertical axis, with the slow or
fast axes in the H /V basis, to change the phase between |H)
and | V).

[57] A. Aspect, J. Dalibard, and G. Roger, Experimental Test
of Bell’s Inequalities Using Time-Varying Analyzers, Phys.
Rev. Lett. 49, 1804 (1982).

[58] T. M. Graham, Ph.D. thesis, College of Engineering, Uni-
versity of Illinois Urbana-Champaign, State is Urbana,
Illinois, 2016.

[59] J. C. Chapman, I. Miller, I. Call, L. Oshiro, M. Zajdela,
B. Polak, and P. G. Kwiat, in Quantum Technologies and
Quantum Information Science V, Vol. 11167, edited by
M. T. Gruneisen, M. Dusek, P. M. Alsing, and J. G. Rar-
ity, International Society for Optics and Photonics (SPIE,
2019), p. 1.

054025-11



	I. INTRODUCTION
	II. EXPERIMENTAL METHODS
	III. VERIFYING HIGHER-DIMENSIONAL HYPERENTANGLEMENT
	IV. REMOTE STEERING OF HYPERENTANGLED STATES
	V. CONCLUSIONS
	ACKNOWLEDGMENTS
	A. APPENDIX A: VERIFICATION WITH CHSH INEQUALITY
	B. APPENDIX B: BELL-INEQUALITY OPTIMIZATION ANALYSIS
	C. APPENDIX C: PROOF OF STEERING INEQUALITY

