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Abstract—We consider open-loop solutions to the stochastic

optimal control of a linear dynamical system with an additive

non-Gaussian, log-concave disturbance. We propose a novel,

sampling-free approach, based on characteristic functions and

convex optimization, to cast the stochastic optimal control prob-

lem as a difference-of-convex program. Our method invokes

higher moments, resulting in less conservatism compared to

moment-based approaches. We employ piecewise affine approxi-

mations and the convex-concave procedure for efficient solution

via standard conic solvers. We demonstrate that the proposed

solution is competitive with sampling and moment based ap-

proaches, without compromising probabilistic constraints.

I. INTRODUCTION

Stochastic optimal control requires enforcement of chance
constraints, which permit violation of the state constraints with
a probability below a specified threshold [1], [2]. However, in
the presence of non-Gaussian disturbances, such constraints
are hard to implement in a computationally tractable man-
ner analytically. Existing approaches to accommodate non-
Gaussian disturbances involve sampling or moment-based
methods [1]. Sampling approaches often result in trade-offs
between accuracy, feasibility, and computational complexity
[3], [4], even with sample reduction techniques [5], [6].
Moment-based approaches [7]–[9] can induce conservatism
that significantly reduces the solution space, as well as non-
convexities associated with simultaneous risk allocation and
controller synthesis [9]–[11].

In this paper, we propose a method for stochastic optimal
control of linear systems with log-concave disturbances, that
results in a scalable solution, avoiding both moment bounds
and sampling. Our approach uses risk allocation, which is
employed in moment based methods. Risk allocation uses
Boole’s inequality to decompose joint chance constraints into
simpler, individual chance constraints [9]–[11]. The creation
of new decision variables needed to allocate risk across
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individual chance constraints yields a non-convex problem.
Such problems are typically solved via iterative, coordinate
descent methods [9], [11], yielding suboptimal solutions with
additional conservatism.

We propose an approach for risk allocation that results in
a convex formulation, and enables simultaneous (as opposed
to iterative) risk allocation and controller synthesis. The key
to this is 1) the use of characteristic functions (the Fourier
transform of the probability density function) to enforce
chance constraints, and 2) a reformulation of risk alloca-
tion as a difference-of-convex program. The former enables
straightforward calculation of chance constraints, via simple
one-dimensional integrals. The latter enables local solutions
via convex optimization with clear convergence guarantees
[12], when the disturbance is log-concave. Lastly, since convex
constraints that arise may be non-conic, we employ piecewise
affine approximations, so that standard conic solvers may be
used to solve the stochastic optimal control problem.

The primary limitations of our approach are that a) the
difference-of-convex reformulation is tractable only for con-
trollers that are limited to open-loop policies, which are more
conservative than affine feedback policies, particularly over
long time horizons [13, Ch. 2, Sec. 4], and b) open-loop
controllers are notoriously resistant to stability guarantees [13],
[14]. Although, reference tracking can prove difficult with
open-loop control in the presence of uncertainty, it can be
facilitated by adding an extra term in the cost function [15],
[16] or employing a reference governor [17]. We addess
this limitation by presuming systems that are Schur stable,
by using an LQR based pre-stabilizing controller that can
satisfy input constraints, similarly to [18]. Other approaches
to ensure stochastic stability involve augmenting the state
vector [19], although extension to non-Gaussian disturbances
is unclear [14], [20].

Further, open-loop control has advantages over feedback-
based approaches: 1) it admits enforcement of hard input
constraints without approximations or additional conservatism
[18], [21], [22], 2) it can be used in problems where sensory
feedback may be unavailable, such as hypersonic vehicles
[23], [24], and 3) it is computationally less expensive than
constrained, feedback-based control. Thus, open-loop control
synthesis is commonplace in stochastic model predictive con-
trol [1] for many of these reasons. In addition, while alternative
approaches such as robust control or saturated affine distur-
bance feedback may yield tractable, convex methodologies
for affine controller synthesis, they often require artificially
bounding disturbances, or ignoring available information about
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the stochasticity [9], [18], [21], [25]–[27]. These approaches
are particularly ill-suited to systems with long-tailed or heavy
distributions which would truncate or saturate the true nature
of the uncertainty.

The main contribution of this paper is a convex solution
for stochastic, open-loop optimal control of linear dynamical
systems with log-concave disturbances, that can be solved
via conic solvers. Our approach is based on our preliminary
work [28], in which we propose a mixed-integer program
to solve constrained, stochastic, open-loop optimal control of
linear Gaussian systems. This paper extends the approach in
[28] to disturbances with log-concave probability distribution
functions (pdfs), by employing characteristic functions to eval-
uate chance constraints. The log-concavity property is critical
for efficient computation, because it assures convexity of the
chance constraints. Further, we show that we can construct a
difference-of-convex reformulation of the risk allocation con-
straint, which, in combination with piecewise approximation,
results in a conic program. This approach is superior to [28],
[29], as it does not incur additional conservatism in the risk
allocation caused by convex restriction.

The organization of the paper is as follows: We present the
problem formulation in Section II. Section III describes the
reformulation of the stochastic optimal control problem using
risk allocation, piecewise affine approximation, and difference-
of-convex programming. We demonstrate our approach on
two motion planning examples, and compare performance to
state-of-the-art moment based and sampling approaches in
Section IV, and summarize our contribution in Section V.

II. PROBLEM STATEMENT

We use the following notation in the paper: The discrete-
time interval N[a,b] enumerates all natural numbers from
integers a to b. Random vectors have a bold case v and the
trace operator is tr(·).

Consider a stochastic, linear, time-varying system,

x(k + 1) = A(k)x(k) +B(k)u(k) +D(k)w(k) (1)

with state x(k) 2 Rn, input u(k) 2 U ⇢ Rm, and disturbance
w(k) 2 Rp. We presume that the system matrix A(k) is Schur
stable and the set U is a convex and compact polytope [18].
We consider a random initial condition x(0) ⇠  x(0) from a
known probability density function (pdf) and a time horizon
of N 2 N. The concatenated disturbance random vector
W = [w(0)> w(1)> · · · w(N � 1)>]

> 2 RpN has a pdf
 W , such that for an independent but not necessarily identical
random disturbance process w(k) ⇠  w with k 2 N[0,N�1],
 W =

QN�1
k=0  w. A function f : R�0 ! R is log-concave, if

log(f) is concave [30, Sec. 3.5.1.]. We follow the convention
that log(0) , �1.

Assumption 1.  x(0) and  W are log-concave [31, Sec. 2.3].

Log-concave probability densities include Gaussian and
exponential disturbances as well as uniform disturbances over
convex sets [32]. Since log-concavity is preserved under
products, log-concave  wk yields log-concave  W .

We define the concatenated state vector and concatenated
input vector associated with the dynamics (1) as follows:

X =
h
x(0)> . . . x(N)>

i>
2 RnN , (2a)

U =
h
u(0)> . . . u(N � 1)>

i>
2 UN ⇢ Rm(N�1). (2b)

From (1) and (2), we have

X = Āx(0) + B̄U + D̄W (3)

where the matrices Ā 2 RnN⇥n, B̄ 2 RnN⇥m(N�1), and
D̄ 2 RnN⇥p(N�1) are obtained from (1) via concatena-
tion [33]. The affine transformation of random vectors from
log-concave distributions is log-concave [31, Lemma 2.1]. Due
to the linearity of (3), the mean and the covariance vector of
X admit closed-form expressions,

µX,U = Āµx(0) + B̄U + D̄µW (4a)
CX,U = ĀCx(0)Ā

> + D̄CW D̄>. (4b)

We are interested in solving the quadratic tracking problem

minimize
U

EX [(X �Xd)
>Q(X �Xd) + U>RU ] (5a)

subject to (4),
U 2 UN , (5b)
P {X 2 S } � 1�� (5c)

with positive semi-definite matrices Q 2 R(nN)⇥(nN) and
R 2 R(m(N�1))⇥(m(N�1)), a desired trajectory Xd 2 S , and
polytopic input and state constraints. We define the set S =
{X 2 RnN : PX  q} with P =

⇥
p>1 . . . p>L

⇤> 2 RL⇥nN

and q = [q1 . . . qL]
> 2 RL, for L 2 N hyperplanes in

the polytope. We presume a probabilistic constraint violation
threshold � 2 [0, 1). The key difference between this problem
and those in [10], [11], [28], [34] is that we consider non-
Gaussian, log-concave disturbances  W.

For a Gaussian disturbance, risk allocation is an established
approach to assure (5c). However, under Assumption 1, evalu-
ation of the resulting chance constraints is not straightforward.
We propose an approach based in characteristic functions, that
is sample and moment-bound free, to solve (5). In contrast
to moment based approaches, which employ lower order
moments, our approach uses all moments of the distribution,
and does not require sampling.

We propose to solve two problems:

Problem 1. Extend risk allocation to log-concave distur-
bances without moment-based bounds or sampling.

Problem 2. Solve (5) under Assumption 1 using a convex
reformulation that employs the risk allocation technique from
Problem 1, in a manner amenable to conic solvers.

We address problem 1 by using characteristic functions to
enforce chance constraints. We address problem 2 through
piecewise affine approximations of a reverse convex constraint.
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III. CONVEXIFICATION OF NON-GAUSSIAN JOINT CHANCE
CONSTRAINTS

A. Risk-allocation for log-concave disturbances

The standard risk-allocation approach [10], [11], [28], [34],
transforms the joint chance constraints (5c) into a set of
individual chance constraints via Boole’s inequality. That is,
given Z = Āx(0) + D̄W ,

P {PX  q} � 1�� (6)
,P

�
\L
i=1

�
p>i Z  qi � p>i B̄U

  
� 1��

,P
�
[L
i=1

�
p>i Z > qi � p>i B̄U

  
 �

(
LX

i=1

P
�
p>i Z > qi � p>i B̄U

 
 �

,
(

P
�
p>i Z  qi � p>i B̄U

 
� 1� �i, 8i 2 N[1,L],

PL
i=1, �i  �, �i 2 [0,�], 8i 2 N[1,L].

(7)

The risk of violating the constraint p>i X  qi, i 2 N[1,L]

is represented by the decision variable �i 2 [0, 1). We have
�i  � since

PL
i=1 �i  � and �i are non-negative.

Let �p>
i Z : R ! [0, 1] denote the cumulative distribution

function of the random variable p>i Z,

�p>
i Z (q0) = P

�
p>i Z  q0

 
, (8)

for any scalar q0 2 R. We use �p>
i Z to rewrite the constraints

(7) as

�p>
i Z

�
qi � p>i B̄U

�
� 1� �i 8i 2 N[1,L], (9a)

XL

i=1
�i  �, �i 2 [0,�], 8i 2 N[1,L], (9b)

Any feasible controller U 2 UN with a feasible risk allocation
� , [�1 · · · �L] 2 [0, 1]L that satisfies (9) also satisfies (5c).

B. Enforcing chance constraints using characteristic functions

The characteristic function of the random vector Z with pdf
 Z(z) is defined as

 Z(�̄) , EZ

⇥
exp

�
j�̄>Z

�⇤
=

Z

Rp

exp(j�̄>z) Z(z)dz

(10)

which is the Fourier transform of  Z(z) and �̄ 2 RnN .
Furthermore, from [35, Eq. 22.6.3], the characteristic function
of the random variable p>i Z is given by

 p>
i Z(�) =  x(0)(Ā

>pi�) W (D̄>pi�) (11)

for some � 2 R.
The main insight we use in this paper is that the evaluation

of the cumulative distribution function in (9a) can be evaluated
by a one-dimensional integration, i.e., for any s 2 R,

�p>i Z(s) =
1
2
� 1

2⇡

Z 1

0

Im

✓
exp(j�s) Z(�)

j�

◆
d�, (12)

where Im(z) denotes the imaginary component of a complex
number z. Equation (12) enables enforcing the chance con-
straint in (9a) using only  Z as given by (11). Equation (12)

Fig. 1. Left: f(x, y) = x2 + y2 � r2 within a unit box. Right: The
epigraph of f(x) = log(�(x)) of a log-concave cumulative distribution
function. Both functions are reverse convex, meaning that the complements
of the inequalities, i.e. x2 + y2  r2 and log(�(x)) � t, respectively, are
convex.

follows from the inversion of the characteristic function [36]–
[38]. We implement (12) using quadrature techniques which
have well defined error bounds [39].

Lemma 1 ( [40, Thm. 4.2.1]). If  p>
i Z is log-concave, then

�p>
i Z is log-concave over R.

Using (9) and Lemma 1, we approximate (5) as follows,

minimize
U,t

(µX,U �Xd)
>Q(µX,U �Xd) + U>RU

+ tr(QCX,U ) (13a)
subject to (5b),
8i 2 N[1,L], p>i B̄U + ��1

p>
i Z

(✏)  qi (13b)

8i 2 N[1,L], log
⇣
�p>

i Z(qi � p>i B̄U)
⌘
� ti (13c)

8i 2 N[1,L], ti 2 [log(1��), 0] (13d)

8i 2 N[1,L], log

 
LX

i=1

exp(ti)

!
� log(L��). (13e)

for a small scalar ✏ > 0 and a change of variables

ti , log(1� �i), 8i 2 N[1,L] (14)

with t = [t1 · · · tL]> 2 RL.
We now establish the relationship between (5) and (13),

and show that (13) is a non-convex program with a reverse
convex constraint. Recall that reverse-convex constraints are
optimization constraints of the form f(·) � 0, where f(·) is a
convex function, as shown in Figure 1.

Theorem 1. Under Assumption 1, the following statements
hold for any � 2 [0, 1) and any ✏ > 0:

1) Every feasible solution of (13) is feasible for (5), and
2) The cost and the constraints (13b)–(13c) are convex.

However, (13e) is a reverse convex constraint.

Proof: 1) We need to show that satisfaction of (13b)–
(13e) satisfies (5c). Recall that the collection of constraints
(9) tighten (5c). Therefore, it is sufficient to show that the
satisfaction of constraints (13b)–(13e) guarantee satisfaction
of (9).

The constraint (13b) ensures that the constraint (13c) is
well-defined, since the satisfaction of (13b) ensures that
�p>

i Z(qi�p>i B̄U) is positive. Under (14), satisfaction of (13c)
and (13d) implies satisfaction of (9a) and �i 2 [0,�], respec-
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Fig. 2. Top: Log of the cumulative distribution function of an affine
transformation of a random vector a>wt, with wt = [w1 w2 w3]> 2 R3

and scale parameters �w = [0.5 0.25 0.1667]>. Bottom Left: A piecewise
affine underapproximation (blue) of the log of the cumulative distribution
function (yellow). Bottom Right: The difference f(x) � `f (x) as in (17),
with ⌘ = 0.1.

tively. Finally, we show that (13e) and (9b) are equivalent via
simple algebraic manipulations,

LX

i=1

�i  �, L�
LX

i=1

(1� �i)  � (15a)

, log

 
LX

i=1

exp(ti)

!
� log (L��) (15b)

In other words, every feasible solution (U, t) of (13) maps to a
feasible solution to (9) with U 2 UN , and thereby is feasible
for (5).

Proof of 2) The cost (13a) is a convex quadratic function
of U . By construction, the constraints (13b) and (13d) are
linear constraints in U and t. The convexity of (13c) follows
from Lemma 1 and the definition of log-concavity. Recall that
log
⇣PL

i=1 exp(ti)
⌘

is a convex function in t [30, Sec. 3.1.5],
hence (13e) is a reverse-convex constraint.

C. Conic reformulation of (13c) via piecewise affine approx-
imation

We now focus on enforcing the convex constraint (13c).
Although convex, the constraint (13c) is not conic, which pre-
vents the use of standard conic solvers. We present tight conic
reformulation of (13c) via piecewise affine approximations.

Given a concave function f : D ! R for bounded intervals
D,R ⇢ R, we define its piecewise affine underapproximation
as `f : R ! R for some mj , cj 2 R for j 2 N[1,Nf ] and
Nf 2 N distinct affine elements,

`f (x) , min
j2N[1,Nf ]

(mjx+ cj). (16)

For a user specified approximation error ⌘ > 0, we can find
a `f for a concave f such that

`f (x)  f(x)  `f (x) + ⌘, (17)

with the sandwich algorithm [41]. The sandwich algorithm
has convergence guarantees that can be balanced between the

user-defined error and the number of affine pieces [28], [29],
[41].

In (13), we use the piecewise affine underapproximation of
the concave functions fi = log

⇣
�p>

i Z

⌘
with Ni 2 N distinct

pieces for every i 2 N[1,L] (as shown in Figure 2) to enforce
(13c). The functions fi have bounded domain and range in
R due to (13b). We evaluate fi using the one-dimensional
numerical integration of characteristic functions, as in (12).
We obtain the following optimization problem,

minimize
U,t

(13a)

subject to (5b), (13b), (13d), (13e)
8i2N[1,L]

8j2N[1,Ni]
, mi,j

�
qi � p>i B̄U

�
+ ci,j � ti (18a)

By Theorem 1 and the use of piecewise affine underapproxi-
mations of log(�p>

i Z) in (13c), every feasible solution of (18)
is feasible for (13), and thereby (5).

D. Solving (18) via difference of convex programming
The optimization problem (18) has a quadratic cost (13a),

and linear constraints (5b), (13b), and (18a) in the decision
variables U and t, and a reverse-convex constraint (13e). We
now discuss a tractable solution to (18) using difference of
convex programming [12].

Difference of convex programs are non-convex optimization
problems of the form,

minimize
x2Rn

f(x)� g(x)

subject to fi(x)� gi(x)  0, 8i 2 N[1,M ]

(19)

where f, g, fi, and gi are convex for i 2 N[1,M ], M 2 N.
The penalty based convex-concave procedure [12] solves (19)
via sequential convex optimization, and is agnostic to the
feasibility of the initial condition [12], [42].

Given the current estimate for the risk allocation r =
[r1 · · · rL]> 2 [0, 1]L (i.e., the initialization for t), the penalty
based convex-concave procedure solves the following convex
approximation of (18) at every iteration,

minimize
U,t,s

(13a) + ⌧ks (20a)

subject to (5b), (13b), (13d), (18a)
s � 0 (20b)

log
⇣PL

i=1 exp(ri)
⌘

+ 1PL
i=1 exp(ri)

PL
i=1 exp(ri)(ti � ri)

+s � log(L��)

(20c)

where ⌧k � 0 for k 2 N are optimization hyperparameters.
The constraint (20c) corresponds to the first-order approxima-
tion of the reverse-convex constraint (13e), which is relaxed
by a scalar slack variable s. We penalize the slack variable s
in the objective (20a). The problem (20) is convex, since (20c)
is a linear constraint in t and s, and all other constraints and
the objective are convex (Theorem 1.b).

Starting with an arbitrary risk allocation �0 2 [0, 1]L, we
iteratively solve (20) with monotonically increasing values of
⌧k to promote feasibility. In the numerical experiments, we
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Stochastic optimal
control problem (5)

Risk-allocation
problem (13)

Optimization problem
(18) with reverse convex

constraints (Thm. 1.b)

Quadratic
program (20)

Boole’s
inequality (9)

Penalty based
convex-concave

procedure

Piecewise affine
approximation +

characteristic
function

Fig. 3. Manipulations that result in a convexified reformulation of (5) that is
amenable to conic solvers.

chose a uniform risk allocation �0 = �
L IL, where IL is a L-

dimensional vector of ones. The corresponding initialization of
r is therefore r0 = log(1��0). The convex-concave procedure
converges to a local fixed-point when a pre-specified violation
tolerance ⌘viol is met and the difference in cost between
iterations k is less than a pre-specified tolerance ⌘dc [12].
However, the convergence to a local minima remains an
open problem [43]. In addition, the procedure may terminate
prematurely if ⌧k reaches a user specified maximum number
of iterations, ⌧max.

In summary, we have transformed the original stochas-
tic optimal control problem presented in (5) into a convex
quadratic problem, via the steps shown in Figure 3. We first
employed risk allocation (13), then converted the non-conic
convex constraints in (13) into conic convex constraints using
piecewise affine approximations, as well as the characteristic
function. Finally, we utilize difference-of-convex program-
ming to address the remaining reverse convex constraint (13e).
Thus, our approach solves a convex (quadratic) program (20)
iteratively to compute a local optimum of (5).

IV. NUMERICAL EXAMPLES

We apply the proposed approach to two examples: 1) a
double integrator, and 2) a quadrotor flying in an environ-
ment with a crosswind. We compare the performance of
the controller produced by our approach to other open-loop
methods: 1) a scenario approach [5], 2) a particle based
approach [4], and 3) a moment based approach [7], [8].
We presume that the system is pre-stabilized via LQR using
MATLAB’s dlqr(·) function [44], [45]. When feasible, we
also compare performance with the empirical characteristic
function (ECF) approach in [29]. The number of samples
for the scenario approach is determined by first specifying
�, as well as a confidence bound ⇠ = 1 ⇥ 10�16 of not
achieving � [5]. To ensure a fair comparison, we use the
same number of samples for the particle and ECF approach.
We measure the performance of the controllers based on
the computed cost, the probability of constraint satisfaction,
and the computation time. For methods which explicitly use
samples in the constraints, performance is determined from
the average of three runs. For the double integrator, Ns = 91
samples were used, and for the quadrotor, Ns = 143 samples
were used. We used Monte-Carlo simulation with 105 samples
for validation.

Fig. 4. Mean trajectories from the proposed approach, scenario approach [3],
[5], particle based approach [4], and moment based approach [7], [8]. For all
approaches, we presume a constraint violation threshold of � = 0.1. Note
that all approaches track the reference trajectory.

All computations are done with MATLAB on an Intel
Core i9-10900K CPU with 3.70GHz and 128GB RAM. We
implemented our algorithm, the scenario approach, the particle
approach, and the empirical characteristic function approach
in YALMIP [46] with MOSEK [47]. We used fmincon for
the moment approach. For implementation of the proposed
approach, we used ⌧max = 10000, ⌧0 = 0.1, and ⌘viol = 1.2.
For the stopping criteria, we used an error tolerance of
⌘dc = 0.1. For the sandwich algorithm that generates the
piecewise affine approximation for our approach and the ECF
approach, we chose an absolute error of ⌘ = 0.01 for both
examples.

A. Constrained control of a stochastic double integrator
We first consider a double integrator system,

x(k + 1) =


1 Ts

0 1

�
x(k) +

"
T 2
s
2
Ts

#
u(k) +w(k) (21)

with state x(k) 2 R2, input set U = [�4, 4], exponential
disturbance w(k) with scale �w(k) 2 R2

+, sampling time
Ts = 0.25s, and initial position x(0) = [�1 0]>.

We seek to solve a constrained optimal control problem
subject to dynamics (21), with quadratic cost (5a) that en-
codes our desire to track Xd 2 RnN , penalize high veloc-
ities, and minimize control effort. Specifically, we choose
Q = diag([100 5]) ⌦ I(nN)⇥(nN), R = 0.5I(mN)⇥(mN),
(Xd)t = [mrt+ cr 0]>, 8t 2 N[0,N ], and problem param-
eters m1,m2,mr, c1, c2, cr as 0.1,�0.1,�0.05,�5, 5, and 1
respectively. We define the time varying state constraints as

T =
�
(t, x) 2 N[0,N ] ⇥ R2 : m1t+ c1  x1  m2t+ c2

 

and maintain a constraint satisfaction of 95%, i.e. � = 0.05.
We compute optimal control trajectories using our approach,

the scenario approach, the particle filter approach, and the

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3284534

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on June 25,2023 at 20:50:55 UTC from IEEE Xplore.  Restrictions apply. 



6

Fig. 5. Top: Stage cost (the cost incurred at each time step) and control
effort over time, for the double integrator. The stage cost of all approaches
are similar to highlight that reference tracking is possible for all approaches.
Bottom: The optimal input for each approach.

TABLE I
DOUBLE INTEGRATOR EXAMPLE: COST AND CONSTRAINT SATISFACTION

(1��) FOR COMPUTED VALUES (COMP) AND MONTE CARLO (MC)
SIMULATION (105 SAMPLES) FOR ALL BUT THE ECF METHOD (SEE
FIGURE 6). WE LIST OFFLINE AND ONLINE COMPUTATION FOR ALL

METHODS WHERE REASONABLE. SAMPLING/PARTICLE APPROACHES USE
Ns = 91 SAMPLES.

Method Cost 1�� Time (s)
Comp MC Comp MC Online Offline

Proposed 863.2 863.2 0.95 1 0.95 56.47
Scenario 862.4 863.2 0.95 1 0.30 N/A
Particle 865.2 863.2 0.95 1 3.50 N/A
Moment 863.2 863.2 0.95 1 3.98 N/A
ECF N/A N/A N/A N/A N/A N/A

moment based approach, over a time horizon N = 20 and with
scale parameter �w = [10 100]>. The empirical characteristic
function approach cannot be used (Figure 6), since the ap-
proach requires a concave region of the cumulative distribution
function to exist [29, Sec. 3.B.]. Figure 4 shows the optimal
trajectories for all approaches, where each track the reference
trajectory closely while ensuring constraint satisfaction in the
presence of uncertainty. Figure 5 shows that the stage cost
(the cost at each time step) is similar amongst all approaches
except the moment approach. Note that we cannot use the ECF
approach here due to the absence of concavity in cumulative
distribution function (Figure 6).

All methods generate similar trajectories, which track the
reference. They also have similar costs and inputs, as shown
in Table II, which compares the cost and probability of satis-
faction to Monte Carlo estimates for 105 simulated trajectories.
This example shows that under nominal conditions with non-
Gaussian stochasticity, i.e. minimal risk allocation, all methods
track the reference trajectory closely.

Fig. 6. The cumulative distribution function (left) and the log of the
cumulative distribution function (right) for a negative affine transformation
of an exponential random variable with scale parameter � = 1. Because the
empirical characteristic function approach requires a concave region of the
cumulative distribution function to exist [29, Sec. III.B.], it cannot be used
to solve the double integrator problem. In contrast, our approach is feasible,
since the log of the cumulative distribution function is log-linear.

Fig. 7. The asymmetric Laplace distribution that affects the states repre-
senting quadcopter position in x, y, z. The disturbances follow the magenta
distributions (left) for the first half of the time horizon, and then follow the red
distributions (right) for the second half of the time horizon. The parameters
of the distribution are noted above each plot.

B. Quadrotor in the crosswinds of a harsh environment
We consider a rigid-body quadcopter model [48]. The

state is defined as a 12-dimensional vector, x =
[� ✓  �̇ ✓̇  ̇ ṗx ṗy ṗz px py pz]>, that captures orientation,
angular rotation, speed, and position. The net thrust is de-
scribed by u1, and the moments around the px, py , and pz axes
created by the difference in the motor speeds are described
by u2, u3, and u4. We presume the mass is m = 0.478 kg
and the moments of inertia are Ixx = Iyy = 0.0117 kg m2

and Izz = 0.00234 kg m2 [49]. We linearize the nonlinear
dynamics about a hovering point, and time discretize the
dynamics via a zero-order hold with sampling time Ts = 0.25.

We incorporate the effect of wind into the quadcopter model
as an additive stochastic disturbance, that takes the form of an
asymmetric Laplace distribution with characteristic function,

 w(t;µ,�,) =
exp(jµt)

(1 + jt
� )(1� jt

� )
, (22)

whose location, shape, and asymmetry suddenly changes
halfway through the time horizon, as shown in Figure 7, with
distribution parameters [50], [51]. That is, the distribution is
non-stationary, but independent. We presume the wind directly
influences the translational motion, i.e. px, py , and pz .
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Time
Evolution

Time Evolution

Fig. 8. Mean trajectories for the quadcopter example. Our approach has the lowest cost, and a probabilistic constraint satisfaction, with a reasonable overall
solve time, that is closest (but still above) the desired threshold (Table II). This can be seen in the fact that the trajectory for our approach is close to the
reference trajectory (middle plot) compared to the scenario approach which overshoots before recovering to track the reference trajectory. In essence, our
approach enables a better trajectory because it can effectively account for the risk of violating the constraint satisfaction in the control optimization process.

Fig. 9. The stage cost and input at each time step for all approaches compared
in the quadcopter example. Our proposed, moment, and ECF methods have
comparable inputs. However, note the scenario approach has differing inputs
for u1 and u3, and correspondingly higher cost (Table II). The input u2 and
u4 are not shown because they are quite similar.

We solve the stochastic optimal control problem (5) for
a time horizon of N = 20 with cost weights Q =
diag([10I1⇥9N 100I1⇥3N ]) ⌦ IN⇥N and R = I4N⇥4N . The
desired reference trajectory Xd is defined for the state vari-
ables px and py by generating waypoints via the following
functions,

Xd,x(k) = r sin(✓(k)), (23a)
Xd,y(k) = r cos(✓(k))� 20, (23b)

with r = 35, and ✓(k) 2 R decreases from 3⇡/4 to �⇡/4.
The vertical desired position, Xd,x(k) 2 R is defined by
linearly spaced waypoints from �10 to 10. The input set is
U = [�40, 40]⇥ [�5, 5]3 and the constraint set S ,

S =
�
x 2 R12 : |px|  60, |py|  60, |pz|  60

 

imposes restrictions on the translational motion. The initial
condition is x(0) = [0 · · · 0 44.75 � 34.75 � 10 ]>.

TABLE II
QUADCOPTER EXAMPLE: COST AND CONSTRAINT SATISFACTION (1��)

FOR COMPUTED (COMP) AND MONTE-CARLO (MC) SIMULATION WITH
105 SAMPLES, FOR ALL BUT THE PARTICLE CONTROL METHOD.

SAMPLING AND ECF APPROACH USE Ns = 141 SAMPLES.

Method Cost 1�� Time (s)
Comp MC Comp MC Online Offline

Proposed 228.4 228.3 0.95 1 0.86 856.8
Scenario 698.4 550.6 0.95 1 1.54 N/A
Particle N/A N/A N/A N/A N/A N/A
Moment 381.9 382.0 0.95 1 266.2 N/A
ECF 932.0 933.1 1 1 0.36 1949.3

We choose a constraint satisfaction probability of 95% (� =
0.05). Figure 8 shows the computed trajectories our approach
and those we compare it to. All approaches except for the
particle approach find an optimal, open-loop controller, but
with varying conservatism (Table II). The particle approach
exceeds our cutoff time of an hour.

In contrast to the first example, only our proposed approach
is the only approach which tracks the reference trajectory
closely with probabilistic constraint satisfaction (Figure 8).
As shown in Figure 9, our stage cost is the lowest amongst
all approaches. Although our approach requires an additional
offline calculation for the piecewise underapproximation, the
overall cost to solve time is the best out of all approaches
relative to online solve time, as shown in Table II.

The piecewise affine approximation for the ECF approach
takes longer offline time due to it using a sum of characteristic
functions via data to construct the cumulative distribution
function. In contrast, since we are given the characteristic
function in our approach, the offline time for the piecewise
affine approximation is slightly lower. Nonetheless, our ap-
proach has a lower cost due to exploiting the log-concavity
properties of the distribution. Whereas the ECF approach relies
on a conservative concave restriction about the inflection point
of the cumulative distribution function (Table II).

V. CONCLUSION

We presented a convex optimization based approach for
the constrained, optimal control of a linear dynamical system
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with additive, log-concave disturbance. Our formulation uti-
lizes a characteristic function based risk allocation technique
to assure probabilistic safety for a log-concave disturbance.
Our approach solves a tractable difference-of-convex program
to synthesize the desired controller. Our reforumulation is
amenable to standard conic solvers via the use of piecewise
affine approximations that provide tight bounds. Numerical
experiments show the efficacy of our approach in comparison
to scenario, particle control, and moment based approaches.
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