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Testing attributable effects hypotheses with an
application to the Oregon Health Insurance
Experiment∗
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Following a randomized trial, the sum of the differences in
the outcomes for the treated units compared to the outcome
that would have been observed if the same units had been as-
signed to the control condition is known as the attributable
effect. Most previous methods on testing hypotheses about
the attributable effect require the outcome to be binary or
ordinal. In this paper, we use a simple approximation to the
distribution of a carefully selected test statistic under the
hypothesis that the attributable effect is zero to expand at-
tributable effects inference for count and continuous data.
The method is efficient and performs well in a variety of sim-
ulations. We demonstrate the method using a large medical
insurance field experiment.

AMS 2000 subject classifications: Primary 62-08; sec-
ondary 62G10.
Keywords and phrases: Attributable effects, Hypothe-
sis testing, Optimization, Randomization inference, Zero-
inflated outcomes.

1. INTRODUCTION

In 2008, the state of Oregon engaged in a lottery in which
low income residents were selected to be allowed to apply for
state funded Medicaid health insurance. Supporters of ex-
panded state sponsored health care argue that offering med-
ical insurance shifts incentives to use expensive emergency
room care to less expensive scheduled clinical care, while also
lowering the economic burden on low income households.
To address these arguments, Finkelstein et al. [9] surveyed
those assigned to both the health insurance arm and those
who were not selected in the lottery to ascertain the amount
spent on out of pocket medical costs. The 11,450 responding
households in the control condition reported a total of $4.71
million spent on medical care in the previous six months [9].
On average, this translates to $411.68 per control household,
but this averaging obscures the fact that 49% of the control
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households reported spending zero dollars on out of pocket
costs. For nearly half of the control subjects, the average
is not very informative about the amount spent on medical
care.

Instead of asking about average effects, it may be more
useful to ask what portion of the observed costs of the con-
trol subjects can be attributed to being prohibited from ap-
plying for Oregon’s Medicaid program. Rosenbaum [31] calls
this quantity “the effect attributable to treatment.” Many of
the approaches for estimating and testing hypotheses about
attributable effects have been focused on binary outcomes
[31]. Rosenbaum [32] extends his previous work to matched
pair designs. Rigdon and Hudgens [29] allow for attributable
effects to both the treatment group and control group in
order to get confidence intervals for the average treatment
effect. Li and Ding [22] improve the efficiency of these re-
sults. Fogarty et al. [12] focus on the particular difficulties in
observational studies that attempt to emulate randomized
trials and propose numerical solutions that provide tests
of effects on binary outcomes along with sensitivity anal-
yses. Also for observational data, Keele et al. [18] develop
instrumental variable methods for attributable effects for bi-
nary data. Choi [2] provides optimization based techniques
for solving attributable effects for binary data and includes
methods for improving inference when information is avail-
able about interactions between subjects. Some progress has
also been made on ordinal outcomes using well defined se-
quences of alternative hypotheses [23], bounds [24], or in-
troducing nuisance parameters or latent variables [37]. Sev-
eral papers highlight how physical randomization, binary
outcomes, and monotonicity, as assumption that individual
treatment effects all have the same sign, combine to gener-
ate a multiple hypergeometric likelihood, which can be used
for inference for both the attributable effect and the average
treatment effect [6, 18].

There are two notable exceptions to the focus on binary
data. Several authors suggest using survey sampling meth-
ods for estimating attributable effects [30, 15]. While this
approach expands the scope of data to include count and
continuous outcomes, the method requires large sample ap-
proximations to hold, which may be suspect in highly skewed
outcomes. Feng et al. [8] provide an exact test for contin-
uous outcomes based on a complex optimization problem.
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The approach is based on the Mann-Whitney-Wilcoxon sum
of ranks test statistic, which degrades in the presence of ties
in the values of Yi. For both methods, large numbers of zeros
in the outcomes are difficult to handle.

In this paper, we present a method that can be thought of
as a hybrid between the existing exact tests for attributable
effects and the survey sampling based estimation approach.
We use a normal approximation as part of an optimization
routine, but test the resulting hypothesis using exact meth-
ods. The method is computationally efficient, and simula-
tions show that it performs well when the data contain large
portions of zero values.

The rest of the paper is organized as follows. Section 2
introduces the proposed method, along with notation and
assumptions. Section 3 evaluates the accuracy of the key
approximation and the statistical properties of the method
through a variety of simulations. Section 4 returns to the
Oregon Health Insurance Program experiment previously
introduced to analyze several outcomes. Section 5 concludes
with a discussion.

2. METHODOLOGY

2.1 Setting and notation

Consider N units in a study where n units are as-
signed to the treatment condition and the remaining m =
N − n units are assigned to the control condition, writing
Zi = 1 for treatment and Zi = 0 for control. Through-
out, we shall notate vectors using boldfaced symbols, so
Z = (Z1, Z2, . . . , ZN )′. We suppose that Z is assigned by
complete random assignment : Pr(Z = z) = n!m!/N ! if∑N

i=1 zi = n and Pr(Z = z) = 0 otherwise. For all sub-
jects, we hypothesize potential outcomes to the different
treatment conditions yi(1) when Zi = 1 and yi(0) when
Zi = 0 [28, 16]. We will require, for reasons discussed later,
that both yi(1) ≥ 0 and yi(0) ≥ 0. Many types of data, such
as counts, naturally ensure this assumption. For other data
that can take negative values, it is often possible to shift the
observations by some constant to ensure that the condition
holds.

The observed outcome Yi is random in that it depends
on Zi: Yi = yi(Zi). The vector Y = (y1(Z1), . . . , yN (ZN )) =
y(Z) defines the outcomes observed after treatment. Im-
plicit in this definition is an assumption that assignment to
the treatment or control condition for unit i does not change
the outcome of any unit j, often labeled as the Stable Unit
Treatment Value Assumption (SUTVA) [34].

Define the vector of individual effects τ = y(1) − y(0).
Suppose we were able to observe Y ∗ = y(1 − Z). Then
τ could be recovered using τi = Yi − Y ∗

i for Zi = 1 and
τi = Y ∗

i − Yi for Zi = 0. Of course, we only observe
Y = y(Z), so τ is not identified. While we cannot iden-
tify τ without additional assumptions, we can test a sharp
null hypothesis H0 : τ = τ0. To test the sharp null, we
remove the hypothesized treatment effect from the treated

units, Ỹ = y(Z)− τ0 �Z, where � indicates the element-
wise product. Under the null hypothesis, τ0 = y(1)− y(0),
so Ỹ = y(0), which is to say a fixed quantity, and we hence-
forth write ỹ when considering the adjusted outcome under
the null. A randomization test can be applied using a suit-
able test statistic that is increasing in evidence against the
null [10, 32, 33]. After selecting a test statistic T (Z, ỹ), its
distribution under the hypothesis H0 : τ = τ0 is given by
enumerating all possible ways of selecting n out of N units
and computing the test statistic applied at each random-
ization [10]. The p-value of the hypothesis is the proportion
of randomizations that lead to a larger test statistic value
than the observed value. Indexing all J = N !/(n!m!) possi-
ble treatment assignments as z(j), write the p-value as

p = Pr(T (Z, ỹ) ≥ T (z, ỹ))

= J−1
J∑

j=1

I(T (z(j), ỹ) ≥ T (z, ỹ)),

where z is the realized treatment assignment in the experi-
ment and I(·) is the indicator function. One of the primary
advantages of the Fisherian approach is that it does not rely
on large sample approximations or distribution assumptions.
The trade-off is that it requires hypothesizing the subject
level treatment effects τi.

As an alternative to specifying the entire τ0 vector, con-
sider the attributable effect

(1) A = Z ′τ .

Observe that a hypothesis of the form H0 : A = A0 is a com-
posite hypothesis as it contains any τ0 for which Z ′τ0 = A0.
Theoretically, A0 could be tested using a randomization test
if one could find the τ0 with the maximum p-value among
the set {τ0 : Z ′τ0 = A0}, as the p-value of the true τ must
be no greater than the maximum. For count data, enumer-
ating all possible τ0 is computationally intractable in most
circumstances. For continuous data, such an enumeration is
not even possible.

2.2 Approximating the adjustment with the
largest p-value

Most of the previous approaches to attributable effects
relied on “distribution free methods,” in which the distri-
bution of the test statistic did not depend the values of the
outcomes themselves [27]. In these situations, the problem of
finding the largest p-value is equivalent to finding the small-
est test statistic value that results from an adjustment τ0,
as any adjustment τ0 will result in the same null distribu-
tion. In this paper, we take the opposite approach: the test
statistic remains fixed while we search for a distribution that
places the most mass above the test statistic value. While
we have wide latitude selecting the test statistic T , a natural
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choice is the deviation of the treatment group’s mean from
the overall mean:

(2) T (Z,y) =
1

n

N∑
i=1

Ziyi −
1

N

N∑
i=1

yi.

This statistic has been widely studied in both the random-
ization and permutation literature as an analog of the para-
metric t-test [21, Chapter 5]. For the present purposes, the
primary advantages of this test statistic are the close align-
ment with the definition of the attributable effect and a
convenient normal approximation.

Usefully, the value of the test statistic (2) evaluated
at z, the observed assignment vector, remains fixed un-
der any possible τ0 that is compatible with A0. For ob-
served treatment z, observed data y, and null hypothesis
τ0 = (τ0,1, τ0,2, . . . , τ0,N )T such that z′τ0 = A0, define the
adjusted data ỹ = y−τ0�z. The value of test statistic when
applied to the adjusted data only depends on τ0 through A0:

T (z, ỹ) =
1

n

N∑
i=1

zi(yi − ziτ0,i)−
1

N

N∑
i=1

(yi − ziτ0,i)

= T (z,y)− (m/n)

N
A0.

Therefore any hypothesis compatible with A0 generates the
same value of T .

While the observed test statistic remains unchanged, the
distribution of T (Z, ỹ) depends on the particular τ0,i val-
ues. Since ỹ is a fixed quantity under the null that A = A0,
T (Z, ỹ) can be thought of as a sample average of n items
drawn from a finite population of size N , centered on the

true population mean μ0 = N−1
(∑N

i=1 yi −A0

)
. The mean

and variance of T (Z, ỹ) follow from standard finite popula-
tion sampling results [3, Theorems 2.1, 2.2]:

E (T (Z, ỹ)) =
1

n

N∑
i=1

E (Zi) ỹi − μ0 = 0,

Var (T (Z, ỹ)) =
m/n

N(N − 1)

[
N∑
i=1

zi (τ0,i − yi + μ0)
2

+

N∑
i=1

(1− zi) (yi − μ0)
2

]
.

While the portion of the sum that depends on the control
units is a constant, the portion depending on the treated
units is a function of the exact τ0,i values, even though∑N

i=1 Ziτ0,i = A0 is fixed.
Under fairly mild conditions, T is approximately nor-

mally distributed in large samples ([14]; [20, p. 353]). Con-
sider a set of finite populations indexed by ν. For each pop-
ulation of Nν subjects, nν are assigned to treatment and
mν are assigned to control. For each population, the null

hypothesis τ0,ν holds so adjusted values ỹν,i are fixed. The

statistic Sν = Tν/Var (Tν)
1/2

converges in distribution to
N(0, 1) when Nν , nν ,mν → ∞ and

max(ỹν,i − μν)
2∑Nν

i=1(ỹν,i − μν)2
max

( n

m
,
m

n

)
→ 0 as ν → ∞,

where μν = 1
N ỹν,i. The first term requires that no individ-

ual ỹ be so large as to dominate the variance, while the
second implies that neither the treated nor control group
size become negligible, which seems particularly natural in
the context of a series of increasingly larger experiments.

Let c =
∑N

i=1(1 − zi) (yi − μ0)
2
be the control subjects’

contribution to the variance of T . Under the regularity con-
ditions above, squaring T leads to a scaled χ2 distribution:

[T (Z, ỹ)]
2 ∼ m/n

N(N − 1)

[
N∑
i=1

zi (τ0,i − yi + μ0)
2
+ c

]
χ2
1.

Recall that for any fixed value of A0, the value of T 2 will
be the same regardless of the particular values τ0,i. There-
fore the vector of adjustments τ0 that corresponds to the
largest possible p-value consistent with A0 can be found by
maximizing the quantity

∑N
i=1 zi(τ0,i−yi+μ0)

2. In order to
find the τ0 that maximizes T , we make one of two possible
monotonicity assumptions. Either the potential outcome to
treatment is at least as large as the potential outcome to
control for all units or the potential outcome to control is
at least as large as the potential outcome to treatment:

Assumption 1. 0 ≤ yi(0) ≤ yi(1),

or

Assumption 2. 0 ≤ yi(1) ≤ yi(0).

For the purpose of exposition, we focus on the case when
Assumption 1 holds, but applying the methods when As-
sumption 2 holds simply requires substituting W = 1 − Z
for Z throughout.

Without loss of generality, we suppose that the first n
units are the treated units (i.e., zi = 1 for i = 1, . . . , n
and zi = 0 for i = n+ 1, . . . , N). Under Assumption 1, the
following optimization problem finds the τ0 with the largest
p-value:

(P ) maximize: g(τ0) =

n∑
i=1

(τ0,i − yi + μ0)
2
,

subject to:
n∑

i=1

τ0,i = A0,

0 ≤ τ0,i ≤ yi, i = 1, . . . , n.

This optimization problem comes from the class of
“quadratic convex maximization” problems [11]. While
maximizing a convex function over a convex set is generally
an NP-hard problem, effectively equivalent to enumerating
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all possible vertices of the constraint space, the particular
form of this problem allows for an efficient solution.

Theorem 1. Let all yi ≥ 0. For i = 1, . . . , n, sort the yi
such that,

y1 ≥ y2 ≥ · · · ≥ yn.

An optimal solution to P is given by:

τ0,i =

⎧⎨
⎩

0, i < s,
A0 −

∑n
i=s+1 yi, i = s,

yi, i > s,

where s is the largest integer such that
∑n

i=s yi > A0.

A proof of Theorem 1 is given in the Appendix. Since
this solution finds the maximum possible variance of the
statistic (2) under the null A = A0, we label this solution
the variance maximization method of testing A = A0. As
this solution can be implemented using a simple sort of the
n treated units, followed by a linear pass through the data,
so the complexity of the algorithm is O(n log n) using typical
sorting routines. While Theorem 1 does not assume the data
are either real values or integer values, the solution also
applies to integer constrained Y .

Corollary 1. When A0 is an integer and all yi are integers,
the solution to the integer constrained version of P is also
given by Theorem 1.

A proof is given in the appendix.

It is important to note exactly what optimality guaran-
tees Theorem 1 provides. Ultimately, we are seeking the τ0
vector of adjustments that leads to the maximum p-value
over all compatible τ0 that sum to A0. Theorem 1, however,
finds the τ0 vector that generates a null distribution for T
with the maximum variance. When N is large, this distribu-
tion will be roughly normal, so the correspondence between
maximum variance and maximum p-value will be close. For
small samples, or when the normality approximation fails
for other reasons such as high skew, this approximation may
fail to find the the adjustment with the maximum p-value,
despite having the largest variance. In the Appendix, we pro-
vide simulations investigating how well the maximum vari-
ance approximates the true maximum p-value and find it
works well in a variety of samples sizes and data generation
processes.

3. SIMULATIONS

We now consider the performance of prediction intervals
for A using the method described in Section 2.2, which we
refer to as the variance maximization method. As a bench-
mark method for comparison, we use survey sampling based
intervals that rely on large sample approximations. Observe

that the attributable effect A can be decomposed as

A =

N∑
i=1

Zi(yi(1)− yi(0))

=

N∑
i=1

Ziyi(1)−
(

N∑
i=1

yi(0)−
N∑
i=1

(1− Zi)yi(0)

)
.

The quantities
∑N

i=1 Ziyi(1) and
∑N

i=1(1−Zi)yi(0) are com-
pletely observed as the totals in the treatment and control
groups, respectively. While the total

∑N
i=1 yi(0) is not ob-

served, it can be estimated using standard sample survey
techniques [30, 15, 35]. This leads to a large sample predic-
tion interval for A:

(3) Â± t1−α/2

√
N

n

m
s20

where Â =
∑N

i=1 ZiYi − n
m

∑N
i=1(1−Zi)Yi, s

2
0 is the sample

variance for the control units, and t1−α/2 is the 1 − α/2
quantile from a Student’s t-distribution withm−1 degrees of
freedom (additional details on the derivation of this interval
are given in the appendix).

In these simulations, based on 1000 replications, we vary
the total experiment size (N), the proportion of the yi(0)
that are zero (p), and the true effect size (e). In each sim-
ulation, we compare the coverage rate of a 95% prediction
interval as well as the ratio of interval width for the pro-
posed method and that of survey sampling technique. De-
tailed information on the simulation process is given in the
appendix.

In the first simulation, we varied the experimental pop-
ulation size between 10 and 500, treating half of the popu-
lation in each experiment. Figure 1 shows the results of the
simulations. As the figure shows, the variance maximiza-
tion method is conservative. The survey sampling method
under-covers at lower samples sizes but achieves nominal
level for the larger sample sizes. For the width of the in-
tervals, the survey sampling method is always smaller, on
average, though it is often under-covering for sample sizes
less than 200.

In the second simulation, the parameter p, the proba-
bility of yi(0) being zero, varied from 0 to 0.95. Figure 2
again shows the 95% prediction interval coverage and rela-
tive widths. With a sample size of 100, the survey sampling
based method has modest under-coverage for several values
of p. As the proportion of zeros increases, the variance max-
imizing method becomes less conservative, but never falls
below its nominal level. Recall that the solution to the vari-
ance maximization optimization problem sets the hypothe-
sized yi(0) to zero (i.e., ỹi(0) = 0) for the smallest observed
treated units. As the proportion of zeros increases, this so-
lution approaches the true τ0, whereas in general cases the
solution is only guaranteed to generate a p-value larger than
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Figure 1. Sample size simulation (N ∈ [10, 500], n = N/2, p = 0.1, e = 1).

Figure 2. Proportion of zeros in y(0) simulation (p ∈ [0, 0.95], e = 1, N = 100, n = 50).

Figure 3. Effect size simulation (e ∈ [0, 2], p = 0.1, N = 100, n = 50).

that of the true τ0. Consequently, the method performs par-
ticularly well in the case of zero-inflated outcomes. The rel-

ative width of the variance maximization interval tends to
approach the width of the survey sampling interval; how-

ever, the trend reverses for p = 0.95, suggesting there may
be a limit to the proportion of zeros that this method can

efficiently handle.

The third simulation varies the total effect size T =∑N
i=1 τi as a function of the standard deviation of the ran-

domly generated yi(0). Figure 3 shows the results as the

effect size was varied between zero and two standard devi-
ations. As the top panel of Figure 3 shows, the proposed

method maintains consistently conservative coverage rates
across the different effect sizes, while the survey sampling

method under covers somewhat. Interestingly, the relative
size of the intervals for the proposed method tended to in-

crease as the effect size increased. This scenario represents
the opposite of the zero-inflated situation: as the total effect

increases, the true y(0) is less and less like ỹ(0) as the large
effect size makes more and more of the τi large.

Looking across these simulations, the overall pattern
emerges that, at least on these data, the proposed method

appears to work well in small samples and when there is a
great degree of treatment heterogeneity. The variance max-
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Figure 4. Prediction interval coverage for a simulation in which individual treatment effects may be non-monotonic. The left
panel shows a small average individual effect magnitude; the right panel shows larger effects.

imization method is almost always conservative in its cover-
age rates and has reasonably small interval widths in small
samples or when there are many zeros in the data.

We also considered the situation in which the key assump-
tion of monotonicity does not hold. In these simulations, we
draw yi(0) and create a magnitude for each individual treat-
ment effects such that 0 ≤ τi ≤ yi(0). We then vary the
probability of a positive treatment effect (θ) from zero to
one. Figure 4 shows the coverage rates of 95% prediction in-
tervals as the probability of a positive individual treatment
effect is varied from zero to one. The top panel shows a sim-
ulation in which the magnitude of the individual effects is
small, relative to yi(0). The bottom panel shows a simula-
tion in which the magnitude of the individual effects is rel-
atively large. In both cases, when most effects are negative
(θ < 0.5), the coverage rates of the prediction intervals are
quite poor. This is no surprise as A < 0 in most cases, and
the prediction intervals are constrained to be non-negative.
On the other hand, provided θ > 0.5, the method appears
relatively robust to having some negative treatment effects.
Particularly, when individual effects are relatively large, the
coverage of intervals quickly approaches the nominal level.
Nevertheless, the possibility remains that when effects are
negative the algorithm will not be conservative in finding the
maximum possible variance treatment allocation. The true
hypothesis can have larger variance than would be possible
with strictly positive effects, leading to the under-coverage
of intervals demonstrated in Figure 4. Interestingly, the sur-
vey sampling method performs similarly, so there is little
relative advantage of one method or the other in these cases.

Additional details on the simulations used in this section
are given in the appendix. Also included are simulations in-
vestigating the fidelity of the null approximation, correct
behavior of the optimization routine, and variation in treat-
ment effect distributions.

4. OREGON HEALTH INSURANCE
EXPERIMENT

In 2008 the state of Oregon re-opened enrollment for
Oregon Healthcare Plan (OHP) Standard, a medical insur-

ance program for low-income households who did not other-
wise qualify for health insurance. As enrollment in this pro-
gram had been closed for several years, officials anticipated
a higher demand than could be accommodated under the
available budget. To address the issue of over-subscription,
state officials implemented a lottery system to allocate op-
portunities to apply to the program. After an advertising
campaign to solicit potential recipients, 74,922 individuals
applied for the program. The initial solicitation did not re-
quire individuals show eligibility for the program, so being
randomly selected into the study provided individuals the
opportunity to complete an application, demonstrating el-
igibility in the program. Of the 74,922 applicants, 29,834
individuals were randomly selected to receive an invitation
to apply for OHP. Of these, 8,698 applied and were approved
to enroll in OHP. More details on the program and random-
ization process can be found in Finkelstein et al. [9].

After 12 months, a portion of both the treated individuals
(selected to complete an application) and the control indi-
viduals (not permitted to apply) were sent a survey request-
ing self-reported amounts of money spent out-of-pocket for
medical care during the previous 6 months. Responses to the
question included many zeros and were heavily right skewed.
Of the subjects that responded to the questionnaire (N =
22,766), 53% claimed no out of pocket costs in the last 6
months, while 6 individuals reported out of pocket costs in
excess of $100,000. Excluding subjects who reported zero
out of pocket costs, the median cost reported was $250.

To analyze these questions, we first suppose that for all
subjects Assumption 2 holds: 0 ≤ yi(1) ≤ yi(0). This as-
sumption supposes that having medical insurance will not
raise a subject’s out of pocket costs. As the Medicaid pro-
gram covers nearly all medical costs, this assumption seems
plausible. Before applying the methods proposed in this
paper, we first create a dichotomous variable indicating
whether a subject reported spending more than zero dollars
on health care. Applying the method of Rosenbaum [31] to
predict the attributable effect yields a 95% prediction inter-
val of [597, 889]. This result suggests that had the control
subjects had the opportunity to apply for state sponsored
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Table 1. 95% prediction intervals for the attributable effect of not having the opportunity to apply for OHP Standard on total
out of pocket costs. Numbers in parentheses represent percentage of maximum attributable effect, which is the sum of all

control units’ outcomes

Method Lower 95% Prediction Interval Upper 95% Prediction Interval

Survey Sampling 0 (0) 4,704,329 (100)
Variance Maximization 0 (0) 1,283,000 (27)

health care, between 10.3 and 15.4 percent who had out of
pocket costs would have been able to avoid them.

While such savings may be beneficial no matter the over-
all amount spent, by dichotomizing the cost, this analysis
may confuse substantive changes in the amount the control
group spent for small, but consistent changes. To answer
this question, we apply the proposed method in this paper
to predict the attributable effect on the dollar scale and
compare it to the survey sampling method. Table 1 shows
the results of the different methods. While both methods
include an attributable effect of zero in their estimates, the
survey sampling method produces an interval that gives no
information as it includes every possible value for the at-
tributable effect. The variance maximization method, how-
ever, excludes attributable effects greater than 27 percent of
the observed total in the control group (at 95% confidence).
Had the control group been allowed to apply for health in-
surance, they would have spent less on health care, but a
decrease in spending by more than 27% appears implausi-
ble given these results.

Replacing usage of emergency departments with sched-
uled medical visits is often touted as a justification for ex-
panding government sponsored medical insurance. As emer-
gency departments by law must provide care, regardless of
the individual’s lack of medical insurance, advocates argue
that providing medical insurance can actually decrease over-
all spending as insured individuals can better take advan-
tage of less expensive scheduled care. On the other hand,
while emergency departments must treat subjects, they will
still bill patients without medical insurance. Having access
to Medicaid might incentivize individuals to consume more
medical services, in particular emergency department visits,
as their own costs will significantly decrease. To answer this
controversy, Taubman et al. [36] matched subjects in the
Portland, OR area to hospital records to tabulate the num-
ber of emergency department visits per subject. Overall, the
subset of the experimental population included 24,646 sub-
jects. Again, these data show a large portion of zero values
(16,180) and strong right skew.

To address the competing theories of the effect of health
insurance on emergency room visits, we analyze the data
under both possible assumptions for monotonicity, that ei-
ther the health insurance does not increase any household’s
emergency room usage or that insurance does not decrease
emergency room usage. We predict the attributable effect for
the treated subjects under assumption that none of their us-
ages would decrease as well as the attributable effect for the

control subjects under the assumption of that usage would
not increase under health insurance. Table 2 provides the
results of these tests, again comparing the survey sampling
method to the variance maximization method. Both meth-
ods tend to favor Assumption 1 — that health care access
does not decrease emergency room usage — as the predic-
tion intervals contain a larger portion of the observed data,
though all intervals include zero leaving the possibility of
no effect or non-monotonic potential outcomes. These re-
sults bear some similarities to those reported in Taubman
et al. [36], where the authors dichotomized these data at
several usage levels and found that treated subjects made
more use of emergency facilities.

5. DISCUSSION

In this paper, we presented a novel method for testing hy-
potheses for the effect attributable to treatment, the sum of
the individual effects of the subjects within the treatment
group. This method expands the scope of attributable ef-
fects to count and continuous data, provided the researchers
are able to assume that effects are non-negative and that
responses under the treatment condition are no less than
responses under the control condition (Assumption 1). Al-
ternatively, this method can be applied to recover the sum
of treatment effects for the control group when control re-
sponses are assumed to be greater than treatment responses
(Assumption 2). This method is computationally efficient,
and simulations show that using a normal approximation to
the true null distribution adds little error compared to the
true solution. From a statistical perspective, the method ap-
pears to perform well in small samples or when there is a
high degree of treatment effect heterogeneity. This method
might be most useful when combined with a prescreening
method used to detect heterogeneity [e.g., 5] and employed
only if the constant treatment effect assumption seems to
be a poor approximation to the true treatment effect distri-
bution.

To evaluate the new method, we compared it to the
survey sampling based method that estimates A [30, 15]
and found favorable results, particularly in small samples or
with many zeros. It should be noted that the survey sam-
pling based estimator made use of neither the assumption
of monotonicity nor the constraint that 0 ≤ A ≤

∑N
i=1 ZiYi.

While it lies outside the scope of the current paper to
amend the estimator to take advantage of these assump-
tions, there is a lengthy literature on both using monotonic-
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Table 2. 95% prediction intervals for the attributable effect of number of emergency department visits. Under the assumption
that 0 ≤ yi(0) ≤ yi(1), the effect of having the opportunity to apply for Medicaid is identified. Under the assumption that
0 ≤ yi(1) ≤ yi(0), the effect for the control group is identified. Numbers in parentheses indicate the percentage of the

observed total attributed to the treatment

Method Lower 95% Prediction Interval Upper 95% Prediction Interval

Assuming 0 ≤ yi(0) ≤ yi(1)

Survey Sampling 0 (0%) 1068 (10.7%)
Variance Maximization 0 (0%) 1077 (10.8%)

Assuming 0 ≤ yi(1) ≤ yi(0)

Survey Sampling 0 (0%) 213 (1.5%)
Variance Maximization 0 (0%) 160 (1.1%)

ity assumptions to derive bounds for average treatment ef-
fects [26, 19, 4, 13, 17] as well as estimating means under
boundedness assumptions [1, 25, 7], which could be com-
bined to provide a more efficient estimator under the as-
sumptions invoked for the proposed method.

Another possible extension lies in bounding all potential
outcomes from above, as well as below. Assuming an a priori
upper bound c such that 0 ≤ yi(0) ≤ yi(1) ≤ c for all units
would allow simultaneously testing hypotheses about the at-
tributable effect in both the treated and control groups. The
average treatment effect is then the sum of the attributable
effects in each group divided by the number of units in the
study. This is the approach taken in Rigdon and Hudgens
[29] for binary data where c = 1.

We conclude with a discussion of a seeming contradiction
between the proposed method and well known methods for
estimating average treatment effects. The statistic used in
the optimization routine at the heart of the proposed ap-
proach is very similar to the difference of means statistic
frequently used to estimate average treatment effects. The
variance of this statistic is given by S2

1/n + S2
0/m − S2

τ/N ,
where S2

1 , S
2
0 and S2

τ represent the sample variance of y(1),
y(0), and τ respectively. A conservative estimator of this
variance omits the unidentifiable S2

τ term, which is equiva-
lent to having a constant treatment effect. In the proposed
approach, however, the solution to the optimization problem
suggests τ with maximum variance.

The resolution to this contradiction emerges when we re-
alize that y(1) = y(0) + τ , so there are really only two
degrees of freedom in the variance expression, which can
be written only in terms of control potential outcomes and
treatment effects,

S2
1

n
+

S2
0

m
− S2

τ

N
=

(
1

n
+

1

m

)
S2
0 +

(
1

n
− 1

N

)
S2
τ − 2

n
S0τ .

This expression shows that a conservative estimator would
assume large treatment effect variation and a negative co-
variance between treatment effects and control potential
outcomes (S0τ ), which is what the solution to the optimiza-
tion problem establishes when it implies that the control
potential outcomes for units with the largest observed yi(1)
values are zero.

APPENDIX A. LARGE SAMPLE
PREDICTION INTERVALS

FOR A

By definition, for any given Z, the attributable effect of

treatment can be decomposed as

A =

N∑
i=1

Ziyi(1)−
(

N∑
i=1

yi(0)−
N∑
i=1

(1− Zi)yi(0)

)
.

As
∑N

i=1 Ziyi(1) =
∑N

i=1 ZiYi and
∑N

i=1(1 − Zi)yi(0) =∑N
i=1(1 − Zi)Yi are observed quantities, we need only es-

timate
∑N

i=1 yi(0) using

Ŷ0 =
N

m

N∑
i=1

(1− Zi)Yi.

Plugging this estimator into the decomposition of A yields

Â =
N∑
i=1

ZiYi −
(
N

m

N∑
i=1

(1− Zi)Yi −
N∑
i=1

(1− Zi)Yi

)

=

N∑
i=1

ZiYi −
n

m

N∑
i=1

(1− Zi)Yi.

Under conditions stated in Section 2.2, when N is large,

Ŷ0 is approximately normal with mean
∑N

i=1 yi(0) and vari-

ance N n
mσ2

0 [3, Theorem 2.2], where σ2
0 is the finite popula-

tion variance of yi(0). By estimating σ2
0 with s20, the sample

variance of the control units, a 100 × (1 − α)% prediction

interval for A has the form:

N∑
i=1

ZiYi −
n

m

N∑
i=1

(1− Zi)Yi ± t1−α/2

√
N

n

m
s20,

where t1−α/2 is the 1−α/2 quantile of a t-distribution with

m− 1 degrees of freedom.
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APPENDIX B. PROOF OF THEOREM 1

Proof. Recall that we wish to maximize:

g(τ0) =
n∑

i=1

(τ0,i − yi + μ0))
2

=

n∑
i=1

τ20,i +

n∑
i=1

y2i +

n∑
i=1

μ2
0−

2

n∑
i=1

τ0,iyi + 2μ0

n∑
i=1

τ0,i − 2μ0

n∑
i=1

yi

=

n∑
i=1

(yi − τ0,i)
2 +

n∑
i=1

μ2
0 + 2μ0A0 − 2μ0

n∑
i=1

yi.

As the term
∑n

i=1 μ
2
0+2μ0A0−2μ0

∑n
i=1 yi does not depend

on τ0, maximizing g(τ0) is equivalent to maximizing

h(τ0) =

n∑
i=1

(yi − τ0,i)
2.

In other words, we can equivalently maximize the sum of
squared remainders left after removing τ0,i. Writing ri =
yi − τ0,i, rewrite the maximization problem as

(P ′) maximize: h(r) =

n∑
i=1

r2i

subject to:

n∑
i=1

ri =

n∑
i=1

yi −A0 = R0

0 ≤ ri ≤ yi

A simple greedy algorithm provides an optimal solution to
P ′. Sort the observations so that y1 ≥ y2 ≥ · · · ≥ yn. Ini-

tialize R
(1)
0 = R0. For i = 1, . . . , n, do:

1. If yi ≥ R
(i)
0 , set xi = R

(i)
0 . For all j > i, set rj = 0 and

stop.

2. Otherwise, set ri = yi and R
(i+1)
0 = R

(i)
0 − yi.

3. If i = n, stop. Otherwise, update i = i + 1 and repeat
the loop.

Let s be the largest integer such that
∑s−1

i=1 yi < R0. The
result of the algorithm r has the form:

ri =

⎧⎨
⎩

yi, i < s,

R0 −
∑s−1

i=1 yi, i = s,
0, i > s.

To show this is optimal, we show that we can transform any
optimal solution into the greedy solution. Let r be the solu-
tion found by the greedy algorithm and r̃ be any optimal so-
lution. At each stage of the following algorithm, transform r̃i
into ri while maintaining the objective function value h(r̃).
At each state the proposed optimal solution has r̃j = rj for
j < i. Starting from i = 1,

1. If r̃i = ri, continue to i+ 1.
2. Otherwise, consider the two possible values of ri:

(a) ri = R
(i)
0 : Observe that in this case rj = 0 for

j > i. As the solution r̃ is feasible, it must be

the case that
∑n

j=i r̃j = R
(i)
0 = ri. Since the r̃j

are non-negative, this implies a contradiction that
h(r̃) is maximal:

h(r)− h(r̃) = (R
(i)
0 )2 −

n∑
j=i

r̃2j

=

⎛
⎝ n∑

j=1

r̃j

⎞
⎠

2

−
n∑

j=i

r̃2j

=

n∑
j=i

n∑
j′=i

r̃j′ > 0.

Therefore, when yi ≥ R
(i)
0 the only optimal solu-

tion is the greedy one. At this point, we can stop,
having found that the greedy solution is optimal.

(b) yi < R
(i)
0 and ri = yi. Since r̃i is also bounded by

yi, it must be the case that r̃i < ri. Again, since∑n
j=i r̃j = R

(i)
0 and r̃j < ri < R

(i)
0 , there must

exist at least one j > i such that r̃j > 0. Let δ =
min(yi− r̃i, r̃j). Then the solution r̂ = r̃1, . . . , r̃i+
δ, . . . , r̃j − δ, . . . , r̃n is also feasible. Comparing the
difference of objective functions, we see:

h(r̂)− h(r̃) = (r̃i + δ)2 − r̃2i + (r̃j − δ)2 − r̃2j

= 2δ2 + 2r̃iδ − 2r̃jδ.

As δ is the lesser of yi − r̃i or r̃j , consider both
cases:

i. δ = yi − r̃i: Then

δ2 + r̃iδ − r̃jδ = y2i − yir̃i − r̃jyi + r̃ir̃j

= (yi − r̃i)(yi − r̃j)

We already know that yi > r̃i. By the ordering
of units, since i > j, we know that yi ≥ yj ≥
r̃j). Therefore (yi − r̃i)(yi − r̃j) ≥ 0 so the
solution r̂ is also optimal. Since δ = yi − r̃i,
then r̂i = yi = ri.

ii. δ = r̃j : Then

δ2 + r̃iδ − r̃jδ = r̃2j + r̃ir̃j − r̃2j = r̃ir̃j

As both r̃i ≥ 0 and r̃j ≥ 0, the solution
r̂ is also optimal. As r̂i = r̃i + r̃j < ri,
it must be the case that some other unit j′

is also non-zero and can be used to create
δ′ = min(yi − r̂i, r̃j′) and another optimal so-
lution. This logic can be repeated until an
optimal solution can be found that includes
r̂i = yi.
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3. Update r̃i = r̂i = ri. At this point, r̃j = rj for all j ≤ i.

4. Continue for i+ 1 and R
(i+1)
0 = R

(i)
0 − ri.

At the end of this algorithm, r̃ = r, the greedy solution,
showing that any optimal solution can be transformed into
the greedy solution while maintaining h(r) ≥ h(r̃) at each
step.

With a solution r to P ′, we can then translate back to P
using the relationship τ0 = r − y. Consequently, τ0 has the
form:

τ0,i =

⎧⎨
⎩

0, i < s,
A0 −

∑n
i=s+1 yi, i = s,
yi, i > s,

where s is the largest integer such that
∑n

i=s yi > A0.

APPENDIX C. PROOF OF COROLLARY 1

Proof. Observe that P is the continuous relation of the ver-
sion of the problem for integer yi. Let τ

∗ be the solution to
P . For i > s, τ∗i = yi, which are integer values. For i = s,
τ∗s = A0 −

∑n
i=s+1 yi is also an integer, as A0 is an integer

and the sum of any yi values must also be an integer. For
i < s, τ∗i = 0. Thus τ∗ is an integer solution and must be
the optimal solution to the integer constrained version of
P .

APPENDIX D. ADDITIONAL SIMULATION
DETAILS

D.1 Testing the normal approximation

For each hypothesized attributable effect A0, there may
be many compatible unit level sharp hypotheses τ0 such that∑N

i=1 Ziτi = A0. Rejecting A0 at the α level implies that all
compatible hypotheses must also be rejected at the α level.
In the suggested methodology of Section 2.2, we propose
using a normal approximation to the null distribution to
find τ0 with the largest p-value. We now present several
simulations to assess how well the approximation works.

For n treated units and a hypothesis A0, there are at most(
n+A0−1

n

)
ways to allocate the A0 to the n treated units when

the potential outcomes yi(1) and yi(0) are integer values.
For small experiments, these allocations can be explicitly
enumerated to find the τ0 vector with the largest p-value.
This presents a way to compare how well the approximation
holds in finding the largest p-value, at least for a sufficiently
small experiments and effect sizes for which all

(
n+A0−1

n

)
possible allocations can be enumerated and checked.

For a small experiment (N = 10, n = 5), we gener-
ated y(0) and then allocated A to the different units, with
A ∈ {1, . . . , 6}. The true A was either spread out or clustered
it on only a few units. Figure 5 shows the relative error of the
p-value from the normal approximation comapred to p-value
from complete enumeration. On the whole, the approxima-
tion works quite well, even for this small experiment. The

Figure 5. Boxplot comparing of normal approximation
maximum p-value (p̂) to true maximum p-value (p) using
relative error (p− p̂)/p. The x-axis labels indicate the units
that had positive τi values. For example, “1:3=2” indicates

that τ1 = τ2 = τ3 = 2 and τi = 0 for i > 3.

approximation performed least well in these examples where
the true treatment effect was larger and evenly distributed.
Recalling that the solution to the approximation concen-
trates the adjustments to the smallest values, it makes sense
that the approximation does not perform well in this situa-
tion.

As an additional check on the performance of the algo-
rithm, the variance of T generated by the adjustment sched-
ule found by the proposed algorithm was compared to the
variances of T for all possible adjustments via enumeration.
In all simulations, the adjustment selected had the largest
variance of any possible solution. While this does not al-
ways imply the largest p-value, as seen in Figure 5, the al-
gorithm is performing its job properly. As the sample size
increases and the normal approximation improves, the ac-
curacy with respect to finding the true maximum p-value
should increase.

To test the suitability using the variance of the null dis-
tribution to approximate the p-values of the sharp null hy-
potheses, we simulated a small experiment with 10 units
from which 5 were assigned to treatment. First, the poten-
tial responses under control were simulated as:

yi(0) = P + 20B, P ∼ Poisson(7), B ∼ Binomial(0.01, 2).

Next, the set of true treatment effects were added to the
treated units’ scores based on Table 3. The columns repre-
sent the treatment unit, and each row shows the individual
effect of the treatment τ0,i. The true attributable effect for
each row is the sum of row values. The first experiment
adds one to the first treated unit, the second adds one to
both the first and second, and so on. We also consider plac-
ing a much larger effect of six on the first unit and adding
two to the first three units. For each allocation, the true
attributable effect A =

∑5
i=1 τi was used to generate y(1)

from y(0) and a hypothesis test of A0 = A was performed
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Table 3. Strategies for allocating treatment effects used in
small sample size simulations. Columns represent the true

effect of treatment for each of treated units. The attributable
effect A is the sum of the row values

1 2 3 4 5

1 1 0 0 0 0
2 1 1 0 0 0
3 1 1 1 0 0
4 1 1 1 1 0
5 1 1 1 1 1
6 6 0 0 0 0
7 2 2 2 0 0

using the normal approximation strategy. Recall that the
normal approximation is guaranteed to find the adjustment
that leads to the largest variance of the null distribution of
the test statistic T , but this may not correspond to the ad-
justment with the largest p-value, which is the true target.
By enumerating all compatible allocations τ0 and perform-
ing an exact randomization test, we can find the adjustment
with maximum p-value and compare this p-value found by
the normal approximation by computing the relative error
|p− p̂|/p, where p is the largest p-value and p̂ is found from
the method given in Section 2.2. In both cases, p-values were
generated by completely enumerating all

(
10
5

)
possible treat-

ment allocations, generating the null distribution of the test
statistic T 2, and comparing the observed test statistic to the
null distribution. The simulations were repeated 100 times,
each with a new y(0), for each true allocation.

Figure 6. Boxplot of relative error when finding the largest
p-value using the normal approximation method compared to

complete enumeration. For N = 10, n = 5, p-values are
computed exactly. For the simulations with 10 out of 20 and
15 out of 30 assigned to treatment, p-values are computed

using 10,000 Monte Carlo samples.

In order to completely enumerate all possible treatment
allocations compatible with a given A0 as well as perform
exact hypothesis tests, the simulations so far have been kept
fairly small. To consider the effect of sample size on the per-
formance of the variance maximization method, we repeated

the simluations for larger experiments using 10 out of 20
treated and 15 out of 30 treated. For each experiment, the
true treatment effect was 1 for 2 of the treated units and
zero for the remainder. These experiments start to push the
boundaries of convenient computation when completely enu-
merating the entire randomization distribution, so a sample
of 10,000 treatment assignments was used instead. If the
method is working well, the distribution of p-values under
the null should be approximately uniform when the null hy-
pothesis is true. Figure 6 shows that the method performs
reasonable well by this metric.

D.2 Coverage and Predicition interval
widths

The main paper reports three simulations comparing the
proposed methods to the survey sampling based method.
Here we provide additional details on the simulation process.

For each simulation, the y(0) data were generated for N
experimental subjects using power law type distribution:

yi(0) = 
210B� − 1, B ∼ Beta(2, 5).

This model was chosen to mimic several of the features of the
observed data in the Oregon Health Insurance experiment,
with many zeros and a very long right tail.

In order to create a full experiment, we must also gen-
erate y(1). To get the individual treatment effects τi, the
population-level standard deviation σ0 for the y(0) values
are measured and a total effect computed as T = 
eNσ0�,
where e is the effect size multiplier. As y(0) were dis-
crete, the total treatment effect must be applied in integer
amounts. There are

(
N+T −1
N−1

)
possible ways to distribute the

total effect T to the N units. One was chosen uniformly at
random and used to generate y(1).

For 5000 replications, a treatment assignment was gen-
erated and the observed data were created using the yi(1)
for the treated units and the yi(0) for the control units. The
true value of A was computed by subtracting the true y(0)
from the observed data. For each replication, 95% prediction
intervals were generated using the proposed method and the
survey sampling method. The interval widths were recorded
as well as whether the intervals covered the true A value. To
compute the p-value for the proposed method, 1000 Monte
Carlo samples from the assignment mechanism were used.

D.3 Variation in treatment effect
distributions

The simulations reported in the paper, and detailed in
the previous section, randomly assigned treatment effects
to individuals independently of yi(0). Whether treatment ef-
fects are correlated with yi(0) can also influence the power of
the test, particularly for the variance maximization method.
Instead of randomly assigning treatment effects, Figure 7
shows the cumulative distribution functions for p-value of
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Figure 7. Cumulative distribution function of p-values when testing a true null hypothesis about A. All simulation parameters
held at defaults. Potential outcomes to control are sorted such that y1(0) ≥ y2(0) ≥ · · · ≥ yN (0) and treatment effects are

sorted in either increasing (τ1 ≤ τ2 ≤ · · · ≤ τN ) or decreasing (τ1 ≥ τ2 ≥ · · · ≥ τN ) order.

the test when the largest treatment effects are allocated to
either the subjects with the largest yi(0) or smallest yi(0).
To perform this simulation, yi(0) and treatment effects are
generated using the simulation default settings. The yi(0)
are sorted from largest to smallest and treatment effects are
sorted in either increasing or decreasing order. When the
effects are decreasing, the treatment helps the subjects that
already have large yi(0) values; when the effects are increas-
ing, the effects help those with the lowest yi(0). While the
test is conservative for both sorting methods, it is less con-
servative when the largest effects are given to those with
the smallest yi(0). As the optimization routine tests a hy-
pothesis in which the treatment effects are concentrated on
subjects with yi(0), it is unsurprising that the test is most

powerful when the true treatment effect allocation is similar
to the result of the optimization routine.
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