TOWARDS LOGARITHMIC GLSM: THE r-SPIN CASE
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ABSTRACT. In this article, we establish the logarithmic foundation
for compactifying the moduli stacks of the gauged linear sigma
model using stable log maps of [16] [2, 27]. We then illustrate our
method via the key example of Witten’s r-spin class to construct
a proper moduli stack with a reduced perfect obstruction theory
whose virtual cycle recovers the r-spin virtual cycle of Chang—Li-Li
[14]. Indeed, our construction of the reduced virtual cycle is built
upon the work of [I4] by appropriately extending and modifying
the Kiem-Li cosection [38] along certain logarithmic boundary. In
the subsequent article [20], we push the technique to a general
situation.

One motivation of our construction is to fit the gauged linear
sigma model in the broader setting of Gromov-Witten theory so
that powerful tools such as virtual localization [26] can be applied.
A project [18, [19] along this line is currently in progress leading to
applications including computing loci of holomorphic differentials
[I7], and calculating higher genus Gromov-Witten invariants of
quintic threefolds [29] 30].
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1.1. Gauged Linear Sigma models. One of the major advances in
the subject of Gromov-Witten theory is the development of the so
called FJRW-theory by the third author and his collaborators. The
Gromov-Witten theory of a Calabi-Yau hypersurface of a weighted
projective space is conjectured to be equivalent to its FJRW-dual via
the LG/CY correspondence, a famous duality from physics. In physics,
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the Gromov—Witten theory corresponds to a nonlinear sigma model
while FJRW-theory corresponds to a Landau—Ginzburg model. Back in
1993, Witten gave a physical derivation of the LG/CY correspondence
by constructing a family of theories which was known as the gauged
linear sigma model or GLSM [59]. By varying the parameters of GLSM,
Witten argued that GLSM converges to a nonlinear sigma model at
a certain limit and a Landau-Ginzburg orbifold at a different limit.
Hence, they are related by analytic continuation.

Several years ago, GLSM (with the restriction to compact-type in-
sertions) was put on a firm mathematical footing by Fan, Jarvis and
the third author [25]. Let us briefly describe the construction. The
input data of a GLSM is an LG-space

w:V),G—C
for a GIT quotient V', G with a C*-action C}; ~ V (called the R-

charge) such that W is homogenous of degree one. Moreover, we as-
sume that the critical locus Crityy = {dW = 0} C V /, G is compact.
The most famous example is

W =p(}+ay+a5+a5+22): C°xC—C

with C*-action of weight (1,1,1,1,1,—5). Here (21, x9,x3, x4, x5) are
the coordinates of C® and p is the coordinate of C. Furthermore, the
R-charge has weight (0,0,0,0,0,1). The GIT-quotient (C* x C) /, C*
has two chambers or phases depending on the character
6(z) =2": C" — C".

If > 0 (i.e., n > 0), then the unstable locus is (0,0,0,0,0) x C and
we have the GIT quotient ((C°—{(0,0,0,0,0)}) x C)/, C* = Ops(—5).
When 6 < 0, the unstable locus is C* x {0} and the GIT quotient is
(C> x C*) J, C* = [C®/Zs5]. This GLSM is supposed to be equivalent
to the Gromov—Witten theory of the quintic 3-fold X5 = {z} + 23 +
x5 + 2§ + 22 = 0} in the chamber 6 > 0 and FJRW-theory of the LG
orbifold

F=a}+ a5+ a5+ +22: [C°)Zs] - C
in the chamber # < 0. Let us use this example to illustrate Fan—

Jarvis—Ruan’s algebraic GLSM theory. The geometric data for the
above GLSM is

M ={(C,L,(s1,59,83,84,85) € H'(LF),p € H(LT° @wipg)) : ...}

satisfying a certain stability condition where C is a pre-stable curve
and L is a line bundle over C. For 6 > 0, the stability condition
implies that (sy, so, 83, 84, 85) define a stable quasimap into P* and we
obtain a variant of Chang-Li’s p-field moduli space [13]. For § < 0, the
stability condition implies that the zeros of p form an effective divisor
D, and that p defines a weighted 5-spin structure £° = wiogc(—D). In
both cases, .# is a DM-stack with two-term perfect obstruction theory
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and has a virtual cycle in the Chow group. However, it is not proper
(compact). To obtain a virtual cycle which we can integrate, (under
the assumption that all insertions are of compact—typeﬂ) we use d W to
define a cosection

o: ObS//; — O///

and apply Kiem—1Li’s cosection localization technique [38] to define a
localized virtual cycle [.#]¥" with support on the compact sub-locus
M (0) C A satistying the condition (si, S, S3, 84, 85, p) € Crity.

The above construction is beautiful. However, it is not directly useful
for computational purposes. In many ways, we would like to have
an alternative construction which is more friendly towards effective
computation. To that end, we would like to avoid using a cosection.

In the same paper, Kiem—Li showed that if .#Z is a compact moduli
space with a two-term perfect obstruction theory and a cosection o,
then

deg([.2]"") = deg([.#]}")

(e

This suggests that one should try to compactify the GLSM moduli
space .Z in a way that its cosection extends without additional degen-
eracy loci. The main purpose of this and its subsequent articles is to
construct such a compactification.

1.2. The logarithmic approach.

1.2.1. Stable maps relative to boundary divisors. The theory of stable
maps relative to a smooth boundary divisor was introduced in sym-
plectic geometry by Li-Ruan [41] and Ionel-Parker [32, 33] in the 90s.
The algebraic version using expansions was first developed by Jun Li
in his work [42] [43], including a proof of a degeneration formula in
Gromov-Witten theory. Since then, the degeneration formula has be-
come one of the main tools in Gromov—Witten theory. A combination
of expansions with logarithmic geometry was introduced by Kim [40],
and with orbifold structures was introduced by Abramovich—Fantechi
[5].

The idea of using logarithmic structures without expansion was first
proposed by Bernd Siebert in 2001 [55]. This has led to the theory
of stable log maps of Abramovich-Chen—Gross—Siebert [2], 16, 27] in
the general logarithmic setting with toroidal boundary divisors. A
different approach using exploded manifolds was introduced by Brett
Parker [49, (50, [51].

In this and the subsequent articles [20] [18, [19], we will apply the
techniques of stable log maps to compactify the gauged linear sigma
model (GLSM) of Fan-Jarvis-Ruan [25], and study their virtual cycles.

IWe refer the reader to [39, 12] for interesting new developments related to the
more general broad insertions along the cosection approach.
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1.2.2. Log maps. A stable log map to a separated log Deligne-Mumford
stack Y is a morphism of log stacks f: C — Y over a log scheme S
where C — S is a twisted log curve and the underlying twisted map f
obtained by removing log structures is stable in the usual sense. For
our purpose, we will only consider the case that My is of Deligne—
Faltings type of rank one. This amounts to saying that the logarithmic
boundary of Y is a Cartier divisor, see Section [2.1.8|

The central object of log maps is the stack .# (Y, ) parameterizing
stable log maps to Y with a given collection of discrete data 3 (Section
2.4). The case where Y is a log scheme has been developed in [2} [16, 27].
The same method applies to the case of log Deligne-Mumford targets.
Due to a lack of references, in Section [2| we collect results of stable log
maps with Deligne-Mumford targets needed in our construction.

1.2.3. Modular principalization of the boundary. A stable log map is
degenerate if it maps a component of the source curve to the boundary
of Y. Denote by A C .Z(Y,[) the locus consisting of degenerate
fibers. In general, it is a virtual toroidal divisor, in the sense that it
is the pullback of a Weil divisor from a log smooth stack D(A, 3)
via a canonical morphism, see . This turns out to be a major
difficulty for the construction of a reduced perfect obstruction theory
of the compactified GLSM. The key to overcoming this difficulty is the
following modular principalization of A.

Let f: C — Y be a stable log map over a geometric log point S.
For each irreducible component Z C C we may associate an unique ele-
ment e; € Mg := Mg/O% called the degeneracy of Z (Section
As elements of Mg, they carry a natural partial ordering such that
ez S ez iff (ez, —ez) € M. Intuitively e, measures the “speed” of
Z falling into the boundary of Y, and ez, < ez, means that Z, degen-
erates “faster” than ez . The stable log map f is said to have uniform
maximal degeneracy if the set of degeneracies has a unique maximal ele-
ment. It turns out that having uniform maximal degeneracy is an open
condition and is stable under base change. Let % (Y, 3) C .# (Y, 3) be
the sub-category fibered over log schemes consisting of objects with the
uniform maximal degeneracy. In Section [3 we establish the following:

Theorem 1.1 (Theorem [3.18)). The canonical morphism % (Y, ) —
A (Y, B) is a proper, representable and log étale morphism of log Deligne—
Mumgford stacks.

The maximal degeneracy defines naturally a wvirtual Cartier divisor
Apax C % (Y, ) in the sense of [37), §3] whose support is precisely the
locus of degenerate log maps, see Section [3.4.1L To be more precise,
Aax 18 the vanishing locus of a global section of a line bundle LY,

max*

Remark 1.2. The category % (Y, 8) is indeed the largest sub-category
of (Y, ) to which our construction of reduced perfect obstruction
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theory of compactified GLSM applies. Consequently, our construction
applies to subcategories of % (Y, ) including the aligned logarithmic
structures of [I, Section 8.1]. The general construction of this paper
allows us to work with various subcategories of % (Y, ) to carry out
the computation of the GLSM virtual cycle. This will be a task of
[18, [19].

1.3. The r-spin case. Since the technique is relatively involved, for
the reader’s benefit it makes sense to work out in full detail a first
nontrivial simple example. This is another main purpose of the current

article. Our example of choice is the r-spin theory which corresponds
to the GLSM of

W =2a"p: [([CxC)/C—C,

where the coordinates on Cx C are (x, p), the weight of action is (1, —r)
and the R-charge is (0,1). Similarly to the case of quintic 3-folds, this
model has two chambers as well. The relevant chamber for r-spin curve
theory is the Landau—Ginzburg chamber 6 < 0, where the stable locus
is C x C*. Furthermore, we choose a stability condition such that p has
no zero. By the previous discussion, p can be interpreted as defining
an isomorphism L£" = wiee ¢ and the GLSM moduli space is

%C:k = {(Caﬁa S HO(‘C)WCT = wlog,C)}-

g

Let (C/S,L) be an r-spin curve consisting of a log curve C — S
and an 7-spin bundle £ over C/S. Denote by 0p and ocop the zero
and infinity sections of P := P(L @& O¢) respectively, and by Mp_
the log structure on P associated to cop. Consider the log stack P =
(P, Mclp Do+ Mp_,) with the projection P — C. A log field is a section
f:C — P. It is stable if wlco/gs ® f*O(0p)k is positive for k> 0.

Denote by Yﬁl /" the stack of stable r-spin curves with a log field with
discrete data 5 = (g,7, ¢) consisting of the genus g, the monodromy 7y
of the spin bundle along markings, and the contact order ¢ along each
marking with cop. We first achieve the compactification:

Theorem 1.3 (Theorem 4.12]). yg/r 18 represented by a proper log
Deligne—Mumford stack.

Remark 1.4. The compactification of the moduli of abelian and mero-
morphic differentials using log stable maps has been studied previously
in [I5 28]. The compactification considered in this paper (in the case
r = 1) is different from loc. cit. in that we do not put the log structure
on P induced by the zero section.

Remark 1.5. Tt is worth emphasizing that the properness of ,5”61/ "is
interestingly a non-trivial fact. As shown in Section [4.4.7] limit(s) of
a one-parameter family of meromorphic sections of spin bundles may
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not exist regardless of the stability conditions. Log structures play an
important role in the existence of the underlying limiting section!

Note that a log field f: C — P is equivalent to a log map f': C —
(P, Mp_ ) whose underlying morphism of schemes is a section of P — C.
Since Mp__ is Deligne-Faltings type of rank one, we may consider the

stack %ﬁl/ " of stable r-spin curve with a log field with uniform maximal

degeneracy with respect to Mp_. Theorem implies that %ﬁl/ "is a
proper log Deligne-Mumford stack as well.

Next, we consider the virtual cycles. The stack ;751 /" admits a canon-
ical two term perfect obstruction theory and hence a virtual cycle

[fﬁl/ "IVI' which pulls back to the canonical perfect obstruction the-

ory and the virtual cycle [%ﬁl/ "V of %51/ ". But this canonical virtual

cycle is different than the cosection localized virtual cycle in general.
The main result of the paper is the following:

Theorem 1.6 (Proposition and[5.31). Under the condition that all

markings are narrow and of trivial contact order, the space ?/51/ " carries
an alternative “reduced” two term perfect obstruction theory together

with a cosection agc}u on %ﬁl/r that has no additional degeneracy loci.

Furthermore, denote by [%ﬁl/T]red the virtual cycle of the reduced perfect
obstruction theory, then

i* [%o]vir _ [gz/ﬁl/T]red

o

where 1: Z;/; — %ﬁl/r is the inclusion of the zero section, and % ° =
%"\ A

Remark 1.7. We remark that the reduced perfect obstruction theory
has the same virtual dimension as the canonical one. Therefore, it
is not a traditional reduced virtual cycle, which changes the virtual
dimension. Instead, the perfect obstruction theory is only “reduced”
along the boundary A,.«. In fact, the two perfect obstruction theories
are related by a triangle where the third complex is determined
by a virtual Cartier divisor supported along A ..

Remark 1.8. In general, the canonical cosection of Chang-Li-Li [14]
(3.5)] over the open substack Z° C Yg/r defining [%°]V", extends to a

o
meromorphic cosection over yﬁl r However, the behavior of this mero-
morphic cosection along the boundary yﬁl T \ % °, which is crucial for
studying the virtual cycle, is hard to understand. The key to solve this
issue is the modular principalization 02/51/ " Yﬁl /" of the boundary
Y; I \ % ° in §1.2.3 which endows A, with a virtual Cartier divisor

Q)

structure in %51 ". Consequently, we prove in ~< that the canoni-

cal cosection over % ° extends to ?/51/ " with precisely r-th order poles
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along Apax ((52) and Lemma but no additional degeneracy loci
(Proposition [5.9)). These properties lead to the reduced theory in
and §5.4

Comparing to the canonical theory, the reduced one carries a reduced
cosection which extends the canonical one over % ° across the boundary
A ax With neither additional poles nor additional degeneracy loci. This

is what allows for comparing the virtual cycles [%°]¥" and [62/51/ "red in
30.9)

Remark 1.9. As further shown in the subsequent paper [20, Theo-
rem 1.10], the two virtual cycles [%ﬁl/ "Vir and [02/,81/ "Jred are related

by [02/51/ i = [%ﬁl/ Mred pop s [Apax]™, where [Apa]™? is a reduced
virtual cycle of the boundary Ap.c. The cycle [Amax]red is non-zero in

general, and will be studied in detail in [I8, 19]. The fact that the
canonical virtual cycle [%ﬂl/ "]VI* does not equal the cosection localized
virtual cycle [%°]Y" led us to search for the reduced theory.

Remark 1.10. The GLSM moduli space % °, as well as its compactifi-
cation %ﬂl/ " admit C*-actions induced by scaling the (log) field. Un-
fortunately, Chang—Kiem-Li’s [I1] localization theorem for cosection-
localized virtual cycles does not apply to the cycle [%°]¥". This is why
Theorem is significant, since it allows the application of Graber—
Pandharipande’s virtual localization formula [26], thus leading to a new
way for understanding Witten’s r-spin class (even before push-forward
to the moduli space of curves). We leave the discussion of the C*-
action, equivariance of obstruction theories, etc. (in the more general
setting of [20]) to the future work [18]. The localization formula has
been a main motivation of this work (see also Section [L.F).

1.4. History of the r-spin virtual cycle. There was a long line
of works constructing both the moduli space of r-spin structures and
its virtual cycle. Spin curves were proposed by Witten [59] in an ef-
fort to generalize his famous conjecture that the intersection theory of
the moduli space of stable curves is governed by the KdV-hierarchy.
The compactification was first constructed by Jarvis [34] using torsion-
free sheaves and later by Abramovich-Jarvis [6] using line bundles on
twisted curves.

The first construction of the virtual cycle is due to Polishchuk—
Vaintrob [53]. From the modern point of view, their construction is
better viewed as a quantum K-theoretic construction from which one
can obtain a virtual cycle by taking some kind of Chern character
(see [21]).

The picture was clarified significantly by Fan-Jarvis-Ruan with a
vast generalization (FJRW-theory) of r-spin theory. The input data of
FJRW theory is a non-degenerate quasi-homogeneous polynomial W
together with a so called admissible finite automorphism group G of
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W. The r-spin theories are simply the case of W = 2" and G = Z/rZ.
The state space of the r-spin theory corresponds to the monodromy
at the marked point, and is indexed by an integer 0 < m < r. The
insertion m > 0 corresponds to the so called narrow sector in FJRW-
theory and the corresponding virtual cycle was constructed as a local-
ized topological Euler class. The role of m = 0 was clarified in general
FJRW-theory as a new type of insertions called broad. They showed
that broad insertions are irrelevant in r-spin theory but a source of
difficulty in general case. Fan-Jarvis-Ruan’s construction is analytic
in nature although there is an algebraic construction of Polishchuk and
Vaintrob using matrix factorizations [54]. However, it is not clear that
these two are equivalent in the most general case.

The last piece of the puzzle before the present work was provided by
Chang—Li-Li in [14], where they gave yet another algebraic geometric
construction of FJRW virtual cycle for narrow sectors. This is the con-
struction that we use in this article. Furthermore, they proved that all
constructions of Polishchuk—Vaintrob, Chiodo, Fan—Jarvis—Ruan and
Chang-Li-Li are equivalent.

Finally, the A,-generalization of Witten’s integrable hierarchies con-
jecture was proved by Faber—Shadrin-Zvonkine [23] while the D,,, Fg 7 s-
generalization was proved by Fan—Jarvis—Ruan [24].

1.5. Effective r-spin structures. A key input that led us to propose
this new construction of the r-spin virtual cycle is a conjectural formula

of [%;Z]Vir by the second author. This formula was motivated by the
recent, study of the cycle of the locus of holomorphic differentials and
of double ramification cycles. We outline here this train of thought.

We consider the open sub-stack //191;/;« c 7 of r-spin structures

g?’y
on smooth orbifold curves. An r-spin structure (C/S, L) € .} is

called effective if h°(L) > 0. We denote by Sy C %;,4r the locus of

effective r-spin structures and by Sy C %;/,: its closure. A. Polishchuk
studied the geometry of effective r-spin structures (see [52]) and asked
the following question: Can we express the r-spin virtual cycle to /l; Kf
in terms of the cycle [Sp] and other natural cycles?

This problem was left aside until a precise conjecture was recently
stated (see [48, Conjecture A.1]). This conjecture can be re-stated as
follows: for large values of r, we have

‘. (1[7/’"]“ i [?0]) — a(r) € A*(A,,)

7/-. g?’y

where a(r) is a polynomial in r (here e: %;/,: — M ,,, stands for the
forgetful map of the spin structure).
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Remark 1.11. The conventions for the value of [%;/,:

in [14], [52], and [48).

|¥I* are different

This conjecture is very similar to a conjectural expression by Pixton
for the double ramification (DR) cycles that was proved by Pandhari-
pande, Pixton, Zvonkine, and the second author (see [48]). The main
tool of their proof is the virtual localization formula of Graber and
Pandharipande (see [26]).

In order to prove the new conjecture of [48], the second author built
a (conjectural) localization formula by analogy with the proof of the
expression of DR cycles. In this conjectural localization formula, the
role of DR cycles is replaced by cycles of effective r-spin structures.
The second author checked the consistency of this formula by various
computations in low genera.

From this point, our main problem was to construct the space where
the conjectural localization formula should hold. The effort to pin down
the geometry underlining this formula led to use the machinery of log
geometry in this article. In work in progress [18, [19], the first three
authors, will prove a general localization formula for log GLSM, and in
[17], with Pandharipande, Pixton, Schmitt and Zvonkine, we will show
that it implies [48, Conjecture A.1].

1.6. Plan. The paper is organized as follows. In Section [2 we discuss
the general set-up of log stable maps in the orbifold setting. In Sec-
tion 3, we introduce the new notion of log structures of “uniform max-
imal degeneracy”, which is crucial for the construction of the reduced
virtual cycle. This is applied in Section [ to construct the compact-
ification of the moduli space of r-spin curves with a field. Finally, in
Section [ we construct the reduced perfect obstruction theories and
cosections, and we prove Theorem 1.6
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2. MODULI OF TWISTED STABLE LOG MAPS

In this section, we introduce the setup of stable log maps needed for
compactifying GLSM. It was defined with prestable source curves in
[2, [16], 27]. We take the opportunity to extend it to the orbifold setting.

2.1. Twisted log maps.

2.1.1. Twisted curves. Recall from [7, Definition 4.1.2] that a twisted
n-pointed curve of genus g over S consists of the data

(€ —C— S {oi}i)

where

(1) C is a proper Deligne-Mumford stack, and is étale locally a
nodal curve over S

(2) 0, C C are disjoint closed substacks in the smooth locus of
C— S,

(3) 0; — S are étale gerbes banded by the multiplicative group .,
for some non-negative integer r;;

(4) the morphism C — C'is the coarse moduli morphism;

(5) along each stacky singular locus of C — S, the group action of
iy, 1s balanced;

(6) C — C is an isomorphism over C where C__  is the com-

gen> “gen
plement of the markings o; and the stacky singular locus of

C—S.

Given a twisted curve as above, by [7, Proposition 4.1.1] the coarse
space C' — S is an n-pointed, genus ¢ ordinary pre-stable curve over
S with the markings determined by the images of {¢;}. When there is
no danger of confusion, we simply write C — S for a family of twisted
curves.

Twisted curves can only have stacky structure along markings and
nodes. Though the stacky structures can be described equivalently in
terms of log structures as in [47], to be compatible with the existing
literature on r-spin curves, we will recall their local structures below
following [7].

2.1.2. Stacky structure along nodes. Let C — C — S be a family of
twisted curves, and ¢ — C be a geometric point of a node. Shrinking
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S if necessary, there exists an étale neighborhood U — C' of ¢ with an
étale morphism

U — Spec (Osla, y]/(zy = 1))
for some t € Og. The pullback C x¢ U is the stack quotient

(1) [Spec (Oylz, w]/(Zy =t 2" = x,5" =y)) /1]

for some ¢ € Og. Here for a generator v € p,, the p,-action is given
by v(Z) = (& and () = 'y for some primitive r-th roots of unity ¢
and ¢’. The balanced condition implies that ¢’ = (1.

2.1.3. Stacky structure along markings. Let p — C be a geometric
point of a marking corresponding to ;. Shrinking S if necessary, there
exists an étale neighborhood U — C of p with an étale morphism

U — Spec Og|z].

The pullback C x¢ U is the stack quotient

2) [Spec (Ou[2]/(Z" = 2)) /1]

where for each ¢ € p,, the action is given by z — (Z.

2.1.4. Logarithmic twisted curves. A log twisted n-pointed curve over
a fine and saturated log scheme S in the sense of [47, Definition 1.7]
consists of

(r:C — C — S, {o:}))
such that

(1) The underlying data (C — C — S,{o;}~,) is a twisted n-
pointed curve over S.

(2) 7 is a log smooth and integral morphism of fine and saturated
log stacks.

(3) If U C C is the non-critical locus of &, then Mc|y = Mg @
@?:1 N,, where N, is the constant sheaf over o; with fiber N.

We remark that the log structure M along each marking has a com-
ponent given by the divisorial log structure associated to the marking.
This corresponds to the component N, above. However, the stacky
structure is allowed to be trivial along markings.

For simplicity, we may refer to 7: C — S as a log twisted curve. The
pullback of a log twisted curve 7: C — S along an arbitrary morphism
of fine and saturated log schemes T' — S is the log twisted curve
T CT =C XsT—>T.
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2.1.5. The combinatorial structure of log twisted curves. Consider a
log twisted curve (7: C — S, {o;}!,), a geometric point p — C and
its image s = 7(p) € S. The morphism 7”: 7* Mg — Me of sheaves
of monoids can be described on the level of stalks as for classical log
curves by

E*Ms,s @ N, if pis a marked point
c T Mgy = Mey ~ (¢ T Mg Oy N2 if p is a node
E*M&S, otherwise,

where 7?';, is the inclusion of the first factor. Recall that at the i-th
marking the factor N is generated by generator of the divisorial log-
structure associated to o;, while at a node, the direct sum is determined
by

(3) N = Mg, 1+ py,

and the diagonal map N — N2, Indeed, the diagonal map is induced
by the relation ¢ = Z¥ in the local chart . The two generators
(1,0),(0,1) € N? correspond to the local coordinates Z, 7 of the two
branches of the node, and p, corresponds to the local section t'.

2.1.6. The stack of log twisted curves. Denote by smgwn the category
of genus ¢ log twisted curves with n marked points over the category
of log schemes. By [47, Theorem 1.9], the fibered category DM, is
represented by a log algebraic stack. Indeed, the underlying stack
ﬂgwn is the stack parameterizing twisted curves with the same discrete
data. The boundary of @;Wn parameterizing singular fibers is a normal
crossings divisor whose associated divisorial log structure defines the

log structure of MY .

2.1.7. Log stable maps with twisted source curves. We fix a log algebraic
stack Y as the target.

Definition 2.1. A [og map to Y over a fine and saturated log scheme
S consists of the data

(m:C—= S, f:C—=Y)

where C — S is a log twisted curve over S, and f is a morphism of log
stacks. The pullback of a log map along an arbitrary morphism of log
schemes is defined via the pullback of log twisted curves as usual.

When Y is a separated log Deligne-Mumford stack, a log map is
stable if the underlying twisted map is stable in the usual sense. In
particular, a stable log map is representable.

For simplicity, we may write f: C — Y for a log map.
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2.1.8. Deligne—Fultings targets of rank one. Throughout this paper, we
will mainly focus on the following type of targets.

Definition 2.2. A log algebraic stack Y is Deligne—Fultings type of
rank one if there is a morphism of sheaves of monoids Ny — My
which locally lifts to a chart (in the sense of [36, Definition 2.9 (1)]) of
My-. Here Ny denotes the constant sheaf over Y with fiber N.

Consider the log algebraic stack 4 with the underlying stack

[ Spec(k[N])/ Spec(k[Z)])]

and the log structure induced by the affine toric variety Spec(k[N]).
Let co4 C A be the boundary divisor associated to the log structure
M 4. The log stack A has the universal property that if Y is Deligne—
Faltings type of rank one, then there is a canonical strict morphism
Y —» A

2.2. The combinatorial structure of twisted log maps. The com-
binatorial structure of log maps with twisted source curves is similar to
the case without twists as in [27, 2, 16]. We introduce it following [3]
Section 2.3|. For our purposes, we assume Y is Deligne-Faltings type
of rank one.

2.2.1. The induced morphism of sheaves of monoids. Let (m: C —
S,f:C — Y) be a log map over S. First consider the case where
S is a geometric point with Mg = @Q. Denote by M := f*My-. Thus,
M is a Deligne-Faltings log structure on C of rank one. This leads to
a pair of morphisms of sheaves of monoids

(7: Q %Mc,fb: M — Me).
where we view () as the constant sheaf of monoids on C. The morphism

7 is described in Section . We describe the behavior of J_”b at
generic points, marked points, and nodes of C as follows.

2.2.2. The stalks of M. Since M is Deligne-Faltings type of rank one,
for any point s — C the sheaf M is a constant sheaf of monoids with
fiber either N or the trivial one {0}.

2.2.3. The structure of fb at generic points. If s =n is a generic point
of an irreducible component Z C C, then we have a local morphism of

monoids J_”; Mn — Q.

If M,, = N, then we call Z a degenerate component, and ey :=
]_057(1) € @ the degeneracy of f along Z.

If M,, = {0}, then we call Z a non-degenerate component, and set
the degeneracy of Z to be ez =0 € Q.

2A morphism of monoids h: P — Q is local if h=1(Q*) = P*.
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2.2.4. The structure of fb at marked points. If s = p is a point lying on

the marking o;, then we have a local morphism of monoids ]_‘;: Mp —
@ @ N. Consider the composition

b
cp: M, D, QoNA N

If M,, = N, the morphism ¢, is determined by c,(1) € N. We call ¢, or

equivalently c,(1) the contact order at p. The marked point p has the

trivial contact order if ¢,(1) = 0.

Let 1 be the generic point of the component Z containing p, and as-
sume that Z is degenerate. Since the generization morphism x;,,: @ @©
N — @ (see [45, Lemma 3.5 iii]) is just the projection to the first factor,
we obtain

£iNoQON, 1 es+e(l)-(0,1).

2.2.5. The structure of fb at nodal points. Suppose s = ¢ — C is a
nodal point contained in the closures of two generic points 7y, 7 of the
two branches meeting at ¢. Using the description of nodes in Section
[2.1.5] we have a local morphism

EZ:MQ%Q@NNQ.

Let (1,0), (0,1) € N? correspond to the two local coordinates around g
of the two branches of 7, and 7, respectively.

If Mq = N, after possibly renaming the branches at ¢, we may
assume that

2
(4) fo(1) =e+cq-(1,0)
for some ¢, € N and e € (. We call ¢, the contact order of the node q.
Observe the commutative diagram

_ P
(5) Mq—q>MC7q

-

P ——
M, — Me,,.

where the vertical arrows are the generization morphisms. Applying
the commutativity of the above diagram with ¢ = 1 to , we obtain
that

(6) Fo(1) = ez +cq- (1,0)

where ey, is the degeneracy of the component Z; containing 7;. Using
1 = 2, we have

(7) €z T CoPg = €2,
This is the nodal equation as in [16] (3.3.2)].
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If M, = {0}, then ]”Z is necessarily trivial and ¢, = 0. Since the
commutativity of holds in this case as well, taking generization, we
obtain ez, = ez, = 0. In particular, Equation holds for all nodes.

2.2.6. The natural partial ordering. For a twisted curve C over a geo-
metric point, recall that its dual intersection graph G consisting of the
set of vertices V(G) corresponding to irreducible components, the set
of edges F(G) corresponding to nodes, and the set of half-edges L(G)
corresponding to marked points.

Let ¢ — C be a node joining two irreducible components 7, Zs.
Using , we introduce the partial ordering < as follows:

(1) If ¢, > 0, we write v; < vs.

(2) If ¢, = 0, we write v; < vy and vy < vy, or equivalently vy ~ vs.
Then < extends to a partial order on the set V(G), called the minimal
partial order.

The minimal partial order yields an orientation of G as follows. Let
[ € E(G) be the corresponding edge joining vertices vy, vy associated
to Z1, Zs respectively. The edge [ is oriented from vy to vy if v1 < vy,
and the edge is oriented both ways if v; ~ v5. We remark that such G
contain no one direction oriented loops, see [16, Corollary 3.3.7].

If ¢, > 0, we say that ¢ is an incoming node of Z; or an outgoing
node of Zy. When ¢, = 0, the node is neither an incoming nor outcom-
ing component of any component. The incoming special points of a
component Z C C are all incoming special points, the outgoing special
points are the markings on Z and all outgoing nodes.

2.2.7. The logarithmic combinatorial type. We introduce the log com-
binatorial type of the log map (C — S, f: C — Y') over a geometric
point S following [16], Section 3.4] and [2, Section 4.1.1]:

(8) G = (Q7 V(G)=V"(G)U Vd(G)a < (Ci)ieL(G)a (Cl)leE(G))
where

(a) G is the dual intersection graph of the underlying curve C.

(b) V*(G) U V4(G) is a partition of V(G) where V4(G) consists of
vertices of degenerate components.

(¢) < is the minimal partial order defined in Section [2.2.6]

(d) Associate to a leg i € L(G) the contact order ¢; € N of the corre-
sponding marking o;.

(e) Associate to an edge | € E(G) the contact order ¢; € N of the
corresponding node.

Remark 2.3. Our definition of log combinatorial types is similar to the
definition of types in [27, Definition 1.10] and [3, Section 2.3.7]. Since
we work with Deligne-Faltings type targets, we are able to include
more combinatorial information such as the partition and partial order
on G.
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These combinatorial data behave well under generization:

Proposition 2.4. Let f: C — Y be a log map over an arbitrary log
scheme S. Then
(1) The contact order c¢; along the ith marking o; is a constant over
each connected component of S'.
(2) Let W C C be a connected locus of nodes in C. Then the contact
order of the nodes is constant along W'.

Proof. The proof is identical to the case of [16, Lemma 3.2.4, 3.2.9]. O
2.3. Minimality.

2.3.1. The monoid. We recall the construction of minimal monoids in
[16], 2, 27]. Consider a log map (C — S, f: C — Y) over a geometric
point S with the log combinatorial type G. We introduce a variable p;
for each edge | € E(G), and a variable e, for each vertex v € V(G).
Denote by h; the relation e, = e, + ¢; - p; for each edge [ with the two
ends v < v' and contact order ¢;. Denote by h, the relation e, = 0 for
each v € V"(G). Consider the abelian group

G=( P Ze, B Zp)/(hohi | vEVG), I € EG))
VeV (@) IEE(G)
Let G C G be the torsion subgroup. Consider the composition
(@ New @ )+ 99/
veV(G) IEE(G)

Let M(G) be the smallest submonoid that is saturated in G/G*, and
contains the image of the above composition. We call M(G) the min-
imal monoid associated to G, or associated to the log map.ﬂ

Proposition 2.5. There is a canonical map of monoids ¢: M(G) —
Mg induced by sending e, to the degeneracy of the component associ-
ated to v, and sending p; to the element p, as in Equation (@ associated
to I. In particular, the monoid M(G) is fine, saturated, and sharp.

Proof. This follows from the proof of [16, Proposition 3.4.2]. O
For later use, we observe the following.

Corollary 2.6. There is a unique monoid M(G) such that M(G) =
M(G) ©N? where d is the number of edges in E(G) with trivial contact
orders. In particular, the image of e, is contained in M(G)" for all

v e V(Q).

Proof. When ¢; = 0, the element p; is not involved in the relation h;.
The collection of such p; generates the factor N¢. (|

3The monoid M(Q) is called the basic monoid in [27].
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2.3.2. Minimal objects. As in [27,[16] 2], we define the minimal objects
using the canonical morphism ¢.

Definition 2.7. A log map (C — S, f: C = Y) over S is called mini-
mal or basidﬂ if for each of its geometric fibers, the induced canonical
morphism in Proposition [2.5|is an isomorphism.

The definition is justified by the openness of minimality.

Proposition 2.8. For any family of log maps (C — S, f: C = Y) over
a log scheme S, if the fiber fy: Cs — Y over a geometric point s — S
1s minimal, then there is an étale neighborhood U — S of s such that
the fiber fu: Cy — Y is minimal.

Proof. This follows from the proof of [16, Proposition 3.5.2] and [27,
Proposition 1.22]. O

Minimal objects have the following universal property which is the
key to the construction of the moduli stack.

Proposition 2.9. For any log map f: C — Y over a log scheme S,
there exists a minimal log map f.,: C,, — Y over S,, and a morphism
of log schemes ®: S — S, such that

(1) The underlying morphism @ is an isomorphism.
(2) f: C—=Y is the pullback of fn: Cp — Y along ®.

Furthermore, the pair (fm, ®) is unique up to a unique isomorphism.

Proof. The proof is identical to the situation of log maps with no orb-
ifold twists on the source curves. We refer to [27, Proposition 1.24] and
[16, Proposition 4.1.1] for details. O

2.3.3. Finiteness of automorphisms. Let f: C — Y be a log map over
S with S a geometric point. An automorphism of a stable log map
is a pair (¢: C — C,0: S — §) of compatible automorphisms of log
schemes such that ¢ o f = f. Denote by Aut(f) the automorphism
group of the log map f, and by Aut(f) the automorphism group of the
corresponding underlying map. We have the following property:

Proposition 2.10. Suppose the log map f: C — Y over S s stable
and minimal. Then the natural group morphism Aut(f) — Aut(f) is
injective. In particular, the group Aut(f) is finite.

Proof. The proof is identical to the case of [27, Proposition 1.25] and
[16, Lemma 3.8.3]. O

4The terminology used in [27] is basic.
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2.4. The stacks of twisted log maps. Fix a separated log Deligne—
Mumford stack Y as the target with My of Deligne-Faltings type of
rank one. Consider the discrete data

(9) B = (g7na C = {Ci}?:h A)

for twisted log maps in Y where ¢ is the genus, n is the number of
markings, ¢; is the contact order of the i-th marking, and A € Hy(Y)
is a curve class.

Let 5" = (g,n,c) be the reduced discrete data obtained by remov-
ing the curve class, and 5 = (g,n, A) the underlying discrete data by
removing the contact orders.

Denote by . (Y, 3) the category of stable log maps to Y with the
discrete data (3 fibered over the category of log schemes, and .Z (Y, 3)
the stack of usual twisted stable maps to Y. For our purposes, we
view . (Y, B) as a log stack equipped with the canonical log structure
given by its universal curves. Composing with the forgetful morphism
Y — Y, we obtain a canonical morphism

(10) MY, P) = MY, P).

Theorem 2.11. The morphism 1s representable by log Deligne—
Mumford stacks locally of finite type.

The above theorem has been established when both domain curves
and the target are schemes [10, 27], and the same method applies in the
orbifold case as well. However for later use, we will follow the universal
target strategy of [, 58] below.

For any log map f: C — Y over W, the composition C — Y — A is
a log map to A over W, where Y — A is the canonical strict morphism.
Denote by MM(A, 5') the category of log maps to A with the reduced
discrete data 3’. The above composition defines a canonical morphism

(11) MY, ) = M(A, 5).

On the other hand, consider the stack M, ,,(A) parameterizing (not
necessarily representable) usual maps to A from genus g, n-marked log
twisted curves. It is an algebraic stack locally of finite type by [31)

Theorem 1.2]. We further view 91, ,(A) as a log stack equipped with
the canonical log structure induced by its universal twisted curve.

Proposition 2.12. The canonical morphism
M(A, B') = My.n(A)

induced by the forgetful morphism A — A is representable by log
Deligne—Mumford stacks locally of finite type. In particular, the fibered
category IM(A, ') is representable by log algebraic stacks locally of fi-
nite type.

Proof. The proof is identical to the case of [58, Corollary 1.1.1]. O
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Proof of Theorem [2.11. The underlying map Y — A of Y — A induces
a strict morphism of log stacks

A (Y, B) = My n(A),

where both stacks are equipped with the canonical log structures from
their universal curves. The two morphisms and induce

MY, B) = MY, B) X, .a) M(A, 5),

where the fiber product is in the fine and saturated category. The
above morphism is an isomorphism. Indeed, the datum of a log map
to Y is equivalent to the datum of an underlying map to Y and a log
map to A with compatible compositions to ,A. Thus, the algebraicity
of Theorem follows from Proposition [2.12] The Deligne-Mumford
property is a consequence of Proposition [2.10] U

The following log smoothness result will be used later.

Proposition 2.13. The tautological morphism
tw
M(A, ') — M7,

by taking the source log curves, is log étale. In particular, the stack
M(A, B is log smooth and equi-dimensional.

Proof. This is identical to the proof of [8, Proposition 3.2]. O

2.5. Relative boundedness of twisted log maps. The bounded-

ness of stable log maps without orbifold structures has been proved in

[16], 2, 27] under certain assumptions, and in [4, Theorem 1.1.1] in full

generality by reducing to the case of [2]. For our purposes, we will only

consider the Deligne-Faltings case of rank one in the orbifold situation.
Consider the forgetful morphism of log algebraic stacks

F: M(Y, B) — MY, B)

where M(Y, B) has the canonical log structure from its universal curve.
For each strict morphism W — 9t(Y, 3), consider the projection

Fu : MY, B)w = M(Y, B) xanyr.p) W = W

Definition 2.14. For a strict morphism W — (Y, ), the discrete
data (8 is called combinatorially finite over W if the collection of log
combinatorial types of log maps over 9 (Y, B)w is finite.

Remark 2.15. f W = (Y, ), then M(Y, B)w = 4 (Y, 3). Thus the
above definition is compatible with the combinatorial finiteness of [27,
Definition 3.3].

Proposition 2.16. Suppose B is combinatorially finite over W for a
strict morphism W — IMM(Y, B). Then Fy is of finite type.

Proof. This follows from the same proof as in [16, Section 5.4] or [27,
Section 3.2]. O
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2.6. The relative weak valuative criterion. We fix a discrete val-
uation ring R with the maximal ideal m and the residue field R/m. Let
K be the quotient field of R. We have the following version of valuative
criterion necessary for properness.

Proposition 2.17. Consider a commutative diagram of solid arrows
of underlying stacks

(12) Spec K MY, 5)
T
Spec R- MY, B)

Possibly after replacing R by a finite extension of DVRs, and K by
the induced extension of the quotient field, there exists a dashed arrow
making the above diagram commutative. Furthermore, such a dashed
arrow s unique up to a unique isomorphism.

Proof. This follows from the same proof as in [16, Section 6] and [27,
Section 6]. Indeed, the bottom arrow of (12)) provides a family of
underlying pre-stable maps over Spec R. It remains to construct the
extension on the level of log structures.

The first step is to extend the log combinatorial type to the closed
fiber. This can be done identically as in [16], Section 6.2] or [27, Section
4.1] by studying étale locally on the source curve. The second step is to
construct a log curve over S with S = Spec R. This step can be carried
out identically as in [27) Section 4.2], since it only uses the complement
of markings and nodes, and orbifold structures play no role. Finally,
the morphism between log structures of the curve and target can be
constructed identically as in [27, Section 4.3] and [16], Section 6.3] by
first constructing the log map étale locally on the curve, then gluing
them using the canonicity of the local construction. O

3. STABLE LOG MAPS WITH UNIFORM MAXIMAL DEGENERACY

In this section, we introduce a configuration of log structures which
is the key to the construction of the reduced perfect obstruction theory,
and subsequently Witten’s r-spin class.

We again fix the target Y with the log structure My of rank one
Deligne—Faltings type.

3.1. Uniform maximal degeneracy.

3.1.1. Maximal degeneracies. Consider a log map f: C — Y over a
geometric log point S. Denote by G the log combinatorial type of
f, and by M(G) the minimal monoid. Let ¢: M(G) — My be the
canonical morphism as in Proposition [2.5]
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Consider the natural partial order <xig On M such that e; < ey iff
(es —e1) € Mg. The partial order <Ms induces a refinement of < of
G in the sense that v; < vy in V(G) implies e,, < €,, in Mg. When ¢
is an isomorphism, this refinement is the trivial refinement.

Definition 3.1. A degeneracy ¢(e,) € My is called mazimal if ¢(e,) is
maximal in the set of all degeneracies under <77.. The corresponding
vertex v € V(@) is called a mazimally degenerate vertex of f.

As X3, is a partial order, there could be more than one maximal

degeneracy in Mg. On the other hand, different vertices are allowed
to have the same degeneracy in Mg.

Definition 3.2. The log map f: C — Y over S is said to have uniform
mazimal degeneracy if the set of degeneracies has a maximum under
<+ A family of log maps is said to have uniform mazimal degeneracy
if each geometric fiber has uniform maximal degeneracy.

Since the set V(@) is finite, the maximal degeneracy, if it exists, has
to be the degeneracy of some vertex. The above definition for families
is justified by the following.

Proposition 3.3. For any family of log maps f: C — Y owver a log
scheme S, if the fiber fs: Cs — Y over a geometric point s — S has
uniform mazximal degeneracy, then there is an open neighborhood U C S
of s such that the pullback family fuy: Cy — Y over U has uniform
mazimal degeneracy.

Proposition [3.3] can be checked étale locally, and follows immediately
from Lemma 3.4 and B.6] below.

3.1.2. Generization of degeneracies and partial orders. Consider a pre-
stable log map f: C — Y over a log scheme S together with a chart
h: /Vsﬁs — Mg where s — S is a geometric point. Such a chart
always exists after possibly passing to an étale cover. Here f does
not necessarily have uniform maximal degeneracy. The chart h allows
us to view any e € ﬂ&s as a section of Mg via the composition
M&S — Mg — Mg. This section e can be then specialized to any
geometric point ¢ € S with the fiber denoted by e, € Mg;. Let G the
log combinatorial type of f;.

Lemma 3.4. With notation as above, suppose e € Mg is the degen-
eracy of v € V(G). Then there is an étale neighborhood U — S of
s such that for any geometric point t € U, the fiber e, € Mgy, is a
degeneracy.

Proof. Shrinking S if necessary, we may choose a section o: S — C
such that ¢(S) is contained in the smooth non-marked locus of C — S,
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and intersects the component of Cy corresponding to v. Consider the
pullback morphism

0*(?): (0o f)* My — o*Me = Ms.
The equality on the right hand side follows from the assumption that
o(S) avoids all nodes and markings.
Since My is of Deligne-Faltings type of rank one, we may choose a
morphism N — My which locally lifts to a chart. Denote again by 1 €
My the image of 1 € N via this morphism. By the discussion in Section

2.2.3) the fiber of the image a*(fb) (1); € Mg, over each geometric point
t € S is the degeneracy of the component of C; intersecting o(S). In

particular, we have J*(fb)(l)s =e. O

Conversely, every degeneracy of a nearby fiber is the generization of
some degeneracy from the central fiber:

Corollary 3.5. With notation as above, there is an étale neighborhood
U — S of s such that for any geometric pointt € U and any degeneracy
e’ € Mgy, there is a degeneracy e € Mg s such that e; = €.

Proof. With notation as in the proof of Lemma [3.4] we may further
shrink S and choose a finite set of extra markings {o; — C} avoiding
nodes and the original markings, whose union Uc;(.S) intersects each
irreducible component of each geometric fiber of C — S. O

The partial order <37, , is well-behaved under generization:

Lemma 3.6. With notation as above, consider a pair of elements
er,e2 € Mg with e; <37, €2. Then we have e1y <77, €ar in Mgy
for any geometric point t — S.

Proof. By assumption, we have (e; — ;) € Mg, hence
(e2 —e1) = (ear —e14) € ms,t-
OJ

Corollary 3.7. Suppose f: C — Y s a family of log maps over
S with uniform maximal degeneracy. Then there is a global section
emax € (S, MS), which restricts to the mazximal degeneracy over each
geometric fiber over S.

Proof. Lemma and Lemma |3.6[imply that the maximal degeneracy
over each geometric fiber glues to the global section eay. U

Ezxample 3.8. Let C be a twisted curve over a geometric point, which
we make into a log curve C by adding divisorial log structures at the
markings. Then, the projection f: C x A — A is an example of a
family of log maps over S = A with uniform maximal degeneracy.
Indeed, over each of the two geometric points of S, all components of
C have the same degeneracy — over the unique closed point 04, all are
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degenerate, and over A\ {04}, all are non-degenerate. In this example,
emax 18 the unique generator of I'(S, M) = ['(A, M 4) =N

3.1.3. The category of log maps with uniform maximal degeneracy. Let
Y be a log stack of rank one Deligne—Faltings type. We introduce the
fibered category (Y, ") of pre-stable log maps to Y with uniform
maximal degeneracy and reduced discrete data (5’ over the category
of fine and saturated log schemes. If furthermore Y is a separated
log Deligne-Mumford stack, denote by % (Y,5) C (Y, ') the sub-
category of stable log maps with discrete data 8 as in

By the universality as in Proposition [2.9] there are tautological mor-
phisms of fibered categories as inclusions of subcategories:

(13) (V) = .#(Y,8) and U(Y,5) = MY, B).
We next introduce the minimality of the subcategory (Y, 5').

3.2. Minimality with uniform maximal degeneracy.

3.2.1. Log combinatorial type with uniform maximal degeneracy. Let
f:C — Y be a pre-stable log map over S with uniform maximal de-
generacy. First assume that S is a geometric point.

Let G be the log combinatorial type of f, and ¢: M(G) — Mg
the canonical morphism. Denote by V. € V(G) the subset of ver-
tices having the maximal degeneracy in Mg. We call (G, Viuay) the log
combinatorial type with uniform mazximal degeneracy.

3.2.2. Minimal monoids with uniform mazimal degeneracy. Consider
the torsion-free abelian group

MG/ ~)"
where ~ is given by the relations (e,, — e,,) = 0 for any vy, vy € Vipax-
By abuse of notation, we may use e, for the image of the degeneracy
of the vertex v in (/V G)9®P / ~ )tf. Thus, for any v € V. their
degeneracies in ( G)9® / ) are identical, denoted by Cmax-
Let M(G, Vinax) be the saturated submonoid in ( G)9® / ~ )tf

generated by

(1) the image of M(G) — (M(G)%/ ~ ) and

(2) the elements (eyax — €4) for any v € V(G).

By the above construction, we obtain a natural morphism of monoids
M(G) = M(G, Viax). On the other hand, we have a canonical mor-
phism of monoids ¢: M(G) — Mg by Proposition Putting these
together, we observe the following canonical factorization:

Proposition 3.9. There is a canonical morphism of monoids

(14) ¢max (G Vmax) — MS
such that the morphism ¢: M(G) — Mg factors through dmax.
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Corollary 3.10. There is a canonical splitting
M(G, Vipax) = M(G, Vi)' ® N

where d is the number of edges in E(G) whose contact order is zero.
Furthermore, the image of e, is contained in M(G)' for allv € V(G).

Proof. This follows directly from Corollary and the construction of
M(G, Vipax)- O

Definition 3.11. We call M(G, Vipax) the minimal monoid with uni-
form maximal degeneracy associated to (G, Viyax), or simply the mini-
mal monoid associated to (G, Vipax)-

Definition 3.12. A stable log map f: C — Y over S with S a geomet-
ric point is called minimal with uniform maximal degeneracy if is
an isomorphism. A family of log maps is called minimal with uniform
mazimal degeneracy if each of its geometric fibers is so.

3.2.3. Openness of minimality with uniform mazximal degeneracy. The
definition of minimal objects in families with uniform maximal degen-
eracy is justified by the following analogue of Proposition [2.8f

Proposition 3.13. For any family of log maps f: C — Y over a
log scheme S, if the fiber fs: Cs — Y over a geometric point s — S
is minimal with uniform mazimal degeneracy, then there is an open
neighborhood U C S of s such that the family fu: Cy — Y is minimal
with uniform mazimal degeneracy.

Proof. Since the statement can be checked étale locally on S, by Propo-
sition [3.3] replacing S by an étale neighborhood of s, we may assume
that f: C — Y over S has uniform maximal degeneracy. For each geo-
metric point ¢ € S, denote by (G, Vinaxt) the log combinatorial type of
the fiber f;: C; — Y over t, see Section [3.2.1}

Let f,.: C,, = Y over S, be the associated minimal objects as in
Proposition such that f is the pullback of f,, along a morphism
S — S,,. Shrinking S if necessary, we choose two charts Ms,s — Mg
and /\_/15%5 — Mg,,. We view elements of /\_/1578 and MSW“S as global
sections of Mg and Mg, via the respective compositions:

ms,s — MS — MS and Msm,s — ./\/lsm — Msm.

For each geometric point ¢t € S we have a commutative diagram of
solid arrows

Mg, s

, M,

M Gs; Vmax s) - ./V th maxt

H L(bmax t

Ms
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where the top and bottom horizontal arrows are the generization mor-
phisms given by the two charts above, the compositions of the vertical
arrows are given by the morphism S — S,,, and the factorization
through m(Gt, Vinax,t) follows from Proposition . By the construc-
tion in Section [3.2.2] the arrow on the top induces the dashed arrow
x making the above diagram commutative. Indeed, to see the com-
mutativity of the lower square, observe that the maximal degeneracy
emax,s abt s specializes to the maximal degeneracy emax: at t. Thus,
the relations ~ and elements of the form (emaxs — €,5) as in Section
3.2.2| over s generize to the corresponding relations and elements over
t, which leads to the factorization through yx.

First observe that the lower commutative square in the above di-
agram implies that @max; is surJectlve Indeed, the groupification of
the generization morphism My, — M4, s 18 surjective. Since it factors

through M (G}, Vinax.1)%, the morphlsm St 18 also surjective. Fur-
thermore, M is the saturation of the submonoid in M‘gi generated by
the image of Mg, which is precisely the image dmax.:(M (G, Vinax.t))-
To see that ¢max: is injective, it remains to prove the injectivity of
et~ Consider the set

(15) F={ee Mg, | xst(e) =0}

By [45 Lemma 3.5], the group F9 is the kernel of the morphism
M = M . Let K be the kernel of M (G, Vinax.s)% — M(Gy, Vinax.t )7,
hence K C F 97 We will prove F9% = K by showing that the composi-
tion F < M(Gs, Vinax.s) 5 M(G,, Vinax,t) s trivial.

Indeed, consider the fine submonoid N C M(Gs, Vinax,s)%F generated
by the degeneracy e, for each v € V(Gy), the element p; for each
I € E(G), and the element ey, — e, for each v € V(G). Let e €
M(Gy, Vipax.s) be one of the above three types. Observe that x(e) = 0
if xs,:(e) = 0 by the construction in Sectlon 2, and hence Y(NNF) =
0. Since M(Gy, Vinax.s) is the saturation of N in M(Gy, Vinax.s)%, F is
the saturation of N'N F. We conclude that x(F) = 0. U

Remark 3.14. The proof in Proposition [3.13]indeed proves that the log
structure minimal in the sense of Definition [3.12]is coherent [36, (2.1)].
As shown in [58, Theorem B.2|, the coherence is a sufficient condition
for the openness of minimality in general.

3.2.4. The universality. The minimal objects in (Y, ') have a univer-
sal property similar to the case of Proposition [2.9;

Proposition 3.15. For any log map f: C — Y over a log scheme S
with uniform mazimal degeneracy, there exists a log map frw: Couw —
Y over Sy, which is minimal with uniform mazimal degeneracy, and
a morphism of log schemes ®,: S — S, such that

(1) The underlying morphism ®,, is an isomorphism.
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(2) f:C—=Y is the pullback of fmu: Copu — Y along ®,.
Furthermore, the pair (fimu, ®u) is unique up to a unique isomorphism.

Proof. Let f,,: C,, = Y over S, be the associated minimal object as
in Proposition 2.9, so that f is the pullback of f,, along ®: S — 5,
with @ the identity of S.

Since the statement is local on S, we are free to shrink S if needed.
Thus, we may assume there are charts

hs,, ﬂsm,s — Mg, and hg: MS,S — Mg

for some geometric point s — S. Denote by (G, Viax) the log combi-
natorial type of the fiber f; over s. By Proposition [3.9, the morphism
¢: M(G) = Ms,, s — Mg, factors through ¢ay: Q@ := M(G, Vipay) —
Ms,,. Write ¢: M(G) — Q for the canonical morphism.

Denote by Mg, the log structure on S associated to the pre-log

structure defined by h: () — M&S s M g. Thus, there is a morphism
of log structures Mg, = Q @p-105 O — Ms. Then the following
assignments on the right define a unique dashed arrow on the left which
makes the diagram of log structures commutative:

M, hs,, (€)

i \ i \
7 -
ya -~
~ -
2z %~

M, ., Mg ho&(e)—l—’u: hso¢(e) +u

Here u € O* and v € O* are the unique, invertible sections making
the diagram commutative. This defines a morphism of log schemes
S = (8, Ms,,.) — Sy, through which S — S, factors. Further
observe that such a morphism depends on the choice of charts hg and
hs, . However, different choices of charts induce a unique isomorphism
of S, compatible with the arrows to and from S,, and S respectively.

Pulling back the log map over S,,, we obtain a log map f,,,: C =Y
over S, which further pulls back to f over S. Note that the geometric
fiber fy,., s is minimal with uniform maximal degeneracy over s. Further
shrinking S and using Proposition [3.13] we obtain a family of log maps
over Sy, minimal with uniform maximal degeneracy as needed. U

3.2.5. Finiteness of automorphisms. Consider a log map f: C — Y
over S with S a geometric point. Suppose f is minimal with uniform
maximal degeneracy. Let f,,: C — Y over S, be the minimal log map
given by Proposition such that f is the pullback of f,, along a
morphism ®: S — S,,,. Let Aut(f) and Aut(f,,) be the automorphism
groups introduced in Section [2.3.3] They are related as follows:

Proposition 3.16. With notation as above, there is an injective ho-
momorphism of groups Aut(f) — Aut(f,). In particular, Aut(f) is
finite if f is stable.
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Proof. We first construct this group homomorphism. Consider an el-
ement (¢: C — C,0: S — S) in Aut(f). Note that f can be ob-

tained as the pullback of f,, via either S 2 S,, or the composition
s % s 2 Sm. By the canonicity in Proposition , there is a
unique isomorphism (¢, Cp, — Cpy 0 Sy — Sp) in Aut(f,,) that
fits in the commutative diagram:

s—%.g

S

S —= S,

The arrow Aut(f) — Aut(f,,) is then defined by (¢,0) — (¥, Or).
To see the injectivity, observe that the morphism Mg — M is

surjective by the construction of Section Thus 6,, being the

identity implies that @ is also the identity. O

3.3. The stack.

3.3.1. The statements. Consider the fibered categories of log maps with
uniform maximal degeneracies as in Section [3.1.3] We now establish
their algebraicity and properness. By Proposition [2.12 [2.16| and [2.17],
it suffices to build these properties upon the stack of log maps. We
first consider the case of the universal target.

Theorem 3.17. The tautological morphism as in
U(A, B — M(A, 5)

18 proper, birational, log étale and representable by log algebraic spaces.
In particular, the fibered category (A, 5') is represented by a log smooth
log algebraic stack locally of finite type.

Then consider the cartesian diagram

U (Y, B) —= WY, p) —=U(A, ()

| | |

MY, ) —= MY, ') —= M(A, §')

where the vertical arrows are given by , and the two horizontal ar-
rows of the right square are induced by the canonical strict morphism
Y — A. Note that imposing a curve class and requiring the underly-
ing maps be stable are both representable by open embeddings. The
following is an immediate consequence of the above theorem.

Theorem 3.18. The canonical morphism % (Y,B) — A#(Y,5) is a
proper, representable and log étale morphism of log Deligne—Mumford
stacks. In particular, % (Y, 3) is of finite type if # (Y, [3) is so.

We now give the proof of Theorem [3.17] which splits to two parts.
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3.3.2. Representability, boundedness and log étaleness. For simplicity,
write 9 := M(A, /') and U := LU(A, §').

Consider Olsson’s log stack Loggy,, which associates to each strict
morphism 7" — 901 the category of morphisms of fine log structures
My — M over T. By Proposition [3.15] we may view 4l as the cat-
egory fibered over the category of schemes parameterizing log maps
minimal with uniform maximal degeneracy. By Proposition the
tautological morphism 4l — Loggy is an open embedding. Since Loggy
is algebraic, il is a log algebraic stack equipped with the universal
minimal log structure. By Proposition [3.16, the morphism £ — 91 is
representable. The log étaleness of 4 — 9N follows from [45, Theorem
4.6 (ii), (iil)]. By Proposition [2.13] the stack  is log étale.

To prove that & — 901 is of finite type, consider a strict morphism
T — 9 from a log scheme T of finite type, and write U := T xgy il
Since being of finite type is a property local on the target, it suffices
to show that U is of finite type.

Denote by A the collection of log combinatorial types of log maps
over T. Since T is of finite type, the set A is finite. Let A, =
{(G, Vinax) | G € A} be the collection of log combinatorial types of log
maps over U as in Section [3.2.1l The set A,,, is again finite as the
number of choices of Vi,.x C V(G) for a fixed G € A is finite.

For a fine and saturated monoid P, we introduce the log stack Ap
with the underlying stack [ Spec(k[N])/ Spec(k[P9])] and the log struc-
ture induced by the affine toric variety Spec(k[P]).

For each (G, Viax) € Aum, the canonical morphism induces a
morphism of log stacks Axjqv,..) = Azie)- Consider

Aﬂ(c,vmax),T =T XLog Aﬂ(c,vmax)

where T" — Log is the canonical strict morphism, and the morphism
on the right is the composition Azzqyv,..) — Awig) — Log. By [45,
Corollary 5.25], there is an étale morphism

ARG Vi) — LOET -

By the construction of 4, U is an open sub-stack of Log,. By Definition
and Proposition U is covered by the image of the finite union:

U ARG Vi) — LOGT -
(Gyvmax)eAum

Thus U is of finite type.

3.3.3. Properness. Since 4 — 9 is representable and of finite type, for
properness it suffices to prove the weak valuative criterion.

Step 1: The set-up of the weak valuative criterion.
Let R be a discrete valuation ring, m C R be its maximal ideal,
and K be its quotient field. Consider a commutative diagram of solid
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arrows of the underlying stacks

Spec K =4
Spec R/ m

It suffices to show that possibly after replacing R by a finite extension
of discrete valuation rings, and K by the corresponding finite extension
of quotient fields, there exists a unique dashed arrow making the above
diagram commutative.

Let f be a minimal log map over S = (Spec R, Mg) given by the
bottom arrow of the above diagram. Denote by s,n € S the closed and
generic points with the log structure pulled back from S respectively.
Let f,, be the log map over n, = (,M,,) minimal with uniform
maximal degeneracy given by the top arrow. There is a canonical
morphism 71, — n such that f,, is the pullback of f,,. We will construct
the dashed arrow by extending f,, to a log map over Spec R which is
the pullback of f, and is minimal with uniform maximal degeneracy.

Step 2: Determine the combinatorial type of the closed fiber.

Passing to a finite extension of R and K, denote by G the log com-
binatorial type of the closed fiber f; of f, and by (G}, Vinax,n.) the log
combinatorial type of f, . We next determine the log combinatorial
type (G, Vinax) of possible extensions of f,, .

We may assume that there exists a chart h: M(G) — Mg after
taking a further base change. For each v € V(G), denote by e, € M(G)
the corresponding degeneracy. Denote by gd the composition

(16) M(G) L Mg — M, — M,),.

By Lemma the general fiber of gd(e,) corresponds to a degeneracy
of some vertex v, € V(G,). Consider the subset V' C V(G) consisting
of vertices v such that gd(e, ), corresponds to the degeneracy of vertices
in Vinaxn,- We define a partial order on V' as follows.

For any vy, vy € V', observe gd(e,,) — gd(e,,) € K* as it is a differ-
ence of maximal degeneracies over 17. We define

V1 Sy V2 if (gd<€v2) - gd<€v1)) € R.

Denote by Viax C V' the collection of maximal elements under this
partial order <,,.

We show that (G, Viax) is necessarily the log combinatorial type
of any possible extension fs, of f,, over S, = (Spec R, Mg,) with
uniform maximal degeneracy. Given such an extension, let V! be the

collection of maximally degenerated vertices of the closed fiber of fg, .
By Lemma [3.4] and [3.6] we have the inclusion V. C V".

max
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Consider the canonical morphism v¢: S, — S along which f pulls
back to fg,. Thus gd can be also given by the composition

- b
M(G) 25 Mg 55 Mg, — M,,.
Suppose vy € V!

" Then since ¢ o h(e,,) — ¢’ o h(e,,) € Mg, for any
vy € V', we have gd(e,,) — gd(e,,) € R. This implies V! C Viax.
The other direction Viyax C Vi, is similar.

Step 3: Principalize degeneracies of elements in V..

Let Ky C Mg be the log ideal generated by {h(e,) | v € Viyax}- Let
So = S be the log blow-up along Ky, and f3 be the pullback of f. We
show that n, — S factors through So— S uniquely.

Indeed, let (G, Vinaxn.) be the log combinatorial type of f,, . By
Lemma and , gd(e,) corresponds to the maximal degeneracy of
fn. for any v € Vpax. Thus Ky pulls back to a locally principal log
ideal over n, via i, — 5. It follows from the universal property of log
blow-ups that there is a unique morphism 7, — S o lifting n, — S .

Since the underlying of S; — S is projective, the underlying mor-
phism of n, — S'o extends to a strict morphism Sy — 5’0 with the un-
derlying S, = Spec R. In particular, we obtain a morphism : 7, —
So. Denote by fs, the pullback of fz over Sp. Consider the composition

gdo: M(G) i) MS — MS()

We show that the elements in V., have the same degeneracy associated
to the closed fiber of fg, by showing that

(17) gd0(6v2) - gdo(em) € RX? for any vi,vs € Vmax-
Indeed, observe
(18) gd(e,,) —gd(e,,) € R*, for any vy,v3 € Vipax-

Since Sy — S factors through Sy — S, we have gdg(e,,) — gdg(es,) €
Mg,. Since gd = ¢g o gd,, the claim follows from the fact that

¢|(7) (gd0(€v2) - ng(evl)) = gd(e’l)2> - gd(evl) € R*.

Step 4: Maximize the degeneracy of elements in V..
Fix vg € Viax. Consider the finite set V(G) \ Vipax = {v1, -+, vk }-
Define K; C Mg, to be the log ideal generated by {gd,(e,,), gdy(€y,)}

fori =1,2,--- k. By the log ideal K; is independent of the choice
of vg € Vinax. Consider the diagram

Sk~s_>5k*1~s Sl SO
T~ \\\ \*\
T~ T~ N Yo
- - =~ N
\~\\:\\\
TNy

where Siﬂ — S, is the log blow-up of the pullback of K; via S; = S,.
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Since gd(eg) —gd(e,;) € M,,,, the log ideal KC; pulls back to a locally
principal log ideal over 1, via 1y. Thus we obtain a sequence of dashed
arrows {pz N — S; lifting v as in the above diagram.

Since log blow-ups are projective, we obtain a strict morphism Sj —
Sy with underlying S r = Spec R extending the underlying morphism
of ¢y. Thus for each 7 we have morphisms ¢;: n, — S; and S; — Sj.
Let fg, : Cg, — A over Si be the pullback of fg,.

Consider the composition gd, : M(G) Ly My — Mg, . Since the
pullback of K; is locally principal over Sk, either gd, (e,,) —gd(e,,) or
gd,(e,,) — gd,(ey,) belongs to Mg,. We next show that the latter is
not possible.

Indeed the construction in Step 2 implies that gd(e,,) — gd(e,,) €
M, \ R*. Since gd = 9} o gd,, we necessarily have that gd,(e,,) —
gd,(e,,) € Mg, \ R* for any i = 1,--- k. Thus fs, over Si has
uniform maximal degeneracy by Proposition [3.3]

Step 5: Verify the extension and uniqueness.

We show that fg, is the unique extension of f,, as needed. First
observe that the pullback of fg, along vy, is the log map f,, minimal
with uniform degeneracy. Thus the universality of Proposition [3.15]
implies that 1)), induces an isomorphism between the generic fiber fg, ,
of fs, and f,,. Using Proposition again, we obtain a log map
fs, over S, which is minimal with uniform maximal degeneracy, and
a morphism S, — 5, with the identity underlying morphism, along
which fg, pulls back to fg,. This provides the desired extension of f, .

To see the uniqueness, let fg, over S, be any extension of f,,. Note
that there is a canonical morphism S, — S along which f pulls back
to fs,. Since the log combinatorial type (G, Vinax) is unique as shown
in Step 2, the log ideal Ky as in Step 3 pulls back to a locally principal
log ideal over S,, hence there is a unique morphism 5, — Sy such that
fs, is the pullback of fg,.

By Condition (2) of Section the log ideal K; as in Step 4 pulls
back to a locally principal log ideal over S, hence a unique morphism
Sy, — Sk such that fg, is the pullback of fg, . Applying the universality
of Proposition one more time, we obtain an isomorphism S, — Si
compatible with pullback of log maps.

Finally, note that (A, ') — M(A, B') is an isomorphism over the
open dense substacks with the trivial log structure on both the source

and the target. Hence it is birational. This completes the proof of
Theorem B.17 O

3.4. The logarithmic twist. We introduce notions which will be used
to extend the cosection across the boundary.

Consider the stack 4 := (A, #') with its universal pre-stable log
map fy: Cy — A and the projection my: Cy — 4.
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3.4.1. The boundary torsor of k. Consider the global section eyax €
(4, My) of Corollary , which is the maximal degeneracy over each
geometric point. Consider the Of-torsor over

(19) Tmax = €max X7, My

and the corresponding line bundle L., D Tmax. The composition
Tmax — My — Oy

induces a morphism of line bundles

(20) Lo — Oy

Since $ is log smooth by Theorem [3.17] the dual of the above defines
a section of LY whose vanishing locus is a Cartier divisor A ., C U

max

such that LY. 2~ Oy(Amnax)-

max

Ezample 3.19. Example [3.8 defines a morphism A — 4. The pullback
of Apnax is 04 — the closed point of A, and the pullback of L.y is

O(—0.4).

3.4.2. The torsor from the target. By Section 2.1.8} the characteristic
sheaf M 4 admits a global section d., € I'(A, M 4) whose image in M 4
is a local generator. Consider the O*-torsor over A:

(21) Too = 600 XMA M_A
and the corresponding line bundle O 4(—004) D Ts. The composition
Too — MA — OA

corresponds to the canonical embedding O 4(—o004) — O4.
3.4.3. The universal twist. We construct the log twist as follows.

Lemma 3.20. Suppose all contact orders of markings in B’ are trivial.
Then f{ induces a morphism compatible with the O¢, -action

Jit (M) @ (fAT) = Moy, 0 ® (<) 1> a = [i(0)
where T is the dual torsor of To.
Proof. Consider the sequence of inclusions
Ty Tmax C TgMy C Mey,
and the composition
fiT3 C JiME = ME,
where the last arrow induced by f;. Putting these together, we obtain
(M Tma) ® (fiT) = M, a® (=b) = a — fy(b).

To see this morphism factors through Me,, it suffices to show the
image of the composition

(M Tae) @ (fiT20) — ME, — M,



TOWARDS LOGARITHMIC GLSM 33

is contained in Mcu- Note the image is of the form e, — le(éoo)
Since en., is the maximal degeneracy and the contact orders are all
trivial, we have e — }’Z(&OO) € Mg, by the description in Section
2.2l Ol

Proposition 3.21. Suppose the contact orders in ' are all trivial.
Then there is a natural morphism of line bundles over Cy

(22) fu: TiLimax ® f5O(004) = O,

such that fu vanishes along non-mazximally degenerate components, and
18 surjective everywhere else.

Proof. The morphism }u is obtained by composing f; as in Lemma
with the structural morphism Me, — Og¢,, and using the corre-
sponding line bundles 7o, C O4(—0o0) and Tmax C Linax-

Consider a non-maximally degenerate component Z with degeneracy
ez. Then over the generic point of Z we have

Cmax — }.;(500) = €max — €7 € Mﬂ \ {0}

as emax 1S the maximal degeneracy. Since the target of fu is the triv-
ial line bundle, we conclude that f, vanishes over the non-maximally
degenerate components.

Then observe that ey, — 7?1(500) =0in ﬂcu over the maximally de-
generate components except those nodes joining maximally degenerate
components with non-maximally degenerate components. U

3.5. A partial expansion. Denote by N.x C My the sub-log struc-
ture generated by Tmax C My. Then en., C T'(4, My) is a global
section whose image in A .y is a local generator.

Denote by A,.x := A the log stack with the boundary divisor A
given by the origin. The inclusion Ny < My defines a morphism of
log stacks m: U — Apax with m™H(A) = A

Let b: A° — A X Ayax be the blow-up of oo 4 x A with the naturally
induced log structure. Indeed, there a unique open dense point in A°
with the trivial log structure whose complement is a simple normal
crossings divisor in A¢. The divisorial log structure associated to this
simple normal crossings divisor is M 4e. Furthermore b is log étale.

Let & C A€ be the exceptional divisor of b and co4e C A° be the
proper transform of co 4 X Apax C A X Apax.

Lemma 3.22. Suppose the contact orders in 3 are all trivial. Then
there is a commutative diagram of log stacks

fi

-’4 X Amax

Cy A°
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such that

(1) The inverse image () (co4e) is empty.

(2) For any geometric point w — L, an irreducible component Z C
Cw over w dominates & via f§ if and only if Z is mazimally
degenerate with non-trivial degeneracy.

Proof. We first construct the morphism f. Denote by
K C Maxamax = Ma @0 My

the log ideal generated by Tnax and Ts. Consider the log ideal (fy X
m)*K C Mc, generated by (fy x m)~'K. Thus (fy x m)*K is the log
ideal generated by Tmax and f(7o,). Since b is the log blow-up of K,
to show that fy x m lifts to f€, it suffices to show that (fy x m)*KC is
locally principal, which follows from Lemma [3.20]

Now consider geometric points w — A, and x — C,. Denote by

e/ and ¢ the corresponding local generators of T, and fﬁ(Too) in a

neighborhood W C C,, of x respectively. Then by Lemma [3.20] we have
erax — 0 € Mg, Let afe],.. —¢') € O be the corresponding image.

By construction of b, locally in the smooth topology we can choose a
coordinate of & \ 0o 4e mapping to «a( — ') via (f§)*. Thus fg(W)
dominates &, \ co4e if and only if a(el,,. — ') # 0 on W. Statement
(2) follows from the fact that a(el .. — 0’) vanishes only along non-
maximally degenerate components of C,.

To see (1), observe that (fg,) " (coe) is supported on the poles of
the section a(el ., — ¢') over the maximally degenerate components of
Cw- But a(el .. — ¢') has no poles by Lemma |3.20] O

We give another description of . Since & = T{Amax — & 1S
effective, there is a natural inclusion (f)*O(&) — m{O(Amax), hence

(23)  milmax @ (f)"O(&) = TO(=Amax) @ () O(E) = Oc,-
Lemma 3.23. The two morphisms and are identical.

Proof. Since b*[004 X Amax] = [Eb] + [00.4¢], pulling back via b, we
have

/
6IIla,X

W;Lmax & (f;j)*O(gb + OOAE) — Ocu.
By Lemma [3.22 the above morphism becomes
7T;l max & (fﬁ)*o(gb) — OCuv
which is . O

4. LOGARITHMIC FIELDS

4.1. r-spin curves and their moduli. The case of stable r-spin
curves has been studied in [34, 35, [6, 2T]. Following the strategy of
[6], we extend r-spin structures to twisted pre-stable curves.



TOWARDS LOGARITHMIC GLSM 35

4.1.1. r-spin structures.

Definition 4.1. An n-marked, genus g, r-spin curve over a scheme S
consists of the data

(C— S L, L =wh)

where

(1) C — S is a family of genus g, n-marked twisted pre-stable
curves.

(2) L is a representable line bundle over C (in the sense that the
associated morphism L£: C — BG,, to the classifying stack is
representable) with a given isomorphism £" & wéo/gs where wéo/gs
is the log cotangent bundle of the log smooth morphism C — S.

The pullback of r-spin curves is defined in the usual sense. For sim-
plicity, we may write (C — S, L) for an r-spin curve over S.

Notation 4.2. For the purposes of this paper, we would like to view the
family of curves C — S as a family of log curves equipped with the
canonical log structure pulled-back from the stack of log curves as in
Section [2.1.6] This avoids adding extra underlines to both C and S.

Notation 4.3. Unlike the usual notation in logarithmic geometry, the
log cotangent bundle of C — S in this paper is denoted by wlco/gs rather
than we/g. We reserve the notation we/g for the dualizing line bundle
of the family C — S. This choice of notations is compatible with the
commonly used notation in FJRW theory.

4.1.2. Monodromy representation along markings and nodes. Consider
an r-spin curve (C — S, £) and its i-th marking o; C C with the cyclic
group fi,. As the line bundle £ is representable, the action of p,, on
L|,, factors through a group homomorphism

Vit oy = Gy
which is called the monodromy representation along o;.
In this paper, we use v = ()i, to denote the collection of mon-

odromy representations along the n marked points. This is a discrete
invariant of r-spin curves.

Consider a geometric point ¢ — C which is a node. Etale locally
around ¢, we have the model . Denote by Cyt and C,— the two
components intersecting at ¢ with respect to the two coordinates x
and y respectively. We obtain two monodromy representations

Vgt - Hr — Gm

of L], at ¢ € C,x respectively. The representability of £ implies that
both ~, and _ are injective. The balanced condition of C at the node
q implies that the composition

e 8 Gy X Gy — Gy
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is trivial, where the second arrow is the multiplication morphism.

4.1.3. r-spin structure as twisted stable maps. Given an r-spin curve
(C — S, L) we obtain a unique commutative diagram:

(24) (C, W )M
C / C
5;1 £;2‘
where

(1) C — C is the coarsification. Here we equip both C — S; and
C — S with their canonical log structures as a family of log
curves. This is a log étale morphism. Furthermore, the bot-
tom morphism S; — S5 induces the identity morphism of the
underlying schemes S; = Sy = S, see [47, Theorem 1.9].

(2) (C, wl(/?fs)l/ " — (' is strict and étale with the underlying mor-
phism given by taking the r-th root stack of wéo/gs over C.
(3) C — (C, wlcofs)l/ " is induced by the r-spin structure £ = wlco/gs.

Our description of the r-spin structure is similar to the case of [0,
Section 1.5] except that we equip the two families of curves with their
canonical log structure for later use.

Conversely, by pulling back the universal r-th root along C — (C, wlco%
we obtain an r-spin bundle over C. To summarize, we have

Lemma 4.4. The data of an r-spin curve (C — S, L) is equivalent to

the diagram .

4.1.4. The stack of r-spin structures. Denote by Dﬁ;q the stack of
genus g, n-marked, r-spin curves with monodromy data 7 along mark-
ings. It can be viewed a fibered category over the category of usual
schemes as the log structures on the curves are the canonical ones.

Proposition 4.5. The stack sm}/; 1s a smooth, log smooth algebraic
stack locally of finite presentation. Furthermore, the tautological mor-
phism removing the r-spin structures

1/r tw
Mm, — M7,
is locally of finite type, quasi-separated, strict, and (log) étale.

Proof. Denote by 7: € — SDTZW;L the universal curve, and € — C' the
universal coarse moduli morphism. Also, denote by (€, wg/m%)l/ " the

P log log ~
root stack over € parameterizing r-th roots of Wani - As wg /m;fvn|¢ =

)l/r
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wlgo/gmgvyn, we observe that ¢ := (C, wg’fmw)l/r xo € = (€, wlg/gm%)l/r
with an étale projection ¢ — €.

Consider S — 9 with the pullback family €5 — €5 — S. By the
description of , giving an r-spin bundle Lg over €g is equivalent to
giving a section s of the projection €5 — €g such that the composition
Cs — €5 — (C, Wl(?/gmgwn)}?/ " is representable. Thus the stack 9)?51,/,; is an

open substack of the stack 7.C parameterizing sections of the morphism
¢ — € over M}, with discrete data . By [31, Theorem 1.3], the stack

im;/,; is algebraic, and the tautological morphism im;/,; — MY, is
locally of finite type and quasi-separated.

As Dﬁ;wn carries the canonical locally free log structure, it remains to

show that the morphism Dﬁ;/; — 9N, is étale in the usual sense. We
check it using the infinitesimal lifting property.

Let A — B be a small extension of Artin rings, and consider the
commutative diagram of solid arrows

Spec B —— i)ﬁ;/;

|

Spec A —— DY,

It suffices to show that there is a unique dashed arrow making the
above diagram commutative. Pulling back the universal families, it
remains to construct the section given by the dashed arrows fitting in
the commutative diagram of solid arrows

Q:Spec B—~— Q:Spec A

b

Q:Spec B——~ Q:Spec A

But since the vertical arrows are étale, by the infinitesimal lifting of
étale morphisms, such a dashed arrow exists and is unique. U

The following is an analogue of [0, Corollary 2.2.2]
Corollary 4.6. The tautological morphism im;/; — M., 18 proper and
quasi-finite.

Proof. By viewing r-spin curves as twisted stable maps, the properness
follows from [7, Theorem 1.4.1]. Since the morphism 911;/,; — MY, s
étale and fmgwn — 9, has zero dimensional fibers, we conclude that

the composition im;/,; — M, — My, is quasi-finite. U
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4.1.5. Log r-spin curves and their stacks.

Definition 4.7. A log r-spin curve over a log scheme S consists of
(C—S,L)

where C — S is a log curve (not necessarily equipped with the canonical
log structure), and £ is an r-spin structure over the underlying orbifold
curve of C — S. The pullback of the log r-spin curve is defined as usual
using fiber products in the fine and saturated category.

As every log curve is obtained by the unique pullback from the as-
sociated canonical log curve, we have:

Corollary 4.8. The log stack im;/; with its canonical log structure
given by its universal curve represents the category of log r-spin curves
fibered over the category of log schemes.

4.2. Log fields and their moduli.

4.2.1. Log fields. Given a log r-spin curve (C — S, L), consider the
P'-bundle
P:=P(LPDO:) —C.

Denote by 0p and oop the zero and infinity section of the above P!-
bundle with normal bundles £ and £V respectively. Let M., be the
log structure over P associated to the Cartier divisor cop. It is Deligne—
Faltings type of rank one, see Section [2.1.8]

Denote by P’ = (P, Mw,) and P = (P, Mc|p ®o+ Muo,) the cor-
responding log stacks where Mc|p is the pullback of M. There is a
natural projection

(25) P —C.

Definition 4.9. A log field over a log r-spin curve (C — S, L) over a
scheme S is a log map f: C — P which is a section of P — C. The
triple (C — S, L, f) is called an r-spin curve with a log field. Tt is
called stable if wéo/gs ® f*O(0p)k is positive for k > 0. The pullback of
an r-spin curve with a log field is defined as usual via the pullback of
log curves.

4.2.2. Associated log map of a log r-spin field. Note that giving a log
field f: C — P is equivalent to giving an associated log map

(26) C—7P,
which induces a section of P — C. In fact, the inclusion M, —
Melp ®o+ Mo, defines a natural morphism P — P’. Thus is
given by the composition C — P — P'.

On the other hand, given a morphism we recover the log field

f via C — P’ x¢c C =: P. For convenience, we may use f for the
corresponding log map when there is no danger of confusion.
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Definition 4.10. A log field has uniform mazimal degeneracy if its
associated log map has uniform mazimal degeneracy.

It is called minimal (with uniform maximal degeneracy) if the asso-
ciated log map is minimal (with uniform maximal degeneracy).

4.2.3. The discrete data of an r-spin curve with a log field. The discrete
data of an r-spin curve with a log field is given by

(27) B = (9,7 = (vi)iz1, € = (ci)iz1)
where

(1) g is the genus.

(2) ; is the monodromy representation at the i-th marking.

(3) ¢; is the contact order of the associated log map at the i-th
marking.

Compared to the discrete data @, the above does not specify
the curve class. However, since we only allow sections, the curve class
is uniquely determined by the collection of contact orders c:

) A=(0n] + Y er- ]

where 0p is the zero section of the projection P — C, and P,, is the
fiber over the ¢-th marking ;. Indeed, follows by decomposing A
according to the irreducible components Z of C,

A=) Az,

ZcC

and noting that if Z is non-degenerate, we may scale the section to
zero to see that

Az = [0plz] + > ¢[Pr],

where c¢; denotes the contact order at the special point 7; on Z, and
that if Z is degenerate, the discussion in [16, Proposition 5.2.4] (see
also (30])) implies that

Az = [oop|z] = [0p|z] — a1(L]z)
=[0plzl+ D lPl— D> ¢lPy)]

J outgoing 7 incoming

where the incoming and outgoing special points are as introduced in
Section [2.2.6]

Finally, (28)) is obtained by combining the two cases, and observing
the cancellation at the nodes.
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4.2.4. Automorphisms of minimal stable r-spin curves with a log field.
An automorphism of an r-spin curve with a log field can be defined
similarly as in Section by taking into account the automorphisms
on the target P induced by the automorphisms of the curve.

Proposition 4.11. Consider an r-spin curve (C — S, L) with a log
field f: C — P over S with S a geometric point. Suppose it is minimal
(with uniform mazimal degeneracy). Then its automorphism group is
finite.

Proof. By Proposition and it suffices to show that the under-
lying structure (C, £, f: C — P) has finite automorphisms. To simplify
notation, we will abuse notation and write (C, L, f: C — P) instead of
(C,L, f: C — P) in this proof.

The group of automorphisms of (C, L, f: C — P) which fix the dual
graph of C is of finite index in the full automorphism group. Hence, it
suffices to prove that f;: C; — P has finitely many automorphisms for
any irreducible component C; C C with all special points of C; marked.
Since P — C is representable, f; has finitely many automorphisms
when C; is a stable curve.

It remains to prove finiteness of automorphism when C; is unstable,
and hence w(lzg and £ have non-positive degree. Stability hence implies
that deg O(f0p) > — deg(L) > 0. In particular, f; cannot be the zero
or infinity section. Since f; is a log-map, this implies that there must
be a marking o where f; meets the infinity section. In particular, we
are reduced to the case that C; is genus zero with one or two markings.
In addition, there must be a point ¢ where f; meets the zero section.
Automorphisms of (C;, f;) must preserve ¢, hence the automorphism
group must be a subgroup of the C* of automorphisms of C; fixing o
and q.

Let C/ = C; \ {¢}. We note that C! is of the form [C/u,] for some
a € Z, and wlcig|cl,_ is C*-equivariantly trivial. Hence, we may view f/|c;
as a meromorphic function on C,, or equivalently, as a map g;: C, — P
Since we also know that g; has an isolated pole at o, this implies that
there are only finitely many C*-automorphisms of C. that fix g;. In
particular, (C;, f;) has only finitely many automorphisms, as desired.

O

4.2.5. The stacks of r-spin curves with a log field. Let Yﬁl/r be the
category of stable r-spin curves with a log field over the category of log
schemes with the discrete data 3. Let JZ/BI/T C 5”51/7" be the subcategory

consisting of objects with uniform maximal degeneracy. Next we show
that

Theorem 4.12. The two categories %ﬁl/r and Y;/T are represented by
proper log Deligne—Mumford stacks.
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For later use, we introduce S the stack over im;,/,:, which associates,
to each strict morphism 7" — im;/,; , the category of sections f of the
underlying projective bundle Py := P(Lr @ O¢,.) — C; with the curve
class given by . Here (C; — T, L) is the spin structure given by
T — mt;/;" . We view § as a log stack with the strict morphism to 93251]/ .

Note that § is an open substack of the stack parameterizing twisted

stable maps with the family of targets Py 1/r — im;/,; . Indeed, requiring
9,7

S to be a section of Py — Cr amounts to requiring the composition
C; — Pp — Cp to be an isomorphism which is an open condition. The
following is a consequence of [7, Theorem 1.4.1]:

Lemma 4.13. The stack S is algebraic, locally of finite type.
Proof of Theorem[{.13. By Theorem the tautological morphism
%ﬁl/ = 5’51/ "

is proper, log étale, and representable by algebraic spaces of finite type.
Thus to prove Theorem [4.12] it remains to prove the statements for

5”; /" only. We first verify the representability.
Consider the tautological morphism that removes log structures

"= 8.

By Proposition this morphism is represented by an algebraic stack
locally of finite type. Therefore, Lemma implies that the stack

Y; /" is also algebraic and locally of finite type. Proposition}4.11|further

implies that Yﬂl " is a Deligne-Mumford stack.

It remains to prove the properness. We will divide this into two
parts: the boundedness part will be proved in Section and the
valuative criterion will be checked in Section (.4l U

4.3. Boundedness. We next prove the following result:

Proposition 4.14. The stack Yﬁl/r is of finite type.
Consider the tautological morphism

(29) M,

by taking the corresponding coarse curves. Using the above morphism,
the proof of Proposition splits into the following two lemmas.

Lemma 4.15. The tautological morphism (@ 1s of finite type.
Proof. Note that the morphism is given the composition
L= S =Ml my,

where the middle arrow is of finite type by Lemma [4.13] and the right
arrow is of finite type by Corollary [£.6] It remains to show that the

morphism yg/r — S is of finite type.
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Let T — S be any strict morphism from a log scheme T of finite

type, and write % = Yﬁl/r Xs T. It suffices to show that .#r is of
finite type. By Proposition [2.16] it suffices to show that the discrete
data [ is combinatorially finite over T, see Definition We prove
this by applying the strategy similar to [16, Proposition 5.3.1].

Denote by iT the universal section of P, — C, over I'. As T is
of finite type, there are finitely many dual graphs for geometric fibers
of the source curve C;, — 1. Let G be any such dual graph of C, for
some geometric point ¢ — 7. It remains to show that the choices of
log combinatorial types as in with the given dual graph G is finite.

Note that the partition V(G) = V*(G) UV4(G) as in (8)) is uniquely
determined by f . Indeed, V4(G) consists of irreducible components
whose images via f are contained in the infinity section of P,. The
contact orders along the marked points are determined by . Since G
is a finite graph, the number of partial orderings < on V(G) is also
finite. We fix one such choice, denoted again by <. It remains to show
that the number of contact orders at the nodes are finite.

Let Z C C, be an irreducible component. Recall the discussion
of incoming and outgoing special points in Section [2.2.6, The same
discussion as in [16, Proposition 5.2.4] implies that

(30) deg([*(oop)lz) = D - > L

q outgoing q q incoming q

where ¢, and r, are the contact order and order of isotropy group at
the special point q.

To bound the choices of contact orders at the nodes, we construct a
partition:

V(G)=ViuV,u-- UV

inductively as follows. First, we choose V] to be the collection of largest
elements in V(G) with respect to <. Supposing that Vi,--- | V; are
chosen, we choose Vi1 C V(G)\ (Ui_,Vj) to be the collection of largest
elements with respect to <.

By construction, a node ¢ joining component(s) in the same V; must
have ¢, = 0. Let Z; be any component corresponding to an element
in Vj. Then Z; has only incoming node(s). By , the choices of
contact orders at these nodes are finite, as contact orders are non-
negative integers. In particular, there are finitely many choices for the
contact orders of the outgoing nodes attached to components of V5.

Now suppose the number of choices of contact orders at the outgoing
nodes attached to components of V; is finite. Using and the con-
dition that contact orders are non-negative integers, we conclude that
the incoming nodes of components of V;, hence the outgoing nodes of
components of V;,; have finitely many choices of contact orders. By
induction, the number of choices of contact orders at each nodes is
finite. This finishes the proof. U
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Lemma 4.16. The image of the morphism V;/r — M., is contained
in an open substack of finite type.

Proof. To bound the image of 5’61/ " — M, ., it suffices to show that

the number of rational components of the fibers over 5’51 /" is bounded.
For this, it suffices to show that the numbers of unstable components
of the source curves are bounded.

Consider any geometric point t — Yﬂl /" with the fiber fi: Co — Py
By the stability as in Definition [£.9] the line bundle f;(O(05,)) has non-
negative degree along each component of C;, and positive degree along
each unstable component of C;. Furthermore, since the spin bundle £,
over t is representable, the degree of f;(O(0p,)) along each unstable
component is at least £. Since deg f;(O(0p,)) = (29 — 2 4+ n)/r, the
number of unstable components of C; is at most (2g — 2 + n). 0

4.4. Valuative criterion. Let R be a discrete valuation ring, mp C
R be its maximal ideal, and K be its quotient field. Let (C, —
n, Ly, fn: C; = P,) be a minimal stable object over n = (Spec K, M,,).
Possibly after a finite extension of R, we wish to uniquely extend f, to
a family f: C — P over S = (Spec R, My).

4.4.1. Qutline. The construction of the extension f is rather involved.
Given Proposition [2.17] it remains to extend the underlying structure,
for which a main ingredient is the properness of the moduli space of
twisted stable maps [7, Theorem 1.4.1]. However, the dependence of
the target P on wlcog does not play well with the non-log-étale modi-
fications (attaching of new rational tails) of C that arise when taking
a twisted stable maps limit. To get around this, our strategy is to
first introduce auxiliary markings in such a way that there are no new
rational tails under a stable maps limit (Section . With this, we
obtain an extension with the auxiliary markings, which we then need
to remove (Section. In that process, we might introduce unstable
components, which we then need to contract (Section [4.4.5)).

One way to think of the auxiliary markings is a way to reduce to the
case of log stable maps to P with logarithmic structure at both oo and
0 (similar to [28]). In that situation, the construction of the extension
is much simpler.

4.4.2. Reduce to the case of nondegenerate irreducible generic fiber. By
Proposition [2.1 /, it suffices to extend f to a family of sections f over

Spec R. Taking the normalization of C, and labeling the preimages
of the nodes, it suffices to extend f over each component of the nor-

7
malization. Here we use that r-spin curves glue along their evaluation

maps to the proper rigidified inertia stack which are defined by taking

the r-th root of Oy = wlcog]g. Thus, we may assume that C, is smooth.
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We may further assume that the image of f is not entirely contained
in Op, or cop,, as otherwise we may simply extend L? as Op, or oop,
respectively. Passing to a finite extension if necessary, we may assume
that L? intersects Op, and ocop, properly along n-points of C, .

As the log structures are irrelevant for extending the underlying
structure, we will drop the underline in this section for simplicity, and
all stacks are assumed to be underlying stacks unless otherwise speci-
fied. It remains to prove the following result.

Proposition 4.17. Let (C,, L,)) be an irreducible r-spin curve, and f,
be a section of P, := P(L, ® Oc,) — C, Denote by 0p, and cop, the
zero and infinity sections of P,. Suppose that

(1) f, is neither the zero nor the infinity section.
(2) f, intersects the infinity section only along marked points.

(3) wlc(;g ® f(O(0p,))* is positive for k> 0.

Possibly after a finite extension, there is a unique r-spin curve (C, L)
over Spec R and a section f of P := P(L & O¢) — C extending the
triple (Cp, Ly, fn) such that wy® @ f*(O(0p))* is positive for k > 0.

Remark 4.18. In the above proposition, marked points are allowed to
be broad, namely the inertia group along the marking can be trivial.

Notation 4.19. In the following, we will consider various r-spin curves
with log fields (C;, £;, f;). Their generic fibers over n will be decorated
by subscripts 7.

We state two useful tools:

Lemma 4.20. Consider an r-spin curve (C,, L,) with its coarse moduli
C, — C,. Let C — Spec R be a pre-stable curve extending C,,. Possibly
after a finite base change, there is a unique r-spin curve (C, L) with the
coarse moduli C — C' over Spec R extending (C,, L,).

If we are given the further data of a log field f,: C, — P,, then,
possibly after a finite base change, in addition to (C, L) as above, there
is a unique twisted stable map f': C' — P :=P(L & O¢) extending f,.

Proof. To prove the statement, we apply properness of twisted stable
maps twice, see [7, Theorem 1.4.1]. First, we extend the r-spin struc-
ture using the twisted stable map point of view as in . We then
extend f, to f as twisted stable maps. O

Lemma 4.21. Let C be a normal and integral Deligne—Mumford stack,
and X be a separated Deligne—Mumford stack. Consider two morphisms
fyg: C — X which agree over an open dense substack U C C. Then f
and g agree on all of C.
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Proof. Define Ca by the cartesian square

Ch —C

e

X 2. X xX.

Since X is separated and Deligne-Mumford, the diagonal morphism
X — X x X and thus Co — C are finite and representable.
Furthermore, notice that the map (f,g)lv: U — X x X, factors
through A. Hence, we get a section s: U — Ca X¢ U of the projection
Ca XcU — U. Let Y be the closure of s(U) in Ca equipped with the
reduced substack structure. By construction, Y is integral. We have
constructed a finite, birational and representable morphism Y — C.
Since Y is integral and C is integral and normal, we see that Y — C is
an isomorphism [56, Lemma 29.53.8]. Note that the morphism (f,g)

is the same as the composition C =2 Y — Cah — X A XxX. In
particular, f and g agree on all of C. O

4.4.3. Construct an extension with auziliary markings. Denote by A
the set of markings of C,. Taking a finite base change if necessary,
we may assume that f, intersects Op, properly along n-points of C,,.
Denote by A the set of these intersection points which are non-marked
in C,. Let C; be the marked curve given by C, together with the set of
markings A U Ay.

Let C; — C be the coarse moduli morphism. Possibly after a finite
base change, let

(31) C] — Spec R

be any family of pre-stable curves with the set of markings A U Ag
extending C;. Let Cy — Spec R be the family of pre-stable curves
obtained by removing the set of markings Ag from C7]. By Lemma m,
we obtain an r-spin curve (Ci,Ly) — Spec R extending (C,, £,) with
the coarse moduli C; — C.

Let C; — Cy be the r-th root stack along the markings in Ag. Then
C; has the set of markings A U Ag. Given point z on C; in Ay, we use
Z to denote the corresponding marking of Cy. Note that

~ 1 ~ It
Ocl (‘x)‘éﬁ = 061(2 T.CC), wC(ig/SpecR|é1 ® 081(2 TQ?) = wéolg/speCR'
xE€Ag xE€Ag

Thus, the line bundle over C;

(32) Li=Lile, @06 () %)
RG]
satisfies (£1)" wéolg/ Spec R’ and hence (Cy, £;) is an 7-spin curve over

Spec R.
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Define Py := P(El @ O) and its restriction P, n = =P Xgpec g 1. The
section f, induces a section f 1y Of Py n = C, n as follows.
i Let C) = Cn~\ Ao. Observe~that 731,77|cg = Pn|C;;) giving a section
f17n|c;;3 C, — Py over C; C Cy, induced by f,. To see this section
extends to the entire curve élm, let U C @1,77 be a neighborhood of a
marking z C él,n for x € Ay. By , we have a natural morphism
of line bundles £,|y — L;|y. Shrinking U, we may assume that f,|
defines a section of L4y, hence a section of £1|U by composing with

Lily — El\U This gives the desired section f 1, Which is neither the
zero nor the infinity section by construction.

Lemma 4.22. With notation as above, possibly after a finite exten-
sion, there is an r-spin curve with a log field (Co, Lo, f5) extending

(él,m Zl,m }1,n)'

Proof. Observe that }1,77 intersects the zero and infinity section of 751,,7
only along markings in A U Ay. By [7, Theorem 1.4.1], possibly after
a further finite base change, we obtain a stable map fQ: C, = Py
extending J~C1,n-

We claim that the composition @2 — 751 — 81 contracts only ra-
tional components with precisely two special points. Let Z C Cy be a
contracted component. Then Z cannot be a rational tail: Otherwise,
f2|z surjects onto a fiber of P; — C;. As over the generic point all
intersections with zero and infinity section are marked, Z contains at
least two special points.

Suppose Z has at least three special points. Then two of the special
points are either a marked point or a node joining Z with a tree of
rational components contracting to a point of C;. The above discussion
implies that such a tree contains at least one marked point. This is
impossible since Cy — C; preserves marked points.

Since C — C; contracts only rational bridges and is compatible with

markings, we have wéog/ Speck = wéolg/ Spec nle,- We check that (é~2, Ly =
£1|C ) is an r-spin curve over Spec R, hence 771|C =Py :=P(Ly® O).
Thus f, pulls back to a section f, of Py — Cy as needed. 0

4.4.4. Remowve auxiliary markings.

Lemma 4.23. Let (ég,Zg,ﬂ) be as in Lemma . Let Co — Co be
obtained by first rigidifying along markings in Ay, then removing Ag
from the set of markings. Then there is an r-spin curve with a log field

(Ca, Lo, fo) extending (Cy, Ly, f,) such that
(1) Lo = Lole, ® Op, (3 ren, 1)

(2) fa and fQ are isomorphic away from the sections in Ay,
(3) fa sends sections in Ao to the zero section of Poy :=P(Ly ® O).
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Proof. We first construct the spin bundle £,. Let C; — (5 be the
coarse moduli morphism. Then C5 over Spec R extends C,, as a family
of pre-stable curves with the set of markings A. By Lemma [4.20] we
obtain an 7-spin curve (Cs, L3) over Spec R extending (C,, L,)).

Let C5 — C5 be the rth root construction along sections in A, and
view Cs as a family of pre-stable curves with markings AUAg. Consider

the line bundle L5 := £3|CS®(’)63 (erA i) over C5. We check that Ls is
an r-spin bundle over Cs. Since Cs n= =C; n= =C, n, the r- spin structure
(Cg,ﬁg) over Spec R extends (Czn,ﬁgn = Eln) As both Cy and Cs
have the same coarse curve (s, by the uniqueness of Lemma [4.20], we
conclude that (Cs, £3) = (Cy, L5), hence C3 = Cy and L, := L3. This
proves (1).

We now construct the section fs. P0851bly after a finite extension,
[, extends to a twisted stable map f2 Cy — P». Consider the com-
mutative diagram

7)2 ————— >7)2
) H l Fa
fa
C, [ —

where Cy — C5 is the rigidification along Ay as shown in the previous
paragraph, hence V := Cy \ Ag = C; \ Ao, and the dashed arrow is a
rational map which is a well-defined isomorphism over V. Let W =
p~ (V). Then, since (f, o p)|lw and f,|w agree over the generic fiber,
they also agree over all of W by Lemma . Hence, since fQ is a
stable map limit, Lemma implies that W 2 V, and that Cy — C,
is a contraction of rational components over Ay in the closed fiber.

Let Z, C ég be the preimage of a point z € Cygpec R/my I Ao.
Suppose Z, is not a point. Then }2|Zz surjects onto a fiber of Py — Co,
hence intersects the infinity section non-trivially. We argue that this is
not possible as follows.

First Z, contains no markings, as otherwise it is in contradiction to
the fact that A is disjoint from Ay. By Proposition 2.17] we may lift
}"2 to a log map over the log scheme S, denoted again by fQ, where the
target Py is equipped with the log structure given by its infinity divisor
0P, - .

Let Z' C Z, be an irreducible component not contracted by f,.
Then f2| 7 must intersect properly with the infinity section along at
least one point, say z € Z’. Observe that in absence of marking, z is
necessarily a node of (5. Otherwise, assume z is a smooth unmarked
point. Consider the morphism of characteristic monoids

folo: (f Mp,)|: =N — Mg, |. = Q = Mslspec /ma
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induced by the log map f,. The assumption f,(z) € cop, implies that
—b —
falz(1) # 0. Note that the sheaf Mg, |z is globally constant over the

locus of smooth unmarked points (Z)° C Z’. Hence fl;\z(l) € @ is the
degeneracy of the component Z’. This is in contradiction to Z’ being
non-degenerate, see . Therefore, f2| 7z necessarily intersects with
the infinity section along a node of Z, joining Z’ and a component Z; C
Z,. Since this node is an incoming node of 77, f2| 7/ is a contraction

to the infinity section and deg f;(oo%ﬂ z; = 0. Applying to the
component Z; and noting that Z] has no markings, we observe that Z]
must contain an outgoing node joining Z] and Z), with Z) contracted
to infinity. Indeed, the outgoing node of Z is an incoming node of Z5.

Applying the same argument inductively to Z!, we obtain an infinite
chain of rational components (Z;UZ,U---) C Z,, which is not possible.
This proves (2).

The third statement follows since fy, = f, sends sections in Aj to
the zero section of Py — Cs. O

4.4.5. Contract unstable components. Let Co — C5 be the coarse mod-
uli morphism where Cj is a family of pre-stable curves over Spec R with
the set of markings A. An irreducible component Z C Cs is unstable
if wlcof ® f*(O(0p,))* fails to be positive on Z for k > 0. Let Z C Cy
be the image of Z. Then Z is unstable if Z is so. Note that all unsta-
ble components are over the closed point Spec R/mpg, and are rational
components with at most two markings.

Lemma 4.24. Let Cy — C3 be a contraction of an unstable component
Z with two special points. Possibly after a further finite base change, we
obtain an r-spin curve with a log field (Cs, Ls, f3) extending (C,, Ly, f»)
such that

(1) C3 — Cj5 is the coarse moduli morphism.

(2) Co — C3 contracts Z C Cy to a point.
(3) Py = P3 Xy Co and fo is the pullback of fs.

Here we do not require that fo is of the form in Lemma[{.23.

Proof. By Lemma we obtain an r-spin curve (Cs, L3) over Spec R
extending (C,, £,) with the coarse moduli morphism C3 — C3. Con-
sider the cartesian diagram of solid arrows

Cy——»> ég e (CQ, WICOQg/SpecR)l/r —— (s

N

lo r
C3 (037 wa/ Spec R)l/ C3

. . . log _, log
The square on the right is cartesian as w, Spec R = Wy Spec rlcs-
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Let CJ — C» be the twisted stable map extending the isomorphism
Cy,, — Cay. By pulling back the universal r-th root via C§ — Cy —

(Cg,wlc‘)f/ Spec )", we obtain an r-spin bundle £} over CJ extending
L,,. By uniqueness of Lemma [£.20] we obtain (C, L) = (Ca, L) hence
the dashed horizontal arrow as above. The skew dashed arrow is then
the composition C; — Cy — C3. Thus (2) follows.

It follows from the above construction that Lo = L3]c,. Hence P
is the pullback of P3 via Co; — C3, and f5 is the pullback of f;. This

proves (3). O
We next remove unstable rational tails. We first prove

Lemma 4.25. Choosing the extension appropriately, we may as-
sume that Cy in Lemma has unstable rational tails contained in
the zero section of Py via fs.

Proof. Let Z C Cy be an unstable rational tail not contained in the
zero section of P;. Then Z contains no section from Ag. Since Z is
from a component Z C Co, and f, is a twisted stable map, Z maps to
a rational tail Z C (. Blowing down Z, we obtain another extension
together with the same set of sections A U Ay. O

We then contract the unstable rational tails inductively as follows.

Lemma 4.26. Let (Ca, Lo, f2) be an r-spin curve with a log field extend-
ing (Cy, Ly, fr). Suppose all unstable rational tails of Co are contained
in the zero section of Py — Cy via fo. Let Co — Cy be the coarse moduli
morphism, and Cy — C3 be the contraction of an unstable rational tail
Z. Then there is a triple (Cs, Ls, f3) extending (Cy, L,, f,) with coarse
moduli morphism C3 — C3 such that all unstable rational tails of Cs3
are contained in the zero section of Py =P(L3 & O) via fs.

Proof. By Lemma , we obtain the r-spin curve (Cs, L3) extending
(Cy, L)) with the coarse moduli morphism C; — C3, and a twisted
stable map f4: C4 — P3 over Spec IR extending f,. Let x be the image
of Z — (3. As the pairs (C2, L) and (Cs, L3) are isomorphic away
from the preimage of Z and x, f; and f; are isomorphic away from
the preimage of Z and x. Thus the composition C4, — P3 — C3 is a
contraction of rational components Z, over x € C3. Then the same
argument as for Lemmam (2) implies that Z, has to be a point. O

We start with an r-spin curve with a log field as in Lemma {4.23

and [4.25, and inductively apply Lemma and by contracting
unstable components. After finitely many steps, we obtain (C, L, f) as

in Proposition [£.17]

4.4.6. Separatedness. Consider stable extensions (C;, £;, f;) of (C,, Ly, )
for i = 1,2. Let C; — C; be the coarse moduli for i = 1,2. By Lemma
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[4.20] or Lemma [£.21], it suffices to show that there is an isomorphism
C) = (5 extending the one over 7.

Let C5 be a family of prestable curves over Spec R extending C), with
dominant morphisms C3 — C; for ¢ = 1,2. We may assume C3 has
no rational components with at most two special points contracted in
both € and C5 by further contracting these components.

Let C, — C; x Cy x C3 be the family of twisted stable maps over
Spec R extending the obvious one C,, — C; x Cy x C3. Observe that the
composition C; — C; x Cy x C3 — C} is the coarse moduli morphism.
Indeed, if there is a component of Cj contracted in Cj, then it will be
contracted in both C; and Cy as well.

Let C3 — (Cj, w(lz‘zg/ SpecR)l/T be the twisted stable map extending the
spin structure over 7. Then we obtain a (not necessarily representable)
spin bundle L3 over C3. We next compare C5 and C; for i = 1, 2.

For i = 1,2, set U; be the complement in Cj of all trees of rational
components contracted by C3 — C;. More explicitly, set UZ-(O) = (5.

Let Ui(kﬂ) be obtained by removing from Ui(k) the rational components

with precisely one special point in Ui(k) and that are contracted in
C;. We observe that this process must stop after finitely many steps.
Denote by U; C C3 the resulting open subset.

Lemma 4.27. (1) U1 U U2 = Cg.
(2) Cg\Ul C U; and Og\UQ c U;.

Proof. Suppose z € C3\ (U UU,) # 0. Then there is a tree of rational
curves in (5 attached to z and contracted in both C; and C,. This
contradicts the assumption on Cs. Statement (2) follows from (1). O

Consider the coarse moduli morphism C3 — C5. Define U; := C5 X ¢,
U; for i« = 1,2. Since U; — C; contracts only rational components

. . . . ) log _ log i
with two special points in U;, we have Weyy SpecR|Ui = Wr ) Spec R which

log U = Wy gpee - Thus the pullback Ly,

Ci/ Spec R
is an r-th root of wézg/ spec - RRecall the r-spin bundle L3f,. Note that
Uiy = Cp and L3ly,, = L;,. Using Lemma , we see that this
isomorphism extends uniquely to L3y, = L;|y, for i = 1,2. This allows
us to glue the pullbacks f;|,, to a field f5: C5 — Ps.

In the following, indices “s” denote base-change to the central fiber.

Lemma 4.28. deg(f;,0(0p,)[z7) > deg(f;,0(0p,)), fori=1,2.

,S

further pulls back to w

Proof. Note that on the components Z contracted by U; — C;, we
have deg(f;,0(0p,))|z = 0. Hence, it suffices to prove the inequality
component-wise, and we may assume that m is irreducible.

Note that wlczg/ Spec Rl = chi? Spe cR_T,S(D/ ) for some effective divisor
D' supported on the special points U; s \ U; s of C3 5. Further note that

L3 and L; are the r-th roots of wlcogg/ Spec g A1d wlco,g/ spec i TeSPectively
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and L3y, = Lily,- Thus there exists an effective divisor D supported
on Uy s \ Us s such that Lsl— = Lil;;—(D).

We may assume without loss of gyenerality that D # 0. If one, or
equivalently, both f3|;7— and f; |z~ map into the infinity section,
we are also done because then f§730<0p3)|m and f7,0(0p,)|z7— are
trivial. We may thus assume that f3 ,|;z— and fzs |7z are not the infinity
section, and may thus be viewed as rational sections of £3|K and
Lilgz—, respectively. Since they agree on U; , and L3z— = Ez\T(D)
for an effective D, we have ’ ’

deg f;,sO(O'PS) ‘T,s - deg f:sO(OPz)

mz().
U

Suppose C # Cy. Then we have U; # C; for some ¢, say ¢« = 1. By
construction each connected component of C5 \ Uj is a tree of proper
rational curves in U, with no marked point, and by Lemma (2),
T = (Cg \Z/ﬁ) C UQ.

By construction, the composition 7 — C3 — C, is a closed immersion
and f3]7 = fa|r. Since deg wzg/ spec g|7 < 0 (unless 7" = 0), the stability
of fo implies

deg f§O<OP3)|T = deg f;O(OP2>’T > 0.

Using Lemma [4.28] we calculate
deg f5,0(0p,) = deg f5 ,0(0p, )|z + deg f3,0(0p,) |7
> deg fiso(opl) + deg f;,so(opfi) |T'

Combining this with the fact that both f; and fs3 extend f,, so that
deg f5 ,0(0p,) = deg f;,0(0p,), we see that T = Cs \ Uy = 0.

Observe that (s = U; — (] contracts proper rational components
with precisely two special points. Let Z C C3 be such a component,
and let Z = Z x ¢, C3. Since f3|c,—y, is the pullback of fi, we have

(33) deg f;0(0p,)|z = 0.

On the other hand, since Z has two special points in C3 and is con-
tracted in Cq, it is not contracted in C,. Denote by Z’ C Cy the
component dominating Z C C3. Then Z’ has precisely two special
points. Furthermore fs|z and f3|z coincide away from the two spe-
cial points. Using , we observe that deg f3O(0p,)|zr = 0, which
contradicts the stability of fy. Thus C3 — C is an isomorphism.

This completes the proof of Proposition [4.17] O

4.4.7. Failure of properness without log structure along ocop. As our
target has the non-trivial log structure M, along the infinity sec-
tion (see Section, a non-degenerate component can only intersect
oop along nodes or markings. Hence we have condition (2) in Proposi-
tion [A.17] It turns out that this condition is necessary for proving the
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weak valuative criterion for the moduli of meromorphic sections of the
spin bundle. We exhibit this necessity using the following example.

Consider the case that r = 1. Let C = P! with three marked points
z =1,2,00 where z = u/v for a fixed homogeneous coordinates [u : v]
of P'. Consider a family of meromorphic differentials f;, = t% over C
where ¢ is the parameter over a punctured disc A\ 0. Observe that
fi intersects the infinity section transversally at a single non-marked
point z = 0. We claim that the limit as ¢ — 0 does not exist as a
section of P(w'°8 @ O) with finite automorphisms.

Suppose possibly after a finite base change, the family f; extends to
a family f of sections of P := P(wlgim ® O) — Ca over A.

Consider fy as a section of P|¢, over Cy. By semi-stable reduction,
there is a contraction morphism Ch — C x A. We may then write
Co = Z1 U Zy where Zj is the pre-image of [0 : 1] € C in Cy C Ca,
and where Z; is the closure of its complement in Cy. Note that we
may extend f; by zero in the central fiber away from Z5. Hence, using
Lemma [4.21] we see that f(Z;) C 0p.

Let us write £ = f;O(ocop). We note that deg(L) = 1 and deg(L|z,) =
0, so that deg(L|z,) = 1. Let Z be the union of components of Z,
mapped to cop. Then, we have deg(L|z) = — deg(w'®|z) = 2n — m,
where n is the number of connected components of Z, and where m is
the number of nodes on Z that connect Z to other components. Note
that deg(L|717) = m, so that Z must be empty. Similarly, fo cannot
map any node to cop. It follows that we may view f; as a meromorphic
section of w'°® with a unique pole at a non-special point ¢q. Further,
letting p = Z; N Zs, which is mapped to zero by fy, we may view f; as
a section a € H%(wz,(p+ (¢ —p))) whose image under the residue map
a— al, € wz,(q)|, is non-zero. However, in the residue exact sequence

0— HO(WZ2) — HO(wZQ(q)) — wZ2(q)‘q — Hl(wzz) — Hl(wzz(q)) =0,

the connecting homomorphism must be a an isomorphism, and af,
must therefore be zero. We have arrived at a contradiction.

5. COSECTIONS AND THE REDUCED VIRTUAL CYCLE

5.1. The logarithmic perfect obstruction theory. The perfect ob-
struction theory of stable log maps has been formulated in [27, §] in
different but equivalent ways using the log cotangent complexes of [46].
Here we will follow the method of [g].

5.1.1. The canonical perfect relative obstruction theory. Let . = Yﬁl/r
be the stack of stable r-spin curves with a log field with the discrete
data 3 as in (27)). Let ' be the reduced discrete data and 9(A, ) be
the universal stack, see Section [2.4l Consider the fiber product in the
fine and saturated category

(34) M = M(A, B') Xonee, ML

g7’y
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where the two arrows to O} are the tautological morphisms. By
Propositions and [4.5] 91 is log smooth and equi-dimensional.
By , we have the tautological morphism

=M

induced by the associated log maps and the spin structures. This
leads to the commutative diagram

Py —Cyp —>

N

where fo: Cy — Py is the universal log field, 7o: Cy» — ¥ and
mon: Cop — 9N are the universal log curves. Note that the two squares
are both cartesian with strict vertical arrows.

Notation 5.1. We reserve the letter I for the log cotangent complexes
of [46], and the letter T for its dual. For what follows, without fur-
ther decoration all functors such as f* and 7, are automatically in the
derived sense to simplify the notation.

Observe that the left and right Cartesian squares imply

folpyjc, = W lpyjem, and w5 Ly jm = Le,, ey

respectively. Note that there is a map between cotangent complexes
induced by h:

h*LPsm/Csm = Leo jeoms
By the commutativity of arrows to Cop, we thus obtain the morphism
folpy, e = Tyliym.

Since Py — C is log smooth and integral, we have Lp_, /e, = Qp_ /c.,
the log cotangent bundle. Tensoring with the dualizing complex wg o =

we., /.7 [1], we obtain the morphism
Folpy ey @We, 5 — TylLiy .

Pushing forward along 7, and using the adjunction morphism 7 7', L /m =
Lo jom, we obtain

(35) T w(fo Py ey @ W, v) = Lom.
Since the morphism . — 91 is strict, we have
Ly jm = Ly jm

where Ly /9r is the cotangent complex in the usual sense.
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Proposition 5.2. The morphism defines a perfect obstruction
theory for % — 9 in the sense of Behrend-Fantechi [9, Section 7].

Proof. Note that my .(f52p,, /e, ®WE /) is a two-term complex per-
fect in [—1,0]. It suffices to show that is an obstruction theory.

Let Sg — S be a strict closed embedding induced by a square-zero
ideal. Given a commutative diagram of solid arrows

So—>y

T
|
Ve
7/
S——M
we want to study the dashed arrow lifting the bottom arrow. Using the
associated log map , the above diagram of solid arrows translates

to the left square of the following commutative diagram of solid arrows,
and the dashed arrow translates to the dashed arrow below:

Csy — Pcs
| \
Cs = A x Cg —> Log xCg
Here Log is Olsson’s stack parameterizing log structures [45, Section 1].
Note that all the arrows in the left triangle are strict and smooth. Fur-
thermore, the left bottom arrow is étale [45, Corollary 5.24]. Thus, we

have Tre jcs = Tpeg/rogxcs = Treyjaxcy- Now the statement follows
from the same argument as in [8, Section 6.1] using [57]. O

Observe that the above construction of perfect obstruction theory is
compatible with arbitrary base changes.

Lemma 5.3. For any morphism S — M, consider .Ls := S Xogq &
with the pullback foy: Coy — Py,. Then the perfect obstruction theory
of & — M pulls back to a perfect obstruction theory
WyS7*(f;SQP5/’S/CyS ® wéys/ys> - I["5/]5*/5'

of the strict morphism %5 — S.
5.1.2. The case of maps with uniform mazximal degeneracy. Replacing
M(A, B") by (A, ') in (34]), we obtain
(36) 8= (A, B') Xopoe, ML
By Theorem [2.13] the natural projection L — 901 is log étale. Thus U
is log smooth and equi-dimensional.

Now consider % := 62/51/ " and the universal log field fz: Cy» — Py

over % . Since % = U xS, applying Lemma|5.3, we obtain a relative
perfect obstruction theory

T ([ ¥pay 100y ® Wy yar) = Lo .
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Taking the dual of the above morphism and using T, /¢, = Qy)% oo
we obtain
(37) Tw st = 7 s Troy 100y =2 B pu
The following result will be useful for later calculation.

Lemma 5.4. Let (C — S, L, f: C — P) be an r-spin curve with a log
field over a log scheme S. Then we have

[ Tpe = f1(Op(0p)) = L& f*(Op(cop)).

Proof. Note that the usual tangent bundle is Tp,c = Op(0p + cop).
The log tangent bundle T’ ¢ C T ¢ is the subsheaf consisting of vector
fields vanishing along cop. Thus we have T /c = Op(0p) which proves
the first equality.

The second equality follows from the observation that

(38) Op(0p — cop) = Llp,
where L|p is the pullback of £ along the morphism P — C. 0

5.2. The relative cosection. Consider the universal log field
fu:Cy — Py

over % = ?/BI/T. Denote by 7y : Cyy — % the projection, and L4 the
universal r-spin bundle over Cy .

Throughout the rest of Section [5], we impose the following condition
on the discrete data, which is necessary for the cosection construction.

Assumption 5.5. All marked points are narrow and have zero contact
order.

Notation 5.6. For a locally free sheaf V' over a log stack X, write
Vb(V) = Spec(Sym*V") to be the geometric vector bundle associ-
ated to V with the strict morphism Vb(V) — X. For any morphism
Y — X, denote by Vl]y and Vb(V)|y the pullbacks of V' and Vb(V)

respectively.
5.2.1. The twisted spin section. Consider the canonical inclusion
(39) t: Op,, = Op,, (0p).
Using the isomorphism
Op,, (0p) = Ly|p, @ Op,, (c0p)
from ({38]), we obtain
(40) Iyt Oc,, = Ly @ f3,0p, (00p).
By Assumption , we may pull back via % — U and obtain

(41) far: 7o limax ® f3,0(00p) = Oc,, -
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By abuse of notation, L. denotes the pullback of the corresponding
line bundle over 4. Using Lemma [5.4] we obtain a morphism

* ~ * ®}\/ *
(42) fa//T’P%/C% = E@ & f@O(OOP) j ﬁ@/ ® W%LV

max*

Composing with , we obtain the twisted spin section

~\/ * *
(43) su = (®f ) o (f51): Ocyy = Lo @ Ty Lo

or equivalently a morphism sy : C4 — Vb(Ly ® 75, L)

max)'
5.2.2. The twisted superpotential and its differentiation. Write for sim-
plicity
. log .
Wiog,z "= We,, 1 and  wy = we,, ju-
The r-spin structure £}, = wig 4 defines an isomorphism

(Lo @ Ty L) = wiogr © o L

max max

hence a non-linear morphism

W Vb(ﬁ@ X W:Z/LV ) — Vb(wlog@ X W:Z/L_r )

max max
called the twisted superpotential. For convenience, we may equip both
the source and the target of W with the log structures pulled back from
Coy . In particular, W is a strict morphism. Differentiating W, we have

AW Tupeq emy, L) /cor = W T

Wiog, % ®7TZZ/ L;}gx)/c% '
Pulling back d W via the twisted spin section gives
(44) sy (dW): Ly @ w3, LY — wiogr @ Ty Lk

max*

Pushing forward along 75 and applying the projection formula, we
have

(45) T xSy (AW): Ty (L) @ Ly = T 0 (Wiog,zr) © Lig .

Denote by ¥ := ), 0; the sum of marked points of C4. Since all the
markings are narrow, recall from [14, Lemma 3.2] that the push-forward
of the natural inclusion L4 (—X) < L4 is an isomorphism
(46) W%,*ﬁq/(—z) i) Wag/’*ﬁ%.

Twisting down by the markings and pushing forward, we have
(A7) 7y .8y (AW)(=X): Ty 4 (E%(—E)) QLY. .
The two morphisms and fit in a commutative diagram

T +St (AW)(—X)
(48) Ty u(La(—%)) ® LY —— T swz @ Ll

l TG ,*S* (dW) l
7“2/,*(‘602/) ® L;/’lax Y W@/y*(wlog:%) ® Lr:lgx

-r
max*

— Moy xWaoy QL

where the vertical arrows are induced by twisting down by >, and the
left vertical arrow is the isomorphism (46).
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We give a point-wise description of R'my, .s%,(d W)(—X). Consider
a geometric point w — % with the pullback (C,/w, Ly, fu). Using
Serre duality and the spin structure L], = wiog ., We have

HY(L0(=2)) © L = HY(L5(2) @ 00) " © L,
> HO(LY ® wiogw) @ L
= HY(L,)Y @ L

The fiber R'my 8%, (dW)(—X),, is then given by

(49) HY (L)Y @ Ly gw = Ly S+ 7, -6

where s,, is the fiber of at w, hence st € HO(LI ) @ LT

max,w "

5.2.3. The relative cosection. Pushing forward , we obtain

(50) Ew g = 7 +(La) @ L.
Composing with the left and top arrows of , we obtain
(51) ]E“///)J. — T Wy 02y LI;g}m

whose H' defines the relative cosection

(52) O )y - Obsﬂ}//u = H1<E02//u> — Rlﬂ'@v*w@ QLT =L "

max max*

By abuse of notation, denote by A,.x C % the pre-image of A .« C
s Let %° := U \ Apax. Then % ° is the stack parameterizing sections
of the r-spin bundle. Note that % ° is the stack X as in [I4], Section 3].

Lemma 5.7. In the r-spin case, the restriction of to U° is the
perfect obstruction theory in [14 (3.2)], and o4 4y is the relative co-
section in [14] (3.5)].

Proof. By assumption, we have that

f(jk oO(OO'P) = OC%O and Lmax‘@/o = OdZ/o.
Then the statement follows from the construction of oy /. Il
5.2.4. Surjectivity of o4y along the boundary.

Lemma 5.8. Suppose a narrow marking has the trivial contact order.
Then its image via fy is contained in the zero section Op C Py .

Proof. We first show that the images of narrow markings avoid the
infinity section. Since this is an open condition, it suffices to check this
over a geometric fiber w — % with the log twisted field f,,: C,, — Py.

Suppose f,(0;) € ocop for a narrow marking o; € C,. Then there
is an irreducible Zariski neighborhood V' C C, of p such that M, =
W;ﬂw ® 0;.N,,, see Section . Since the contact order of o; is
trivial, f7|y induces a morphism of O*-torsors over V of the form
ol i Tooply — Top where ey € 74 M, is the degeneracy of f,
along V., T, = ey XM, Me,, and T, C Mp, is the preimage
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of the torsor T, as in via P, — A. Taking the corresponding
line bundles, we obtain a morphism f*O(—ocop)|y — Oy whose dual
Oy — f*O(ocop)|y is non-vanishing at p since the contact order at
p is trivial. Since f*O(cop)ly = L]y, we obtain a local section of
L non-vanishing at a narrow marking. But by [I4, Lemma 3.2] and
[6, Proposition 3.0.3] such a local section vanishes at ;. This is a
contradiction.

Since fy (0;) avoids ocop, locally fy is a section of L4 around o,
hence vanishes along ;. This completes the proof. U

We next prove the surjectivity of o4 i along Ap.x.

Proposition 5.9. The vanishing locus (044 = 0) C % is given by
the locus along which fy is the zero section.

Proof. By Lemma5.7)and [14, Lemma 3.6}, 04 |- vanishes along the
locus where fy is the zero section. It remains to show that oy s is
surjective along Apay. Since L7 is a line bundle, the image of o4 g

is a torsion-free sub-sheaf of L7 . Thus it suffices to show that oy sy
is surjective at each geometric point of A ..
Let w € Apax be a geometric point with (Cy,/w, Ly, f,). Taking H*

of over w, we have
(53) H' (L, @ f10(c0p,)) = H' (L) ® Ly,

max,w*

By construction oy g, is the composition

H' (L, ® f30(c0p,)) — H'(L,) @ Ly,

(by @6)  +— H'(L4(-X)) ® L,
(by @) — Liiw

where the first arrow is . Applying Serre duality and taking the
dual, we have 0, St

HO (;Cl ® fle(_OOPw) ® ww) — Ho(cq\:} ® ww) ® Lmax,w

=5 H(L") @ Liaxw
«— LT

max,w"*

where the first and last arrows are given by the duals of and
respectively. We describe o, St via the above composition as follows.

Suppose vg € LT is a non-zero vector. Applying the dual of ,

max,w

we obtain a vector
o= (rsy, )Y (v0) € HO(Ly, ™ © Linas) = HO(LY, ® Wi © Linax.a).

We observe that v; is non-trivial along the sub-curve Z C C,, consist-
ing of maximally degenerate components, and vanishes along C, \ Z.
Indeed, s,, is the fiber of s¢ in which is defined as the composition
of a section (f},¢) vanishing only along components of C,, with images
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in Op, by , followed by tensoring the section favl in (41)) vanish-
ing only along the closure of C, \ Z in C, by Propositio. The
observation then follows since Z has image entirely in cop,,.

We further observe that Z contains no markings by Lemma [5.8
Thus the above paragraph implies that v; € H° (L,\L/U QR Wy ® Lmax’w) as
v, vanishes along all markings.

Finally observe that the dual of is given by

£1\Z Q) Wy & Lma.x,w % £¥ & f,ZZO(—OOpw)

hence cr;z///uw(vo) = v, ® f,. By Proposition [3.21| again, f,, hence

vy ® f,, is non-trivial along Z. In particular, T st (V0) # 0.
The above analysis implies that o, I is injective, hence oy /5, is
surjective. This completes the proof. O

5.3. Factorization of the relative obstruction.

5.3.1. An auziliary twist. Denote by Ly _ := Ly(—X) for simplicity,
where Y still denotes the sum of markings of Cy. Similar to the con-
struction of Py in Section we formulate the stack Py with Ly
replaced by Ly _. The log structure on Py _ is defined as

MPM,, = MC&’P Do~ MOOP,

where oop_ C Py _ is the corresponding infinity section. The nat-
ural morphism Vb(Ly ) — Vb(Ly) induces a birational map of log
stacks Py _ — —> Py which is an isomorphism away from fibers over
marked points. Denote by Py ., C Py, the open sub-stack where the
above rational map is well-defined. Let t: Py,., — Py be the corre-
sponding morphism. Denote by Py ,., the pullback of Py e, with the
corresponding morphism t: Py ., — Py .

Lemma 5.10. There is a canonical factorization

Cy S P,

o A

PW/,T@Q

Proof. Note that Py,e; C Py is obtained by removing the fiber of
ocop_ over marked points. The statement follows from Lemma[5.§ O

Denote by Py, — A the morphism of log stacks such that M., is
the pullback of M 4. Consider the natural morphism % — 4 induced
by the composition of fy _ with Py_ — A. The above lemma im-
plies that % can be viewed as the log stack parameterizing log twisted
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sections fr_: Cp — Pp_ for any 7' — 4. The same construction in
Section provides a perfect obstruction theory of % — il:

(54) Ty = musfo -Try egica = Tu sty Troy _jca = Eapu—

*

On the other hand since f5,O(ocop) = f;, _O(cop, ), we calculate
For ~Tro _jeo, = L~ @ [ _O(cop )
(55) = Ly/(~%) © f3,0(c0p)
= “;/TP%/C% (—X).

Using and Lemma [5.8] we have

* *
T s St~ TP veg)Cor = T Sy TPy 0y -

To summarize:

Lemma 5.11. The two perfect obstruction theories and are
1dentical.

We now view % with the universal family fy _: Cy — Poy .

5.3.2. Partial expansion and contraction. The morphism m: $(A, 5') —
Apnax from Section [3.5] induces a morphism U — A, which will again
be denoted by m by abuse of notation. Consider the cartesian diagram
of fine log stacks

(56) P A

g \

P)J.,— I A X Amax

where the bottom is the product of m and Py — A.

By construction, one checks that the bottom arrow satisfies the flat-
ness conditions in [36, Proposition (4.1)], hence is integral in the sense
of [36, Definition (4.3)]. In particular, the underlying structure of the
above cartesian diagram is a cartesian diagram of the underlying alge-
braic stacks. We remark that the above diagram is indeed cartesian in
the fine and saturated category. Since the saturation plays no role in
the following discussion, we omit the details here.

In the above diagram, since the right vertical arrow is log étale,
the left vertical arrow is again log étale. By abuse of notation, we
denote both vertical arrows by b. Let cope C Pg_ be the pre-image
of coge C A°, and write Py _ := Py \ cope. Denote by & C Pj
the exceptional divisor contracted by b. In the following, we view the
(relative) normal bundle N . of cope as a line bundle over Cy:
Lemma 5.12. VY = =~ Ly_ @ LY

oOpe max*
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Proof. Observe that b*[ocop | = [oope]| + [€] where [%] denotes the
corresponding divisor class. Pulling back to Cy via the identification
Cy = cop_ = oope, we obtain

O(00p_)|oop. = (O(cope) @ O(g[’))’OOPi'

Using O(00p_)|oop = Noop = Ly and O(cope )
obtain

~Y
cope  — NOOpe , W€

Ly~ = Noope @ O(Eb)loope -
Finally, observe that O(&)|oop. = miLy,

max’

which leads to the desired
isomorphism. O

Lemma 5.13. There is a commutative diagram of log stacks

Vb Eﬂ ® ﬂ-ileax>

\/

where ¢ is a birational morphism contracting &, the proper transform
of Py— Xy Amax, to the zero section of Vb(Ly - @ miLy .-

max

Proof. Note that once the underlying morphism of ¢ is defined, the
morphism on the level of log structures is automatically obtained since
the right skew arrow is strict. We may assume for simplicity that all
stacks in the rest of this proof have the trivial log structure.

Note that [oope | is a relative nef divisor of the family of nodal rational
curves Py — Cy. Let ¢: Pg_ — PG _ be the induced contraction,
and & C Pg - be the exceptional locus contracted by ¢. Then &, is the
proper transform of Py _ X Anax. Observe that the resulting projection
Pg_ — Cy is again a smooth P-fibration since the contracted locus
consists of a family of (—1)-curves over Cy.

Furthermore, note that ¢ induces an embedding M, — P over

Cy with complement Ope = Py \./\foo7,i given by the image of the zero
section Ope C Pg_. We thus obtain
Pi- = PNy @ 0) =P(OBNL,, ).
Thus ¢ is obtained from ¢ by removing cope and its image in Pg_. [
Consider the canonical morphism induced by the divisor &,

(57) te.: Opg - — Opg (&) = LY. (&),
and the morphism of log tangent bundles

de: Tpge s = CTVb(Ly, - @myLi)/Cu

Lemma 5.14. d¢ = ®¢¢,.
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Proof. Consider the morphism of log cotangent bundles
(de)"s " Qbiey _omLy.o/c = Upge ey

Note that ¢ is an isomorphism away from the divisor &. Further-
more, the contraction ¢ is the blow-up of the zero section of Vb(Ly_ ®
mgLy.)- A local coordinate calculation shows that (d¢)¥ is given by
the composition

®Lv = * *
C*QVb(Lu’,(@w;LV )/Cy 45 C*£X7_<_gb) — b QPH,,/CM(_gb) — b qu,f/cu

max

where the first arrow follows from (57). Note that b*Qp, /e, = Qpee /e,

since b is log étale over Cy. This means that (d¢)* = ®ug . Taking the
dual, we obtain the desired equality. Il

5.3.3. Twisted spin section via partial expansion. Consider the com-
mutative diagram of solid arrows

(58)

P%,f — A X Amax
where the square is the pullback of via % — U. We then obtain

the dashed arrow f7, . Consider the composition

oy

(59) sy—: Coy =5 Py ~5 Vb(Ly - @ 75 L)

max

where ¢4 is the pullback of the contraction ¢ as in Lemma [5.13]

Lemma 5.15. The section s¢ in s given by the composition
Cy 25 Vb(Ly_ @ 7,LY. ) — Vb(Ly @ w LY.

max max

Proof. Since t: Py ,e¢q — Pg is well-defined along the zero section,
pulling back we have

t*L: OP%,reg — OP%,reg (0797) ® OC% (E)lp%,reg'

SinCe OP”ZZ,reg (0737) = E%v_ 7j”Z/,reg ® OPQZ,Teg (OO'P7 ), flll"ther pulllng ba,Ck
to P;/,reg = bil(P{’Z/J‘e‘g), we haVe

® OPQ}ZMQ(OOPE + &) ® Oc,, (X)

€
Pal,reg

b t*s: Opglmeg — £@7_ P e
which is naturally the restriction of
b*t"e: Ops, = Lo —|p;, @ Opg, (00pe + &) @ Oc,, (X)|pg, -

Since fz factors through ff, _, we have (f, )*(b*t*1) = f},¢.
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By Lemma [3.23, we have (f5, )" (®tg,) = (®:ﬁvz/) in 1’ Putting
things together, we have
Vv * e * e * [ fk gk
s = (®fy)o fyr= (fﬂz/,—) (®tg,) 0 (f%,—) (b"t™)
= (f5.-) ((®te,) o (b°¢7)).
Note that (®tg,) o (b*t*1) is the morphism

Opgg/,_ — ,Ca//’_

Py, ® Ops, (00pe) ® Ly ® Oc,y, (X)

Py,
which factors through the natural morphism

(60) Op%/ = E%’_

Py, ® Ops, (00pe ) @ Loy
Write V' = Vb(Ly - @ 7, L},.) for simplicity. The section s4 _ is

max

the pullback of the canonical morphism via itself
t_: Oy — Ov(OV) = (ﬁog/’_ ® W;/L;/nax)h/'
This pulls back to

* . \%
"t Opge = Loy |pep @ Ly,

which is the restriction of 1@} Since sy factors through ff, _, the
section (60)) pulls back to sy — via f7, . This finishes the proof. [

5.3.4. Relative cosection via partial expansion. For simplicity, write

Ly =Ly _@m,LY  and Oy = wy @ 1)L

max

-
max

Consider the composition

(61) Py — = Vb(Ly,—) — = Vb(@z (1 — 7)) —= Vb(&z).
—

Ww_

Take the differentiation

de. 4 dwW_ oy~
Tree jea —rc Tynza _yjcq — (W=0¢)"Vb(wy).

Using and pulling back to Cy, we have

. (fo )*de o sh _dW_ _
Lo//’_ X f%0<007>) — E%’_ —r Wy

Further pushing forward, we obtain

T (fy e

62 ]E%/u = ﬂ'g}/’* (E%v_ ® fg/O(OOp» —> ﬂ-“//,*»C“//,—
( ) w%7*s%77dW, B
— Moy sWay

Proposition 5.16. The composition (62) is . In particular, the
relative cosection is the H' of ([62)).
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Proof. By Lemma [3.23] we have (f5, _)*(®te,) = (®:ﬁvz/), where ¢g, is
as in (57). By Lemmal.14} (f%._)* dcis obtained by tensoring by
Oc,, (—X). By ([46), the arrow my .(fg, _)*dcis (50). Further observe
that the arrow 7y .87, dW_is (7). This proves the statement. [

5.3.5. The twisted Hodge bundle. Denote by wy = wy ® miL, " . Con-
sider the direct image cone C(my.wy) as in [13, Definition 2.1]. This
is an algebraic stack over Yl parameterizing sections of @y, see [13|
Proposition 2.2]. We further equip it with the log structure pulled
back from 4. For simplicity, we write $ := C(my @y ), and denote by
S5 Cy — Vb(wg) the universal section over §).

By [13, Proposition 2.5], the strict morphism $) — I has a perfect

obstruction theory
(63) Ty)/u — Ef)/u = 71;17*(215.
By the projection formula, we have

(64) Rl'my oy = (R'myawy @ L ) = LT

max max-*

Therefore ROWLL*JJH =~ Roﬂ&*cuu@L*’" is indeed a vector bundle whose

max

associated geometric vector bundle is §. In particular, the morphism
$H — U is strict and smooth. Thus Tg/y is a vector bundle over
concentrated in degree zero, and the following morphism is trivial:

0= H'(Tgu) — R'mg.ig =L .
The section s¢ as in defines a section
sy Cou = Vb(Ly @ 75 L) = Vb(wiogr @ 7 Liie)-

By Lemma [5.15] sy is a global section of L4 (—X) ® 7, Liax. Thus si,
factors through a section

C“I/ — Vb((,Uq/ ® W;/LI;IQX)7
which is again denoted by s/,. This induces a morphism

U — 9
such that s, is the pullback of sg.

5.3.6. Obstruction factorization.
Lemma 5.17. There is a canonical commutative diagram
(65) T 15 — T )%

Ea jy — Egulo

where the bottom arrow is , and the left and right vertical arrows
are the perfect obstruction theories and (@ respectively.
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Proof. Consider the commutative diagram over Cy:

Cu Cy
%L lsﬁ
P V(i)

By abuse of notation, sg is the composition Cy — Vb(wg) — Vb(@y).
We obtain a commutative diagram of log tangent complexes

W;/T%/U. = TC% /Cy TC:’)/Culc%
*l (fg, ) d(Woyoe j
(ff‘?/,—) TP;:O_/CH (s5) TVb(@u)/Cu|C%

Since b in is log étale, we have (f&—)*TPj’,"_/Cu = (fo,-)"Try_jey-
Applying 7y . and using adjunction we obtain

T 4 Ty /ulu

L ﬂ'az/y*(f%’_)* d(W_)oc . l
WOZ,*(f?/,—)*TPu,f/Cu W”Z/,*(Sﬁ) TVb(JJu)/Cu|C%

which is . O

Proposition 5.18. The injection H'(Ty js) — Obsy sy factors through
the kernel of the relative cosection o sy in

Proof. By Lemma [5.17 taking H' of (65), we obtain a commutative
diagram

Hl(T%/u) e Hl(Ty)/u) - 0

l |

Obsy /s i LI;ZX
where H'(T45y) = 0 follows from the smoothness of § — L. O

5.4. The reduced relative perfect obstruction theory. The dual
of induces a complex with amplitude [0, 1] over 4L:

F:=0y L.

max*
Since $ — 4 is log smooth, € is injective. Consider the cokernel cok e.
Then F = cok e[—1] in the derived category. The composition

Esjs = H'(Esyw)[~1] = L[ 1] — cok[~1]

max

defines a morphism of complexes Eg/y — F|s, and hence a triangle

re 1]
(66) Efy — Egqu — Flg —

where the notation |, stands for derived pullback to .
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Lemma 5.19. HI(E;ffu) = Oy,

Proof. Taking the long exact sequence of and using H°(F) = 0,

we have an exact sequence
0— H'(EYy) — H' (Eg/u) — H'(Fls) — H*(Efjy)-
Since H'(Eg,y) — H'(F|5) is precisely the morphism L_" — coke, it

max

follows that H' (]E%efu) = Oy, O

The composition
(67) E%/H%Eﬁ/ﬂw/ —>F|o;/,
yields a triangle

re [1]
(68) E%‘}u — Eyp — Fly —

Lemma 5.20. The obstruction theories Ty — By and Ty py —
Ew a0 factor through T/ — E%e?u and Ty — Erqj‘}u respectively.
Furthermore, they fit in a commutative diagram

(69) Ty — T slw

A

red red
By — ESjule

Proof. By Lemmal5.17] we have a commutative diagram of solid arrows:
(70) To
(1]

B3,

Ea s |

T sl —

~N

N
N
N
N

Esiyle — Egpula Fla

(1]

where the two horizontal lines are triangles and , and the two
curved arrows are the corresponding obstruction theories.

Since §) — 4 is representable and smooth, the complex T/ is rep-
resented by the relative tangent bundle T§ /. Thus the composition
Ty/q — Egs — Flg is the zero morphism. This yields the lower
dashed arrow T4/ — Eg .

Now by the commutativity, the composition Ty i — Eg )y — Fly is
the same as Ty g — Tg/u|l2z — F|a, hence is trivial. Thus, we obtain
the top dashed arrow Ty 5 — Eg /g1 O
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Lemma 5.21. The two complexes Egjc}u and E}f/du are perfect with tor-
amplitude in [0, 1].

Proof. Since Egq/y, Egyy and F are perfect in [0, 1], the complexes

Eg“fu and Ei,j“}u are at least perfect in [0,2]. It suffices to show that

H(Ef,) = 0 and HA(Ejd,) = 0.

Taking the long exact sequence of , we have an exact sequence
H'(Egyu) — H'(Fly) — H*(Egjy) — 0

Since the left arrow is L7 — coke, we have H 2(E}ffu) = 0.

Similarly using , we have an exact sequence
H' By py) = H' (Fly) — H*(Ely) — 0.
By @, the left arrow is the composition
H'(Eyjs) = H' (Egjula) — H'(Fla).

By construction, F|y\a,,.. = 0 is the zero complex. It suffices to show
that the above composition is surjective along a neighborhood of A, ..
This follows from Proposition [5.9) given that Proposition [5.16|identifies
the morphism H'(Ey ) — H'(Eguls) with the relative cosection
Oy /4 O

Lemma 5.22. The two arrows T — E;Jefu and Ty 5y — Eﬁj‘}u define
perfect obstruction theories of $ — M and % — S respectively.

Proof. We verify the case of Ty /4 — Er@j‘}u. The other case is similar.

By the triangle and the factorization of Lemma [5.20, we have
a surjection H(Ty ) — HO(Egj‘}u) and an injection H'(Ty ) <
Hl(Eij‘}u). Since F is perfect in [0, 1], implies that H°(Ty ) —

H O(Eﬁzj“}u) is also injective, and hence an isomorphism. O

The proof of the above lemma leads to the following
Corollary 5.23. (1) HO(EI;;%) = H(Ey ).

(2) Diagram (@) induces a morphism between long exact sequences

0 —— HO(F|y) — H'(EYy) — H'(Eypn) — H'(Fly) — 0

jg laggd/u jtf@//u j%

0 —— HO(F|y) — HEL|2) — H(Eoyulsr) — H'(Fly) —0

where the morphism crﬁzj‘}u is surjective along Apax.

Proof. 1t remains to verify the surjectivity of 025% along Apax. This

follows from the surjectivity of o sy along Apax by Proposition[5.9 O

We summarizes our construction below.
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Proposition 5.24. The morphism % — U admits a reduced perfect
obstruction theory

(71) T ju = By,
and a reduced relative cosection
(72) 0%y Obsiyly = H'(EYy) — Oy

with the following properties
(1) EIJ;(}LLI%\AH\&X = ]E%/Ld%\Amax'
(2) U%ﬁ(}u|“/‘/\AmaX = 0w Ju| %\ Ammax
(3) ng?}u is surjective along Amax-
In particular, aﬁzj‘}u and o 1y have the same degeneracy loci.

Proof. The perfect obstruction theory has been verified in Lemma[5.21
and . The formation of a;jc}u and its surjectivity along A . follows

from Corollary [5.23]

Finally (1) follows from the observation F|y\a,,.. = 0. Statement
(2) follows from (1) and ([70). O

Comparing and , we observe that the reduced and canonical
cosections only differ along the boundary A,.., and are related by

Corollary (2).

Notation 5.25. Since il is equi-dimensional, denote by [#]*¢ the vir-
tual fundamental class of % defined by the relative perfect obstruction
theory (71), see [, Section 7).

5.5. The reduced absolute perfect obstruction theory. Our last
goal is to compare the cosection localized virtual cycle and the reduced
virtual cycle as in Theorem Since the cosection localized virtual
cycle is defined using the absolute theory [14], we need to descend
the relative reduced theory in Proposition to an absolute one.
However, the log smooth base stack  can have toroidal singularities.
Hence the standard method constructing an absolute theory from a
relative one as explained in [I0, Proposition A.1] does not directly
apply. To fix this, we first construct a (non-canonical) resolution of il
in leaving 0\ A,,.x untouched. Pulling back along the resolution,
we can then descend the relative reduced theory to an absolute one in
§5.5.20 Finally in §5.5.3] we compare the cosection localized virtual
cycle with the absolute reduced virtual cycle, and further argue that
the result is independent of the choice of resolutions.

5.5.1. Resolution of the base.

Lemma 5.26. Let U C U be a finite type open substack, and write
Amaxy = Anax NYB. Then there exists a birational, log €tale, projective
morphism of log stacks ¢: U — U such that



TOWARDS LOGARITHMIC GLSM 69

(1) &5|%\Amax,m is an isomorphism onto U \ Apaxx-
(2) The log structure of B is locally free. In particular, the under-
lying stack of U is smooth.

Proof. Recall from Corollary that there is a canonical splitting
Mg = My ®o- My where My, = N is the factor corresponding to
nodes with the trivial contact order for each geometric point s — 0.
Indeed, given a node over s, if it has the trivial contact order, then
it can either be smoothed out or remain the trivial contact order in a
neighborhood of s. Observe that M, is trivial along U\ Ayax g as the
curves have no degenerate components away from A ..

Consider the Artin fans Aj and Ay associated to Mg and My
respectively, see [4, Proposition 3.1.1]. By Theorem , we have a
strict, smooth morphism of log stacks U — Ay x Ay. Let Y — Al be
the projective sub-division of |4, Theorem 4.4.2]. It is projective and
log étale, and My, is locally free. This induces a projective, log étale
morphism

o: Q}ZZQIXA/Q]XA% (yXA%)%Q]
It is an isomorphism over U \ Ap.x g, over which My; is trivial. O

Let 20 C 4 be a finite type open substack containing the image of
% . We fix a resolution ¢: U — U as in Lemma 5.26. Consider the
fiber products

H:=9xy P and U :=U xqD.

The perfect obstruction theories Tg/y — ]Ege/dil and Ty g — Elg,j% in
Lemma pull back to perfect obstruction theories

red red
T.‘:j/i] — ]Efﬁ/il and T@/ﬁ — EO?//@'

Since 9 is equi-dimensional, let [Oj/ J**d be the virtual cycle of U defined
by the above perfect obstruction theory as in [9, Section 7]. By Lemma
[5.26] and the virtual push-forward of [22, 44], we obtain:

Lemma 5.27. gb*[@]md = [w]red

5.5.2. The absolute reduced theory and cosection. We define E%ed to be
a cone fitting into the following morphism of distinguished triangles:

(1]

(73) Tﬁ/@ 'JI}) T%\é
id l/ed ~L 5 (1]

Lemma 5.28. The induced morphism Hl(E%e;ii]) — Hl(E%ed) is an
isomorphism and H'(EZ?) = Oy,
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Proof. Since 2 is smooth, we have H 1(Tg) = 0. Consider the induced
morphism between long exact sequences

N

HO(ES) — HO(Tgls) — H'(Ely) —= H'(ES) — 0

Since $ — B is smooth, H*(T5) — H"(Tgl5) and HO(ELY) — HO(Tg|s)
are both surjective. Thus H'(EYj;) — H'(EZ?) is an isomorphism.

H/T
Lemma implies that H'(E¥?) = Of. O
Now consider the morphism of triangles:
1
(74) Ty % T7 Ty
e
red red N [1]

By [10, Proposition A.1. (1)], we obtain a perfect obstruction theory

T, — Ei};d of % with the corresponding virtual cycle [%/]*9.
The bottom morphism in induces a morphism of triangles

Ered ’~ Ered’~ T”‘” [1] R
% w q VU U lu

U | D
l j l 0
red red |-

By — Ef —— Tg; —

Taking H' and applying Lemma we have a commutative diagram
1 (Tered 1 (Tered
HH(EZ)5) —= H(EZ7)

U|B
o.r_ed ~ l/ lo.r_ed
U |0 24
@) — 0.
Observe that 055‘}% is the pullback of a;j‘}u in . We call O';Zjd the

absolute reduced cosection.

5.5.3. Proof of Theorem . Denote by Amax = Y X Apax. By
Lemma (1), we have the identity Z° := Y \ Apox = U \ Apax-
Consider the open embedding ¢: %° <> % with the trivial perfect
obstruction theory. Thus the virtual pullback ' in the sense of [44] is
just the flat pullback (see [44, Remark 3|£l .
26

Denote by 040 = a%jd 2. By Lemmal5. 7 and Proposition
(2), the morphism oo is the absolute cosection in [I4, Proposition 3.4
in the r-spin case. We then obtain:
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Lemma 5.29. [%°|,,. is the Witten’s top Chern class as in [14,
Definition-Proposition 3.9].

On the other hand, let % (o 1“ed) (respectively % °(oy-)) be the de-

generacy loci of ared (respectlvely o). Since ared~ is the pullback of

KARY
a;j‘}u, Proposition |5.24| (3) implies that ared is surjective along A,

hence OZ/( red) = @/O(Uﬁid).

Let Largd be the cosection localized virtual pullback as in [I1], Sec-
tion 2.1]% Since ¢ .. = ¢ and U (o red) = %°(oy-), applying [11]
Theorem 2.6] we haque the following equalities in A,.(Z °(oy-)):

(U5 = 0 ea U )0 = (2°)
o o u

Ogyo -

Let i: %°(oy°) — % be the closed embedding. By [38, Theorem 1.1],
we have:

Lemma 5.30. 1, [%°],, . = [%]"*.

Ogy0

Finally, let i = ¢ o i: %°(04s) — % be the closed embedding.
Applying Lemma we have:

Proposition 5.31. i,[%°],, . = [%]*.
This completes the proof of Theorem [1.6]

Ogyo
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