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Guihua Gong and Huaxin Lin

We prove that every stably projectionless separable simple amenable C∗-algebra
in the UCT class has rationally generalized tracial rank one. Following Elliott’s
earlier work, we show that the Elliott invariant of any finite separable simple
C∗-algebra with finite nuclear dimension can always be described as a scaled
simple ordered group pairing together with a countable abelian group (which
unifies the unital and nonunital, as well as stably projectionless cases). We also
show that, for any given such invariant set, there is a finite separable simple
C∗-algebra whose Elliott invariant is the given set, a refinement of the range
theorem of Elliott. In the stably projectionless case, modified model C∗-algebras
are constructed in such a way that they are of generalized tracial rank one and
have other technical features.

1. Introduction

This paper is a part of the Elliott program of classification of simple separable C∗-
algebras with finite nuclear dimension (or, equivalently, simple separable amenable
Z-stable C∗-algebras by [Castillejos et al. 2021; Castillejos and Evington 2020;
Winter 2012; Tikuisis 2014]). In fact it is the first part of the research results which
give a unified classification of separable finite simple C∗-algebras of finite nuclear
dimension which satisfy the universal coefficient theorem (UCT).

Briefly, a full classification theorem for a class of C∗-algebras, say A, consists of
three parts. The first part is a description of the Elliott invariant for the C∗-algebras
in A; see [Elliott 1995]. The second part is the range (or model) theorem, i.e.,
for any given Elliott invariant set as described in the first part, there is a model
C∗-algebra (with certain desired properties) in A such that its Elliott invariant set
is the given one [Elliott 1996]. The third part is the isomorphism theorem which
asserts that any two C∗-algebras in the class A are isomorphic if and only if they
have the same Elliott invariant.

Let A be the class of separable simple amenable Z-stable C∗-algebras in the UCT
class. This paper contains the first two parts of the classification of C∗-algebras
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in A, together with a reduction theorem. X. Jiang and H. Su [1999] constructed
a unital infinite-dimensional separable simple amenable C∗-algebra Z which has
exactly the same Elliott invariant as the complex field C. It is known (see [Elliott
et al. 2015, Corollary 4.11]) that the Jiang–Su algebra Z is the unique unital
infinite-dimensional separable simple C∗-algebra with finite nuclear dimension
in the UCT class to have this property. Let A be any unital separable simple C∗-
algebra with weakly unperforated K0(A). Then A⊗ Z and A have exactly the
same Elliott invariant (see [Gong et al. 2000, Theorem 1(b)]). The invariant set
may be described as a six-tuple (K0(A), K0(A)+, [1A], T (A), ρA, K1(A)), where
T (A) is the tracial state space of A and ρA : K0(A)→ Aff(T (A)) (the space of
all real affine continuous functions on T (A)) is a pairing. Therefore, currently we
study the classification of simple separable Z-stable C∗-algebras. The classification
results for unital separable simple amenable Z-stable C∗-algebras in the UCT class
can be found in [Phillips 2000; Kirchberg and Phillips 2000; Gong et al. 2020a;
2020b; Elliott et al. 2015; Tikuisis et al. 2017]. For separable simple C∗-algebras
A with K0(A)+ ̸= {0}, the classification can be easily reduced to the unital case.

This paper mainly studies the case that K0(A)+ = {0} and A is finite, i.e.,
the stably projectionless case. Note that a separable simple C∗-algebra A with
K0(A)+ = {0} could still have interesting K0(A). Moreover, one could also have a
nontrivial pairing ρA.

Let A be a nonunital separable simple C∗-algebra and T̃ (A) the set of densely
defined lower semicontinuous traces. Let Ã be the unitization of A and π : Ã→C the
quotient map. Suppose that A is an algebraically simple C∗-algebra and p ∈Mn( Ã)
is a nonzero projection and m is the rank of π(p). One may define

ρA([p] − [1m])(τ )= τ(p)−m∥τ∥

(for τ ∈ T̃ (A)) which gives a pairing ρA : K0(A) → Aff(T̃ (A)) (the set of all
real continuous affine functions on T̃ (A)). On the other hand, if A is stable,
then a naive extension of the above pairing may not make sense as τ(p) = ∞
(when A is stably projectionless) and ∥τ∥ =∞. If one chooses a hereditary C∗-
subalgebra B of A which is algebraically simple, then one may define a pairing
ρB : K0(B) → Aff(T̃ (B)). However, one needs to define a pairing which is
independent of B, so a somewhat more careful pairing is deployed. As the first part
of the classification, following Elliott’s earlier work [1995] and including [Elliott
et al. 2020a] and [Gong et al. 2000], we combine several previous results to state
that for any separable amenable simple Z-stable C∗-algebra (A ∼= A ⊗ Z), its
Elliott invariant may always be described by a scaled simple ordered group pairing
together with a countable abelian group (see Definition 2.15 and Theorem 5.2). For
the second part of the classification, we modify the range theorem proved in [Elliott
1996] (see also [Li 2020] and the beginning of Section 4 of this paper).
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To be more specific, in the stably projectionless case, modifying Elliott’s original
construction, we show that any Elliott invariant (including the scale) mentioned
above can be realized by a model simple C∗-algebra of generalized tracial rank one.
Moreover, for technical purposes, we show that these model simple C∗-algebras have
other technical properties (see Theorem 4.118, Remark 4.135 and Theorem 4.137).

Furthermore, following [Elliott et al. 2020a, Corollary A.7], we found that, in the
stably projectionless case, a pairing mentioned above actually gives a previously
unexpected stronger feature of weak unperforation (see Corollary 3.6), a feature
that plays an important technical role in the later part of [Gong and Lin 2020b] (see,
for example, Theorem 3.7 in the current paper).

As mentioned above, the isomorphism theorem in [Gong and Lin 2020b] is first
established for those separable simple C∗-algebras of finite nuclear dimension which
have rationally generalized tracial rank one. In this paper, with the model theorem
mentioned above, we also show that every separable stably projectionless simple
C∗-algebra with finite nuclear dimension in the UCT class actually has rationally
generalized tracial rank one (Theorem 6.169) which leads to the final classification
of stably projectionless simple C∗-algebras with finite nuclear dimension in the
UCT class [Gong and Lin 2020b].

The paper is organized as follows. Section 2 serves as preliminaries. Section 3
discusses the existence of W-traces. In Section 4, we first construct a class of simple
C∗-algebras which are inductive limits of 1-dimensional noncommutative CW com-
plexes with arbitrary simple pairings. Then, together with the construction in [Gong
and Lin 2020a], we construct simple C∗-algebras with arbitrary simple pairings and
arbitrary K1-groups. These are simple C∗-algebras which are locally approximated
by subhomogeneous C∗-algebras whose spectra have dimension no more than 3. In
Section 5, we discuss the range of the invariant sets of the stably finite separable sim-
ple Z-stable C∗-algebras, and construct models which exhaust all the possible values
of Elliott invariant for those separable simple C∗-algebras. In Section 6, we show
that, in the UCT class, all separable finite simple C∗-algebras with finite nuclear
dimension have rationally generalized tracial rank at most one (Theorem 6.169).

2. Preliminaries

Definition 2.1. Let A be a C∗-algebra. Denote by A1 the unit ball of A. For
a ∈ A+, denote by Her(a) the hereditary C∗-subalgebra aAa. If a, b ∈ A+, we
write a ≲ b (a is Cuntz smaller than b), if there exists a sequence xn ∈ A such that
a = limn→∞ x∗n xn and xnx∗n ∈ Her(b). If both a ≲ b and b ≲ a, then we say a is
Cuntz equivalent to b. The Cuntz equivalence class represented by a is denoted
by ⟨a⟩. A projection p ∈ Mn(A) defines an element [p] ∈ K0(A)+. We also use
[p] to denote the Cuntz equivalence class represented by p.
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Definition 2.2. Let A be a C∗-algebra. Denote by T (A) the tracial state space of
A (which could be the empty set). Let Aff(T (A)) be the space of all real-valued
affine continuous functions on T (A). Let T̃ (A) be the cone of densely defined,
positive lower semicontinuous traces on A equipped with the topology of pointwise
convergence on elements of the Pedersen ideal Ped(A) of A. So T̃ (A) may be
viewed as the cone in the dual space of the vector space Ped(A).

Let B be another C∗-algebra with T̃ (B) ̸= {0} and let ϕ : A→ B be a homo-
morphism. Since Ped(A) is the minimal dense ideal of A, ϕ(Ped(A)) ⊂ Ped(B).
In what follows we also write ϕ for ϕ ⊗ idMk : Mk(A)→ Mk(B) whenever it is
convenient.

We write ϕT : T̃ (B)→ T̃ (A) for the induced continuous affine map. Denote by
T̃ b(A) the subset of T̃ (A) which is bounded on A. Of course T (A)⊂ T̃ b(A). Set
T0(A) := {t ∈ T̃ (A) : ∥τ∥ ≤ 1}. It is a compact convex subset of T̃ (A).

Let r ≥ 1 be an integer and τ ∈ T̃ (A). We continue to write τ on A ⊗ Mr

for τ ⊗Tr, where Tr is the standard (unnormalized) trace on Mr . Let S be a convex
subset (of a convex topological cone). We assume that a convex cone contains 0,
but a convex set S may or may not contain 0. Denote by Aff(S) the set of affine
continuous functions on S with the property that, if 0 ∈ S, then f (0) = 0 for all
f ∈ Aff(S). As in [Robert 2012], define

Aff+(S)= { f : Aff(S) : f (τ ) > 0 for τ ̸= 0} ∪ {0}, (2.3)

LAff f,+(S)= { f : S→ [0,∞) : ∃ { fn}, fn ↗ f, fn ∈ Aff+(S)}, (2.4)

LAff+(S)= { f : S→ [0,∞] : ∃ { fn}, fn ↗ f, fn ∈ Aff+(S)}, (2.5)

LAff∼(S)= { f1− f2 : f1 ∈ LAff+(S) and f2 ∈ Aff+(S)}. (2.6)

For most of this paper, S= T̃ (A), S=T (A), or S⊂T0(A) in the above definition are
used. Moreover, for S⊂ T0(A), LAffb,+(S) is the subset of those bounded functions
in LAff f,+(S). Recall that 0 ∈ T̃ (A) and if f ∈ LAff(T̃ (A)), then f (0)= 0.

Definition 2.7. A convex topological cone T is a subset of a topological vector
space such that for any α, β ∈ R+ and x, y ∈ T , αx + βy ∈ T , where R+ is the
set of nonnegative real numbers. A subset 1 ⊂ T is called a base of T , if 1 is
convex and for any x ∈ T \ {0}, there is a unique pair (αx , τx) ∈ (R+ \ {0})×1
such that x = αxτx . In this article, all convex topological cones are those with a
metrizable Choquet simplex 1 as its base. Note also that the function from T \ {0}
to (R+ \ {0})×1 sending x to (αx , τx) is continuous.

A simple ordered group pairing is a triple (G, T, ρ), where G is a countable
abelian group, T is a convex topological cone with a Choquet simplex as its
base and ρ : G → Aff(T ) is a homomorphism. In what follows, for a pair of
functions f and g on T , we write f > g if f (τ ) > g(τ ) for all τ ∈ T \ {0}. Define
G+ = {g ∈ G : ρ(g) > 0} ∪ {0}. If G+ ̸= {0}, then (G,G+) is an ordered group. It
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has the property that if ng > 0 for some integer n > 0, then g > 0. In other words,
(G,G+) is weakly unperforated. Moreover, if G+ ̸= {0}, (G,G+) is a simple
ordered group, i.e., every element g ∈ G+ \ {0} is an order unit (recall that the
compact set 1 is a base for T ). In general, we allow the case G+ = {0} (but ρ may
not be 0).

A scaled simple ordered group pairing is a quintuple (G, 6(G), T, s, ρ) such
that (G, T, ρ) is a simple ordered group pairing, where s ∈ LAff+(T ) \ {0} and

6(G) := {g ∈ G+ : ρ(g) < s} or 6(G) := {g ∈ G+ : ρ(g) < s} ∪ {u}, (2.8)

where u ∈ G+ and ρ(u)= s. We allow 6(G)= {0}. Note also that s(τ ) could be
infinite for some τ ∈ T . It is called a unital scaled simple ordered group pairing, if
6(G)= {g ∈G+ : ρ(g) < s}∪{u} with ρ(u)= s, in which case u is called the unit
of 6(G). Note that, in this case, u is the maximum element of 6(G), and one may
write (G, u, T, ρ) for (G, 6(G), T, s, ρ). If 6(G) has no unit (which includes the
case that 6(G) has a maximum element x but ρ(x) < s), then 6(G) is determined
by s. One may write (G, T, s, ρ) for (G, 6(G), T, s, ρ) (see Theorem 5.2 below).
(Note that 6(G)= {0} corresponds to the projectionless case and G+ = {0} to the
stably projectionless case).

Let (Gi , 6(Gi ), Ti , si , ρi ) be scaled simple ordered group pairings, i = 1, 2. A
map

00 = (κ0, κT ) : (G1, 6(G1), T1, s1, ρ1)→ (G2, 6(G2), T2, s2, ρ2)

is said to be a homomorphism if there is a group homomorphism κ0 : G1→ G2

and a continuous cone map κT : T2→ T1 (preserving 0) such that

ρ2(κ0(g))(t)= ρ1(g)(κT (t)) for all g ∈ G1 and t ∈ T2, (2.9)

κ0(6(G1))⊂6(G2) and s1(κT (t))≤ s2(t) for all t ∈ T2. (2.10)

We say that a homomorphism 00 is an isomorphism if κ0 is an isomorphism,
κ0(6(G1)) = 6(G2), κT is a cone homeomorphism, and s1(κT (t)) = s2(t) for
all t ∈ T2.

Definition 2.11. For any ε > 0, define fε ∈ C([0,∞))+ by letting fε(t) = 0 if
t ∈ [0, ε/2], fε(t)= 1 if t ∈ [ε,∞) and fε(t) be linear in (ε/2, ε).

Let A be a C∗-algebra and τ be a quasitrace. For each a ∈ A+ define

dτ (a)= lim
ε→0

τ( fε(a)).

Note that fε(a) ∈ Ped(A) for all a ∈ A+.
Let S be a convex subset of T̃ (A) and a ∈ Mn(A)+. The function â(s)= s(a)

(for s ∈ S) is an affine function from S to [0,∞]. Define

⟨̂a⟩(s)= ds(a)= lim
ε→0

s( fε(a))
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(for s ∈ S), which is a lower semicontinuous function. If a ∈ Ped(A)+, then the
map τ 7→ â(τ ) is in Aff+(S) and ⟨̂a⟩ ∈ LAff+(S) (see Definition 2.2), in general.
Note that â is different from ⟨̂a⟩. In most cases, S is T̃ (A), T0(A), or T (A). Note
also that there is a canonical map from Cu(A) to LAff+(T̃ (A)) sending ⟨a⟩ to ⟨̂a⟩.

2.12. If A is a unital C∗-algebra and T (A) ̸=∅, then there is a canonical homomor-
phism ρA : K0(A)→ Aff(T (A)). Now consider the case that A is not unital. Let
π A

C
: Ã→ C be the quotient map. Suppose that T (A) ̸=∅. Let τC := τ

A
C
: Ã→ C

be the tracial state which factors through π A
C

. Then

T ( Ã)= {tτ A
C
+ (1− t)τ : t ∈ [0, 1], τ ∈ T (A)}. (2.13)

The map T (A) ↪→ T ( Ã) induces a map Aff(T ( Ã))→ Aff(T (A)). Then the map
ρ Ã : K0( Ã)→ Aff(T ( Ã)) induces a homomorphism ρ ′ : K0(A)→ Aff(T (A)) by

ρ ′ : K0(A)→ K0( Ã)
ρ Ã
−→ Aff(T ( Ã))→ Aff(T (A)). (2.14)

However, in the case that A ̸= Ped(A), we do not use ρ ′ in general, as it is possible
that T (A)=∅ but T̃ (A) is rich (consider the case A ∼= A⊗K).

Definition 2.15. Let A be a C∗-algebra with T̃ (A) ̸= {0}. If τ ∈ T̃ (A) is bounded
on A, then τ can be extended naturally to a trace on Ã. Recall that T̃ b(A) is the set
of bounded traces on A. Denote by ρb

A : K0(A)→Aff(T̃ b(A)) the homomorphism
defined by

ρb
A([p] − [q])= τ(p)− τ(q)

for all τ ∈ T̃ b(A) and for projections p, q ∈ Mn( Ã) (for some integer n ≥ 1) with
π A

C
(p)= π A

C
(q). Note that p− q ∈ Mn(A). Therefore ρb

A([p]− [q]) is continuous
on T̃ b(A). In the case that T̃ b(A) = T̃ (A) (for example, A = Ped(A)), we write
ρA := ρ

b
A.

Let A be a σ -unital C∗-algebra with a strictly positive element 0 ≤ e ≤ 1.
Put en := f1/2n (e). Then {en} forms an approximate identity for A. Note that
en ∈ Ped(A) for all n. Set An =Her(en) := en Aen . Denote by ιn : An→ An+1 and
jn : An→ A the embeddings. They extend to ι∼n : Ãn→ Ãn+1 and j∼n : Ãn→ Ã
unitally. Note that en ∈ Ped(An+1). Thus ιn and jn induce continuous cone maps

ιn
b
T : T̃

b(An+1)→ T̃ b(An) and jn T : T̃ (A)→ T̃ b(An)

defined by ιnb
T (τ )(a)= τ(ιn(a)) for τ ∈ T̃ b(An+1), and jn T (τ )(a)= τ( jn(a)) for

all τ ∈ T̃ (A) and all a ∈ An . Denote by

ι♯n : Aff(T̃ b(An))→ Aff(T̃ b(An+1)) and j ♯n : Aff(T̃ b(An))→ Aff(T̃ (A))

the induced continuous linear maps. Recall that
⋃
∞

n=1 An is dense in Ped(A). A
direct computation shows that one may obtain the following inverse limit of convex
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topological cones (with continuous cone maps):

T̃ b(A1)
ι1

b
T
←−− T̃ b(A2)

ι2
b
T
←−− T̃ b(A3)← · · · ← T̃ (A). (2.16)

To justify (2.16), set T ′= lim← T̃ b(An)⊂
∏
∞

n=1 T̃ b(An). Define 0 : T̃ (A)→ T ′

by 0(τ) = {τn}, where τn = τ |An . Let In be the (closed two-sided) ideal of A
generated by An . Let ∼T be the equivalence relation ∼ defined in [Cuntz and
Pedersen 1979, §2]. Recall that {x ∈ (In)+ : ∃y ∈ An+ such that x ∼T y} is a
positive part of an ideal Jn containing An (see the remark after Proposition 4.7
of [Cuntz and Pedersen 1979]). Therefore, if t ∈ T̃ (A) and t |An = τ |An , then
t |Jn = τ |Jn . Put J =

⋃
∞

n=1 Jn . It follows that t |J = τ |J . Since J is a dense ideal, it
contains Ped(A). Hence t and τ are the same element in T̃ (A). This implies that
the map 0 is injective. It is also clear that 0 is a continuous cone map. To see that
0 is surjective, let {τn} ∈ T ′. Recall that τn ∈ T̃ b(An) and τn+1|An = τn . Let τ̃n be
a trace in T̃ (A) which extends τn (see Lemma 4.6 of [Cuntz and Pedersen 1979]).
Then τ̃n+1|Jn = τ̃n|Jn , as argued above. Define τ̃ on J by τ̃ |Jn = τ̃n|Jn . Since τ̃ is
finite on

⋃
∞

n=1 An , which is in Ped(A) and dense in A, τ̃ is a lower semicontinuous
densely defined trace. Then one may view τ̃ ∈ T̃ (A), and note also 0(τ̃ ) = {τn}.
This shows that 0 is surjective.

To see0 is open, consider Oa,>β={τ ∈ T̃ (A) :τ(a)>β}, where a∈Ped(A)+\{0}
and β ∈ R. Then Oa,>β =

⋃
k{τ : τ(ekaek) > β}. Thus

0(Oa,>β)=
⋃

k{{τn} ∈ T ′ : τk(ekaek) > β},

which is open in the product topology. Now consider Oa,<β ={τ ∈ T̃ (A) : τ(a)<β}.
Since a ∈ Ped(A)⊂ J , we may assume that a ∈ JN for some N ≥ 1. There is an
element b ∈ (AN )+ such that b ∼T a. Note that {τ ∈ T̃ b(AN ) : τ(b) < β} is open.
It follows that O :=

{
{τk} ∈

∏
∞

k=1 T̃ b(Ak) : τN (b) < β
}

is open in
∏
∞

k=1 T̃ b(An).
Since 0(Oa,<β)= O ∩ T ′, it is also open in T ′. This implies that 0 is open.

The continuous cone map jn T is the same as the cone map ι∞,n T : T̃ (A)→ T̃ b(An)

given by the inverse limit. One also obtains the induced inductive limit

Aff(T̃ b(A1))
ι
♯

1
−→ Aff(T̃ b(A2))

ι
♯

2
−→ Aff(T̃ b(A3))→ · · · → Aff(T̃ (A)). (2.17)

Hence one also has the following commutative diagram:

K0(A1)

ρA1
��

ι1∗o
// K0(A2)

ι2∗o
//

ρA2
��

K0(A3) //

ρA3
��

· · · // K0(A)

Aff(T̃ b(A1))
ι
♯

1,2
// Aff(T̃ b(A2))

ι
♯

2
// Aff(T̃ b(A3)) // · · · // Aff(T̃ (A))

Thus one obtains a homomorphism ρ : K0(A)→Aff(T̃ (A)). If A is assumed to be
simple, then each An is simple and en is full in An . Therefore, since en ∈ Ped(A)



286 GUIHUA GONG AND HUAXIN LIN

and An = Ped(An) (see Theorem 2.1 of [Tikuisis 2014]). It follows that, when A
is simple, T̃ b(An) = T̃ (An) for all n. But we do not assume that A is simple in
general.

Note that, if T̃ (A)= T̃ b(A), for any n≥1, one also has the following commutative
diagram:

K0(An)

ρAn
��

ιn∗0
// K0(An+1)

jn+1,∗0
//

ρAn+1
��

K0(A)

ρA
��

Aff(T̃ b(An))
ιn
♯

// Aff(T̃ b(An+1))
jn+1

♯

// Aff(T̃ (A))

It follows that ρ = ρA in the case that T̃ b(A)= T̃ (A).
Let us briefly point out that the definition above does not depend on the choice

of e. Suppose that 0 ≤ e′ ≤ 1 is another strictly positive element. We similarly
define e′n . Put A′n = Her(e′n). Note that, for any m, there is k(m) ≥ n such that
∥e − e′k(m)ee′k(m)∥ < 1/2m . By applying a result of Rørdam (see, for example,
Lemma 3.3 of [Elliott et al. 2020b] and its proof), one has, for each n≥ 1, an integer
k(n) > k(n− 1)≥ 1 and a partial isometry wn ∈ A∗∗ such that wnw

∗
nen = enwnw

∗
n ,

w∗ncwn ∈ A′k(n) for c ∈ An and ∥wnen − en∥ < 1/2n . Define ϕn : An → A′k(n) by
ϕn(c) = w∗n+1cwn+1 for c ∈ An . For each m, let En,m = en ⊗ 1Mm and Wn,m =

wn ⊗ 1Mm . Then ∥Wn,m En,m − En,m∥< 1/2n . It follows that

∥(ϕn ⊗ idMm )(c)− c∥<
( 1

2n

)
∥c∥

for all c ∈ Mm(An) and m ∈ N. Moreover, for any τ ∈ T̃ (A), τ(ϕn(c))= τ(c) for
all c ∈ An . Symmetrically, one has monomorphisms ψk : A′k→ AN (k) such that
∥(ψk ⊗ idMm )(a) − a∥ < (1/2k)∥a∥ and τ(ψk(a)) = τ(a) for all a ∈ Mm(A′k),
τ ∈ T̃ (A) and m ∈ N. Thus, by passing to subsequences, one obtains the following
commutative diagram:

K0(A1)

ρb
A1 **

ι1∗0
//

ϕ1∗0

��

K0(A2)

ρb
A2
++

ι2∗0
// · · · // K0(A)

idK0(A)

��

ρ

((

Aff(T̃ b(A1))

ϕ
♯
1

��

ι
♯
1

// Aff(T̃ b(A2))
ι
♯
2

// · · · // Aff(T̃ (A))

idAff(T̃ (A))

��

K0(A′1)

ρb
A′1 **

ι′1∗0
// K0(A′2)

ψ2∗0

OO

ρb
A′2
++

ι′2∗0
// · · · // K0(A)

ρ′

''

OO

Aff(T̃ b(A′1))
ι′1
♯

// Aff(T̃ b(A′2))

ψ♯

OO

ι′2
♯

// · · · // Aff(T̃ (A))

OO

This implies that ρ ′ = ρ, where ρ ′ is induced by choosing e′ instead of e.
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Throughout, we define ρ := ρA. Moreover, this definition of pairing is consistent
with the conventional definition of ρA in the case that A is unital, or the case
A = Ped(A) (see 2.12).

We write πρ,Aaff :Aff(T̃ (A))→Aff(T̃ (A))/ρA(K0(A)) for the quotient map. This
may be simplified to πρaff if A is clear. When T (A) ̸=∅, we use the same notation
for the quotient map Aff(T (A))→ Aff(T (A))/ρA(K0(A)). In this case, we also
write ρ∼A : K0( Ã)→ Aff(T (A)) for the map defined by ρ∼A ([p])(τ ) = τ(p) for
projections p ∈ Ml( Ã) (for all integers l) and for τ ∈ T (A).

Suppose that 8 : A→ B is a homomorphism. Then 8(Ped(A))⊂ Ped(B). Let
0≤ eA ≤ 1 and 0≤ eB ≤ 1 be strictly positive elements of A and B, respectively.
Let eA

n = f1/2n (eA) and eB
n = f1/2n (eB) be as defined above. Define An = Her(eA

n )

and Bn = Her(eB
n ). Then

lim
n→∞
∥8(eA)− eB

n 8(eA)eB
n ∥ = 0.

By passing to a subsequence, as above (applying Lemma 3.3 of [Elliott et al. 2020b]
repeatedly), one has a sequence of homomorphisms 9n : An → Bk(n) such that
∥ιBk(n) ◦9n(a)−8 ◦ ιAn (a)∥ < (1/n)∥a∥ and τ(ιBk(n) ◦9n(a)) = τ(8 ◦ ιAn (a))
for all a ∈ Mm(An) (for every m ∈ N) and τ ∈ T̃ (B) (recall that we write H
for H ⊗ idMk ). Drawing a similar diagram as above, one obtains the following
commutative diagram:

K0(A)
ρA
//

8∗0

��

Aff(T̃ (A))

8♯

��

K0(B)
ρB
// Aff(T̃ (B))

(2.18)

At least in the simple case, the construction above was pointed out by Elliott (see
part (iv) of [Elliott 1995, §7] as well as Proposition 5.1 below for more detail). The
above also works when we do not assume that quasitraces are traces (but quasitraces
would be used). We omit a more general definition here to avoid longer discussion.

Definition 2.19. We now describe the Elliott invariant for separable simple C∗-
algebras (see [Elliott 1995; 1996]). Let us consider the case T̃ ̸= {0}. In this case
the Elliott invariant is the sextuple

Ell(A) := (K0(A),6(K0(A)), T̃ (A),6A, ρA, K1(A)),

where 6(K0(A))= {x ∈ K0(A) : x = [p] for some projection p ∈ A}, and 6A is a
function in LAff+(T̃ (A)) defined by

6A(τ )= sup{τ(a) : a ∈ Ped(A)+, ∥a∥ ≤ 1} (2.20)
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(see Theorem 5.2). Let eA ∈ A be a strictly positive element. Then 6A(τ ) =

limε→0 τ( fε(eA)) for all τ ∈ T̃ (A), which is independent of the choice of eA.
Let B be another separable C∗-algebra. A map 0 : Ell(A)→ Ell(B) is a homo-

morphism if 0 gives group homomorphisms κi : Ki (A)→ Ki (B) (i = 0, 1) and a
continuous cone map γ : T (B) ∼−→ T (A) such that ρB(κ0(x))(τ )= ρA(x)(γ (τ )) for
all x ∈ K0(A) and τ ∈ T̃ (A), κ0(6(K0(A)))⊂6(K0(B)) and 6A(γ (τ ))≤6B(τ )

for all τ ∈ T̃ (B).
We say that 0 is an isomorphism if 0 is a homomorphism, κi is a group isomor-

phism (i = 0, 1), γ is a cone homeomorphism, κ0(6(K0(A))) = 6(K0(B)), and
6A(γ (τ ))=6B(τ ) for all τ ∈ T̃ (B).

In the case that ρA(K0(A))∩LAff+(T̃ (A)) = {0}, we often consider the (spe-
cial) reduced case that T (A) is compact, which gives a base for T̃ (A). Then,
we may write Ell(A) = (K0(A), T (A), ρA, K1(A)). Note that, in this situation,
6(K0(A))= {0}, T̃ (A) is determined by T (A) and 6A(τ )= 1 for all τ ∈ T (A).

Definition 2.21 [Robert 2016]. Let A be a C∗-algebra. We say A has almost stable
rank one, if A has the property that the set of invertible elements of the unitization
B̃ of every nonzero hereditary C∗-subalgebra B of A is dense in B. A is said to
stably have almost stable rank one, if Mn(A) has almost stable rank one for all
integers n ≥ 1.

Definition 2.22. Let A be a C∗-algebra with T (A) ̸= ∅. Suppose that A has a
strictly positive element eA ∈ Ped(A)+ with ∥eA∥= 1. Then 0 ̸∈ T (A)w, the closure
of T (A) in T̃ (A) [Elliott et al. 2020b, Theorem 4.7]. Define

λs(A)= inf {dτ (eA) : τ ∈ T (A)w} = lim
n→∞

(inf {τ( f1/n(eA)) : τ ∈ T (A)}) > 0.

Let A be a C∗-algebra with T (A) ̸= {0}. There is an affine map

raff : As.a.→Aff(T0(A)), raff(a) : τ 7→ â(τ )= τ(a) for all τ ∈ T0(A), a ∈ As.a..

Denote by Aq
s.a. the space raff(As.a.) and Aq

+ = raff(A+).

Definition 2.23. Let A and B be two C∗-algebras. A sequence of linear maps
Ln : A→ B is said to be approximately multiplicative if

lim
n→∞
∥Ln(a)Ln(b)− Ln(ab)∥ = 0 for all a, b ∈ A.

Let ϕ,ψ : A→ B be homomorphisms. We say ϕ and ψ are asymptotically unitarily
equivalent if there is a continuous path of unitaries {u(t) : t ∈ [1,∞)} in B (if B is
not unital, u(t) ∈ B̃) such that

lim
t→∞

u∗(t)ϕ(a)u(t)= ψ(a) for all a ∈ A.

We say ϕ and ψ are strongly asymptotically unitarily equivalent if u(1) ∈U0(B)
(or in U0(B̃)).
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Definition 2.24. Let A and B be C∗-algebras, and let T : A+ \ {0}→N×R+ \ {0}
be defined by a 7→ (N (a),M(a)), where N (a) ∈ N and M(a) ∈ R+ \ {0}. Let
H⊂ A+ \ {0}. A map L : A→ B is said to be T -H-full, if, for any a ∈H and any
b ∈ B+ with ∥b∥ ≤ 1, any ε > 0, there are x1, x2, . . . , xN ∈ B with N ≤ N (a) and
∥xi∥ ≤ M(a) such that ∥∥∥∥ N∑

j=1

x∗j L(a)x j − b
∥∥∥∥≤ ε. (2.25)

L is said to be exactly T -H-full, if ε = 0 in the above formula.

Definition 2.26. Let A and B be C∗-algebras and ϕ0, ϕ1 : A→ B be homomor-
phisms. By the mapping torus Mϕ0,ϕ1 , we mean the following C∗-algebra:

Mϕ0,ϕ1 = {( f, a) ∈ C([0, 1], B)⊕ A : f (0)= ϕ0(a) and f (1)= ϕ1(a)}. (2.27)

One has the short exact sequence

0→ SB ı
−→ Mϕ,ψ

πe
−→ A→ 0,

where ı : SB→ Mϕ,ψ is the embedding and πe is the quotient map from Mϕ,ψ to A.
Denote by πt : Mϕ,ψ → B the point evaluation at t ∈ [0, 1].

Let F1 and F2 be two finite-dimensional C∗-algebras. Suppose that there are
(not necessary unital) homomorphisms ϕ0, ϕ1 : F1→ F2. Denote the mapping torus
Mϕ1,ϕ2 by

A = A(F1, F2, ϕ0, ϕ1)

= {( f, g) ∈ C([0, 1], F2)⊕ F1 : f (0)= ϕ0(g) and f (1)= ϕ1(g)}.

Denote by C the class of all C∗-algebras of the form A= A(F1, F2, ϕ0, ϕ1). These
C∗-algebras are called Elliott–Thomsen building blocks as well as one-dimensional
noncommutative CW complexes; see [Elliott and Thomsen 1994; Elliott 1996].

Recall that C0 is the class of all A ∈ C with K0(A)+ = {0} such that K1(A)= 0
and λs(A) > 0, and C(0)0 the class of all A ∈ C0 such that K0(A)= 0. Denote by C′,
C′0 and C0′

0 the class of all full hereditary C∗-subalgebras of C∗-algebras in C, C0

and C(0)0 , respectively.

Definition 2.28 (cf. [Elliott et al. 2020b, Definition 8.1 and Proposition 8.2]). Recall
the definition of class D and D0.

Let A be a nonunital simple C∗-algebra with a strictly positive element a ∈ A
with ∥a∥ = 1. Suppose that there exists 1> fa > 0, for any ε > 0, any finite subset
F ⊂ A and any b ∈ A+ \ {0}, there are F-ε-multiplicative completely positive
contractive linear maps ϕ : A→ A and ψ : A→ D for some C∗-subalgebra D ⊂ A



290 GUIHUA GONG AND HUAXIN LIN

with D ∈ C′0 (or C0′
0 ) such that D ⊥ ϕ(A), and

∥x − (ϕ(x)+ψ(x))∥< ε for all x ∈ F ∪ {a}, (2.29)

c ≲ b, (2.30)

t ( f1/4(ψ(a)))≥ fa for all t ∈ T (D), (2.31)

where c is a strictly positive element of ϕ(A)Aϕ(A). Then we say A ∈ D (or D0).
Note that, by Remark 8.11 of [Elliott et al. 2020b], D can always be chosen to

be in C0 (or C(0)0 ).
When A ∈ D and is separable, then A = Ped(A) (see Corollary 11.3 of [Elliott

et al. 2020b]). Let a ∈ A+ with ∥a∥ = 1 be a strict positive element. Put

d = inf {τ( f1/4(a)) : τ ∈ T (A)}> 0. (2.32)

Then, for any 0< η < d, fa can be chosen to be d − η (see Remark 9.2 of [Elliott
et al. 2020b]). One may also assume that f1/4(ψ(a)) is full in D. Furthermore,
there exists a map: T : A+ \ {0} → N×R+ \ {0} which is independent of F and
ε such that, for any finite subset H ⊂ A+ \ {0}, we can further require that ψ is
exactly T -H-full (see Theorem 8.3 and Remark 9.2 of [Elliott et al. 2020b]). For
any n ≥ 1, one can choose a strictly positive element b ∈ A with ∥b∥ = 1 such that
f1/4(b)≥ f1/n(a). Therefore, if A has continuous scale, d can be chosen to be 1 if
the strictly positive element is chosen accordingly.

In [Elliott et al. 2020b], it is proved that if A a separable simple C∗-algebra in D,
then A is stably projectionless, has stable rank one and Cu(A) = LAff+(T̃ (A)),
and every 2-quasitrace on A is a trace (see Propositions 9.3 and 11.11 of [Elliott
et al. 2020b]).

Let A be a nonzero separable stably projectionless simple C∗-algebra. Recall that
A has generalized tracial rank one, written gTR(A)= 1, if there exists e ∈ Ped(A)+
with ∥e∥ = 1 such that eAe ∈ D (see Definition 11.6 of [Elliott et al. 2020b]). It
should be noted that, in the definition of D above, if we assume that A is unital,
and replace C0 by C, then gTR(A)≤ 1 (see Definitions 9.1 and 9.2 and Remark 9.3
of [Gong et al. 2020a]). But the condition (2.31) and constant fa are not needed.
In the case K0(A)+ ̸= {0} but A is not unital, we may define gTR(A) ≤ 1, if for
some nonzero projection e ∈ Mk(A), gTR(eMk(A)e)≤ 1 (see [Gong et al. 2020a]).
A C∗-algebra A is said to have rationally generalized tracial rank at most one,
if A⊗U has generalized tracial rank at most one for some infinite-dimensional
UHF-algebras U .

Definition 2.33. Let A ∈ D be as defined in Definition 2.28. If, in addition, for
any integer n, we can choose D and ψ : A→ D to satisfy the following condition:
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D = Mn(D1) for some D1 ∈ C0 such that

ψ(x)= diag(

n︷ ︸︸ ︷
ψ1(x), ψ1(x), . . . , ψ1(x)) for all x ∈ F, (2.34)

where ψ1 : A→ D1 is an F-ε-multiplicative completely positive contractive linear
map, then we say A ∈ Dd .

Note that here, as in [Elliott et al. 2020b, Theorem 8.3 and Remark 9.2], the map
T mentioned in Definition 2.28 is also assumed to exist and fa can be also chosen
as d − η for any η > 0 with d as in (2.32) for a certain strictly positive element a.

Remark 2.35. It follows from Theorems 10.4 and 10.7 of [Elliott et al. 2020b]
that if A ∈ D0, then A ∈ Dd . Moreover, D1 can be chosen in C(0)0 , and if A ∈ D,
then D1 can be chosen in C0. If A is a separable simple C∗-algebra in D and A has
an approximate divisible property defined in [Elliott et al. 2020b, Definition 10.1],
then A ∈ Dd .

Definition 2.36. Throughout the paper, W is the separable simple C∗-algebra which
is an inductive limit of C∗-algebras in C(0)0 with a unique tracial state, which is
first constructed in [Razak 2002]. It is proved in [Elliott et al. 2020a] that W is
the unique separable simple C∗-algebra with finite nuclear dimension which is
KK-contractible and with a unique tracial state. Denote by τW the unique tracial
state of W .

Let A be a C∗-algebra and let τ be a nonzero trace of A. We say that τ is a
W-trace, if there exists a sequence of approximately multiplicative completely
positive contractive linear maps ϕn : A→W such that

lim
n→∞

τW ◦ϕn(a)= τ(a) for all a ∈ A. (2.37)

Throughout, Q is the UHF-algebra with K0(Q) = Q and [1Q] = 1 and with the
unique tracial state tr. Recall that Tqd(A) is the set of those τ ∈ T (A) such that there
exists a sequence of approximately multiplicative completely positive contractive
linear maps ϕn : A→ Q such that

lim
n→∞

tr ◦ϕn(a)= τ(a) for all a ∈ A. (2.38)

Definition 2.39 [Gong and Lin 2020a, Definition 9.3]. Let A be a separable C∗-
algebra. We say that A has property (W), if there is a map T : A1

+
\{0}→N×R+\{0}

and a sequence of approximately multiplicative completely positive contractive
linear maps ϕn : A→W such that, for any finite subset H⊂ A1

+
\ {0}, there exists

an integer n0 ≥ 1 such that ϕn is exactly T -H-full (see Definition 5.5 and Theorem
5.7 of [Elliott et al. 2020b]) for all n ≥ n0.
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3. W-traces

Theorem 3.1. Let 1 be a compact convex set and let G be a countable abelian
subgroup of Aff(1). Suppose that G∩Aff+(1)= {0}. Then there exists t ∈1 such
that g(t)= 0 for all g ∈ G.

Proof. Let us assume that 0 /∈1; otherwise we can choose t = 0. Let

S+ = { f ∈ Aff(1) : f (x) > 0 for all x ∈1} = Aff+(1) \ {0}.

It is an open convex subset of Aff(1). Let G1 be the convex hull of G. Note that if
g1, g2 ∈ G and r ∈Q with 0< r < 1, then rg1+ (1− r)g2 ̸∈ S+. To see this, we
note that there is an integer m ≥ 1 such that mr and m(1− r) are both integers. In
other words, m(rg1+ (1− r)g2) ∈ G. Therefore m(rg1+ (1− r)g2) ̸∈ S+. Hence
rg1+ (1− r)g2 ̸∈ S+. Since S+ is open, this implies that G1 ∩ S+ =∅.

By the Hahn–Banach separating theorem, there is a real continuous linear func-
tional f on Aff(1) and r0 ∈ R such that

f (s) < r0 ≤ f (g) for all s ∈ S+ and g ∈ G1. (3.2)

If f (g)≥ r0, then f (−g)≤−r0. Note that if g ∈ G, then mg ∈ G for any m ∈ Z.
Hence m f (g)≥ r0 for all m ∈ Z. It follows that f (g)= 0 for all g ∈ G and r0 ≤ 0.

By (3.2),
− f (s) >−r0 ≥ 0 for all s ∈ S+. (3.3)

Let f ′ =− f . Since Aff+(1)= S+ ∪ {0} ⊂ S+,

f ′(s)≥ 0 for all s ∈ Aff(1)+ = {s ∈ Aff(1) : s(τ )≥ 0}. (3.4)

In other words, f ′ is a positive linear functional on Aff(1). Let f1 = f ′/∥ f ′∥.
Then f1(11) = 1. Consider Aff(1) ⊂ C(1). By the Hahn–Banach extension
theorem there is a linear functional f̄1 on C(1) such that ( f̄1)|Aff(1) = f1, and
∥ f̄1∥ = ∥ f1∥ = 1. Since ∥ f̄1∥ = f̄1(11) = 1, f̄1 is a positive functional (see
Proposition 3.1.4 of [Pedersen 1979]), and therefore it is a state of C(1). Let
S(C(1)) be the state space. Then it is compact and convex. By the Krein–Milman
theorem, f̄1 is the limit of {µn}, where

µn =

m(n)∑
i=1

αn,iρn,i ,

0 ≤ αn,i ≤ 1 are positive numbers with
∑m(n)

i=1 αn,i = 1, and ρn,i are pure states
of C(1). Note that, for each i and n, there is ti,n ∈ 1 such that ρn,i (a) = a(ti,n)
for all a ∈ C(1). Since 1 is convex,

τn =

m(n)∑
i=1

αi,nti,n ∈1.
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Then a(τn)= a(µn) for all a ∈ Aff(1), by the computation

a(µn)=

m(n)∑
i=1

αn,i a(ρn,i )=

m(n)∑
i=1

αn,i a(ti,n)

= a
(m(n)∑

i=1

αn,i ti,n

)
= a(τn) for all a ∈ Aff(1).

Since 1 is compact, we conclude that there is τ ∈1 such that

f̄1(a)= a(τ ) for all a ∈ Aff(1). (3.5)

We have just shown that

g(τ )= 0 for all g ∈ G. □

Corollary 3.6 (cf. [Elliott et al. 2020a, Corollary A.7]). Let A ∈ D be a separable
simple C∗-algebra with continuous scale. Then there exists to ∈ T (A) such that
ρA(x)(to)= 0 for all x ∈ K0(A).

Proof. By Theorem 11.5 and Proposition 11.8 of [Elliott et al. 2020b], A has stable
rank one and Cu(A)=LAff+(T (A)) (see also [Elliott et al. 2020b, Proposition 9.1]).
It follows from Corollary A.7 of [Elliott et al. 2020a] that

ρA(K0(A))∩Aff+(T (A))= {0}.

By Theorem 3.1, there is to ∈ T (A) such that ρA(x)(to)= 0 for all x ∈ K0(A). □

Theorem 3.7. Let A ∈ D be a separable simple C∗-algebra with continuous scale.
Then A has at least one W-tracial state. Moreover, A has property (W), i.e., there is
a map T : A+ \ {0}→N×R+ \ {0} and a sequence of approximately multiplicative
completely positive contractive linear maps ϕn : A→W such that, for any finite
subset H ⊂ A+ \ {0}, there exists n0 ≥ 1 such that ϕn is exactly T -H-full (see
Definition 2.24) for all n ≥ n0, and there exists a τ ∈ T (A) such that

τ(a)= lim
n→∞

τW ◦ϕn(a) for all a ∈ A.

Proof. Fix a strictly positive element e ∈ A+. It follows from Remark 9.2 of [Elliott
et al. 2020b] that, for any 1

2 >η> 0, we may choose fe> 1−η in Definition 2.28. By
Definition 2.28, we obtain two sequences of mutually orthogonal C∗-subalgebras
Bn,Cn ⊂ A, Bn = an Aan for some positive elements an ∈ A with ∥an∥ = 1,
Cn ∈ C0. We also have two sequences of completely positive contractive linear maps
ϕn,0 : A→ Bn and ϕn,1 : A→ Cn such that ϕn,0(A)⊥ Cn and the following hold:



294 GUIHUA GONG AND HUAXIN LIN

lim
n→∞
∥x − (ϕn,0(x)+ϕn,1(x))∥ = 0 for all x ∈ A, (3.8)

lim
n→∞
∥ϕn,i (xy)−ϕn,i (x)ϕn,i (y)∥ = 0 for all x, y ∈ A, i = 0, 1, (3.9)

lim
n→∞

sup{dτ (an) : τ ∈ T (A)} = 0, (3.10)

τ( f1/2(ϕn,1(e))) > 1− η for all τ ∈ T (Cn). (3.11)

Let bn = f1/2(ϕn,1(e)) ∈ Cn . Then 0 ≤ bn ≤ 1. The inequality (3.11) implies
that

inf{τ(bn) : τ ∈ T (Cn)}> 1− η. (3.12)

Hence λs(Cn) > 1− η (see Definition 2.22).
As noted in the middle of Definition 2.28, A is stably projectionless, and has stable

rank one, Ped(A)= A (see [Elliott et al. 2020b, Corollary 11.3]), QT(A)= T (A)
and Cu(A) = LAff+(T̃ (A)). By Theorem 7.3 of [Elliott et al. 2020b] (see also
[Robert 2012, Theorem 6.2.3] of [Robert and Santiago 2021, Theorem 6.11]),

Cu∼(A)= K0(A)⊔LAff∼
+
(T̃ (A)).

By Corollary 3.6, there is tD ∈ T (A) such that ρA(x)(tD) = 0 for all x ∈ K0(A).
Recall that Cu∼(W)= {0} ⊔ (R∪ {∞}); see [Robert 2012, Theorem 6.2.3]. Define
γ :Cu∼(A)→Cu∼(W) by γ |K0(A)=0 and γ ( f )(τW)= f (tD) for f ∈LAff∼

+
(T̃(A)),

where τW is the unique tracial state of W . We can now see that γ is a morphism
in Cu. Note that γ (⟨c⟩) ̸= 0 for any c ∈ A+ \ {0} as A is simple. Let ιn : Cn→ A
be the embedding. By Theorem 1.0.1 of [Robert 2012], there exists, for each n,
a homomorphism ψn : Cn→W such that Cu∼(ψn) = γ ◦Cu∼(ιn). In particular,
by (3.12), dτW (ψn(eCn )) > 1− η, where eCn is a strictly positive element of Cn .
Since ιn is injective, Cu∼(ψn)(⟨c⟩) ̸= 0 for any c ∈ Cn+ \ {0}. It follows that ψn is
injective. Define 8n = ψn ◦ϕn,1 : A→W . Then 8n is a sequence of completely
positive contractive linear maps satisfying the following:

lim
m→∞

∥8m(xy)−8m(x)8m(y)∥ = 0 for all x, y ∈ A, (3.13)

lim
m→∞

∥8m(x)∥ = ∥x∥ for all x ∈ A, (3.14)

lim
m→∞

τW( f1/2(8m(e)))≥ (1− η). (3.15)

Note that this holds for each 1
2 > η > 0. By choosing ηn → 0, we may further

assume that there exists an increasing sequence {en} of positive elements with
0≤ en ≤ 1 such that, in the above, we have

lim
n→∞

τW(8m(em))= 1. (3.16)

Then, by passing to a subsequence, we may assume that there exists τ ∈ T (A) such
that

lim
n→∞

τW(8m(a))= τ(a) for all a ∈ A. (3.17)
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The last part of the statement follows from the first part and Theorem 5.7 of
[Elliott et al. 2020b]. □

Theorem 3.18. Let C be a separable amenable C∗-algebra with the property (W),
let A be a separable simple C∗-algebra with continuous scale which satisfies the
UCT and has the property (W), and let κ ∈ KL(C, A). Then there exists a sequence
of completely positive contractive linear maps {ϕn} from C to A⊗Mm(n) (for some
integers m(n)) such that

lim
n→∞
∥ϕn(a)ϕn(b)−ϕn(ab)∥ = 0 for all a, b ∈ C and [{ϕn}] = κ. (3.19)

Proof. Note that C satisfies the conditions in Definition 9.3 of [Gong and Lin
2020a]. Therefore, the theorem follows from the combination of Theorem 10.8
and Lemma 12.5 of [Gong and Lin 2020a], i.e., one first applies Theorem 10.8 to
obtain maps from C to A⊗Z0⊗ Mk(n), and then applies Lemma 12.5 to obtain
maps from A⊗Z0⊗Mk(n) to A⊗Ml(n) (for some integers k(n) and l(n)). □

4. Range and Models

This section is a refinement of Elliott’s construction of model simple C∗-algebras.
The main results of this section are stated as Theorem 4.118 and Theorem 4.137.
Both are restatements of Elliott’s original theorem [Elliott 1996] with some technical
additions. These refinements are needed for our purposes. Some subtle details
described in the Elliott construction are also dealt with (see, for example, the
first line of page 88 of [Elliott 1996]). To avoid some technical difficulties in
the construction described on page 88 of [Elliott 1996] in the general setting, we
do not restrict ourselves to those building blocks described in [Elliott 1996]; see
also [Li 2020, Remark 1.4]. The refined construction in this section is similar
to that of the unital case (see also Sections 2.1 and 2.2 of [Li 2020]) in spirit.
However, for the later purpose of the isomorphism theorem, we also require that the
nontorsion infinitesimal elements of K0-groups be stored at the building blocks. So
the construction of the model C∗-algebras in this section is somewhat different from
what is described in [Elliott 1996] and [Li 2020]. Other features in Theorem 4.118
and Theorem 4.137 are also needed. We also make this section self-contained as
much as possible. Some previously omitted computations are presented.

4.1. Let 1 be any compact metrizable Choquet simplex and let G be any countable
abelian group. Let ρ :G→Aff(1) be any homomorphism satisfying the condition

for any g ∈ G, there is a τ ∈1 such that ρ(g)(τ )≤ 0. (∗)

In other words, ρ(G)∩Aff+(1) \ {0} =∅ (recall that Aff+(1) denotes the set of
all continuous affine functions f :1→ R such that f (τ ) > 0 for any τ ∈1 and
the zero function). Note that we include the case that ρ(G)= {0}.



296 GUIHUA GONG AND HUAXIN LIN

In the first part of this section, we assume that G is torsion free, and construct a sta-
bly projectionless simple C∗-algebra A with continuous scale such that K0(A)=G,
K1(A)= {0}, T (A)=1 and ρA : K0(A)→Aff(T (A)) is the map ρ :G→Aff(1),
when one identifies K0(A) with G, and T (A) with 1. The C∗-algebra A is an
inductive limit of C∗-algebras An ∈ C0 (Elliott–Thomsen building blocks) of the
form

An = A(Fn, En, βn,0, βn,1)

:=
{
( f, a) ∈ C([0, 1], En)⊕ Fn | βn,0(a)= f (0), βn,1(a)= f (1)

}
,

where Fn, En are finite-dimensional C∗-algebras, and βn,0, βn,1 : Fn→ En are (not
necessarily unital) homomorphisms.

Note that if βn,0 ⊕ βn,1 : Fn → En ⊕ En is injective, then the element a is
completely determined by f , so we can simply write ( f, a) as f . In our construction,
we will always be in this situation.

Since the limit algebra A to be constructed is stably projectionless, in each step,
the algebra An will also be stably projectionless. The construction presented here
is a refinement of Elliott’s construction [1996] and is similar to [Gong et al. 2020a,
§13] (which is for the unital case).

4.2. Let us keep the notation in Notation 13.1 and 13.2 of [Gong et al. 2020a]. In
particular,

x∼k
:= {

k︷ ︸︸ ︷
x, x, . . . , x}.

Let A be an Elliott–Thomsen building block. Denoted by Sp(A) the set of the
equivalence classes of all irreducible representations of A, and RF(A) the set of
finite-dimensional representations of A. As in [Gong et al. 2020a], each element of
RF(A) can be regarded as a subset of Sp(A) with multiplicities. For any homomor-
phism ϕ : A→ Mk(C), let Sp(ϕ)= {x ∈ Sp(A); ker(ϕ)⊃ ker(x)}.

Suppose that ϕ is (unitarily equivalent to) a direct sum of k1 copies of x1,
k2 copies of x2, . . . , and ki copies of xi , where x1, x2, . . . , xi ∈ Sp(A). Then
we write SP(ϕ) := {x∼k1

1 , x∼k2
2 , . . . , x∼ki

i }. Note that if ϕ,ψ : A→ Mk are two
homomorphisms then ϕ and ψ are unitarily equivalent if and only if SP(ϕ)=SP(ψ).

Let C be a vector space and x = (x1, x2, . . . , xn), where xi ∈ C , i = 1, 2, . . . , n.
For each integer k≥ 1, consider k-tuple S= (i1, i2, . . . , ik), where is ∈ {1, 2, . . . , n}.
We write

diag j∈S(x j ) := diag(xi1, xi2, . . . , xik )

for a diagonal element in Mk(C). In particular, we use diag1≤ j≤n(x j ) to denote
diag(x1, x2, . . . , xn).
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We adopt the following convention:

diag(diag(a, b), diag(c, d, e))= diag(a, b, c, d, e),

diag(diag1≤i≤3(ai ), diag1≤i≤2(bi ))= diag(a1, a2, a3, b1, b2),

diag
(
diag(a∼2

1 , a∼3
2 , a3), diag(b1, b∼3

2 )
)
= diag(a1,a1,a2,a2,a2,a3,b1,b2,b2,b2).

As in Notation 13.1 and 13.2 of [Gong et al. 2020a], for any two subhomogeneous
algebras A and B, and a homomorphism ϕ : A→ B, if θ ∈ Sp(B) is represented
by θ : B→ Mk(C), then we use ϕ|θ to denote θ ◦ϕ : A→ Mk(C).

4.3. Let us fix some notation for this section. Let

Fn =

pn⊕
i=1

M[n,i](C) and En =

ln⊕
i=1

M{n,i}(C),

where pn, ln, [n, i], {n, i} are positive integers which will be constructed later. Let
βn,0, βn,1 : Fn→ En be two (not necessarily unital) homomorphisms. Put

An = A(Fn, En, βn,0, βn,1)

=
{
( f, a) ∈ C([0, 1], En)⊕ Fn | βn,0(a)= f (0), βn,1(a)= f (1)

}
.

Write ( f,a)=( f1, f2, . . . , fln ;a1,a2, . . . ,apn )∈An , where fi ∈C([0,1],M{n,i}(C))
and a j ∈ M[n, j](C). Let ηn,i (t), θn, j ∈ Sp(An), for 0 < t < 1, i = 1, 2, . . . , ln ,
j = 1, 2, . . . , pn , be defined as

ηn,i (t)( f, a)= fi (t) ∈ M{n,i}(C)⊂ En and θn, j ( f, a)= a j ∈ M[n, j](C)⊂ Fn.

We also use the notation ηn,i (0) and ηn,i (1) with

ηn,i (0)( f, a)= fi (0) and ηn,i (1)( f, a)= fi (1).

But ηn,i (0),ηn,i (1)∈RF(An) (rather than Sp(An)). Sometimes we use ( f,a)(ηn,i (t))
and ( f, a)(θn, j ) to denote ηn,i (t)( f, a) and θn, j ( f, a), respectively, or simply use
f (ηn,i (t)), f (θn, j ) without a, as in this paper, a is completely determined by f .
Moreover, we may write

Sp(An)=

( ln⊔
j=1

{ηn, j (t) | t ∈ (0, 1)}
)
⊔ {θn,1, θn,2, . . . , θn,pn }. (4.4)

For δ > 0, let

S j = {ηn, j (t) : t ∈ T j ⊂ (0, 1)} and S =
( ln⊔

j=1

S j

)
∪ {θn,1, θn,2, . . . , θn,pn },

where T j is a δ-dense subset of (0, 1). Then we say that S is δ-dense in Sp(An).
Let F ⊂ An \ {0} be a finite subset. Then, for all sufficiently small δ, if S is δ-dense
in An , then for each f ∈ F , there exists s ∈ S such that f (s) ̸= 0.
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Write (βn,0)∗, (βn,1)∗ :K0(Fn)=Zpn→K0(En)=Zln as bn
0=(b

n
0,i j ), b

n
1=(b

n
1,i j ),

with bn
0,i j ∈ N, bn

1,i j ∈ N. (If there is no confusion, we may omit n from bn
0, bn

1,i j ,
etc. in the notation above.) Then

ηn,i (0)=
{
θ
∼b0,i1
n,1 , θ

∼b0,i2
n,2 , . . . , θ

∼b0,i pn
n,pn

}
,

ηn,i (1)=
{
θ
∼b1,i1
n,1 , θ

∼b1,i2
n,2 , . . . , θ

∼b1,i pn
n,pn

}
.

(4.5)

By Proposition 3.6 of [Gong et al. 2020a] (note that the unital condition is not used
in the proof), if α0, α1 : Fn→ En satisfy

(α0)∗ = (βn,0)∗, (α1)∗ = (βn,1)∗ : K0(Fn)→ K0(En),

then A(Fn, En, α0, α1)= A(Fn, En, βn,0, βn,1)= An .
Let us introduce the following notation. For 1≤ j ≤ ln , let πE j

n
be the canonical

projection from En =
⊕ln

k=1 M{n,k}(C) to E j
n = M{n, j}(C) and let β j

n,0 = πE j
n
◦βn,0

and β j
n,1 = πE j

n
◦βn,1.

If (β j
n,0)∗([1Fn ]) ≤ (β

j
n,1)∗([1Fn ]), then there is a unitary u j ∈ E j

n such that
β

j
n,0(1Fn )≤ Ad u j ◦β

j
n,1(1Fn ), and if (β j

n,0)∗([1Fn ])≥ (β
j

n,1)∗([1Fn ]), then there is
a unitary u j∈E j

n such that β j
n,0(1Fn ) ≥ Ad u j ◦ β

j
n,1(1Fn ). Thus, for convenience,

replacing β j
n,1 by Ad u j ◦β

j
n,1, if necessary, we may always assume:

If (β j
n,0)∗([1Fn ]) ≤ (β

j
n,1)∗([1Fn ]), then β j

n,0(1Fn ) ≤ β
j

n,1(1Fn ); and if
(β

j
n,0)∗([1Fn ])≥ (β

j
n,1)∗([1Fn ]), then β j

n,0(1Fn )≥ β
j

n,1(1Fn ).
(∗∗)

If (∗∗) holds, max(β j
n,0(1Fn ), β

j
n,1(1Fn )) makes sense. Let

Pn, j = 1E j
n
−max(β j

n,0(1Fn ), β
j

n,1(1Fn )).

4.6. Let A = A(F, E, β0, β1), where F =
⊕p

i=1 MRi (C), E =
⊕l

i=1 Mri (C) and
(β0)∗, (β1)∗ : K0(F)= Zp

→ K0(E)= Zl represented by matrices (b0,i j ), (b1,i j ).
From [Gong and Lin 2020a, 3.4] (see also Definition 2.22), we have

λs(A)=min
i

{∑p
j=1 b0,i j R j

ri
,

∑p
j=1 b1,i j R j

ri

}
.

4.7. For C∗-algebra An = A(Fn, En, βn,0, βn,1) as in 4.3, we fix a strictly positive
element eA

n ∈ An defined by eA
n =( f1, f2, . . . , fln ,a1,a2, . . . ,apn )with ai=1F i

n
∈F i

n
and

f j (t)= (1− t)β j
n,0(1Fn )+ tβ j

n,1(1Fn )+ t (1− t)Pn, j .

From the definition of Pn, j , we know that for 0< t < 1,

rank( f j (t))= rank(max(β j
n,0(1Fn ), β

j
n,1(1Fn )))+ rank(Pn, j )= rank(E j

n )= {n, j}.



ON CLASSIFICATION OF NONUNITAL AMENABLE SIMPLE C∗-ALGEBRAS, III 299

Hence eA
n is strictly positive. Let a A

n := ( f, g) ∈ An be defined by

g = 1Fn and f (t)= (1− t)βn,0(g)+ tβn,1(g). (4.8)

Then a A
n ≤ eA

n . Note that a A
n may not be a strictly positive element.

4.9 (order unit and M large). Suppose (G,1, ρ) is as in 4.1 with condition (∗). Let
us assume that G is torsion free. Choose a countable dense subgroup G1

⊂Aff(1)
with 11 ∈ G1. Put H = G ⊕G1 and define ρ̃ : H → Aff(1) by ρ̃((g, f ))(τ ) =
ρ(g)(τ ) + f (τ ) for all (g, f ) ∈ G ⊕ G1 and τ ∈ 1. Define H+ ∋ 0 such that
H+ \{0} is the set of elements (g, f )∈G⊕G1 with ρ̃((g, f ))(τ ) > 0 for all τ ∈1.
Then (H, H+, 11) is a simple ordered group with Riesz interpolation property (see
[Gong et al. 2020a, 13.9]). Following [Gong et al. 2020a, 13.9–13.12], write H as
an inductive limit of

H ′1
γ ′12
−→ H ′2

γ ′23
−→ · · · → H (4.10)

of direct sum of finite copies of ordered group (Z,Z+) with the property

γ ′n,∞(x) ∈ H+\{0} for any x ∈ (H ′n)+\{0}. (4.11)

Let H ′n =
(
Zp′n ,Z

p′n
+

)
be with a p′n-tuple ũ′n of positive integers as the order unit.

Furthermore, γ ′n,n+1(ũ
′
n)= ũ′n+1 and γ ′n,∞(ũ

′
n)= 11.

We modify the order unit ũn to a smaller one for future use. Since (H, H+) is
a simple Riesz group, we may assume that all maps γ ′n,n+1 have multiplicity at
least 3 (i.e., ai j ≥ 3 for all i, j) if γ ′n,n+1 is represented by the matrix (ai j )p′n+1×p′n ,
then the condition that for all γ ′n,n+1, ai j > 0 for all i, j implies that (4.11) holds.
Consequently, the order unit ũn = (a1, a2, . . . , ap′n ) ∈ Zp′n satisfies ai ≥ 3 for all i ,
provided n ≥ 2. We assume that this is true for all n, since if it is not true for n = 1,
then we simply drop the first term from the limit procedure.

Suppose ũ′n = (a1, a2, . . . , ap′n ) ∈ Zp′n . Choose u′n = (a1−2, a2, . . . , ap′n ) ∈ Zp′n .
The assumption that γ ′n,n+1 has multiplicities at least 3 implies γ ′n,n+1(u

′
n) < u′n+1.

Now set
H ′n = (Z

p′n ,Z
p′n
+ , u′n)

with the new order unit u′n . Note that γ ′n,∞(u
′
n) < 11, and for any element x ∈ H+

with x < 11, there is an integer n such that γ ′n,∞(u
′
n) > x .

The inductive limit lim(H ′n, u′n, γ
′
n,m) of the scaled ordered groups has the fol-

lowing property. For any n and M > 0, there is N such that if m > N , then γ ′n,m is
M-large in the following sense: Suppose that the matrix (ai j )p′m×p′n represents γ ′n,m
and u′n = (x1, x2, . . . , x p′n ), u′m = (y1, y2, . . . , yp′m ). Then

ai j ≥ M, yi −

p′n∑
k=1

aik xk ≥ M for 1≤ i ≤ p′m, 1≤ j ≤ p′n. (4.12)
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We also use the inductive limit system lim(H ′n, ũ′n, γ
′
n,m), which preserves the

units. Compare two inductive limit systems, writing lim((H ′n, (H
′
n)+, u′n), γ

′
n,m)=

(H, H+, 6H) and lim((H ′n, (H
′
n)+, ũ′n), γ

′
n,m)= (H, H+, 61 H). We have

6H = {h ∈ H+ : h < 11} and 61 H = {h ∈ H+ : h ≤ 11}. (4.13)

Furthermore, γ ′n,∞(u
′
n) < 11 and γ ′n,∞(ũ

′
n)= 11.

For any fixed positive integer M , there is a positive integer N such that if n ≥ N ,
and if we write u′n = (b1, b2, . . . , bp′n ) and ũ′n = (b1+2, b2, . . . , bp′n ), then b1≥ 2M
and

ρ̃(γ ′n,∞(u
′

n))≥
b1

b1+ 2
ρ̃(γ ′n,∞(ũ

′

n))=
b1

b1+ 2
· 11 ≥

(
1− 1

M

)
· 11. (4.14)

Let G ′n = (γ
′
n,∞)

−1(γ ′n,∞(H
′
n)∩G). Then G ′n ⊂ H ′n . Since G ∩ H+ = {0}, by

(4.11), we have
G ′n ∩ (H

′

n)+ = {0}. (4.15)

Furthermore, G is the inductive limit of

G ′1
γ ′1,2|G′1
−−−−→ G ′2

γ ′2,3|G′2
−−−−→ · · · → G ′n→ · · · → G. (4.16)

Recall that a subgroup G ⊂ H is said to be relatively divisible if for any g ∈ G,
m ∈ N \ {0}, and h ∈ H with g = mh, there is g′ ∈ G such that g = mg′. As in
[Gong et al. 2020a, 13.12], Gn is a relatively divisible subgroup of Hn , and Hn/Gn

is a torsion-free finitely generated abelian group. Write Hn/Gn = Zl ′n . We have the
following commutative diagram (see [Gong et al. 2020a, 13.12]):

G ′1
γ ′12|G1

//

� _

��

G ′2 //

� _

��

· · · // G� _

��

H ′1
γ ′12

//

��

H ′2 //

��

· · · // H

��

H ′1/G ′1
γ̃ ′12
// H ′2/G ′2 // · · · // H/G

In the process of the construction above, we use subsequences ({k(n)}) and obtain
the following diagram:

G ′k(1)
γ ′k(1),k(2)|Gk(1)

//

� _

��

G ′k(2) //

� _

��

· · · // G� _

��

H ′k(1)
γ ′k(1),k(2)

//

��

H ′k(2) //

��

· · · // H

��

H ′k(1)/G ′k(1)
γ̃ ′k(1),k(2)

// H ′k(2)/G ′k(2) // · · · // H/G
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Rewrite the sequence above as

G1
γ12|G1

//

� _

��

G2 //

� _

��

· · · // G� _

��

H1
γ12

//

��

H2 //

��

· · · // H

��

H1/G1
γ̃12
// H2/G2 // · · · // H/G

(4.17)

Write Hn =Zpn (pn = p′k(n) as Hn = H ′k(n)) and Hn/Gn =Zln (ln = l ′k(n)), and write

γn,n+1 = γ
′

k(n),k(n+1) : Z
pn → Zpn+1 as cn,n+1

= (cn,n+1
i j )1≤i≤pn+1, 1≤ j≤pn ,

γ̃n,n+1 : Z
ln → Zln+1 as dn,n+1

= (dn,n+1
i j )1≤i≤ln+1, 1≤ j≤ln .

In case of no confusion, we write cn,n+1 as c= (ci j ) and dn,n+1 as d= (di j ) (omitting
n, n+ 1). Since Gn & Hn , we know that ln ≥ 1.

Write
Hn = Zpn

γn,n+1
//

πn
��

Hn+1 = Zpn+1

πn+1
��

Hn/Gn = Zln
γ̃n,n+1

// Hn+1/Gn+1 = Zln+1

(4.18)

where πn is the (surjective) quotient map. We have

πn+1 · c
n,n+1

= dn,n+1
·πn. (4.19)

4.20 (construction of A1). Choose k(1)≥ 1 such that

u′k(1) := ([1, 1], [1, 2], . . . , [1, p′k(1)]) ∈ N
p′k(1)

satisfies [1, 1] ≥ 2 · 8= 16. Let

H1 := H ′k(1), u1 := u′k(1) := ([1, 1], [1, 2], . . . , [1, p1]) ∈ H1,

p1 := p′k(1), ũ1 := ([1, 1] + 2, [1, 2], . . . , [1, p1]) ∈ H1.

Then, by (4.14),
ρ̃(γ ′k(1),∞(u1))≥

(
1− 1

8

)
· 11

(that is, ρ̃(γ1,∞(u1))≥
(
1− 1

8

)
·11, after the diagram (4.17) is obtained). Recall that

we also have γ ′k(1),∞(ũ1)= 11. Let G1 =G ′k(1) and π1 : H1 = Zp1→ H1/G1 = Zl1

be the quotient map.
For a homomorphism Zk

→ Zl represented by a matrix B = (bi j )1≤i≤l, 1≤ j≤k ,
we define |||B||| :=maxi, j |bi j | · k · l.

Let M1 = 24
|||π1|||. The map π1 can be written as the difference b1

1− b1
0 of two

maps
b1

0, b
1
1 : Z

p1 → Zl1,
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corresponding to two l1× p1 matrices

b1
0 = (b

1
0,i j )1≤i≤l1, 1≤ j≤p1 and b1

1 = (b
1
1,i j )1≤i≤l1, 1≤ j≤p1 (4.21)

such that
b1

0,i j ≥M1 and b1
1,i j ≥M1. (4.22)

(Later on we will define Mn+1 when we construct An+1.) Namely, we construct b1
0

and b1
1 as below. Assume π1 : Z

p1 → Zl1 is given by the matrix (p1
i j )1≤i≤l1, 1≤ j≤p1 .

Choose b1
0 = (b

1
0,i j ) with b1

0,i j = |pi j | +M1 and b1
1,i j = b1

0,i j + pi j . Then b1
0 and

b1
1 satisfy (4.22) and b1

1− b1
0 = π1 : Z

p1 → Zl1 .
Recall that the unit u′1∈H ′1=H1 can be written as ([1,1], [1,2], . . . , [1, p1])∈Np1.

Since b1
0,i j ≥M1, b1

1,i j ≥M1, we have

|b1
1,i j − b1

0,i j | ≤
1

p1l1
|||π1||| ≤

1
16
·

1
2
M1 ≤

1
32

min(b1
0,i j , b1

1,i j ).

Consequently, max(b1
0,i j , b1

1,i j )≤
(
1+ 1

32

)
min(b1

0,i j , b1
1,i j ). Hence

(
1+ 1

8

) p1∑
j=1

max(b1
0,i j , b1

1,i j )[1, j]

≤

(
1+ 1

8

)(
1+ 1

32

) p1∑
j=1

min(b1
0,i j , b1

1,i j )[1, j]

≤

((
1+ 1

4

) p1∑
j=1

min(b1
0,i j , b1

1,i j )[1, j]
)
− 1. (4.23)

By (4.23), we may choose an integer {1, i} such that(
1+ 1

8

) p1∑
j=1

max(b1
0,i j , b1

1,i j )[1, j] ≤ {1, i}

≤

(
1+ 1

4

) p1∑
j=1

min(b1
0,i j , b1

1,i j )[1, j]. (4.24)

Let F1 =
⊕p1

i=1 M[1,i](C), E1 =
⊕l1

i=1 M{1,i}(C), and β1,0, β1,1 : F1 → E1 be
defined by

β1,0(a1⊕ a2⊕ · · ·⊕ ap1)=

l1⊕
i=1

diag
(
a
∼b1

0,i1
1 , a

∼b1
0,i2

2 , . . . , a
∼b1

0,i p1
p1

)
,

β1,1(a1⊕ a2⊕ · · ·⊕ ap1)=

l1⊕
i=1

diag
(
a
∼b1

1,i1
1 , a

∼b1
1,i2

2 , . . . , a
∼b1

1,i p1
p1

)
.

Evidently, β1,0⊕β1,1 : F1→ E1⊕ E1 is injective. Then

(β0,1)∗ = b1
0 and (β1,1)∗ = b1

1 : K0(F1)= Zp1 → K0(E1)= Zl1 .
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Define

A1 = A(F1, E1, β1,0, β1,1)

= {( f, a) ∈ C([0, 1], E1)⊕ F1 | β1,0(a)= f (0), β1,1(a)= f (1)}.

Then K0(A1)=G1 and K0(F1)=H1, and the quotient map π A
1 : A1→ F1 defined by

π A
1 ( f, a)= a induces (π A

1 )∗ : K0(A1)=G1→ K0(F1)= H1, which is the inclusion
map. Since b1

1− b1
0 = π1 is surjective (onto Zl1), K1(A1)= 0, by Proposition 3.5

of [Gong et al. 2020a]. Furthermore by (4.15), K0(A1)+ = G1 ∩ (H1)+ = {0} (see
again Proposition 3.5 of [Gong et al. 2020a]) and thus A1 ∈ C0.

By (4.24), we have

λs(A1)=min
i

{∑p1
j=1 b1

0,i j · [1, j]

{1, i}
,

∑p1
j=1 b1

1,i j · [1, j]

{1, i}

}
≥

1

1+ 1
4

≥
3
4
.

4.25 (inductive assumption for An). Suppose that we have constructed An =

A(Fn, En, βn,0, βn,1) ∈ C0 with

Fn =

pn⊕
j=1

M[n, j](C), En =

ln⊕
i=1

M{n,i}(C), βn,0, βn,1 : Fn→ En

such that the following conditions hold:

(a) K0(Fn)= Hn = H ′k(n), K0(An)= Gn = G ′k(n) (for some k(n)) and the quotient
map π A

n : An→ Fn induces the inclusion map (π A
n )∗ :K0(An)=Gn→K0(Fn)=Hn ,

Gn ∩ (Hn)+ = {0}, and K1(An)= {0}.

(b) (βn,0)∗ = bn
0 = (b

n
0,i j )1≤i≤ln, 1≤ j≤pn and (βn,1)∗ = bn

1 = (b
n
1,i j )1≤i≤ln, 1≤ j≤pn

with bn
0,i j ≥ Mn, bn

1,i j ≥ Mn for a pregiven positive number Mn . (Note that
(bn

1) − (b
n
0) = πn : K0(Fn) = Hn = Zpn → K0(En) = Hn/Gn = Zln , which is

surjective.)

(c) In K0(Fn), we have

[1Fn ] = un = u′k(n) := ([n, 1], [n, 2], . . . , [n, pn]) ∈ Npn

with [n, 1] ≥ 2 · 8n . As a consequence (see (4.14)), we have

ρ̃(γ ′k(n),∞(un))≥
(

1− 1
8n

)
· 11.

(Note that ũn = ([n, 1] + 2, [n, 2], . . . , [n, pn]) ∈ Hn satisfies γ ′k(n),∞(ũn)= 11.)

(d) βn,0 and βn,1 satisfy the property (∗∗) in the last paragraph of 4.3.
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(e) We have(
1+ 1

8n

)
·

pn∑
j=1

max{bn
0,i j , bn

n,i j }[n, j] ≤ {n, i}

≤

(
1+ 1

4n

)
·

pn∑
j=1

min{bn
0,i j , bn

n,i j }[n, j].

Consequently, λs(An) > 1− 1/4n .

Note that the homomorphism π A
n : An→ Fn induces the commutative diagram

K0(An)
ρAn
//

(π A
n )∗0
��

Aff(T0(An))

π A
n
♯

��

K0(Fn)
ρFn
// Aff(T0(Fn))

From (a), when we identify K0(An) = Gn and K0(Fn) = Hn , the map (π A
n )∗0 is

identified with the inclusion from Gn to Hn , and we have

Gn
ρAn
//

(π A
n )∗0
��

Aff(T0(An))

π A
n
♯

��

Hn
ρFn
// Aff(T0(Fn))

(4.26)

From bn
0,i j ≥ Mn > 0 in part (b), we know βn,0 is injective, and hence so is

βn,0⊕βn,1 : Fn→ En ⊕ En .
We construct An+1= A(Fn+1, En+1, βn+1,0, βn+1,1) and a positive integer Mn+1,

and two homomorphisms ϕo
n,n+1, ϕn,n+1 : An→ An+1 as below.

4.27 (the definition of An+1). Let

Ln+1 = 24(n+1)
·max{{n, i} : 1≤ i ≤ ln} · nln. (4.28)

Recall that Hn = H ′k(n) (in the inductive limit system in (4.10)) and H is a simple
Riesz group. There is k(n+ 1) > k(n) such that the map γ ′k(n),k(n+1) is Ln+1 large
in the sense of (4.12) in 4.9. Write Hn+1 = H ′k(n+1) = Zpn+1 and represent the
map γn,n+1 = γ

′

k(n),k(n+1) : Z
pn → Zpn+1 by the matrix cn,n+1

=(cn,n+1
i j )pn+1×pn . We

further require that the unit

un+1 = u′k(n+1) := ([n+ 1, 1], [n+ 1, 2], . . . , [n+ 1, pn+1]) ∈ Npn+1

satisfies the condition [n+ 1, 1] ≥ 2 · 8n+1 (see (c) in 4.25). Then we have

cn,n+1
i j ≥ Ln+1 and [n+ 1, i] −

pn∑
k=1

cn,n+1
ik [n, k] ≥ Ln+1. (4.29)
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It follows from

γ ′k(n),k(n+1)(ũ
′

k(n))= ũ′k(n+1),

ũn = ũ′k(n) = ([n, 1] + 2, [n, 2], . . . , [n, pn]),

ũn+1 = ũ′k(n+1) = ([n+ 1, 1] + 2, [n+ 1, 2], . . . , [n+ 1, pn+1])

and (c) of 4.25 that
pn∑

j=1

cn,n+1
i j [n, j] ≥

(
1− 1

8n

)
· [n+ 1, i]. (4.30)

Write Gn+1 = G ′k(n+1) ⊂ Hn+1 and write Hn+1/Gn+1 = Zln+1 . Suppose that the
map γn,n+1 : Hn→ Hn+1 induces

γ̃n,n+1 : Hn/Gn = Zln → Hn+1/Gn+1 = Zln+1 .

Write γ̃n,n+1 = dn,n+1
= (dn,n+1

i j )ln+1×ln , where dn,n+1
i j ∈ Z. Set

Mn+1 = 24(n+1)ln · n · (|||dn,n+1
|||+ 2) ·max{{n, k} : 1≤ k ≤ ln} · |||πn+1|||, (4.31)

where πn+1 : Hn+1 = Zpn+1→ Hn+1/Gn+1 = Zln+1 is the quotient map and ||| · ||| is
defined in the end of 4.9.

We construct the algebra An+1 as below (see 4.20 for similar construction
of A1). Write the map πn+1 : Hn+1 = Zpn+1 → Hn+1/Gn+1 = Zln+1 as a dif-
ference πn+1 = bn+1

1 − bn+1
0 of two matrices bn+1

0 = (bn+1
0,i j )1≤i≤ln+1, 1≤ j≤pn+1 and

bn+1
1 = (bn+1

1,i j )1≤i≤ln+1, 1≤ j≤pn+1 satisfying

bn+1
0,i j ≥Mn+1 and bn+1

1,i j ≥Mn+1 for all i, j. (4.32)

Consequently, we obtain

|bn+1
1,i j − bn+1

0,i j | ≤
1

24(n+1) min(bn+1
1,i j , bn+1

0,i j ). (4.33)

As in the calculation in (4.23), we have(
1+ 1

8n+1

) pn+1∑
j=1

max(bn+1
0,i j , bn+1

1,i j )[n+ 1, j]

≤

((
1+ 1

4n+1

) pn+1∑
j=1

min(bn+1
0,i j , bn+1

1,i j )[n+ 1, j]
)
− 1.

One may then choose an integer {n+ 1, i} which satisfies(
1+ 1

8n+1

) pn+1∑
j=1

max(bn+1
0,i j , bn+1

1,i j )[n+ 1, j] ≤ {n+ 1, i} (4.34)

≤

(
1+ 1

4n+1

) pn+1∑
j=1

min(bn+1
0,i j , bn+1

1,i j )[n+ 1, j]. (4.35)
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From (4.19), we have

(bn+1
1 − bn+1

0 ) · cn,n+1
= dn,n+1

· (bn
1 − bn

0). (4.36)

Let Fn+1 =
⊕pn+1

j=1 M[n+1, j](C) and En+1 =
⊕ln+1

i=1 M{n+1, j}(C), and define
βn+1,0, βn+1,1 : Fn+1→ En+1 by

βn+1,0(a1⊕ a2⊕ · · ·⊕ apn+1)=

ln+1⊕
i=1

diag
(
a
∼bn+1

0,i1
1 , a

∼bn+1
0,i2

2 , . . . , a
∼bn+1

0,i pn+1
pn+1 , 0∼k0

)
,

βn+1,1(a1⊕ a2⊕ · · ·⊕ apn+1)=

ln+1⊕
i=1

diag
(
a
∼bn+1

1,i1
1 , a

∼bn+1
1,i2

2 , . . . , a
∼bn+1

1,i pn+1
pn+1 , 0∼k1

)
,

where k0={n+1, i}−
∑pn+1

j=1 bn+1
0,i j [n+1, j] and k1={n+1, i}−

∑pn+1
j=1 bn+1

1,i j [n+1, j].
Define An+1 = A(Fn+1, En+1, βn+1,0, βn+1,1). Moreover,

(βn+1,0)∗ = bn+1
0 , (βn+1,1)∗ = bn+1

1 : K0(Fn+1)= Zpn+1 → K0(En+1)= Zln+1 .

We have
K0(An+1)= Gn+1 ⊆ K0(Fn+1)= Hn+1.

Since πn+1 is surjective, by [Gong et al. 2020a, Proposition 3.5], K1(An+1) = 0.
Also K0(An+1)+ = Gn+1 ∩ (Hn+1)+ = {0}, which implies An+1 ∈ C0. Thus condi-
tions (a), (b), (c), (d) and (e) (see (4.35)) in 4.25 for n+ 1 follow. This ends the
construction of An+1.

With An+1 constructed above we construct two homomorphisms

ϕo
n,n+1, ϕn,n+1 : An→ An+1

in the next few sections, namely from 4.37 to 4.76.

4.37 (definition of ψ and ψo). As notation introduced in 4.3, we have

Sp(An)= {θn,1, . . . , θn,pn } ∪ {ηn,1(t), . . . , ηn,ln (t) | 0< t < 1}.

To simplify the notation, let us use c = (ci j ) to denote cn,n+1
= (cn,n+1

i j ) and
d = (di j ) to denote dn,n+1

= (dn,n+1
i j ). Let ψn,n+1 : Fn → Fn+1 be a (nonunital)

homomorphism defined by

ψn,n+1(a1⊕ a2⊕ · · ·⊕ apn )=

pn+1⊕
i=1

diag
(
a∼ci1

1 , a∼ci2
2 , . . . , a∼ci pn

pn , 0∼∼
)
, (4.38)

where 0∼∼ denotes some suitable number of copies of 0 — to avoid introducing
too much notation, sometimes we do not indicate how many copies it has (but it is
usually easy to calculate, for example it is [n+ 1, i] −

∑pn
k=1 cik[n, k] copies here).

Then (ψn,n+1)∗ = γ̃n,n+1 = c= (ci j ) : K0(Fn)→ K0(Fn+1).
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Let ψo
: An→ Fn+1 be defined by ψo

= ψn,n+1 ◦π
A
n . Let

c′1 j = c1 j − (n− 1)
ln∑

i=1

bn
0,i j for 1≤ j ≤ pn. (4.39)

By 4.25, (4.28), and (4.29), we estimate

c1, j > c′1 j = c1, j − (n− 1)
ln∑

i=1

bn
0,i j ≥ c1, j − (n− 1)ln max{{n, i} : 1≤ i ≤ pn}

> c1, j −
Ln,n+1

24(n+1) >
(

1−
1

24(n+1)

)
c1 j . (4.40)

Define ψ : An→ Fn+1 by sending

f = ( f1, f2, . . . , fln , a1, a2, . . . , apn ) 7→ ψ( f )= (b1, b2, . . . , bpn+1),

where

b1 = diag
(

f1

(1
n

)
, f1

(2
n

)
, . . . , f1

(n−1
n

)
, f2

(1
n

)
, f2

(2
n

)
, . . . , f2

(n−1
n

)
,

. . . , fln

(1
n

)
, fln

(2
n

)
, . . . , fln

(n−1
n

)
, a
∼c′11
1 , a

∼c′12
2 , . . . , a

∼c′1pn
pn , 0∼∼

)
(4.41)

(from (4.29) and (4.28),
∑ln

i=1(n− 1){n, i}+
∑pn

j=1 c′1 j [n, j]< [n+ 1, 1]), and for
i ≥ 2,

bi = diag
(
a∼ci1

1 , a∼ci2
2 , . . . , a∼ci pn

pn , 0∼∼
)
. (4.42)

Note that πn+1,i (ψ
o( f )) = πn+1,i (ψ( f )) for i ≥ 2, where πn+1,i : Fn+1→ F i

n+1
is the projection map.

For each 0≤ t ≤ 1, define ψt : An→ Fn+1 by sending

f = ( f1, f2, . . . , fln , a1, a2, . . . , apn ) 7→ ψt( f )= (b′1, b′2, . . . , b′pn+1
)

with b′i = bi for i ≥ 2 (see (4.42)) and

b′1 = diag
(

f1

(1
n
(1− t)

)
, . . . , f1

(n−1
n
(1− t)

)
, f2

(1
n
(1− t)

)
,

. . . , f2

(n−1
n
(1− t)

)
, . . . , fln

(1
n
(1− t)

)
,

. . . , fln

(n−1
n
(1− t)

)
, a
∼c′11
1 , a

∼c′12
2 , . . . , a

∼c′1pn
pn

)
. (4.43)

When t = 0, we have b′1 = b1 (see (4.41)), and therefore ψ = ψ0. For t = 1,

b′1 = diag
(

f1(0)∼(n−1), f2(0)∼(n−1), . . . , fln (0)
∼(n−1), a

∼c′11
1 , a

∼c′12
2 , . . . , a

∼c′1pn
pn

)
.

By (4.5) and the definition of c′1, j , we have SP(ψ1)= SP(ψo). Hence

KK (ψ)= KK (ψ0)= KK (ψ1)= KK (ψo) ∈ KK (An, Fn+1). (4.44)
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4.45 (definition of χ and µ). Recall that d= (di j )ln+1×ln is the matrix which repre-
sents γ̃n,n+1 : Hn/Gn = Z ln → Hn+1/Gn+1 = Z ln+1 . For 1≤ j ≤ ln+1, 1≤ k ≤ ln ,
define

d̃ jk =

{
|d jk | if d jk ̸= 0,
2 if d jk = 0.

(4.46)

For 1≤ j ≤ ln+1, let L j =
∑ln

k=1 d̃ jk{n, k}. Define χ : An→
⊕ln+1

j=1 ML j (C[0, 1])
by sending

f = ( f1, f2, . . . , fln ,a1,a2, . . . ,apn ) 7→χ( f )=
ln+1⊕
j=1

(F j,1(t),F j,2(t), . . . ,F j,ln (t)),

where

F jk(t)=


{ fk(t)∼|d jk |} if d jk > 0,
{ fk(1− t)∼|d jk |} if d jk < 0,
{ fk(t), fk(1− t)} if d jk = 0.

(4.47)

For any 1≤ j≤ ln+1, let π E
j :
⊕ln+1

k=1 MLk (C[0, 1])→ML j (C[0, 1]) be the projection.
Then, for any 0< t < 1,

{ηn,i (t), ηn,i (1− t) : 1≤ i ≤ ln} ⊂ Sp((π E
j ◦χ)|t)∪Sp((π E

j ◦χ)|1−t). (4.48)

This implies that Sp(An)=
⋃

0≤t≤1 Sp(χ |t). Hence χ is injective.
Define two subsets J0, J1 of the index set {1, 2, . . . , ln+1} by j ∈ J0 if and only

if bn+1
0, j1 > bn+1

1, j1; and j ∈ J1 if and only if bn+1
1, j1 > bn+1

0, j1. (Note that if bn+1
0, j1 = bn+1

1, j1,
then j is neither in J0 nor in J1.)

Let B j = |bn+1
0, j1− bn+1

1, j1| and K j = (n− 1)B j ·
∑ln

i=1{n, i}.
Define µ : An→

⊕
j∈J0∪J1

MK j (C[0, 1]) by sending

f =( f1, f2, . . . , fln ,a1,a2, . . . ,apn ) 7→µ( f )=
⊕

j∈J0∪J1

(G j,1(t),G j,2(t), . . . ,G j,ln (t)),

where

G jk(t)=


diag

(
fk
( 1

n (1− t)
)∼B j

, fk
( 2

n (1− t)
)∼B j

,

. . . , fk
( n−1

n (1− t)
)∼B j

) if j ∈ J0,

diag
(

fk
( 1

n t
)∼B j

, fk
( 2

n t
)∼B j

, . . . , fk
( n−1

n t
)∼B j

)
if j ∈ J1.

(4.49)

Note that, for j ∈ J0,

G jk(0)= diag
(

fk

(1
n

)∼B j
, fk

(2
n

)∼B j
, . . . , fk

(n−1
n

)∼B j
)
,

G jk(1)= diag( fk(0)∼(n−1)B j ),

(4.50)
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and, for j ∈ J1,

G jk(0)= diag( fk(0)∼(n−1)B j ),

G jk(1)= diag
(

fk

(1
n

)∼B j
, fk

(2
n

)∼B j
, . . . , fk

(n−1
n

)∼B j
)
.

(4.51)

4.52 (notation: κ j
0 (θn,i ), κ

j
1 (θn,i ), κ̄

j
0 (θn,i ), κ̄

j
1 (θn,i )— the multiplicities of θn,i for

certain homomorphisms).
Let ξ o

0 , ξ
o
1 , ξ0, ξ1 : An→En+1=

⊕ln+1
i=1 M{n+1,i}(C) be defined by ξ o

0 =βn+1,0◦ψ
o,

ξ o
1 = βn+1,1 ◦ψ

o, ξ0 = βn+1,0 ◦ψ and ξ1 = βn+1,1 ◦ψ .
It is also convenient to introduce the following notation: for a homomorphism

ϕ : A→ Ml(C[0, 1]), we use ϕ|0, ϕ|1 : A→ Ml(C) to denote the map given by
ϕ|0(a) := ϕ(a)(0) and ϕ|1(a) := ϕ(a)(1).

For fixed 1≤ i ≤ ln+1, let π E
i be the projection from En+1 =

⊕ln+1
j=1 M{n+1, j}(C)

to the i-th summand E i
n+1 = M{n+1,i}(C), from

⊕ln+1
j=1 C([0, 1],ML j (C)) to the

i-th summand C([0, 1],ML i (C)), or from
⊕ln+1

j=1 C([0, 1],ML j+K j (C)) to the i-th
summand C([0, 1],ML i+Ki (C)).

In the next two lemmas, we compare π E
j ◦ ξ

o
0 and π E

j ◦ ξ
o
1 with (π E

j ◦ χ)|0

and (π E
j ◦ χ)|1, and compare π E

j ◦ ξ0 and π E
j ◦ ξ1 with (π E

j ◦ (χ ⊕ µ))|0 and
π E

j ◦ (χ ⊕µ))|1.
Let f = ( f1, f2, . . . , fln , a1, a2, . . . , apn ). Up to conjugating unitaries, we write

(π E
j ◦χ)|0( f )= diag

(
a
∼κ

j
0 (θn,1)

1 , a
∼κ

j
0 (θn,2)

2 , . . . , a
∼κ

j
0 (θn,pn )

pn , 0∼∼
)
,

(π E
j ◦χ)|1( f )= diag

(
a
∼κ

j
1 (θn,1)

1 , a
∼κ

j
1 (θn,2)

2 , . . . , a
∼κ

j
1 (θn,pn )

pn , 0∼∼
)
,

π E
j ◦ ξ

o
0 ( f )= diag

(
a
∼κ̄

j
0 (θn,1)

1 , a
∼κ̄

j
0 (θn,2)

2 , . . . , a
∼κ̄

j
0 (θn,pn )

pn , 0∼∼
)
,

π E
j ◦ ξ

o
1 ( f )= diag

(
a
∼κ̄

j
1 (θn,1)

1 , a
∼κ̄

j
1 (θn,2)

2 , . . . , a
∼κ̄

j
1 (θn,pn )

pn , 0∼∼
)
.

(Here again we use 0∼∼ to denote some 0’s without specifying how many copies
there are.) The motivation of the above notation is that θn, j is the representation of
An by sending f to a j .

Lemma 4.53. For any 1≤ i ≤ pn , we have

κ̄
j

0 (θn,i )− κ
j

0 (θn,i )= κ̄
j

1 (θn,i )− κ
j

1 (θn,i )≥
(

1− 1
24(n+1)

)
κ̄

j
0 (θn,i ). (4.54)

Proof. The equality follows from (4.36), i.e., (bn+1
1 −b

n+1
0 )·cn,n+1

=dn,n+1
·(bn

1−b
n
0).

To see this, we first note that

(π E
j ◦χ)|0( f )= diag

(
diag{k :d jk>0}( fk(0)∼d jk ),

diag{k :d jk<0}( fk(1)∼|d jk |), diag{k :d jk=0}( fk(0), fk(1))
)
,

(π E
j ◦χ)|1( f )= diag

(
diag{k :d jk>0}( fk(1)∼d jk ),

diag{k :d jk<0}( fk(0)∼|d jk |), diag{k :d jk=0}( fk(1), fk(0))
)
.
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Note that κ j
0 (θn,i ) is the multiplicity of θn,i in SP((π E

j ◦ χ)|0), and κ j
1 (θn,i )

the multiplicity of θn,i in SP((π E
j ◦χ)|1). Also note that the homomorphism

( f1, f2, . . . , fln , a1, a2, . . . , apn )→ fk(0) defines ηn,k(0)∈SP(An) (see 4.3). Hence

SP((π E
j ◦χ)|0)

= {ηn,k(0)∼d jk : d jk > 0} ∪ {ηn,k(1)∼|d jk | : d jk < 0} ∪ {ηn,k(0), ηn,k(1) : d jk = 0}.

By (4.5), we have

κ
j

0 (θn,i )=
∑

{k :d jk>0}

bn
0,ki d jk +

∑
{k :d jk<0}

bn
1,ki |d jk | +

∑
{k :d jk=0}

(bn
0,ki + bn

1,ki ).

Similarly, we have

κ
j

1 (θn,i )=
∑

{k :d jk>0}

bn
1,ki d jk +

∑
{k :d jk<0}

bn
0,ki |d jk | +

∑
{k :d jk=0}

(bn
1,ki + bn

0,ki ).

Hence κ j
1 (θn,i )− κ

j
0 (θn,i )=

∑ln
k=1(b

n
1,ki − bn

0,ki )d jk . On the other hand,

κ̄
j

0 (θn,i )=

pn+1∑
k=1

bn+1
0, jkcki and κ̄

j
1 (θn,i )=

pn+1∑
k=1

bn+1
1, jkcki . (4.55)

Hence

κ̄
j

1 (θn,i )− κ̄
j

0 (θn,i )=

pn+1∑
k=1

(bn+1
1, jk − bn+1

0, jk)cki .

That is, κ j
1 (θn,i )− κ

j
0 (θn,i ) is the j i-th entry of the matrix dn,n+1(bn

1 − bn
0); and

κ̄
j

1 (θn,i )− κ̄
j

0 (θn,i ) is the j i-th entry of the matrix (bn+1
1 − bn+1

0 )cn,n+1. By (4.36),
we have

κ
j

1 (θn,i )− κ
j

0 (θn,i )= κ̄
j

1 (θn,i )− κ̄
j

0 (θn,i ),

as desired.
Furthermore, it follows from bn+1

0, jk ≥Mn+1 that

κ
j

0 (θn,i ) <

ln∑
k=1

(|d jk | + 2){n, k} ≤
1

24(n+1)Mn+1

≤
1

24(n+1) b
n+1
0, j1 ≤

1
24(n+1) κ̄

j
0 (θn,i ). (4.56)

Hence the inequality in (4.54) also follows. □

4.57 (notation: σ j
k (ηn,i ), σ̄

j
k (ηn,i ), λ

j
k (θn,i ), λ̄

j
k (θn,i ) for k=0, 1 — the multiplicities

of ηn,i (l/n) and θn,i for certain homomorphisms).
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Let f = ( f1, f2, . . . , fln , a1, a2, . . . , apn ). Then, for each fixed j , one may write

(π E
j ◦ (χ ⊕µ))|0( f )

= diag
(

f1

(1
n

)∼σ j
0 (ηn,1)

, f1

(2
n

)∼σ j
0 (ηn,1)

, . . . , f1

(n−1
n

)∼σ j
0 (ηn,1)

,

f2

(1
n

)∼σ j
0 (ηn,2)

, . . . , f2

(n−1
n

)∼σ j
0 (ηn,2)

, . . . ,

fln

(1
n

)∼σ j
0 (ηn,ln )

, . . . , fln

(n−1
n

)∼σ j
0 (ηn,ln )

,

a
∼λ

j
0(θn,1)

1 , a
∼λ

j
0(θn,2)

2 , . . . , a
∼λ

j
0(θn,pn )

pn , 0∼∼
)
,

(π E
j ◦ (χ ⊕µ))|1( f )

= diag
(

f1

(1
n

)∼σ j
1 (ηn,1)

, f1

(2
n

)∼σ j
1 (ηn,1)

, . . . , f1

(n−1
n

)∼σ j
1 (ηn,1)

,

f2

(1
n

)∼σ j
1 (ηn,2)

, . . . , f2

(n−1
n

)∼σ j
1 (ηn,2)

, . . . ,

fln

(1
n

)∼σ j
1 (ηn,ln )

, . . . , fln

(n−1
n

)∼σ j
1 (ηn,ln )

,

a
∼λ

j
1(θn,1)

1 , a
∼λ

j
1(θn,2)

2 , . . . , a
∼λ

j
1(θn,pn )

pn , 0∼∼
)
,

(π E
j ◦ ξ0)( f )

= diag
(

f1

(1
n

)∼σ̄ j
0 (ηn,1)

, f1

(2
n

)∼σ̄ j
0 (ηn,1)

, . . . , f1

(n−1
n

)∼σ̄ j
0 (ηn,1)

,

f2

(1
n

)∼σ̄ j
0 (ηn,2)

, . . . , f2

(n−1
n

)∼σ̄ j
0 (ηn,2)

, . . . ,

fln

(1
n

)∼σ̄ j
0 (ηn,ln )

, . . . , fln

(n−1
n

)∼σ̄ j
0 (ηn,ln )

,

a
∼λ̄

j
0(θn,1)

1 , a
∼λ̄

j
0(θn,2)

2 , . . . , a
∼λ̄

j
0(θn,pn )

pn , 0∼∼
)
,

(π E
j ◦ ξ1)( f )

= diag
(

f1

(1
n

)∼σ̄ j
1 (ηn,1)

, f1

(2
n

)∼σ̄ j
1 (ηn,1)

, . . . , f1

(n−1
n

)∼σ̄ j
1 (ηn,1)

,

f2

(1
n

)∼σ̄ j
1 (ηn,2)

, . . . , f2

(n−1
n

)∼σ̄ j
1 (ηn,2)

, . . . ,

fln

(1
n

)∼σ̄ j
1 (ηn,ln )

, . . . , fln

(n−1
n

)∼σ̄ j
1 (ηn,ln )

,

a
∼λ̄

j
1(θn,1)

1 , a
∼λ̄

j
1(θn,2)

2 , . . . , a
∼λ̄

j
1(θn,pn )

pn , 0∼∼
)
.

In particular, the multiplicities of fi (1/n), fi (2/n), . . . , fi ((n− 1)/n), in each of
the four homomorphisms above, are the same — this is why we use the notation
σ

j
0 (ηn,i ) instead of σ j

0 (ηn,i (l/n)).
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Lemma 4.58. For all 1≤ i ≤ ln ,

σ̄
j

0 (ηn,i )− σ
j

0 (ηn,i )= σ̄
j

1 (ηn,i )− σ
j

1 (ηn,i )≤min(bn+1
0, j1, bn+1

1, j1), (4.59)

and for all 1≤ i ≤ pn ,

λ̄
j
0(θn,i )− λ

j
0(θn,i )= λ̄

j
1(θn,i )− λ

j
1(θn,i )≥

(
1−

2
24(n+1)

)
κ̄

j
0 (θn,i ).

Proof. By (e) of 4.25 (and [n, i]> 2), (4.28) and (4.29) as well as (4.55), for any
1≤ i ≤ pn , we obtain

(n− 1)max(bn+1
0, j1, bn+1

0, j1)

( ln∑
k=1

bn
0,ki

)
≤max(bn+1

0, j1, bn+1
0, j1)

(
1
2
(n− 1)

ln∑
k=1

{n, k}
)

≤min(bn+1
0, j1, bn+1

0, j1) · c11 ·
1

24(n+1)

≤
1

24(n+1) min(κ̄ j
0 (θn,i ), κ̄

j
1 (θn,i )). (4.60)

From the definition of ξ0, ξ1 (see the first paragraph of 4.52 and (4.41) and (4.42)),
we have

(π E
j ◦ ξ0)( f )

= diag
(

f1

(1
n

)∼bn+1
0, j1
, f1

(2
n

)∼bn+1
0, j1
, . . . , f1

(n−1
n

)∼bn+1
0, j1
, f2

(1
n

)∼bn+1
0, j1
,

. . . , f2

(n−1
n

)∼bn+1
0, j1
, . . . , fln

(1
n

)∼bn+1
0, j1
, . . . , fln

(n−1
n

)∼bn+1
0, j1
,

a
∼

(
c′11bn+1

0, j1+
∑pn+1

k=2 ck1bn+1
0, jk

)
1 , a

∼

(
c′12bn+1

0, j1+
∑pn+1

k=2 ck2bn+1
0, jk

)
2 , . . . ,

a
∼

(
c′1pn bn+1

0, j1+
∑pn+1

k=2 ckpn bn+1
0, jk

)
pn

)
. (4.61)

Hence we always have σ̄ j
0 (ηn,i ) = bn+1

0, j1. Similarly, we have σ̄ j
1 (ηn,i ) = bn+1

1, j1. It
follows that

σ̄
j

0 (ηn,i )− σ
j

0 (ηn,i )≤ bn+1
0, j1 and σ̄

j
1 (ηn,i )− σ

j
1 (ηn,i )≤ bn+1

1, j1.

So, for (4.59), it remains to show that σ̄ j
0 (ηn,i )− σ

j
0 (ηn,i )= σ̄

j
1 (ηn,i )− σ

j
1 (ηn,i ).

Combining (4.61), (4.39), and (4.55), we calculate (see also 4.57)

λ̄
j
0(θn,i )= c′1i b

n+1
0, j1+

pn+1∑
k=2

cki bn+1
0, jk =

(
c1i −

ln∑
k=1

bn
0,ki

)
bn+1

0, j1+

pn+1∑
k=2

cki bn+1
0, jk

=

pn+1∑
k=1

cki bn+1
0, jk − (n− 1)bn+1

0, j1

( ln∑
k=1

bn
0,ki

)

= κ̄
j

0 (θn,i )− (n− 1)bn+1
0, j1

( ln∑
k=1

bn
0,ki

)
. (4.62)
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Similarly,

λ̄
j
1(θn,i )= c′1i b

n+1
1, j1+

pn+1∑
k=2

cki bn+1
1, jk = κ̄

j
1 (θn,i )− (n− 1)bn+1

1, j1

( ln∑
k=1

bn
0,ki

)
. (4.63)

We divide the proof into three cases: j /∈ J0 ∪ J1, j ∈ J0 and j ∈ J1.

Case 1: j /∈ J0∪ J1. In this case, bn+1
0, j1 = bn+1

1, j1, K j = 0 and π E
j ◦ (χ⊕µ)= π

E
j ◦χ .

Consequently,

σ
j

0 (ηn,i )= 0= σ j
1 (ηn,i ), λ

j
0(θn,i )= κ

j
0 (θn,i ) and λ

j
1(θn,i )= κ

j
1 (θn,i ). (4.64)

Hence σ̄ j
0 (ηn,i )− σ

j
0 (ηn,i )= bn+1

0, j1 = bn+1
1, j1 = σ̄

j
1 (ηn,i )− σ

j
1 (ηn,i ).

It follows from (4.64), bn+1
0, j1 = bn+1

1, j1, (4.62), (4.63), Lemma 4.53 and (4.60) that

λ̄
j
1(θn,i )− λ

j
1(θn,i )= κ̄

j
0 (θn,i )− (n− 1)bn+1

0, j1

( ln∑
k=1

bn
0,ki

)
− κ

j
1 (θn,i )

= λ̄
j
0(θn,i )− λ

j
0(θn,i )

= κ̄
j

0 (θn,i )− κ
j

0 (θn,i )− (n− 1)bn+1
0, j1

( ln∑
k=1

bn
0,ki

)
≥

(
1−

2
24(n+1)

)
κ̄

j
0 (θn,i ). (4.65)

Case 2: j ∈ J0. Let i ∈ {1, 2, . . . , ln}. By (4.50),

σ
j

1 (ηn,i )= 0 and σ
j

0 (ηn,i )= B j = bn+1
0, j1− bn+1

1, j1. (4.66)

Recall that we have computed above that σ̄ j
0 (ηn,i ) = bn+1

0, j1 and σ̄ j
1 (ηn,i ) = bn+1

1, j1.
Thus (by (4.66))

σ̄
j

0 (ηn,i )− σ
j

0 (ηn,i )= bn+1
0, j1− (b

n+1
0, j1− bn+1

1, j1)= bn+1
1, j1 = σ̄

j
1 (ηn,i )− σ

j
1 (ηn,i ).

Now let i ∈ {1, 2, . . . , pn}. We calculate λ j
0(θn,i ), λ

j
0(θn,i ), λ̄

j
0(θn,i ) and λ̄ j

1(θn,i ).
From (4.50) (and (4.5)), we have that

SP((π E
j ◦µ)|1)=

⋃
{ηn,k(0)∼(n−1)B j :1≤k≤ ln}=

{
θ
∼(n−1)B j

∑ln
k=1 bn

0,ki
n,i :1≤ i≤ pn

}
,

and that SP((π E
j ◦µ)|0) does not contain any θn,i .

Recall that λ j
1(θn,i ) is the multiplicity of θn,i of the spectrum of (π E

j ◦ (χ⊕µ))|1.
Hence

λ
j
1(θn,i )= κ

j
1 (θn,i )+ (n− 1)B j

ln∑
k=1

bn
0,ki and λ

j
0(θn,i )= κ

j
0 (θn,i ). (4.67)
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By (4.62), (4.63) and (4.67) as well as 4.53, we have

λ̄
j
0(θn,i )− λ

j
0(θn,i )= κ̄

j
0 (θn,i )− κ

j
0 (θn,i )− (n− 1)bn+1

0, j1

( ln∑
k=1

bn
0,ki

)

= κ̄
j

1 (θn,i )− κ
j

1 (θn,i )− (n− 1)bn+1
0, j1

( ln∑
k=1

bn
0,ki

)

= κ̄
j

1 (θn,i )− κ
j

1 (θn,i )− (n− 1)(B j + bn+1
1, j1)

( ln∑
k=1

bn
0,ki

)
= λ̄

j
1(θn,i )− λ

j
1(θn,i ).

Also, by (4.60) and Lemma 4.53, we estimate

λ̄
j
0(θn,i )− λ

j
0(θn,i )= κ̄

j
0 (θn,i )− κ

j
0 (θn,i )− (n− 1)bn+1

0, j1

( ln∑
k=1

bn
0,ki

)
≥

(
1−

2
24(n+1)

)
κ̄

j
0 (θn,i ).

Case 3: j ∈ J1. This case is proved exactly the same as Case 2, but replacing (4.50)
with (4.51). □

4.68 (definition of ϕo, ϕ). Set

κ j (i)= κ̄ j
0 (θn,i )− κ

j
0 (θn,i )= κ̄

j
1 (θn,i )− κ

j
1 (θn,i ),

σ j (i)= σ̄ j
0 (ηn,i )− σ

j
0 (ηn,i )= σ̄

j
1 (ηn,i )− σ

j
1 (ηn,i ),

λ j (i)= λ̄ j
0(θn,i )− λ

j
0(θn,i )= λ̄

j
1(θn,i )− λ

j
1(θn,i ).

Let ϕo
: An→C

(
[0, 1],

⊕ln+1
j=1 Mo( j)(C)

)
be the homomorphism defined by sending

f = ( f1, f2, . . . , fln , a1, a2, . . . , apn ) to

ϕo( f )=
ln+1⊕
j=1

diag
(
π E

j ◦χ( f ), a∼κ
j (1)

1 , a∼κ
j (2)

2 , . . . , a∼κ
j (pn)

pn

)
, (4.69)

where o( j)= L j +
∑pn

i=1 κ
j (i)[n, i]. Let ϕ : An→ C

(
[0, 1],

⊕ln+1
j=1 Mo′( j)(C)

)
be

the homomorphism defined by sending f = ( f1, f2, . . . , fln , a1, a2, . . . , apn ) to

ϕ( f )=
ln+1⊕
j=1

diag
(
(π E

j ◦ (χ ⊕µ))( f ), f1

(1
n

)∼σ j (1)
,

f1

(2
n

)∼σ j (1)
, . . . , f1

(n−1
n

)∼σ j (1)
, f2

(1
n

)∼σ j (2)
, . . . ,

f2

(n−1
n

)∼σ j (2)
, . . . , fln

(1
n

)∼σ j (ln)

, . . . , fln

(n−1
n

)∼σ j (ln)

,

a∼λ
j (1)

1 , a∼λ
j (2)

2 , . . . , a∼λ
j (pn)

pn

)
, (4.70)
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where

o′( j)= L j + K j + (n− 1)
ln∑

k=1

σ j (k){n, k}+
pn∑

i=1

λ j (i)[n, i].

With the following lemma, both maps ϕo and ϕ can be regarded as maps from
An to C([0, 1], En+1) by adding suitably many copies of 0’s in the equations (4.69)
and (4.70).

Lemma 4.71. We have the inequalities o( j) ≤ {n + 1, j} and o′( j) ≤ {n + 1, j}
(see 4.68). Furthermore, we have

λ j (i)≥
(

1−
2

24(n+1)

) pn+1∑
k=1

bn+1
0, jkcki ,

pn∑
i=1

λ j (i)[n, i]>
(

1−
2

4n+1

)
{n+ 1, j}.

(4.72)

Proof. Recall (see 4.68) that κ j (i) ≤ κ̄ j
0 (θn,i ), λ j (i) ≤ λ̄ j

0(θn,i ) ≤ κ̄
j

0 (θn,i ). Also
from Lemma 4.58, we have σ j (k) ≤ min(bn+1

0, j1, bn+1
1, j1). By (4.28) and (4.29), we

have

n
ln∑

k=1

σ j (k){n, k} ≤ n
ln∑

k=1

min(bn+1
0, j1, bn+1

1, j1)

≤
1

24(n+1)Ln+1 min(bn+1
0, j1, bn+1

1, j1)

≤
1

24(n+1) c11 min(bn+1
0, j1, bn+1

1, j1)

≤
1

24(n+1) [n+ 1, 1]min(bn+1
0, j1, bn+1

1, j1). (4.73)

From the definition of Mn+1 (see (4.31)), we know that

ln+1∑
j=1

(L j + K j )≤
1

24(n+1)Mn+1. (4.74)

Combining with (4.55), (4.31), (4.32) and (4.33), (and recall L j =
∑ln

k=1 d̃ jk{n, k}),
we have

o( j)= L j +

pn∑
i=1

κ j (i)[n, i] ≤ L j +

pn∑
i=1

κ̄
j

0 (θn,i )[n, i]

= L j +

pn∑
i=1

pn+1∑
k=1

bn+1
0, jkcki [n, i] =

ln∑
k=1

d̃ jk{n, k}+
pn+1∑
k=1

[n+ 1, k]bn+1
0, jk

≤
Mn+1

24(n+1) +

pn+1∑
k=1

[n+1,k]bn+1
0, jk ≤

(
1+

2
24(n+1)

)pn+1∑
k=1

min(bn+1
0, jk,b

n+1
1, jk)[n+1,k].
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Combining (4.74), (4.31) and (4.73), we obtain

o′( j)= L j + K j + (n− 1)
ln∑

k=1

σ j (k){n, k}+
pn∑

i=1

λ j (i)[n, i]

≤

(
1+

2
24(n+1)

) pn+1∑
k=1

min(bn+1
0, jk, bn+1

1, jk)[n+ 1, k] + (n− 1)
ln∑

k=1

σ j (k){n, k}

≤

(
1+

3
24(n+1)

) pn+1∑
k=1

min(bn+1
0, jk, bn+1

1, jk)[n+ 1, k].

In summary, we conclude from (4.35) that

max(o( j), o′( j))≤
(

1+
3

24(n+1)

) pn+1∑
k=1

min(bn+1
0, jk, bn+1

1, jk)[n+ 1, k] ≤ {n+ 1, j}.

The first inequality of (4.72) follows from Lemma 4.58 and (4.55). Using (4.30)
and (e) in 4.25 (with n+ 1 in place of n), we calculate

pn∑
i=1

λ j (i)[n, i] ≥
(

1−
2

24(n+1)

) pn+1∑
k=1

pn∑
i=1

bn+1
0, jkcki [n, i]

≥

(
1−

2
24(n+1)

)(
1−

1
8n

) pn+1∑
k=1

bn+1
0, jk[n+ 1, k]

≥

(
1−

2
24(n+1)

)(
1−

1
8n

)(
1−

1
4n+1

)
{n+ 1, j}

>
(

1−
2

4n+1

)
{n+ 1, j}. □

From the definition of ϕo and ϕ, we get the following lemma.

Lemma 4.75. We have SP(ϕo
|0)= SP(ξ o

0 ), SP(ϕo
|1)= SP(ξ o

1 ), SP(ϕ|0)= SP(ξ0)

and SP(ϕ|1)= SP(ξ1).

Proof. Note that SP(π E
j ◦ϕ

o
|0)=

{
SP((π E

j ◦χ)|0), θ
∼κ j (1)
n,1 , θ

∼κ j (2)
n,2 , . . . , θ

∼κ j (pn)
n,pn

}
=

SP(π E
j ◦ ξ

o
0 ) since κ j (i)= κ̄ j

0 (θn,i )− κ
j

0 (θn,i ). The proofs of the other three parts
are similar. □

4.76 (definition of ϕo
n,n+1 and ϕn,n+1). By the lemma above, there are unitaries

V0, V1,U0,U1∈ En+1 such that Ad Vi◦(ϕ
o
|i )= ξ

o
i and Ad Ui◦(ϕ|i )= ξi for i=0, 1.

Since the unitary group of En+1 is path connected, there are two continuous paths
of unitaries V := V (t),U := U (t), 0 ≤ t ≤ 1 such that V (0) = V0, V (1) = V1,
U (0)=U0 and U (1)=U1.
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Now we define two homomorphisms ϕo
n,n+1, ϕn,n+1 : An→ An+1 by

ϕo
n,n+1( f )= (Ad V ◦ϕo)( f )⊕ψo( f ) ∈ An+1 ⊂ C([0, 1], En+1)⊕ Fn+1, (4.77)

ϕn,n+1( f )= (Ad U ◦ϕ)( f )⊕ψ( f ) ∈ An+1 ⊂ C([0, 1], En+1)⊕ Fn+1. (4.78)

Note that

(Ad V ◦ϕo)( f )(0)= (Ad V0 ◦ (ϕ
o
|0))( f )= ξ o

0 ( f )= βn+1,0(ψ
o( f )),

(Ad V ◦ϕo)( f )(1)= (Ad V1 ◦ (ϕ
o
|1))( f )= ξ o

1 ( f )= βn+1,1(ψ
o( f )).

In other words, the element ϕo
n,n+1( f ) is in An+1 rather than C([0, 1], En+1)⊕Fn+1.

Similarly, ϕn,n+1 is also a homomorphism from An to An+1.
So the construction is completed. We obtain two inductive systems Ao

=

lim(An, ϕ
o
n,n+1) and A = lim(An, ϕn,n+1). We summarize the properties of ϕo

n,n+1
and ϕn,n+1 in 4.80, 4.101 and Theorem 4.107 below, and use these properties to
prove that A is a simple C∗-algebra which satisfies the desired properties in 4.1.

Before we present other properties of ϕo
n,n+1 and ϕn,n+1, let us point out that both

of them are injective, since χ is injective. Also let us rewrite the part of property
(c) in 4.25 as

(c′) ρ̃(γn,∞(un))≥ (1− 1/8n) · 11 (since γn,∞ = γ
′

k(n),∞).

4.79 (K-theory of ϕn,n+1). Let

In = C0((0, 1), En)⊂ An and In+1 = C0((0, 1), En+1)⊂ An+1.

From the definition of ϕo
n,n+1, we have the commutative diagram

An

ϕo
n,n+1

//

π A
n
��

An+1

π A
n+1
��

An/In = Fn
ψn,n+1

// An+1/In+1 = Fn+1

Note that K0(An)=Gn , K0(An+1)=Gn+1, K0(Fn)= Hn , K0(Fn+1)= Hn+1, and
the maps

(π A
n )∗ : K0(An)→ K0(Fn)= Hn and (π A

n+1)∗ : K0(An+1)→ K0(Fn+1)= Hn+1

are inclusions. Also, recall that (ψn,n+1)∗ = γn,n+1 : Hn → Hn+1. Consequently,
(ϕo

n,n+1)∗ = γn,n+1|Gn : K0(An)→ K0(An+1). The commutative diagram

A1
ϕo

12
//

��

A2
ϕo

23
//

��

· · · // Ao

��

F1
ψ12
// F2

ψ23
// · · · // F
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induces the commutative diagram

K0(A1)= G1
γ12|G1

//

��

K0(A2)= G2
γ23|G2

//

��

· · · // K0(Ao)= G

��

K0(F1)= H1
γ12
// K0(F2)= H2

γ23
// · · · // K0(F)= H

Hence K0(Ao)= G as a subgroup of K0(F)= H .
On the other hand, π A

n+1◦ϕ
o
n,n+1=ψ

o is homotopy equivalent to π A
n+1◦ϕn,n+1=ψ

(see (4.44)). Thus we know that

(π A
n+1 ◦ϕn,n+1)∗ = (π

A
n+1 ◦ϕ

o
n,n+1)∗ : K0(An)= Gn→ K0(Fn+1)= Hn+1.

Consequently, (π A
n+1)∗ ◦ (ϕn,n+1)∗ = (π

A
n+1)∗ ◦ γn,n+1|Gn . Since (π A

n+1)∗ is an
inclusion, we have (ϕn,n+1)∗ = γn,n+1|Gn . Therefore, the inductive limit

A1
ϕ12
−−→ A2

ϕ23
−−→ A3→ · · · → A

also induces the K-theory maps

K0(A1)= G1
γ12|G1
−−−→ K0(A2)

γ23|G2
−−−→ K0(A3)→ · · · → K0(A) (or K0(Ao)).

Hence K0(A)= G = K0(Ao). Since An ∈ C0, K1(A)= {0}.

Lemma 4.80. A is a simple C∗-algebra.

Proof. Note that, by 4.58 and 4.68, λ j (i) > 0. From (4.78) and (4.70), it follows
that

{θn,i : 1≤ i ≤ pn} ⊂ Sp(ϕn,n+1|ηn+1, j (t)) for any 1≤ j ≤ ln+1, 0< t < 1. (4.81)

Note that from (4.78), for any θ ∈ Sp(Fn+1), SP(ϕn,n+1|θ )= SP(ψ |θ ) (see 4.2). It
follows from the definition of ψ in 4.37 (see (4.41) and (4.42)) that we have

{θn,i : 1≤ i ≤ pn} ⊂ Sp(ϕn,n+1|θn+1, j ) for all 1≤ j ≤ pn+1, (4.82)

{ηn, j (k/n),θn,i : 1≤ i≤ pn,1≤ j≤ ln,1≤k≤n−1}⊂Sp(ϕn,n+1|θn+1,1) (4.83)

(see also (4.41)).
From equations (4.70) (which tells us χ is a part of ϕ), (4.78) (which tells us, for

any ηn+1, j (t) ∈ (0, 1) j ⊂ Sp(C([0, 1],M{n+1, j}(C))), that SP((ϕn,n+1)ηn+1, j (t)) =

SP(ϕ|ηn+1, j (t))), and (4.48), we know that for all 1≤ j ≤ ln+1,

{ηn,i (t),ηn,i (1−t) :1≤i≤ln} ⊂ Sp(ϕn,n+1|ηn+1, j (t))∪Sp(ϕn,n+1|ηn+1, j (1−t)). (4.84)

For the composition of two homomorphisms ϕ : A→ B and ψ : B→ C among
three subhomogeneous algebras, it is well known and easy to see that, for any
x ∈ Sp(C), one has Sp(ψ ◦ϕ)|x =

⋃
y∈Sp(ψ |x ) Sp(ϕ|y). We will repeatedly use this

fact.
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From (4.82), we have

{θn,i | 1≤ i ≤ pn} ⊂ Sp(ϕn,m |θm, j ) for all 1≤ j ≤ pm . (4.85)

From (4.84), we know that, for any m ≥ n+ 1 and 1≤ j ≤ lm ,

{ηn,i (t), ηn,i (1− t) : 1≤ i ≤ ln} ⊂ Sp(ϕn,m |ηm, j (t))∪Sp(ϕn,m |ηm, j (1−t)). (4.86)

Fix m+2>m≥n. Let Z :={ηm, j (k/m),θm,i :1≤i≤ pm,1≤ j≤lm,1≤k≤m−1}.
It follows from (4.86) and (4.85) that

{ηn, j (k/m), θn,i : 1≤ i ≤ pn, 1≤ j ≤ ln, 1≤ k ≤ m− 1} ⊂
⋃
z∈Z

Sp(ϕn,m |z).

(When n = m, we use the convention ϕn,n = id.) Applying (4.83) with m in place
of n, we know that Z ⊂ Sp(ϕm,m+1|θm+1,1). For any x ∈ Sp(Am+2), from (4.83) with
m+ 1 in place of n, we have θm+1,1 ⊂ Sp(ϕm+1,m+2|x). Hence

Sp(ϕn,m+2|x)⊃
{
ηn,i

( k
m

)
: 1≤ k ≤m−1, 1≤ i ≤ ln

}
∪{θn,i : 1≤ i ≤ pn}. (4.87)

The latter is 1/m-dense in Sp(An) (see (4.4) and lines below that).
It is standard to show that A is simple (see [Dădărlat et al. 1992]). To see this,

let a, b ∈ A1
+
\ {0}. It suffices to show that b is in the (closed) ideal generated by a.

Let 1
2 > ε > 0. There are n ≥ 1 and a0 ∈ (An)

1
+

such that ∥ϕn,∞(a0)−a∥< ε/4. It
follows from Lemma 3.1 of [Elliott et al. 2020b] that there is r0 ∈ A such that

0 ̸= (ϕn,∞(a0)− ε/4)+ = r∗0 ar0. (4.88)

Put a1 := (a0− ε/4)+ ∈ An . Choose an integer m′ > n and b1 ∈ Am′+ such that
∥ϕm′,∞(b1)−b∥<ε/4. By (4.4) and lines below that, we may assume that, for some
δ > 0 and for any δ-dense subset S of Sp(An), there is s ∈ S such that a1(s) > 0.
Choose m> n such that 1/m<δ. Then by what has been proved above (see (4.87)),
we have

ϕn,m+2(a1)(x) > 0 for all x ∈ Sp(Am+2). (4.89)

By choosing a large m, we may assume that m>m′. It follows from Proposition 6.3
of [Elliott et al. 2020b] that ϕn,m+2(a1) is full in Am+2. Therefore, there are
x1, x2, . . . , xK ∈ Am+2 such that∥∥∥∥ K∑

i=1

x∗i ϕn,m+2(a1)xi −ϕm′,m+2(b1)

∥∥∥∥< ε

4
. (4.90)

This implies (see (4.88)) that∥∥∥∥ K∑
i=1

ϕm+2,∞(xi )
∗r∗0 ar0ϕm+2,∞(xi )− b

∥∥∥∥< ε. (4.91)

This shows that b is in the closed ideal generated by a, whence A is simple. □
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4.92. Let ∂e(T (A)) denote the set of extremal tracial states of A. It is well known
(see Lemma 2.2 of [Thomsen 1998]) that there is a one-to-one correspondence
between Sp(An) and ∂e(T (An)) given by sending the irreducible representation
θ : An→ Ml(C) to the extremal trace τθ defined by τθ (a)= tr(θ(a)), where tr is
the normalized trace on Ml(C). Using the calculation in [Gong et al. 2020a, 3.8]
(see [Thomsen 1998] also), we know that Aff(T0(An)) (for the definition of T0(An),
see Definition 2.2) consists of elements

(g1, g2, . . . , gln , x1, x2, . . . , xn) ∈ C([0, 1],Rln )⊕Rpn

with the conditions

g j (0)=
1
{n, i}

pn∑
i=1

bn
0, j i xi [n, i] and g j (1)=

1
{n, i}

pn∑
i=1

bn
1, j i xi [n, i]. (4.93)

Note that the norm on Aff(T0(An)) is given by

∥(g1, g2, . . . , gln , x1, x2, . . . , xn)∥=max{ sup
1≤t≤1

|g j (t)|, |xi | :1≤ j≤ ln, 1≤ i≤ pn}.

Let ψT
n,n+1 : T0(Fn+1)→ T0(Fn) and ψ♯n,n+1 :Aff(T0(Fn))→Aff(T0(Fn+1)) be

the affine maps induced by ψn,n+1 : Fn→ Fn+1, and ϕT
n,n+1 : T0(An+1)→ T0(An)

and ϕ♯n,n+1 :Aff(T0(An))→Aff(T0(An+1)) be induced by ϕn,n+1 : An→ An+1. Note
that Fn is unital. There is a unique element in Aff(T0(Fn)), denoted by 1T (Fn), such
that 1T (Fn)(τ )= 1 for all τ ∈ T (Fn). Even though Aff(T0(Fn)) and Aff(T0(Fn+1))

have units 1T (Fn) and 1T (Fn+1), respectively, ψ♯n,n+1 does not preserve the units,
since ψn,n+1 is not unital.

Lemma 4.94. (a) We have ψ♯n,n+1(1T (Fn)) ≥ (1− 1/8n) · 1T (Fn+1). (Equivalently,
for any τ ∈ T (Fn+1), ∥ψT

n,n+1(τ )∥ ≥ (1− 1/8n).) Consequently,

ψ♯n,m(1T (Fn))≥

(m−1∏
i=n

(
1− 1

8i

))
· 1T (Fm)

for any m > n.

(b) Suppose that f ∈ Aff(T0(An)) with ∥ f ∥ ≤ 1 satisfying

π A ♯
n ( f )≥ α · 1T (Fn) ∈ Aff(T0(Fn))

for some α ∈ (0, 1], where π A ♯
n : Aff(T0(An)) → Aff(T0(Fn)) is induced by

π A
n : An → Fn . Then, for any τ ∈ T (An+1), ϕ

♯

n,n+1( f )(τ ) ≥ (1 − 2/4n+1)α.
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Consequently, for a A
n , eA

n ∈ (An)+ (see 4.6), we have

ϕ
♯

n,n+1(ê
A
n )(τ )≥ ϕ

♯

n,n+1(â
A
n )(τ )≥ 1− 2

4n+1 for any τ ∈ T (An+1),

ϕ♯n,m(êA
n )(τ )≥ ϕ

♯
n,m(â A

n )(τ )

≥

(m−2∏
i=n

(
1− 1

8i

))(
1− 2

4m

)
for any m > n+ 1,

(4.95)

where êA
n and â A

n are the elements in Aff(T0(An)) corresponding to eA
n and a A

n ,
respectively. (Also, for any τ ∈ T̃ (An+1), ∥ϕT

n,n+1(τ )∥≥ (1−2/4n+1).) Furthermore,
for any τ ∈ T (A),

ϕ♯n,∞(êA
n )(τ )≥ ϕ

♯
n,∞(â A

n )(τ )≥

∞∏
i=n

(
1− 1

8i

)
≥

(
1− 1

4n

)
. (4.96)

Proof. (a) We only need to show that

ψ
♯

n,n+1(1T (Fn))(τ )= ψ
T
n,n+1(τ )(1Fn )≥ 1− 1

8n

for τ ∈ ∂e(T (Fn+1)). Let τ = τθn+1,i be defined by

τ(a1, a2, . . . , apn+1)= tr(ai ),

where tr is the normalized trace of F i
n+1=M[n+1,i](C). Let tr j denote the normalized

trace on F j
n = M[n, j](C). Then, for b = (b1, b2, . . . , bpn ), we have

ψT
n,n+1(τ )(b)=

1
[n+ 1, i]

pn∑
j=1

tr j (b j )ci j [n, j]

(recalling ci j = cn,n+1
i j ). In particular, if b=1Fn , then by (4.30) (noting 1̂Fn =1T (Fn)),

we have

ψT
n,n+1(τ )(1Fn )=

1
[n+ 1, i]

pn∑
j=1

tr j (b j )ci j [n, j] ≥
(

1− 1
8n

)
.

(b) Keep the notation from the proof of part (a). Again we only need to calcu-
late ϕ♯n,n+1( f )(τ ) for τ ∈ ∂e(T (Fn+1)). First suppose that τ = τθn+1,i defined by
τ( f1, f2, . . . , fln , a1, a2, . . . , apn+1)= tr(ai ). Writing

f = (g1, g2, . . . , gln , b1, b2, . . . , bpn ) ∈ Aff(T0(An)),
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we have bi ≥ α ∈ R for all i . Then, by (4.78), (4.41), (4.42) and (4.40), we have

(ϕ
♯

n,n+1( f ))(τθn+1,i )= (ψ
♯( f ))(τθn+1,i )

≥
1

[n+ 1, i]

(
tr1(b1)c′i1[n, 1] +

pn∑
j=2

tr j (b j )ci j [n, j]
)

≥
1

[n+ 1, i]

(
1−

1
24(n+1)

) pn∑
j=1

tr j (b j )ci j [n, j]

=

(
1− 1

24(n+1)

) 1
[n+ 1, i]

pn∑
j=1

αci j [n, j]

≥

(
1− 2

8n

)
α.

Now suppose that τ = τηn+1, j (t) (for 0< t < 1) is defined by

τ( f1, f2, . . . , fln , a1, a2, . . . , apn+1)= tr( f j (t)),

where tr is the normalized trace on E j
n+1 = M{n+1, j}(C). By (4.78), (4.70) and

(4.72), we have

(ϕ
♯

n,n+1( f ))(τηn+1, j (t))= (ϕ
♯( f ))(τηn+1, j (t))≥

1
{n+ 1, j}

( pn∑
i=1

tri (bi )λ
j (i)[n, i]

)

=
1

{n+ 1, j}

( pn∑
i=1

αλ j (i)[n, i]
)
≥

(
1− 2

4n+1

)
α.

Other parts of (b) follow from π A
n (e

A)= π A
n (a

A)= 1Fn and eA
≥ a A. □

4.97. Note that the map π A ♯
n :Aff(T0(An))→Aff(T0(Fn)) induced by π A

n : An→ Fn

is given by

π A ♯
n (g1, g2, . . . , gln , x1, x2, . . . , xn)= (x1, x2, . . . , x pn ).

Define ξn : Aff(T0(Fn))→ Aff(T0(An)) by

ξn(x1, x2, . . . , x pn )= (g1, g2, . . . , gln , x1, x2, . . . , x pn )

where


{n, 1}g1(t)
{n, 2}g2(t)

...

{n, ln}gln (t)

= (bn
0 + t (bn

1 − bn
0))


[n, 1]x1

[n, 2]x2
...

[n, pn]x pn

 . (4.98)

Then π A ♯
n ◦ ξn = id |Aff(T (Fn)). Define ξn,n+1 : Aff(T (An))→ Aff(T (An+1)) by

ξn,n+1=ξn+1◦ψ
♯

n,n+1◦π
A ♯
n . Note that ifψ♯n,n+1(x1, x2, . . . , x pn )= (y1, y2, . . . , yln ),
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then 
[n+ 1, 1]y1

[n+ 1, 2]y2
...

[n+ 1, pn+1]ypn+1

= cn,n+1


[n, 1]x1

[n, 2]x2
...

[n, pn]x pn

 . (4.99)

If ξn,n+1(g1, g2, . . . , gln , x1, x2, . . . , x pn ) = (h1, h2, . . . , hln+1, y1, y2, . . . , ypn+1),
then (4.99) holds and

{n+ 1, 1}h1(t)
{n+ 1, 2}h2(t)

...

{n+ 1, ln+1}hln+1(t)

= (bn+1
0 + t (bn+1

1 −b
n+1
0 ))


[n+ 1, 1]y1

[n+ 1, 2]y2
...

[n+ 1, pn+1]ypn+1

. (4.100)

Lemma 4.101. The following estimate holds:

∥ϕ
♯

n,n+1− ξn,n+1∥<
1

2n+1 . (4.102)

Proof. Let g= (g1, g2, . . . , gln , x1, x2, . . . , x pn ) ∈Aff(T (An)) with ∥g∥ ≤ 1. With-
out lose of generality, we assume that 0 ≤ g j (t) ≤ 1 and 0 ≤ xi ≤ 1 for all i, j, t .
Write

ϕo
n,n+1

♯
(g)= (h′1, h′2, . . . , h′ln+1

, y′1, y′2, . . . , y′pn+1
) ∈ Aff(T (An+1)),

ϕ
♯

n,n+1(g)= (h1, h2, . . . , hln+1, y1, y2, . . . , ypn+1) ∈ Aff(T (An+1)),

ξn,n+1(g)= ( f1, f2, . . . , fln+1, z1, z2, . . . , z pn+1) ∈ Aff(T (An+1)).

Recall that π A
n+1 ◦ ϕ

o
n,n+1 = ψ

o
= ψn,n+1 ◦ π

A
n : An → Fn+1 and π A

n+1 ◦ ϕn,n+1 =

ψ : An→ Fn+1.
Note that

π
A♯
n+1 ◦ ξn,n+1 = π

♯

n+1 ◦ ξn+1 ◦ (ψn,n+1 ◦π
A
n )

♯
= (ψn,n+1 ◦π

A
n )

♯
= π

♯

n+1 ◦ϕ
o
n,n+1

♯
.

Hence we have zi = y′i for all 1≤ i ≤ pn+1.
Using (4.38), (4.42) and (4.41), we calculate that

yi = y′i = zi for i ≥ 2,

y′1 =
1

[n+1, 1]

pn∑
i=1

c1,i xi [n, i],

y1 =
1

[n+1, 1]

( ln∑
i=1

n−1∑
k=1

gi

(k
n

)
{n, i}+

pn∑
i=1

c′1,i xi [n, i]
)
.
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Since ∥ϕo
n,n+1

♯
∥ ≤ 1, |y′1| ≤ 1. By (4.28) and (4.29), we have∣∣∣∣ ln∑

i=1

n−1∑
k=1

gi

(k
n

)
{n, i}

∣∣∣∣≤ (n− 1)ln max{{n, i} : 1≤ i ≤ pn}

≤
1

24(n+1)Ln+1 ≤
1

24(n+1) c11 <
1

24(n+1) [n+ 1, 1]. (4.103)

Hence (1/[n + 1, 1])
∣∣∑ln

i=1
∑n−1

k=1 gi (k/n){n, i}
∣∣ ≤ 1/24(n+1). Combining with

(4.40) (recall ci j = cn,n+1
i j ), we obtain

|y1− y′1| ≤
1

[n+ 1, 1]

pn∑
i=1

(c1i − c′1,i )xi [n, i] +
1

24(n+1)

≤
1

24(n+1)

(
1

[n+ 1, 1]

pn∑
i=1

c1i xi [n, i]
)
+

1
24(n+1)

=
1

24(n+1) y′1+
1

24(n+1) ≤
2

24(n+1) .

By (4.33), (4.35) and (4.100) (note that zk ∈ [0, 1]), we know that

| fi (t)− fi (0)| ≤
1

{n+ 1, i}

pn+1∑
k=1

∣∣bn+1
1,ik − bn+1

0,ik

∣∣[n+ 1, k]zk

≤
1

{n+ 1, i}
1

24(n+1)

pn+1∑
k=1

max
{
bn+1

1,ik , bn+1
0,ik

}
[n+ 1, k] ≤

1
24(n+1)

for any 1≤ i ≤ ln+1 and 0≤ t ≤ 1.
Note that, by (4.74) and (4.32) as well as (4.34),

L j + K j ≤
1

24(n+1)Mn+1 ≤
1

24(n+1) {n+ 1, j}. (4.104)

It is easy to see from the definition of ϕn,n+1 (see (4.78) and (4.70)) that all the
functions h′j (t) and h j (t) are approximately constant within 1/24(n+1). To be more
precise, we may regard ϕn,n+1 as a homomorphism from An to C([0, 1], En+1)

which is unitarily equivalent to ϕ (see (4.78)). Hence

(h1, h2, . . . , hln+1)= ϕ
♯(g) ∈ Aff(T (C([0, 1], En+1))).

On the other hand, by (4.70), ϕ =
⊕ln+1

j=1 ϕ j can be written as (χ ⊕ µ)⊕ ϕ′ =⊕ln+1
j=1(χ ⊕µ) j ⊕ϕ

′

j , where

(χ ⊕µ)=

ln+1⊕
j=1

(χ ⊕µ) j : An→

ln+1⊕
j=1

ML j+K j (C[0, 1])
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is defined in 4.45 and

ϕ′ =

ln+1⊕
j=1

ϕ′j : An→

ln+1⊕
j=1

M{n+1, j}−(L j+K j )(C[0, 1])

sends f = ( f1, f2, . . . , fln , a1, a2, . . . , apn ) to

ϕ′( f )=
ln+1⊕
j=1

diag
(

f1

(1
n

)∼σ j (1)
, f1

(2
n

)∼σ j (1)
, . . . , f1

(n−1
n

)∼σ j (1)
, f2

(1
n

)∼σ j (2)
,

. . . , f2

(n−1
n

)∼σ j (2)
, . . . , fln

(1
n

)∼σ j (ln)

, . . . , fln

(
n−1

n

)∼σ j (ln)

,

a∼λ
j (1)

1 , a∼λ
j (2)

2 , . . . , a∼λ
j (pn)

pn
, 0∼∼

)
. (4.105)

In particular, (ϕ′)♯(g) is constant (that is, (ϕ′i )
♯(g)(t) = (ϕ′i )

♯(g)(0) for t ∈ [0, 1]
and i ∈ {1, 2, . . . , ln+1}). Consequently, for any 1 ≤ i ≤ ln+1 and 0 ≤ t ≤ 1, we
obtain

|hi (t)− hi (0)| = |ϕ
♯
i (g)(t)−ϕ

♯
i (g)(0)|

=
1

{n+1, j}
∣∣(K j + L j )

(
(χ ⊕µ)

♯
j (g)(t)− (χ ⊕µ)

♯
j (g)(0)

)
+({n+1, j}−K j− L j )

(
(ϕ′i )

♯(g)(t)−(ϕ′i )
♯(g)(0)

)∣∣
≤

K j + L j

{n+ 1, j}
≤

1
24(n+1) .

Note that yi = y′i = zi for all i ≥ 2, y′1 = z1 and |y′1 − y1| ≤ 1/24(n+1). By the
formulae (4.93), we have h′i (0)= fi (0) and |hi (0)− fi (0)|< 1/24(n+1) (as βn+1,0

is a homomorphism). Consequently,

|hi (t)− fi (t)| ≤
2

24(n+1) <
1

2n+1 . □

4.106. For a separable C∗-algebra A, one has a standard metric on T0(A) (see
Definition 2.2), i.e., d(t1, t2) :=

∑
∞

n=1(1/2
n+1)|t1(an)−t2(an)| for all t1, t2 ∈ T0(A),

where {an} is a fixed dense sequence of A1
s.a.. In the following proof, we will use

this metric.

Theorem 4.107. The C∗-algebra A = lim(An, ϕn,m) satisfies the following condi-
tions:

(a) A is simple,

(b) K0(A)= G, K1(A)= 0, T (A)=1 and ρA : K0(A)→ Aff(T (A)) is the map
ρ from G to Aff1 identifying K0(A) with G and T (A) with 1.

Moreover, A ∈ D (see Definition 2.28) and has continuous scale.
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Proof. From 4.79 and Lemma 4.80, A is simple, and K0(A) = G. Consider the
projective limit

T0(A1)
ϕT

1,2
←−− T0(A2)

ϕT
1,2
←−− T0(A3)← · · · ← T0(A), (4.108)

where ϕT
i,i+1 : T0(Ai+1)→ T0(Ai ) is the affine continuous map induced by ϕi,i+1.

Suppose that τ ∈ T (A)w is written as τ = limk→∞ τk , where τk ∈ T (A). Then, for
any fixed n, by (4.96),

τ(ϕn,∞(eA
n ))= lim

k→∞
τk(ϕn,∞(eA

n ))= lim
k→∞

(
ϕ♯n,∞(êA

n )
)
(τk)≥

(
1− 1

4n

)
.

Hence ∥τ∥≥ (1−1/4n). Since n is arbitrary, ∥τ∥= 1 and τ ∈ T (A). That is, T (A)
is compact. Note that F is a nonunital simple AF algebra with

(K0(F), K0(F)+, 6(F))= (H, H+, {x ∈ H+ : ρ̃(x)(τ ) < 1 for all τ ∈1}).

Therefore T (F)=1, identifying ρF : K0(F)→ Aff(T (F)) and ρ̃ : H → Aff(1).
On the other hand, by Lemma 4.101, we have the approximately commuting

diagram

Aff(T0(A1))

π A
1
♯

��

ϕ
♯

1,2
// Aff(T0(A2))

ϕ
♯

2,3
//

π A
2 ♯

��

Aff(T0(A3)) //

π A♯
3

��

· · · // Aff(T0(A))

Aff(T0(F1))
ψ
♯

1,2
//

ξ2◦ψ
♯

1,2

99

Aff(T0(F2))
ψ
♯

2,3
//

ξ2◦ψ
♯

2,3

99

Aff(T0(F3))
ψ
♯

3,4
//

ξ3◦ψ
♯

3,4

==

· · · // Aff(T0(F))

of real Banach spaces (recall ξn,n+1=ξn+1◦ψ
♯

n,n+1◦π
A
n
♯ and π A ♯

n ◦ξn= id |Aff(T (Fn))).
Let 5♯

: Aff(T0(A))→ Aff(T0(F)) be the continuous linear isomorphism induced
by the above approximately commutative diagram. Note that we also have the
projective limit

T0(F1)
ψT

1,2
←−− T0(F2)

ψT
1,2
←−− T0(F3)← · · · ← T0(F). (4.109)

Together with (4.108), by applying the above approximately commutative dia-
gram, we obtain the approximately commutative diagram

T0(A1) T (A2)
ϕT

1,2
oo T0(A3)

ϕT
2,3

oo · · · T0(A)oo

T0(F1)

π A
1

T

OO

T0(F2)
ψT

1,2
oo

π A
2

T

OO

T0(F3)
ψT

2,3
oo

π A
3

T

OO

· · · T0(F)oo

as compact convex sets with the metric mentioned in 4.106, which gives an affine
continuous map 5T

: T0(F)→ T0(A). Combining the two approximately commu-
tative diagrams above, we have 5♯( f )(t)= f (5T (t)) for all t ∈ T (F). Consider
the functions gn := ϕ

♯
n,∞(eA

n ) ∈ Aff(T0(A)). By (4.96), on T (A) ⊂ T0(A), gn



ON CLASSIFICATION OF NONUNITAL AMENABLE SIMPLE C∗-ALGEBRAS, III 327

converges uniformly to the affine function gA with gA(τ ) = 1 for all τ ∈ T (A)
(gA(0)= 0). Since gn(rτ)= rτ for all τ ∈ T (A) and 0≤ r ≤ 1, and T (A) is com-
pact, gn converges to gA uniformly on T0(A). Note that 5♯(gn)= ψ

♯
n,∞(π

A
n (e

A
n )).

It follows from (4.95) that 5♯(gn) converges to 1 uniformly on T (F). Then,
by the first approximately commutative diagram above, 5♯(gA) = 1 on T (F).
Since 5♯( f )(t)= f (5T (t)) for all t ∈ T (F), 5T maps T (F) to the compact set
{t ∈ T0(A) : gA(t)= 1}. The fact that 5♯ is an isomorphism implies that 5T is an
affine homeomorphism. Since T (A) = {t ∈ T0(A) : gA(t) = 1}, this implies that
5T maps 1= T (F) onto T (A).

Recall from (4.26) that we have, for each n, the commutative diagram

Gn
ρAn

//

(π A
n )∗0
��

Aff(T0(An))

π A
n
♯

��

Hn
ρFn

// Aff(T0(Fn))

where ρAn :Gn=K0(An)→Aff(T (An)) is induced by ρ Ãn
:K0( Ãn)→Aff(T ( Ãn))

(see (2.14)). Let ρA : K0(A) → Aff(T (A)) be the map given as in 2.12 by
ρ Ã : K0( Ã)→ Aff(T ( Ã)). Then ρA = limn→∞ ρAn . We obtain the approximately
commutative diagram

Gn

ρAn

))

ϕn,n+1,∗0
//

π A
n∗0

��

Gn+1

π A
n+1,∗0

��

ρAn+1

**

ϕn+1,n+2,∗0
// · · · // · · · // G

ι

��

ρA
''

Aff(T0(An))

π A
n
♯

��

ϕ
♯
n,n+1

// Aff(T0(An+1))
ϕ
♯
n+1,n+2

//

π A
n+1

♯

��

· · · // · · · // Aff(T0(A))

5♯

��

Hn

ρFn

))

ψn,n+1∗0
// Hn+1

ρFn+1

**

ψn+1,n+2∗0
// · · · // · · · // H

ρF

''

Aff(T0(Fn))
ψ
♯
n,n+1

// Aff(T0(Fn+1))
ψ
♯
n+1,n+2

// · · · // · · · // Aff(T0(F))

where the top, bottom and the back diagrams are commutative, and the front plane
is approximately commutative. Thus, we obtain the commutative diagram

G
ρA

//

ι

��

Aff(T0(A))

5♯

��

H
ρF

// Aff(T0(F))



328 GUIHUA GONG AND HUAXIN LIN

where the map from G to H is given by 4.79. Since ρF = ρ̃, we obtain ρA =

ρ : G→ Aff(1) as desired.
To see A∈D, choose n0≥ 1 such that λs(An)≥

63
64 for all n≥ n0 (see (e) of 4.25).

Let e ∈ An0 be a strictly positive element. By (4.95), we may assume that

τ(ϕn0,n(e))≥
63
64 for all τ ∈ T (An),

t (ϕn0,∞(e))≥
63
64 for all t ∈ T (A).

(4.110)

In particular, ϕn0,n(e) is full in An for all n ≥ 1. Choose δ > 0 such that

τ(ϕn0,n((e− δ)+))≥
31
32 for all τ ∈ T (An),

t (ϕn0,∞(e− δ)+)≥
31
32 for all t ∈ T (A).

Choose k ≥ 1 such that
f1/4(e1/k)≥ (e− δ)+. (4.111)

Let B=ϕn0,∞(e)Aϕn0,∞(e). Then B is a hereditary C∗-subalgebra of A. Let us first
show B ∈D. Put a = ϕn0,∞(e

1/k) and choose fa =
1
2 . Let Bn = ϕn0,n(e)Anϕn0,n(e).

Note that Bn ∈ C′0 (recall Definition 2.26).
Now fix a finite subset F ⊂ B and 0<ε< 1

16 . We may assume that F ⊂ϕn,∞(Bn)

for some n > n0. Choose 0 < η < ε such that, if a1, a2 ∈ B+ with 0 ≤ a1, a2 ≤ 1
and ∥a1− a2∥< η, then ∥ f1/4(a1)− f1/4(a2)∥< ε/8.

Choose a completely positive contractive linear map ψ : B→ Bn ∼= ϕn,∞(Bn)

(see 2.3.13 of [Lin 2001], for example) such that

∥ψ(b)− b∥< ε
2 for all b ∈ F ∪ {a}. (4.112)

Then
∥ f1/4(ψ(a))− f1/4(a)∥< ε

8 . (4.113)

It follows, for all τ ∈ T (Bn), by identifying ϕn,∞(Bn) with Bn , that

τ( f1/4(ψ(a)))≥ τ( f1/4(ϕn0,n(e
1/k)))− ε

8

≥ τ((ϕn0,n(e− δ)+))≥
31
32 −

ε
8 > fa. (4.114)

Define ϕ = 0. By (4.112), (4.114) and Definition 2.28, B ∈ D. By Corollary 11.3
of [Elliott et al. 2020b], B = Ped(B), and by Theorem 9.4 of [Elliott et al. 2020b],
B has strict comparison for positive elements. It follows from [Brown 1977] that
A⊗K∼= B⊗K. Therefore A is isomorphic to a hereditary C∗-subalgebra of B⊗K.
It follows that A has strict comparison for positive elements. Let eA be a strictly
positive element. Since T (A) is compact, dτ (eA)= 1 for all τ ∈ T (A). It follows
that ⟨̂eA⟩ is continuous on T̃ (A). By Theorem 5.4 of [Elliott et al. 2020b], A has
continuous scale. Therefore A = Ped(A) (see Theorem 3.3 of [Lin 1991]). Hence
a ∈ Ped(A). It follows from Proposition 11.7 of [Elliott et al. 2020b] (see also
Definition 1.6 of [Elliott et al. 2020b]) that A ∈ D. □
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4.115. Now let G and K be any countable abelian groups, 1 a compact Choquet
simplex and ρ : G→Aff1 a homomorphism with the property that for any g ∈ G,
there is a τ ∈1 such that ρ(g)(τ )≤ 0 (see condition (∗) in 4.1).

We construct a simple stably projectionless, stably finite C∗-algebra A such that
K0(A)∼= G, K1(A)∼= K , T (A)∼=1, and the map ρA : K0(A)→Aff(T (A)) is the
map ρ when one identifies K0(A) with G and T (A) with 1.

Note that if K = 0 and G is torsion free, then the algebra satisfying the condition
is already constructed (see Theorem 4.107 above).

Note Tor(G)⊂ ker ρ. Write GT =G/ ker ρ, which may be viewed as a subgroup
of Aff1, and write G f = ker ρ/Tor(G), which is a torsion free group.

Lemma 4.116. G can be written as an inductive limit of finitely generated sub-
groups (Gn = Gn,T ⊕ Gn, f ⊕ Gn,tor, γn,m) with Tor(Gn) = Gn,tor such that the
following hold:

(a) According to the decompositions Gn = Gn,T ⊕ Gn, f ⊕ Gn,tor and Gn+1 =

Gn+1,T ⊕Gn+1, f ⊕Gn+1,tor, the map γn,n+1 may be written as
γ

n,n+1
T,T 0 0

γ
n,n+1
T, f γ

n,n+1
f, f 0

γ
n,n+1
T,tor γ

n,n+1
f,tor γ

n,n+1
tor,tor

 ,
that is, the components of γn,n+1 from Gn,tor to Gn+1,T ⊕Gn+1, f and from Gn, f to
Gn,T are zero maps. In particular,

γn,n+1(Gn,tor)⊂ Gn+1,tor and γn,n+1(Gn,Inf)⊂ Gn+1,Inf,

where Gn,Inf = Gn, f ⊕Gn,tor.

(b) ker ρ = lim(Gn,Inf, γn,m |Gn,Inf) and Tor(G)= lim(Gn,tor, γn,m |Gn,tor).

(c) Let

γ̃n,n+1 = γ
n,n+1
T,T : Gn,T = Gn/Gn,Inf→ Gn+1,T = Gn+1/Gn+1,Inf,

˜̃γn,n+1 =

(
γ

n,n+1
T,T 0
γ

n,n+1
T, f γ

n,n+1
f, f

)
: Gn,T ⊕Gn, f = Gn/Gn,tor

→ Gn+1,T ⊕Gn+1, f = Gn+1/Gn+1,tor

be the quotient maps induced by γn,n+1. Then GT = G/ ker ρ = lim(Gn,T , γ̃n,m)

and G/ tor(G)= lim(Gn,T ⊕Gn, f , ˜̃γn,m).

(d) γ n,n+1
T,T , γ n,n+1

f, f and γ n,n+1
tor,tor are injective. Consequently, γn,n+1, γ̃n,n+1 and

˜̃γn,n+1 are injective.

Proof. Let G f = ker ρ/ tor(G). Write GT =
⋃
∞

n=1 Gn,T with G1,T ⊂G2,T ⊂ · · · ⊂

Gn,T ⊂ · · · ⊂ GT , G f =
⋃
∞

n=1 Gn, f with G1, f ⊂ G2, f ⊂ · · · ⊂ Gn, f ⊂ · · · ⊂ G f ,
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and Tor(G)=
⋃
∞

n=1 Gn,tor with G1,tor⊂G2,tor⊂· · ·⊂Gn,tor⊂· · ·⊂Tor(G), where
each Gn,T , Gn, f and Gn,tor are finitely generated. Denote by ιGn, f : Gn, f → G f

the embedding.
Since G f is torsion free, the extension 0→ Tor(G)→ ker ρ → G f → 0 is

pure, i.e., every finitely generated subgroup lifts. Thus, for each n, there is a
homomorphism ξn : Gn, f → ker ρ such that the diagram

Gn, f

ιGn, f

��

ξn

||

ker ρ π
// G f

commutes (π ◦ξn = ιGn, f , n= 1, 2, . . . ). Define γ ′n, f :Gn, f →Tor(G) by γ ′n, f (h)=
ξn(h)−ξn+1(h)∈Tor(G). Since Gn, f is finitely generated, there is an integer m> n
such that γ ′n, f (Gn, f )⊂ Gm,tor. By passing to a subsequence, we may assume
γ ′n, f (Gn, f )⊂ Gn+1,tor. Define γ n,n+1

f,tor = γ
′

n, f and

χn,n+1 : Gn,Inf = Gn, f ⊕Gn,tor→ Gn+1,Inf = Gn+1, f ⊕Gn+1,tor

by

χn,n+1 =

(
γ

n,n+1
f, f 0

γ
n,n+1
f,tor γ

n,n+1
tor,tor

)
,

where γ n,n+1
f, f : Gn, f → Gn+1, f and γ n,n+1

tor,tor : Gn,tor → Gn+1,tor are the inclusion
maps. Then ker ρ = lim(Gn, f ⊕Gn,tor, χn,n+1) and χn,n+1 are injective. Repeating
this procedure with GT in place of G f and ker ρ in place of Tor(G), and of course
passing to a subsequence again, we obtain the other parts of the map γn,n+1 as
desired. □

4.117. Let us recall Theorem 7.11 of [Gong and Lin 2020a]. Let G0, G1 be
any countable abelian groups and T be any compact metrizable Choquet simplex.
There is a simple Z-stable C∗-algebra BT ∈ D0 with continuous scale such that
K0(BT )= ker(ρBT )= G0, K1(BT )= G1 and T (BT )= T . Moreover BT is locally
approximated by subhomogeneous C∗-algebras with spectrum having dimension
no more than 3 (see Proposition 7.7 of [Gong and Lin 2020a]). More precisely,
BT = limk→∞(En(k)⊕Wk,8k,k+1), where En = M(n!)2(A(W, αn)) and Wk is in C0

with K0(Wk)= {0}, and 8k,k+1 is injective (see the constructions in Definition 7.2
of [Gong and Lin 2020a]; also the notation in [Gong and Lin 2020a, 11.3] and the
discussions in [Gong and Lin 2020a, 7.3–7.10]). Note that, by [Gong and Lin 2020a,
Proposition 7.7], BT is locally approximated by subhomogeneous C∗-algebras with
spectrum having dimension no more than 3.

If 1 is a compact metrizable Choquet simplex, then Aff(1) can be regarded
as a subset of LAff+(1̃) (here 1̃ is the cone generated by 1 and 0) by regarding
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f : 1→ R as f̃ : 1̃→ R defined by f̃ (λτ) = λ f (τ ) for λ ∈ [0,∞) and τ ∈ 1.
In particular 11 ∈ LAff+(1̃). For α > 0, denote by α1 the subset {ατ : τ ∈ 1}
of 1̃. Note that when 1 is compact, we may identify Aff(1) with Aff(1̃) (recall
f (0)= 0 and see the end of Definition 2.2) — that is, for f ∈Aff(1), we assume f
is extended to f ∈ Aff(1̃) defined by f (ατ)= α f (τ ) for any α ∈ R+ and τ ∈1.

Theorem 4.118. Let 1 be a metrizable Choquet simplex, G0 a countable abelian
group, ρ : G0→ Aff(1) a homomorphism such that ρ(G0)∩Aff+(1)= {0}, and
G1 a countable abelian group. Then there is a simple C∗-algebra

A = lim
n→∞

(Bn ⊕Cn ⊕ Dn, ϕn,m),

where Cn and Dn are simple C∗-algebras in Theorem 4.107 and Bn is in 4.117
(as BT — see [Gong and Lin 2020a, Theorem 7.11 (and 7.2)]) such that ϕn maps
strictly positive elements to strictly positive elements,

((K0(A),6(K0(A)),T (A),ρA,6A),K1(A))=((G0, {0},1,ρ,11),G1), (4.119)

ϕn,∞(K0(Cn)) ∩ ker ρA = {0}, ker ρCn = {0}, ker ρDn = K0(Dn), and K0(Bn) is
torsion. Moreover, A has continuous scale, A ∈ D and

lim
n→∞

inf{dτ (ϕn,∞(xn)) : τ ∈ A} = 0,

where xn ∈ Bn ⊕ Dn is any strictly positive element.
Moreover, one may require that ϕn∗i |Ki (Bn), ϕn∗i |Ki (Cn) and ϕn∗i |Ki (Dn) are all

injective, and Ki (Bn), Ki (Cn) and Ki (Dn) are finitely generated.

Proof. For convenience, we write G0 = G and G1 = K . Choose finitely generated
subgroups K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ K such that K =

⋃
∞

n=1 Kn . Write
G = lim(Gn,T ⊕Gn, f ⊕Gn,tor, γn,m) as in Lemma 4.116. We adopt the notation
γn,n+1 and γ n,n+1

a,b , where a, b = T , f and tor from Lemma 4.116.
It follows from Theorem 7.11 and Proposition 7.8 of [Gong and Lin 2020a] that

there is a simple C∗-algebra Bn ∈ BT such that

((K0(Bn),6(K0(Bn)), T (Bn), ρBn ), K1(Bn))= ((Gn,tor, {0},10, 0), Kn),

where 10 is a single point. Here we mean ρBn = 0. Note that Bn ∈ D0 ⊂ D is a
Z-stable simple C∗-algebra with continuous scale (see [Gong and Lin 2020a, 7.7]).

By Theorem 4.107, there is also a simple C∗-algebra C ′n with continuous
scale and with the form in Theorem 4.107 such that (K0(C ′n), T (C ′n), ρC ′n ) =

(Gn,T ,1, ξT,n,∞), where ξT,n,∞ is the homomorphism of the form

Gn,T
γ̃n,∞
−−→ G/ ker ρ = GT ⊂ Aff(1)
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induced by the inductive limit GT = limn→∞(Gn,T , γ̃n,m). Note that, by [Robert
2012, Theorem 6.2.3],

Cu∼(C ′n)= K0(C ′n)⊔LAff+(1̃), (4.120)

where 1̃ is the cone generated by 1 and {0}. Note that γ̃n,n+1 and id1 induce a
morphism ξ cu

T,n :Cu∼(C ′n)→Cu∼(C ′n+1). By [Robert 2012, Theorem 1.0.1], there is
a homomorphism ψn : C ′n→ C ′n+1 which sends strictly positive elements to strictly
positive elements and Cu∼(ψn)= ξ

cu
T,n . In particular, ψn∗0 = ξ

cu
T,n|K0(C ′n) = γ̃n,n+1.

We continue to write ψn for the extension ψn⊗ idM3 : M3(C ′n)→ M3(C ′n+1). Note
that, since C ′1 ∈ D, by Proposition 11.8 of [Elliott et al. 2020b], one may choose
c1 ∈ (C ′1)+ such that dτ (c1) =

1
2 for all τ ∈ T (C ′1). Let C1 = c1C ′1c1. Let n ≥ 2.

Choose cn,0, cn,b, cn,c, cn,d ∈ (C ′n)+ such that dτ (cn,0) = 1/2n+1, and dτ (cn,b) =

dτ (cn,d)= 1/2n+2 (and dτ (cn,c)= 1−1/2n) for all τ ∈ T (C ′n) and n= 2, 3, . . . . Put
cn := cn,b⊕ cn,c⊕ cn,d ∈ M3(C ′n) and Cn = cn M3(C ′n)cn . Note that cn ∈ M3(C ′n)
satisfies that τ(cn) = (1− 1/2n)+ 1/2n+2

+ 1/2n+2
= 1− 1/2n+1 and defines

⟨̂cn⟩ = (1− 1/2n+1) · 11 ∈ LAff+(1̃) ⊂ Cu∼(C ′n). Similarly, cn+1,c also defines
̂⟨cn+1,c⟩ = (1− 1/2n+1) · 11 ∈ LAff+(1̃)⊂ Cu∼(C ′n+1). Consequently, ⟨cn+1,c⟩ =

⟨ψn(cn)⟩ in Cu(C ′n+1). By [Robert 2016, Theorem 1.2], one has Her(ψn(Cn)) ∼=

cn+1,cC ′n+1cn+1,c. Therefore, there is a homomorphism ϕn,c,c : Cn → Cn+1 such
that Cu∼(ϕn,c,c) = Cu∼(ψn|Cn ) and ⟨ϕn,c,c(cn)⟩ = ⟨cn+1,c⟩. Note this fact, which
will be used later: when we identify both T (Cn) and T (Cn+1) with 1, the map
ϕ
♯
n,c,c : Aff(T (Cn))= Aff(1)→ Aff(T (Cn+1))= Aff(1) is given by

ϕ♯n,c,c( f )=
1− 1/2n+1

1− 1/2n+2 f for all f ∈ Aff(T (Cn)). (4.121)

Denote by Cn,p = cn,pCncn,p, where p= b, c, d.
By Theorem 4.107, there is a simple C∗-algebra Dn of the form in Theorem 4.107

such that K0(Dn)=Gn, f and ker ρDn = K0(Dn), and T (Dn)=10, the single point.
As in the previous case, there is ψd,n : Dn → Dn+1 such that ψd,n∗0 = γ

n,n+1
f, f :

Gn, f → Gn+1, f (see Lemma 4.116), and ψn,d sends strictly positive elements to
strictly positive elements (using again [Robert 2012, Theorem 1.0.1]). Choose
dn,b, dn,c, dn,d ∈ (Dn)+ such that dτ (dn,b) = dτ (dn,d) = 1/2n+2, and dτ (dn,c) =

1− 1/2n+1 for all τ ∈ T (Dn). Define

D′n := (dn,b⊕ dn,c⊕ db,d)M3(Dn)(dn,b⊕ dn,c⊕ dn,d).

Then, by [Robert 2016], D′n ∼= Dn . Without loss of generality, we may assume
that Dn = D′n and dn,b, dn,c and dn,d are mutually orthogonal in Dn . Put Dn,p =

Her(dn,p), p= b, c, d .
Choose bn,b, bn,c, bn,d ∈ (Bn)+ such that dτ (bn,b) = dτ (bn,d) = 1/2n+2 and
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dτ (bn,c)= 1− 1/2n+1 for all τ ∈ T (Bn). Define

B ′n := (bn,b⊕ bn,c⊕ bn,d)M2(B)(bn,b⊕ bn,c⊕ bn,d).

Since Bn is stably projectionless and Z-stable [Gong and Lin 2020a], by [Robert
2016, Theorem 1.2], B ′n ∼= Bn . We may assume that bn,b, bn,c and bn,d are mutually
orthogonal in Bn and B ′n = Bn . Define Bn,p = bn,pBbn,p, where p= b, c, d .

Denote by ιbn,p : Bn,p→ Bn the embedding (p= b, c, d). Note that for p= b, c, d ,

((K0(Bn,p), T̃ (Bn,p), 0), K1(Bn,p))∼= ((K0(Bn), T̃ (Bn), 0), K1(Bn))

= ((Gn,tor, 1̃0, 0), Kn). (4.122)

By Theorem 12.8 of [Gong and Lin 2020a], there is a homomorphism ϕ′n,b,b : Bn→

Bn+1,b ⊂ Bn+1 which sends strictly positive elements to strictly positive elements
such that ϕn,b,b∗0=γ

n,n+1
tor,tor :K0(Bn)=Gn,tor→K0(Bn+1)=Gn+1,tor and ϕn,b,b∗1=

ι : K1(Bn) = Kn ↪→ K1(Bn+1) = Kn+1. Let ϕn,b,b := ι
b
n+1,b ◦ ϕ

′

n,b,b. Let Wn

be a simple C∗-algebra which is an inductive limit of C∗-algebras in C0 such
that K0(Wn) = K1(Wn) = 0 and T (Wn) = 10, n = 1, 2, . . . . It follows from
Theorem 12.8 of [Gong and Lin 2020a] again that there is hn,b,w : Bn→Wn which
sends strictly positive elements to strictly positive elements and hn,b,wT gives the
identity on 10. Note that, for p= b, c, d ,

((K0(Cn,p),6(K0(Cn,p)), T̃ (Cn,p), ρCn,p), K1(Cn,p))

∼= ((K0(C ′n), {0}, 1̃, ρC ′n ), {0}). (4.123)

By [Robert 2012, Theorem 1.0.1], there is a homomorphism hn,w,c :Wn→ Cn+1,b

mapping strictly positive elements to strictly positive elements. Define ϕn,b,c : Bn→

Cn+1,b ⊂Cn+1 by ϕn,b,c := hn,w,c ◦hn,b,w. Similarly, one obtains a homomorphism
ϕn,b,d : Bn→ Dn+1,b ⊂ Dn+1 which factors through Wn and sends strictly positive
elements to strictly positive elements.

Note that, by [Elliott et al. 2020b, Theorem 11.5], Bn+1 has stable rank one,
and by [Robert 2012, Theorem 6.2.3] (see also Theorem 7.3, Corollary 11.3 and
Proposition 11.8 of [Elliott et al. 2020b]),

Cu∼(Bn+1,p)= K0(Bn+1)⊔LAff∼(T (Bn+1)), p= c, b, d. (4.124)

Let τw,0 ∈ T (Cn) be such that ρCn (x)(τw,0) = 0 for all x ∈ K0(Cn) given by
Theorem 3.1. Define ξc,b : Cu∼(Cn)→ Cu∼(Bn+1,c) by

ξc,b|K0(Cn) := γ
n,n+1
T,tor : K0(Cn)= Gn,T → K0(Bn+1,c)= K0(Bn+1)= Gn+1,tor

and ξc,b|LAff∼(T(Cn)) by ξc,b( f )(t)= f (τw,0) for f ∈LAff∼(T (Cn)) and t∈T (Bn+1,c).
Note that ρBn = 0. One then checks that ξc,b is a morphism in Cu. Since Bn+1,c
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has stable rank one, by applying [Robert 2012, Theorem 1.0.1] again, one obtains
a homomorphism ϕ′n,c,b : Cn → Bn+1,c such that Cu(ϕ′n,c,b) = ξc,b which sends
strictly positive elements to strictly positive elements. Define ϕn,c,b := ι

b
n+1,c◦ϕ

′

n,c,b,
where ιbn+1,c : Bn+1,c→ Bn+1 is the embedding.

Using τw,0 and [Robert 2012, Theorem 1.0.1] again, one obtains a homomorphism
ϕn,c,d : Cn→ Dn+1,c ⊂ Dn+1 such that ϕn,c,d∗0 = γ

n,n+1
T, f : Gn,T → Gn+1, f , which

sends strictly positive elements of Cn to strictly positive elements of Dn+1,c.
Denote by ιdn,p : Dn,p→ Dn the embedding (p = b, c, d). As above, applying

[Robert 2012, Theorem 1.0.1], as Bn+1 has stable rank one, one obtains a homo-
morphism ϕn,d,b : Dn → Bn+1,d ⊂ Bn+1 such that ϕn,b,d∗0 = γ

n,n+1
f,tor : K0(Dn) =

Gn, f → K0(Bn+1,d) = Gn+1,tor. By factoring through Wn again, one obtains
a homomorphism ϕn,d,c : Dn → Cn+1,d ⊂ Cn+1, which sends strictly positive
elements of Dn to strictly positive elements of Cn+1,d . By applying Theorem 1.0.1
of [Robert 2012] again (recall ρDn = 0 for all n), one also has a homomorphism
ϕn,d,d : Dn → Dn+1,d ⊂ Dn+1 such that ϕn,d,d∗0 = γ

n,n+1
f, f : K0(Dn) = Gn, f →

K0(Dn+1,d) = Gn+1, f , which sends strictly positive elements to strictly positive
elements.

Now define ϕn,n+1 : Bn ⊕Cn ⊕ Dn→ Bn+1⊕Cn+1⊕ Dn+1 by

ϕn,n+1|Bn = ϕn,b,b⊕ϕn,b,c⊕ϕn,b,d ,

ϕn,n+1|Cn = ϕn,c,b⊕ϕn,c,c⊕ϕn,c,d ,

ϕn,n+1|Dn = ϕn,d,b⊕ϕn,d,c⊕ϕn,d,d .

Put An=Bn⊕Cn⊕Dn . Then K0(An)=Gn=GT,n⊕Gn, f⊕Gn,tor and K1(An)=Kn .
It is clear that ϕn,n+1 sends strictly positive elements to strictly positive elements as
constructed above. Moreover,

ϕn,n+1∗0 := γn,n+1 : Gn→ Gn+1 and ϕn,n+1∗1 = ι : Kn ↪→ Kn+1. (4.125)

Denote by ιn : Cn→ C ′n the embedding and by ιn T : T (C ′n)→ T (Cn) the induced
affine homeomorphism defined by

ιn T (τ )(c)=
1

1−1/2n+1 τ(ιn(c))

for all c ∈ Cn (recall T (C ′n)=1). Then, for any

( f, g f , gt) ∈ Gn,T ⊕Gn, f ⊕Gn,tor = Gn,

we have

ρAn ( f ⊕ g f ⊕ gt)(τ )= ρ(γn,∞( f ))(ιn−1
T (τ )) for all τ ∈ T (Cn), (4.126)

ρAn ( f ⊕ g f ⊕ gt)(τ )= 0 for all τ ∈ T (Bn), (4.127)

ρAn ( f ⊕ g f ⊕ gt)(τ )= 0 for all τ ∈ T (Dn) (4.128)
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(recall ρ : G → Aff(1) = Aff(1̃)). Define A := limn→∞(An, ϕn,n+1). Then
K0(A) = G = G0 and K1(A) = K = G1. Since Bn , Cn and Dn are simple, and
all maps ϕn,p,q (both p and q are among b, c, and d) are nonzero, ϕn,n+1 maps any
nonzero element of Bn ⊕Cn ⊕ Dn to a full element in Bn+1 ⊕Cn+1 ⊕ Dn+1. It
follows that A is simple. Note that, for any b ∈ Bn ⊕ Dn and any τ ∈ T (An+1),

|τ(ϕn,n+1(b))|<
1
2n ∥b∥. (4.129)

Let qn,a,b : An→ Bn , qn,a,c : An→ Cn and qn,a,d : An→ Dn be the projection
maps. Denote by jn,c,a :Cn→ An the homomorphism defined by jn,c,a(c)=0⊕c⊕0
for all c ∈Cn . Identify T (Cn)=1 as above. Let λn :Aff(T (Cn))→Aff(T (Cn+1))

be defined as id : Aff(1)→ Aff(1), where we identify both T (Cn) and T (Cn+1)

with 1. Then, by (4.121),

∥λn( f )−ϕ♯n,c,c( f )∥ =
∥∥∥∥(1−

1− 1/2n+1

1− 1/2n+2

)
f
∥∥∥∥< 1

2n ∥ f ∥. (4.130)

For each f ∈Aff(T (An)), we may write f = fb⊕ fc⊕ fd , where fb = qn,a,b( f ),
fc = qn,a,c( f ) and fd = qn,a,d( f ). By (4.129) and (4.130), we have

∥ j ♯n+1,c,a ◦ λn ◦ q♯n,a,c( f )−ϕ♯n,n+1( f )∥

≤ ∥λn( fc)−ϕ
♯
n,c,c( fc)∥+∥ϕ

♯

n,n+1( fb⊕ 0⊕ fd)∥<
2
2n ∥ f ∥. (4.131)

Let λ̃n = λn ◦ q♯n,a,c. Then we have

∥ j ♯n+1,c,a ◦ λ̃n( f )−ϕ♯n,n+1( f )∥< 2
2n ∥ f ∥ and λ̃n ◦ j ♯n,c,a = λn. (4.132)

Recall that T (An) and T (Cn)=1 are all compact as constructed above. Moreover,
by (4.132), we obtain the following approximately commutative diagram:

Aff(T (A1))
ϕ
♯

1,2
//

λ̃1

&&

Aff(T (A2))
ϕ
♯

2,3
//

λ̃2

&&

Aff(T (A3)) // · · · // Aff(T (A))

Aff(T (C1))
λ1
//

j♯1,c,a

OO

Aff(T (C2))
λ2
//

j♯2,c,a

OO

Aff(T (C3))

j♯3,c,a

OO

// · · · // Aff(1)

(4.133)

Note that, since ϕn,n+1 maps strictly positive elements to strictly positive elements,
ϕ
♯

n,n+1 : Aff(T (An))→ Aff(T (An+1)) and λn : Aff(T (Cn))→ Aff(T (Cn+1)) are
identities when we identify all T (Cn) with 1. Therefore there is an affine home-
omorphism 3 : 1→ T (A) which induces the diagram above. In other words,
T (A) = 1. Moreover, by (4.126), identifying K0(An) with Gn , we obtain the
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following commutative diagram:

Aff(T (A1))
ϕ
♯

1,2
// Aff(T (A2))

ϕ
♯

2,3
// Aff(T (A3)) // · · · // Aff(T (A))

G1
ϕ1,2∗0

//

ρA1

OO

G2
ϕ2,3∗0

//

ρA2

OO

G3 //

ρA3

OO

· · · // G

ρA

OO

Combining with (4.133), we obtain

((K0(A), T (A), ρA), K1(A))= ((G0,1, ρ),G1). (4.134)

Since γ n,n+1
T,T is injective, we have ϕn,n+1∗0(Cn) ∩ ker ρA = {0}. By (4.129),

limn→∞ inf{dτ (ϕn,∞(xn)) : τ ∈ A} = 0, where xn ∈ Bn⊕Dn is any strictly positive
element. It follows from Lemma 4.116 that ϕn∗i |Ki (Bn), ϕn∗i |Ki (Cn) and ϕn∗i |Ki (Dn)

are all injective, and Ki (Bn), Ki (Cn) and Ki (Dn) are finitely generated. It remains
to show that A ∈ D. However, this follows from the fact that Bn , Cn and Dn are in
D and have continuous scales (and A is simple). By Theorem 9.4 of [Gong and
Lin 2020a], A has strict comparison. Since T (A)=1 is compact, by Theorem 5.3
of [Gong and Lin 2020a], A has continuous scale. □

Remark 4.135. With the last part of Lemma 4.116 in mind and with some obvious
modification, one may also have the following forms of inductive limit:

(1) A = limn→∞(Bn ⊕ Cn, ϕn,n+1), in which Bn ∈ BT , K0(Bn) = Tor(K0(A)),
K1(Bn)= K1(A), T (Bn)=1, and Cn is a simple C∗-algebra as in Theorem 4.107,
K0(Cn)= Gn,T ⊕Gn, f and T (Cn)= T (A).

(2) A = limn→∞(Bn ⊕ Cn, ϕn,n+1), in which Bn ∈ BT , K0(Bn) = Inf(K0(A)),
K1(Bn)= K1(A), T (Bn)=1, and Cn is a simple C∗-algebra as in Theorem 4.107,
K0(Cn)= Gn,T and T (Cn)= T (A), ker ρCn = 0.

In particular, in this modified construction, Bn = B1 for all n ≥ 1. However,
while K0(Cn) is finitely generated, Ki (Bn) is not. Thus, one also has the following
form:

(3) A = limn→∞(Bn ⊕Cn ⊕ Dn) as in Theorem 4.118 except that Bn = B1 for all
n ≥ 1 (thus Ki (Bn) may not be finitely generated).

Definition 4.136. Let M1 denote the class of stably projectionless simple C∗-
algebras with continuous scale constructed in Theorem 4.118, or in Remark 4.135.

By, Theorem 4.107, there is a simple C∗-algebra A which is an inductive
limit of C∗-algebras in C0 such that A has a unique tracial state, K0(A) = Z,
ker ρA = K0(A) = Z, and K1(A) = {0}. By Corollary 15.7 of [Gong and Lin
2020a], A ∼= Z0, the unique stably finite separable simple C∗-algebra with finite
nuclear dimension in the UCT class.
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For future usage, let us state the following version of Elliott’s theorem [1996]
(see also Theorem 1.3 of [Li 2020]).

Theorem 4.137. Let 1 be a metrizable Choquet simplex, G0 and G1 countable
abelian groups, and ρ :G0→Aff(1) a homomorphism with ρ(G0)∩Aff+(1)={0}.
There is a simple C∗-algebra A ∈M1 with continuous scale such that

((K0(A), T (A), ρA), K1(A))= ((G0,1, ρ),G1). (4.138)

Moreover, if A is as constructed in Theorem 4.118 or as (3) in Remark 4.135,
then it also satisfies the following conditions: for any finitely generated group
G0,T ⊕ G f,inf ⊕ G0,tor ⊕ Gr ⊂ K (A), where Gr ∩ K0(A) = {0}, G0,T ⊂ K0(A)
is a free subgroup with G0,T ∩ ker ρA = {0}, G f,inf ⊂ ker ρA is a free subgroup,
G0,tor ⊂ Tor(K0(A)), any ε > 0, any finite subset F ⊂ A, and any σ > 0, there
are mutually orthogonal C∗-subalgebras En as defined in [Gong and Lin 2020a,
Definition 7.2 and Proposition 7.7] (see 4.117) with strictly positive element ae,n

and Cn, Dn ∈ C0 with strictly positive elements ac,n and ad,n , respectively, satisfying

G0,T⊕G0,tor⊕G0,inf⊕Gr⊂[ιn](En⊕Cn⊕Dn), K0(En)=Tor(K0(En)), (4.139)

G0,T ⊂ ιn∗0(K0(Cn)), G0,inf ⊂ ιn∗0(K0(Dn)), G0,tor ⊂ ιn∗0(En), (4.140)

ιn∗0(K0(Cn))∩ ker ρA = {0}, ιn∗0(K0(Dn))∩Tor(K0(A))= {0}, (4.141)

ιn∗0(K0(Dn))⊂ ker ρA, (4.142)

where ιn : En ⊕Cn ⊕ Dn→ A is the embedding,

a ≈ε ϕe,n(a)⊕ϕc,n(a)⊕ϕd,n(a) for all a ∈ F, (4.143)

where ϕe,n : A→ En , ϕc,n : A→ Cn and ϕd,n : A→ Dn are completely positive
contractive linear maps which are F-ε/2-multiplicative,

dτ (ae,n)+ dτ (ad,n) < σ and dτ (ac,n) > 1− σ for all τ ∈ T (A), (4.144)

λs(Cn) > 1− σ and λs(Dn) > 1− σ. (4.145)

Proof. Let A = lim(An = Bn ⊕C ′n ⊕ D′n, ϕn,m) be as in Theorem 4.118 such that
(4.138) holds (or A is as in (3) of Remark 4.135). Note that the ϕn,n+1 are injective,
so we can regard An as a subalgebra of A. Choose m with the strictly positive
elements b ∈ Bm , c ∈ C ′m and d ∈ D′m such that

(i) F ⊂ε/10 Am = Bm ⊕C ′m ⊕ D′m ,

(ii) G0,T ⊕G0,tor⊕G0,inf⊕Gr ⊂ [ι](Am), and

G0,T ⊂ ι∗0(K0(C ′m)), G0,inf ⊂ ι∗0(K0(D′m)), G0,tor ⊂ ι∗0(Bm),

(iii) dτ (b+ d) < σ/2 and dτ (c) > 1− σ/4 for all τ ∈ T (A).
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Note that D′m and C ′m can be written, respectively, as inductive limits of Dm,n and
Cm,n with Dm,n,Cm,n ∈ C0. Also from 4.117, Bm = limn→∞(Ek(n)⊕Wn,8n,n+1),
where Ek = M(k!)2(A(W, αk)) and Wn is in C0 with K0(Wk)= {0}. Since Bm has
continuous scale (see 4.117), for n large enough, we have λs(Ek(n)) > 1− σ and
λs(Wn) > 1− σ [Elliott et al. 2020b]. One can choose n large enough so that

(iv) F ⊂ε/5 Ek(n)⊕Wn ⊕Cm,n ⊕ Dm,n ,

(v) G0,T ⊕ G0,tor ⊕ G0,inf ⊕ Gr ⊂ [ι](Ek(n) ⊕ Wn ⊕ Cm,n ⊕ Dm,n), and also
G0,T ⊂ ι∗0(K0(Cm,n)), G0,inf ⊂ ι∗0(K0(Dm,n)),

(vi) for the strictly positive element eA
n ∈Cm,n , dτ (eA

n )> 1−σ/4 for all τ ∈ T (C̃m),

(vii) λs(Cm,n) > 1− σ , λs(Dm,n) > 1− σ and λs(Wn) > 1− σ .

Let Cn = Cm,n , Dn = Dm,n⊕Wn , En = Ek(n) and let ac,n = eA
n ∈ Cn , ae,n ∈ En ,

ad,n ∈ Dn be strictly positive elements. Then (4.144) follows from (iii) and (vi). It
is standard to construct completely positive contractive linear maps ϕe,n : A→ En ,
ϕc,n : A→ Cn and ϕd,n : A→ Dn to finish the proof. □

Remark 4.146. In the statement of Theorem 4.137 we may replace Bn by a simple
C∗-algebra of the form BT , as in Theorem 7.11 of [Gong and Lin 2020a], with
continuous scale, and Cn and Dn are simple C∗-algebras which are constructed in
Theorem 4.107 with continuous scale and retain (4.139) and (4.140). Moreover,
we may assume that ae,n + ac,n + ad,n is a strictly positive element. Note that all
Ki (Bn), Ki (Cn) and Ki (Dn) are finitely generated (i = 0, 1).

The technical conditions (4.139), (4.140), (4.141) and (4.142) will be used later
in the isomorphism theorem in [Gong and Lin 2020b].

5. Range of the Elliott invariant

The following statement implies that, in the case that A is simple, the pairing does
not depend on where the unitization occurs.

Proposition 5.1. Let A be a σ -unital simple C∗-algebra with a ∈ Ped(A)+ \ {0}.
Suppose that ι : B := Her(a)→ A is the embedding. Then ι∗0 is an isomorphism
and ρB(x)(ιT (τ ))= ρA(ι∗0(x))(τ ) for all x ∈ K0(B) and for all τ ∈ T̃ (A), where
ιT : T̃ (A)→ T̃ (B) is the map induced by ι.

Proof. We claim that in general, without assuming A is simple, if B is a σ -unital
full hereditary C∗-subalgebra of A, then ι∗i : Ki (B)→ Ki (A) is an isomorphism
(i = 0, 1). This is a reconstruction of the argument in [Brown 1977].

If B is a full corner of A, i.e., B = p Ap for some projection p ∈ M(A), then
the claim follows from Corollary 2.6 of [Brown 1977]. In general, let C be the
C∗-subalgebra of A ⊗ M2 consisting of the sum

∑
ai j ⊗ ei j such that a11 ∈ B,

a12 ∈ BA, a21 ∈ AB and a22 ∈ A, where {ei j }1≤i, j≤2 is a system of matrix units. We
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identify B with the full corner B⊗ e11 and A with the full corner A⊗ e22 of C ; see
the proof of Theorem 2.8 of [Brown 1977]. Let jA : A→ C and jB : B→ C be
embeddings. Then ( jA)∗i and ( jB)∗i are isomorphisms (i = 0, 1).

On the other hand, jB(B) and jA◦ι(B)may be identified with B⊗e11 and B⊗e22

in M2(B)⊂ C . Denote by j : M2(B)→ C the embedding. Then j ◦ jB = jB and
j ◦ jA|B⊗e22 = jA|B⊗e22 . Since j∗i = ( j ◦ jB)∗i = ( j ◦ jA|B⊗e22)∗i : Ki (B)→ Ki (C),
one has that ( jA)∗i ◦ ι∗i = ( jA ◦ ι)∗ = ( j ◦ jB)∗i = ( jB)∗i is also an isomorphism.
Since ( jA)∗i is an isomorphism, so is ι∗i (i = 0, 1). This proves the claim.

The lemma follows from the claim and the commutative diagram (2.18) immedi-
ately. □

Let us state the following result (see Definition 2.19), which also holds if we
replace the condition that A has finite nuclear dimension by that A is Z-stable (i.e.,
A ∼= A⊗Z) and all 2-quasitraces are traces.

Theorem 5.2. Let A be a separable finite simple C∗-algebra with finite nuclear
dimension. Then (K0(A),6(K0(A)), T̃ (A), ⟨̂eA⟩, ρA) is a scaled simple ordered
group pairing (see Definitions 2.7 and 2.15).

Proof. It follows from [Winter 2012; Tikuisis 2014] that A is Z-stable. By [Rørdam
2004, Corollary 5.1] (see also [Kirchberg 1997]), T̃ (A) ̸= {0}. Then, if A is unital,
(K0(A), K0(A)+, [1A]) is a weakly unperforated simple ordered group (see [Gong
et al. 2000]) with the scale determined by the order unit [1A], and g ∈ K0(A)+ \{0}
if and only if ρA(g)(τ ) > 0 for all τ ∈ T (A). So the unital case follows. Suppose
that A is not unital and K0(A)+ ̸= {0}. Let x ∈ K0(A)+ \ {0}. Then there is a
nonzero projection p ∈ Mr (A) for some integer r ≥ 1 such that [p] = x . If follows
that A1 := p Ap is a unital simple C∗-algebra with finite nuclear dimension (see
Corollary 2.8 of [Winter and Zacharias 2010]). Therefore (K0(A1), K0(A1)+) is
a weakly unperforated simple ordered group such that g ∈ K0(A1)+ \ {0} if and
only if ρA1(g)(τ ) > 0 for all τ ∈ T (A1). Note that A⊗K∼= A1⊗K. It follows that
(K0(A), T̃ , ρ) is a simple ordered group pairing.

Let eA ∈ A be a strictly positive element with ∥eA∥= 1 and let s(τ )= dτ (eA) for
all τ ∈ T̃ (A). If p∈ A is a projection, then, f1/n(eA)p≈1/2 p for some integer n≥ 1.
It follows that there is a projection q ∈Her( f1/n(eA)) such that [q] = [p]. It follows
that

f1/2n(eA)q = q and (1− q) f1/2n(eA)(1− q) ̸= 0.

Since A is simple, this implies that τ(p)= τ(q) < dτ (eA). Then

6(K0(A))= {g ∈G+ : g= [p] for some projection p ∈ A} = {g ∈G+ : ρ(g) < s}.

It follows that (K0(A),6(K0(A)), T̃ (A), s, ρA) is a scaled simple ordered group
pairing. (Even though K0(A)+ ̸= {0}, it is still possible that 6(K0(A))= {0}.)
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Now assume that K0(A)+ = {0}. In other words, A is stably projectionless. It
follows from Remark 5.2 of [Elliott et al. 2020b], for example, that one may choose
a ∈ A+ \ {0} such that A1 := aAa has continuous scale. It follows from (1) of
Theorem 5.3 of [Elliott et al. 2020b] that T (A1) is nonempty and compact (see
also [Lin 1991, Theorem 3.3; Rørdam 2004, Corollary 5.1]). By [Pedersen 1979,
5.2.2], every tracial state τ ∈ T (A1) extends to a lower semicontinuous trace on A,
which is finite on Ped(A) as A is simple. Again, since A is simple, the extension
is unique. It follows that T (A1) is a basis for the cone T̃ (A). Since Aff(T̃ (A))
is a lattice (see [Pedersen 1966, Corollary 3.3; 1969, Theorem 3.1]), T̃ (A) is a
convex topological cone with a Choquet simplex as its base. For any x ∈ K0(A1),
by Corollary A.7 of [Elliott et al. 2020a], ρA1(x)(τ )= 0 for some τ ∈ T (A1). Since
A⊗K∼= A1⊗K, this implies that (K0(A), {0}, T̃ (A), ⟨̂eA⟩, ρA) is a scaled simple
ordered group pairing (see Proposition 5.1). □

The following range theorem was given in [Elliott 1996] (see also [Li 2020]).

Theorem 5.3. Let (G0, 6(G0), T, s, ρ) be a scaled simple ordered group pairing
and G1 be a countable abelian group. Then there is a simple separable amenable
C∗-algebra A which satisfies the UCT such that

((K0(A),6(K0(A)), T̃(A), ⟨̂eA⟩,ρA),K1(A))= ((G0,6(G0),T,s,ρ),G1). (5.4)

A is unital if and only if 6(G0) has a unit u. (This means that u is the nonzero
maximum in 6(G0) and ρ(u)= s. See Definition 2.7.) If ρ(G0)∩Aff+(T ) ̸= {0},
then A can be chosen to have rationally generalized tracial rank at most one
(see Definition 2.28) and be an inductive limit of subhomogeneous C∗-algebras
of spectra with dimension no more than 3. If ρ(G0) ∩Aff+(T ) = {0}, then A is
stably projectionless and A can be chosen to have generalized tracial rank one (see
Definition 2.28) and be locally approximated by subhomogeneous C∗-algebras with
the spectra having dimension no more than 3.

If G1 = {0} and G0 is torsion free, then A can be chosen to be an inductive limit
of 1-dimensional NCCW complexes in C0.

Proof. Let us first consider the case that 6(G0) has a unit u. Let

1 := {t ∈ T : ρ(u)(t)= 1}.

Then 1 is a base for the cone T . Recall that ρ(G) ⊂ Aff(T ). Therefore 1 is a
compact convex subset. Moreover, it is a base for T . Since T has a metrizable
Choquet simplex as a base, Aff(T )=Aff(1) is a lattice. Therefore 1 is a Choquet
simplex. Let G0+ = {g ∈ G : ρ(g) > 0} ∪ {0}. It follows from Theorem 13.50 of
[Gong et al. 2020a] that there is a unital simple C∗-algebra A which has rationally
generalized tracial rank at most one and is an inductive limit of subhomogeneous
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C∗-algebras of spectra with dimension no more than 3 such that

((K0(A),K0(A)+, [1A],K1(A),T(A),ρA),K1(A))=((G0,G0+,u,G1,1,ρ),G1).

Put T̃ (A) := {rτ : r ∈R+, τ ∈ T (A)}. Then T̃ (A)= T . Also, 6(K0(A))=6(G0).
This proves the case that 6(G0) has a unit.

Consider the case ρ(G0)∩Aff+(T ) ̸= {0} and6(G0) has no unit. Choose v ∈G0

such that ρ(v) ∈ Aff+(T ) \ {0}. Put 61(G) = {g ∈ G+ : ρ(g) < v} ∪ {v}. Since
ρ(v) ∈ Aff+(T ), as above, 1 := {t ∈ T : ρ(v)(t)= 1} is a Choquet simplex. Then,
by what has been shown, there is a C∗-algebra A1 which has rationally tracial rank
at most one such that

((K0(A1),6(K0(A)), T (A1), ρA([1A1]), ρA1), K1(A1))

= ((G0, 61(G0), T1, ρ
′),G1), (5.5)

where T1 := {rξ : r ∈ R+, ξ ∈ 1} = T and ρ ′ : G→ Aff(T1) is defined to be the
same as ρ, when we identify T1 with T . Choose an element eA ∈ A1 ⊗K such
that ⟨̂eA⟩(τ )= s(τ ) for all τ ∈ T̃ (A1)= T1 = T (see Theorem 5.5 of [Brown et al.
2008]). Define A = eA(A1⊗K)eA. One then checks that

((K0(A),6(K0(A)), T̃(A), ⟨̂eA⟩,ρA),K1(A))∼= ((G0,6(G0),T,s,ρ),G1). (5.6)

Now we consider the case that ρ(G)∩Aff+(T ) = {0}. Let 1 be a base of T
which is a Choquet simplex. Define ρ ′ : G→ Aff(1) to be the same map as ρ by
restricting a function in Aff(T ) to Aff(1). By Theorem 4.118, there is a simple C∗-
algebra A1 ∈D with continuous scale which is an inductive limit of Bn⊕Cn⊕ Dn ,
where Bn is locally approximated by subhomogeneous C∗-algebras with spectra
having dimension no more than 3 (see 4.117), and Cn ⊕ Dn is an inductive limit of
C∗-algebras in C0 such that

(K0(A1), T (A1), ρA1, K1(A1))= (G0,G1,1, ρ
′,G1). (5.7)

Choose eA ∈ (A1 ⊗K)+ \ {0} such that ⟨̂eA⟩(t) = limn→∞ t (e1/n
A ) = s(t) for all

t ∈1. Define A := eA(A1⊗K)eA. Then A has generalized tracial rank one (see
Definition 2.28). One then checks that

((K0(A),6(K0(A)), T̃ (A), ⟨̂eA⟩, ρA), K1(A))= ((G0, {0}, T, s, ρ),G1). (5.8)

The last part of the lemma follows immediately from Theorem 4.107. □

Corollary 5.9. Let A1 be a simple separable C*-algebra in D with continuous
scale, U be an infinite-dimensional UHF algebra and A = A1⊗U.

There exists an inductive limit algebra B as constructed in Theorem 4.118 such
that A = A1⊗U and B have the same Elliott invariant. Moreover, the C∗-algebra
B has the following properties:
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Let G0 be a finitely generated subgroup of K0(B) with decomposition G0 =

G00⊕G01, where G00 vanishes under all states of K0(B). Suppose P ⊂ K (B) is a
finite subset which generates a subgroup G such that G0 ⊂ G ∩ K0(B).

Then, for any ϵ > 0, any finite subset F ⊂ B, any 1 > r > 0, and any positive
integer K , there is an F-ϵ-multiplicative map L : B→ B such that:

(1) [L]|P is well defined.

(2) [L] induces the identity maps on G00, G ∩ K1(B), G ∩ K0(B,Z/kZ) and
G ∩ K1(B,Z/kZ) for k = 1, 2, . . . , and i = 0, 1.

(3) ∥ρB ◦ [L](g)∥ ≤ r∥ρB(g)∥ for all g ∈ G ∩ K0(B), where ρB is the canonical
positive homomorphism from K0(B) to Aff(T (B)).

(4) For any element g ∈ G01, we have g− [L](g)= K f for some f ∈ K0(B).

(5) dτ (e0) < r for all τ ∈ T (B), where e0 ∈ L(B)BL(B) is strictly positive.

Proof. Consider Ell(A1). By Theorem 4.118, there is an inductive system B1 =

lim
−−→
(Ti ⊕Ci , ψi,i+1) (where Ti := Bi ⊕ Di in Theorem 4.118) such that

(i) ρTi = 0 : K0(Ti )→ Aff(T (Ti )) and Ci ∈ C0 with K1(Ci )= {0},

(ii) for the strictly positive element eTi ∈ Ti , lim τ(ϕi,∞(eTi )) = 0 uniformly on
τ ∈ T (B1),

(iii) ker(ρB1)=
⋃
∞

i=1(ψi,∞)∗0(K0(Ti )), and

(iv) Ell(B1)= Ell(A1).

Put B = B1⊗U . Then Ell(A)= Ell(B). Let P ⊂ K (B) be a finite subset, and
let G be the subgroup generated by P , which we may assume to contain G0. Then
there is a positive integer M ′ such that G ∩ K∗(B,Z/kZ) = {0} if k > M ′. Put
M = M ′!. Then Mg = 0 for any g ∈ G ∩ K∗(B,Z/kZ), k = 1, 2, . . . .

Let ε > 0, a finite subset F ⊂ B, and 0 < r < 1 be given. Choose a finite
subset G ⊂ B and 0< ε′ < ε such that F ⊂ G and for any G-ϵ′-multiplicative map
L : B→ B, the map [L]P is well defined, and [L] is a homomorphism on G.

Since B = B1⊗U , we may write U = lim
−−→
(Mm(n), ın,n+1), where m(n) | m(n+

1) and ın,n+1 : Mm(n) → Mm(n+1) is defined by a 7→ a ⊗ 1m(n+1). Choosing a
sufficiently large i0 and n0, we may assume that [ψi0,∞](K ((Ti0⊕Ci0)⊗Mm(n0)))⊃

G. In particular, we may assume, by (i) and (iii) above, that ρTi⊗Mm(n0)
= 0 and

G∩ker ρB1⊗Mm(n0)
⊂(ψi0,∞)∗0(K0(Ti )⊗Mm(n0)). Let G ′⊂K ((Ti0⊕Ci0)⊗Mm(n0))

be such that [ψi0,∞](G
′)⊃ G.

One may assume that, for each f ∈ G, there exists i > i0, n0 such that

f = ( f0⊕ f1)⊗ 1m ∈ (T ′i ⊕C ′i )⊗Mm (5.10)
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for some f0 ∈ T ′i , f1 ∈ C ′i , and m > 2MK/r , where m = m(n)/m(i), T ′i =
ψ ′i,∞(Ti⊗Mm(i)), C ′i =ψ

′

i,∞(Ci⊗Mm(i)), and whereψ ′i,∞=ψi,∞⊗ıi,∞. Moreover,
one may assume that τ(1T ′i ) < r/2 for all τ ∈ T (A1).

Choose a large n such that m =M0+l with M0 divisible by KM and 0≤ l <KM.
Then define a map L : (T ′i ⊕C ′i )⊗Mm→ (T ′i ⊕C ′i )⊗Mm to be

L(( fi, j ⊕ gi, j )m×m)= ( fi, j )m×m ⊕ El(gi, j )m×m El,

where
El = diag(1(C ′i )∼, 1(C ′i )∼, . . . , 1(C ′i )∼︸ ︷︷ ︸

l

, 0, 0, . . . , 0︸ ︷︷ ︸
M0

).

Note that L is also a contractive completely positive linear map from (T ′i ⊕C ′i )⊗Mm

to B, where we identify B with B ⊗ Mm . (Note also that El /∈ C ′i ⊗ Mm but
El(gi j )El ∈ C ′i ⊗Mm .) We then extend L to a completely positive linear map from
B to B. Also define R : (T ′i ⊕C ′i )⊗Mm→ T ′i ⊕C ′i to be

R


f1,1⊕ g1,1 f1,2⊕ g1,2 · · · f1,m ⊕ g1,m

f2,1⊕ g2,1 f2,2⊕ g2,2 · · · f2,m ⊕ g2,m
. . .

fm,1⊕ gm,1 fm,2⊕ gm,2 · · · fm,m ⊕ gm,m

= g1,1, (5.11)

where f j,k ∈ T ′i and g j,k ∈ C ′i , and extend it to a contractive completely positive
linear map B→ B, where T ′i ⊕C ′i is regarded as a corner of (T ′i ⊕C ′i )⊗Mm ⊂ B.
Then L and R are G-ϵ′-multiplicative. Hence [L]|P is well defined. Moreover,

dτ (e0)= dτ (L(eB)) < dτ (eT ′i )+
l
m
<

r
2
+

MK
2MK/r

= r for all τ ∈ T (B),

where eB and eT ′i are strictly positive elements in B and T ′i , respectively.
Note that, for any f in the form (5.10), if f is written in the form ( f jk⊕g jk)m×m ,

then g j j = g11 and g jk = 0 for j ̸= k. Hence one has

f = L( f )+ R( f ),

where R( f ) may be written as

R( f )= diag{0, 0, . . . , 0︸ ︷︷ ︸
l

, (0⊕ g1,1), . . . , (0⊕ g1,1)︸ ︷︷ ︸
M0

}.

Hence for any g ∈ G,
g = [L](g)+M0[R](g).

Then, if g ∈ (G0,1)+ ⊂ (G0)+, one has

g− [L](g)= M0[R](g)= K
((

M0

K

)
[R](g)

)
.
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Also if g ∈ G ∩ Ki (B,Z/kZ) (i = 0, 1), one also has

g− [L](g)= M0[R](g).

Since Mg = 0 and M | M0, one has g− [L](g)= 0.
Since L is the identity on ψ ′i,∞(Ti ⊗ Mm(i)) and i > i0, by (iii), [L] is the

identity map on G ∩ ker ρB . Since K1(Si )= 0 for all i , L induces the identity map
on G ∩ K1(B). It follows that L is the desired map. □

Lemma 5.12. Let C = A(F1, F2, β0, β1) ∈ C0 and let N0 ≥ 1 be an integer. There
exists σ > 0 satisfying the following condition: For any order preserving homomor-
phism κ : K0(C̃)→ R such that, for any x ∈ K0(C̃)+ \ {0} with N0κ(x) > 1 and
κ([1C̃ ])= 1, there exists t ∈ T (C) such that

t (h)≥ σ
∫

s∈[0,1]
T (λ(h)(s)) dµ(s) for all h ∈ C+, (5.13)

κ(x)= ρC(x)(t) for all x ∈ K0(C̃), (5.14)

where λ :C→C([0, 1], F2) is the natural embedding and T (b)=
∑k

j=1 tr j (ψ j (b))
for all b ∈ F2, where F2 =

⊕k
j=1 Mr( j), ψ j : F2→ Mr( j) is the projection map, tr j

is the normalized trace on Mr( j), and µ is Lebesgue measure.

Proof. Let us write F1 =
⊕l

i=1 MR(i). Denote by qi : F1→ MR(i) the projection
map and t̄i the tracial state of MR(i), i = 1, 2, . . . , l. Let πe :C→ F1 be the quotient
map and T : K0(F2)→ R be defined by T (x)=

∑k
j=1 ρMr( j) ◦ψ j∗0(x)(tr j ) for all

x ∈ K0(F2).
Define homomorphisms β ′0 : C→ F2 by β ′0(1C) := 1F2 −β0(1F1) and β ′1(1C) :=

1F2 − β1(1F1) (at least one of them is not zero as C is not unital). We may write
C̃ = A(F∼1 , F2, β

∼

0 , β
∼

1 ), where F∼1 = F1⊕C and β∼i = βi ⊕β
′

i , i = 0, 1. Denote
by ql+1 : F∼1 → C the projection map and π∼e : C̃→ F∼1 the quotient map which
extends πe. Recall that T ([β∼0 (π

∼
e (1C̃))])= k and for any projection p ∈ Mm(C̃),

T (p)≤ mT ([β∼0 (π
∼
e (1C̃))])= mk.

Let p1, p2, . . . , ps ∈ Mm(C̃) be a set of minimal projections for some integer
m ≥ 1 such that they generate K0(C̃)+ (see Theorem 3.15 of [Gong et al. 2020a]).
There is σ0 > 0 such that σ0mk < 1

2 . Choose σ := σ0/2N0. Since N0κ(x) > 1 for
all x ∈ K0(C̃)+ \ {0}, for any p ∈ {p1, p2, . . . , ps}, we have

N0κ([p])− σ0T ◦ (β0 ◦πe)(p) > 0. (5.15)

Define 0 : K0(C̃)→ R by

0(x)= κ(x)− σ0T ◦ (β∼0 ◦πe)∗0(x) for all x ∈ K0(C̃). (5.16)

By Proposition 3.5 of [Gong et al. 2020a], πe∗0 : K0(C̃)→ K0(F∼1 ) is an order
embedding. It follows from Theorem 3.2 of [Goodearl and Handelman 1976]
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that there is an order preserving homomorphism 0∼ : K0(F∼1 ) → R such that
0∼◦πe∗0=0. Put α j :=0

∼([e j ])≥ 0, where e j := q j ◦π
∼
e (1C̃), j = 1, 2, . . . , l+1.

Define, for ( f, b)∈C∼= {C([0, 1], F2)⊕F∼1 : f (0)= β∼0 (b) and f (1)= β∼1 (b)},

t (( f, b))= σ
k∑

j=1

∫
s∈(0,1)

tr j ( f )(s) dm(s)+
l+1∑
i=1

αi t̄i (qi (π
∼

e (b))). (5.17)

For any projection p = (p, π∼e (p)) ∈ MN (C̃) (for some N ≥ 1), we have

ρC([p])(t)= t (p, π∼e (p))

= σ

k∑
j=1

∫
s∈(0,1)

tr j (p)(s) dm(s)+
l+1∑
i=1

αi t̄i (qi (π
∼

e (p)))

= σ0T ◦ (β∼0 ◦πe)∗0([p])+0∼([π∼e (p)])= κ([p]). (5.18)

Moreover, if h = ( f, b) ∈ C+, we have

t (h)≥ σ
k∑

j=1

∫
s∈(0,1)

tr j ( f )(s) dm(s)= σ
∫

s∈[0,1]
T (λ(h)) dµ(s). □

Lemma 5.19. Let C ∈ C0 and let G1 ⊂ Aff(1) be a countable subgroup such that
G1 ∩Aff+(1)= {0}, where 1 is a metrizable Choquet simplex. Let η : K0(C̃)→
G1+Z11 be an order preserving homomorphism, where 11∈Aff(1) is the constant
function with value 1 (with Aff+(1) as the (strictly) positive cone of Aff(1)— see
Definition 2.2). Then there is a morphism η∼ : Cu∼(C̃)→ G1 ⊔LAff∼

+
(1) in Cu

such that η∼|K0(C̃) = η.

Proof. Write C = A(β0, β1, F1, F2), where F1 =
⊕k

i=1 MR(i), F2 =
⊕l

j=1 Mr(i),
and βi : F1→ F2 are homomorphisms. Recall that Aff(T (C)) is identified as a
subspace of C([0, 1],Rl)⊕Rk and Cu∼(C̃) is identified with a subgroup of

K0(C̃)⊔LSC([0, 1],Zl)⊕Zk+1 (5.20)

(see Proposition 3.6 of [Gong and Lin 2020a]). Since K0(C̃)+ is finitely generated
(see Theorem 3.15 of [Gong et al. 2020a]) by g1, g2, . . . , gs , there exists an integer
N0 ≥ 1 such that

N0η(x) > 11 for all x ∈ K0(C̃)+ \ {0}. (5.21)

Let σ > 0 be given by Lemma 5.12 for 2N0.
Recall that the map ρ : K0(C̃)→ Aff(T (C̃)) is injective (see Proposition 3.5 of

[Gong et al. 2020a] for example). By [Tsang 2005, Lemma 5.1], we may write
Aff(1)= limn→∞(R

a(n), λn), where a(n)≥ 1 are integers and λn :R
a(n)
→Ra(n+1)

is an order preserving map which also preserves the canonical order unit. Let
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G2 := η(K0(C)). Note that G2 is a finitely generated subgroup of G1. Therefore
there is a sequence of subgroups Gn,2 ⊂ Ra(n) such that G2 = limn→∞(Gn,2, λn)

and λn|Gn,2 is injective. Let G∼n,2 = Gn,2+Z · 1 and G∼2 := G2+Z · 11.
Since K0(C̃)+ is finitely generated, one obtains (for all large n) an order pre-

serving map ηn : K0(C̃)→ Ra(n) such that λn,∞ ◦ ηn = η, where λn,∞ is induced
by the inductive limit system. There exists n1 ≥ 1 such that, for all n ≥ n1,

2N0ηn(x) > 1 for all x ∈ K0(C̃)+ \ {0}. (5.22)

Write Ra(n)
=
⊕a(n)

i=1 Ri . Define qi : R
a(n)
→ Ri to be the projection. Consider the

order preserving map qi ◦ ηn : K0(C̃)→ R which preserves the order unit. Since
ρ is injective, we may view K0(C̃) as an order subgroup of C([0, 1],Rl)⊕Rk+1.
By Lemma 5.12, there is an order preserving map γn,i : C([0, 1],Rl)⊕Rk+1

→ Ri

such that γn,i |K0(C̃) = qi ◦ ηn and

γn,i (ĥ)≥
σ

2

∫
[0,1]

T (ĥ)(t) dµ, (5.23)

where h∈C̃+\{0}, which we identify with the corresponding element in C([0,1],F2),
and ĥ is the associated affine function (for all large n ≥ n1).

Define

γn : C([0, 1],Rl)⊕Rk+1
→ Ra(n), g 7→ (γn,1(g), γn,2(g), . . . , γn,a(n)(g))

for all g. Note that γn|K0(C̃)=ηn for all n. Define γ :C([0, 1],Rl)⊕Rk+1
→Aff(1)

by γ (g) := λn,∞ ◦γn . Then γ is an order preserving map which preserves the order
unit. It is linear and therefore continuous (with the supremum norm). The condition
λn,∞ ◦ ηn = η implies that γ |K0(C̃) = η. Note also that the condition (5.23) implies
that, for each f ∈ (C([0, 1],Rl)⊕Rk+1)+\ {0},

γ ( f )(t) > 0 for all t ∈1. (5.24)

Then γ∼ extends to an order preserving affine map from LSC([0, 1],Zl)⊕Zk+1

to LAff∼
+
(1). Define η∼ : Cu∼(C̃) → G1 ⊔ LAff∼

+
(1) by η∼|K0(C̃) = η and

η∼|LSC([0,1],Zl )⊕Zk+1 = γ∼|LSC([0,1],Zl )⊕Zk+1 . It is then straightforward to verify that
η∼ is a map in Cu. □

Theorem 5.25. Let A ∈D be with continuous scale and C ∈ C0. Suppose that there
is a strictly positive homomorphism α : K0(C̃)→ K0( Ã) such that α([1C̃ ])= [1 Ã]

and α(K0(C)) ⊂ K0(A). Then there exists a homomorphism h : C → A such
that h∗0 = α.

Proof. Since A is a stably projectionless Z-stable simple C∗-algebra with stable
rank one (i.e., all C∗-algebras in D have stable rank one [Elliott et al. 2020b,
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Proposition 11.11]), by [Robert 2012, Theorem 6.2.3] (see also [Elliott et al. 2020b,
Theorem 7.3; Robert and Santiago 2021, Theorem 6.11],

Cu∼(A)= K0(A)⊔LAff∼
+
(T (A)). (5.26)

By Lemma 5.19, α extends to a morphism α∼ : Cu∼(C̃)→ Cu∼( Ã) in Cu. Let
eC ∈ C be a strictly positive element with ∥eC∥ = 1. Then α∼(⟨eC⟩) ≤ [1C̃ ]. Let
eA ∈ A be a strictly positive element. Since A has continuous scale, dτ (eA) = 1
for all τ ∈ T (A). Therefore, by Theorem 7.3 of [Elliott et al. 2020b] (see also
Lemma 6.10 of [Robert and Santiago 2021]), α∼(⟨eC⟩)≤ ⟨eA⟩ in Cu∼(A). Since
A has stable rank one, by [Robert 2012, Theorem 1.0.1], there is a homomorphism
h : C→ A such that Cu∼(h)= α∼|Cu∼(C). In particular, h∗0 = α. □

6. Reduction

This section is a nonunital version of the corresponding results in [Elliott et al. 2015].
Most of the results are taken from [Elliott et al. 2015] with some modification.

Lemma 6.1 [Elliott et al. 2015, Lemma 3.1]. Let A be a nonunital simple separable
amenable quasidiagonal C*-algebra satisfying the UCT. Assume that A∼= A⊗Q. Let
a finite subset G of Ã⊗Q and ε1, ε2> 0 be given. Let p1, p2, . . . , ps ∈Mm( Ã⊗Q)
(for an integer m≥1) be projections such that [1], [p1], [p2], . . . , [ps]∈ K0( Ã⊗Q)
are Q-linearly independent. (Recall that K0( Ã ⊗ Q) ∼= K0(( Ã ⊗ Q) ⊗ Q) ∼=
K0( Ã⊗ Q)⊗Q.) There are a G-ε1-multiplicative completely positive linear map
σ : Ã⊗ Q→ Q with σ(1) a projection satisfying

tr(σ (1)) < ε2

(where tr denotes the unique tracial state on Q), and δ > 0 such that for any
r1, r2, . . . , rs ∈Q with

|ri |< δ, i = 1, 2, . . . , s,

there is a G-ε1-multiplicative completely positive linear map µ : Ã⊗ Q→ Q with
µ(1)= σ(1) such that

[σ(pi )] − [µ(pi )] = ri , i = 1, 2, . . . , s.

Proof. Let us first consider the case m = 1. The proof in this case is exactly
the same as that of Lemma 3.1 of [Elliott et al. 2015]. The only place in that
proof mentioning simplicity is the lines shortly after equation (3.1), where one
claims that the algebra is the closure of an increasing sequence of unital amenable
RFD C∗-algebras. We replace this part as follows: Since A is simple, separable,
amenable and quasidiagonal, by Corollary 5.5 of [Blackadar and Kirchberg 2001],
A is a strong NF-algebra. Since Q is a strong NF-algebra, by Corollary 7.1.6 of
[Blackadar and Kirchberg 1997], Ã⊗ Q is a strong NF-algebra. It follows from
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Corollary 6.16 of [Blackadar and Kirchberg 1997] that, indeed, Ã⊗Q is the closure
of an increasing sequence of unital amenable RFD C∗-algebras. The rest of the
proof of this case remains the same.

If m > 1, one notes that there are p′i ∈ Ã ⊗ Q such that [p′i ] = (1/m)[pi ],
i = 1, 2, . . . , s. Then [1], [p′1], . . . , [p

′
s] are Q-linearly independent. Replace ri

by ri/m for i = 1, 2, . . . , s. If σ([p′i ])−µ([p
′

i ])= ri/m for i = 1, 2, . . . , s, then
σ([pi ])−µ([pi ])= ri for i = 1, 2, . . . , s. □

Corollary 6.2 [Elliott et al. 2015, Lemma 3.1]. Let A be a nonunital simple separa-
ble amenable quasidiagonal C∗-algebra satisfying the UCT. Assume that A∼= A⊗Q.
Let a finite subset G of Ã and ε1, ε2 > 0 be given. Let p1, p2, . . . , ps ∈ Mm( Ã) (for
some integer m ≥ 1) be projections such that [1], [p1], [p2], . . . , [ps] ∈ K0( Ã) are
Q-linearly independent. There are a G-ε1-multiplicative completely positive linear
map σ : Ã→ Q with σ(1) a projection satisfying

tr(σ (1)) < ε2

(where tr denotes the unique tracial state on Q), and δ > 0 such that for any
r1, r2, . . . , rs ∈Q with

|ri |< δ, i = 1, 2, . . . , s,

there is a G-ε1-multiplicative completely positive linear map µ : Ã → Q, with
µ(1)= σ(1), such that

[σ(pi )] − [µ(pi )] = ri , i = 1, 2, . . . , s.

Proof. Let B = Ã⊗ Q. One has the split short exact sequence

0→ A⊗ Q→ Ã⊗ Q→ Q→ 0.

This gives the split short exact sequence

0→ K0(A⊗ Q)→ K0( Ã⊗ Q)→Q→ 0.

Since A∼= A⊗Q, K0(A)= K0(A⊗Q) and K0( Ã)= K0(A⊗Q)⊕Z is a subgroup
of K0( Ã⊗ Q). Apply Lemma 6.1 to B, and then choose σ | Ã and µ| Ã. □

Remark 6.3. Let A∼= A⊗Q be a separable stably projectionless simple C∗-algebra.
Suppose that K0(A) ̸= {0}. Then there exists x = [p] − k[1 Ã] ∈ K0(A) \ {0},
where k ∈ N, and p ∈ Mn( Ã). If [p] = r [1 Ã] for some rational number r ∈ Q,
then x = (r − k)[1 Ã]. Since x ̸= 0, r ̸= k. But then either x = (r − k)[1 Ã] or
−x := (k−r)[1 Ã] is a nonzero positive element in K0(A). This contradicts the fact
that K0(A)+ = {0}. In other words, [p] and [1 Ã] are Q-linearly independent. Put
p1 := p. Choose r1 ̸= 0 and let [σ(p1)]− [µ(p1)] = r1. Then [µ](x) ̸= [σ ](x). In
other words, at least one of the maps µ|A and σ |A is not zero.
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Lemma 6.4 [Elliott et al. 2015, Lemma 3.3]. Let A be a nonunital simple separable
amenable quasidiagonal C∗-algebra satisfying the UCT. Assume that A ∼= A⊗ Q.
Let G be a finite subset of A, let ε1, ε2 > 0, and let p1, p2, . . . , ps ∈ Mm( Ã) (for
some integer m) be projections such that [1A], [p1], [p2], . . . , [ps] ∈ K0( Ã) are
Q-linearly independent. There exists δ > 0 satisfying the following condition:

Let ψk : Ql
→ Qr , k = 0, 1, be unital homomorphisms, where l, r ∈ {1, 2, . . . }.

Set
D= {x ∈Ql

: (ψ0)∗0(x)= (ψ1)∗0(x)} ⊂Ql .

There exists a G-ε1-multiplicative completely positive linear map 6 : Ã→ Ql such
that 6(1 Ã) is a projection, with the properties

τ(6(1 Ã)) < ε2, τ ∈ T (Ql),

[6(1 Ã)], [6(p j )] ∈ D, j = 1, 2, . . . , s,

and, for any r1, r2, . . . , rs ∈Qr satisfying

|ri, j |< δ,

where ri = (ri,1, ri,2, . . . , ri,r ), i = 1, 2, . . . , s, there is a G-ε1-multiplicative com-
pletely positive linear map µ : Ã→ Qr , with µ(1 Ã) a projection, such that

[ψ0 ◦6(pi )] − [µ(pi )] = ri , i = 1, 2, . . . , s[µ(1 Ã)] = [ψ0 ◦6(1 Ã)].

Proof. The proof is exactly the same as that of Lemma 3.3 of [Elliott et al. 2015]
but using Lemma 6.1 (and Corollary 6.2) above instead of [Elliott et al. 2015,
Lemma 3.1]. □

Lemma 6.5 [Elliott et al. 2015, Lemma 3.4]. Let A be a nonunital simple separable
amenable quasidiagonal C*-algebra satisfying the UCT. Assume that A ∼= A⊗ Q.
Let G ⊂ A be a finite subset, let ε1, ε2 > 0 and let p1, p2, . . . , ps ∈ Mm( Ã) be
projections such that [1 Ã], [p1], [p2], . . . , [ps]∈ K0( Ã) are Q-linearly independent.
Then there exists δ > 0 satisfying the following condition:

Let ψk : Ql
→ Qr , k = 0, 1, be unital homomorphisms, where l, r ∈ {1, 2, . . . }.

Set
D= {x ∈Ql

: (ψ0)∗0(x)= (ψ1)∗0(x)} ⊂Ql .

There exists a G-ε1-multiplicative completely positive linear map 6 : Ã→ Ql such
that 6(1 Ã) is a projection, with the properties

τ(6(1 Ã)) < ε2, τ ∈ T (Ql),

[6(1 Ã)], [6(pi )] ∈ D, i = 1, 2, . . . , s,

and, for any r1, r2, . . . , rs ∈Ql satisfying

|ri, j |< δ,
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where ri = (ri,1, ri,2, . . . , ri,l), i = 1, 2, . . . , s, there is a G-ε1-multiplicative com-
pletely positive linear map µ : Ã→ Ql , with µ(1 Ã)=6(1 Ã), such that

[6(pi )] − [µ(pi )] = ri , i = 1, 2, . . . , s.

Proof. The proof is exactly the same as that of Lemma 3.4 of [Elliott et al. 2015], also
using Lemma 6.1 (and Corollary 6.2) instead of [Elliott et al. 2015, Lemma 3.1]. □

Lemma 6.6. Let A be a nonunital simple separable amenable C∗-algebra with
T (A)= Tqd(A) ̸=∅ which satisfies the UCT. Assume that A⊗ Q ∼= A and A have
continuous scale. For any σ > 0, ε > 0, and any finite subset F of A, there exist a
finite set of P ⊂ K0(A) and δ > 0 with the following property:

Denote by G ⊆ K0(A) the subgroup generated by P . Let κ :G→ K0(C) be a ho-
momorphism which extends to a positive homomorphism κ∼ :G+Z · [1 Ã]→ K0(C)
such that κ∼([1 Ã])= [1C ], where C = C([0, 1], Q), and let λ : T (C)→ T (A) be
a continuous affine map such that

|τ(κ(x))− ρA(λ(τ ))(x)|< δ, x ∈ P, τ ∈ T (C). (6.7)

Then there is an F-ε-multiplicative completely positive linear map L : A→ C such
that

|τ ◦ L(a)− λ(τ)(a)|< σ, a ∈ F, τ ∈ T (C). (6.8)

Proof. Let ε, σ and F be given. We may assume that every element of F has norm
at most one. Fix a strictly positive element e ∈ A with ∥e∥ = 1. Choose

0< d < inf{τ( f1/2(e)) : τ ∈ T (A)}.

This is possible since T (A) is compact.
Let δ1 (in place of δ), G, and P1 (in place of P) be as assured by Lemma 7.2 of

[Elliott et al. 2020a] for F and ε, as well as d. We may assume that F ⊂ G and
f1/2(e), f1/4(e) ∈ G.

We may assume P1={x1, x2, . . . , xs′}, where xi =[qi ]−[q̄i ], where qi ∈Mm( Ã)
is a projection and q̄i ∈Mm(C·1 Ã) is a scalar matrix. Take P∼={1 Ã, p1, p2, . . . , ps}

such that xi is in the subgroup G0 generated by {[1 Ã], [p1], [p2], . . . , [ps]} (in
K0( Ã)). Deleting one or more of p1, p2, . . . , ps (but not 1 Ã), we may assume that
the set {[1A], [p1], . . . , [ps]} is Q-linearly independent. Define

P = {[pi ] − [ p̄i ] : 1≤ i ≤ s},

where p̄i ∈ Mm(C · 1 Ã) is a scalar matrix such that π A
C
(pi )= p̄i (1≤ i ≤ s), where

π A
C
: Ã→ C is the quotient map.

Note that pi = p̄i + yi , where p̄i ∈ Mm(C · 1 Ã) is a scalar projection and yi ∈ A,
i = 1, 2, . . . , s. Let ci be the rank of p̄i , i = 1, 2, . . . , s. We may assume that
G0 ∩ K0(A) is generated by P (by enlarging P if necessary). Then G0 is the
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subgroup of K0( Ã) generated by [1 Ã] and G. Therefore we may assume that
[ p̄i ] = ci [1 Ã] for some integer 1≤ ci ≤m, i = 1, 2, . . . , s. Choose M = 1+m and
choose 0< σ1 <min{σ, d/32} such that (1− σ1)/(1+ σ1) > 127/128.

Let 0<δ2 < 1 (in place of δ) be as given by Lemma 6.1 for ε1= δ1, ε2= σ1/4, G
and {p1, p2, . . . , ps}. Write yi=(y

(i)
j,k)m×m , where y(i)j,k∈A. Choose G1={y

(i)
j,k : j,k, i}

and G2 = G ∪G1.
Put δ3 =min{δ1/M, δ2/32M, d/128}. We choose 0< δ < δ3 and a finite subset

G3 ⊃ G2 such that for any G3-δ-multiplicative contractive completely positive linear
map L : A→ B (any unital C∗-algebra B), [L(pi )] is well defined and

∥[L(pi )] − L(pi )∥< δ3, i = 1, 2, . . . , s. (6.9)

Let us show that P and δ are as desired.
Let κ and λ be given satisfying (6.7). We write κ for κ∼ for convenience. Then

recall κ([1 Ã])= [1C ]. Note that

λ(τ)( p̄i )= ci = τ(κ( p̄i )), i = 1, 2, . . . . (6.10)

So, as κ is positive, we may identify κ([pi ]) with a projection in Mm(C) as Mm(C)
has stable rank one. Hence, by (6.7) and (6.10), for all τ ∈ T (C),

|τ(κ([pi ]))− ρA(λ(τ ))([pi ])|< δ, i = 1, 2, . . . , s. (6.11)

Let λ∗ : Aff(T (A))→ Aff(T (C)) be defined by

λ∗( f )(τ )= f (λ(τ ))

for all f ∈ Aff(T (A)) and τ ∈ T (C). Identify ∂e(T (C)) with [0, 1], and put
η =min{δ, σ1/12}. Choose a partition

0= t0 < t1 < t2 < · · ·< tn−1 < tn = 1

of the interval [0, 1] such that

|λ∗(ĝ)(t j )− λ∗(ĝ)(t j−1)|<
η

m2 , g ∈ G3, j = 1, 2, . . . , n. (6.12)

Since T (A)= Tqd(A), there are unital G3-δ-multiplicative completely positive
linear maps 9 j : A→ Q, j = 0, 1, 2, . . . , n, such that

|tr ◦9 j (g)− λ∗(ĝ)(t j )|<
η

m2 , g ∈ G3. (6.13)

Denote by 9∼j : Ã → Q the unitization (which maps 1 Ã to 1Q). Recall that
[pi ] = mi [1 Ã] + xi , i = 1, 2, . . . , s. It then follows from (6.9), (6.13) and (6.11),
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that, for each i = 1, 2, . . . , s and each j = 1, 2, . . . , n,

|tr([9∼j (pi )])− tr([9∼0 (pi )])|

< |tr(9∼j (pi ))− tr(9∼0 (pi ))| + 2δ3

< 2δ3+ 2η+ |λ∗( p̂i )(t j )− λ∗( p̂i )(t0)|

< 2δ3+ 2η+ 2δ+ |tr ◦πt j (κ([pi ]))− tr ◦π0(κ([pi ]))|

= 2δ3+ 2η+ 2δ ≤ 6δ3 ≤ δ2. (6.14)

(Here, as before, πt is the point evaluation at t ∈ [0, 1].) We also have, by (6.12)
and (6.13), that

|tr(9 j (g))− tr(9 j+1(g))|< 3η, g ∈ G3, j = 1, 2, . . . , n. (6.15)

Recall that λ(τ)( f̂1/2(e))≥ d for all τ ∈ T (C). So we also have, by (6.12),

tr(9 j ( f1/2(e))) > 31
32 d. (6.16)

Consider the differences

ri, j := tr([9∼j (pi )])− tr([9∼0 (pi )]), i = 1, 2, . . . , s, j = 1, 2, . . . , n. (6.17)

Recall that [9∼j (pi )] and [9∼0 (pi )] are in K0(Q). By (6.14), |ri, j |< δ2. Applying
Lemma 6.1, we obtain a projection e ∈ Q with tr(e) < σ1/4 and G-δ1-multiplicative
unital completely positive linear maps ψ∼0 , ψ

∼

j : Ã→ eQe, j = 1, 2, . . . , n, such
that

[ψ∼0 (pi )] − [ψ
∼

j (pi )] = ri, j , i = 1, 2, . . . , s, j = 1, 2, . . . , n. (6.18)

Consider the direct sum maps

8′∼j := ψ
∼

j ⊕9
∼

j : Ã→ (1⊕ e)M2(Q)(1⊕ e), j = 0, 1, 2, . . . , n.

Since δ ≤ δ1, these maps are G-δ1-multiplicative. By (6.17) and (6.18),

[8′∼j (pi )] = [8
′∼

0 (pi )], i = 1, 2, . . . , s, j = 1, 2, . . . , n. (6.19)

Define s :Q→Q by s(x)= x/(1+ tr(e)), x ∈Q. Choose a (unital) isomorphism

S : (1⊕ e)M2(Q)(1⊕ e)→ Q

such that S∗0 = s.
Consider the composed maps (still G-δ1-multiplicative and now unital)

8 j := S ◦8′j : A→ Q, j = 0, 1, 2, . . . , n.

By (6.19),
[8 j ]|P = [8 j−1]|P , j = 1, 2, . . . , n,
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and by (6.15) and the fact that tr(e) < σ1/4,

|tr ◦8 j (a)− tr ◦8 j−1(a)|< 3η+ σ1
4
≤
σ

2
, a ∈ F, j = 1, 2, . . . , n. (6.20)

Moreover, by (6.16) and by the choice of σ1,

tr(9 j ( f1/2(e)))≥
d
2
, j = 1, 2, . . . , n. (6.21)

Applying Lemma 7.2 of [Elliott et al. 2020a] successively for j = 1, 2, . . . , n (to
the pairs (80,81), (Ad u1 ◦81,Ad u1 ◦82), . . . , (Ad un−1 ◦ · · · ◦Ad u1 ◦8n−1,

Ad un−1 ◦ · · · ◦Ad u1 ◦8n)), one obtains, for each j , a unitary u j ∈ Q and a unital
F-ε-multiplicative completely positive linear map L j : A→ C([t j−1, t j ], Q) such
that

π0 ◦ L1 =80, πt1 ◦ L1 = Ad u1 ◦81, (6.22)

and

πt j−1◦L j =πt j−1◦L j−1, πt j ◦L j =Ad u j◦· · ·◦Ad u1◦8 j , j=2, 3, . . . , n. (6.23)

Furthermore, in view of (6.20), we may choose the maps L j such that

|tr ◦πt ◦L j (a)−λ(tr ◦πt)(a)|<σ, t ∈ [t j−1, t j ], a ∈F, j = 1, 2, . . . , n. (6.24)

Define L : A→ C([0, 1], Q) by πt ◦ L = πt ◦ L j , t ∈ [t j−1, t j ], j = 1, 2, . . . , n.
Since L j , j = 1, 2, . . . , n, are F-ε-multiplicative (use (6.22) and (6.23)), we have
that L is a F-ε-multiplicative completely positive linear map A→ C([0, 1], Q). It
follows from (6.24) that L satisfies (6.8), as desired. □

6.25. Let A be a separable stably projectionless simple C∗-algebra with continuous
scale. Recall that τ A

C
is the tracial state of Ã which vanishes on A and T ( Ã) =

{s ·t A
C
+(1−s)·τ : τ ∈ T (A), 0≤ s≤ 1} (see 2.12). For each projection p ∈Mm( Ã),

one may write p= p̄+a, where p̄ is a scalar matrix in Mm(C·1 Ã) and a∈Mm(A)s.a..
Let p̄ have rank k(p). For each τ ∈ T (A), define r Ã(τ )([p]) = k(p) + τ(a)
and r Ã(τ

A
C
)([p]) = k(p). This gives a map r Ã : T ( Ã)→ Hom(K0( Ã),R). Let

rA : T (A)→Hom(K0(A),R) be defined by rA(τ )= r Ã(τ )|K0(A) for any τ ∈ T (A)
and r∼A : T (A)→ Hom(K0( Ã),R) be defined by r∼A = r Ã|T (A).

Suppose that C is another separable stably projectionless simple C∗-algebra with
continuous scale and suppose that there is an isomorphism

0 : (K0(A), T (A), ρA)∼= (K0(C), T (C), ρC). (6.26)

Recall that this means 0|K0(A) is a group isomorphism, 0|T (A) is an affine homeo-
morphism, and ρA(0

−1(τ ))(x)= ρC(τ )(0(x)) for x ∈ K0(A) and τ ∈ T (C).
Then 0 extends to an order isomorphism

0∼ : (K0( Ã), K0( Ã)+, [1 Ã], T ( Ã), r Ã)→ (K0(C̃), K0(C̃)+, [1C̃ ], T (C̃), rC̃)
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by defining 0∼([1 Ã])= [1C̃ ] and 0∼(τ A
C
)= τC

C
. To see this, we note that 0∼|K0( Ã)

is an isomorphism and 0∼
T ( Ã)

is an affine homeomorphism. If y :=m · [1 Ã]+ x ≥ 0
for some positive integer m and x ∈ K0(A), then there is a projection p ∈ MK (A)
for some integer K ≥ 1 such that [p] = y. Assume that y ̸= 0. Then p ̸= 0. Choose
a ∈ (p Ap)1

+
\{0}. Then a ≤ p. It follows that τ(a) > 0 for all τ ∈ T (A). Therefore

τ(p) > 0 for all τ ∈ T (A). This also means that m+rA(τ )(x) > 0 for all τ ∈ T (A).
On the other hand, π A

C
(p) ̸= 0, where π A

C
: Ã→ C is the quotient map. It follows

that τ A
C
(p) > 0. This implies that t (p) > 0 for all t ∈ T ( Ã). One checks that, for

τ ∈ T (C),

r∼A ((0
∼)−1(τ ))(y)= r∼A (0

−1(τ )(m+ x))= m+ rA(0
−1(τ ))(x) > 0. (6.27)

Also
r∼A ((0

∼)−1(τC
C ))(y)= rA(τ

A
C )(y)= m > 0. (6.28)

This implies that

r∼C (t)(0
∼(y))= r∼A ((0

∼)−1)(y) > 0. (6.29)

Therefore 0∼ is an order isomorphism.

Lemma 6.30. Let A be a nonunital but σ -unital simple C∗-algebra with strict
comparison for positive elements which has almost stable rank one. Suppose that
QT(A)= T(A), A = Ped(A) and the canonical map ı :W (A)→ LAffb,+(T (A)w)
is surjective. Fix a strictly positive element a ∈ A. Then A has an approximate
identity {en} such that en Aen has continuous scale of each n. Moreover, enaen ∼ en

for all n.

Proof. Let a ∈ A+ with ∥a∥ = 1 be a strictly positive element. We may assume
that a is not Cuntz equivalent to a projection as A is not unital. For ε1 =

1
2 , by

Lemma 7.2 of [Elliott et al. 2020b], there are 0 < ε2 <
1
4 and e1 ∈ A such that

0 ≤ fε1(a) ≤ e1 ≤ fε2(a) and e1 Ae1 has continuous scale (see also Lemma 5.3
of [Elliott et al. 2020b], for example). By an induction and repeatedly applying
Lemma 7.2 of [Elliott et al. 2020b], one obtains a sequence {en} ⊂ A1

+
such that

0≤ fεn (a)≤ en ≤ fεn+1(a), (6.31)

en Aen has continuous scale and 0< εn < 1/2n , n = 1, 2, . . . . Since { fεn (a)} forms
an approximate identity, one then verifies that {en} also forms an approximate
identity for A.

To see the last part of the lemma, we note that

en ∼ enenen ≤ en fεn+1(a)en ≲ enaen ≤ en. (6.32)

It follows that en ∼ enaen for all n. □
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The following is a nonunital version of Theorem 2.2 of [Winter 2016].
In the next statement, as in Definition 5.3 of [Elliott et al. 2020a], S is a fixed

class of nonunital separable amenable C∗-algebras C such that T (C) ̸= ∅ and
0 /∈ T (C)w. A simple C∗-algebra A is said to be in the class R if A is separable,
has continuous scale and T (A) ̸=∅.

Theorem 6.33 (cf. [Winter 2016, Theorem 2.2; Elliott et al. 2020a, Theorem 5.4]).
Let A be a stably projectionless separable simple C∗-algebra with continuous scale
and with dimnuc A = m <∞.

Fix a positive element e ∈ A+ with 0≤ e ≤ 1 such that τ(e), τ ( f1/2(e))≥ r0 > 0
for all τ ∈ T (A). Let

C =
⋃
∞

n=1 Cn

be a nonunital simple C∗-algebra with continuous scale, where Cn ⊆ Cn+1 and
Cn ∈ S, which also satisfies condition (1) in [Elliott et al. 2020a, Definition 5.3].
Suppose that there is an affine homeomorphism 0 : T (C)→ T (A) and suppose that
there is a sequence of completely positive contractive linear maps σn : A→ C with
im(σn)⊂ Cn and a sequence of injective homomorphisms ρn : Cn→ A such that

lim
n→∞
∥σn(ab)− σn(a)σn(b)∥ = 0, a, b ∈ A, (6.34)

lim
n→∞

sup{|t ◦ σn(a)−0(t)(a)| : t ∈ T (C)} = 0, a ∈ A, (6.35)

lim
n→∞

sup{|τ(ρn ◦ σn(a))− τ(a)| : τ ∈ T (A)} = 0, a ∈ A. (6.36)

Then A has the following property: For any finite set F ⊆ A and any ε > 0, there
are a projection p ∈ M4(m+2)( Ã), a C∗-subalgebra S ⊆ pM4(m+2)(A)p with S ∈ S
and an F-ε-multiplicative completely positive contractive linear map L : A→ S
such that

(1) ∥[p, 14(m+2)⊗ a]∥< ε for all a ∈ F ,

(2) p(14(m+2)⊗ a)p ∈ε S for all a ∈ F ,

(3) ∥L(a)− p(14(m+2)⊗ a)p∥< ε for all a ∈ F ,

(4) p ∼ e11 in M4(m+2)( Ã),

(5) τ(L(e)), τ ( f1/2(L(e))) >
7r0

32(m+2)
for all τ ∈ T (M4(m+2)(A)),

(6) (14(m+2)− p)M4(m+2)(A)(14(m+2)− p) ∈R and

(7) t ( f1/4(L(e)))≥
r0
8
λs(C1) for all t ∈ T (S) (see Definition 2.22 for λs).

Proof. This is a slight modification of Theorem 5.4 of [Elliott et al. 2020a], which
is a variation of Theorem 2.2 of [Winter 2016]. The proof is almost the same as that
of Theorem 5.4 of [Elliott et al. 2020a], which itself is a repetition of the original
proof of Theorem 2.2 of [Winter 2016].
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Since A has finite nuclear dimension, one has that A∼= A⊗Z (see [Winter 2012]
for the unital case and [Tikuisis 2014] for the nonunital case). Therefore, A has
strict comparison for positive elements (see Corollary 4.7 of [Rørdam 2004]).

The proof is essentially the same as that of Theorem 2.2 of [Winter 2016]. We
give the proof in the present very much analogous situation for the convenience of
the reader. Let e ∈ A+ with ∥e∥= 1, τ(e) > r0 and τ( f1/2(e)) > r0 for all τ ∈ T (A).

Let (en) be an (increasing) approximate unit for A. Since A ∈ R, and A is
also assumed to be projectionless, one may assume that sp(en) = [0, 1]. Since
dimnuc(A)≤m, by Lemma 5.2 of [Elliott et al. 2020a], there is a system of (m+1)-
decomposable completely positive approximations

Ã
ψ j
−→ F (0)j ⊕ F (1)j ⊕ · · ·⊕ F (m)j ⊕C

ϕ j
−→ Ã, j = 1, 2, . . .

such that

ϕ j (F
(l)
j )⊆ A, l = 0, 1, . . . ,m, (6.37)

ϕ j |C(1C)= 1 Ã− e j , (6.38)

where e j is an element of (en).
Write

ϕ
(l)
j = ϕ j |F (l)j

and ϕ
(m+1)
j = ϕ j |C, l = 0, 1, . . . ,m.

Set F (m+1)
j = C. Let ψ (l)j = πl ◦ψ j for j = 0, 1, 2, . . . ,m+ 1, where

πl :

m+1⊕
k=0

F (k)j → F (l)j V S P2

is the projection. As in Lemma 5.2 of [Elliott et al. 2020a], one may assume that

lim
j→∞
∥ϕ

(l)
j ψ

(l)
j (1 Ã)a−ϕ

(l)
j ψ

(l)
j (a)∥ = 0, l = 0, 1, . . . ,m, a ∈ A. (6.39)

Note that ϕ(l)j : F
(l)
j → A is of order zero, and the relation for an order zero map is

weakly stable (see (P) and (P1) of [Kirchberg and Winter 2004, Proposition 2.5]).
On the other hand, if i is large enough, then σi ◦ ϕ

(l)
j satisfies the relation for

order zero to within an arbitrarily small tolerance, since σi will be sufficiently
multiplicative. It follows that there are order zero maps

ϕ̃
(l)
j,i : F

(l)
j → Ci

such that
lim

i→∞
∥ϕ̃

(l)
j,i (c)− σi (ϕ

(l)
j (c))∥ = 0, c ∈ F (l)j .

We identify Ci with Si = ρi (Ci )⊆ A, σi : A→ Ci with ρi ◦ σi : A→ Si ⊆ A and
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ϕ̃
(l)
j,i with ρi ◦ ϕ̃

(l)
j,i . There is a positive linear map (automatically order zero)

ϕ̃
(m+1)
j,i : C ∋ 1 7→ 1 Ã− σi (e j ) ∈ S̃i = C∗(Si , 1 Ã)⊆ Ã, i ∈ N.

Note that
ϕ̃
(m+1)
j,i (λ)= σi (ϕ

(m+1)
j (λ)), λ ∈ F (m+1)

j = C, (6.40)

where one still uses σi to denote the induced map Ã→ S̃i .
Note that for each l = 0, 1, . . . ,m,

lim
i→∞
∥ f (ϕ̃(l)j,i )(c)− σi ( f (ϕ(l)j )(c))∥ = 0, c ∈ (F (l)j )+, f ∈ C0((0, 1])+,

(see [Winter and Zacharias 2009, 4.2] for the definition of f (ψ), where ψ is an
order zero map) and hence, from (6.36),

lim
i→∞

sup
τ∈T (A)

|τ( f (ϕ̃(l)j,i )(c)− f (ϕ(l)j )(c))| = 0, c ∈ (F (l)j )+, f ∈ C0((0, 1])+.

Also note that

lim sup
i→∞

∥ f (ϕ̃(l)j,i )(c)∥ ≤ ∥ f (ϕ(l)j )(c)∥, c ∈ (F (l)j )+, f ∈ C0((0, 1])+.

Applying Lemma 5.1 of [Elliott et al. 2020a] to (ϕ̃(l)j,i )i∈N and ϕ(l)j for each
l = 0, 1, . . . ,m, we obtain contractions

s(l)j,i ∈ M4(A)⊆ M4( Ã), i ∈ N,

such that, for all c ∈ F (l)j ,

lim
i→∞
∥s(l)j,i (14⊗ϕ

(l)
j (c))− (e1,1⊗ ϕ̃

(l)
j,i (c))s

(l)
j,i∥ = 0, (6.41)

lim
i→∞
∥(e1,1⊗ ϕ̃

(l)
j,i (c))s

(l)
j,i (s

(l)
j,i )
∗
− e1,1⊗ ϕ̃

(l)
j,i (c)∥ = 0. (6.42)

Note that sp(e j )= [0, 1]. Put C0 = C0((0, 1]). Define

1 j ( f̂ )= inf{τ( f (e j )) : τ ∈ T (A)} for all f ∈ (C0)+ \ {0}. (6.43)

Since A is assumed to have continuous scale, T (A) is compact and 1 j ( f̂ ) > 0 for
all f ∈ (C0)+ \ {0}. For l = m + 1, since sp(e j ) = [0, 1], by considering 1 j for
each j , since i is chosen after j is fixed, by applying Corollary A.16 of [Elliott
et al. 2020a], one obtains unitaries

s(m+1)
j,i ∈ Ã, i ∈ N,

such that
lim

i→∞
∥s(m+1)

j,i e j − σi (e j )s
(m+1)
j,i ∥ = 0,

and hence
lim

i→∞
∥s(m+1)

j,i (1 Ã− e j )− (1 Ã− σi (e j ))s
(m+1)
j,i ∥ = 0.
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By (6.38) and (6.40), one has

lim
i→∞
∥s(m+1)

j,i ϕ
(m+1)
j (c)− ϕ̃(m+1)

j,i (c)s(m+1)
j,i ∥ = 0, c ∈ F (m+1)

j = C.

Considering the element e1,1⊗ s(m+1)
j,i ∈ M4⊗ Ã, and still denoting it by s(m+1)

j,i ,
one has

lim
i→∞
∥s(m+1)

j,i (14⊗ϕ
(m+1)
j (c))− (e1,1⊗ ϕ̃

(m+1)
j,i (c))s(m+1)

j,i ∥ = 0, c ∈ F (m+1)
j = C

and
(e1,1⊗ ϕ̃

(m+1)
j,i (c))s(m+1)

j,i (s(m+1)
j,i )∗ = e1,1⊗ ϕ̃

(m+1)
j,i (c).

Therefore,

lim
i→∞
∥s(l)j,i (14⊗ϕ

(l)
j (c))− (e1,1⊗ ϕ̃

(l)
j,i (c))s

(l)
j,i∥ = 0, (6.44)

lim
i→∞
∥(e1,1⊗ ϕ̃ j,i (c))s

(l)
j,i (s

(l)
j,i )
∗
− ϕ̃ j,i (c)∥ = 0, (6.45)

for c ∈ F (l)j , l = 0, 1, . . . ,m+1. Let σ̃i : Ã→ C̃i and ρ̃i : C̃i→ Ã denote the unital
maps induced by σi : A→ Ci and ρi : Ci → A, respectively.

Consider the contractions

s(l)j := (s
(l)
j,i )i∈N ∈ (M4⊗ Ã)∞, l = 0, 1, . . . ,m+ 1, j = 1, 2, . . . .

By (6.44) and (6.45), these satisfy

s(l)j (14⊗ ι(ϕ
(l)
j (c)))= (e1,1⊗ ρ̄σ̄ (ϕ

(l)
j (c)))s

(l)
j ,

(e1,1⊗ ρ̄ ◦ σ̄ (ϕ
(l)
j (c)))s

(l)
j (s

(l)
j )
∗
= (e1,1⊗ ρ̄ ◦ σ̄ (ϕ

(l)
j (c))),

where

σ̄ : Ã→
∞∏

n=1

C̃n
/ ∞⊕

n=1

C̃n and ρ̄ :

∞∏
n

C̃n
/ ∞⊕

n

C̃n→ ( Ã)∞

are the homomorphisms induced by σ̃i and ρ̃i , and the map ι : Ã→ ( Ã)∞ is the
canonical embedding. Let

ῑ : ( Ã)∞→ (( Ã)∞)∞

be the embedding induced by the canonical embedding ι and let

γ̄ : ( Ã)∞→ (( Ã)∞)∞

denote the homomorphism induced by the composed map

ρ̄σ̄ : Ã→ ( Ã)∞.
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For each l = 0, 1, . . . ,m+ 1, let

ϕ̄(l) :
∏

j

F (l)j

/⊕
j

F (l)j → A∞ and ψ̄ (l) : A→
∏

j

F (l)j

/⊕
j

F (l)j (6.46)

denote the maps induced by ϕ(l)j and ψ (l)j .
Consider the contraction

s̄(l) = (s(l)j ) ∈ (M4⊗ Ã∞)∞.

Then

s̄(l)(14⊗ ῑϕ̄
(l)ψ̄ (l)(a))= (e1,1⊗ γ̄ ϕ̄

(l)ψ̄ (l)(a))s̄(l), a ∈ Ã,

(e1,1⊗ γ̄ ϕ̄
(l)ψ̄ (l)(a))s̄(l)(s̄(l))∗ = (e1,1⊗ γ̄ ϕ̄

(l)ψ̄ (l)(a)).

By (6.39), one has

ϕ̄(l)ψ̄ (l)(1 Ã)ι(a)= ϕ̄
(l)ψ̄ (l)(a), a ∈ A.

Hence [ϕ̄(l)ψ̄ (l)(1 Ã), ι(b)] = 0 and (ϕ̄(l)ψ̄ (l)(1 Ã)ι(b))
1/2
= (ϕ̄(l)ψ̄ (l)(1 Ã))

1/2ι(b1/2)

for any b ∈ A+. It follows that

(ϕ̄(l)ψ̄ (l)(1 Ã))
1/2ι(a) ∈ C∗(ϕ̄(l)ψ̄ (l)(A)) for a ∈ A,

and hence

s̄(l)(14⊗ (ῑϕ̄
(l)ψ̄ (l)(1 Ã))

1/2)(14⊗ ῑι(a))

= s̄(l)(14⊗ ῑϕ̄
(l)ψ̄ (l)(1 Ã)

1/2ι(a))

= (e1,1⊗ γ̄ (ϕ̄
(l)ψ̄ (l)(1 Ã))

1/2ι(a))s̄(l)

= (e1,1⊗ γ̄ ι(a)(ϕ̄(l)ψ̄ (l)(1 Ã))
1/2)s̄(l)

= (e1,1⊗ γ̄ (ι(a)))(e1,1⊗ γ̄ (ϕ̄
(l)ψ̄ (l)(1 Ã))

1/2)s̄(l). (6.47)

Set

v̄ =

m+1∑
l=0

e1,l ⊗ ((e1,1⊗ γ̄ ϕ̄
lψ̄ (l)(1 Ã))

1/2s̄(l))

=

m+1∑
l=0

e1,l ⊗ (s̄(l)(14⊗ ῑϕ̄
lψ̄ (l)(1 Ã))

1/2) ∈ Mm+2(C)⊗M4(C)⊗ ( Ã∞)∞.

Then

v̄v̄∗ =

m+1∑
l=0

e1,1⊗ (e1,1⊗ γ̄ ϕ̄
lψ̄ (l)(1 Ã))= e1,1⊗ e1,1⊗ γ̄ (1 Ã).
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Thus, v̄ is a partial isometry. Moreover, for any a ∈ Ã,

v̄(1(m+2)⊗ 14⊗ ῑι(a))

=

m+1∑
l=0

e1,l ⊗ (s̄(l)(14⊗ ῑϕ̄
lψ̄ (l)(1 Ã)

1/2)(14⊗ ῑι(a)))

=

m+1∑
l=0

e1,l ⊗ (e1,1⊗ γ̄ (ι(a)))(e1,1⊗ γ̄ (ϕ̄
(l)ψ̄ (l)(1 Ã)

1/2s̄(l)) (by (6.47))

= (e1,1⊗ e1,1⊗ γ̄ (ι(a)))
m+1∑
l=0

e1,l ⊗ e1,1⊗ γ̄ (ϕ̄
(l)ψ̄ (l)(1 Ã)

1/2s̄(l))

= (e1,1⊗ e1,1⊗ γ̄ (ι(a)))v̄.

Hence, we obtain

v̄∗v̄(1m+2⊗14⊗ῑι(a))= v̄∗(e1,1⊗e1,1⊗γ̄ ι(a))v̄= (1m+2⊗14⊗ῑι(a))v̄∗v̄, a∈ Ã.

Then for any finite set G⊆ Ã and δ>0, there are i∈N and vi∈Mm+2(C)⊗M4(C)⊗ Ã
such that

viv
∗

i = e1,1⊗ e1,1⊗ ρ̃i (1S̃i
)= e1,1⊗ e1,1⊗ 1 Ã, (6.48)

∥[v∗i vi , 1m+2⊗ 14⊗ a]∥<δ for all a∈G, (6.49)

∥v∗i vi (1m+2⊗14⊗a)−v∗i (e1,1⊗e1,1⊗ ρ̃i σ̃i (a))vi∥<δ for all a∈G, (6.50)

τ(ρi ◦ σi (e)), τ ( f1/2(ρi ◦ σi (e)))≥
15r0
16

for all τ∈T (A). (6.51)

Define κi : S̃i → Mm+2⊗M4⊗ Ã by

κi (s)= vi
∗(e1,1⊗ e1,1⊗ ρi (s))vi .

Note that
κi (Si )⊆ Mm+2⊗M4⊗ A.

Then κi is an embedding; and on setting pi = 1κi (S̃i )
= v∗i vi , we have

(i) pi ∼ e1,1⊗ e1,1⊗ 1 Ã,

(ii) ∥[pi , 1m+2⊗ 14⊗ a]∥< δ, a ∈ G,

(iii) pi (1m+2⊗ 14⊗ a)pi ∈δ κi (S̃i ), a ∈ G.

Note that A is Z-stable (by [Winter 2012]) and hence has strict comparison (by
[Robert 2016]). Let e′ ∈ (14(m+2) − pi )M4(m+2)(A)(14(m+2) − pi ) be a strictly
positive element. By (i), dτ (e′)= τ(14(m+2)− pi )= τ(14(m+2)− e1,1⊗ e1,1⊗ 1 Ã)

for all τ ∈ T (A), where τ is naturally extended to Ã. Since A and M4(m+2)(A)
have continuous scale, τ 7→ dτ is continuous on T (A). Hence

(14(m+2)− pi )M4(m+2)(A)(14(m+2)− pi )



ON CLASSIFICATION OF NONUNITAL AMENABLE SIMPLE C∗-ALGEBRAS, III 361

also has continuous scale (see Proposition 5.4 of [Elliott et al. 2020b]) and is still
in the reduction class R (so condition (6) holds).

Define L i : A→ κi (Si ) by L i (a) = v∗i (e1,1⊗ e1,1⊗ ρi (σi (a)))vi for all a ∈ A.
Then

(iv) ∥L i (a)− pi (14(m+2)⊗ a)pi∥< δ for all a ∈ G and

(v) τ(L i (e)), τ ( f1/2(L i (e)))≥
15r0

64(m+2)
for all τ ∈ T (M4(m+2)(A)).

Let τi ∈ T (κi (Si )). Then τi ◦ L i is a positive linear functional. Let t̄ be a weak
∗-limit of {τi ◦ L i }. Note that, for any 1

2 > ε > 0, since A has continuous scale,
there is eA ∈ A with ∥eA∥ = 1 such that τ(eA) > 1− ε/2 for all τ ∈ T (A). By
(6.36) (see also (6.48)), we may assume that τi ◦ L i (eA) > 1− ε for all large i . It
follows that t̄(eA)≥ 1− ε. Hence ∥t̄∥ ≥ 1− ε for any 1

2 > ε > 0. It follows that t̄
is a state of A. Then, by (6.34) and (6.36), t̄ is a tracial state of A. Therefore, with
sufficiently small δ and large G (and sufficiently large i), also by (6.51), we may
assume that

t ( f1/4(L i (e)))≥
7r0
8

for all t ∈ T (κi (Si )). (6.52)

Recall that κi (Si ) ∼= Ci . Fix (a large i) above and set S = κi (Si ) and L = L i .
Recall also that λs(C1)≤ 1. So (6.52) also implies that

t ( f1/4(L(e)))≥
3r0
8
λs(C1) for all t ∈ T (S). (6.53)

The conclusion of the theorem follows from (i),(ii), (iii), (iv), (v), and (6.53). □

Theorem 6.54 (cf. [Elliott et al. 2020a, Theorem 5.7]). Let A be a stably projec-
tionless separable simple C∗-algebra with continuous scale and with dimnuc A =
m <∞.

Suppose that every hereditary C∗-subalgebra B of A with continuous scale has
the following properties: Let eB ∈ B be a strictly positive element with ∥eB∥= 1 and
τ(eB) > 1− 1

64 for all τ ∈ T (B). Let C be a nonunital simple C∗-algebra which is
an inductive limit C =

⋃
∞

n=1 Cn , where Cn ⊂ Cn+1 and Cn ∈ C0, with continuous
scale such that T (C)∼= T (B). For each affine homeomorphism γ : T (B)→ T (C),
there exist sequences of completely positive contractive linear maps σn : B→ C
with im(σn)⊂ Cn and injective homomorphisms ρn : Cn→ B such that

lim
n→∞
∥σn(xy)− σn(x)σn(y)∥ = 0 for all x, y ∈ B, (6.55)

lim
n→∞

sup{|t ◦ σn(b)− γ−1(t)(b)| : t ∈ T (C)} = 0 for all b ∈ B, (6.56)

lim
n→∞

sup{|τ(ρn ◦ σn(b))− τ(b)| : τ ∈ T (B)} = 0 for all b ∈ B. (6.57)

Suppose also that every hereditary C∗-subalgebra A is tracially approximately
divisible. Then A ∈ D.
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Proof. The proof is exactly the same as that of Theorem 5.7 of [Elliott et al. 2020a].
By [Tikuisis 2014] (see also [Winter 2012]), A′ ⊗ Z ∼= A′ for every hereditary
C∗-subalgebra A′ of A. It follows from [Robert 2016] that A has almost stable
rank one. Let B be a hereditary C∗-subalgebra with continuous scale. Then B has
finite nuclear dimension (see [Winter and Zacharias 2010]). By [Tikuisis 2014]
again, B is Z-stable. It follows from Theorem 6.6 of [Elliott et al. 2011] that the
map from Cu(B) to LAff+(T̃ (B)) is surjective. Note that the map from W (B) to
LAffb,+(T (B)) is also surjective. We apply Theorem 6.33 above and Lemma 5.5
of [Elliott et al. 2020a].

Since B has continuous scale, we may choose a strictly positive element e ∈ B
with ∥e∥ = 1 and e′ ∈ B+ with ∥e′∥ ≤ 1 such that f1/2(e)e′ = e′ f1/2(e) = e′ and
dτ ( f1/2(e′))> 1−1/(128(m+2)) for all τ ∈ T (B). Let 1>ε> 0, F ⊂ B be a finite
subset and b∈ B+\{0}. Choose b0∈ B+\{0} such that 64(m+2)⟨b0⟩≤⟨b⟩ in Cu(A).
Since we assume that B is tracially approximately divisible (see Definitions 10.1
of [Elliott et al. 2020b] or 5.6 of [Elliott et al. 2020a]), there are e0 ∈ B+ and a
hereditary C∗-subalgebra A0 of B such that e0 ⊥ M4(m+2)(A0), e0 ≲ b0 and

dist(x, B1,d) <
ε

64(m+2)
for all x ∈ F ∪ {e},

where B1,d ⊆ Bs := e0 Be0⊕M4(m+2)(A0)⊆ B and

B1,d = {x0⊕ (

4(m+2)︷ ︸︸ ︷
x1⊕ x1⊕ · · ·⊕ x1) : x0 ∈ e0 Be0, x1 ∈ A0}. (6.58)

Without loss of generality, we may further assume that F ∪ {e′} ⊆ B1,d . Let
P : Bs→M4(m+2)(A0) be a projection map and P (1) :M4(m+2)(A0)→ A0= A0⊗e11

be defined by P (1)(a) = (1 Ã0
⊗ e11)a(1 Ã0

⊗ e11) for a ∈ M4(m+2)(A0), where
{ei j }4(m+2)×4(m+2) is a system of matrix unit. Put F0 = {P(x) : x ∈ F}. Therefore,
we may assume, without loss of generality, that ∥e0x − xe0∥< ε/(64(m+ 2)), and
there is e1∈M4(m+2)(A0)with 0≤ e1≤1 such that ∥e1x−xe1∥<ε/(64(m+2)) and
∥e1 P(x)− P(x)∥< ε/(64(m+2)) for all x ∈F ∪{e, e′, f1/2(e), f1/4(e), f1/2(e′)}.
Moreover, as the map from W (A)+ to LAffb,+(T (A)) is surjective by Lemma 6.30,
without loss of generality, we may assume that A0 has continuous scale.

Without loss of generality, we may further assume that F ∪ {e} ⊆ B1,d . Write

x = x0+

4(m+1)︷ ︸︸ ︷
x1⊕ x1⊕ · · ·⊕ x1 .

Let F1 = {x1 : x ∈ F ∪ {e}} ⊂ A0. Note that we may write
4(m+2)︷ ︸︸ ︷

x1⊕ x1⊕ · · ·⊕ x1 =

x1⊗ 14(m+2). Note that dimnuc A0 = m (see [Winter and Zacharias 2010]). Also,
A0 is a nonunital separable simple C∗-algebra which has continuous scale. We may
then apply Theorem 6.33 to A0 with S = C0. By Theorem 4.107, C =

⋃
∞

n=1 Cn ,
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where Cn ∈ C0, Cn ⊂Cn+1, and Cn satisfies condition (1) in Definition 5.3 of [Elliott
et al. 2020a]. Moreover, λs(Cn)≥

1
2 for all n. Put r0 = 1− 1/(64(m+ 2)). Choose

η0 = 7/(32(m + 2)) and λ = 3
16 . Thus, by applying Theorem 6.33, we have the

below estimates, with ϕ1(b) = (E − p)b(E − p) for all b ∈ M4(m+2)(A0), where
E = 1M4(m+2)( Ã0)

, and p ∈ M4(m+2)( Ã0) is a projection given by Theorem 6.33,
and L : A0→ D1 ⊂ pM4(m+2)(A0)p is an F1-ε-multiplicative completely positive
contractive linear map:

∥x ⊗ 14(m+2)− (ϕ1(x ⊗ 14(m+2))+ L(x))∥< ε

4
for all x ∈ F1, (6.59)

dτ (ϕ1(P(e)))≤ 1− 1
4(m+2)

for all τ ∈ T (M4(m+2)(A0)), (6.60)

τ ′(ϕ1(P(e))), τ ′
(

f1/2(ϕ1(P(e)))
)
≥ r0−

ε

4
for all τ ′ ∈ T ((1− p)M4(m+1)(A0)(1− p)), (6.61)

D1 ∈ C0, D1 ⊆ pM4(m+2)(A0)p, (6.62)

τ(L(P (1)(e)))≥ r0η0

for all τ ∈ T (M4(m+2)(A0)), (6.63)

t
(

f1/4(L(P (1)(e)))
)
≥ r0λ for all t ∈ T (D1). (6.64)

Let B1= (1− p)M4(m+1)(A0)(1− p)⊕e0 Be0 and ϕ : B→ B1 be defined by ϕ(a)=
ϕ1(e1ae1)+ e0ae0 for a ∈ A. Define L1 : B→ D1 by L1(b)= L(P (1)(e1/2

1 be1/2
1 )).

Then both ϕ and L1 are F-ε-multiplicative. Put

η =
η0

2
<

η0

1+ ε/(64(m+ 2))
.

Then, in addition to (6.64) and (6.63),

∥x − (ϕ(x)+ L1(x))∥< ε for all x ∈ F,

dτ (ϕ(e))≤ 1− η for all τ ∈ T (B),

τ ′(ϕ(e)), τ ′( f1/2(ϕ(e)))≥ r − ε for all τ ′ ∈ T (B1),

τ (L1(e))≥ r0η for all τ ∈ T (B).

Note that these hold for every such B. Thus, the hypotheses of Theorem 5.5 of
[Elliott et al. 2020a] are satisfied. We then apply Theorem 5.5 of [Elliott et al.
2020a]. □

Theorem 6.65 (cf. [Elliott et al. 2015, Theorem 4.4]). Let A be a separable stably
projectionless simple C∗-algebra of finite nuclear dimension which satisfies the UCT.
Assume that A has continuous scale, T (A)= Tqd(A) ̸=∅, Cu(A)= LAff+(T (A)).
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Suppose that there exists a simple C∗-algebra C with continuous scale such that
C = limn→∞(Cn, ιn), where each Cn = C ′n ⊗ Q and C ′n ∈ C0, and such that

(K0(A⊗ Q), T (A⊗ Q), rA⊗Q)∼= (K0(C), T (C), rC). (6.66)

Then, A⊗ Q ∈ D.

Proof. Since A is simple, the assumption T (A)= Tqd(A) ̸=∅ immediately implies
that A is both stably finite and quasidiagonal. We may assume that A⊗ Q ∼= A.
Let B ⊂ A be a hereditary C∗-subalgebra with continuous scale. We may write
B = Her(b) for some b ∈ A+. Since A ∼= A ⊗ Q, there is a0 ∈ A+ such that
dτ (a0⊗1U )=dτ (b) for all τ ∈ T (A). Since we assume that Cu(A)=LAff+(T (A)),
⟨a0⊗ 1U ⟩ = ⟨b⟩. By Theorem 1.2 of [Robert 2016], B ∼= Her(a0⊗ 1U ). However,
Her(a0⊗ 1U )= a0 Aa0⊗ Q. It follows that B ∼= a0 Aa0⊗U ∼= B⊗ Q.

By Theorem 4.107, together with the assumption A ∼= A⊗ Q, there is a simple
C∗-algebra C = limn→∞(Cn, ın) with continuous scale, where each Cn is the tensor
product of a C∗-algebra in C0 with Q and ın is injective, such that

(K0(A), T (A), rA)∼= (K0(C), T (C), rC)

is given by 0. It follows that there is an order isomorphism

0∼ : (K0( Ã), K0( Ã)+, [1 Ã], T ( Ã), r Ã)
∼= (K0(C̃), K0(C̃)+, [1C̃ ], T (C̃), rC̃).

We continue to write ın and ın,∞ for the inclusions of ın : C̃n → C̃n+1 and
ın,∞ : C̃n→ C̃ , n= 1, 2, . . . . Let us write 0Aff and 0∼Aff for the corresponding maps
from Aff(T (A)) to Aff(T (C)) and from Aff(T ( Ã)) to Aff(T (C̃)). Since A and C
have continuous scale, T (A) and T (C) are compact.

Let a finite subset F of A and ε > 0 be given. Fix a strictly positive element
e ∈ A with ∥e∥ = 1. Choose

0< d < inf{τ( f1/2(e)) : τ ∈ T (A)}. (6.67)

This is possible since T (A) is compact. Let 0< σ <min{d, ε}/210. Since A has
continuous scale, one may choose e1 = fε′(e) for some 1

4 > ε
′ > 0 such that

τ(e1) > 1− σ
128 for all τ ∈ T (A). (6.68)

Without loss of generality, we may assume that e, f1/2(e), f1/4(e) and e1 ∈ F .
Let the finite set P of K0(A), the finite subset G1 (in place of G) of A, and

δ0 > 0 (in place of δ) be as assured by Lemma 7.2 of [Elliott et al. 2020a] for
F and ε/4. We may also assume that, for any G1-δ0-multiplicative contractive
completely positive linear map L from A,

∥ f1/2(L(e))− L( f1/2(e))∥<
d

210 and ∥ fε′(L(e))− L( fε′(e))∥<
d

210 . (6.69)
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Choose a finite subset P0 of projections in Mm( Ã) (for some integer m ≥ 1)
such that P ⊂ {[p] − [q] : p, q ∈ P0}. We may assume that 1 Ã ∈ P . Write
P0 = {1 Ã, p1, p2, . . . , ps}. Deleting some elements (but not 1A), we may assume
that the set

P0 = {[1 Ã], [p1], [p2], . . . , [ps]} ⊂ K0( Ã)

is Q-linearly independent.
Choose δ′0 = δ0/4m2. We may also assume, without loss of generality, that L∼

is G1 ∪P0-δ0-multiplicative, if L is a G1-δ′0-multiplicative contractive completely
positive linear map from A to a C∗-algebra B, and L∼ : Mm( Ã)→ Mm(B̃) is the
usual extension of the unitization of L .

Put G =F ∪G0 and δ =min{ε/8, δ′0/2, d/210
}. We may further assume, without

loss of generality, that every element of G has norm at most one.
Let δ1 > 0 (in place of δ) be as assured by Lemma 6.4 for G, δ (in place of ε1),

and σ/64 (in place of ε2) and for P0. We may assume that δ1 ≤ δ.
Let δ3 > 0 (in place of δ) be as assured by Lemma 6.5 for G, δ1/8 (in place of ε1)

and min{δ1/32, σ/256} (in place of ε2) (and for P0).
Let P1 (in place of P) and δ2 > 0 (in place of δ) be as assured by Lemma 6.6

for δ1/8 (in place of ε), min{δ1/32, σ/256} (in place of σ ), and G (in place of F).
Replacing P and P1 by their union, we may assume that P = P1. Note that we still
use the notation P0 for the related set of projections.

By Lemmas 2.8 and 2.9 of [Elliott and Niu 2016], there are unital positive linear
maps

γ : Aff(T ( Ã))→ Aff(T (C̃n1))

for some n1 ≥ 1 such that

∥(ın1,∞)Aff ◦ γ ( f̂ )−0∼Aff( f̂ )∥<min
{
σ

128
, δ2,

δ3
2

}
, f ∈ F ∪P0 (6.70)

(recall that f̂ is the element in Aff(T ( Ã)) corresponding to f ∈ A+ ⊂ Ã+).
We may assume, without loss of generality, that for i = 1, 2, . . . , s, there are

projections p′i ∈ Mm(C̃n1) such that 0∼([pi ])= ın1,∞([p
′

i ]). To simplify notation,
assume that n1=1. Let G0 denote the subgroup of K0( Ã) generated by P , and G0=

K0(A)∩G0. Since G0 is free abelian, there is a homomorphism 0′ :G0→ K0(C̃1)

such that

(ı1,∞)∗0 ◦0
′
|G0 = 0|G0 and (ı1,∞)∗0 ◦0

′
= 0∼|G0

.

We may assume (since P is a basis for G0) that

0′([pi ])= [p′i ], i = 1, 2, . . . , s. (6.71)
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Since the pair (0∼Aff, 0
∼
|K0( Ã)) is compatible, as a consequence of (6.70) and (6.71)

we have
∥ p̂′i − γ ( p̂i )∥∞ <min

{
δ2,

δ3
2

}
, i = 1, 2, . . . , s. (6.72)

Write

C1 = (ψ0, ψ1, Qr , Ql)

= {( f, a) ∈ C([0, 1], Qr )⊕ Ql
: f (0)= ψ0(a) and f (1)= ψ1(a)},

where ψ0, ψ1 : Ql
→ Qr are homomorphisms. Note that since we assume that

K0(C1)+ = {0}, C1 is stably projectionless.
Set 1r̄

:= idQr and 1l̄
:= idQl . Define ψ∼0 : Ql

⊕ C → Qr by ψ∼0 (a, c) =
ψ0(a)+ (1r̄

−ψ0(1l̄))c for all (a, c) ∈ Ql
⊕ C (a ∈ Ql and c ∈ C), and define

ψ∼1 : Q
l
⊕C→ Qr by ψ∼1 (a, c)= ψ1(a)+ (1r̄

−ψ1(1r̄ ))c for all (a, c) ∈ Ql
⊕C.

It is understood that if ψ0 is unital, ψ∼0 = ψ0, and if ψ1 is unital, ψ∼1 = ψ1. We
then identify

C̃1 = (ψ
∼

0 , ψ
∼

1 , Qr , Ql)

= {( f, b) ∈ C([0, 1], Qr )⊕ (Ql
⊕C) : f (0)= ψ∼0 (b) and f (1)= ψ∼1 (b)}.

Denote by

πe : C1→ Ql, ( f, a) 7→ a, and π∼e : C̃1→ Ql
⊕C, ( f, b) 7→ b

the canonical quotient map, and by j : C1→ C([0, 1], Qr ) the canonical maps

j (( f, a))= f, ( f, a) ∈ C1.

For convenience, in what follows, we also consider C̃1⊗ Q. We continue to use
ψ∼0 for the extension π∼0 (a, x) := ψ0(a)+ (1r̄

−ψ0(1l̄))x for all (a, x) ∈ Ql
⊕ Q

(where a ∈ Ql and x ∈ Q), and define

ψ∼1 : Q
l+1
→ Qr , (a, x) 7→ ψ1(a)+ (1r̄

−ψ1(1r̄ ))x

for all (a, x) ∈ Ql+1. We also identify

C̃1⊗ Q = {( f, b) ∈ C([0, 1], Qr )⊕ Ql+1
: f (0)= ψ∼0 (b) and f (1)= ψ∼1 (b)}.

We also continue to write π∼e for the extension π∼e : C̃1⊗ Q→ Ql+1. Denote by
γ ∗ : T (C̃1)→ T ( Ã) the continuous affine map dual to γ . Let πC1

C
: C̃1→ C be the

quotient map and τC1
C

be the trace of C̃1, which factors through C. We also write
π

C1
C

for the extension πC1
C
: C̃1⊗ Q→ Q and τC1

C
for the tracial state of C̃1⊗ Q

vanishing on C1.
It follows from (6.70) that

|γ ∗(τ
C1
C
)(a)|<min

{
σ

128
, δ2,

δ3
2

}
for all a ∈ F . (6.73)

Note that, for any τ ∈ T (C̃1), τ = sτC+ (1− s)τ ′, where τ ′ ∈ T (C1) and 0≤ s ≤ 1.
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Denote by θ1, θ2, . . . , θl the extreme tracial states of C1 factoring through
πe : C1→ Ql . Put θl+1 = τC.

For any finite subset G′ ⊃ G, and 0 < η < min{δ1/8, δ3/8}, by the assumption
T (A)= Tqd(A), there is a unital G′-η-multiplicative completely positive linear map
8 : Ã → Ql+1 (in fact, we can define each component π j ◦8 : Ã → Q of 8
separately) such that

|tr j ◦8(a)− γ ∗(θ j )(a)|<min
{13δ1

32
,
δ3
4
,
σ

32

}
,

a ∈ G ∪P0, j = 1, 2, . . . , l, l + 1, (6.74)

where tr j is the tracial state supported on the j-th direct summand of Ql for
j = 1, 2, . . . , l, and trl+1 is the tracial state of C (recall that we also write tr ◦8
for tr⊗Trm ◦(8⊗ idm), where Trm is the nonnormalized trace on Mm). We also
assume that 8|A maps A to Ql (namely, πl+1 ◦8 : Ã→ Q can be defined to be
the homomorphism taking A to 0 ∈ Q and 1 Ã to 1 ∈ Q) and 8(1 Ã)= (1, 1, . . . , 1︸ ︷︷ ︸

l+1

).
We may also assume that

tr j ( f1/2(8(e)))≥
63d
64
, j = 1, 2, . . . , l. (6.75)

Moreover, we may also assume that

|tr j ([8(pi )])− tr j (8(pi ))|<
δ3
4
, i = 1, 2, . . . , s, j = 1, 2, . . . , l + 1. (6.76)

Set

D0 := (πe)∗0(K0(C1))= ker((ψ0)∗0− (ψ1)∗0)⊆Ql,

D := (π∼e )∗0(K0(C̃1⊗ Q))= ker((ψ∼0 )∗0− (ψ
∼

1 )∗0)⊆Ql+1.
(6.77)

It follows from (6.74) that

|τ(8(a))−(π∼e )Aff(γ (â))(τ )|<min
{13δ1

32
,
δ3
4
,
σ

32

}
, a∈G, τ ∈T (Ql+1), (6.78)

where (π∼e )Aff : Aff(T (C̃1⊗ Q))→ Aff(T (Ql+1)) is the map induced by π∼e . By
(6.78) for a ∈ P0, together with (6.76) and (6.72),

|τ([8(pi )])− τ ◦ (πe)∗0 ◦0
′([pi ])|< δ3, τ ∈ T (Ql+1), i = 1, 2, . . . , s.

Therefore, applying Lemma 6.5, with

ri = [8(pi )] − (πe)∗0 ◦0
′([pi ]) ∈Ql+1

(note that |ri j | < δ3 for j = 1, 2, . . . , l + 1 and i = 1, 2, . . . , s), we obtain G-
δ1/8-multiplicative completely positive linear maps 61, µ1 : Ã → Ql+1, with
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61(1 Ã)= µ1(1 Ã) a projection, such that

τ(61(1 Ã)) <min
{
δ1
32
,
σ

256

}
, τ ∈ T (Ql+1), (6.79)

[61(P0)] ⊆ D, and (6.80)

[61(pi )]−[µ1(pi )] = ri = [8(pi )]−(πe)∗0 ◦0
′([pi ]), i = 1,2, . . . ,s. (6.81)

Consider the (unital) direct sum map

8′ :=8⊕µ1 : Ã→ (1⊕61(1 Ã))M2(Ql+1)(1⊕61(1 Ã)). (6.82)

Note that 8′, like µ1 and 8, is G-δ1/8-multiplicative. It follows from (6.81) that

[ψ0(8
′(pi ))] = (ψ

∼

0 )∗0([µ1(pi )] + [8(pi )])

= (ψ∼0 )∗0([61(pi )] + (π
∼

e )∗0 ◦0
′([pi ])), (6.83)

[ψ1(8
′(pi ))] = (ψ

∼

1 )∗0([µ1(pi )] + [8(pi )])

= (ψ∼1 )∗0([61(pi )] + (π
∼

e )∗0 ◦0
′([pi ])) (6.84)

for i = 1, 2, . . . , s. It follows from (6.83) and (6.84), in view of (6.80) and the fact
(using (6.71)) that (πe)∗0 ◦0

′([pi ]) ∈ (π
∼
e )∗0(K0(C̃1⊗Q))=D, that [8′(pi )] ∈D,

i = 1, 2, . . . , s, i.e.,

[ψ0(8
′(pi ))] = [ψ1(8

′(pi ))], i = 1, 2, . . . , s. (6.85)

Set B =C([0, 1], Qr ), and (as before) write πt : B→ Qr for the point evaluation
at t ∈ [0, 1]. Since 1 Ã ∈ P0, by (6.80), [61(1 Ã)] ∈ D. Hence there is a projection
e0 ∈ B such that π0(e0)=ψ

∼

0 (61(1 Ã)) and π1(e0)=ψ
∼

1 (61(1 Ã)). It then follows
from (6.79) (applied just for τ factoring through ψ∼0 — alternatively, for τ factoring
through ψ∼1 ) that

τ(e0) <min
{
δ1
32
,
σ

256

}
, τ ∈ T (B). (6.86)

Let j∗ : T (B)→ T (C̃1) denote the continuous affine map dual to the canonical
unital map j : C̃1→ B. Let γ1 : T (B)→ T ( Ã) be defined by γ1 := γ

∗
◦ j∗, and

let κ : G0→ K0(B) be defined by κ := j∗0 ◦0′. Then, by (6.71) and (6.72), for all
τ ∈ T (B),

|τ(κ([pi ]))−γ1(τ )(pi )| = |τ( j∗0(0′([pi ])))−(γ
∗
◦ j∗)(τ )(pi )|

= | j∗(τ )([p′i ])−γ ( p̂i )( j∗(τ ))|<δ2, 1≤ i ≤ k. (6.87)

The estimate (6.87) ensures that we can apply Lemma 6.6 with κ and γ1 (note
that 0′([1 Ã])= [1C̃1

] and hence κ([1 Ã])= [1B]) to obtain a G-δ1/8-multiplicative
completely positive linear map 9 ′ : A→ B such that

|τ ◦9 ′(a)− γ1(τ )(a)|<min
{
δ1
32
,
σ

256

}
, a ∈ G, τ ∈ T (B). (6.88)
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Let 9
′
∼
: Ã→ B be the unitization of 9 ′. Amplifying 9

′
∼ slightly (by first

identifying Qr with Qr
⊗ Q and then considering H0( f )(t)= f (t)⊗ (1+ e0(t))

for t ∈ [0, 1]), we obtain a unital G-δ1/8-multiplicative completely positive linear
map 9 : Ã→ (1⊕ e0)M2(B)(1⊕ e0) such that (by (6.88) and (6.86)), for all a ∈ G
and τ ∈ T (B),

|τ ◦9(a)− γ1(τ )(a)|< 2 min
{dt1

32
,
σ

256

}
=min

{
δ1
16
,
σ

128

}
. (6.89)

By (6.67), as γ1(τ ) ∈ T (A) and σ < d/210,

τ(9( f1/2(e)))≥
d(29
− 1)

29 for all τ ∈ T (B). (6.90)

Note that, for any element a ∈ C1,

τ(ψi (πe(a)))= τ(πi ( j (a))), τ ∈ T (Qr ), i = 0, 1. (6.91)

(Recall that j : C̃1→ B is the canonical map.) Therefore (by (6.91)), for any a ∈ G,

|τ(ψ0(8(a)))− γ (â)(τ ◦π0 ◦ j)| = |τ(ψ0(8(a)))− γ (â)(τ ◦ψ0 ◦πe)|

= |τ ◦ψ0(8(a))− (πe)Aff(γ (â))(τ ◦ψ0)|

<min
{13δ1

32
,
σ

32

}
(by (6.78)) (6.92)

for all τ ∈ T (Qr ). The same argument shows that

|τ(ψ1(8(a)))−γ (â)(τ ◦π1 ◦ j)|<min
{13δ1

32
,
σ

32

}
, a ∈ G, τ ∈ T (Qr ). (6.93)

Then, for any τ ∈ T (Qr ) and any a ∈ G, we have

|τ ◦ψ0 ◦8
′(a)− τ ◦π0 ◦9(a)|

= |τ ◦ψ0(8(a)⊕µ1(a))− τ ◦π0 ◦9(a)|

< |τ ◦ψ0(8(a)⊕µ1(a))− γ1(τ ◦π0)(a)| +min
{
δ1
16
,
σ

128

}
(by (6.89))

< |τ ◦ψ0(8(a))− γ1(τ ◦π0)(a)| +min
{3δ1

32
,

3σ
256

}
(by (6.79))

= |τ ◦ψ0(8(a))− γ (â)(τ ◦π0 ◦ j)| +min
{3δ1

32
,

3σ
256

}
<min

{13δ1
32

,
σ

32

}
+min

{3δ1
32
,

3σ
256

}
(by (6.92))

≤
13δ1
32
+

3δ1
32
=
δ1
2
. (6.94)
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The same argument, using (6.93) instead of (6.92), shows that

|τ ◦ψ1 ◦8
′(a)− τ ◦π1 ◦9(a)|<min

{13δ1
32

,
σ

32

}
+min

{3δ1
32
,

3σ
256

}
≤
δ1
2

for all τ ∈ T (Qr ) and a ∈ G. (6.95)

(The σ estimates (6.94) and (6.95) will be used later to verify (6.106) and (6.107)).
Noting that 9 and 8′ are δ1/8-multiplicative on {1 Ã, p1, p2, . . . , ps}, we may

assume

|τ([9(pi )])− τ(9(pi ))|<
δ1
4

and |τ([8′(pi )])− τ(8
′(pi ))|<

δ1
4

for all τ ∈ T (Qr ) and 1 ≤ i ≤ s. Combining these inequalities with (6.94) and
(6.95), we have

|τ([π0 ◦9(pi )])− τ([ψ0 ◦8
′(pi )])|< δ1, i = 1, 2, . . . , s, τ ∈ T (Qr ). (6.96)

Therefore (in view of (6.96)), applying Lemma 6.4 with

r ′i = [π0 ◦9(pi )] − [ψ0 ◦8
′(pi )] ∈Qr ,

we obtain unital G-δ-multiplicative completely positive linear maps 62 : Ã→ Ql+1

and µ2 : Ã→ Qr , taking 1 Ã into projections, such that

[ψk ◦62(1 Ã)] = [µ2(1 Ã)], k = 0, 1, (6.97)

[62(P)] ⊆ (πe)∗0(K0(C̃1))= D, i = 1, 2, . . . , s, (6.98)

τ(62(1 Ã)) <
σ

64
, τ ∈ T (Ql+1), (6.99)

and, taking (6.98) into account,

[ψ0 ◦62(pi )] − [µ2(pi )] = [ψ1 ◦62(pi )] − [µ2(pi )]

= r ′i = [π0 ◦9(pi )] − [ψ0 ◦8
′(pi )], (6.100)

where i = 1, 2, . . . , s. It should be also noted that, since τ ◦ ψk ∈ T (Ql+1) for
k = 0, 1,

τ(µ2(1 Ã)) <
σ

64
for all τ ∈ T (Qr ). (6.101)

Consider the four G-δ-multiplicative direct sum maps (note that 8′ and 9 are
G-δ1/8-multiplicative, and δ1 ≤ 8δ), from Ã to M3(Qr ),

80 := (ψ0 ◦8
′)⊕ (ψ0 ◦62), 81 := (ψ1 ◦8

′)⊕ (ψ1 ◦62), (6.102)

90 := (π0 ◦9)⊕µ2, 91 := (π1 ◦9)⊕µ2. (6.103)
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We then have for each i = 1, 2, . . . , s that

[90(pi )] − [80(pi )] = ([(π0 ◦9)(pi )] + [µ2(pi )])

− ([(ψ0 ◦8
′)(pi )] + [(ψ0 ◦62)(pi )])

= ([(π0 ◦9)(pi )] − [(ψ0 ◦8
′)(pi )])

− ([(ψ0 ◦62)(pi )] − [µ2(pi )])

= 0 (by (6.100)),
and

[91(pi )] − [81(pi )]

= ([(π1 ◦9)(pi )] + [µ2(pi )])

− ([(ψ1 ◦8
′)(pi )] + [(ψ1 ◦62)(pi )])

= ([(π1 ◦9)(pi )] − [(ψ1 ◦8
′)(pi )])

− ([(ψ1 ◦62)(pi )] − [µ2(pi )])

= ([(π0 ◦9)(pi )] − [(ψ1 ◦8
′)(pi )])

− ([(ψ1 ◦62)(pi )] − [µ2(pi )]) (π0 and π1 are homotopic)

= ([(π0 ◦9)(pi )] − [(ψ0 ◦8
′)(pi )])

− ([(ψ1 ◦62)(pi )] − [µ2(pi )])= 0 (by (6.85)).

Note also that, by construction,

9i (1 Ã)=8i (1 Ã)= 1⊕πi (e0), i = 0, 1. (6.104)

Summarizing the calculations in the preceding paragraph, we have

[8i ]|P = [9i ]|P , i = 0, 1. (6.105)

On the other hand, for any a ∈ F ⊆ G and any τ ∈ T (Qr ), we have

|τ(80(a))− τ(90(a))|

= |τ((ψ0 ◦8
′)(a)⊕ (ψ0 ◦62)(a))− τ((π0 ◦9)(a)⊕µ2(a))|

< |τ((ψ0 ◦8
′)(a))− τ((π0 ◦9)(a))| +

σ

32
(by (6.99))

<min
{13δ1

16
,
σ

32

}
+min

{3δ1
16
,

3σ
256

}
+
σ

32
(by (6.94))

≤
5σ
64
. (6.106)

The same argument, using (6.95) instead of (6.94), also shows that

|τ(81(a))− τ(91(a))|<
5σ
64
, a ∈ F, τ ∈ T (Qr ). (6.107)
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Since 1 Ã ∈ P , by (6.98), [62(1 Ã)] ∈ D, and so there is a projection e1 ∈ B such
that π0(e1) = ψ0(62(1 Ã)) and π1(e1) = ψ1(62(1 Ã)). It then follows from (6.99)
(applied just for τ factoring through ψ0 — alternatively, for τ factoring through ψ1)
that

τ(e1) <
σ

64
, τ ∈ T (B). (6.108)

Set E ′0 = 1⊕π0(e0)⊕π0(e1), E ′1 = 1⊕π1(e0)⊕π1(e1), and D0 = E ′0 M2(Qr )E ′0,
D1 = E ′1 M2(Qr )E ′1. We estimate that, using (6.90), (6.101), (6.103) and (6.101),

τ0(90( f1/2(e)))≥
63d
64

for τ0 ∈ T (D0), (6.109)

τ1(91( f1/2(e)))≥
63d
64

for τ1 ∈ T (D1). (6.110)

Then, by (6.106) and (6.107),

τ0(80( f1/2(e)))≥
62d
64

for τ0 ∈ T (D0), (6.111)

τ1(81( f1/2(e)))≥
62d
64

for τ ∈ T (D1). (6.112)

By the choice of G1, δ0, and (6.69), we have

τ0( f1/2(80(e)))≥
3d
4
, τ0( f1/2(90(e)))≥

3d
4

for τ0 ∈ T (D0), (6.113)

τ1( f1/2(81(e)))≥
3d
4
, τ1( f1/2(91(e)))≥

3d
4

for τ ∈ T (D1). (6.114)

Pick a sufficiently small r ′ ∈
(
0, 1

4

)
such that

∥9(a)((1+2r ′)t−r ′)−9(a)(t)∥< σ

64
, a ∈ G, t ∈

[ r ′

1+2r ′
,

1+r ′

1+2r ′
]
. (6.115)

It follows from [Elliott et al. 2020a, Lemma 7.2] (with (6.105), (6.113), (6.114),
(6.106), (6.107) and (6.104)) that there exist unitaries u0∈D0 and u1∈D1, and unital
F-ε/4-multiplicative completely positive linear maps L0 : Ã→ C([−r ′, 0], D0)

and L1 : Ã→ C([1, 1+ r ′], D1), such that

π−r ′ ◦ L0 =80, π0 ◦ L0 = Ad u0 ◦90, (6.116)

π1+r ′ ◦ L1 =81, π1 ◦ L1 = Ad u1 ◦91, (6.117)

|τ ◦πt ◦ L0(a)− τ ◦π0 ◦ L0(a)|<
5σ
32
, t ∈ [−r ′, 0], (6.118)

|τ ◦πt ◦ L1(a)− τ ◦π1 ◦ L1(a)|<
5σ
32
, t ∈ [1, 1+ r ′], (6.119)

where a ∈F , τ ∈ T (Qr ) and (as before) πt is the point evaluation at t ∈ [−r ′, 1+r ′].
Write E3= 1⊕e0⊕e1 ∈M3(C([0, 1], Qr )) and B1= E3(M3(C([0, 1], Qr )))E3.

There exists a unitary u ∈ B1 such that u(0) = u0 and u(1) = u1. Consider the
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projection E4 ∈ M3(C([−r ′, 1+ r ′], Qr )) defined by E4|[−r,0] = E ′0, E4|[0,1] = E3

and E4|[1,1+r ] = E ′1. Set

B2 = E4
(
M3(C([−r ′, 1+ r ′], Qr ))

)
E4.

Define a unital F-ε/4-multiplicative (note that F ⊂ G and δ ≤ ε/8) completely
positive linear map L ′ : Ã→ B2 by

L ′(a)(t)=


L0(a)(t), t ∈ [−r ′, 0),
Ad u(t) ◦ (πt ◦9⊕µ2)(a), t ∈ [0, 1],
L1(a)(t), t ∈ (1, 1+ r ′].

(6.120)

Note that for any a ∈ G, and any τ ∈ T (Qr ), by (6.120), if t ∈ [0, 1], then

|τ(πt(L ′(a)))− γ1(π
∗

t (τ ))(a)|

= |τ(Ad u(t) ◦ (πt ◦9⊕µ2)(a))− γ1(π
∗
t (τ ))(a)|

= |τ(πt(9(a)))+ τ(µ2(a))− γ1(π
∗

t (τ ))(a)|

< |(π∗t (τ ))(9(a))− γ1(π
∗

t (τ ))(a)| +
σ

64
(by (6.97) and (6.99))

<min
{
δ1
16
,
σ

128

}
+
σ

64
≤

3σ
128

(by (6.89)), (6.121)

where π∗t : T (Q
r )→ T (B) is the dual of πt : B→ Qr . Furthermore, if t ∈ [−r ′, 0],

then for any a ∈ F and any τ ∈ T (Qr ),

|τ(πt(L ′(a)))− γ1(π
∗

0 (τ ))(a)|

= |τ(L0(a)(t))− γ1(π
∗

0 (τ ))(a)|

< |τ(L0(a)(0))− γ1(π
∗

0 (τ ))(a)| +
5σ
32

(by (6.118))

= |τ(90(a))− γ1(π
∗

0 (τ ))(a)| +
5σ
32

(by (6.116))

= |τ((π0 ◦9)(a)⊕µ2(a))− γ1(π
∗

0 (τ ))(a)| +
5σ
32

< |τ(π0 ◦9)(a)− γ1(π
∗

0 (τ ))(a)| +
σ

64
+

5σ
32

(by (6.97) and (6.99))

<min
{
δ1
16
,
σ

128

}
+
σ

64
+

5σ
32

<
23σ
128

(by (6.89)). (6.122)

Again, if t ∈ [1, 1+ r ′], then the same argument shows that for any a ∈ F and any
τ ∈ T (Qr ),

|τ(πt(L ′(a)))− γ1(π
∗

1 (τ ))(a)|<
23σ
128

. (6.123)



374 GUIHUA GONG AND HUAXIN LIN

Let us modify L ′ to a unital map from Ã to B. First, let us renormalize L ′.
Consider the isomorphism η : K0(Qr )=Qr

→ K0(Qr )=Qr defined by

η(x1, x2, . . . , xr )=

(
1

tr1(E3)
x1,

1
tr2(E3)

x2, . . . ,
1

trr (E3)
xr

)
,

for all (x1, x2, . . . , xr ) ∈Qr , where (as before) trk is the tracial state supported on
the k-th direct summand of Qr . Then there is a (unital) isomorphism

ϕ : B2→ C([−r ′, 1+ r ′], Qr )

such that ϕ∗0 = η. Let us replace the map L ′ with the map ϕ ◦ L ′, and still denote it
by L ′. Note that it follows from (6.121), (6.86) and (6.108) that for any t ∈ [0, 1],
any a ∈ F and any τ ∈ T (Qr ),

|τ(πt(L ′(a)))− γ1(π
∗

t (τ ))(a)|<
σ

16
+ τ(e0)+ τ(e1)

<
3σ
128
+min

{
δ1
16
,
σ

64

}
+
σ

64
≤

7σ
128

. (6.124)

The same argument, using (6.122) and (6.123) instead of (6.121), shows that for
any a ∈ F ,

|τ(πt(L ′(a)))− γ1(π
∗

0 (τ ))(a)|<
27σ
128

, t ∈ [−r ′, 0], (6.125)

|τ(πt(L ′(a)))− γ1(π
∗

1 (τ ))(a)|<
27σ
128

, t ∈ [1, 1+ r ′]. (6.126)

Now, put

L ′′(a)(t)= L ′(a)((1+ 2r ′)t − r ′), t ∈ [0, 1]. (6.127)

This perturbation does not change the trace very much, as for any a ∈ F and any
τ ∈ T (Qr ), if t ∈ [0, r ′/(1+ 2r ′)], then

|τ(L ′′(a)(t))− τ(L ′(a)(t))|

= |τ(L ′(a)((1+ 2r ′)t − r ′))− τ(L ′(a)(t))| (by (6.127))

= |τ(L0(a)((1+ 2r ′)t − r ′))− (τ (9(a)(t))+µ2(a))|

< |τ(L0(a)((1+ 2r ′)t − r ′))− τ(9(a)(t))| + σ

64
(by (6.97) and (6.99))

< |τ(L0(a)(0))− τ(9(a)(t))| +
5σ
32
+
σ

64
(by (6.118))

= |τ(90(a)(0))− τ(9(a)(t))| +
11σ
64

(by (6.116))

<
σ

64
+

11σ
64
=

3σ
16

(by (6.97) and (6.99)).
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Furthermore, the same argument, now using (6.119) and (6.117), shows that for
any a ∈ F , τ ∈ T (Qr ) and t ∈ [(1+ r ′)/(1+ 2r ′), 1],

|τ(L0(a)((1+ 2r ′)t − r ′))− (τ (9(a)(t))+µ2(a))|<
3σ
16
,

and, if t ∈ [r ′/(1+ 2r ′), (1+ r ′)/(1+ 2r ′)], then

|τ(L ′(a)((1+ 2r ′)t − r ′))− τ(L ′(a)(t))| = |τ(9(a)((1+ 2r ′)t − r ′)−9(a)(t))|

<
σ

64
(by (6.115)).

Thus

|τ(L ′′(a)(t))− τ(L ′(a)(t))|< 3σ
16
, a ∈ F, τ ∈ T (Qr ), t ∈ [0, 1]. (6.128)

Hence, by (6.128), (6.124), (6.125) and (6.126),

|τ(πt(L ′′(a)))− γ1(π
∗

t (τ ))(a)|

≤ |τ(L ′′(a)(t))− τ(L ′(a)(t))| + |τ(L ′(a)(t))− γ1(π
∗

t (τ ))(a)|

<
3σ
16
+

27σ
128
=

51σ
128

. (6.129)

Note that L ′′ is a unital map from Ã to B. It is also F-ε-multiplicative, since L ′

is. Consider the order isomorphism η′ : K0(Ql+1) = Ql+1
→ K0(Ql+1) = Ql+1

defined by

η′(y1, y2, . . . , yl)= (a1 y1, a2 y2, . . . , al yl) for (y1, y2, . . . , yl) ∈Ql+1,

where

a j =
1

tr j (1⊕61(1 Ã)⊕62(1 Ã))
, j = 1, 2, . . . , l + 1, (6.130)

and (as before) tr j is the tracial state supported on the j -th direct summand of Ql+1.
There exists a unital homomorphism

ϕ̃ : (1⊕61(1 Ã)⊕62(1 Ã))M3(Ql+1)(1⊕61(1 Ã)⊕62(1 Ã))→ Ql+1

such that
ϕ̃∗0 = η

′.

Therefore, by the constructions of L ′′, L ′, L0 and L1 (see (6.127), (6.120), (6.116)
and (6.117)), we may assume that

ψ0 ◦ ϕ̃ ◦ (8
′
⊕62)= π0 ◦ L ′′ and ψ1 ◦ ϕ̃ ◦ (8

′
⊕62)= π1 ◦ L ′′, (6.131)

replacing L ′′ with Adw ◦ L ′′ for a suitable unitary w if necessary.
Define L : Ã→ C̃1 by L(a)= (L ′′(a), ϕ̃(8′(a)⊕62(a))), an element of C̃1 by

(6.131). Since L ′′ and ϕ̃ ◦ (8′⊕62) are unital and F-ε/4-multiplicative (since 8′

and 62 are G-δ-multiplicative, F ⊂ G, and δ ≤ ε/8), so too is L .
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Moreover, for any a ∈ F , any τ ∈ T (Qr ), and any t ∈ (0, 1), it follows from
(6.129) that

|τ(πt(L(a)))− γ1(π
∗

t (τ ))(a)|<
51σ
128

. (6.132)

If τ ∈ T (Ql+1), then for any a ∈ F ,

|τ(πe(L(a)))− γ ∗(π∗e (τ ))(a)|

= |τ(ϕ̃(8′(a)⊕62(a)))− γ ∗(π∗e (τ ))(a)|

< |τ(8′(a)⊕62(a))− γ ∗(π∗e (τ ))(a)| +
σ

32
(by (6.130), (6.86) and (6.99))

< |τ(8′(a))− γ ∗(π∗e (τ ))(a)| +
3σ
64

(by (6.99))

< |τ(8(a))− γ ∗(π∗e (τ ))(a)| +
σ

8
(by (6.79))

<
σ

32
+
σ

8
=

5σ
32
. (by (6.78)).

Since each extreme trace of C̃1 factors through either the evaluation map πt or the
canonical quotient map πe, by (6.132),

|τ(L(a))− γ ∗(τ )(a)|< 51σ
128

, τ ∈ T (C̃1), a ∈ F . (6.133)

From (6.73), we have |γ ∗(τC1
C
)(a)|< σ/128 for all f ∈ F . Combing with (6.133),

we have
|τ

C1
C
(L(a))|< 52σ

128
for all a ∈ F . (6.134)

That is, ∥πC1
C
(L(a))∥ < 52σ/128. For each a ∈ F , put a′ = L(a)− λ1C̃1

, where
λ= π

C1
C
(L(a)) ∈ C. Choose an element eC1 ∈ C1 with 0≤ eC1 ≤ 1 such that

∥eC1a′eC1 − a′∥< σ

128
for all a ∈ F . (6.135)

Then

∥eC1 L(a)eC1 − L(a)∥< σ

128
+

52σ
128
=

53σ
128

for all a ∈ F . (6.136)

Define L : A→ C1 by L(a) = eC1 L(a)eC1 for all a ∈ A. (Note that L is F-ε/2-
multiplicative.) Therefore, for any a ∈ F and τ ∈ T (C), we have

|τ(ı1,∞(L(a)))−0Aff(â)(τ )|

< |τ(ı1,∞(L(a)))− γ ∗(ı1,∞(τ ))(a)| + |γ∗(ı1,∞(τ ))(a)−0Aff(â)(τ )|

= |τ(ı1,∞(L(a)))− γ ∗(ı1,∞(τ ))(a)| + |(ı1,∞)Aff(â)(τ )−0Aff(â)(τ )|

<
51σ
128
+

53σ
128
+

σ

128
=

105σ
128

. (by (6.133) and (6.70))
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Recalling fε′(e) ∈ F , combining the above inequality with (6.68), one has

τ
(
ı1,∞(L( fε′(e)))

)
≥

(
1− σ

128

)
−

105σ
128

> 1− 106σ
128

for all τ ∈ T (C). (6.137)

Choose a strictly positive eA ∈ A such that eA ≥ fε′(e) and put c1 = ı1,∞(L(eA)).
Then, by (6.137),

τ(c1) > 1− 106σ
128

for all τ ∈ T (C). (6.138)

Let H1 : A→ C be defined by H1 = ı1,∞ ◦ L . Then

|τ(H1(a))−0Aff(â)(τ )|<
105σ
128

for all a ∈ F, τ ∈ T (C1). (6.139)

Since F , ε, and σ are arbitrary, in this way we obtain a sequence of completely
positive linear maps Hn : A→ C such that

lim
n→∞
∥Hn(ab)− Hn(a)Hn(b)∥ = 0 for all a, b ∈ A, (6.140)

lim
n→∞

sup{|τ ◦ Hn(a)−0Aff(â)(τ )| : τ ∈ T (C)} = 0 for all a ∈ A, (6.141)

and τ(Hn(eA))→ 1 uniformly on τ in T (C).
Recall that Cn = C0,n ⊗ Q, where C0,n ∈ C0. Write Q =

⋃
∞

n=1 Mn! and each
1Mn! is the identity of Q. Choose a subsequence {m(n)} ⊂ {n!} such that

C =
⋃
∞

n=1 Cn,

where Cn := C0,n ⊗ Mm(n), n = 1, 2, . . . , and λs(Cn)↗ 1 (see Definition 5.3 of
[Elliott et al. 2020a]). Without loss of generality, we may assume that, in (6.140)
and (6.140), Hn : A→ Cn→ C , n = 1, 2, . . . .

On the other hand, 0−1
: (K0(C), T (C), rC) ∼= (K0(A), T (A), rA) gives an

affine homeomorphism λT : T (A)→ T (C) such that 0Aff(â)(λT (τ ))= τ(a) for all
a ∈ As.a. and τ ∈ T (A). Since K1(C)= {0}, by Corollary 7.8 of [Lin 2022], there
is a sequence of injective homomorphisms h′k : Ck→ A such that, for any c ∈ Cm ,

lim
k→∞

sup
τ∈T (A)

{|τ(h′k ◦ ιm,k(c))− λT (τ )(ιm,∞(c))|} = 0. (6.142)

It follows that, by an appropriate choice of a subsequence {k(n)} and defining
hn := h′k(n) ◦ ιn,k(n), one obtains that

lim
n→∞

sup{|τ ◦ hn ◦ Hn(a)− τ(a)| : τ ∈ T (A)} = 0 for all a ∈ A. (6.143)

Note that, as shown at the beginning of the proof, for any nonzero hereditary C∗-
subalgebra B of A with continuous scale, B⊗ Q ∼= B. So all the above work holds
for any such B. Also, B ∼= B⊗ Q is tracially approximately divisible. By (6.140),
(6.141) and (6.143), applying Theorem 6.54 to each hereditary C∗-subalgebra B of
A with continuous scale, described in Theorem 6.54, we conclude A⊗ Q ∈ D. □
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Theorem 6.144. Let A be a separable simple C∗-algebra with continuous scale.
Suppose that A ⊗U ∈ D for some infinite-dimensional UHF-algebra U. Then
A⊗ B ∈ D for any infinite-dimensional UHF-algebra B.

Proof. Suppose that A⊗U ∈ D. Then A⊗U has at least one tracial state. Since
the map a 7→ a⊗1U maps A into A⊗U , A must be stably finite. Moreover, if τ is
a 2-quasitrace for A, then τ ⊗ tU is a trace since A⊗U ∈D (see Proposition 9.1 of
[Elliott et al. 2020b]), where tU is the unique tracial state on U . It follows that τ
is a trace. In other words, QT(A)= T (A). Let B be a unital infinite-dimensional
UHF-algebra. Choose a strictly positive element eA ∈ A with ∥eA∥ = 1. We may
assume that, as A⊗U has continuous scale,

d = inf{τ(eA⊗ 1U ) : τ ∈ T (A⊗U )}> 1
2 . (6.145)

Fix ε > 0, a finite subset F ⊂ A⊗ B and a ∈ (A⊗ B)+ \ {0}. Note that A⊗ B is
finite and Z-stable, and has strict comparison for positive elements (see Corollary 4.6
of [Rørdam 2004]). There is a nonzero element a0 = a00 ⊗ b0 ∈ (A⊗ B)+ for
some a00 ∈ A+ and b0 ∈ B+ such that a0 ≲ a in A⊗ B. We may also assume that
b0= b0,1,1⊕b0,1,2⊕b0,2 ∈ B+, where b0,1,1, b0,1,2 and b0,2 are mutually orthogonal
nonzero positive elements. Put b0,1 = b0,1,1⊕ b0,1,2.

As A⊗ B is simple, there is an integer N0 ≥ 1 such that

eA⊗ 1B ≲ N0⟨a00⊗ b0,2⟩. (6.146)

We write B = limn→∞(Bn, ψn), where Bn = MR(n) and ψn : Bn → Bn+1 is a
unital embedding. If n > m, put ψm,n = ψn−1 ◦ · · · ◦ ψm : Bm → Bn . Denote
by ψn,∞ : Bn → B the unital embedding induced by the inductive limit. By
Proposition 2.2 and Lemma 2.3(b) of [Rørdam 1992], to simplify notation, without
loss of generality, replacing b0 by a smaller (in Cuntz relation) element, we may
assume that b0,1,1, b0,1,2, b0,2 ∈ Bn for some large n. Since B is simple, we may
assume that R(n) > 4N0 for all n. It follows from (6.146) that we may assume that
the range projection of b0 has rank at least two (as a matrix).

By changing notation, without loss of generality, we may further assume that
F ⊂ A⊗ B1 and b0,1,1, b0,1,2, b0,2 ∈ B1.

Since A1 := A ⊗ MR(1) ⊗ U ∈ D has continuous scale, there are F-ε/128-
multiplicative completely positive contractive linear maps ϕ : A1 → A1 and
ψ : A1 → D0 for some C∗-subalgebra D0 ⊂ A1 with D0 ∈ C0, D0 ⊥ ϕ(A1),
and

∥x ⊗ 1U − (ϕ(x ⊗ 1U )+ψ(x ⊗ 1U ))∥<
ε

128
for all x ∈ F ∪ {eA⊗ 1}, (6.147)

ϕ(eA⊗ 1U )≲ a0,1 := a00⊗ b0,1,1⊗ 1U , (6.148)

t ( f1/4(ψ(eA⊗ 1)))≥ 3
4

for all t ∈ T (D0) (6.149)
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(see also Proposition 2.10 of [Elliott et al. 2020b]). Replacing ϕ by the map defined
by ϕ′(x)= fη(ϕ(eA⊗1U ))ϕ(x) fη(ϕ(eA⊗1U )) for all x ∈ A1 for some sufficiently
small η, we may assume that there is e0 ∈ A1 such that e0ϕ(x) = ϕ(x)e0 = ϕ(x)
for all x ∈ A1, e0 ⊥ D0 and e0 ≲ a00⊗ b0,1,1⊗ 1U .

Let G ⊂ D0 be a finite subset such that, for every x ∈ F , there exists x ′ ∈ G such
that ∥ψ(x ⊗ 1U )− x ′∥ < ε/128. We may also assume that G contains a strictly
positive element eD of D0 with ∥eD∥ = 1.

Write U =
⋃
∞

n=1 Mr(n), where limn→∞ r(n)=∞ and Mr(n) ⊂ Mr(n+1) unitally.
For each n, there are an, bn ∈ A⊗MR(1)⊗Mr(n), 0≤ an, bn ≤ 1 such that

an ⊥ bn, lim
n→∞
∥andan − d∥ = 0 for all d ∈ D0,

lim
n→∞
∥bn − e0∥ = 0, lim

n→∞
∥bnϕ(a)bn −ϕ(a)∥ = 0 for all a ∈ A1.

(6.150)

Since e0 ≲ a00⊗ b0,1⊗ 1U , by Proposition 2.2 of [Rørdam 1992], for each n, there
exists k(n) such that f1/n(bk(n)) ≲ a00 ⊗ b0,1 ⊗ 1U . Therefore, without loss of
generality, replacing bn by f1/n(bk(n)), we may assume (in A1)

bn ≲ a00⊗ b0,1,1⊗ 1U . (6.151)

Put Cn := an(A⊗MR(1)⊗Mr(n))an and C ′n := bn(A⊗MR(1)⊗Mr(n))bn . Note
that Cn ⊥ C ′n .

Since each D0 is weakly semiprojective, we can choose n0 large enough such that
there exists a unital homomorphism h : D0→ A⊗MR(1)⊗Mr(n0) (⊂ A⊗MR(1)⊗U )
satisfying

∥h(x ′)− x ′∥< ε

64
for all x ′ ∈ G, (6.152)

t
(

f1/4(h(ψ(eA⊗ 1)))
)
≥

1
2

for all t ∈ T (h(D0)). (6.153)

Consider8′ : A⊗MR(1)→ A1 defined by8′(a)=ϕ(a⊗1U ) for a ∈ A⊗MR(1). Let
s0 : MR(1)⊗U → MR(1)⊗Mr(n0) be a completely positive contractive linear map
such that s0|MR(1)⊗Mr(n0)

= idMR(1)⊗Mr(n0)
. Define J := idA⊗s0 : A⊗MR(1)⊗U →

A⊗ MR(1)⊗ Mr(n0) and define 80 : A⊗ MR(1)→ C ′n0
⊂ A⊗ MR(1)⊗ Mr(n0) by

80(a)=bn(J ◦8′(a))bn for all a∈ A⊗MR(1). Choosing a larger n0 if necessary, we
may also assume that80 is an F-ε/64-multiplicative completely positive contractive
linear map such that

∥80(x)−ϕ(x ⊗ 1U )∥<
ε

64
for all x ∈ F . (6.154)

We also assume that (viewing x as an element in A⊗MR(1))

∥x ⊗ 1Mr(n0)
− (80(x)+ h ◦ψ(x ⊗ 1U ))∥<

ε

32
for all x ∈ F . (6.155)
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Note that 80(A1)⊥ h(D0). Moreover, by (6.151), we have, for all τ ∈ T (A1),

dτ (80(eA))≤ dτ (a00⊗ b0,1,1⊗ 1Mr(n0)
) < dτ (a00⊗ b0,1⊗ 1Mr(n0)

). (6.156)

Recall that 80(eA), a00⊗b0,1⊗1Mr(n0)
∈ A⊗MR(1)⊗Mr(n0). Hence (6.156) holds

for any trace with the form t⊗Tr, where t ∈ T (A⊗MR(1)) and Tr is the normalized
tracial state on Mr(n0).

We may assume that ψ1,n1 : B1→ Bn1 has multiplicities at least N ≥ 1 such that

2r(n0)R(1)
N

< 1. (6.157)

Write
R(n1)= NR(1)= lr(n0)R(1)+m, (6.158)

where l ≥ 1 and r(n0)R(1) > m ≥ 0 are integers. It follows that

m
R(n1)

<
r(n0)R(1)

R(n1)
<

r(n0)

N
<

1
2R(1)

. (6.159)

Since R(1) | R(n1), we may write m = m(r)R(1). Define ρ : MR(1) → Mm by
x→ x ⊗ 1Mm(r)

, if m > 0. If m = 0, then we omit ρ, or view ρ = 0.
It follows from (6.159) that, if m ̸= 0, by viewing Mm = Mm ⊕ 0R(n1)−m ⊂

MR(n1) ⊂ B,

dτ (eA⊗ ρ(1MR(1))) <
1

2R(1)
for all τ ∈ T (A⊗ B). (6.160)

Therefore, by (6.146) and the fact that R(1) > 4N0,

ι(eA⊗ ρ(1MR(1)))≲ a00⊗ b0,2. (6.161)

Let ı1 : Mr(n0)R(1)→ Mlr(n0)R(1) be the embedding defined by a 7→ a⊗ 1Ml . Let
ı2 : Mlr(n0)R(1) → MR(n1) be defined by the embedding which sends rank one
projections to rank one projections. Put ı3= ı2◦ı1. Define ı4 : A⊗MR(1)⊗Mr(n0)→

A⊗MR(n1) by ı4(a⊗b)= a⊗ ı3(b) for all a ∈ A and b ∈ Mr(n0)R(1). Note that, for
all a ∈ B1 = MR(1), we may write

ψ1,n1(a)= ı3 ◦ ı0(a)⊕ ρ(a)

(modulo an inner automorphism, and if m = 0, ρ = 0). Define ı : A⊗ Bn1→ A⊗ B
to be the map given by a⊗ b 7→ a⊗ψ1,∞(b).

Put E1 = ı ◦ ı4(h(D0)). Then E1 ∈ C0. Let s : B→ B1 be a completely positive
contractive linear map such that s|B1 = idB1 . Let j := idA⊗s : A⊗ B→ A⊗ B1.
Define 8′1 : A⊗ B→ A⊗ B by 8′1 := ı ◦ ι4 ◦80 ◦ j . Define 81 : A⊗ B→ A⊗ B
by 81(a) = 8′1(a)⊕ ι((idA⊗ρ)( j (b))) for all a ∈ A and b ∈ B. Note that 81

is a F-ε/2-multiplicative map and 81(A⊗ B) ⊥ E1. Put ψ ′ : A⊗ B → D0 by
ψ ′(a ⊗ b) = ψ(a ⊗ s(b)⊗ 1U ) for a ∈ A and b ∈ B. Define 9 : A⊗ B → E1



ON CLASSIFICATION OF NONUNITAL AMENABLE SIMPLE C∗-ALGEBRAS, III 381

by 9 := ı ◦ ı4 ◦ h ◦ ψ ′. Then 9 is an F-ε/2-multiplicative completely positive
contractive linear map. Note that ι(x⊗1Mr(n0)

)= ι◦ ı4(x) for all x ∈F . Recall also
MR(n1)=MR(1)⊗MN . Hence, by (6.155), for all x ∈F and (viewing x ∈ A⊗MR(1)),
we estimate that

x = ι(x ⊗ 1MN )= ι(x ⊗ 1Mlr(n0)
)⊕ ι(x ⊗ 1m(r)) (6.162)

= ι ◦ ı4(ı0(x))⊕ ι(idA⊗ρ)(x) (6.163)

≈ε/32 (8
′

1(x)+9(x))⊕ ι(idA⊗ρ)(x)=81(x)+9(x). (6.164)

By (6.153), we also have

t ( f1/4(9(eA⊗ 1)))≥ 1
2 for all t ∈ T (E1). (6.165)

By [Rørdam 2004], A⊗B has strict comparison. By the lines right below (6.156) and
(6.161) (viewing a00⊗b0,1⊗1Mr(n0)

as an element in A⊗MR(1)⊗Mr(n0) ⊂ A⊗ B),
we conclude that

81(eA⊗ 1B)=8
′

1(eA⊗ 1B)⊕ ι((idA⊗ρ)(eA⊗ j (1B))) (6.166)

≲ ι(a00⊗ b0,1⊗ 1Mr(n0)
)⊕ ι(eA⊗ ρ(1B1)) (6.167)

≲ (a00⊗ b0,1)⊕ (a00⊗ b0,2)≲ a00⊗ b0 ≲ a0 ≲ a. (6.168)

Combining the last relation with (6.164) and (6.165), we obtain A⊗ B ∈ D. □

Theorem 6.169. Let A be a separable simple stably projectionless amenable C∗-
algebra with continuous scale such that T (A) ̸= {0} and satisfying the UCT. Then
A⊗U ∈ D for any infinite-dimensional UHF-algebra U.

Proof. Note that U ∼= U1 ⊗U2 for some infinite-dimensional UHF-algebras U1

and U2. Consider A1 = A⊗U1. Since U1 is Z-stable, so is A1. It follows from
[Castillejos and Evington 2020] that A1 has finite nuclear dimension. Thus, to prove
the theorem, we may assume that A has finite nuclear dimension. By [Tikuisis
et al. 2017], every tracial state of A is quasidiagonal. Then, by Theorems 5.2,
4.107 and 6.65, A⊗ Q ∈ D. Thus, by Theorem 6.144, A⊗U ∈ D for any infinite-
dimensional UHF-algebra U . □
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