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Abstract

Given a graphon W and a finite simple graph H, with vertex set V(H), denote by X,(H, W) the number
of copies of H in a W-random graph on n vertices. The asymptotic distribution of X, (H, W) was recently
obtained by Hladky, Pelekis, and Sileikis [17] in the case where H is a clique. In this paper, we extend this
result to any fixed graph H. Towards this we introduce a notion of H-regularity of graphons and show that
if the graphon W is not H-regular, then X, (H, W) has Gaussian fluctuations with scaling nV®@=3 On the
other hand, if W is H-regular, then the fluctuations are of order #n"®=! and the limiting distribution of
X,(H, W) can have both Gaussian and non-Gaussian components, where the non-Gaussian component is
a (possibly) infinite weighted sum of centred chi-squared random variables with the weights determined
by the spectral properties of a graphon derived from W. Our proofs use the asymptotic theory of gener-
alised U-statistics developed by Janson and Nowicki [22]. We also investigate the structure of H-regular
graphons for which either the Gaussian or the non-Gaussian component of the limiting distribution (but
not both) is degenerate. Interestingly, there are also H-regular graphons W for which both the Gaussian
or the non-Gaussian components are degenerate, that is, X,(H, W) has a degenerate limit even under
the scaling n'"®'='. We give an example of this degeneracy with H =K, ; (the 3-star) and also establish
non-degeneracy in a few examples. This naturally leads to interesting open questions on higher order
degeneracies.
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1. Introduction

A graphon is a measurable function W': [0, 1] — [0, 1] which is symmetric, that is, W(x, y) =
W(y, x), for all x, y € [0, 1]. Graphons arise as the limit objects of sequences of large graphs and has
received phenomenal attention over the last few years. They provide a bridge between combina-
torics and analysis and have found applications in several disciplines including statistical physics,
probability, and statistics; see for example [3, 9-12]. For a detailed exposition of the theory of
graph limits, we refer to Lovasz [25]. Graphons provide a natural sampling procedure for generat-
ing inhomogeneous variants of the classical Erdds-Rényi random graph, a concept that has been
proposed independently by various authors (see [7, 8, 14, 26] among others). Formally, given a
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graphon W : [0, 11> = [0, 1], a W-random graph on the set of vertices [n]:= {1,2,...,n}, here-
after denoted by G(n, W), is obtained by connecting the vertices i and j with probability W(U;, U;)
independently for all 1 <i <j<n, where {U;:1 <i<mnj} is an i.i.d. sequence of U[0, 1] random
variables. An alternative way to achieve this sampling is to generate i.i.d. sequences {U;: 1 <i < n}
and {Yj;: 1 <i<j<n} of U0, 1] random variables and then assigning the edge (i, j) whenever
{Yij < W(U;, Up}, for 1 <i < j<n. Observe that setting W =W, =p € [0, 1] gives the classical
(homogeneous) Erdés-Rényi random graph model, where every edge is present independently
with constant probability p.

Counts of subgraphs encode important structural information about the geometry of a net-
work. In fact, the convergence of a sequence of finite graphs to a graphon is precisely determined
by the convergence of its subgraph densities. As a consequence, understanding the asymptotic
properties of subgraph counts in W-random graphs is a problem of central importance in graph
limit theory. To this end, given a finite graph H = (V(H), E(H)) denote by X,,(H, W) the number
of copies of H in the W-random graph G(n, W). More formally,

X(H W)= ). > [T t{vu=ww.un}, @

LShi<<ivanI =N B ey ({iv,oiyy ) Gisin) €E(H)

where for any set S C [n], 9(S) denotes the collection of all subgraphs of the complete graph Kjg
on the vertex set S which are isomorphic to H. (We count unlabelled copies of H. Several other
authors count labelled copies, which multiplies X,,(H, W) by |Aut(H)|, cf. (2.7).) The asymptotic
distribution of X,,(H, Wp) in the Erdés-Rényi model, where W = W, =p, has been classically
studied (in general with p = p(n)) using various tools such as U-statistics [28, 29], method of
moments [30], Stein’s method [2], and martingales [18, 19], see also [21, Chapter 6], and the
precise conditions under which X,,(H, W),) is asymptotically normal are well understood [30]. In
particular, when p € (0, 1) is fixed, X,,(H, W}) is asymptotically normal for any finite graph H that
is non-empty, i.e., has at least one edge.

In this paper, we study the asymptotic distribution of X,,(H, W) for general graphons W. This
problem has received significant attention recently, beginning with the work of Féray, Méliot,
and Nikeghbali [16], where the asymptotic normality for homomorphism densities in general
W-random graphs was derived using the framework of mod-Gaussian convergence. Using this
machinery the authors also obtained moderate deviation principles and local limit theorems for
the homomorphism densities in this regime. Very recently, using Stein’s method, rates of con-
vergence to normality (Berry-Esseen type bounds) have been derived as well, see [24] (which also
contain further related results) and [31]. See also [13] and the references therein for further results.

However, interestingly, the limiting normal distribution of the subgraph counts obtained in
[16] can be degenerate depending on the structure of the graphon W. This phenomenon was
observed in [16], and it was explored in detail in the recent paper of Hladky, Pelekis, and Sileikis
[17] for the case where H = K, is the r-clique, for some r > 2. They showed that the usual Gaussian
limit is degenerate when a certain regularity function, which encodes the homomorphism den-
sity of K; incident to a given ‘vertex’ of W, is constant almost everywhere (a.e.). In this case, the
graphon W is said to be K,-regular and the asymptotic distribution of X, (K,, W) (with another
normalisation, differing by a factor n/2) has both Gaussian and non-Gaussian components. In the
present paper, we extend this result to any fixed graph H. To this end, we introduce the analogous
notion of H-regularity and show that the fluctuations of X,,(H, W) depends on whether or not
W is H-regular. In particular, if W is not H-regular, then, X,,(H, W) is asymptotically Gaussian,
using a normalisation factor nlV#I=1/2 However, if W is H-regular, then the normalisation factor
becomes n!V#I=1 and yields a limiting distribution of X,,(H, W) that has, in general, a Gaussian
component and another independent (non-Gaussian) component which is a (possibly) infinite
weighted sum of centred chi-squared random variables. Here, the weights are determined by the
spectrum of a graphon obtained from the 2-point conditional densities of H in W, that is, the
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density of H in W when two vertices of H are mapped to two ‘vertices’ of W, averaged over
all pairs of vertices of H. The results are formally stated in Theorem 2.9. Unlike in [17] which
uses the method of moments, our proofs employ the orthogonal decomposition for generalised
U-statistics developed by Janson and Nowicki [22] (see also [[20], Chapter 11.3]). This avoids
cumbersome moment calculations and provides a more streamlined framework for dealing with
the asymmetries of general subgraphs.

There are also exceptional cases, where W is H-regular and normalisation of X, (H, W) by
alVEI=1 4150 yields a degenerate limit; then a non-trivial limit can be found by another nor-
malisation. (We ignore trivial cases when X,,(H, W) is deterministic.) This cannot happen when
H =K, as shown in [17], but we give an example of this degeneracy with H = Kj 3 (the 3-star);
see Example 4.6. We also show that this higher order degeneracy cannot happen for H = Cy4 (the
4-cycle) and H = K, (the 2-star); see Theorems 4.8 and 4.10, respectively. It is an open problem
to decide for which graphs H such higher order degeneracies may occur.

We also study the structure of W is when it is H-regular and one (but not both) of the two
components of the limit distribution in Theorem 2.9(2) vanishes, so that the limit distribution
either is normal or lacks a normal component. In particular, we show that if H is bipartite and
W is H-regular, then the limit lacks a normal component if and only if W is {0, 1}-valued almost
everywhere (Theorem 4.3).

1.1. Organisation

The rest of the paper is organised as follows. The limit theorems for the subgraph counts are
presented in Section 2. We compute the limits in some examples in Section 3. Degeneracies of the
asymptotic distributions are discussed in Section 4. The main results are proved in Sections 5-8.

2. Asymptotic distribution of subgraph counts in W-random graphs

In this section, we will state our main result on the asymptotic distribution X,,(H, W). The sec-
tion is organised as follows: In Section 2.1, we recall some basic definitions about graphons. The
notions of conditional homomorphism density and H-regularity are introduced in Section 2.2.
Some spectral properties of the integral operator corresponding to a graphon are described in
Section 2.3. The result is formally stated in Section 2.4.

2.1. Preliminaries
A quantity that will play a central role in our analysis the homomorphism density of a fixed
multigraph F = (V(F), E(F)) (without loops) in a graphon W, which is defined as

[V(F)]

t(F, W)=/01] o, [T Weex) ]‘[ dx,. (2.1)

(s,t)€E(F)
Note that this is the natural continuum analogue of the homomorphism density of a fixed graph
F = (V(F), E(F)) into finite (unweighted) graph G = (V(G), E(G)) which is defined as
| hom (F, G)|
|[V(G)IVEI”
where | hom (F, G)| denotes the number of homomorphisms of F into G. In fact, it is easy to verify

that #(F, G) = t(F, WS), where W is the empirical graphon associated with the graph G which
defined as

t(F, G) := (2.2)

W(x,y) = H([IV(G)Ix], TIV(G)Iy]) € E(G)}. (2.3)
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(In other words, to obtain the empirical graphon W© from the graph G, partition [0, 1]? into
|V(G)|? squares of side length 1/|V(G)|, and let WY (x, y) = 1 in the (i, j)-th square if (i, j) € E(G),
and 0 otherwise.)

Let H=(V(H), E(H)) be a simple graph. For convenience, we will throughout the paper

assume that V(H) ={1,2, ..., |V(H)|}. Then, the homomorphism density defined (2.1) can also
interpreted as the probability that a W-random graph on |V(H)| vertices contains H, that is,
t(H, W) =P(G(|V(H)|, W) 2 H). (2.4)

To see this, recall the construction of a W-random graph and note from (2.1) that,

(HW)=E| [[ WWU,U)|=E| [] UYa<WUsUpy)}
(a,b)eE(H) (a,b)eE(H)
=E [{G(|V(H)|, W) 2 H}] . (2.5)
Next, recalling (1.1) note that

EXo(H, W)= Y >, t(H, W)

Isiv<<ive =1 B €@y ({in,..oijvi )

— n .
= (i) 1L VDD - ((H, W) (2:6)
where the last equality follows since the number of subgraphs of K|y on {i1, ..., iy} iso-
morphic to H is the same for any collection of distinct indices 1 <i; < - - - < ijy(m) < n. Clearly,
|V(H)|!
Yu({1,...,|V(H =, 2.7
1u({ [V(H)IDI Aut(H)] 2.7)

where Aut(H) is the collection of all automorphisms of H, that is, the collection of permutations
o of the vertex set V(H) such that (x, y) € E(H) if and only if (o (x), o (y)) € E(H). This implies,
from (2.6),

(m) v
|Aut(H)|
where (n)|v() == n(n —1) - - (n — |V(H)| + 1).

EX,(H, W)= t(H, W), (2.8)

2.2. Conditional homomorphism densities and H-regularity

In this section, we will formalise the notion of H-regularity of a graphon W. To this end, we need
to introduce the notion of conditional homomorphism densities. Throughout, we will assume
H = (V(H), E(H)) is a non-empty simple graph with vertices labelled V(H) ={1,2, ..., |V(H)|}.

Definition 2.1. Fix 1 <K < |V(H)| and an ordered set a = (a1, ay, ..., ax) of distinct vertices
ai, ay, ..., ax € V(H). Then the K-point conditional homomorphism density function of H in W
given a is defined as

W HW)=E | [] WU U) | Uy =3 for1=j<K

(a,b)eE(H)
= P (GUV(H), W) 2 H | Uy =x;, for 1 <j<K), (29
where x = (x1, X2, . . ., xx). In other words, t,(x, H, W) is the homomorphism density of H in the

graphon W when the vertex a; € V(H) is marked with the value x; € [0, 1], for 1 <j <K.
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The conditional homomorphism densities will play a crucial role in the description of the lim-
iting distribution of X,,(H, W). In particular, the H-regularity of a graphon W is determined by
the 1-point conditional homomorphism densities, which we formalise below:

Definition 2.2. (H-regularity of a graphon) A graphon W is said to be H-regular if

[V(H)|
Z t,(x, H, W) = t(H, W), (2.10)

a=1

tx, H, W) :=

|V(H)

for almost every x € [0, 1].

Note that in (2.10) it is enough to assume that #(x, H, W) is a constant for almost every x €
[0, 1]. This is because

1
/ t,(x, H, W) dx =t(H, W), (2.11)
0

for all a € V(H). Hence, if t(x, H, W) is a constant a.e., then the constant must be t(H, W).
Therefore, in other words, a graphon W is H-regular if the homomorphism density of H in W
when one of the vertices of H is marked, is a constant independent of the value of the marking.

Remark 2.3. Note that when H =K, is the r-clique, for some r>2, then t,(x,H, W)=
ty(x, H, W), for all 1 <a # b <r. Hence, (2.10) simplifies to

hoo K, W)=E| [[ WU, U

1<a<b<r

Uy =x | =t(H, W), foralmost every x € [0, 1], (2.12)

which is precisely the notion of K,-regularity defined in [17].
Remark 2.4. Recall that the degree function of a graphon W is defined as

dw(x):= / W(x, y) dy. (2.13)
[0.1]
Note that for H = K3, (2.9) yields
16 Ko, W) = E[W(ULL Uy) | Uy =] = /[ W) dy =) (2.14)
0,1

Hence, the notion of K;-regularity coincides with the standard notion of degree regularity, where

the degree function dy (x) := f[O,l] W(x, y) dy is constant a.e.

2.3. Spectrum of graphons and 2-point conditional densities

Hereafter, we denote by W the space of all graphons, which is the collection of all symmetric,
measurable functions W : [0, 1]2 — [0, 1]. We let also WV, be the space of all bounded, symmetric,
measurable functions W : [0, 1]2 — [0, 00). Every graphon W € W), or more generally W e Wy,
defines an operator Ty : L2[0, 1] — L?[0, 1] as follows:

1
(Twf)(x) = /0 W 9)f () dy, (2.15)

for each f € L?[0,1]. Ty is a symmetric Hilbert-Schmidt operator; thus it is compact and has
a discrete spectrum, that is, it has a countable multiset of non-zero real eigenvalues, which we
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denote by Spec(W), with

Z kzz/ W(x,y)zdxdy<oo. (2.16)
reSpec(W)
Moreover, a.e.,
(TwH© =Y Mf. )¢ (x) (2.17)
reSpec(W)
and
W= Y. r(xe) (2.18)
AeSpec(W)

where {¢; }1espec(w) denotes an orthonormal system of eigenfunctions associated with Spec(W).
For a more detailed discussion on the spectral properties of graphons and their role in graph limit
theory, see [25, Chapters 7, 11].

To describe the limiting distribution of X,,(H, W) when W is H-regular, we will need to under-
stand the spectral properties of the following graphon obtained from the 2-point conditional
densities:

Definition 2.5. Given a graphon W € W) and a simple connected graph H = (V(H), E(H)), the
2-point conditional graphon induced by H is defined as
Wh(x, y) = Yo tap((ny), H, W), (2.19)

20Aut(E| | _ =,

where t,;((x, y), H, W) is the 2-point conditional homomorphism density function of H in W
given the vertices (a, b), as in Definition 2.1.} (The normalisation factor in (2.19) is chosen for
later convenience in e.g. (2.25).)

Intuitively, Wy (x, y) can be interpreted as the homomorphism density of H in W containing
the ‘vertices’ x, y € [0, 1].

Note that a graphon W is H-regular (see Definition 2.2) if and only if the 2-point conditional
graphon Wiy is degree regular (see Remark 2.4). This is because, for all x € [0, 1],

[V(H)|
v -1
/ Wi(x, ) d = SISt ; ta(x, H, W), (2.20)

and the RHS of (2.20) is a constant if and only if W is H-regular. In fact, if W is H-regular, then
(x, H, W) =t(H, W) a.e;; hence, the degree of Wy becomes

[VIH)|(|V(H)| — 1)
/ Wh(x,y)dy = 21 Aut(H)| -t(H, W) = dWH, (2.21)
for almost every x € [0, 1]. This implies that, if W is H-regular, then dy,, is an eigenvalue of
the operator Ty, (recall (2.15)) and ¢ =1 is a corresponding eigenvector. In this case, we will
use Spec” (Wp) to denote the collection Spec(Wpx) with the multiplicity of the eigenvalue dy,,
decreased by 1. (Note that dy,, > 0 by (2.21) unless t(H, W) =0, or |V(H)| = 1; these cases are
both trivial, see Remark 2.10.)

IStrictly speaking, Wy is in general not a graphon in W) because it can take values greater than 1. However, Wy € W,
and we still call it a graphon.
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H,H,

a,b

H, H,

Figure 1. The (a, b)-vertex join of the graphs H; and H,.

2.4. Statement of the main result

To state our results on the asymptotic distribution of X,,(H, W), we need to define a few basic
graph operations.

Definition 2.6. For a graph H = (V(H), E(H)) on vertex set {1, 2, - - - , r} define,

Et(H)={(a,b):1<a#b<r,(a,b)or (b,a) e E(H)} (2.22)

Definition 2.7. Fix r > 1 and consider two graphs H; and H; on the vertex set {1,2,--- ,r} and
edge sets E(H;) and E(H>), respectively.

o Vertex Join: For a,be(1,2,--- ,r}, the (a, b)-vertex join of H; and H, is the graph
obtained by identifying the a-th vertex of H; with the b-th vertex of H; (see Figure 1 for an
illustration). The resulting graph will be denoted by

H, @ H,.
a,b

« Weak Edge Join: For (a,b) € EY(H;) and (c,d) € ET(H,), with 1 <a#b<rand 1 <c#
d <r,the(a, b), (¢, d)-weak edge join of H; and H, is the graph obtained identifying the ver-
tices a and ¢ and the vertices b and d and keeping a single edge between the two identified
vertices (see Figure 2 for an illustration). The resulting graph will be denoted by

H,; 6 H,.
(a,b),(c,d)

« Strong Edge Join: For (a, b) € ET(H;) and (c,d) € E*(H,), with 1 <a#b<rand 1 <c#
d <r,the (a,b), (c, d)-strong edge join of H; and H; is the multi-graph obtained identifying
the vertices a and ¢ and the vertices b and d and keeping both the edges between the two
identified vertices (see Figure 2 for an illustration). The resulting graph will be denoted by

H, @ H,.

(a,b),(c,d)

Remark 2.8. We note that both the weak and strong edge join operations can be extened to arbi-
trary (a, b) € V(H;)? and (¢, d) € V(H,)? with a # b and ¢ # d; in the strong join we keep all edges,
but in the weak join we keep the join simple by merging any resulting double edge. (Thus, if either
(a,b) ¢ EY(Hy) or (¢, d) € ET(H;), then the weak and strong edge joins are the same graph.)
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H © H

(a,0),(c,d)

o, Hy

Figure 2. The weak and strong edge joins of the graphs H; and H,.

Having introduced the framework and the relevant definitions, we are now ready to state our
main result regarding the asymptotic distribution of X,,(H, W), the number of copies of H in the
W-random graph G(un, W).

Theorem 2.9. Fix a graphon W € Wy and a simple graph H = (V(H), E(H)) with vertices labelled
V(H)={1,2,...,|V(H)|}. Then for X,(H, W) as defined in (1.1) the following hold, as n — oc:

(1) Forany W,

X, (H, W) — S0y wy

[Aut(H)] 2
— N(O, T5 ), 223
where
1
rﬁ’wzzm Y t|HPHW | - |VH)PHH W)? | =0. (2.24)
| ut( )| 1<a,b<|V(H)| a,b

Moreover, rfl,w > 0 if and only if W is not H-regular. Thus, if W is not H-regular, then
Xq(H, W) is asymptotically normal.

(2) If Wis H-regular, then

(M) v
X,.(H, W) — t(H, W)
n [Aut(H)| D, onw-Z+ E A(Z,% -1), (2.25)

nlVE) -1
reSpec™ (Wx)
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where Z and {Z,}) cspec—(wyy) all are independent standard Gaussians,

1
2
o = t|H © H,W)—t H H W >0,
H,W 2|Aut(H)|2 ( Z . < (@b)(d) @
a,b),(c,d)eET (H) (a,b),(c.d)
(2.26)

and Spec” (Wg) is the multiset Spec(Wx) with multiplicity of the eigenvalue dy,, (recall
(2.21)) decreased by 1.

The sum in (2.25) may be infinite, but it converges in L2 and as. by (2.16) (see [23, Lemma
4.16]). The proof of Theorem 2.9 uses the projection method for generalised U-statistics devel-
oped in Janson and Nowicki [22], which allows us to decompose X,(H, W) over sums of
increasing complexity. (See also [20, Chapter 11.3] and [24].) The terms in the expansion are
indexed by the vertices and edges subgraphs of the complete graph of increasing sizes, and the
asymptotic behaviour of X,,(H, W) is determined by the non-zero terms indexed by the small-
est size graphs. Details of the proof are given in Section 5. Various examples are discussed in
Section 3.

Remark 2.10. We note some trivial cases, where X,,(H, W) is deterministic. First, t(H, W) =1 if
and only if H is empty (has no edge), or W is complete, that is, W = 1. In both cases, almost surely
X, (H, W)= ‘(:)u‘f((g;‘l . Similarly, if W is H-free, that is, t(H, W) = 0, then almost surely X,,(H, W) =
0. Note also that in these cases with t(H, W) € {0, 1}, we have #(x, H, W) = t(H, W) a.e., e.g. by
(2.11), and thus W is H-regular. Theorem 2.9 is valid for these cases too (with limits 0), but is

not very interesting, and we may without loss of generality exclude these cases and assume 0 <
tH, W) <1.

Remark 2.11. As mentioned earlier, the result in Theorem 2.9(1) has been proved recently by
Féray, Méliot, and Nikeghbali [16, Theorem 21] using the machinery of mod-Gaussian conver-
gence (see also [1, Section 8] for connections to exchangability). They noted that the limiting
distribution in [16, Theorem 21] might be degenerate, that is, Ty, = 0, and called this case sin-
gular. (This is thus our H-regular case). Méliot [27] studied the (globally) singular graphons, i.e.,
the graphons W for which ty,w = 0, for all graphs H. For such graphons [27] derived the order of
fluctuations for the homomorphism densities, but did not identify the limiting distribution.

The main emphasis of the present paper is Theorem 2.9(2), for H-regular graphons, where
the more interesting non-Gaussian fluctuation emerges. Moreover, it turns out that there are
non-trivial cases where also the limit in Theorem 2.9(2) is degenerate. We discuss this further
in Section 4, where we give both an example of such a higher order degeneracy, and examples
of graphs H for which this cannot happen for any W. We will also study when one of the two
components of the limit (the normal and the non-normal component) vanishes. In particular, in
the classical Erdés-Rényi case W = p, Theorem 2.9(2) applies to every H with the non-normal
component vanishing, so the limit is normal, which is a classical result; see further Example 3.3.

Remark 2.12. For the closely related problem of counting induced subgraphs isomorphic to H,
limit distributions of the type in Theorem 2.9(2) with a non-normal component occur (for special
H) even in the Erdés-Rényi case W = p, but then with normalisation by n!V(F)I=2_see [2, 22]. It
seems interesting to study induced subgraph counts in G(n, W) for general graphons W with our
methods, but we have not pursued this.

Finally, it is worth mentioning that limiting distributions very similar to that in Theorem 2.9(2)
also appears in the context of counting monochromatic subgraphs in uniform random colour-
ings of sequences of dense graphs [4, 5]. Although this is a fundamentally different problem, the
appearance of similar limiting objects in both situations is interesting.
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3. Examples

In this section we compute the limiting distribution of X,,(H, W) for various specific choices of H
and W using Theorem 2.9.

Example 3.1. (Cliques) Suppose H = K, the complete graph on r vertices, for some r > 2. This is
the case that was studied in [17]. To see that Theorem 2.9 indeed recovers the main result in [17],
first recall Remark 2.3, which shows that our notion of H-regularity matches with the notion of
K,-regularity defined in [17]. Next, note that by the symmetry of the vertices of a clique,

t|\HPHW|=t|HHW], (3.1)
a,b 1,1
for 1 <a, b <|V(H)|, and |Aut(K;)| = r!. Therefore, Theorem 2.9(1) implies, when W is not K-

regular,

Xn(Kr’ W) - (’:)t(Kﬁ W) 1

D
N[o,———
- (r— 1P

=

r—

KD W | -k W) | ], (32)
h 11

which is precisely the result in [17, Theorem 1.2(b)]. For the K,-regular case, note that by
the symmetry of the edges of a clique, the 2-point conditional graphon induced by K, (recall
Definition 2.5) simplifies to

1
W ) =——t ) > K 5 . .
K (%, ) 22! 12((x6 ), Ky, W) (3.3)
Moreover, for all (a, b), (¢, d) € E(K,),
t (Kr © K, W) =t (Kr 6 K, W) , (3.4)
(a,b),(c,d) (1,2),(1,2)

and similarly for the strong edge-join operation. Hence, Theorem 2.9(2) implies

Xn(Kr> W) - (’:)t(Kra W)

D
— Sokw-Z+ Yy, MZ-1) (3.5)
reSpec™ (Wk,)
with
1
2
o =—{t{H & HW]|—-t|H HW s (3.6)
KW ™o (r —2)12 < (1,2),(1,2) > @

(1,2),(1,2)
as shown in [17, Theorem 1.2(c)].

Example 3.2. (2-Star) Suppose H = K, with the vertices labelled {1, 2, 3} as shown in Figure 3.
In this case, for any graphon W € W,

1
t1(x, Ky, W) = / W(x, ) W(x, 2) dy dz = dw (x)?, (3.7)
0
where the degree function dy (x) is defined in (2.13), and

1 1
tr(x, K12, W) =t3(x, K12, W) =/ W(x, y))W(y,z) dy dz:/ W(x, y)dw(y) dy, (3.8)
0 0
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Kias=Ki @ Kip P=K ;P K By=Ki2s@P Ko
(1,1) (2,3) (1,3)

Figure 3. The different non-isomorphic graphs that can be obtained by the vertex join of two copies of K1, (with vertices
labelled {1, 2, 3} as in the inset).

Then by Definition 2.2, (3.7) and (3.8), W is K ,-regular if and only if

1
dw(x)? +2 f W(x, p)dw(y)dy = 3t(K1 2, W), forae xe[0,1]. (3.9)
0

In particular, if W is degree regular, then the left-hand side of (3.9) is constant, and thus W is
K -regular. (We conjecture that the converse holds too, but we have not verified this.)
Therefore, from Theorem 2.9 we have the following:

« If(3.9) does not hold, then

Xu(K1p, W) — 3(g)t(K1,2, W)

D
= N(O, 7%, , w) (3.10)

NI

n
with
1

f12<1,2,w =7 {t(K1,4, W) + 4t(Py, W) + 4t(Bg, W) — 9t(K1 2, W)z}, (3.11)
where the graphs Kj 4, P4, and By are as shown in Figure 3. Note that Kj 4 is the 4-star
(obtained by joining the two central vertices of the 2-stars), P4 is the path with 4 edges
(obtained by joining a leaf vertex of one 2-star with a leaf vertex of another), and By is the
graph obtained by joining the central vertex of one 2-star with a leaf vertex of another. For
a concrete example of a graphon which is not K; »-regular, consider Wy (x, ) := xy. In this
case, dy,(x) = %x, for all x € [0, 1], and (3.9) does not hold; hence, Wy is not Kj »-regular.

« On the other hand, when (3.9) holds,

Xn(K12, W) — 3(2)1‘(1(1,2, W)

D
— 0K, W Z+ Z MZE—1), (3.12)
AeSpec™ (Wk, ,)

n2

with
R pw = (K13, W)+ t(P3, W) — t(K"3, W) — t(P§, W), (3.13)
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(a) (b)

Pi=K, O K Pf =K, @ K
1.2)(2.1) (1.2),(2.1)

Figure 4. (a) The weak edge join of two copies of K1, and (b) the strong edge join of two copies of Ky ».

where Kj 3 is the 3-star and P; is the path shown in Figure 4(a) (obtained by the weak edge-
join of two copies of K, using the edges (1, 2), (1,2) and (1, 2), (2, 1), respectively), and
the ng and P; are the multigraphs shown in Figure 4(b) (obtained by the strong edge-join
of two copies of K , using the edges (1, 2), (1, 2) and (1, 2), (2, 1), respectively). Moreover,
in this case, the 2-point conditional graphon Wk, , simplifies to:

Wiiats) =5 W@+ duon + [ Wi awoadef, e

since  t12(x, y, K12, W) = t13(x, 3, K12, W) = W(x, y)dw(x) and tr3(x, 5, K12, W)=
f[O,l] W(x, 2)W(y, z) dz, and similarly for the others. For a concrete example of graphon
which is K -regular consider

2

p iy elo i UBT,

0 otherwise.

W(x, y):= (3.15)

Note that this is a 2-block graphon (with equal block sizes) taking value p in the diagonal
blocks and zero in the off-diagonal blocks. (One can think of this as the ‘disjoint union
two Erdés-Rényi graphons’.) It is easy to check that this graphon is degree regular, hence
K >-regular. In fact, in this case

ity e UL

0 otherwise.

Wk, (x,y) = (3.16)
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and GIZQ = 1p*(1 — p). Moreover,

Spec(Wk,,) = {3p*/8, 3p*/8}, (3.17)
with the eigenfunctions 1 and 1{[0, 1/2]} — 1{[1/2, 1]}, respectively. In particular, dWK1 , =
3p?/8 in agreement with (2.21). Consequently, Spec™ (W, ,) = {3p?/8}.

Example 3.3. (Erdés-Rényi graphs) Suppose that W = W), = p for some p € (0, 1). By symmetry,
t(x, H, W) does not depend on x, and thus W, is H-regular for every H. Furthermore, by (2.19),
also the 2-point conditional graphon W is constant, which implies (see also Proposition 4.1) that
Spec™ (Wg) = # and thus the limit in Theorem 2.9(2) is normal for every non-empty H. (We have
O'IZJ,W > 0 by (2.26).) As said earlier, this is a classical result, see e.g. [2, 18, 19, 21, 28-30].

4. Degeneracies of the asymptotic distribution

In this section, we will discuss the degeneracies of asymptotic distribution when W in H-regular;
we will throughout the section tacitly ignore the trivial cases in Remark 2.10, i.e., we assume that
0 < t(H, W) < 1. Towards this denote

X, (H, W) — 20l ypy vy

o [Aut(H)|
Zy(H,W):= VD1 . (4.1)
Theorem 2.9(2) shows that when W is H-regular,
D
ZWHW)=>onw-Z+ Y MZ -1, (4.2)

reSpec™ (Wh)

where Z, {Z,}; espec—(wy;) are all independent standard Gaussians, and oé)w is as defined in
Theorem 2.9. This raises the following natural questions:

o Is the limiting distribution of Z,(H, W) non-degenerate? Given the result in Theorem 2.9, it
is natural to wonder whether, when W is H-regular, the limiting distribution of Z,,(H, W) in (4.2)
is always non-degenerate. This is indeed the case for cliques: if H = K, for some r > 2, then it
was shown in [17, Remark 1.6] that the limit in (4.2) is never degenerate. However, for general
graphs H the situation is surprisingly more complicated. It turns out that there are graphs H for
which there exist a H-regular graphon W, with 0 < #(H, W) < 1, such that the limit in (4.2) is
degenerate (see Example 4.6). Naturally this raises the question: For which graphs H is the limiting
distribution of Z,(H, W) always non-degenerate? In Section 4.3, we answer this question in the
affirmative when H = Cy is the 4-cycle and H = K, is the 2-star.

In cases when the limit in (4.2) is non-degenerate, we can ask about the structure of W when
one of the components of the limit vanishes:

o When is the limiting distribution of Z,(H, W) normal? Note from (4.2) that Z,(H, W) is
asymptotically Gaussian if and only if the non-Gaussian component

> Mz -

A€Spec™ (Wg)

is degenerate. We show in Proposition 4.1 that this happens precisely when the 2-point
conditional graphon W is constant a.e.

o When is the limiting distribution of Z,(H, W) normal-free? Clearly, the limit (4.2) has no
Gaussian component whenever og i = 0. In Theorem 4.3 we characterise the structure of
such graphons when H is bipartite: we show that if H is bipartite, then the limit in (4.2) is
normal-free ifand only if W(x, y) € {0, 1} a.e. (thatis, W is random-free). We also show that
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there are non-bipartite graphs H and graphons W which are not random-free for which
on,w = 0 (Example 6.1).

4.1. Degeneracy of the Non-Gaussian Component

The following proposition characterises when the limit in (4.2) is Gaussian. It extends the special
case H = K, which was shown in [17, Theorem 1.3].

Proposition 4.1. Let H be a simple graph and let W be a H-regular graphon. Then the following
are equivalent:

(1) Zu(H, W) 3 N(O, 07, 3.
() Z,\espec*(wH) MZE — 1) is degenerate.
(3) Spec™ (Wg) =0.

(4) Wh(x,y) =dwy a.e., where dy,, = % - t(H, W) is as defined in (2.21).

Proof. From (4.2) it is clear that (1), (2) and (3) are equivalent. Next, recalling the discussion
following (2.21), Spec™ (W) =9 if and only if Spec(Wy) = {dw}; furthermore, since W is
H-regular, Wy is degree regular and, hence, ¢ =1 is an eigenfunction corresponding to dy,,.
Therefore, by (2.18), if Spec(Wr) = {dw,, }, then

Wh(x, y) = dwy¢()¢(y) =dw,  ae. (4.3)

Conversely, Wy (x, y) = dw,, a.e. implies that dy,, is the only non-zero eigenvalue of Ty, and
thus Spec™ (W) = @. This establishes that (3) and (4) are equivalent.

4.2. Degeneracy of the Gaussian Component

The Gaussian component in the limit (4.2) is degenerate when oé,w = 0. To study the structure of
such graphons, we need a few definitions. For a graph F = (V(F), E(F)) and S C V(F), the neigh-
bourhood of Sin F is Ng(S) = {v € V(F) : 3u € S such that (u, v) € E(F)}. Moreover, for u, v € V(F),
F\{u, v} is the graph obtained by removing the vertices u, v and all the edges incident to them. For
notational convenience, we introduce the following definition:

Definition 4.2. Let H be a labelled finite simple graph and W a graphon. Then, for 1 <u #v <
|V(H)|, the function f,,,(, -, H, W) : [0, 1] — [0, 1] is defined as

t;v(x, y) H) W)

:-/[01]V<H>2 1_[ Wixz) l_[ Wy, z) l_[ W(zr, zs) H dz,. (4.4)

reNg (u)\{v} seNg(v)\{u} (r.s)eE(H\{u,}) ré{u,v}
Thus, if (u, v) € E(H), then

tuv(x y, H, W) = W(x, y)t, (x, y, H, W). (4.5)

Note that

chw=ar Y [ Gl H W H WG ) = W) dedy, (46
(a,b),(c,d)eE*(H)
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where cg := It is clear from (4.6) that if W is random-free, then afLW = 0 and hence, if

1
2[Aut(H)?*
W is H-regular, the asymptotic distribution does not have a normal component. Interestingly, the
converse is also true whenever H is bipartite. This is formulated in the following theorem:

Theorem 4.3. If H is a non-empty bipartite graph with t(H, W) > 0, then OI%LW =0 if and only if
W is random-free.

The proof of Theorem 4.3 is given in Section 6. It entails showing, using the bipartite struc-
ture of H, that for almost every (x, y) such that W(x, y) € (0, 1), we have t;h(x, ¥, H,W) >0,
for a # b € V(H) such that (g, b) € E(H). Consequently, from (4.6), OI%I’W > 0 whenever the set

{(x, ) € [0, 112: W(x, ¥) € (0, 1)} has positive Lebesgue measure. An immediate consequence of
Theorem 4.3 is that for a bipartite graph H and an H-regular W, the asymptotic distribution of
Z,(H, W) is non-degenerate whenever W is not random-free.

Remark 4.4. The bipartite assumption in Theorem 4.3 is necessary, in the sense that there exist
non-bipartite graphs H and graphons W with t(H, W) > 0 such that Gé,w =0, but W is not
random-free. We discuss this in Example 6.1.

For non-bipartite H, we note only the following, which extends [17, Proposition 1.5].

Proposition 4.5. We have aé’w =0 if and only if W(x,y)=1 for ae. (x,y) such that
tap(x, y, H, W) > 0 for some (a, b) € E*(H).

Proof. An immediate consequence of (4.6) and (4.5). O

4.3. Degeneracy of the Limitin (4.2)
We begin with an example where the limit in (4.2) is degenerate.

Example 4.6. Let H = K] 3 be the 3-star on vertex set {1, 2, 3, 4}, where the root (non-leaf) vertex
is labelled 1. Further, suppose that W is the complete balanced bipartite graphon:

0 iftyeloiUdi],

W(x, y) := (4.7)
1  otherwise.
To begin with note that dy (x) = fol W(x,y)dy = %, for all x € [0, 1]. Therefore,
12 ti (x, K13, W) Y P / We, Oy (0 d | = - (4.8)
4 4 i > 3> 4 > 8 .

i=1

This establishes that W is Kj 3-regular, and that #(Kj 3, W) =1/8. Next, since W € {0, 1}, by
Theorem 4.3, 61%1 ,.w, = 0. Hence, to show that the limit distribution of Z,(Kj 3, W) is degenerate

it suffices to check that ), eSpec— (Wi, ;) A% = 0. By Proposition 4.1, this is equivalent to showing

12

1
mt (K1,3, W) == g, (49)

Wk, 5(x, y) =
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for a.e. (x, y) € [0, 1]? (since |Aut(K; 3)| = 3! = 6). Towards this recall (2.19), which yields

1
Wiy (6 )) = = tap (%9, K13, W
1,3 2|Aut(K1,3)| 1<az7éb<4 ’ ( )

1

12 [3W(x,y) / W(x, z2)W(x, t) dz dt + 3W(x, y) / W(y, 2)W(y, t) dz dt

+6 / W(x, ) W(y, )W(z, t) dz dt]
= % |:3 W(x, »)dw (x)* +3W(x, »)dw () +6 / dw (W (x, )W (y, t) dt]

:é [%W(x,y) + 3/ W(x, YW (y, t) dt:| . (4.10)

Now, observe that if W(x,y)=0 then f W(x, YW (y, t) dt = %, which implies, from (4.10),
Wk, ;(x,y) = 5. Further, when W(x,y)=1, then f Wi(x, )W(y,t) dt =0, which implies
Wk, 5(x, y) = g. Thus for all (x, y) € [0, 112, Wk, 5 = 1/8, which establishes (4.9). This shows that
limiting distribution of Z,, (K} 3, W) is degenerate for W as in (4.7).

In fact, in this example, we can easily find the asymptotic distribution of X,,(Kj 3, W) directly.
Let M := |{i:U; < 1}| ~Bin(n, 1), and M := M — n/2. Then

Xn(K13, W) =M(" ;M) +(n —M)@)

— ool

= éM(n —M)((n—M)* + M* —3n +4)

=4GR )G (o) )

_ é((g)z _ MZ) (2(2)2 +202 —3n +4)

=G ) -G )

Hence, subtracting the mean and using (2.8),

Xy(Kys W)= Yk A — Efr? | 3n—4 BB

n? 3n2 6n n

(4.12)

Since the central limit theorem yields M /nl/? k4 Z /2, with all moments, where Z ~ N(0, 1), (4.12)
yields
Xn(K13’W)_% p Z'-3 Z7*-1 1, 4 ) 1
. —_— — =——(Z2"—-6Z 3) = ——hy(2), 4.13
n2 48 8 st T =@ @1y
where hy is the 4th Hermite polynomial (using the normalisation in, e.g. [20, Example 3.18]).
Consequently, in this example, the correct normalisation is by n? =n!VI=2 and the limit
distribution is given by a fourth-degree polynomial of a Gaussian variable.
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The example above raises the question for which graphs H is the limiting distribution of
Z,(H, W) in Theorem 2.9(2) non-degenerate for all graphons W. In the following we will show
that the limit is always non-degenerate when H = Cy4 or H = K] » (the 4-cycle and the 2-star). Our
proofs use the specific structure of the 4-cycle and 2-star, and it remains unclear for what other
graphs can one expect the non-degeneracy result to hold.

Non-Degeneracy of the Limit for the 4-Cycle: We begin by deriving explicit conditions for degener-
acy of the two components of the limiting distribution of Z(C4, W). (For the normal part, we can
also use Theorem 4.3, but we find it interesting to first make a direct evaluation of the condition
aé)w =0.) Towards this define:

Ui(x,y) = / W(x, s)W(y,s)ds and Ux(x,y):= Wi(x, s)yW(s, )W (y, t) ds dt.
o o (4.14)
Lemma 4.7. Suppose W is a Cy-regular graphon with t(Cy, W) > 0. Then the following hold:
(a) Spec™(Wc¢,) =0 if and only if
Ui (%, 9)? + 2W(x, ) Us(x, y) = 3t(Cy, W), a.e. (x, y) € [0, 1] (4.15)

(b) 0'(2:4,W =0 if and only if
/ Uzz(x,y) (W(x,y) — W3(x, y)) dxdy=0. (4.16)
[0,1]2
As a consequence, the limit of Z,(Cy, W) in (4.2) is degenerate if and only if (4.15) and (4.16)

hold.

Proof. Since all the vertices of the 4-cycle are symmetric, from Definition 2.2 we have the
following: The graphon W is C4-regular if

W(x, y)W(y, 2)W(z, ) W(t, x) dy dz dt = t(Cy, W) a.e. x € [0, 1]. (4.17)
[0,1]3

Moreover, since |Aut(Cy)| = 8, by Definition 2.5, the 2-point conditional graphon induced by C4
is given by

WG y) = 4U1(x, )2 +8W(x, ) Ua(x,y)  Ui(x,)* +2W(x, y)Ua(x, )
C\HY) = 2[Aut(Cy)| - 4 :

where Uj, U, are as defined in (4.14). Hence, Proposition 4.1 shows that Spec™(W¢,) =9 if and
only if (4.15) holds.

Next, since all the edges of C, are symmetric, the weak edge join of 2 copies of Cy is always
isomorphic to graph F; in Figure 5(a). Similarly, the strong edge join of 2 copies of Cy is always
isomorphic to graph F, in Figure 5(b).

Therefore, using |[E*(C4)| = 8 and |Aut(Cy)| = 8 in (2.26), we find that 034,W simplifies to

(4.18)

1
Ué;,w =3 (t(F1, W) — t(F, W))
1
= 3 ( Wi(x, y) U22 (x,y)dxdy — / W2 (x, ¥) Uzz(x, y) dx dy) . (4.19)
[0,1]2 [0,1]2
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(a) (b)
F1 F2

Figure 5. (a) The weak and (b) the strong edge join of two copies of Cy4.

Hence,
O‘é‘bw =0 < /[ . Uzz(x, ¥) (W(x,y) — W3(x, y)) dx dy, (4.20)
0,1

which completes the proof. 0

The following theorem shows that (if we ignore the trivial cases in Remark 2.10), whenever W
is Cy4-regular, the limiting distribution of Z,,(Cy4, W) is always non-degenerate. Hence, for H = Cy,
Theorem 2.9(1) or (2) will give a non-degenerate limit. By Lemma 4.7, Theorem 4.8 is equivalent
to the claim that whenever W is Cy-regular, (4.15) and (4.16) cannot occur simultaneously. The
proof of Theorem 4.8 is given in Section 7.

Theorem 4.8. Suppose W is a Cy-regular graphon with t(Cy, W) > 0 and W is not identically 1 a.e.
Then, the limit of Z,,(C4, W) in (4.2) is non-degenerate.

Non-Degeneracy of the Limit for the 2-Star: As in Lemma 4.7, we first derive conditions which are
equivalent to degeneracy of the two components of the limiting distribution of Z, (K 2, W).

Lemma 4.9. Suppose W is a K »-regular graphon with t(K 2, W) > 0. Then the following hold:

(a) Spec™(Wk,,) =9 if and only if
W(x,y) (dw(x) + dw(y)) + U(x, ) =3 / B (2)dz, ae (x,y)€[0,1]%  (4.21)

where Uy (x, y) is as defined in (4.14).
(b) 01%12,W =0 if and only if

/ {dw(x)dw(y) + dw(x)z} W(x, y)(1 — W(x, y)) dx dy =0. (4.22)
As a consequence, the limit of Z,(Ky 2, W) in (4.2) is degenerate if and only if (4.21) and (4.22)
hold.
Proof. From (3.14) the 2-point conditional graphon induced by K] ; is given by

Wk, (%, y) = % {(W(x,y) (dw(x) + dw () + Ui(x, )} . (4.23)

Furthermore, (2.21) yields dWK12 = gt(Kl,z, W)= % fol dw(x)? dx. Hence, Proposition 4.1 shows

that Spec™ (Wk,,) = @ if and only if (4.21) holds.
Furthermore, recalling (3.13) we have,

Ry w =2 [t (Kiz, W) + £(P3, W) — (K5, W) — £ (P, W)] (4.24)
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where the graphs Kj 3, K" 3> P3 and P;' are as shown in Figure 4. By evaluating the densities in
(4.24), we obtain

Ry yw =2 / {dw(@)dw () + dw(x)*} W(x,»)(1 — W(x,y)) dxdy. (4.25)

This shows that alzq ,w=0 equivalent to (4.22). ]

The following theorem is the counterpart of Theorem 4.8 for K; ; and shows that for H = K »,
and Theorem 2.9(1) or (2) will give a non-degenerate limit. By Lemma 4.7, Theorem 4.10 is equiv-
alent to the claim that whenever W is K »-regular, (4.21) and (4.22) cannot occur simultaneously.
The proof of Theorem 4.10 is given in Section 8.

Theorem 4.10. Suppose W is a K »-regular graphon with t(K; 2, W) > 0 and W is not identically
1 a.e. Then, the limit of Z,(C4, W) in (4.2) is non-degenerate.

5. Proof of Theorem 2.9

Fix a graphon W € W)y and a non-empty simple graph H = (V(H), E(H)) with vertices labelled
V(H)={1,2,...,|V(H)|} and recall the definition of X,,(H, W) from (1.1). To express X,,(H, W)
as a generalised U-statistic note that

Xﬂ(H) W) = Z f(Uil) T Ui\V(H)\’ Yiliz) R Yi\V(H)\—lilV(H)\) (51)

I<iy<--<ijym) <n

where ¥y = 9u({1,2,...,|V(H)|}) and

fWUL- Uy Yz YvapcyvaD = Y, [ WY WU, U}, (52)
H' €%y (a,b)eEH)
This is exactly in the framework of generalised U-statistics considered in [22]. Therefore, we

can now orthogonally expand the function f as a sum over subgraphs of the complete graph as
explained in the section below.

5.1. Orthogonal Decomposition of Generalized U-Statistics

We recall some notations and definitions from [22]. Suppose {U;: 1 <i<n}and {Y;;: 1 <i<j<
n} are i.i.d. sequences of U[0, 1] random variables. Denote by K,, the complete graph on the set
of vertices {1,2,...,n} and let G= (V(G), E(G)) be a subgraph of K,,. Let F¢ be the o-algebra
generated by the collections {Uj}icv(c) and {Yij}ijer(c) and let L*(G) = L*(Fg) be the space of all
square integrable random variables that are functions of {U; :i € V(G)} and {Yj; : ij € E(G)}. Now,
consider the following subspace of L*(G):

Mg := {Z e L*(G):E[ZV] =0 for every V e L*(H) such that H C G}. (5.3)
(For the empty graph, My is the space of all constants.) Equivalently, Z € Mg if and only if Z €
L*(G) and
E[Z|X; Yij:ie V(H),(i,j) € EH)] =0, forallHCG. (5.4)
Then, we have the orthogonal decomposition [22, Lemma 1]
L1X(G) = P M, (5.5)
HCG

that is, L2(G) is the orthogonal direct sum of My for all subgraphs H C G. This allows us to
decompose any function in L?(G) as the sum of its projections onto My for H C G. For any closed
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subspace M of L?(K,,), denote the orthogonal projection onto M by Py;. Then, in particular, for f
as in (5.2), we have the decomposition

=Y fu (5.6)

HCG

where fiy = Pp,,f is the orthogonal projection of f onto Mp. Further, for 1 <s < |V(H)|, define

fo= > fu (5.7)

HCG:|V(H)|=s

The smallest positive d such that f(4) # 0 is called the principal degree of f. The asymptotic dis-
tribution of X,,(H, W) depends on the principal degree of f and the geometry of the subgraphs
which appear in its decomposition.

For any graph G C K, the orthogonal projection onto L*(G) = L*(F;) equals the conditional
expectation E(- | Fg), i.e.,

Moreover, by (5.5), we have
P =Y Puy. (5.9)
HCG

The equations (5.8)-(5.9) enable us to express any Py, as a linear combination of conditional
expectations. We will do this explicitly for the simplest cases in lemmas below.

5.2. Proof of Theorem 2.9(1)

Recall the definition of the function f from (5.2) and consider its decomposition as in (5.6). Then
(5.7) for s =1 gives,

[V(H)|

fo=Y_ faw (5.10)

a=1

where K{g) is the graph with the single vertex a and fk,, is the projection of f onto the space Mk,
for 1 <a <|V(H)|. We will calculate fk,, using the following lemma, which we state for general
functions F.

Lemma 5.1. For 1 <a<|V(H)|, and any F € L%, the projection of F onto the space Mg, is

given by
Fk, =E [F| U] — E[F]. (5.11)
Proof. By (5.9) and (5.8),
Fi, = Pug, F = Prax,,F — PayF = E[F| Ug] — E[F). (5.12D)
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Applying Lemma 5.1 to f defined in (5.2), we obtain

fiw= D E| [] 1{Ye= WU, U} | U, | —E[f]
He%y  LboeEH)

=> E| [[ W@»U)|Ua|~Elf]

He9y LoeEsH)

= Z t.(Uy, H', W) — E[f], (5.13)

H/GgH

where the last step follows from the definition of the 1-point conditional homomorphism density
function (recall Definition 2.1). Then from (5.10),

[V(H)|

fo=>_ | D tuUsH,W)-E[f]]. (5.14)

a=1 H/E%H
We now proceed to compute Var f1).
For this, we need the following combinatorial identity.

Lemma 5.2. For the vertex join operation B, as in Definition 2.7 the following holds:

|G |2 Z t H@H,W =|V(H)? Z t HI@HZ,W . (5.15)
a,b 1,1

1<a,b<|V(H)| Hi,Hye%y
Proof. For any permutation ¢:V(H)— V(H), we define the permuted graph
¢(H) == (p(V(H)), ¢(E(H))), where ¢(V(H))={¢(a):1<a<|V(H)]} and ¢(EH))=
{(¢(a), #(b)) : (a,b) € E(H)}.
First, fix (a, b) € V(H)? and consider two permutations, ¢, : V(H) — V(H) and ¢y, : V(H) —
V(H) such that ¢,(a) = ¢p(b) = 1. Then

Y i mPmw|= Y Y | s P W
a,b 1,1

1<a,b<|V(H)| H1,H,€%y 1<a,b<|V(H)| H|,Hy€¥%y

= Z Z tHl@Hz,W
1,1

1<a,b<|V(H)| H1,H2€%n

=VE)P Y t|H@PH. W], (5.16)
1,1

H,H,e%y

where the second equality follows, since the map (Hy, Hz) — (¢.(H1), ¢p(H2)) is a bijection from
%ﬁ to %ﬁ, foralll1 <a,b<|V(H)|.

Next, fix Hy, H, € ¢y. Then consider isomorphisms ¢y, ¢, : V(H) — V(H) such that ¢ (H;) =
H and ¢,(H;) = H. Thus,
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> > tng?Hz,W:Z o t|lH f BHwW

Hi,Hye9y 1<a,b<|V(H)| Hy,Hye%y 1<a,b<|V(H)| ¢1(a),p2(b)

= 3 > tHg?H,W

Hy,Hye%y 1<a,b<|V(H)|

= |Gy |? Z tHEBH,W. (5.17)
a,b

1<a,b<|V(H)|

Here, the second equality follows since (a, b) — (¢1(a), ¢2(b)) is a bijection from V(H )2 to V(H)?.
Combining (5.16) and (5.17) the identity in (5.15) follows. U

Lemma 5.3.

Var [fi)] = | V(H)||%u |*

Z t H@H,W — t(H, W)?

VP
<a,b<|V(H)| ab

[V (IV(H)| - 1!

- t | HEDH, W | — |VE)PHH, W)?
AP > &b |V(H)*t(H, W)
1<a,b<|V(H)| a,b
(5.18)
Proof. Recalling (5.14) gives, since the terms in the outer sum there are independent,
[V(H)|
Var[fpl= Y Var| D t(Up H, W) | . (5.19)
a=1 H/EgH
Consider the term corresponding to a = 1 in the sum above. For any H;, H; € ¥y,
E [t1(Uy, H, W)t (U, Ho, W) =t | HHED Ho, W | . (5.20)
11
Hence,
Var | > n(ULH, W) |= > Cov[u(Uy Hi, W), (U, Hy, W)
H %y H,H,e%y
= > |t[mPHwW]|-tH W], (5.21)
Hi,He%y 1,1
Now, an argument similar to Lemma 5.2 shows that
Yt H, W)= ) (5, H, W), (5.22)

H/E%H H IS97%
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forallx € [0,1] and 1 <a, b <|V(H)|. Hence, (5.19) and (5.21) imply

Varlfpl = IVE)| > | t|Hi@ Ho W | —tH, W)* |, (5.23)
Hy,H,e%y 1,1
and the result follows by Lemma 5.2, using (2.7) for the second equality. U

Note that Ef(;) = 0 by (5.7). Hence, Var f(;) = 0 if and only if f(;) = 0 a.s.
Lemma 5.4. Var f(;) = 0 if and only if W is H-regular.
Proof. Lemma 5.3 shows that Var(f(;)] is zero if and only if

1

t| HEAD, W | =t(H, w)>. 5.24

VP > &y (H, W) (5.24)
1<a,b<|V(H)| a,b

Now observe,

o t|H@pHW]|= > /ta(x,H,W)tb(x,H,W)dx
a,b

1<a,b<|V(H)| 1<a,b<|V(H)|
2
= / >t H,W) | dx. (5.25)
1<a<|V(H)|
Thus (5.24) becomes, using also (2.11),
2 2
/ >t H W) | dx— f Y toHW)| dx=0, (5.26)
1=<a<|V(H)| 1<a<|V(H)|
which is equivalent to Var[A(U)] = 0, where we define
A= Yt H W) (5.27)

1<a<|V(H)|

and let U ~ Uniform [0, 1]. Hence, Var(f(;)] =0 if and only if A(U) is constant a.s. Therefore,
since EA(U) = |V(H)|t(H, W), we see that Var[f;;)] = 0 if and only if

1
ViH Z t,(x, H, W) = t(H, W) for almost every x € [0, 1]. (5.28)
VDI 1<a<|V(H)|
By Definition 2.2, (5.28) says that W is H-regular. U

Proof of Theorem 2.9(1). Lemma 5.4 shows that if W is not H-regular, then the principal degree
of f is 1. Thus, [22, Theorem 1] yields

Xo(H, W) — S0l ypy oy

[Aut(H)| 2
— N(0, t°), (5.29)
nl VD=3
where using also (5.18) and (2.24),
1
2 |Var[f(1)] = rf,)w. (5.30)

T =
[VE) (V(H)| - D!
This completes the proof of Theorem 2.9(1) when W is not H-regular.
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In fact, (5.29)-(5.30) hold also when W is H-regular, with f;;) =0 and 72 = 0. Although this
case is not included in the statement of [22, Theorem 1], it follows by its proof, as a consequence
of [22, Lemma 2]; see also [20, Corollary 11.36]. Consequently, Theorem 2.9(1) holds for any
W eW,. U

5.3. Proof of Theorem 2.9(2)

In this case, W is H-regular, hence f(;) = 0 by Lemma 5.4. Therefore, we consider f(,) (recall (5.7)),
which can be written as

fo= ) (fEW} + fK{a,b}) , (5.31)

1=a<b=|V(H)|

where E, ) = ({a, b}, ) is the graph with two vertices a and b and no edges, and K, ;) =
({a, b}, {(a, b)}) is the complete graph with vertices a and b. As for f(1), we have Ef;) =0, and
thus Var fo) =0 <= fo) =0as.

If Var f) # 0, then f has principal degree 2, and we can apply [22, Theorem 2], which shows

that
() v
Xi’l(H> W) - t(H, W)
|Aut(H)| D )
AIVE)-1 - JZ—'—)ZI:\)‘(ZA -1), (5.32)
€

where Z and {Z) }, c o are independent standard Gaussians,

2

N 2
7 T2V - 2)!2E[f1<<1,21] (5.33)

and A is the multiset of (non-zero) eigenvalues of a certain integral operator T.

Moreover, if Var f;) =0, so fz) =0 a.s., then the conclusion of [22, Theorem 2] still holds
(with a trivial limit 0), again as a consequence of [22, Lemma 2]. (See also the more general
[20, Theorem 11.35].) Hence, (5.32) holds in any case.

It remains to show that o2 = crf])w in (2.26), and that A equals Spec™ (Wp); then (5.32) yields
(2.25). We begin by finding fg,, ,, and f,

ab}*
Lemma 5.5. For 1 <a < b <|V(H)| and any F € L?, the projection of f onto the space Mg, is
given by

Fgiyp = E[F| Uy, Uy] — EIF| Uy] — ELF | Uy + ELF]. (5.34)
Proof. By (5.9),

Fhiay = PME{a,h)F = Pragg, 0 F = Py, F — Py b}F — Py F

{
and the result follows by (5.8). g

Lemma 5.6. For 1 <a <b <|V(H)| and any F € L?, the projection of f onto the space Mk, is
given by

FK(u,h) =E[F| U, Uy, Yl —E [F| Uy, Up] . (5.36)
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Proof. The subgraphs of K, ) are Ey, 1y, K{a), K{) and ¥, and thus (5.9) yields

Fiopy = PMK(a,b)F = PLZ(K{,LH)F - PME[a,b)F - PMKMF - PMK“,]F — Py, F

= PLZ(K{a,b))F - PLZ(E{u,b))F’ (537)
and the result follows by (5.8). O

Specialising to f defined in (5.2), we found fK{a} =E[f | Us] — Ef in (5.13). Furthermore, the
same argument yields, recalling (2.9) and (4.4),

Elf | Uss Upl = Y tap(Ua, Up, H', W) (5.38)
H/ES?H
and
Elf | Us Up, Yol = ) 15, (Uss Up Hs W)Zyyr 0 (Ya Uas Up), (5.39)
H/E%H
where
WYy < W(Us, Up)}  if (a,b) € E(H),
ZH/,{a,b}(Y“h’ Ua, Up) := { ) (5.40)
1 otherwise.
Let also
W(x,y) if(a,b) € E(H'),
WH/,{a)b}(x,y) = { (5.41)

1 otherwise,
and 9y o4y := (H' € 9y : (a, b) € E(H')}. Then, (5.36), (5.38) and (5.39) yield, using also (4.5),
feun = £, (Un Uy H, W) (ZH/’{a’b}(Yab, U Up) = Wiy 0y U Uh)>
H/EgH
= Y U U H WUV < WUL Ul = WU Up)). (542)
HlegH,(a’b}

To compute the variance of fk,,,, we recall the notions of weak and strong edge joins

from Definition 2.7 and introduce a few definitions. Let (Vg),:= {(a,b) € V(H)?:a = b}. For
(a) b): (C7 d) (S (VH)2 deﬁne

g(H1 o HZ,W)=t<H1 o Hz,W>1{(a,b)EE+(H1)and(c,d)eE+(HZ)} (5.43)
(a,b),(c,d) (a,b),(c,d)

and similarly,

t|H @ HW|=t|H € H,W|1{ab)eE (H)and(cd) eE'(H)).
(a,b),(c,d) (a,b),(c,d)
(5.44)

Then we have the following identities, similar to Lemma 5.2:

Lemma 5.7. Let (Vi), be as defined above, and let Ky := [(Vi)21? = |VH)|?(|V(H)| — 1)%. Then

Ky Z ;(Hl(zg 2)H2,W>=|f¢H|2 Z £<H o H,W). (5.45)
1,2),(1,

HyHye @b Dy, ~ (@D
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and, similarly,

Ky Y t|lH @ HowW|=1gul? > t|H @ HW]|. (546)

Hi,H)e%y (1,2),(1,2) (a,b),(c.d)e(VH)2 (a,b),(c.d)
Proof. We will first show that
> > <H1 6 Hy, W) =Ky Y t <H1 © Hy, W) . (547)
(a,b),(c,d) (1,2),(1,2)
(a,b),(c.;d)e(Vy)2 H,Hy€9H H1,Hye%y

For this consider permutations ¢,p), @cq): V(H) = V(H) such that ¢ (a)=1 and
O(ap)(b) =2 and ¢ 4)(c) = 1 and ¢ 4)(d) = 2. Then

H, © H,, (H) o (Hy), W>
DS (l(a)b),(c)d) ) ) D (%) ), 8, Health

(a,b),(c;d)e(Vy)2 H,Hy€9H (VH)2x Vi G2

_KHZ <

H;, W> , (5.48)
€¢2

(1, 2) (1,2)

where the last equality follows from the observation that (Hy, H) — (¢(4,5)(H1), @(c,q)(H2)) is an
bijection from gﬁ to %31, for all (a, b), (¢, d) € (Vg),.

Now by considering isomorphisms ¢, and ¢, such that ¢;(H;) = H and ¢»(H,) = H, a similar
argument as above shows that

> > (HI S Hz>W)=I%H|2 > z(H o H,W).

(@b).(ed)e(Vir), Hi,Hoe%n (@b(ed) (@b (ed)e(Vin2 (@b(ed)

(5.49)
Combining (5.47) and (5.49) yields the identity (5.45). The identity (5.46) follows by the same
proof with only notational differences. u

With the above definitions and identities we now proceed to compute the variance of fk;, ,,.

Lemma 5.8. We have

Var [f, ] = _ (vl - 27 > t(H ) H,W)—t H @ =HW

|Aut(H) | (a,b),(c,d)€E+ (H) (a,b),(c,d) (a,b),(c,d)
(5.50)

Proof. We specialise (5.42) to (a, b) = (1, 2) and write for convenience
h(U1> U23 Hl) HZ) W) = tl_’z(Ub UZ) H1> W) tl_,Z(Ul’ UZ) H23 W) (551)
This yields,

)= Y. E[hU,UsH, Hy W(UY2 < WU, U} - W(UL U)’ ]
Hl,HzegH)(l,z}

= Z E[h(UI’ U2) Hl) HZ) W)W(UI) UZ)(I - W(Ula Uz))]
Hl,Hzeng,“,z}

= > t<H1 o HZ,W)—t H @ Hw]|]|. (5.52)
(1,2),(1,2)

Hi,Hy€91,11,2) (1,2),(1,2)
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Now, using the notations introduced in (5.43) and (5.44), the identity (5.52) can be written as

]E[f;%“,Z]]= Z g(Hl S H2,W>—£ H, @ Hy, W

H,Hye%y (1.2),(1.2) (1,2),(1,2)

(IV(H)| —2)12
SHEE oy (e e mw)-tln @ omw

(@b)(ede(Vin, (@b.(ed) (@b).(cd)

V(H)| —2)!1?
=M > t(H o H,W)—t H & zawl|],
|Aut(H)| (@b).(c.d)
(a,b),(c,d)eEt(H) (a,b),(c,d)

(5.53)
where the second equality uses the identities from Lemma 5.7 and (2.7), and the third
equality follows from the definitions in (5.43) and (5.44). This yields the result (5.50), since
EfK(a,b} =0. O

Lemma 5.8 and (5.33) show that

o’ =0}y (5.54)

as defined in (2.26).
Next, we compute the Hilbert-Schmidt operator T as defined in [22, Theorem 2]. Note first
that in our case this operator is defined on the space M. Recall that M,,, C L*(K{1y), where

LZ(K{l}) is the space of all square integrable random variables of the form g(U;). We may identify
LZ(K{l }) and L2[0, 1], and then (5.5) yields the orthogonal decomposition

L*[0, 1] = Mx,,, ) My, (5.55)
where My is the one-dimensional space of all constants. Hence, Mgy, is identified with the

subspace of 12[0, 1] orthogonal to constants, i.e., Mk, = {g € 12[0,1] fo g=0}
Then, taking g, h € Mk, C L2[0, 1], the definitions given in [22, Theorem 2] yield

(Tg, h) = E [fg(U)h(U2)]. (5.56)

1
2(|V(H)| —2)!
Recall the operator Ty, defined on 12[0,1] by (2.15) and (2.19).

Lemma 5.9. If W is H-regular, then the operator T on Mk, defined in (5.56) equals the operator
Twy, restricted to the space Mk,,. Moreover, then the multiset of non-zero eigenvalues of T is equal
to Spec™ (Wpq).

Proof. We may replace f by E[f | U;, U,] in (5.56), which by (5.38) yields

1
(Tg: 1) = 3=y ELEV | Un: Ualg(UnA(U)]
! /
= SV =i | 2 (U Un H. Wig(UDhva)
H €%y
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Denote by Sjy(x), the set of all |V(H)|! permutations of V(H). Then it is easy to observe that

Y taloyd(H), W)= [Aut(H)| Y ta(xy H, W), (5.58)
PES V() H e¥y
Also,
Yty eH)L, W)= Y Yo tialny o(H), W)
ES V) 1<a#b<|V(H)| ¢€S v

$(a)=1,p(b)=2

= > Y ey H W)

1<a#b<|V(H)| ¢ESvm)
¢(a)=1¢(b)=2

= Z Z tu,h(x)y7 H, W)

1<a#b<|V(H)| $ESvmy
#(a)=1,6(b)=2

=(VH)I-2)! D taplxyH W) (5.59)
1<a#b<|V(H)|

Combining (5.58) and (5.59), we have, recalling (2.19),

1 1
—_— tia(oy, H, W)= —— tap(%, v, H, W) = Wi(x, ).
v -2 2 B W= g A el W)= Wi
H ey I<azb<|V(H)|
(5.60)
Consequently, combining (5.57), (5.60) and (2.15), we obtain
(Tg, h) = (Twyg, h), g he Mg, (5.61)
Furthermore, since W is H-regular, Wy is degree regular and (2.21) shows that
Twyl= dWH =dw, - 1. (5.62)

Hence, Ty,, maps the space My of constant functions into itself. By (5.55), M, is the orthogonal
complement of My, and thus, since Ty, is a symmetric operator, Ty, also maps Mk,, into itself.
Hence, both T and Tw, map Mk, into itself, and thus (5.61) shows that T = Tw,, on Mk,
Finally, recall that A in (5.32) is the multiset of non-zero eigenvalues of T, which we just have
shown equals the multiset of eigenvalues of T, on Mk;,,. Moreover, on My, Tw,, has the sin-
gle eigenvalue dy,, by (5.62). Hence, Spec(Wy) = A U {dy}, and thus Spec™(Wy) = A by the
definition after (2.21). O

Proof of Theorem 2.9(2). The result now follows by (5.32), (5.54), and Lemma 5.9. O

5.4. Higher Order Limits

In the case where the limit in Theorem 2.9(2) is degenerate (as in Example 4.6), the function
f in (5.2) has principal degree d > 2. In this case, [22, Theorem 3] shows that (X,(H, W) —
EX,(H, W))/n!V#)I=d/2 has a (non-degenerate) limit distribution, which can be expressed as
a polynomial of degree d in (possibly infinitely many) independent standard Gaussian vari-
ables. The expression in [22, Theorem 3] uses Wick products of Gaussian variables; these can be
expressed using Hermite polynomials, see [20, Theorems 3.19 and 3.21]. One simple illustration
(with d = 4) is given in Example 4.6. This leads to the following natural open questions:

Problem 5.10. For which graphs H can such higher order limits (i.e., with d > 3) occur?
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Problem 5.11. Is it possible to have arbitrarily high-order principal degree d?

6. Proof of Theorem 4.3
It is obvious from (4.6) that if W is random-free, then aé,w = 0. For the converse, suppose that

W is not random-free. Then the set P:= {(x, y) € [0, 1]%:0 < W(x, y) < 1} has |P| > 0, where | - |
denotes the Lebesgue measure. Let (xo, ¥o) be a Lebesgue point of P. Then we can find intervals
I and ] containing xo and yp, respectively, such that [P (I X J)| > (1 —¢&)|I x J| (¢ >0 to be
chosen later). Define,

P, := {ye]: (%, y) eP} and I':= {x€L:|P| > 1 -8}, (6.1)

where § > 0 will be chosen later. Then,

wmxms/Aﬂmuu;ﬁﬂauuzfmw—/me
I I i i

=mm—f/dwx
1Jp,

=1 =PI x ]|
<el|l x ]| =c¢|lll]]. (6.2)
This implies,
£
II\I'| < §|I|. (6.3)
Similarly, defining P’ := {x€I:(x,y) € Pyand ] := {y €] :|P’| > (1 — §)|I|} we have,
&
U\F|§§UL (6.4)

Next, fix a < b € V(H) such that (a, b) € E(H). Suppose H has bipartition (A, B) and without
loss of generality consider a € A and b € B. Then from (4.6) it follows that,

oé)w > CH/[ - t;b(x,y, H, W)ZW(x,y)(l — W(x,y)) dx dy. (6.5)
0,1
Define,
= {Z—(u,b) = (21, »Za—1>Za+1> "+ > Zb—1> 241> " ,Z|V(H)|)
1z, elifve A\{a} andzve]ifveB\{b}}. (6.6)
and
b @y HW)= [ Wz [[ Wz [ Wez). 67)
reNp(a)\{b} seNg (b)\{a} (rs)eE(H\{a,b})
Note that
/ t 3 (Z—(ap) %y, H, W) l_[ dzy =t_,(x,y, H, W). (6.8)
[0.1]/VeEI=2 rélab) ’
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It is easy to see that |S| = [I|AI=1|]|IBI=1 Now, fix (x, y) € I' x J'. Then

QO = Hzf(a’b) eS: ta_,b(Z*(“’h)’ X ) H, W) = OH < T1 + T2 + TS: (69)
where

Ty := Z |{z7(a,h) eS:W(x,z) = OH > (6.10)

reNp(a)\ (b}
T, := Z |{Z—(a,b) €S: W()/, Zs) = 0} > (6.11)

seNp(b)\{a}
T := Y He—tar €S: Wiz z) =0}]. (6.12)

(r,s)€E(H\{a,b})

Let us now look at each term separately. We begin with T;. Note that for r € Ny(a)\{b},
{z—(ab) €S W(x, 2:) =0} =I{zr €] : W(x, z,) = 0} [1]"41717]P1=2
<\ Py 1)A171 P2
<Aty (6.13)
where the last inequality follows from our assumption x € I’ and (6.1). This implies,
Ty < (dg = D8Iy E, (6.14)
where d,; is the degree of the vertex a in H. Similarly,
Ty < (dy — D3| P (6.15)

Finally, consider T3. Suppose (r, s) € E(H\{a, b}) and assume without loss of generality r € A and
s € B. Then,

{z—(ap) €S: Wiz, z) =0}| = [{zr € Lz €] : W2y, z5) = O} |I!4172 7] 112
<|a@xp\ (Y@ xn)|mA=2y s
<&l x J)|I|HA=2 P2
= e|rAI=t P (6.16)
This implies,
T3 < (IE(H)| — dq — djy + De| 14171 P17 (6.17)
Combining (6.14), (6.15), and (6.17) with (6.9) gives,
Qo < [(da +dy —2) 8+ (E(H) — do — dj, + 1) &] 1|47 17 P11
<2 [E(H)| (8 + &)1/~ 1P, (6.18)
Choosing § = 10¢ and ¢ < m gives [E(H)|(8 + )|/ AI=1 | 1BI=1 < |1|1AI=1 7| 1BI=1 Thus,

Qo < |I]AI=1 | 1BI=L, (6.19)
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and hence, |S\ Q| > 0. This implies, recalling (6.8),

ta_’b(z,(a,b), X, Vs H, W) l_[ dz,

t;b(x,)/, H) W) = /
ré{a,b}

[0,1]1VGDI-2

Z/ t;h(z_(a,b),x,y, H, W) 1_[ dz, > 0, (6.20)
5\ rélab)

since t;b(z—(u,b)’ x, ¥, H, W) > 0 on S\ Qy. Recall that (x, y) € I’ x J' was chosen arbitrarily; hence
(6.20) is true for all (x, y) € I x J'. Further observe that

rxrefeN@xnfUlaxny(pNaxn)}, (621)

implying

PO (@ xT)

=117 =[x D\ (P axD))|

> ') — elIl|]] (by (6.3) and (6.4))

> ((1 -3y —e) )

= (0.81 — &) |I||J] > 0.

Therefore, recalling (6.5)
Ohw > cH f ey H WP W(x, p)(1 = Wi, ) dx dy
PO(r'x ])

>0, (6.22)

since by (6.20) and the definition of the set P, t;b(x, ¥, H, W2 W(x, )1 — W(x,y)) >0 for all
(x,y) € P( (I’ x J'). This shows that if O'IZ{’W =0 then W is random-free.

We conclude this section with an example (which generalises the construction in [17, Figure 1]
for triangles to general cliques) illustrating that Theorem 4.3 does not hold if the bipartite
assumption is dropped (as mentioned in Remark 4.4).

Example 6.1. Suppose H = K, is the r-clique, for r > 3. Partition [0, 1] into 2r intervals of measure
% each. Denote the first r sets by I, I, . . ., I, and the next r sets by J1, /2, . . . , J;. Consider the
following graphon:

—_

for (x,y) € (I; x Iy) such that 1 <a#b<r,

—_

for (x,y) € (Jo x Jy) suchthat1 <a#b<r,
Wi(x,y)= (6.23)

for (x,y) € (I x 1) U(h x L),

=

0 otherwise.

In other words, W is obtained by taking 2 disjoint graphon representations of K, (which
corresponds to the complete r-partite graphon) inside [0, %]2 and [%, 113, respectively, and con-

necting the edges between the sets I; and J; with probability % Note that t(K,, W) > 0. Denote
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R:= (I1 x 1)U (1 x I). By (4.6),

CK, — —
aé’w = Z / ta)b(x,y, K, W)tc)d(x,y, K, W) dx dy. (6.24)
1<a#b<r R
1<a#b<r

Next, fix 1 <a # b <r.If (x, y) € R, then, using the notation (6.7),
t;b(Z—(a,b), Xy, K, W) =0, (6.25)

for all z_(,p €10, 1]~2. Hence, for every (x,y) €R, we have t_,(x,y,H, W)=0 by (6.8).
Consequently, it follows from (6.24) that ofl’w =0. (In fact, ij,...,i, can form an r-clique in
G(n, W) only if Uj, . . ., Uj, all belong to either | J, I or |, Jas hence, the value of W on I} x J;
does not matter for X,,(K,, W).) Moreover, (6.25) also implies that t(x, K,, W) is constant a.e., that
is, W is K,-regular.

7. Proof of Theorem 4.8

In the proof we will consider many equations or other relations that hold a.e. in [0, 1] or [0, 112
For this we use the notation that, for example, S(415) denotes the set of all (x, y) € [0, 1]2 such
that the equation in (4.15) holds, and 3(4_15) denotes {x € [0, 1] : (x, y) € 8(4.15) fora.e.y€[0,1]}.
We use this notation only for sets S(.) with full measure in [0, 1]%; note that then, by a standard
application of Fubini’s theorem, S.) has full measure in [0, 1], that is, x € S, for a.e. x € [0, 1].
Similarly, for relations with a single variable, we let, for example, 3(7‘3) be the set of x € [0, 1] such

that the inequality in (7.3) holds.
We tacitly assume x, y, z € [0, 1] throughout the proof. However, for notational convenience,

we may write integrals with limits that might be outside [0, 1]; | ab should always be interpreted as

f[a,b]ﬂ[O,l] '
For all x € [0, 1], define W, : [0,1] — [0, 1] as

We(y) := W(x, ). (7.1)

We regard W, as an element of L?[0, 1]. Note that this means, in particular, that W, = W, means
W(x,z) = W(y,z) for a.e. z. Since W(x, y) is measurable and bounded, it is well known that
the mapping x > W, is a measurable, and (Bochner) integrable, map [0, 1] — L2[0, 1], see [15,
Lemma II1.11.16(b)]. The Lebesgue differentiation theorem holds for Bochner integrable Banach
space value functions, see [6, §5.V]; hence, a.e. x € [0, 1] is a Lebesgue point of x > W,. We will
use || - ||2 and (-, -) for the norm and inner product in L[0, 1].

We will denote t:= #(Cy, W). Suppose (to obtain a contradiction) that t > 0, W # 1, but that
the limit in (4.2) is degenerate, that is, Spec™ (W¢,) =¥ and O‘a_w =0. Then (4.15) and (4.16)
both hold by Lemma 4.7, and W is random-free by Theorem 4.3, that is,

Wi(x, y) €{0,1}, a.e. x,y. (7.2)
We now separate the proof of the theorem into a sequence of claims.
Claim 7.1. For a.e. x € [0, 1] and Wy, as defined in (7.1),
[Wyll2 < (36)Y/4, (7.3)
Proof. By (4.14) and (4.15), for a.e. (x, y),
(Wa, W)) = Ui (x, ) < (30)'/2. (7.4)
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In particular, if x € 3(7‘4), then for every § > 0,

1 x+4 1 x+8
Wy — / W, dy)=— / (Wy, W) dy < (30)'/2. (7.5)
28 Jy—s 28 Jy—s
If, furthermore, x is a Lebesgue point of x — W), then it follows by letting § — 0 that || Wx||§ <
(31)1/2. O
Claim 7.2. For a.e. (x, y) € [0, 112,
W(x,y) =0 = W, =W, inL2[0, 1] and [ Wxl2 = | W, ]l = 30"/, (7.6)
Proof. By (4.14) and (4.15), if (x, y) € S(4.15) and W(x, y) = 0, then
(W, Wy) = Un(x,y) = (302, (7.7)

If, furthermore, x, y € S(7.3), then the Cauchy-Schwarz inequality yields
(3012 = (W, Wy) < [IWall2 Wy ll2 < (3)'/2. (78)

Hence, we must have equalities, and thus [|Wy|l2 = [|W,|l2 = (3t)1/4; moreover, equality in the
Cauchy-Schwarz inequality implies W, = W,,. U

Claim 7.3. We have (3t)Y/2 < 1.
Proof. Let Z:= {(x,y): W(x,y) =0} and Z':= ZN S(7¢). By (7.2) and the assumption that W
is not a.e. 1, we have |Z'| =|Z| > 0. For x € [0, 1], let Z', := {y:(x, y) € Z'}. By Fubini’s theorem,
fol |Z'| dx = |Z'| > 0, and thus there exists x such that |Z’| > 0. Fix one such x. Then there exists
y€Zy, and thus (x,y) € Z' =Z N S(76). Consequently, (7.6) applies and yields || Wl = (31)1/4.
Furthermore, W(x, y) =0 for all y € Z',, and thus
1
602 =Wl = [ Wy dy<1- 120 <1, 79)
0
]
Claim 7.4. Fora.e. x € [0, 1],
IWillz = (30)Y* < 1. (7.10)

Proof. Suppose x € 3(7‘2) N S(7.3)- Then, using Claim 7.3,

1
I{y:W(x,y)>0}I=I{y:W(x,y)=1}I=/0 Wi yP dy=IWel2<(G0Y2 <1. (711)

If, furthermore, x € 3(7.6), this implies that there exists y such that W(x, y) =0 and (x, y) € S¢7.),
and thus, in particular, || Wy, = (31)1/4. The result (7.10) follows by Claim 7.3. O

Claim 7.5. For a.e. (x, y),

W(x,y) =1 = Us(x,y) > 0. (7.12)
Proof. Let
Ly := {(x,y) € (0, 1)? : y is a Lebegue point of y = W(x, y)}. (7.13)
Then L, is measurable. To see this observe that
— 2.1 —
Li={ye© D lim futxy =0}, (7.14)
where
n 1/n
fulwy)= 5 / WGy = W) di (7.15)
—1/n
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Since {f, :n > 1} is a sequence of measurable functions, their limsup is also measurable, which
implies L; is measurable. Also, for any given x, we have (x, y) € L; for a.e. y. Hence, by Fubini’s
theorem, we have |L;| = 1, that is, a.e. (x, y) € L;. Now, assume that (x, y) € L1, (y, x) € L; and that
(x, y) is a Lebesgue point of the set {(s, t) : W(s, t) = 1}. (In particular, W(x, y) = 1.) Let § > 0 and
letI:= (x—8,x+6)and J:= (y — &,y + 6). Then, if § is small enough,

[{se]J: W(x,s)=0} <0.1|]], (7.16)
[{tel:W(t,y)=0} <O0.1|I|, (7.17)
H(s,t) €] x I: W(s, t) =0}| <0.1/I| x |]], (7.18)

Then W (x, s)W(s, t)W(t, y) > 0 on a subset of I x ] of positive measure, and thus U,(x, y) > 0. UJ
Claim 7.6. For a.e. (x, ),
Wx,y)=1—1{W,=W,}. (7.19)
Proof. Suppose (x,y) € 8(7.19) N S4.15), and that W(x, y) = 1. Then Us(x, y) > 0 by (7.12), and
thus (4.15) yields
(Wy, Wy) = Ui(x, ) < 3D)"/2, (7.20)

If, furthermore, x € 3(7,10), it follows that W, # W,

On the other hand, if (x, y) € S(7.6) and W(x, y) =0, then W, = W, by (7.6).

In both cases, (7.19) holds, and thus, using (7.2), (7.19) holds a.e. O

Since W, = W, is an equivalence relation, there exists a partition (possibly infinite) of [0, 1] =
|| Be such that if we define a(x) for x € [0, 1] by x € By(x), then Wy =W, <= a(x) = a(y), for
all x, y € [0, 1]. Note that each B, is measurable, since x > W, is. We can write (7.19) as

W(x, y) = Ha(x) #a(y)}, for a.e. (x, y). (7.21)
Claim 7.7. For a.e. x € [0, 1],
[Bax)| =1 — (3t)1/2- (7.22)

Proof. Suppose that x € 3(7,19) N 3(7'2) N 3(7.10). Then,

1

1 1
|Ba<x>|=/ l{yeBa<x>}dy=/ l{wy:wx}dyzf (1— W(xy) dy
0 0 0

1 1
=1—/ W(x,y)dy:l—/ W(x, y)* dy=1— (3t)"/2. (7.23)
0 0 0

Since 1 — (3t)1/2 > 0 by Claim 7.4, there can only be a finite number of parts B, of measure
1 — (3t)Y/2, and by Claim 7.7, they fill up [0, 1] except for a null set. Hence, Claim 7.7 and (7.21)
imply that W is a.e. equal to a complete multipartite graphon with equal part sizes (and thus
finitely many parts). In other words, after a measure preserving transformation, W equals a.e. the
graphon Wk defined as follows, see Figure 6. Given an integer K > 1, partition the interval [0, 1]
into K intervals I1, I, . . ., Ix of equal length 1/K, and define

0 if(ey)eUS, L xI,

Wk(x, y):= (7.24)
1 otherwise.
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(0,1) (L1

(0,0) (1,0

Figure 6. The graphon Wy with K =4.

Claim 7.8. Let W be the complete multipartite graphon Wx with K > 2 parts of equal sizes 1/K.
Then (4.15) cannot hold.

Proof. Suppose Wk satisfies (4.15) a.e. Then by Claim 7.7, each part must have size 1 — (31)1/2,
that is, 1 — (3t)!/2 = 1/K, which yields

(K—1)
HCy, W) = ———. 7.25
(Co W) =5 (7.25)
On the other hand, a direct calculation shows that
(K—1D*+(K—1)

t(Cy, Wg) = Ki . (7.26)

We thus must have (Kg{i)z = (Kfl);[(Kfl) , which simplifies to
K(K —1)(2K? —8K+9) =0, (7.27)
which is impossible. (The only real roots to (7.27) are K=0and K =1.) O

Claim 7.8 gives the desired contradiction and completes the proof of Theorem 4.8.

8. Proof of Theorem 4.10

The proof is similar to that of Theorem 4.8. Here we will denote ¢:= (K, W)= [ dw(x)? dx.
Suppose that t >0, W # 1, but that Spec™ (Wk,,) =¥ and GI%IZ_W =0. Then (4.21) and (4.22)

both hold by Lemma 4.9, and W is random-free by Theorem 4.3, that is, W (x, ) € {0, 1} for a.e.
x,y €0, 1]%. Now, recalling the definition of W, from (7.1), we have the following claim, which
can be proved by arguments similar to Claims 7.1, 7.2, 7.3 and 7.4.

Claim 8.1. For a.e. (x,y) € [0, 1]%,
W(x,y) =0 = W= W, inL*[0, 1] and [| W2 = [ W,|l» = 3"/~ (8.1)

Moreover, for a.e. x € [0, 1], || Wy|l» = (30)/% < 1.

Next, we have the analogue of Claim 7.5 for the 2-star.
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Claim 8.2. For a.e. (x,y) € [0, 1]%,
W(x,y) =1 = dw(x) +dw(y) > 0. (8.2)

Proof. Similarly to the proof of Claim 7.5, for a.e. (x, y) € [0, 1]* such that W(x, y) = 1, we can
choose § > 0 small enough such that for J = (y — 8,y + ),

{se]: W(x,s) =0} <0.1|]]. (8.3)

This implies that the set {s € [0, 1] : W(x, s) > 0} has positive measure, and thus dy (x) > 0. O
Now, as in Claim 7.6, it follows that for a.e. (x, y) € [0, 1],

Wy)=1—-1{W,=W,}. (8.4)

As in the proof of Theorem 4.8, the equivalence relation W, = W, defines a possibly infinite par-
tition of [0,1] =| |, Ba. For x € [0, 1] define «(x) to be the index such that x € By(x). Then, by
definition, Wy = W), <= a(x) = a(y), which by (8.4) yields, for a.e. x € [0, 1],

W(x,y)=1 {a(x) * a(y)} . (8.5)
Again, similarly to Claim 7.7 we have for a.e. x € [0, 1],
|Byy| =1-3t. (8.6)

Note that by Claim 8.1, 1 — 3t > 0. Hence, by (8.6), there can only be a finite number of parts
By of positive measure and the remaining parts have together measure 0. Therefore, by (8.5) and
(8.6), we conclude that after a measure preserving transformation, W must be of the form W as
defined in (7.24) for some K > 1. We have excluded W=1,s0 K > 1.

Claim 8.3. Let W = Wk for some K > 2. Then (4.21) cannot hold.

Proof. Suppose W satisfies (4.15) a.e. Then by (8.6), each part must have size 1 — 3¢, that is,
1 — 3t =1/K. In other words,

K-1

t(Kip, W) = ———. 8.7
(K12, Wk) 3K (8.7)

On the other hand, since dy, (x) = % a.e.,

1 (K _ 1)2
iz Wi = [ a0 de= (5.5
0 K

Thus we must have % = (KEZI)Z , that is, K = %, which is impossible. ]

Claim 8.3 gives a contradiction and completes the proof of Theorem 4.10.
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