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graphon W : [0, 1]2 → [0, 1], a W-random graph on the set of vertices [n] := {1, 2, . . . , n}, here-
after denoted byG(n,W), is obtained by connecting the vertices i and jwith probabilityW(Ui,Uj)
independently for all 1≤ i< j≤ n, where {Ui : 1≤ i≤ n} is an i.i.d. sequence of U[0, 1] random
variables. An alternative way to achieve this sampling is to generate i.i.d. sequences {Ui : 1≤ i≤ n}
and {Yij : 1≤ i< j≤ n} of U[0, 1] random variables and then assigning the edge (i, j) whenever
{Yij ≤W(Ui,Uj)}, for 1≤ i< j≤ n. Observe that setting W =Wp ≡ p ∈ [0, 1] gives the classical
(homogeneous) Erdős–Rényi random graph model, where every edge is present independently
with constant probability p.

Counts of subgraphs encode important structural information about the geometry of a net-
work. In fact, the convergence of a sequence of finite graphs to a graphon is precisely determined
by the convergence of its subgraph densities. As a consequence, understanding the asymptotic
properties of subgraph counts in W-random graphs is a problem of central importance in graph
limit theory. To this end, given a finite graph H = (V(H), E(H)) denote by Xn(H,W) the number
of copies of H in theW-random graph G(n,W). More formally,

Xn(H,W)=
∑

1≤i1<···<i|V(H)|≤n

∑

H′
∈GH({i1,...,i|V(H)|})

∏

(is,it)∈E(H
′)

1
{

Yisit ≤W(Uis ,Uit )
}

, (1.1)

where for any set S⊆ [n], GH(S) denotes the collection of all subgraphs of the complete graph K|S|

on the vertex set S which are isomorphic to H. (We count unlabelled copies of H. Several other
authors count labelled copies, which multiplies Xn(H,W) by |Aut(H)|, cf. (2.7).) The asymptotic
distribution of Xn(H,Wp) in the Erdős–Rényi model, where W =Wp ≡ p, has been classically
studied (in general with p= p(n)) using various tools such as U-statistics [28, 29], method of
moments [30], Stein’s method [2], and martingales [18, 19], see also [21, Chapter 6], and the
precise conditions under which Xn(H,Wp) is asymptotically normal are well understood [30]. In
particular, when p ∈ (0, 1) is fixed, Xn(H,Wp) is asymptotically normal for any finite graphH that
is non-empty, i.e., has at least one edge.

In this paper, we study the asymptotic distribution of Xn(H,W) for general graphonsW. This
problem has received significant attention recently, beginning with the work of Féray, Méliot,
and Nikeghbali [16], where the asymptotic normality for homomorphism densities in general
W-random graphs was derived using the framework of mod-Gaussian convergence. Using this
machinery the authors also obtained moderate deviation principles and local limit theorems for
the homomorphism densities in this regime. Very recently, using Stein’s method, rates of con-
vergence to normality (Berry–Esseen type bounds) have been derived as well, see [24] (which also
contain further related results) and [31]. See also [13] and the references therein for further results.

However, interestingly, the limiting normal distribution of the subgraph counts obtained in
[16] can be degenerate depending on the structure of the graphon W. This phenomenon was
observed in [16], and it was explored in detail in the recent paper of Hladký, Pelekis, and Šileikis
[17] for the case whereH =Kr is the r-clique, for some r ≥ 2. They showed that the usual Gaussian
limit is degenerate when a certain regularity function, which encodes the homomorphism den-
sity of Kr incident to a given ‘vertex’ of W, is constant almost everywhere (a.e.). In this case, the
graphon W is said to be Kr-regular and the asymptotic distribution of Xn(Kr ,W) (with another
normalisation, differing by a factor n1/2) has both Gaussian and non-Gaussian components. In the
present paper, we extend this result to any fixed graphH. To this end, we introduce the analogous
notion of H-regularity and show that the fluctuations of Xn(H,W) depends on whether or not
W is H-regular. In particular, if W is not H-regular, then, Xn(H,W) is asymptotically Gaussian,
using a normalisation factor n|V(H)|−1/2. However, ifW isH-regular, then the normalisation factor
becomes n|V(H)|−1 and yields a limiting distribution of Xn(H,W) that has, in general, a Gaussian
component and another independent (non-Gaussian) component which is a (possibly) infinite
weighted sum of centred chi-squared random variables. Here, the weights are determined by the
spectrum of a graphon obtained from the 2-point conditional densities of H in W, that is, the
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density of H in W when two vertices of H are mapped to two ‘vertices’ of W, averaged over
all pairs of vertices of H. The results are formally stated in Theorem 2.9. Unlike in [17] which
uses the method of moments, our proofs employ the orthogonal decomposition for generalised
U-statistics developed by Janson and Nowicki [22] (see also [[20], Chapter 11.3]). This avoids
cumbersome moment calculations and provides a more streamlined framework for dealing with
the asymmetries of general subgraphs.

There are also exceptional cases, where W is H-regular and normalisation of Xn(H,W) by
n|V(H)|−1 also yields a degenerate limit; then a non-trivial limit can be found by another nor-
malisation. (We ignore trivial cases when Xn(H,W) is deterministic.) This cannot happen when
H =Kr as shown in [17], but we give an example of this degeneracy with H =K1,3 (the 3-star);
see Example 4.6. We also show that this higher order degeneracy cannot happen for H = C4 (the
4-cycle) and H =K1,2 (the 2-star); see Theorems 4.8 and 4.10, respectively. It is an open problem
to decide for which graphs H such higher order degeneracies may occur.

We also study the structure of W is when it is H-regular and one (but not both) of the two
components of the limit distribution in Theorem 2.9(2) vanishes, so that the limit distribution
either is normal or lacks a normal component. In particular, we show that if H is bipartite and
W is H-regular, then the limit lacks a normal component if and only ifW is {0, 1}-valued almost
everywhere (Theorem 4.3).

1.1. Organisation

The rest of the paper is organised as follows. The limit theorems for the subgraph counts are
presented in Section 2. We compute the limits in some examples in Section 3. Degeneracies of the
asymptotic distributions are discussed in Section 4. The main results are proved in Sections 5–8.

2. Asymptotic distribution of subgraph counts inW-random graphs

In this section, we will state our main result on the asymptotic distribution Xn(H,W). The sec-
tion is organised as follows: In Section 2.1, we recall some basic definitions about graphons. The
notions of conditional homomorphism density and H-regularity are introduced in Section 2.2.
Some spectral properties of the integral operator corresponding to a graphon are described in
Section 2.3. The result is formally stated in Section 2.4.

2.1. Preliminaries

A quantity that will play a central role in our analysis the homomorphism density of a fixed
multigraph F = (V(F), E(F)) (without loops) in a graphonW, which is defined as

t(F,W)=

∫

[0,1]|V(F)|

∏

(s,t)∈E(F)

W(xs, xt)
|V(F)|
∏

a=1

dxa. (2.1)

Note that this is the natural continuum analogue of the homomorphism density of a fixed graph
F = (V(F), E(F)) into finite (unweighted) graph G= (V(G), E(G)) which is defined as

t(F,G) :=
| hom (F,G)|

|V(G)||V(F)|
, (2.2)

where | hom (F,G)| denotes the number of homomorphisms of F intoG. In fact, it is easy to verify
that t(F,G)= t(F,WG), where WG is the empirical graphon associated with the graph G which
defined as

WG(x, y)= 1{(�|V(G)|x�, �|V(G)|y�) ∈ E(G)}. (2.3)
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(In other words, to obtain the empirical graphon WG from the graph G, partition [0, 1]2 into
|V(G)|2 squares of side length 1/|V(G)|, and letWG(x, y)= 1 in the (i, j)-th square if (i, j) ∈ E(G),
and 0 otherwise.)

Let H = (V(H), E(H)) be a simple graph. For convenience, we will throughout the paper
assume that V(H)= {1, 2, . . . , |V(H)|}. Then, the homomorphism density defined (2.1) can also
interpreted as the probability that aW-random graph on |V(H)| vertices contains H, that is,

t(H,W)= P(G(|V(H)|,W)⊇H). (2.4)

To see this, recall the construction of aW-random graph and note from (2.1) that,

t(H,W)=E

⎡

⎣

∏

(a,b)∈E(H)

W(Ua,Ub)

⎤

⎦=E

⎡

⎣

∏

(a,b)∈E(H)

1{Yab ≤W(Ua,Ub)}

⎤

⎦

=E [1{G(|V(H)|,W)⊇H}] . (2.5)

Next, recalling (1.1) note that

EXn(H,W)=
∑

1≤i1<···<i|V(H)|≤n

∑

H′
∈GH({i1,...,i|V(H)|})

t(H,W)

=
( n
|V(H)|

)

|GH({1, . . . , |V(H)|})| · t(H,W) (2.6)

where the last equality follows since the number of subgraphs of K|V(H)| on {i1, . . . , i|V(H)|} iso-
morphic toH is the same for any collection of distinct indices 1≤ i1 < · · · < i|V(H)| ≤ n. Clearly,

|GH({1, . . . , |V(H)|})| =
|V(H)|!

|Aut(H)|
, (2.7)

where Aut(H) is the collection of all automorphisms of H, that is, the collection of permutations
σ of the vertex set V(H) such that (x, y) ∈ E(H) if and only if (σ (x), σ (y)) ∈ E(H). This implies,
from (2.6),

EXn(H,W)=
(n)|V(H)|

|Aut(H)|
t(H,W), (2.8)

where (n)|V(H)| := n(n− 1) · · · (n− |V(H)| + 1).

2.2. Conditional homomorphism densities and H-regularity

In this section, we will formalise the notion of H-regularity of a graphonW. To this end, we need
to introduce the notion of conditional homomorphism densities. Throughout, we will assume
H = (V(H), E(H)) is a non-empty simple graph with vertices labelled V(H)= {1, 2, . . . , |V(H)|}.

Definition 2.1. Fix 1≤K ≤ |V(H)| and an ordered set a= (a1, a2, . . . , aK) of distinct vertices
a1, a2, . . . , aK ∈V(H). Then the K-point conditional homomorphism density function of H in W
given a is defined as

ta(x,H,W) := E

⎡

⎣

∏

(a,b)∈E(H)

W(Ua,Ub)
∣

∣

∣
Uaj = xj, for 1≤ j≤K

⎤

⎦

:= P

(

G(|V(H)|,W)⊇H
∣

∣Uaj = xj, for 1≤ j≤K
)

, (2.9)

where x= (x1, x2, . . . , xK). In other words, ta(x,H,W) is the homomorphism density of H in the
graphonW when the vertex aj ∈V(H) is marked with the value xj ∈ [0, 1], for 1≤ j≤K.
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The conditional homomorphism densities will play a crucial role in the description of the lim-
iting distribution of Xn(H,W). In particular, the H-regularity of a graphon W is determined by
the 1-point conditional homomorphism densities, which we formalise below:

Definition 2.2. (H-regularity of a graphon) A graphonW is said to be H-regular if

t(x,H,W) :=
1

|V(H)|

|V(H)|
∑

a=1

ta(x,H,W)= t(H,W), (2.10)

for almost every x ∈ [0, 1].

Note that in (2.10) it is enough to assume that t(x,H,W) is a constant for almost every x ∈
[0, 1]. This is because

∫ 1

0
ta(x,H,W) dx= t(H,W), (2.11)

for all a ∈V(H). Hence, if t(x,H,W) is a constant a.e., then the constant must be t(H,W).
Therefore, in other words, a graphon W is H-regular if the homomorphism density of H in W
when one of the vertices of H is marked, is a constant independent of the value of the marking.

Remark 2.3. Note that when H =Kr is the r-clique, for some r ≥ 2, then ta(x,H,W)=
tb(x,H,W), for all 1≤ a �= b≤ r. Hence, (2.10) simplifies to

t1(x,Kr ,W)=E

⎡

⎣

∏

1≤a<b≤r

W(Ua,Ub)

∣

∣

∣

∣

U1 = x

⎤

⎦= t(H,W), for almost every x ∈ [0, 1], (2.12)

which is precisely the notion of Kr-regularity defined in [17].

Remark 2.4. Recall that the degree function of a graphonW is defined as

dW(x) :=

∫

[0,1]
W(x, y) dy. (2.13)

Note that for H =K2, (2.9) yields

t1(x,K2,W)=E
[

W(U1,U2)
∣

∣U1 = x
]

=

∫

[0,1]
W(x, y) dy= dW(x). (2.14)

Hence, the notion of K2-regularity coincides with the standard notion of degree regularity, where
the degree function dW(x) :=

∫

[0,1] W(x, y) dy is constant a.e.

2.3. Spectrum of graphons and 2-point conditional densities

Hereafter, we denote by W0 the space of all graphons, which is the collection of all symmetric,
measurable functionsW : [0, 1]2 → [0, 1]. We let alsoW1 be the space of all bounded, symmetric,
measurable functions W : [0, 1]2 → [0,∞). Every graphon W ∈W0, or more generally W ∈W1,
defines an operator TW : L2[0, 1]→ L2[0, 1] as follows:

(TW f )(x)=

∫ 1

0
W(x, y)f (y) dy, (2.15)

for each f ∈ L2[0, 1]. TW is a symmetric Hilbert–Schmidt operator; thus it is compact and has
a discrete spectrum, that is, it has a countable multiset of non-zero real eigenvalues, which we
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denote by Spec(W), with

∑

λ∈Spec(W)

λ2 =

∫∫

W(x, y)2 dx dy< ∞. (2.16)

Moreover, a.e.,

(TW f )(x)=
∑

λ∈Spec(W)

λ〈f , φλ〉φλ(x) (2.17)

and

W(x, y)=
∑

λ∈Spec(W)

λφλ(x)φλ(y), (2.18)

where {φλ}λ∈Spec(W) denotes an orthonormal system of eigenfunctions associated with Spec(W).
For a more detailed discussion on the spectral properties of graphons and their role in graph limit
theory, see [25, Chapters 7, 11].

To describe the limiting distribution of Xn(H,W) whenW isH-regular, we will need to under-
stand the spectral properties of the following graphon obtained from the 2-point conditional
densities:

Definition 2.5. Given a graphon W ∈W0 and a simple connected graph H = (V(H), E(H)), the
2-point conditional graphon induced by H is defined as

WH(x, y)=
1

2|Aut(H)|

∑

1≤a �=b≤|V(H)|

ta,b((x, y),H,W), (2.19)

where ta,b((x, y),H,W) is the 2-point conditional homomorphism density function of H in W
given the vertices (a, b), as in Definition 2.1.1 (The normalisation factor in (2.19) is chosen for
later convenience in e.g. (2.25).)

Intuitively, WH(x, y) can be interpreted as the homomorphism density of H in W containing
the ‘vertices’ x, y ∈ [0, 1].

Note that a graphon W is H-regular (see Definition 2.2) if and only if the 2-point conditional
graphonWH is degree regular (see Remark 2.4). This is because, for all x ∈ [0, 1],

∫ 1

0
WH(x, y) dy=

|V(H)| − 1

2|Aut(H)|

|V(H)|
∑

a=1

ta(x,H,W), (2.20)

and the RHS of (2.20) is a constant if and only if W is H-regular. In fact, if W is H-regular, then
1

|V(H)|

∑|V(H)|
a=1 ta(x,H,W)= t(H,W) a.e.; hence, the degree ofWH becomes

∫ 1

0
WH(x, y) dy=

|V(H)|(|V(H)| − 1)

2|Aut(H)|
· t(H,W) := dWH , (2.21)

for almost every x ∈ [0, 1]. This implies that, if W is H-regular, then dWH is an eigenvalue of
the operator TWH (recall (2.15)) and φ ≡ 1 is a corresponding eigenvector. In this case, we will
use Spec−(WH) to denote the collection Spec(WH) with the multiplicity of the eigenvalue dWH

decreased by 1. (Note that dWH > 0 by (2.21) unless t(H,W)= 0, or |V(H)| = 1; these cases are
both trivial, see Remark 2.10.)

1Strictly speaking, WH is in general not a graphon in W0 because it can take values greater than 1. However, WH ∈W1,
and we still call it a graphon.
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Figure 1. The (a, b)-vertex join of the graphs H1 and H2.

2.4. Statement of the main result

To state our results on the asymptotic distribution of Xn(H,W), we need to define a few basic
graph operations.

Definition 2.6. For a graph H = (V(H), E(H)) on vertex set {1, 2, · · · , r} define,

E+(H)= {(a, b) : 1≤ a �= b≤ r, (a, b) or (b, a) ∈ E(H)} (2.22)

Definition 2.7. Fix r ≥ 1 and consider two graphs H1 and H2 on the vertex set {1, 2, · · · , r} and
edge sets E(H1) and E(H2), respectively.

• Vertex Join: For a, b ∈ {1, 2, · · · , r}, the (a, b)-vertex join of H1 and H2 is the graph
obtained by identifying the a-th vertex ofH1 with the b-th vertex ofH2 (see Figure 1 for an
illustration). The resulting graph will be denoted by

H1

⊕

a,b

H2.

• Weak Edge Join: For (a, b) ∈ E+(H1) and (c, d) ∈ E+(H2), with 1≤ a �= b≤ r and 1≤ c �=
d ≤ r, the (a, b), (c, d)-weak edge join ofH1 andH2 is the graph obtained identifying the ver-
tices a and c and the vertices b and d and keeping a single edge between the two identified
vertices (see Figure 2 for an illustration). The resulting graph will be denoted by

H1 �
(a,b),(c,d)

H2.

• Strong Edge Join: For (a, b) ∈ E+(H1) and (c, d) ∈ E+(H2), with 1≤ a �= b≤ r and 1≤ c �=
d ≤ r, the (a, b), (c, d)-strong edge join ofH1 andH2 is the multi-graph obtained identifying
the vertices a and c and the vertices b and d and keeping both the edges between the two
identified vertices (see Figure 2 for an illustration). The resulting graph will be denoted by

H1

⊕

(a,b),(c,d)

H2.

Remark 2.8. We note that both the weak and strong edge join operations can be extened to arbi-
trary (a, b) ∈V(H1)2 and (c, d) ∈V(H2)2 with a �= b and c �= d; in the strong join we keep all edges,
but in the weak join we keep the join simple by merging any resulting double edge. (Thus, if either
(a, b) �∈ E+(H1) or (c, d) �∈ E+(H2), then the weak and strong edge joins are the same graph.)
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Figure 2. The weak and strong edge joins of the graphs H1 and H2.

Having introduced the framework and the relevant definitions, we are now ready to state our
main result regarding the asymptotic distribution of Xn(H,W), the number of copies of H in the
W-random graph G(n,W).

Theorem 2.9. Fix a graphon W ∈W0 and a simple graph H = (V(H), E(H)) with vertices labelled
V(H)= {1, 2, . . . , |V(H)|}. Then for Xn(H,W) as defined in (1.1) the following hold, as n→ ∞:

(1) For any W,

Xn(H,W)−
(n)|V(H)|
|Aut(H)| t(H,W)

n|V(H)|− 1
2

D
−→ N(0, τ 2H,W), (2.23)

where

τ 2H,W :=
1

|Aut(H)|2

⎡

⎣

∑

1≤a,b≤|V(H)|

t

⎛

⎝H
⊕

a,b

H,W

⎞

⎠− |V(H)|2t(H,W)2

⎤

⎦≥ 0. (2.24)

Moreover, τ 2H,W > 0 if and only if W is not H-regular. Thus, if W is not H-regular, then
Xn(H,W) is asymptotically normal.

(2) If W is H-regular, then

Xn(H,W)−
(n)|V(H)|
|Aut(H)| t(H,W)

n|V(H)|−1

D
−→ σH,W · Z +

∑

λ∈Spec−(WH)

λ(Z2
λ − 1), (2.25)
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where Z and {Zλ}λ∈Spec−(WH) all are independent standard Gaussians,

σ 2
H,W :=

1

2|Aut(H)|2

∑

(a,b),(c,d)∈E+(H)

⎡

⎣t

(

H �
(a,b),(c,d)

H,W

)

− t

⎛

⎝H
⊕

(a,b),(c,d)

H,W

⎞

⎠

⎤

⎦≥ 0,

(2.26)

and Spec−(WH) is the multiset Spec(WH) with multiplicity of the eigenvalue dWH (recall
(2.21)) decreased by 1.

The sum in (2.25) may be infinite, but it converges in L2 and a.s. by (2.16) (see [23, Lemma
4.16]). The proof of Theorem 2.9 uses the projection method for generalised U-statistics devel-
oped in Janson and Nowicki [22], which allows us to decompose Xn(H,W) over sums of
increasing complexity. (See also [20, Chapter 11.3] and [24].) The terms in the expansion are
indexed by the vertices and edges subgraphs of the complete graph of increasing sizes, and the
asymptotic behaviour of Xn(H,W) is determined by the non-zero terms indexed by the small-
est size graphs. Details of the proof are given in Section 5. Various examples are discussed in
Section 3.

Remark 2.10. We note some trivial cases, where Xn(H,W) is deterministic. First, t(H,W)= 1 if
and only ifH is empty (has no edge), orW is complete, that is,W ≡ 1. In both cases, almost surely

Xn(H,W)=
(n)|V(H)|
|Aut(H)| . Similarly, ifW isH-free, that is, t(H,W)= 0, then almost surelyXn(H,W)=

0. Note also that in these cases with t(H,W) ∈ {0, 1}, we have t(x,H,W)= t(H,W) a.e., e.g. by
(2.11), and thus W is H-regular. Theorem 2.9 is valid for these cases too (with limits 0), but is
not very interesting, and we may without loss of generality exclude these cases and assume 0<

t(H,W)< 1.

Remark 2.11. As mentioned earlier, the result in Theorem 2.9(1) has been proved recently by
Féray, Méliot, and Nikeghbali [16, Theorem 21] using the machinery of mod-Gaussian conver-
gence (see also [1, Section 8] for connections to exchangability). They noted that the limiting
distribution in [16, Theorem 21] might be degenerate, that is, τH,W = 0, and called this case sin-
gular. (This is thus our H-regular case). Méliot [27] studied the (globally) singular graphons, i.e.,
the graphonsW for which τH,W = 0, for all graphs H. For such graphons [27] derived the order of
fluctuations for the homomorphism densities, but did not identify the limiting distribution.

The main emphasis of the present paper is Theorem 2.9(2), for H-regular graphons, where
the more interesting non-Gaussian fluctuation emerges. Moreover, it turns out that there are
non-trivial cases where also the limit in Theorem 2.9(2) is degenerate. We discuss this further
in Section 4, where we give both an example of such a higher order degeneracy, and examples
of graphs H for which this cannot happen for any W. We will also study when one of the two
components of the limit (the normal and the non-normal component) vanishes. In particular, in
the classical Erdős–Rényi case W ≡ p, Theorem 2.9(2) applies to every H with the non-normal
component vanishing, so the limit is normal, which is a classical result; see further Example 3.3.

Remark 2.12. For the closely related problem of counting induced subgraphs isomorphic to H,
limit distributions of the type in Theorem 2.9(2) with a non-normal component occur (for special
H) even in the Erdős–Rényi case W ≡ p, but then with normalisation by n|V(H)|−2, see [2, 22]. It
seems interesting to study induced subgraph counts in G(n,W) for general graphonsW with our
methods, but we have not pursued this.

Finally, it is worth mentioning that limiting distributions very similar to that in Theorem 2.9(2)
also appears in the context of counting monochromatic subgraphs in uniform random colour-
ings of sequences of dense graphs [4, 5]. Although this is a fundamentally different problem, the
appearance of similar limiting objects in both situations is interesting.
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3. Examples

In this section we compute the limiting distribution of Xn(H,W) for various specific choices ofH
andW using Theorem 2.9.

Example 3.1. (Cliques) SupposeH =Kr , the complete graph on r vertices, for some r ≥ 2. This is
the case that was studied in [17]. To see that Theorem 2.9 indeed recovers the main result in [17],
first recall Remark 2.3, which shows that our notion of H-regularity matches with the notion of
Kr-regularity defined in [17]. Next, note that by the symmetry of the vertices of a clique,

t

⎛

⎝H
⊕

a,b

H,W

⎞

⎠= t

⎛

⎝H
⊕

1,1

H,W

⎞

⎠ , (3.1)

for 1≤ a, b≤ |V(H)|, and |Aut(Kr)| = r!. Therefore, Theorem 2.9(1) implies, when W is not Kr-
regular,

Xn(Kr,W)−
(n
r

)

t(Kr ,W)

nr−
1
2

D
→ N

⎛

⎝0,
1

(r − 1)!2

⎡

⎣t

⎛

⎝Kr

⊕

1,1

Kr ,W

⎞

⎠− t(Kr ,W)2

⎤

⎦

⎞

⎠ , (3.2)

which is precisely the result in [17, Theorem 1.2(b)]. For the Kr-regular case, note that by
the symmetry of the edges of a clique, the 2-point conditional graphon induced by Kr (recall
Definition 2.5) simplifies to

WKr (x, y)=
1

2(r − 2)!
t1,2((x, y),Kr ,W). (3.3)

Moreover, for all (a, b), (c, d) ∈ E(Kr),

t

(

Kr �
(a,b),(c,d)

Kr ,W

)

= t

(

Kr �
(1,2),(1,2)

Kr ,W

)

, (3.4)

and similarly for the strong edge-join operation. Hence, Theorem 2.9(2) implies

Xn(Kr,W)−
(n
r

)

t(Kr ,W)

nr−1

D
→ σKr ,W · Z +

∑

λ∈Spec−(WKr )

λ(Z2
λ − 1) (3.5)

with

σ 2
Kr ,W =

1

2(r − 2)!2

⎧

⎨

⎩

t

(

H �
(1,2),(1,2)

H,W

)

− t

⎛

⎝H
⊕

(1,2),(1,2)

H,W

⎞

⎠

⎫

⎬

⎭

, (3.6)

as shown in [17, Theorem 1.2(c)].

Example 3.2. (2-Star) Suppose H =K1,2 with the vertices labelled {1, 2, 3} as shown in Figure 3.
In this case, for any graphonW ∈W0,

t1(x,K1,2,W)=

∫ 1

0
W(x, y)W(x, z) dy dz = dW(x)2, (3.7)

where the degree function dW(x) is defined in (2.13), and

t2(x,K1,2,W)= t3(x,K1,2,W)=

∫ 1

0
W(x, y)W(y, z) dy dz =

∫ 1

0
W(x, y)dW(y) dy, (3.8)
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Figure 3. The different non-isomorphic graphs that can be obtained by the vertex join of two copies of K1,2 (with vertices

labelled {1, 2, 3} as in the inset).

Then by Definition 2.2, (3.7) and (3.8),W is K1,2-regular if and only if

dW(x)2 + 2

∫ 1

0
W(x, y)dW(y)dy= 3t

(

K1,2,W
)

, for a.e. x ∈ [0, 1]. (3.9)

In particular, if W is degree regular, then the left-hand side of (3.9) is constant, and thus W is
K1,2-regular. (We conjecture that the converse holds too, but we have not verified this.)

Therefore, from Theorem 2.9 we have the following:

• If (3.9) does not hold, then

Xn(K1,2,W)− 3
(n
3

)

t(K1,2,W)

n
5
2

D
→ N(0, τ 2K1,2,W) (3.10)

with

τ 2K1,2,W :=
1

4

{

t(K1,4,W)+ 4t(P4,W)+ 4t(B4,W)− 9t(K1,2,W)2
}

, (3.11)

where the graphs K1,4, P4, and B4 are as shown in Figure 3. Note that K1,4 is the 4-star
(obtained by joining the two central vertices of the 2-stars), P4 is the path with 4 edges
(obtained by joining a leaf vertex of one 2-star with a leaf vertex of another), and B4 is the
graph obtained by joining the central vertex of one 2-star with a leaf vertex of another. For
a concrete example of a graphon which is not K1,2-regular, considerW0(x, y) := xy. In this
case, dW0(x)=

1
2x, for all x ∈ [0, 1], and (3.9) does not hold; hence,W0 is not K1,2-regular.

• On the other hand, when (3.9) holds,

Xn(K1,2,W)− 3
(n
3

)

t(K1,2,W)

n2
D
→ σK1,2,W · Z +

∑

λ∈Spec−(WK1,2 )

λ(Z2
λ − 1), (3.12)

with

σ 2
K1,2,W := t(K1,3,W)+ t(P3,W)− t(K+

1,3,W)− t(P+
3 ,W), (3.13)
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(a) (b)

Figure 4. (a) The weak edge join of two copies of K1,2 and (b) the strong edge join of two copies of K1,2.

whereK1,3 is the 3-star and P3 is the path shown in Figure 4(a) (obtained by the weak edge-
join of two copies of K1,2 using the edges (1, 2), (1, 2) and (1, 2), (2, 1), respectively), and
theK+

1,3 and P
+
3 are themultigraphs shown in Figure 4(b) (obtained by the strong edge-join

of two copies of K1,2 using the edges (1, 2), (1, 2) and (1, 2), (2, 1), respectively). Moreover,
in this case, the 2-point conditional graphonWK1,2 simplifies to:

WK1,2(x, y)=
1

2

{

W(x, y)(dW(x)+ dW(y))+

∫

W(x, z)W(y, z) dz

}

, (3.14)

since t1,2(x, y,K1,2,W)= t1,3(x, y,K1,2,W)=W(x, y)dW(x) and t2,3(x, y,K1,2,W)=
∫

[0,1] W(x, z)W(y, z) dz, and similarly for the others. For a concrete example of graphon
which is K1,2-regular consider

W̃(x, y) :=

⎧

⎨

⎩

p if (x, y) ∈
[

0, 12
]2⋃[ 1

2 , 1
]2

,

0 otherwise.
(3.15)

Note that this is a 2-block graphon (with equal block sizes) taking value p in the diagonal
blocks and zero in the off-diagonal blocks. (One can think of this as the ‘disjoint union
two Erdős–Rényi graphons’.) It is easy to check that this graphon is degree regular, hence
K1,2-regular. In fact, in this case

W̃K1,2(x, y)=

⎧

⎨

⎩

3p2

4 if (x, y) ∈
[

0, 12
]2⋃[ 1

2 , 1
]2

,

0 otherwise.
(3.16)
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and σ 2
K1,2,W̃

= 1
2p

3(1− p). Moreover,

Spec(W̃K1,2)= {3p2/8, 3p2/8}, (3.17)

with the eigenfunctions 1 and 1{[0, 1/2]} − 1{[1/2, 1]}, respectively. In particular, dWK1,2
=

3p2/8 in agreement with (2.21). Consequently, Spec−(W̃K1,2)= {3p2/8}.

Example 3.3. (Erdős–Rényi graphs) Suppose thatW =Wp ≡ p for some p ∈ (0, 1). By symmetry,
t(x,H,W) does not depend on x, and thus Wp is H-regular for every H. Furthermore, by (2.19),
also the 2-point conditional graphonWH is constant, which implies (see also Proposition 4.1) that
Spec−(WH)= ∅ and thus the limit in Theorem 2.9(2) is normal for every non-emptyH. (We have
σ 2
H,W > 0 by (2.26).) As said earlier, this is a classical result, see e.g. [2, 18, 19, 21, 28–30].

4. Degeneracies of the asymptotic distribution

In this section, we will discuss the degeneracies of asymptotic distribution whenW in H-regular;
we will throughout the section tacitly ignore the trivial cases in Remark 2.10, i.e., we assume that
0< t(H,W)< 1. Towards this denote

Zn(H,W) :=
Xn(H,W)−

(n)|V(H)|
|Aut(H)| t(H,W)

n|V(H)|−1
. (4.1)

Theorem 2.9(2) shows that whenW is H-regular,

Zn(H,W)
D
→ σH,W · Z +

∑

λ∈Spec−(WH)

λ(Z2
λ − 1), (4.2)

where Z, {Zλ}λ∈Spec−(WH) are all independent standard Gaussians, and σ 2
H,W is as defined in

Theorem 2.9. This raises the following natural questions:

• Is the limiting distribution of Zn(H,W) non-degenerate? Given the result in Theorem 2.9, it
is natural to wonder whether, whenW isH-regular, the limiting distribution of Zn(H,W) in (4.2)
is always non-degenerate. This is indeed the case for cliques: if H =Kr for some r ≥ 2, then it
was shown in [17, Remark 1.6] that the limit in (4.2) is never degenerate. However, for general
graphs H the situation is surprisingly more complicated. It turns out that there are graphs H for
which there exist a H-regular graphon W, with 0< t(H,W)< 1, such that the limit in (4.2) is
degenerate (see Example 4.6). Naturally this raises the question: For which graphs H is the limiting
distribution of Zn(H,W) always non-degenerate? In Section 4.3, we answer this question in the
affirmative when H = C4 is the 4-cycle and H =K1,2 is the 2-star.

In cases when the limit in (4.2) is non-degenerate, we can ask about the structure of W when
one of the components of the limit vanishes:

• When is the limiting distribution of Zn(H,W) normal? Note from (4.2) that Zn(H,W) is
asymptotically Gaussian if and only if the non-Gaussian component

∑

λ∈Spec−(WH)

λ(Z2
λ − 1)

is degenerate. We show in Proposition 4.1 that this happens precisely when the 2-point
conditional graphonWH is constant a.e.

• When is the limiting distribution of Zn(H,W) normal-free? Clearly, the limit (4.2) has no
Gaussian component whenever σH,W = 0. In Theorem 4.3 we characterise the structure of
such graphons when H is bipartite: we show that if H is bipartite, then the limit in (4.2) is
normal-free if and only ifW(x, y) ∈ {0, 1} a.e. (that is,W is random-free).We also show that
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there are non-bipartite graphs H and graphons W which are not random-free for which
σH,W = 0 (Example 6.1).

4.1. Degeneracy of the Non-Gaussian Component

The following proposition characterises when the limit in (4.2) is Gaussian. It extends the special
case H =Kr which was shown in [17, Theorem 1.3].

Proposition 4.1. Let H be a simple graph and let W be a H-regular graphon. Then the following
are equivalent:

(1) Zn(H,W)
D
→N(0, σ 2

H,W).

(2)
∑

λ∈Spec−(WH) λ(Z
2
λ − 1) is degenerate.

(3) Spec−(WH)= ∅.

(4) WH(x, y)= dWH a.e., where dWH = |V(H)|(|V(H)|−1)
2|Aut(H)| · t(H,W) is as defined in (2.21).

Proof. From (4.2) it is clear that (1), (2) and (3) are equivalent. Next, recalling the discussion
following (2.21), Spec−(WH)= ∅ if and only if Spec(WH)= {dWH }; furthermore, since W is
H-regular, WH is degree regular and, hence, φ ≡ 1 is an eigenfunction corresponding to dWH .
Therefore, by (2.18), if Spec(WH)= {dWH }, then

WH(x, y)= dWHφ(x)φ(y)= dWH a.e. (4.3)

Conversely, WH(x, y)= dWH a.e. implies that dWH is the only non-zero eigenvalue of TWH , and
thus Spec−(WH)= ∅. This establishes that (3) and (4) are equivalent. �

4.2. Degeneracy of the Gaussian Component

The Gaussian component in the limit (4.2) is degenerate when σ 2
H,W = 0. To study the structure of

such graphons, we need a few definitions. For a graph F = (V(F), E(F)) and S⊆V(F), the neigh-
bourhood of S in F isNF(S)= {v ∈V(F) : ∃u ∈ S such that (u, v) ∈ E(F)}. Moreover, for u, v ∈V(F),
F\{u, v} is the graph obtained by removing the vertices u, v and all the edges incident to them. For
notational convenience, we introduce the following definition:

Definition 4.2. Let H be a labelled finite simple graph and W a graphon. Then, for 1≤ u �= v≤
|V(H)|, the function t−u,v(·, ·,H,W) : [0, 1]2 → [0, 1] is defined as

t−u,v(x, y,H,W)

=

∫

[0,1]|V(H)|−2

∏

r∈NH(u)\{v}

W(x, zr)
∏

s∈NH(v)\{u}

W(y, zs)
∏

(r,s)∈E(H\{u,v})

W(zr , zs)
∏

r/∈{u,v}

dzr . (4.4)

Thus, if (u, v) ∈ E(H), then

tu,v(x, y,H,W)=W(x, y)t−u,v(x, y,H,W). (4.5)

Note that

σ 2
H,W = cH

∑

(a,b),(c,d)∈E+(H)

∫

t−
a,b(x, y,H,W)t−

c,d(x, y,H,W)W(x, y)(1−W(x, y)) dx dy, (4.6)
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where cH := 1
2|Aut(H)|2

. It is clear from (4.6) that ifW is random-free, then σ 2
H,W = 0 and hence, if

W isH-regular, the asymptotic distribution does not have a normal component. Interestingly, the
converse is also true whenever H is bipartite. This is formulated in the following theorem:

Theorem 4.3. If H is a non-empty bipartite graph with t(H,W)> 0, then σ 2
H,W = 0 if and only if

W is random-free.

The proof of Theorem 4.3 is given in Section 6. It entails showing, using the bipartite struc-
ture of H, that for almost every (x, y) such that W(x, y) ∈ (0, 1), we have t−

a,b(x, y,H,W)> 0,

for a �= b ∈V(H) such that (a, b) ∈ E(H). Consequently, from (4.6), σ 2
H,W > 0 whenever the set

{(x, y) ∈ [0, 1]2 :W(x, y) ∈ (0, 1)} has positive Lebesgue measure. An immediate consequence of
Theorem 4.3 is that for a bipartite graph H and an H-regular W, the asymptotic distribution of
Zn(H,W) is non-degenerate wheneverW is not random-free.

Remark 4.4. The bipartite assumption in Theorem 4.3 is necessary, in the sense that there exist
non-bipartite graphs H and graphons W with t(H,W)> 0 such that σ 2

H,W = 0, but W is not
random-free. We discuss this in Example 6.1.

For non-bipartite H, we note only the following, which extends [17, Proposition 1.5].

Proposition 4.5. We have σ 2
H,W = 0 if and only if W(x, y)= 1 for a.e. (x, y) such that

ta,b(x, y,H,W)> 0 for some (a, b) ∈ E+(H).

Proof. An immediate consequence of (4.6) and (4.5). �

4.3. Degeneracy of the Limit in (4.2)

We begin with an example where the limit in (4.2) is degenerate.

Example 4.6. Let H =K1,3 be the 3-star on vertex set {1, 2, 3, 4}, where the root (non-leaf) vertex
is labelled 1. Further, suppose thatW is the complete balanced bipartite graphon:

W(x, y) :=

⎧

⎨

⎩

0 if (x, y) ∈
[

0, 12
]2⋃( 1

2 , 1
]2

,

1 otherwise.
(4.7)

To begin with note that dW(x)=
∫ 1
0 W(x, y) dy= 1

2 , for all x ∈ [0, 1]. Therefore,

1

4

4
∑

i=1

ti
(

x,K1,3,W
)

=
1

4

[

dW(x)3 + 3

∫

W(x, t)dW(t)2 dt

]

=
1

8
. (4.8)

This establishes that W is K1,3-regular, and that t(K1,3,W)= 1/8. Next, since W ∈ {0, 1}, by
Theorem 4.3, σ 2

K1,3,W2
= 0. Hence, to show that the limit distribution of Zn(K1,3,W) is degenerate

it suffices to check that
∑

λ∈Spec−(WK1,3 )
λ2 = 0. By Proposition 4.1, this is equivalent to showing

WK1,3(x, y)=
12

2
∣

∣Aut(K1,3)
∣

∣

t
(

K1,3,W
)

=
1

8
, (4.9)
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for a.e. (x, y) ∈ [0, 1]2 (since |Aut(K1,3)| = 3! = 6). Towards this recall (2.19), which yields

WK1,3(x, y)=
1

2|Aut(K1,3)|

∑

1≤a �=b≤4

ta,b
(

x, y,K1,3,W
)

=
1

12

[

3W(x, y)

∫

W(x, z)W(x, t) dz dt + 3W(x, y)

∫

W(y, z)W(y, t) dz dt

+ 6

∫

W(x, t)W(y, t)W(z, t) dz dt

]

=
1

12

[

3W(x, y)dW(x)2 + 3W(x, y)dW(y)2 + 6

∫

dW(t)W(x, t)W(y, t) dt

]

=
1

12

[

3

2
W(x, y)+ 3

∫

W(x, t)W(y, t) dt

]

. (4.10)

Now, observe that if W(x, y)= 0 then
∫

W(x, t)W(y, t) dt = 1
2 , which implies, from (4.10),

WK1,3(x, y)=
1
8 . Further, when W(x, y)= 1, then

∫

W(x, t)W(y, t) dt = 0, which implies

WK1,3(x, y)=
1
8 . Thus for all (x, y) ∈ [0, 1]2, WK1,3 = 1/8, which establishes (4.9). This shows that

limiting distribution of Zn(K1,3,W) is degenerate forW as in (4.7).
In fact, in this example, we can easily find the asymptotic distribution of Xn(K1,3,W) directly.

LetM :=
∣

∣{i:Ui ≤
1
2 }
∣

∣∼ Bin
(

n, 12
)

, and M̂ := M − n/2. Then

Xn(K1,3,W)=M

(

n−M

3

)

+ (n−M)

(

M

3

)

=
1

6

(

M(n−M)
(

(n−M)2 − 3(n−M)+ 2
)

+ (n−M)M
(

M2 − 3M + 2
)

)

=
1

6
M(n−M)

(

(n−M)2 +M2 − 3n+ 4
)

=
1

6

(n

2
+ M̂

)(n

2
− M̂

)((n

2
− M̂

)2
+
(n

2
+ M̂

)2
− 3n+ 4

)

=
1

6

((n

2

)2
− M̂2

)(

2
(n

2

)2
+ 2M̂2 − 3n+ 4

)

=
1

3

((n

2

)4
− M̂4

)

−
3n− 4

6

((n

2

)2
− M̂2

)

. (4.11)

Hence, subtracting the mean and using (2.8),

Xn(K1,3,W)− (n)4
48

n2
= −

M̂4 −EM̂4

3n2
+

3n− 4

6n
·
M̂2 −EM̂2

n
. (4.12)

Since the central limit theorem yields M̂/n1/2
D
→ Z/2, with all moments, where Z ∼N(0, 1), (4.12)

yields

Xn(K1,3,W)− (n)4
48

n2
D

−→ −
Z4 − 3

48
+

Z2 − 1

8
= −

1

48

(

Z4 − 6Z2 + 3
)

= −
1

48
h4(Z), (4.13)

where h4 is the 4th Hermite polynomial (using the normalisation in, e.g. [20, Example 3.18]).
Consequently, in this example, the correct normalisation is by n2 = n|V(H)|−2, and the limit
distribution is given by a fourth-degree polynomial of a Gaussian variable.
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The example above raises the question for which graphs H is the limiting distribution of
Zn(H,W) in Theorem 2.9(2) non-degenerate for all graphons W. In the following we will show
that the limit is always non-degenerate whenH = C4 orH =K1,2 (the 4-cycle and the 2-star). Our
proofs use the specific structure of the 4-cycle and 2-star, and it remains unclear for what other
graphs can one expect the non-degeneracy result to hold.

Non-Degeneracy of the Limit for the 4-Cycle: We begin by deriving explicit conditions for degener-
acy of the two components of the limiting distribution of Z(C4,W). (For the normal part, we can
also use Theorem 4.3, but we find it interesting to first make a direct evaluation of the condition
σ 2
H,W = 0.) Towards this define:

U1(x, y) :=

∫

[0,1]
W(x, s)W(y, s) ds and U2(x, y) :=

∫

[0,1]2
W(x, s)W(s, t)W(y, t) ds dt.

(4.14)

Lemma 4.7. Suppose W is a C4-regular graphon with t(C4,W)> 0. Then the following hold:

(a) Spec−(WC4)= ∅ if and only if

U1(x, y)
2 + 2W(x, y)U2(x, y)= 3t(C4,W), a.e. (x, y) ∈ [0, 1]2. (4.15)

(b) σ 2
C4,W

= 0 if and only if
∫

[0,1]2
U2
2 (x, y)

(

W(x, y)−W2(x, y)
)

dx dy= 0. (4.16)

As a consequence, the limit of Zn(C4,W) in (4.2) is degenerate if and only if (4.15) and (4.16)
hold.

Proof. Since all the vertices of the 4-cycle are symmetric, from Definition 2.2 we have the
following: The graphonW is C4-regular if

∫

[0,1]3
W(x, y)W(y, z)W(z, t)W(t, x) dy dz dt = t(C4,W) a.e. x ∈ [0, 1]. (4.17)

Moreover, since |Aut(C4)| = 8, by Definition 2.5, the 2-point conditional graphon induced by C4
is given by

WC4(x, y)=
4U1(x, y)2 + 8W(x, y)U2(x, y)

2|Aut(C4)|
=

U1(x, y)2 + 2W(x, y)U2(x, y)

4
, (4.18)

where U1,U2 are as defined in (4.14). Hence, Proposition 4.1 shows that Spec−(WC4)= ∅ if and
only if (4.15) holds.

Next, since all the edges of C4 are symmetric, the weak edge join of 2 copies of C4 is always
isomorphic to graph F1 in Figure 5(a). Similarly, the strong edge join of 2 copies of C4 is always
isomorphic to graph F2 in Figure 5(b).

Therefore, using |E+(C4)| = 8 and |Aut(C4)| = 8 in (2.26), we find that σ 2
C4,W

simplifies to

σ 2
C4,W =

1

2
(t(F1,W)− t(F2,W))

=
1

2

(∫

[0,1]2
W(x, y)U2

2 (x, y) dx dy−

∫

[0,1]2
W2(x, y)U2

2 (x, y) dx dy

)

. (4.19)
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(a) (b)

Figure 5. (a) The weak and (b) the strong edge join of two copies of C4.

Hence,

σ 2
C4,W = 0 ⇐⇒

∫

[0,1]2
U2
2 (x, y)

(

W(x, y)−W2(x, y)
)

dx dy, (4.20)

which completes the proof. �

The following theorem shows that (if we ignore the trivial cases in Remark 2.10), wheneverW
is C4-regular, the limiting distribution of Zn(C4,W) is always non-degenerate. Hence, forH = C4,
Theorem 2.9(1) or (2) will give a non-degenerate limit. By Lemma 4.7, Theorem 4.8 is equivalent
to the claim that whenever W is C4-regular, (4.15) and (4.16) cannot occur simultaneously. The
proof of Theorem 4.8 is given in Section 7.

Theorem 4.8. Suppose W is a C4-regular graphon with t(C4,W)> 0 andW is not identically 1 a.e.
Then, the limit of Zn(C4,W) in (4.2) is non-degenerate.

Non-Degeneracy of the Limit for the 2-Star: As in Lemma 4.7, we first derive conditions which are
equivalent to degeneracy of the two components of the limiting distribution of Zn(K1,2,W).

Lemma 4.9. Suppose W is a K1,2-regular graphon with t(K1,2,W)> 0. Then the following hold:

(a) Spec−(WK1,2)= ∅ if and only if

W(x, y)
(

dW(x)+ dW(y)
)

+U1(x, y)= 3

∫

d2W(z) dz, a.e. (x, y) ∈ [0, 1]2, (4.21)

where U1(x, y) is as defined in (4.14).

(b) σ 2
K1,2,W

= 0 if and only if
∫

{

dW(x)dW(y)+ dW(x)2
}

W(x, y)(1−W(x, y)) dx dy= 0. (4.22)

As a consequence, the limit of Zn(K1,2,W) in (4.2) is degenerate if and only if (4.21) and (4.22)
hold.

Proof. From (3.14) the 2-point conditional graphon induced by K1,2 is given by

WK1,2(x, y)=
1

2

{

W(x, y)
(

dW(x)+ dW(y)
)

+U1(x, y)
}

. (4.23)

Furthermore, (2.21) yields dWK1,2
= 6

4 t(K1,2,W)= 3
2

∫ 1
0 dW(x)2 dx. Hence, Proposition 4.1 shows

that Spec−(WK1,2)= ∅ if and only if (4.21) holds.
Furthermore, recalling (3.13) we have,

σ 2
K1,2,W = 2

[

t
(

K1,3,W
)

+ t(P3,W)− t
(

K+
1,3,W

)

− t
(

P+
3 ,W

)]

(4.24)
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where the graphs K1,3,K
+
1,3, P3 and P+

3 are as shown in Figure 4. By evaluating the densities in
(4.24), we obtain

σ 2
K1,2,W = 2

∫

{

dW(x)dW(y)+ dW(x)2
}

W(x, y)(1−W(x, y)) dx dy. (4.25)

This shows that σ 2
K1,2,W

= 0 equivalent to (4.22). �

The following theorem is the counterpart of Theorem 4.8 for K1,2 and shows that forH =K1,2,
and Theorem 2.9(1) or (2) will give a non-degenerate limit. By Lemma 4.7, Theorem 4.10 is equiv-
alent to the claim that wheneverW is K1,2-regular, (4.21) and (4.22) cannot occur simultaneously.
The proof of Theorem 4.10 is given in Section 8.

Theorem 4.10. Suppose W is a K1,2-regular graphon with t(K1,2,W)> 0 and W is not identically
1 a.e. Then, the limit of Zn(C4,W) in (4.2) is non-degenerate.

5. Proof of Theorem 2.9

Fix a graphon W ∈W0 and a non-empty simple graph H = (V(H), E(H)) with vertices labelled
V(H)= {1, 2, . . . , |V(H)|} and recall the definition of Xn(H,W) from (1.1). To express Xn(H,W)
as a generalised U-statistic note that

Xn(H,W)=
∑

1≤i1<···<i|V(H)|≤n

f (Ui1 , · · · ,Ui|V(H)| , Yi1i2 , · · · , Yi|V(H)|−1i|V(H)|) (5.1)

where GH := GH({1, 2, . . . , |V(H)|}) and

f (U1, · · · ,U|V(H)|, Y12, · · · , Y|V(H)|−1|V(H)|)=
∑

H′
∈GH

∏

(a,b)∈E(H′)

1 {Yab ≤W(Ua,Ub)} . (5.2)

This is exactly in the framework of generalised U-statistics considered in [22]. Therefore, we
can now orthogonally expand the function f as a sum over subgraphs of the complete graph as
explained in the section below.

5.1. Orthogonal Decomposition of Generalized U-Statistics

We recall some notations and definitions from [22]. Suppose {Ui : 1≤ i≤ n} and {Yij : 1≤ i< j≤
n} are i.i.d. sequences of U[0, 1] random variables. Denote by Kn the complete graph on the set
of vertices {1, 2, . . . , n} and let G= (V(G), E(G)) be a subgraph of Kn. Let FG be the σ -algebra
generated by the collections {Ui}i∈V(G) and {Yij}ij∈E(G) and let L2(G)= L2(FG) be the space of all
square integrable random variables that are functions of {Ui : i ∈V(G)} and {Yij : ij ∈ E(G)}. Now,
consider the following subspace of L2(G):

MG := {Z ∈ L2(G) :E[ZV]= 0 for every V ∈ L2(H) such that H ⊂G}. (5.3)

(For the empty graph, M∅ is the space of all constants.) Equivalently, Z ∈MG if and only if Z ∈
L2(G) and

E
[

Z | Xi, Yij : i ∈V(H), (i, j) ∈ E(H)
]

= 0, for all H ⊂G. (5.4)

Then, we have the orthogonal decomposition [22, Lemma 1]

L2(G)=
⊕

H⊆G

MH , (5.5)

that is, L2(G) is the orthogonal direct sum of MH for all subgraphs H ⊆G. This allows us to
decompose any function in L2(G) as the sum of its projections ontoMH forH ⊆G. For any closed
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subspaceM of L2(Kn), denote the orthogonal projection ontoM by PM . Then, in particular, for f
as in (5.2), we have the decomposition

f =
∑

H⊆G

fH , (5.6)

where fH = PMH f is the orthogonal projection of f ontoMH . Further, for 1≤ s≤ |V(H)|, define

f(s) :=
∑

H⊆G : |V(H)|=s

fH . (5.7)

The smallest positive d such that f(d) �= 0 is called the principal degree of f . The asymptotic dis-
tribution of Xn(H,W) depends on the principal degree of f and the geometry of the subgraphs
which appear in its decomposition.

For any graph G⊆Kn, the orthogonal projection onto L2(G)= L2(FG) equals the conditional
expectation E(· |FG), i.e.,

PL2(G) =E[· |FG]. (5.8)

Moreover, by (5.5), we have

PL2(G) =
∑

H⊆G

PMH . (5.9)

The equations (5.8)–(5.9) enable us to express any PMH as a linear combination of conditional
expectations. We will do this explicitly for the simplest cases in lemmas below.

5.2. Proof of Theorem 2.9(1)

Recall the definition of the function f from (5.2) and consider its decomposition as in (5.6). Then
(5.7) for s= 1 gives,

f(1) =

|V(H)|
∑

a=1

fK{a} , (5.10)

where K{a} is the graph with the single vertex a and fK{a} is the projection of f onto the spaceMK{a} ,
for 1≤ a≤ |V(H)|. We will calculate fK{a} using the following lemma, which we state for general
functions F.

Lemma 5.1. For 1≤ a≤ |V(H)|, and any F ∈ L2, the projection of F onto the space MK{a} is
given by

FK{a} =E [F |Ua]−E[F]. (5.11)

Proof. By (5.9) and (5.8),

FK{a} := PMK{a}
F = PL2(K{a})F − PM∅

F =E[F |Ua]−E[F]. (5.12)
�
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Applying Lemma 5.1 to f defined in (5.2), we obtain

fK{a} =
∑

H′
∈GH

E

⎡

⎣

∏

(b,c)∈E(H′)

1 {Ybc ≤W(Ub,Uc)}

∣

∣

∣

∣

∣

∣

Ua

⎤

⎦−E[f ]

=
∑

H′
∈GH

E

⎡

⎣

∏

(b,c)∈E(H′)

W(Ub,Uc)

∣

∣

∣

∣

∣

∣

Ua

⎤

⎦−E[f ]

=
∑

H′
∈GH

ta(Ua,H′,W)−E[f ], (5.13)

where the last step follows from the definition of the 1-point conditional homomorphism density
function (recall Definition 2.1). Then from (5.10),

f(1) =

|V(H)|
∑

a=1

⎛

⎝

∑

H′
∈GH

ta(Ua,H′,W)−E[f ]

⎞

⎠ . (5.14)

We now proceed to compute Var f(1).
For this, we need the following combinatorial identity.

Lemma 5.2. For the vertex join operation
⊕

a,b as in Definition 2.7 the following holds:

|GH|2
∑

1≤a,b≤|V(H)|

t

⎛

⎝H
⊕

a,b

H,W

⎞

⎠= |V(H)|2
∑

H1,H2∈GH

t

⎛

⎝H1

⊕

1,1

H2,W

⎞

⎠ . (5.15)

Proof. For any permutation φ :V(H)→V(H), we define the permuted graph
φ(H) := (φ(V(H)), φ(E(H))), where φ(V(H))= {φ(a) : 1≤ a≤ |V(H)|} and φ(E(H))=
{(φ(a), φ(b)) : (a, b) ∈ E(H)}.

First, fix (a, b) ∈V(H)2 and consider two permutations, φa :V(H)→V(H) and φb :V(H)→
V(H) such that φa(a)= φb(b)= 1. Then

∑

1≤a,b≤|V(H)|

∑

H1,H2∈GH

t

⎛

⎝H1

⊕

a,b

H2,W

⎞

⎠=
∑

1≤a,b≤|V(H)|

∑

H1,H2∈GH

t

⎛

⎝φa(H1)
⊕

1,1

φb(H2),W

⎞

⎠

=
∑

1≤a,b≤|V(H)|

∑

H1,H2∈GH

t

⎛

⎝H1

⊕

1,1

H2,W

⎞

⎠

= |V(H)|2
∑

H1,H2∈GH

t

⎛

⎝H1

⊕

1,1

H2,W

⎞

⎠ , (5.16)

where the second equality follows, since the map (H1,H2)→ (φa(H1), φb(H2)) is a bijection from
G

2
H to G

2
H , for all 1≤ a, b≤ |V(H)|.

Next, fixH1,H2 ∈ GH . Then consider isomorphisms φ1, φ2 :V(H)→V(H) such that φ1(H1)=
H and φ2(H2)=H. Thus,
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∑

H1,H2∈GH

∑

1≤a,b≤|V(H)|

t

⎛

⎝H1

⊕

a,b

H2,W

⎞

⎠=
∑

H1,H2∈GH

∑

1≤a,b≤|V(H)|

t

⎛

⎝H
⊕

φ1(a),φ2(b)

H,W

⎞

⎠

=
∑

H1,H2∈GH

∑

1≤a,b≤|V(H)|

t

⎛

⎝H
⊕

a,b

H,W

⎞

⎠

= |GH|2
∑

1≤a,b≤|V(H)|

t

⎛

⎝H
⊕

a,b

H,W

⎞

⎠ . (5.17)

Here, the second equality follows since (a, b)→ (φ1(a), φ2(b)) is a bijection fromV(H)2 toV(H)2.
Combining (5.16) and (5.17) the identity in (5.15) follows. �

Lemma 5.3.

Var [f(1)]= |V(H)||GH|2

⎧

⎨

⎩

1

|V(H)|2

∑

1≤a,b≤|V(H)|

t

⎛

⎝H
⊕

a,b

H,W

⎞

⎠− t(H,W)2

⎫

⎬

⎭

=
|V(H)|! (|V(H)| − 1)!

|Aut(H)|2

⎧

⎨

⎩

∑

1≤a,b≤|V(H)|

t

⎛

⎝H
⊕

a,b

H,W

⎞

⎠− |V(H)|2t(H,W)2

⎫

⎬

⎭

.

(5.18)

Proof. Recalling (5.14) gives, since the terms in the outer sum there are independent,

Var[f(1)]=
|V(H)|
∑

a=1

Var

⎡

⎣

∑

H′
∈GH

ta(Ua,H′,W)

⎤

⎦ . (5.19)

Consider the term corresponding to a= 1 in the sum above. For any H1,H2 ∈ GH ,

E [t1(U1,H1,W)t1(U1,H2,W)]= t

⎛

⎝H1

⊕

1,1

H2,W

⎞

⎠ . (5.20)

Hence,

Var

⎡

⎣

∑

H′
∈GH

t1(U1,H′,W)

⎤

⎦=
∑

H1,H2∈GH

Cov [t1(U1,H1,W), t1(U1,H2,W)]

=
∑

H1,H2∈GH

⎛

⎝t

⎛

⎝H1

⊕

1,1

H2,W

⎞

⎠− t(H,W)2

⎞

⎠ . (5.21)

Now, an argument similar to Lemma 5.2 shows that

∑

H′
∈GH

ta(x,H′,W)=
∑

H′
∈GH

tb(x,H
′,W), (5.22)
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for all x ∈ [0, 1] and 1≤ a, b≤ |V(H)|. Hence, (5.19) and (5.21) imply

Var[f(1)]= |V(H)|
∑

H1,H2∈GH

⎛

⎝t

⎛

⎝H1

⊕

1,1

H2,W

⎞

⎠− t(H,W)2

⎞

⎠ , (5.23)

and the result follows by Lemma 5.2, using (2.7) for the second equality. �

Note that Ef(1) = 0 by (5.7). Hence, Var f(1) = 0 if and only if f(1) = 0 a.s.

Lemma 5.4. Var f(1) = 0 if and only if W is H-regular.

Proof. Lemma 5.3 shows that Var[f(1)] is zero if and only if

1

|V(H)|2

∑

1≤a,b≤|V(H)|

t

⎛

⎝H
⊕

a,b

,W

⎞

⎠= t(H,W)2. (5.24)

Now observe,

∑

1≤a,b≤|V(H)|

t

⎛

⎝H
⊕

a,b

H,W

⎞

⎠=
∑

1≤a,b≤|V(H)|

∫

ta(x,H,W)tb(x,H,W) dx

=

∫

⎛

⎝

∑

1≤a≤|V(H)|

ta(x,H,W)

⎞

⎠

2

dx. (5.25)

Thus (5.24) becomes, using also (2.11),

∫

⎛

⎝

∑

1≤a≤|V(H)|

ta(x,H,W)

⎞

⎠

2

dx−

⎛

⎝

∫

∑

1≤a≤|V(H)|

ta(x,H,W)

⎞

⎠

2

dx= 0, (5.26)

which is equivalent to Var[�(U)]= 0, where we define

�(x) :=
∑

1≤a≤|V(H)|

ta(x,H,W) (5.27)

and let U ∼Uniform [0, 1]. Hence, Var[f(1)]= 0 if and only if �(U) is constant a.s. Therefore,
since E�(U)= |V(H)|t(H,W), we see that Var[f(1)]= 0 if and only if

1

|V(H)|

∑

1≤a≤|V(H)|

ta(x,H,W)= t(H,W) for almost every x ∈ [0, 1]. (5.28)

By Definition 2.2, (5.28) says thatW is H-regular. �

Proof of Theorem 2.9(1). Lemma 5.4 shows that ifW is not H-regular, then the principal degree
of f is 1. Thus, [22, Theorem 1] yields

Xn(H,W)−
(n)|V(H)|
|Aut(H)| t(H,W)

n|V(H)|− 1
2

D
→ N(0, τ 2), (5.29)

where using also (5.18) and (2.24),

τ 2 =
1

|V(H)|! (|V(H)| − 1)!
Var[f(1)]= τ 2H,W . (5.30)

This completes the proof of Theorem 2.9(1) whenW is not H-regular.
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In fact, (5.29)–(5.30) hold also when W is H-regular, with f(1) = 0 and τ 2 = 0. Although this
case is not included in the statement of [22, Theorem 1], it follows by its proof, as a consequence
of [22, Lemma 2]; see also [20, Corollary 11.36]. Consequently, Theorem 2.9(1) holds for any
W ∈W0. �

5.3. Proof of Theorem 2.9(2)

In this case,W isH-regular, hence f(1) ≡ 0 by Lemma 5.4. Therefore, we consider f(2) (recall (5.7)),
which can be written as

f(2) =
∑

1≤a<b≤|V(H)|

(

fE{a,b} + fK{a,b}

)

, (5.31)

where E{a,b} = ({a, b}, ∅) is the graph with two vertices a and b and no edges, and K{a,b} =
({a, b}, {(a, b)}) is the complete graph with vertices a and b. As for f(1), we have Ef(2) = 0, and
thus Var f(2) = 0 ⇐⇒ f(2) = 0 a.s.

If Var f(2) �= 0, then f has principal degree 2, and we can apply [22, Theorem 2], which shows
that

Xn(H,W)−
(n)|V(H)|
|Aut(H)| t(H,W)

n|V(H)|−1

D
→ σZ +

∑

λ∈�

λ(Z2
λ − 1), (5.32)

where Z and {Zλ}λ∈� are independent standard Gaussians,

σ 2 =
1

2(|V(H)− 2)!2
E
[

f 2K{1,2}

]

(5.33)

and � is the multiset of (non-zero) eigenvalues of a certain integral operator T.
Moreover, if Var f(2) = 0, so f(2) = 0 a.s., then the conclusion of [22, Theorem 2] still holds

(with a trivial limit 0), again as a consequence of [22, Lemma 2]. (See also the more general
[20, Theorem 11.35].) Hence, (5.32) holds in any case.

It remains to show that σ 2 = σ 2
H,W in (2.26), and that � equals Spec−(WH); then (5.32) yields

(2.25). We begin by finding fE{a,b} and fK{a,b} .

Lemma 5.5. For 1≤ a< b≤ |V(H)| and any F ∈ L2, the projection of f onto the space ME{a,b} is

given by

FE{a,b} =E [F |Ua,Ub]−E[F |Ua]−E[F |Ub]+E[F]. (5.34)

Proof. By (5.9),

FE{a,b} := PME{a,b}
F = PL2(E{a,b})F − PMK{a}

F − PMK{b}
F − PM∅

F

= PL2(E{a,b})F − PL2(K{a})F − PL2(K{b})F + PM∅
F (5.35)

and the result follows by (5.8). �

Lemma 5.6. For 1≤ a< b≤ |V(H)| and any F ∈ L2, the projection of f onto the space MK{a,b} is

given by

FK{a,b} =E [F |Ua,Ub, Yab]−E [F |Ua,Ub] . (5.36)
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Proof. The subgraphs of K{a,b} are E{a,b}, K{a}, K{b} and ∅, and thus (5.9) yields

FK{a,b} := PMK{a,b}
F = PL2(K{a,b})F − PME{a,b}

F − PMK{a}
F − PMK{b}

F − PM∅
F

= PL2(K{a,b})F − PL2(E{a,b})F, (5.37)

and the result follows by (5.8). �

Specialising to f defined in (5.2), we found fK{a} =E[f |Ua]−Ef in (5.13). Furthermore, the
same argument yields, recalling (2.9) and (4.4),

E[f |Ua,Ub]=
∑

H′
∈GH

ta,b(Ua,Ub,H
′,W) (5.38)

and

E[f |Ua,Ub, Yab]=
∑

H′
∈GH

t−
a,b(Ua,Ub,H

′,W)Z
H′,{a,b}(Yab,Ua,Ub), (5.39)

where

Z
H′,{a,b}(Yab,Ua,Ub) :=

{

1{Yab ≤W(Ua,Ub)} if (a, b) ∈ E(H′),

1 otherwise.
(5.40)

Let also

W
H′,{a,b}(x, y) :=

{

W(x, y) if (a, b) ∈ E(H′),

1 otherwise,
(5.41)

and GH,{a,b} := {H′ ∈ GH : (a, b) ∈ E(H′)}. Then, (5.36), (5.38) and (5.39) yield, using also (4.5),

fK{a,b} =
∑

H′
∈GH

t−
a,b(Ua,Ub,H

′,W)
(

Z
H′,{a,b}(Yab,Ua,Ub)−W

H′,{a,b}(Ua,Ub)
)

=
∑

H′
∈GH,{a,b}

t−
a,b(Ua,Ub,H

′,W)
(

1{Yab ≤W(Ua,Ub)} −W(Ua,Ub)
)

. (5.42)

To compute the variance of fK{1,2} , we recall the notions of weak and strong edge joins
from Definition 2.7 and introduce a few definitions. Let (VH)2 := {(a, b) ∈V(H)2 : a �= b}. For
(a, b), (c, d) ∈ (VH)2 define

t

(

H1 �
(a,b),(c,d)

H2,W

)

= t

(

H1 �
(a,b),(c,d)

H2,W

)

1{(a, b) ∈ E+(H1) and (c, d) ∈ E+(H2)} (5.43)

and similarly,

t

⎛

⎝H1

⊕

(a,b),(c,d)

H2,W

⎞

⎠= t

⎛

⎝H1

⊕

(a,b),(c,d)

H2,W

⎞

⎠ 1{(a, b) ∈ E+(H1) and (c, d) ∈ E+(H2)}.

(5.44)

Then we have the following identities, similar to Lemma 5.2:

Lemma 5.7. Let (VH)2 be as defined above, and let KH := |(VH)2|2 = |V(H)|2(|V(H)| − 1)2. Then

KH

∑

H1,H2∈GH

t

(

H1 �
(1,2),(1,2)

H2,W

)

= |GH|2
∑

(a,b),(c,d)∈(VH)2

t

(

H �
(a,b),(c,d)

H,W

)

. (5.45)
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and, similarly,

KH

∑

H1,H2∈GH

t

⎛

⎝H1

⊕

(1,2),(1,2)

H2,W

⎞

⎠= |GH|2
∑

(a,b),(c,d)∈(VH)2

t

⎛

⎝H
⊕

(a,b),(c,d)

H,W

⎞

⎠ . (5.46)

Proof. We will first show that
∑

(a,b),(c,d)∈(VH)2

∑

H1,H2∈GH

t

(

H1 �
(a,b),(c,d)

H2,W

)

=KH

∑

H1,H2∈GH

t

(

H1 �
(1,2),(1,2)

H2,W

)

. (5.47)

For this consider permutations φ(a,b), φ(c,d) :V(H)→V(H) such that φ(a,b)(a)= 1 and
φ(a,b)(b)= 2 and φ(c,d)(c)= 1 and φ(c,d)(d)= 2. Then

∑

(a,b),(c,d)∈(VH)2

∑

H1,H2∈GH

t

(

H1 �
(a,b),(c,d)

H2,W

)

=
∑

(VH)2×V2
H

∑

G 2
H

t

(

φ(a,b)(H1) �
(1,2),(1,2)

φ(c,d)(H2),W

)

=KH

∑

G 2
H

t

(

H1 �
(1,2),(1,2)

H2,W

)

, (5.48)

where the last equality follows from the observation that (H1,H2)→ (φ(a,b)(H1), φ(c,d)(H2)) is an
bijection from G

2
H to G

2
H , for all (a, b), (c, d) ∈ (VH)2.

Now by considering isomorphisms φ1 and φ2 such that φ1(H1)=H and φ2(H2)=H, a similar
argument as above shows that

∑

(a,b),(c,d)∈(VH)2

∑

H1,H2∈GH

t

(

H1 �
(a,b),(c,d)

H2,W

)

= |GH|2
∑

(a,b),(c,d)∈(VH)2

t

(

H �
(a,b),(c,d)

H,W

)

.

(5.49)

Combining (5.47) and (5.49) yields the identity (5.45). The identity (5.46) follows by the same
proof with only notational differences. �

With the above definitions and identities we now proceed to compute the variance of fK{1,2} .

Lemma 5.8. We have

Var [fK{1,2}]=
(|V(H)| − 2)!2

|Aut(H)|2

∑

(a,b),(c,d)∈E+(H)

⎛

⎝t

(

H �
(a,b),(c,d)

H,W

)

− t

⎛

⎝H
⊕

(a,b),(c,d)

H,W

⎞

⎠

⎞

⎠ .

(5.50)

Proof. We specialise (5.42) to (a, b)= (1, 2) and write for convenience

h(U1,U2,H1,H2,W) := t−1,2(U1,U2,H1,W) t−1,2(U1,U2,H2,W). (5.51)

This yields,

E[f 2K{1,2}
]=

∑

H1,H2∈GH,{1,2}

E

[

h(U1,U2,H1,H2,W)
(

1{Y12 ≤W(U1,U2)} −W(U1,U2)
)2
]

=
∑

H1,H2∈GH,{1,2}

E
[

h(U1,U2,H1,H2,W)W(U1,U2)(1−W(U1,U2))
]

=
∑

H1,H2∈GH,{1,2}

⎛

⎝t

(

H1 �
(1,2),(1,2)

H2,W

)

− t

⎛

⎝H1

⊕

(1,2),(1,2)

H2,W

⎞

⎠

⎞

⎠ . (5.52)
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Now, using the notations introduced in (5.43) and (5.44), the identity (5.52) can be written as

E[f 2K{1,2}
]=

∑

H1,H2∈GH

⎛

⎝t

(

H1 �
(1,2),(1,2)

H2,W

)

− t

⎛

⎝H1

⊕

(1,2),(1,2)

H2,W

⎞

⎠

⎞

⎠

=
(|V(H)| − 2)!2

|Aut(H)|2

∑

(a,b),(c,d)∈(VH)2

⎛

⎝t

(

H �
(a,b),(c,d)

H,W

)

− t

⎛

⎝H
⊕

(a,b),(c,d)

H,W

⎞

⎠

⎞

⎠

=
(|V(H)| − 2)!2

|Aut(H)|2

∑

(a,b),(c,d)∈E+(H)

⎛

⎝t

(

H �
(a,b),(c,d)

H,W

)

− t

⎛

⎝H
⊕

(a,b),(c,d)

H,W

⎞

⎠

⎞

⎠ ,

(5.53)

where the second equality uses the identities from Lemma 5.7 and (2.7), and the third
equality follows from the definitions in (5.43) and (5.44). This yields the result (5.50), since
EfK{a,b} = 0. �

Lemma 5.8 and (5.33) show that

σ 2 = σ 2
H,W , (5.54)

as defined in (2.26).
Next, we compute the Hilbert–Schmidt operator T as defined in [22, Theorem 2]. Note first

that in our case this operator is defined on the space MK{1} . Recall that MK{1} ⊂ L2(K{1}), where
L2(K{1}) is the space of all square integrable random variables of the form g(U1). We may identify
L2(K{1}) and L2[0, 1], and then (5.5) yields the orthogonal decomposition

L2[0, 1]=MK{1}

⊕

M∅, (5.55)

where M∅ is the one-dimensional space of all constants. Hence, MK{1} is identified with the

subspace of L2[0, 1] orthogonal to constants, i.e.,MK{1} = {g ∈ L2[0, 1] :
∫ 1
0 g = 0}.

Then, taking g, h ∈MK{1} ⊂ L2[0, 1], the definitions given in [22, Theorem 2] yield

〈Tg, h〉 =
1

2(|V(H)| − 2)!
E
[

fg(U1)h(U2)
]

. (5.56)

Recall the operator TWH defined on L2[0, 1] by (2.15) and (2.19).

Lemma 5.9. If W is H-regular, then the operator T on MK{1} defined in (5.56) equals the operator
TWH restricted to the space MK{1} . Moreover, then the multiset of non-zero eigenvalues of T is equal

to Spec−(WH).

Proof. Wemay replace f by E[f |U1,U2] in (5.56), which by (5.38) yields

〈Tg, h〉 =
1

2(|V(H)| − 2)!
E
[

E[f |U1,U2]g(U1)h(U2)
]

=
1

2(|V(H)| − 2)!
E

⎡

⎣

∑

H′
∈GH

t1,2(U1,U2,H′,W)g(U1)h(U2)

⎤

⎦

=

〈

1

2(|V(H)| − 2)!

∫

∑

H′
∈GH

t1,2(x, ·,H′,W)g(x)dx, h( · )

〉

. (5.57)
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Denote by S|V(H)| the set of all |V(H)|! permutations of V(H). Then it is easy to observe that
∑

φ∈S|V(H)|

t1,2(x, y, φ(H),W)= |Aut(H)|
∑

H′
∈GH

t1,2(x, y,H′,W). (5.58)

Also,
∑

φ∈S|V(H)|

t1,2(x, y, φ(H),W)=
∑

1≤a �=b≤|V(H)|

∑

φ∈S|V(H)|
φ(a)=1,φ(b)=2

t1,2(x, y, φ(H),W)

=
∑

1≤a �=b≤|V(H)|

∑

φ∈S|V(H)|
φ(a)=1,φ(b)=2

tφ−1(1)φ−1(2)(x, y,H,W)

=
∑

1≤a �=b≤|V(H)|

∑

φ∈S|V(H)|
φ(a)=1,φ(b)=2

ta,b(x, y,H,W)

= (|V(H)| − 2)!
∑

1≤a �=b≤|V(H)|

ta,b(x, y,H,W) (5.59)

Combining (5.58) and (5.59), we have, recalling (2.19),

1

2(|V(H)| − 2)!

∑

H′
∈GH

t1,2(x, y,H′,W)=
1

2|Aut(H)|

∑

1≤a �=b≤|V(H)|

ta,b(x, y,H,W)=WH(x, y).

(5.60)

Consequently, combining (5.57), (5.60) and (2.15), we obtain

〈Tg, h〉 = 〈TWHg, h〉, g, h ∈MK{1} . (5.61)

Furthermore, sinceW is H-regular,WH is degree regular and (2.21) shows that

TWH1= dWH = dWH · 1. (5.62)

Hence, TWH maps the spaceM∅ of constant functions into itself. By (5.55),MK{1} is the orthogonal
complement ofM∅, and thus, since TWH is a symmetric operator, TWH also mapsMK{1} into itself.
Hence, both T and TWH mapMK{1} into itself, and thus (5.61) shows that T = TWH onMK{1} .

Finally, recall that � in (5.32) is the multiset of non-zero eigenvalues of T, which we just have
shown equals the multiset of eigenvalues of TWH on MK{1} . Moreover, on M∅, TWH has the sin-
gle eigenvalue dWH by (5.62). Hence, Spec(WH)= � ∪ {dH}, and thus Spec−(WH)= � by the
definition after (2.21). �

Proof of Theorem 2.9(2). The result now follows by (5.32), (5.54), and Lemma 5.9. �

5.4. Higher Order Limits

In the case where the limit in Theorem 2.9(2) is degenerate (as in Example 4.6), the function
f in (5.2) has principal degree d > 2. In this case, [22, Theorem 3] shows that (Xn(H,W)−
EXn(H,W))/n|V(H)|−d/2 has a (non-degenerate) limit distribution, which can be expressed as
a polynomial of degree d in (possibly infinitely many) independent standard Gaussian vari-
ables. The expression in [22, Theorem 3] uses Wick products of Gaussian variables; these can be
expressed using Hermite polynomials, see [20, Theorems 3.19 and 3.21]. One simple illustration
(with d = 4) is given in Example 4.6. This leads to the following natural open questions:

Problem 5.10. For which graphs H can such higher order limits (i.e., with d ≥ 3) occur?
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Problem 5.11. Is it possible to have arbitrarily high-order principal degree d?

6. Proof of Theorem 4.3

It is obvious from (4.6) that if W is random-free, then σ 2
H,W = 0. For the converse, suppose that

W is not random-free. Then the set P := {(x, y) ∈ [0, 1]2:0<W(x, y)< 1} has |P| > 0, where | · |
denotes the Lebesgue measure. Let (x0, y0) be a Lebesgue point of P. Then we can find intervals
I and J containing x0 and y0, respectively, such that |P

⋂

(I × J)| > (1− ε)|I × J| (ε > 0 to be
chosen later). Define,

Px :=
{

y ∈ J : (x, y) ∈ P
}

and I′ := {x ∈ I:|Px| > (1− δ)|J|} , (6.1)

where δ > 0 will be chosen later. Then,

δ|J|
∣

∣I \ I′
∣

∣≤

∫

I\I′
|J \ Px| dx≤

∫

I
|J \ Px| dx=

∫

I
|J| dx−

∫

I
|Px| dx

= |I||J| −

∫

I

∫

Px

dz dx

= |I||J| − |P
⋂

(I × J) |

< ε |I × J| = ε|I||J|. (6.2)

This implies,
∣

∣I \ I′
∣

∣≤
ε

δ
|I|. (6.3)

Similarly, defining Py := {x ∈ I : (x, y) ∈ P} and J′ := {y ∈ J : |Py| > (1− δ)|I|} we have,
∣

∣J \ J′
∣

∣≤
ε

δ
|J|. (6.4)

Next, fix a< b ∈V(H) such that (a, b) ∈ E(H). Suppose H has bipartition (A, B) and without
loss of generality consider a ∈A and b ∈ B. Then from (4.6) it follows that,

σ 2
H,W ≥ cH

∫

[0,1]2
t−
a,b(x, y,H,W)2W(x, y)(1−W(x, y)) dx dy. (6.5)

Define,

S :=

{

z−(a,b) := (z1, · · · , za−1, za+1, · · · , zb−1, zb+1, · · · , z|V(H)|)

: zv ∈ I if v ∈A\{a} and zv ∈ J if v ∈ B\{b}

}

. (6.6)

and

t−
a,b(z−(a,b), x, y,H,W)=

∏

r∈NH(a)\{b}

W(x, zr)
∏

s∈NH(b)\{a}

W(y, zs)
∏

(r,s)∈E(H\{a,b})

W(zr, zs). (6.7)

Note that
∫

[0,1]|V(H)|−2
t−
a,b(z−(a,b), x, y,H,W)

∏

r/∈{a,b}

dzr = t−
a,b(x, y,H,W). (6.8)
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It is easy to see that |S| = |I||A|−1|J||B|−1. Now, fix (x, y) ∈ I′ × J′. Then

Q0 :=
∣

∣

∣

{

z−(a,b) ∈ S : t−
a,b(z−(a,b), x, y,H,W)= 0

}∣

∣

∣
≤ T1 + T2 + T3, (6.9)

where

T1 :=
∑

r∈NH(a)\{b}

∣

∣

{

z−(a,b) ∈ S :W(x, zr)= 0
}∣

∣ , (6.10)

T2 :=
∑

s∈NH(b)\{a}

∣

∣

{

z−(a,b) ∈ S :W(y, zs)= 0
}∣

∣ , (6.11)

T3 :=
∑

(r,s)∈E(H\{a,b})

∣

∣

{

z−(a,b) ∈ S :W(zr , zs)= 0
}∣

∣ . (6.12)

Let us now look at each term separately. We begin with T1. Note that for r ∈NH(a)\{b},
∣

∣

{

z−(a,b) ∈ S :W(x, zr)= 0
}∣

∣= |{zr ∈ J :W(x, zr)= 0}| |I||A|−1|J||B|−2

≤ |J \ Px| |I|
|A|−1|J||B|−2

< δ|I||A|−1|J||B|−1 (6.13)

where the last inequality follows from our assumption x ∈ I′ and (6.1). This implies,

T1 < (da − 1)δ|I||A|−1|J||B|−1, (6.14)

where da is the degree of the vertex a in H. Similarly,

T2 < (db − 1)δ|I||A|−1|J||B|−1. (6.15)

Finally, consider T3. Suppose (r, s) ∈ E(H\{a, b}) and assume without loss of generality r ∈A and
s ∈ B. Then,

∣

∣

{

z−(a,b) ∈ S :W(zr , zs)= 0
}∣

∣= |{zr ∈ I, zs ∈ J :W(zr , zs)= 0}| |I||A|−2|J||B|−2

≤
∣

∣

∣(I × J) \
(

P
⋂

(I × J)
)∣

∣

∣
|I||A|−2|J||B|−2

< ε|I × J||I||A|−2|J||B|−2

= ε|I||A|−1|J||B|−1. (6.16)

This implies,

T3 ≤ (|E(H)| − da − db + 1)ε|I||A|−1|J||B|−1. (6.17)

Combining (6.14), (6.15), and (6.17) with (6.9) gives,

Q0 ≤
[(

da + db − 2
)

δ +
(

E(H)− da − db + 1
)

ε
]

|I||A|−1|J||B|−1

< 2 |E(H)| (δ + ε)|I||A|−1|J||B|−1. (6.18)

Choosing δ = 10ε and ε < 1
100|E(H)| gives |E(H)|(δ + ε)|I||A|−1|J||B|−1 < |I||A|−1|J||B|−1. Thus,

Q0 < |I||A|−1|J||B|−1, (6.19)
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and hence, |S\Q0| > 0. This implies, recalling (6.8),

t−
a,b(x, y,H,W)=

∫

[0,1]|V(H)|−2
t−
a,b(z−(a,b), x, y,H,W)

∏

r/∈{a,b}

dzr

≥

∫

S\Q0

t−
a,b(z−(a,b), x, y,H,W)

∏

r/∈{a,b}

dzr > 0, (6.20)

since t−
a,b(z−(a,b), x, y,H,W)> 0 on S\Q0. Recall that (x, y) ∈ I′ × J′ was chosen arbitrarily; hence

(6.20) is true for all (x, y) ∈ I′ × J′. Further observe that

I′ × J′ ⊆
{

P
⋂

(

I′ × J′
)

}

⋃

{

(I × J) \
(

P
⋂

(I × J)
)}

, (6.21)

implying
∣

∣

∣
P
⋂

(

I′ × J′
)

∣

∣

∣
≥ |I′||J′| −

∣

∣

∣(I × J) \
(

P
⋂

(I × J)
)
∣

∣

∣

≥ |I′||J′| − ε|I||J| (by (6.3) and (6.4))

≥

(

(

1−
ε

δ

)2
− ε

)

|I||J|

= (0.81− ε) |I||J| > 0.

Therefore, recalling (6.5)

σ 2
H,W ≥ cH

∫

P
⋂

(

I′×J′
)
t−
a,b(x, y,H,W)2W(x, y)(1−W(x, y)) dx dy

> 0, (6.22)

since by (6.20) and the definition of the set P, t−
a,b(x, y,H,W)2W(x, y)(1−W(x, y))> 0 for all

(x, y) ∈ P
⋂

(I′ × J′). This shows that if σ 2
H,W = 0 thenW is random-free.

We conclude this section with an example (which generalises the construction in [17, Figure 1]
for triangles to general cliques) illustrating that Theorem 4.3 does not hold if the bipartite
assumption is dropped (as mentioned in Remark 4.4).

Example 6.1. SupposeH =Kr is the r-clique, for r ≥ 3. Partition [0, 1] into 2r intervals of measure
1
2r each. Denote the first r sets by I1, I2, . . . , Ir and the next r sets by J1, J2, . . . , Jr . Consider the
following graphon:

W(x, y)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 for (x, y) ∈ (Ia × Ib) such that 1≤ a �= b≤ r,

1 for (x, y) ∈ (Ja × Jb) such that 1≤ a �= b≤ r,

1
2 for (x, y) ∈ (I1 × J1)∪ (J1 × I1),

0 otherwise.

(6.23)

In other words, W is obtained by taking 2 disjoint graphon representations of Kr (which
corresponds to the complete r-partite graphon) inside [0, 12 ]

2 and [ 12 , 1]
2, respectively, and con-

necting the edges between the sets I1 and J1 with probability 1
2 . Note that t(Kr ,W)> 0. Denote
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R := (I1 × J1)∪ (J1 × I1). By (4.6),

σ 2
H,W =

cKr

4

∑

1≤a �=b≤r
1≤a �=b≤r

∫

R
t−
a,b(x, y,Kr ,W)t−

c,d(x, y,Kr ,W) dx dy. (6.24)

Next, fix 1≤ a �= b≤ r. If (x, y) ∈ R, then, using the notation (6.7),

t−
a,b(z−(a,b), x, y,Kr ,W)= 0, (6.25)

for all z−(a,b) ∈ [0, 1]r−2. Hence, for every (x, y) ∈ R, we have t−
a,b(x, y,H,W)= 0 by (6.8).

Consequently, it follows from (6.24) that σ 2
H,W = 0. (In fact, i1, . . . , ir can form an r-clique in

G(n,W) only if Ui1 , . . . ,Uir all belong to either
⋃

a Ia or
⋃

a Ja; hence, the value of W on I1 × J1
does not matter for Xn(Kr ,W).) Moreover, (6.25) also implies that t(x,Kr ,W) is constant a.e., that
is,W is Kr-regular.

7. Proof of Theorem 4.8

In the proof we will consider many equations or other relations that hold a.e. in [0, 1] or [0, 1]2.
For this we use the notation that, for example, S(4.15) denotes the set of all (x, y) ∈ [0, 1]2 such
that the equation in (4.15) holds, and S(4.15) denotes {x ∈ [0, 1] : (x, y) ∈ S(4.15) for a.e. y ∈ [0, 1]}.

We use this notation only for sets S(·) with full measure in [0, 1]2; note that then, by a standard
application of Fubini’s theorem, S(·) has full measure in [0, 1], that is, x ∈ S(·) for a.e. x ∈ [0, 1].
Similarly, for relations with a single variable, we let, for example, S(7.3) be the set of x ∈ [0, 1] such
that the inequality in (7.3) holds.

We tacitly assume x, y, z ∈ [0, 1] throughout the proof. However, for notational convenience,

we may write integrals with limits that might be outside [0, 1];
∫ b
a should always be interpreted as

∫

[a,b]∩[0,1].
For all x ∈ [0, 1], defineWx : [0, 1]→ [0, 1] as

Wx(y) := W(x, y). (7.1)

We regardWx as an element of L2[0, 1]. Note that this means, in particular, thatWx =Wy means
W(x, z)=W(y, z) for a.e. z. Since W(x, y) is measurable and bounded, it is well known that
the mapping x �→Wx is a measurable, and (Bochner) integrable, map [0, 1]→ L2[0, 1], see [15,
Lemma III.11.16(b)]. The Lebesgue differentiation theorem holds for Bochner integrable Banach
space value functions, see [6, §5.V]; hence, a.e. x ∈ [0, 1] is a Lebesgue point of x �→Wx. We will
use ‖ · ‖2 and 〈·, ·〉 for the norm and inner product in L2[0, 1].

We will denote t := t(C4,W). Suppose (to obtain a contradiction) that t > 0, W �≡ 1, but that
the limit in (4.2) is degenerate, that is, Spec−(WC4)= ∅ and σ 2

C4.W
= 0. Then (4.15) and (4.16)

both hold by Lemma 4.7, andW is random-free by Theorem 4.3, that is,

W(x, y) ∈ {0, 1}, a.e. x, y. (7.2)

We now separate the proof of the theorem into a sequence of claims.

Claim 7.1. For a.e. x ∈ [0, 1] and Wx as defined in (7.1),

‖Wx‖2 ≤ (3t)1/4. (7.3)

Proof. By (4.14) and (4.15), for a.e. (x, y),

〈Wx,Wy〉 =U1(x, y)≤ (3t)1/2. (7.4)
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In particular, if x ∈ S(7.4), then for every δ > 0,
〈

Wx,
1

2δ

∫ x+δ

x−δ

Wy dy

〉

=
1

2δ

∫ x+δ

x−δ

〈Wx,Wy〉 dy≤ (3t)1/2. (7.5)

If, furthermore, x is a Lebesgue point of x �→Wx, then it follows by letting δ → 0 that ‖Wx‖
2
2 ≤

(3t)1/2. �

Claim 7.2. For a.e. (x, y) ∈ [0, 1]2,

W(x, y)= 0 =⇒ Wx =Wy in L2[0, 1] and ‖Wx‖2 = ‖Wy‖2 = (3t)1/4. (7.6)

Proof. By (4.14) and (4.15), if (x, y) ∈ S(4.15) andW(x, y)= 0, then

〈Wx,Wy〉 =U1(x, y)= (3t)1/2. (7.7)

If, furthermore, x, y ∈ S(7.3), then the Cauchy–Schwarz inequality yields

(3t)1/2 = 〈Wx,Wy〉 ≤ ‖Wx‖2‖Wy‖2 ≤ (3t)1/2. (7.8)

Hence, we must have equalities, and thus ‖Wx‖2 = ‖Wy‖2 = (3t)1/4; moreover, equality in the
Cauchy–Schwarz inequality impliesWx =Wy. �

Claim 7.3. We have (3t)1/2 < 1.

Proof. Let Z := {(x, y) :W(x, y)= 0} and Z′ := Z ∩ S(7.6). By (7.2) and the assumption that W
is not a.e. 1, we have |Z′| = |Z| > 0. For x ∈ [0, 1], let Z′

x := {y:(x, y) ∈ Z′}. By Fubini’s theorem,
∫ 1
0 |Z′

x| dx= |Z′| > 0, and thus there exists x such that |Z′
x| > 0. Fix one such x. Then there exists

y ∈ Z′
x, and thus (x, y) ∈ Z′ = Z ∩ S(7.6). Consequently, (7.6) applies and yields ‖Wx‖2 = (3t)1/4.

Furthermore,W(x, y)= 0 for all y ∈ Z′
x, and thus

(3t)1/2 = ‖Wx‖
2
2 =

∫ 1

0
W(x, y)2 dy≤ 1− |Z′

x| < 1. (7.9)

�

Claim 7.4. For a.e. x ∈ [0, 1],

‖Wx‖2 = (3t)1/4 < 1. (7.10)

Proof. Suppose x ∈ S(7.2) ∩ S(7.3). Then, using Claim 7.3,

|{y :W(x, y)> 0}| = |{y :W(x, y)= 1}| =

∫ 1

0
W(x, y)2 dy= ‖Wx‖

2
2 ≤ (3t)1/2 < 1. (7.11)

If, furthermore, x ∈ S(7.6), this implies that there exists y such thatW(x, y)= 0 and (x, y) ∈ S(7.6),
and thus, in particular, ‖Wx‖2 = (3t)1/4. The result (7.10) follows by Claim 7.3. �

Claim 7.5. For a.e. (x, y),

W(x, y)= 1 =⇒ U2(x, y)> 0. (7.12)

Proof. Let

L1 := {(x, y) ∈ (0, 1)2 : y is a Lebegue point of y �→W(x, y)}. (7.13)

Then L1 is measurable. To see this observe that

L1 =
{

(x, y) ∈ (0, 1)2 : lim
n→∞

fn(x, y)= 0
}

, (7.14)

where

fn(x, y) :=
n

2

∫ 1/n

−1/n
|W(x, y+ t)−W(x, y)| dt. (7.15)
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Since {fn : n≥ 1} is a sequence of measurable functions, their limsup is also measurable, which
implies L1 is measurable. Also, for any given x, we have (x, y) ∈ L1 for a.e. y. Hence, by Fubini’s
theorem, we have |L1| = 1, that is, a.e. (x, y) ∈ L1. Now, assume that (x, y) ∈ L1, (y, x) ∈ L1 and that
(x, y) is a Lebesgue point of the set {(s, t) :W(s, t)= 1}. (In particular,W(x, y)= 1.) Let δ > 0 and
let I := (x− δ, x+ δ) and J := (y− δ, y+ δ). Then, if δ is small enough,

|{s ∈ J :W(x, s)= 0}| < 0.1|J|, (7.16)

|{t ∈ I :W(t, y)= 0}| < 0.1|I|, (7.17)

|{(s, t) ∈ J × I :W(s, t)= 0}| < 0.1|I| × |J|, (7.18)

ThenW(x, s)W(s, t)W(t, y)> 0 on a subset of I × J of positive measure, and thus U2(x, y)> 0. �

Claim 7.6. For a.e. (x, y),

W(x, y)= 1− 1{Wx =Wy}. (7.19)

Proof. Suppose (x, y) ∈ S(7.19) ∩ S(4.15), and that W(x, y)= 1. Then U2(x, y)> 0 by (7.12), and
thus (4.15) yields

〈Wx,Wy〉 =U1(x, y)< (3t)1/2. (7.20)

If, furthermore, x ∈ S(7.10), it follows thatWx �=Wy.
On the other hand, if (x, y) ∈ S(7.6) andW(x, y)= 0, thenWx =Wy by (7.6).
In both cases, (7.19) holds, and thus, using (7.2), (7.19) holds a.e. �

SinceWx =Wy is an equivalence relation, there exists a partition (possibly infinite) of [0, 1]=
⊔

α Bα such that if we define α(x) for x ∈ [0, 1] by x ∈ Bα(x), thenWx =Wy ⇐⇒ α(x)= α(y), for
all x, y ∈ [0, 1]. Note that each Bα is measurable, since x �→Wx is. We can write (7.19) as

W(x, y)= 1{α(x) �= α(y)}, for a.e. (x, y). (7.21)

Claim 7.7. For a.e. x ∈ [0, 1],

|Bα(x)| = 1− (3t)1/2. (7.22)

Proof. Suppose that x ∈ S(7.19) ∩ S(7.2) ∩ S(7.10). Then,

|Bα(x)| =

∫ 1

0
1{y ∈ Bα(x)} dy=

∫ 1

0
1{Wy =Wx} dy=

∫ 1

0

(

1−W(x, y)
)

dy

= 1−

∫ 1

0
W(x, y) dy= 1−

∫ 1

0
W(x, y)2 dy= 1− (3t)1/2. (7.23)

�

Since 1− (3t)1/2 > 0 by Claim 7.4, there can only be a finite number of parts Bα of measure
1− (3t)1/2, and by Claim 7.7, they fill up [0, 1] except for a null set. Hence, Claim 7.7 and (7.21)
imply that W is a.e. equal to a complete multipartite graphon with equal part sizes (and thus
finitely many parts). In other words, after a measure preserving transformation,W equals a.e. the
graphonWK defined as follows, see Figure 6. Given an integer K ≥ 1, partition the interval [0, 1]
into K intervals I1, I2, . . . , IK of equal length 1/K, and define

WK(x, y) :=

{

0 if (x, y) ∈
⋃K

s=1 Is × Is,

1 otherwise.
(7.24)
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Figure 6. The graphonWK with K = 4.

Claim 7.8. Let W be the complete multipartite graphon WK with K ≥ 2 parts of equal sizes 1/K.
Then (4.15) cannot hold.

Proof. Suppose WK satisfies (4.15) a.e. Then by Claim 7.7, each part must have size 1− (3t)1/2,
that is, 1− (3t)1/2 = 1/K, which yields

t(C4,WK)=
(K − 1)2

3K2
. (7.25)

On the other hand, a direct calculation shows that

t(C4,WK)=
(K − 1)4 + (K − 1)

K4
. (7.26)

We thus must have (K−1)2

3K2 = (K−1)4+(K−1)
K4 , which simplifies to

K(K − 1)(2K2 − 8K + 9)= 0, (7.27)

which is impossible. (The only real roots to (7.27) are K = 0 and K = 1.) �

Claim 7.8 gives the desired contradiction and completes the proof of Theorem 4.8.

8. Proof of Theorem 4.10

The proof is similar to that of Theorem 4.8. Here we will denote t := t(K1,2,W)=
∫

dW(x)2 dx.
Suppose that t > 0, W �≡ 1, but that Spec−(WK1,2)= ∅ and σ 2

K1,2.W
= 0. Then (4.21) and (4.22)

both hold by Lemma 4.9, and W is random-free by Theorem 4.3, that is, W(x, y) ∈ {0, 1} for a.e.
x, y ∈ [0, 1]2. Now, recalling the definition of Wx from (7.1), we have the following claim, which
can be proved by arguments similar to Claims 7.1, 7.2, 7.3 and 7.4.

Claim 8.1. For a.e. (x, y) ∈ [0, 1]2,

W(x, y)= 0 =⇒ Wx =Wy in L2[0, 1] and ‖Wx‖2 = ‖Wy‖2 = (3t)1/2. (8.1)

Moreover, for a.e. x ∈ [0, 1], ‖Wx‖2 = (3t)1/2 < 1.

Next, we have the analogue of Claim 7.5 for the 2-star.
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Claim 8.2. For a.e. (x, y) ∈ [0, 1]2,

W(x, y)= 1 =⇒ dW(x)+ dW(y)> 0. (8.2)

Proof. Similarly to the proof of Claim 7.5, for a.e. (x, y) ∈ [0, 1]2 such that W(x, y)= 1, we can
choose δ > 0 small enough such that for J = (y− δ, y+ δ),

|{s ∈ J :W(x, s)= 0}| < 0.1|J|. (8.3)

This implies that the set {s ∈ [0, 1] :W(x, s)> 0} has positive measure, and thus dW(x)> 0. �

Now, as in Claim 7.6, it follows that for a.e. (x, y) ∈ [0, 1]2,

W(x, y)= 1− 1
{

Wx =Wy

}

. (8.4)

As in the proof of Theorem 4.8, the equivalence relationWx =Wy defines a possibly infinite par-
tition of [0, 1]=

⊔

α Bα . For x ∈ [0, 1] define α(x) to be the index such that x ∈ Bα(x). Then, by
definition,Wx =Wy ⇐⇒ α(x)= α(y), which by (8.4) yields, for a.e. x ∈ [0, 1],

W(x, y)= 1
{

α(x) �= α(y)
}

. (8.5)

Again, similarly to Claim 7.7 we have for a.e. x ∈ [0, 1],
∣

∣Bα(x)
∣

∣= 1− 3t. (8.6)

Note that by Claim 8.1, 1− 3t > 0. Hence, by (8.6), there can only be a finite number of parts
Bα of positive measure and the remaining parts have together measure 0. Therefore, by (8.5) and
(8.6), we conclude that after a measure preserving transformation,W must be of the formWK as
defined in (7.24) for some K ≥ 1. We have excludedW ≡ 1, so K > 1.

Claim 8.3. Let W =WK for some K ≥ 2. Then (4.21) cannot hold.

Proof. Suppose WK satisfies (4.15) a.e. Then by (8.6), each part must have size 1− 3t, that is,
1− 3t = 1/K. In other words,

t(K1,2,WK)=
K − 1

3K
. (8.7)

On the other hand, since dWK (x)=
K−1
K a.e.,

t(K1,2,WK)=

∫ 1

0
dWK (x)

2 dx=
(K − 1)2

K2
. (8.8)

Thus we must have K−1
3K = (K−1)2

K2 , that is, K = 3
2 , which is impossible. �

Claim 8.3 gives a contradiction and completes the proof of Theorem 4.10.
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