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ITI: The range and the reduction

Guihua Gong and Huaxin Lin

We prove that every stably projectionless separable simple amenable C*-algebra
in the UCT class has rationally generalized tracial rank one. Following Elliott’s
earlier work, we show that the Elliott invariant of any finite separable simple
C*-algebra with finite nuclear dimension can always be described as a scaled
simple ordered group pairing together with a countable abelian group (which
unifies the unital and nonunital, as well as stably projectionless cases). We also
show that, for any given such invariant set, there is a finite separable simple
C*-algebra whose Elliott invariant is the given set, a refinement of the range
theorem of Elliott. In the stably projectionless case, modified model C*-algebras
are constructed in such a way that they are of generalized tracial rank one and
have other technical features.

1. Introduction

This paper is a part of the Elliott program of classification of simple separable C*-
algebras with finite nuclear dimension (or, equivalently, simple separable amenable
Z-stable C*-algebras by [Castillejos et al. 2021; Castillejos and Evington 2020;
Winter 2012; Tikuisis 2014]). In fact it is the first part of the research results which
give a unified classification of separable finite simple C*-algebras of finite nuclear
dimension which satisfy the universal coefficient theorem (UCT).

Briefly, a full classification theorem for a class of C*-algebras, say A, consists of
three parts. The first part is a description of the Elliott invariant for the C*-algebras
in A; see [Elliott 1995]. The second part is the range (or model) theorem, i.e.,
for any given Elliott invariant set as described in the first part, there is a model
C*-algebra (with certain desired properties) in A such that its Elliott invariant set
is the given one [Elliott 1996]. The third part is the isomorphism theorem which
asserts that any two C*-algebras in the class A are isomorphic if and only if they
have the same Elliott invariant.

Let A be the class of separable simple amenable Z-stable C*-algebras in the UCT
class. This paper contains the first two parts of the classification of C*-algebras
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in A, together with a reduction theorem. X. Jiang and H. Su [1999] constructed
a unital infinite-dimensional separable simple amenable C*-algebra Z which has
exactly the same Elliott invariant as the complex field C. It is known (see [Elliott
et al. 2015, Corollary 4.11]) that the Jiang—Su algebra Z is the unique unital
infinite-dimensional separable simple C*-algebra with finite nuclear dimension
in the UCT class to have this property. Let A be any unital separable simple C*-
algebra with weakly unperforated Ko(A). Then A ® Z and A have exactly the
same Elliott invariant (see [Gong et al. 2000, Theorem 1(b)]). The invariant set
may be described as a six-tuple (Ko(A), Ko(A)+, [14], T(A), pa, K1(A)), where
T (A) is the tracial state space of A and p4 : Ko(A) — Aff(T (A)) (the space of
all real affine continuous functions on 7' (A)) is a pairing. Therefore, currently we
study the classification of simple separable Z-stable C*-algebras. The classification
results for unital separable simple amenable Z-stable C*-algebras in the UCT class
can be found in [Phillips 2000; Kirchberg and Phillips 2000; Gong et al. 2020a;
2020b; Elliott et al. 2015; Tikuisis et al. 2017]. For separable simple C*-algebras
A with Ko(A)+ # {0}, the classification can be easily reduced to the unital case.

This paper mainly studies the case that Ko(A)1 = {0} and A is finite, i.e.,
the stably projectionless case. Note that a separable simple C*-algebra A with
Ko(A)+ = {0} could still have interesting Ko(A). Moreover, one could also have a
nontrivial pairing p4.

Let A be a nonunital separable simple C*-algebra and T(A) the set of densely
defined lower semicontinuous traces. Let A be the unitization of A and 7 : A — C the
quotient map. Suppose that A is an algebraically simple C*-algebra and p € M, (A)
is a nonzero projection and m is the rank of 7 (p). One may define

pa(lp] =l D(0) = (p) —m]z|l

(for T € T(A)) which gives a pairing p4 : Ko(A) — Aff(f(A)) (the set of all
real continuous affine functions on T(A)). On the other hand, if A is stable,
then a naive extension of the above pairing may not make sense as 7(p) = oo
(when A is stably projectionless) and ||t || = co. If one chooses a hereditary C*-
subalgebra B of A which is algebraically simple, then one may define a pairing
o : Ko(B) — Aff(f(B)). However, one needs to define a pairing which is
independent of B, so a somewhat more careful pairing is deployed. As the first part
of the classification, following Elliott’s earlier work [1995] and including [Elliott
et al. 2020a] and [Gong et al. 2000], we combine several previous results to state
that for any separable amenable simple Z-stable C*-algebra (A = A ® Z), its
Elliott invariant may always be described by a scaled simple ordered group pairing
together with a countable abelian group (see Definition 2.15 and Theorem 5.2). For
the second part of the classification, we modify the range theorem proved in [Elliott
1996] (see also [Li 2020] and the beginning of Section 4 of this paper).
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To be more specific, in the stably projectionless case, modifying Elliott’s original
construction, we show that any Elliott invariant (including the scale) mentioned
above can be realized by a model simple C*-algebra of generalized tracial rank one.
Moreover, for technical purposes, we show that these model simple C*-algebras have
other technical properties (see Theorem 4.118, Remark 4.135 and Theorem 4.137).

Furthermore, following [Elliott et al. 2020a, Corollary A.7], we found that, in the
stably projectionless case, a pairing mentioned above actually gives a previously
unexpected stronger feature of weak unperforation (see Corollary 3.6), a feature
that plays an important technical role in the later part of [Gong and Lin 2020b] (see,
for example, Theorem 3.7 in the current paper).

As mentioned above, the isomorphism theorem in [Gong and Lin 2020b] is first
established for those separable simple C*-algebras of finite nuclear dimension which
have rationally generalized tracial rank one. In this paper, with the model theorem
mentioned above, we also show that every separable stably projectionless simple
C*-algebra with finite nuclear dimension in the UCT class actually has rationally
generalized tracial rank one (Theorem 6.169) which leads to the final classification
of stably projectionless simple C*-algebras with finite nuclear dimension in the
UCT class [Gong and Lin 2020b].

The paper is organized as follows. Section 2 serves as preliminaries. Section 3
discusses the existence of VW-traces. In Section 4, we first construct a class of simple
C*-algebras which are inductive limits of 1-dimensional noncommutative CW com-
plexes with arbitrary simple pairings. Then, together with the construction in [Gong
and Lin 2020a], we construct simple C*-algebras with arbitrary simple pairings and
arbitrary K-groups. These are simple C*-algebras which are locally approximated
by subhomogeneous C*-algebras whose spectra have dimension no more than 3. In
Section 5, we discuss the range of the invariant sets of the stably finite separable sim-
ple Z-stable C*-algebras, and construct models which exhaust all the possible values
of Elliott invariant for those separable simple C*-algebras. In Section 6, we show
that, in the UCT class, all separable finite simple C*-algebras with finite nuclear
dimension have rationally generalized tracial rank at most one (Theorem 6.169).

2. Preliminaries

Definition 2.1. Let A be a C*-algebra. Denote by A! the unit ball of A. For
a € A, denote by Her(a) the hereditary C*-subalgebra aAa. If a,b € A, we
write a < b (a is Cuntz smaller than b), if there exists a sequence x, € A such that
a =1im,_, « x;x, and x,x; € Her(b). If both a < b and b < a, then we say a is
Cuntz equivalent to . The Cuntz equivalence class represented by a is denoted
by (a). A projection p € M, (A) defines an element [p] € Ko(A). We also use
[p] to denote the Cuntz equivalence class represented by p.
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Definition 2.2. Let A be a C*-algebra. Denote by T'(A) the tracial state space of
A (which could be the empty set). Let Aff(7'(A)) be the space of all real-valued
affine continuous functions on 7T (A). Let T(A) be the cone of densely defined,
positive lower semicontinuous traces on A equipped with the topology of pointwise
convergence on elements of the Pedersen ideal Ped(A) of A. So T(A) may be
viewed as the cone in the dual space of the vector space Ped(A).

Let B be another C*-algebra with T(B) # {0} and let ¢ : A — B be a homo-
morphism. Since Ped(A) is the minimal dense ideal of A, p(Ped(A)) C Ped(B).
In what follows we also write ¢ for ¢ @ idy, : My(A) — My(B) whenever it is
convenient.

We write @7 : T (B) —> T(A) for the induced continuous affine map. Denote by
fb(A) the subset of T(A) which is bounded on A. Of course T(A) C Tb(A). Set
To(A) ={t e T(A) 2 |IT|l < 1}. It is a compact convex subset of T(A).

Let r > 1 be an integer and 7 € T(A). We continue to write T on A ® M,
for T ® Tr, where Tr is the standard (unnormalized) trace on M,. Let S be a convex
subset (of a convex topological cone). We assume that a convex cone contains 0,
but a convex set S may or may not contain 0. Denote by Aff(S) the set of affine
continuous functions on S with the property that, if 0 € S, then f(0) = 0 for all
f € Aff(S). As in [Robert 2012], define

AfL(S) = {f : AFf(S) : £(z) > 0 for T # 0} U {0}, (2.3)
LAff;  (S) ={f:S—[0,00) : 3{fu}, fu /[, fn € AtEL(S)}, 2.4)
LA, (S) ={f: S = [0,00]: 3{fu}, fu /' . [n € AtEL(S)}, (2.5)
LAFF™(S) = {fi — f>: fi € LAf.(S) and f> € Aff,(S)}. (2.6)

For most of this paper, S = T(A), S=T(A),or S CTy(A) in the above definition are
used. Moreover, for S C To(A), LAff, 1 (S) is the subset of those bounded functions
in LAfff  (S). Recall that 0 € T(A) and if f € LAff(T (A)), then f(0) =0.

Definition 2.7. A convex topological cone T is a subset of a topological vector
space such that for any o, B €e Ry and x,y € T, ax + By € T, where R, is the
set of nonnegative real numbers. A subset A C T is called a base of T, if A is
convex and for any x € T \ {0}, there is a unique pair (ay, T,) € (Ry \ {0}) x A
such that x = «, t,. In this article, all convex topological cones are those with a
metrizable Choquet simplex A as its base. Note also that the function from 7 \ {0}
to (R4 \ {0}) x A sending x to (ay, T,) is continuous.

A simple ordered group pairing is a triple (G, T, p), where G is a countable
abelian group, T is a convex topological cone with a Choquet simplex as its
base and p : G — Aff(T) is a homomorphism. In what follows, for a pair of
functions f and g on T, we write f > g if f(tr) > g(t) forall t € T \ {0}. Define
Gyr={geG:p(g)>0}U{0}. If G4 # {0}, then (G, G4) is an ordered group. It
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has the property that if ng > O for some integer n > 0, then g > 0. In other words,
(G, G4) is weakly unperforated. Moreover, if G4 # {0}, (G, G4) is a simple
ordered group, i.e., every element g € G4 \ {0} is an order unit (recall that the
compact set A is a base for T'). In general, we allow the case G, = {0} (but p may
not be 0).

A scaled simple ordered group pairing is a quintuple (G, 2(G), T, s, p) such
that (G, T, p) is a simple ordered group pairing, where s € LAff, (T') \ {0} and

X(G):={geGy:p(g) <s} or X(G):={geCGy:p(g) <stUfu}, (2.8)

where u € G4 and p(u) = s. We allow X(G) = {0}. Note also that s(7) could be
infinite for some 7 € T'. It is called a unital scaled simple ordered group pairing, if
X(G)={geGy:p(g) <stU{u} with p(u) = s, in which case u is called the unit
of X(G). Note that, in this case, u is the maximum element of X (G), and one may
write (G, u, T, p) for (G, £(G), T, s, p). If £(G) has no unit (which includes the
case that X (G) has a maximum element x but p(x) < s), then X(G) is determined
by s. One may write (G, T, s, p) for (G, £(G), T, s, p) (see Theorem 5.2 below).
(Note that ¥(G) = {0} corresponds to the projectionless case and G4 = {0} to the
stably projectionless case).

Let (G;, X(G;), T;, si, pi) be scaled simple ordered group pairings, i = 1,2. A
map

o = (ko, k1) : (G1, 2(G1), T, 51, p1) = (G2, 2(G2), T2, 52, p2)

is said to be a homomorphism if there is a group homomorphism «g : G| — G»
and a continuous cone map «r : 7o — T (preserving 0) such that

p2(k0(8))(@) = p1(g)(kr(2)) forallge GrandreTr, (2.9)
ko(X(G1)) C 2(Gy) and s1(k7 (1)) <sp(¢t) forallt e T>. (2.10)

We say that a homomorphism I'y is an isomorphism if kg is an isomorphism,
ko(X(G1)) = X(Gy), k7 is a cone homeomorphism, and s (k7 (t)) = s2(t) for
allt e Tr.

Definition 2.11. For any ¢ > 0, define f. € C([0, 00))4+ by letting f.(¢) = 0 if
t €10,¢e/2], fe(t) =1if t € [e, 00) and f.(¢) be linear in (g/2, ¢).
Let A be a C*-algebra and t be a quasitrace. For each @ € A define

dr(a) = lim 7(fe()).

Note that f.(a) € Ped(A) foralla € A,.
Let S be a convex subset of T(A) and a € M,,(A),. The function a(s) = s(a)
(for s € S) is an affine function from S to [0, oo]. Define

_—

(a)(s) =ds(a) = gigg)S(fs(a))
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(for s € §), which is a lower semicontinuous function. If a € Ped(A)., then the
map t — a(r) is in Aff(S) and (’\) e LAff, (S) (see Definition 2.2), in general.
Note that a is different from ( ). In most cases, S is T(A) To(A), or T(A). Note
also that there is a canonical map from Cu(A) to LAff+(T(A)) sending (a) to (a)

2.12. If A is a unital C*-algebra and T (A) # @, then there is a canonical homomor-
phlsm oA Ko(A) — Aff(T(A)). Now consider the case that A is not unital. Let
JTC A — C be the quotient map. Suppose that T (A) # &. Let 7¢ := ‘L’C A>C
be the tracial state which factors through JTC Then

T(A) = {ttr + (1 —nt:1€0,1], T € T(A)). (2.13)

The map T(A) — T(Z) induces a map Aff(T(Z)) — Aff(T (A)). Then the map
pi: Ko(A) — Aff(T (A)) induces a homomorphism p" : Ko(A) — Aff(T (A)) by

0/ Ko(A) — Ko(A) 255 AFf(T(A)) — Aff(T(A)). (2.14)

However, in the case that A # Ped(A), we do not use p’ in general, as it is possible
that T (A) = @ but T'(A) is rich (consider the case A = A ® K).

Definition 2.15. Let A be a C*-algebra with T(A) ;é {0}.If r € T(A) is bounded
on A, then 7 can be extended naturally to a trace on A. Recall that T? (A) is the set
of bounded traces on A. Denote by p’ A Ko(A) — Aff(Tb(A)) the homomorphism
defined by

PhUpl—Ilgh =t(p) —1(q)

forall T € T? (A) and for projections p, g € M, (Z) (for some integer n > 1) with

(p) =7¢ (q) Note that p —g € M, (A). Therefore ,oﬁ([p] —[g]) is continuous
on Tb(A) In the case that Tb(A) T(A) (for example, A = Ped(A)), we write
PA = PA-

Let A be a o-unital C*-algebra with a strictly positive element 0 < e < 1.
Put e, := fi/on(e). Then {e,} forms an approximate identity for A. Note that
e, € Ped(A) for all n. Set A, = Her(e,)) := e, Ae,,. Denote by t,: Ay = Ay41 and
Jn i Ay — A the embeddings. They extend to ¢, : Zn — AVHH and j,: Zn S A
unitally. Note that e, € Ped(A,,+1). Thus ¢, and j, induce continuous cone maps

b TP(Apy1) = TP(A,) and  jup: T(A) — T2(A,)

defined by t,,l}(r)(a) =1(y(a)) fort € fb(A,,H), and j,7(t)(a) = t(j,(a)) for
all T € T(A) and all a € A,,. Denote by

AT (A,) — AfF(TP(A,11)) and  j°: AfF(TP(A,)) — AFE(T (A))

the induced continuous linear maps. Recall that UZO: 1 A, is dense in Ped(A). A
direct computation shows that one may obtain the following inverse limit of convex
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topological cones (with continuous cone maps):

b
1

TP(A)) <2 TP(Ay) ﬁi’b(AS) < T(A). (2.16)
To justify (2.16), set T’ =lim._ T?(A,) c [[°2, T?(A,). Define ' : T(A) —» T’
by I'(r) = {7,}, where 7, = 7|4,. Let I, be the (closed two-sided) ideal of A
generated by A,. Let ~7 be the equivalence relation ~ defined in [Cuntz and
Pedersen 1979, §2]. Recall that {x € (f,)+ : 3y € A, suchthatx ~7 y}is a
positive part of an ideal J, containing A, (see the remark after Proposition 4.7
of [Cuntz and Pedersen 1979]). Therefore, if ¢t € T(A) and |4, = 7|a,, then
tly, =tly,. Put J =, Jy. It follows that 7| ; = t|,. Since J is a dense ideal, it
contains Ped(A). Hence ¢ and t are the same element in T(A). This implies that
the map I is injective. It is also clear that I" is a continuous cone map. To see that
[ is surjective, let {r,} € T'. Recall that 7, € T? (Ap) and 7,41]a, = Ts. Let 7, be
a trace in T(A) which extends 7,, (see Lemma 4.6 of [Cuntz and Pedersen 1979]).
Then 7,41, = Taly,, as argued above. Define T on J by T|;, = 7,|;,. Since T is
finite on |-, Ay, which is in Ped(A) and dense in A, 7 is a lower semicontinuous
densely defined trace. Then one may view T € T(A), and note also I'(7) = {1,,}.
This shows that I" is surjective.
Tosee I' is open, consider O, g ={7 € T(A):t(a)> B}, where a € Ped(A),\{0}
and B € R. Then O, ~p = Uk{‘[ 1 t(eraer) > B}. Thus

F(Oa,>,3) = Uk{{fn} el : T (exaer) > B},

which is open in the product topology. Now consider O, g ={7 € YN"(A) :7(a) < B}.
Since a € Ped(A) C J, we may assume that a € Jy for some N > 1. There is an
element b € (Ay)4 such that b ~7 a. Note that {t € f”(AN) :7(b) < B} is open.
It follows that O := {{rk} € ]_[,fil Tb(Ak) sy (b) < ,8} is open in ]_[,fil Tb(An).
Since I'(O,4,<p) = O NT', it is also open in 7”. This implies that I' is open.

The continuous cone map jj, 7 is the same as the cone map o0 7 : T(A) — TP (Ap)
given by the inverse limit. One also obtains the induced inductive limit

AFE(TP(A)) 4 AFE(T? (Ay)) 5, AFE(TP(A3) — --- — AFR(T(A)).  (2.17)

Hence one also has the following commutative diagram:

Ko(A) —— Ko(Ay) ——2— Ko(A3) - Ko(A)

PAY J PAy l PA; l
LIi Lli

AFF(TP(A))) —2 AFF(TP(As)) —— AFE(TP(A3)) — - - —— AFE(T (A))

Thus one obtains a homomorphism p : Kg(A) — Aff(f(A)). If A is assumed to be
simple, then each A, is simple and e, is full in A,. Therefore, since e, € Ped(A)
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and A, =Ped(A,) (see Theorem 2.1 of [Tikuisis 2014]). It follows that, when A
is simple, fb(An) = T(An) for all n. But we do not assume that A is simple in
general.

Note that, if T(A) =T? (A), for any n > 1, one also has the following commutative
diagram:

L jn 1,%0
Ko(Ay) —2— Ko(Aps1) ——"— Ko(A)

pAnJ/ 'OAn+1l pAl
# f

AFF(T? (A)) —— AFE(TP(Ans1)) 255 AT (A))
It follows that p = p4 in the case that Tb (A) = T(A).

Let us briefly point out that the definition above does not depend on the choice
of e. Suppose that 0 < ¢’ < 1 is another strictly positive element. We similarly
define e;,. Put A) = Her(e)). Note that, for any m, there is k(m) > n such that
lle = €my€erom |l < 1/2™. By applying a result of Rgrdam (see, for example,
Lemma 3.3 of [Elliott et al. 2020b] and its proof), one has, for each n > 1, an integer
k(n) > k(n—1) > 1 and a partial isometry w, € A** such that w,w; e, = e,w,w;,
wricw, € A;c(n) for c € A, and ||w,e, — e,|| < 1/2". Define ¢, : A, — A;((n) by
on(c) = w:chnH for c € A,. For each m, let £, ,, = e, ® 1y, and W, ,, =
w, @ 1y, Then Wy mEnm — Enml < 1/2". 1t follows that

Ign @ idug, ) — el < (57 )l

for all c € M,,(A,) and m € N. Moreover, for any t € T(A), (@, (c)) = t(c) for
all c € A,. Symmetrically, one has monomorphisms v : A; — Ay such that
|V ® ida, ) (@) — all < (1/29]|a]l and T (Yi(a)) = t(a) for all a € M, (A}),
7 € T(A) and m € N. Thus, by passing to subsequences, one obtains the following
commutative diagram:

Ko(A1) =3 Ko(Ay) —2— ... Ko(A)
+~ ol p
pzl 2 \
AT (A)) — AFf(T?(A,)) — Aff(T (A))
9140 V240 4 2 idKg(a)
o yF )
oo e g F(ay)
Ko(A)) — Ko(A%) 1 Ko(A)
b \ pf;/ ﬂ,
pA’l \2
Aff(T?(A})) — Aff(TP(AY)) — - Aff(T (A))
t’l !

"

This implies that p” = p, where p’ is induced by choosing ¢’ instead of e.
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Throughout, we define p := p4. Moreover, this definition of pairing is consistent
with the conventional definition of p4 in the case that A is unital, or the case
A =Ped(A) (see 2.12).

We write n:f’fA : Aff(T(A)) — Aff(T(A))/,oA(KO(A)) for the quotient map. This
may be simplified to ﬂfff if A is clear. When T (A) # <&, we use the same notation
for the quotient map Aff(7(A)) — Aff(T(A))/pa(Ko(A)). In this case, we also
write o : KO(AV) — Aff(T (A)) for the map defined by o ([p])(r) = t(p) for
projections p € MZ(Z) (for all integers /) and for T € T (A).

Suppose that ® : A — B is a homomorphism. Then ®(Ped(A)) C Ped(B). Let
0<es <1and0 <ep <1 be strictly positive elements of A and B, respectively.
Let e2 = fi/m(ea) and e = fi 2 (ep) be as defined above. Define A, = Her(ey)
and B, = Her(e®). Then

lim [[®(ea) —ePD(enr)e? || = 0.
n—oo

By passing to a subsequence, as above (applying Lemma 3.3 of [Elliott et al. 2020b]
repeatedly), one has a sequence of homomorphisms W, : A, — By, such that
Ity © Wnl@) = @ o1, (@) < (1/m)lall and T(ip,,,, 0 Un(@) = T(P 014, (@)
for all a € M,,(A,) (for every m € N) and t € T(B) (recall that we write H
for H ®idy, ). Drawing a similar diagram as above, one obtains the following
commutative diagram:

Ko(A) =225 AFR(T (A))

lcb*o lq)u (2.18)

Ko(B) —22—s AfR(T (B))

At least in the simple case, the construction above was pointed out by Elliott (see
part (iv) of [Elliott 1995, §7] as well as Proposition 5.1 below for more detail). The
above also works when we do not assume that quasitraces are traces (but quasitraces
would be used). We omit a more general definition here to avoid longer discussion.

Definition 2.19. We now describe the Elliott invariant for separable simple C*-
algebras (see [Elliott 1995; 1996]). Let us consider the case T # {0}. In this case
the Elliott invariant is the sextuple

ElI(A) := (Ko(A), ©(Ko(A)), T(A), T4, pa. K1(A)),

where X (Kg(A)) = {x € Ko(A) : x = [p] for some projection p € A}, and X4 is a
function in LAff, (T'(A)) defined by

Ya(r) =sup{r(a):a €Ped(A)4, |a| <1} (2.20)
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(see Theorem 5.2). Let e4 € A be a strictly positive element. Then X4(7) =
limg_g7(fs(ea)) forall T f(A), which is independent of the choice of e4.

Let B be another separable C*-algebra. A map I" : Ell(A) — Ell(B) is a homo-
morphism if I gives group homomorphisms «; : K;(A) — K;(B) (i =0, 1) and a
continuous cone map y : T (B) — T (A) such that pg(ko(x))(t) = pa(x)(y (7)) for
all x € Kg(A) and T € f(A), ko(Z(Ko(A))) C Z(Ko(B)) and X4(y (7)) < Xp(7)
for all T € T(B).

We say that I' is an isomorphism if I" is a homomorphism, «; is a group isomor-
phism (i =0, 1), y is a cone homeomorphism, ko(X(K¢(A))) = Z(Ko(B)), and
Ta(y(1)) = Sp(7) forall T € T(B).

In the case that p4 (Kog(A)) N LAff+(f(A)) = {0}, we often consider the (spe-
cial) reduced case that T (A) is compact, which gives a base for f(A). Then,
we may write Ell(A) = (Ko(A), T(A), pa, K1(A)). Note that, in this situation,
Y (Ko(A)) = {0}, f(A) is determined by T(A) and X4(7) =1 for all T € T (A).
Definition 2.21 [Robert 2016]. Let A be a C*-algebra. We say A has almost stable
rank one, if A has the property that the set of invertible elements of the unitization
B of every nonzero hereditary C*-subalgebra B of A is dense in B. A is said to
stably have almost stable rank one, if M, (A) has almost stable rank one for all
integers n > 1.

Definition 2.22. Let A be a C*-algebra with T (A) # <. Suppose that A has a

strictly positive element e4 € Ped(A) 4+ with |le4|| = 1. Then 0 ¢ T (A)", the closure
of T(A) in T (A) [Elliott et al. 2020b, Theorem 4.7]. Define

As(A) =inf{d;(eq) : T € T(A)"} = lim (inf{r(fi/n(en)) : T € T(A)}) > 0.
n—>oo
Let A be a C*-algebra with T (A) # {0}. There is an affine map
Faif : Aga — Aff(TH(A)), rag(a):t+— a(t) =1(a) forall T € To(A), a € Ag,..

Denote by Al the space raf(As.a.) and A’i = rar(AL).
Definition 2.23. Let A and B be two C*-algebras. A sequence of linear maps
L, : A — B is said to be approximately multiplicative if

lim ||L,(a)L,(b)— L,(ab)|| =0 foralla,be A.
n—oo

Let ¢, ¢ : A — B be homomorphisms. We say ¢ and i are asymptotically unitarily
equivalent if there is a continuous path of unitaries {u(t) : t € [1, 0c0)} in B (if B is
not unital, u(¢) € B) such that

lim w*(Dg(@u() =y(a) forallae A.

We say ¢ and i are strongly asymptotically unitarily equivalent if u(1) € Uy(B)
(or in Uy(B)).
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Definition 2.24. Let A and B be C*-algebras, and let 7 : A, \ {0} - N x R4 \ {0}
be defined by a — (N(a), M(a)), where N(a) € N and M(a) € Ry \ {0}. Let
HC AL \{0}. Amap L : A — B is said to be T-H-full, if, for any a € H and any
b € By with ||b]| <1, any & > 0, there are x;, x3, ..., xy € B with N < N(a) and
|lx; ]| < M(a) such that

N
Zx;fL(a)xj —b

j=1

<e. (2.25)

L is said to be exactly T-H-full, if ¢ = 0 in the above formula.

Definition 2.26. Let A and B be C*-algebras and ¢g, ¢; : A — B be homomor-
phisms. By the mapping torus M, ,,, we mean the following C*-algebra:

Myyp ={(f,a) e C([0, 1], B)® A : f(0) =¢o(a) and f(1) = ¢i(a)}. (2.27)
One has the short exact sequence
0—SBS My, = A— 0,

where 1 : SB — M, y is the embedding and 7, is the quotient map from M,, y to A.
Denote by m; : My, y — B the point evaluation at 7 € [0, 1].

Let F; and F; be two finite-dimensional C*-algebras. Suppose that there are
(not necessary unital) homomorphisms ¢g, ¢ : F1 — F,. Denote the mapping torus
My, 4, by

A=A(F, I, ¢, ¢1)
={(f.8) €C(0,1], ) ® F1: f(0) =¢po(g) and f(1) =¢1(g)}.

Denote by C the class of all C*-algebras of the form A = A(F}, F3, ¢o, ¢1). These
C*-algebras are called Elliott-Thomsen building blocks as well as one-dimensional
noncommutative CW complexes; see [Elliott and Thomsen 1994; Elliott 1996].

Recall that Cy is the class of all A € C with Ky(A)+ = {0} such that K;(A) =0
and A(A) > 0, and C_" the class of all A € Cy such that Ko(A) = 0. Denote by C/,
C, and Cgl the class of all full hereditary C*-subalgebras of C*-algebras in C, Cy
and C(()O), respectively.

Definition 2.28 (cf. [Elliott et al. 2020b, Definition 8.1 and Proposition 8.2]). Recall
the definition of class D and Dj.

Let A be a nonunital simple C*-algebra with a strictly positive element a € A
with |la|| = 1. Suppose that there exists 1 > §, > 0, for any ¢ > 0, any finite subset
F C A and any b € A, \ {0}, there are F-e-multiplicative completely positive
contractive linear maps ¢ : A — A and v : A — D for some C*-subalgebra D C A
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with D € ) (or CJ) such that D L ¢(A), and

[x —(ex)+ ¥ (x)| <e€ for all x € FU {a}, (2.29)
c<bh, (2.30)
1(fra(¥ (@) = fa forall 1 € T(D), (2.31)

where c is a strictly positive element of ¢(A)A@(A). Then we say A € D (or Dy).
Note that, by Remark 8.11 of [Elliott et al. 2020b], D can always be chosen to
be in Co (or C).
When A € D and is separable, then A = Ped(A) (see Corollary 11.3 of [Elliott
et al. 2020b]). Let a € A, with |la]| = 1 be a strict positive element. Put

d =inf{r(f1/4(a)): T € T(A)} > 0. (2.32)

Then, for any 0 < n < d, f, can be chosen to be d — n (see Remark 9.2 of [Elliott
et al. 2020b]). One may also assume that fi/4(¥ (a)) is full in D. Furthermore,
there exists amap: 7 : A4 \ {0} - N x R4 \ {0} which is independent of F and
¢ such that, for any finite subset # C A \ {0}, we can further require that v is
exactly T-H-full (see Theorem 8.3 and Remark 9.2 of [Elliott et al. 2020b]). For
any n > 1, one can choose a strictly positive element b € A with ||b|| = 1 such that
f1/4(b) = f1/n(a). Therefore, if A has continuous scale, d can be chosen to be 1 if
the strictly positive element is chosen accordingly.

In [Elliott et al. 2020b], it is proved that if A a separable simple C*-algebra in D,
then A is stably projectionless, has stable rank one and Cu(A) = LAff+(T(A)),
and every 2-quasitrace on A is a trace (see Propositions 9.3 and 11.11 of [Elliott
et al. 2020b]).

Let A be a nonzero separable stably projectionless simple C*-algebra. Recall that
A has generalized tracial rank one, written gTR(A) = 1, if there exists e € Ped(A) +
with |le]| = 1 such that eAe € D (see Definition 11.6 of [Elliott et al. 2020b]). Tt
should be noted that, in the definition of D above, if we assume that A is unital,
and replace Cy by C, then gTR(A) < 1 (see Definitions 9.1 and 9.2 and Remark 9.3
of [Gong et al. 2020a]). But the condition (2.31) and constant f, are not needed.
In the case Ko(A)+ # {0} but A is not unital, we may define gTR(A) < 1, if for
some nonzero projection e € My (A), gTR(eMy(A)e) <1 (see [Gong et al. 2020a]).
A C*-algebra A is said to have rationally generalized tracial rank at most one,
if A ® U has generalized tracial rank at most one for some infinite-dimensional
UHF-algebras U.

Definition 2.33. Let A € D be as defined in Definition 2.28. If, in addition, for
any integer n, we can choose D and ¥ : A — D to satisfy the following condition:
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D = M, (D) for some D; € Cy such that

n

¥(x) =diag(y(x), ¥1(x), ..., ¥1(x)) forall x e F, (2.34)

where Y1 : A — D is an F-e-multiplicative completely positive contractive linear
map, then we say A € D9,

Note that here, as in [Elliott et al. 2020b, Theorem 8.3 and Remark 9.2], the map
T mentioned in Definition 2.28 is also assumed to exist and f, can be also chosen
as d — n for any n > 0 with d as in (2.32) for a certain strictly positive element a.

Remark 2.35. It follows from Theorems 10.4 and 10.7 of [Elliott et al. 2020b]
that if A € Dy, then A € D?. Moreover, D; can be chosen in Céo), and if A € D,
then D; can be chosen in Cp. If A is a separable simple C*-algebra in D and A has
an approximate divisible property defined in [Elliott et al. 2020b, Definition 10.1],
then A € D?.

Definition 2.36. Throughout the paper, WV is the separable simple C*-algebra which
is an inductive limit of C*-algebras in C(()O) with a unique tracial state, which is
first constructed in [Razak 2002]. It is proved in [Elliott et al. 2020a] that W is
the unique separable simple C*-algebra with finite nuclear dimension which is
KK-contractible and with a unique tracial state. Denote by 1y, the unique tracial
state of W.

Let A be a C*-algebra and let T be a nonzero trace of A. We say that 7 is a
Wh-trace, if there exists a sequence of approximately multiplicative completely
positive contractive linear maps ¢, : A — W such that

lim tyyog,(a) =t(a) foralla e A. (2.37)
n—oo

Throughout, Q is the UHF-algebra with Ko(Q) = Q and [19] = 1 and with the
unique tracial state tr. Recall that Tyq(A) is the set of those T € T'(A) such that there
exists a sequence of approximately multiplicative completely positive contractive
linear maps ¢, : A — Q such that

lim trog,(a) =t(a) forallae A. (2.38)

Definition 2.39 [Gong and Lin 2020a, Definition 9.3]. Let A be a separable C*-
algebra. We say that A has property (W), if there isamap 7 : A}r \ {0} > NxR;\{0}
and a sequence of approximately multiplicative completely positive contractive
linear maps ¢, : A — W such that, for any finite subset H C A}r \ {0}, there exists
an integer no > 1 such that ¢, is exactly 7-H-full (see Definition 5.5 and Theorem
5.7 of [Elliott et al. 2020b]) for all n > ny.



292 GUIHUA GONG AND HUAXIN LIN

3. W-traces

Theorem 3.1. Let A be a compact convex set and let G be a countable abelian
subgroup of Aff(A). Suppose that G NAff (A) = {0}. Then there exists t € A such
that g(t) =0forall g € G.

Proof. Let us assume that 0 ¢ A; otherwise we can choose t = 0. Let
Sy ={f e Aff(A): f(x) >0 for all x € A} = Aff (A)\ {0}.

It is an open convex subset of Aff(A). Let G| be the convex hull of G. Note that if
gl,e2€Gandr e QwithO<r <1,thenrg; + (1 —r)g, ¢ S4+. To see this, we
note that there is an integer m > 1 such that mr and m(1 — r) are both integers. In
other words, m(rg; + (1 —r)g>) € G. Therefore m(rg; + (1 —r)g>) ¢ S+. Hence
rg1+ (1 —r)gs & S+. Since S is open, this implies that G{ N S = <.

By the Hahn—Banach separating theorem, there is a real continuous linear func-
tional f on Aff(A) and rg € R such that

f@)<ro<f(g) forallse Sy and geGy. (3.2)

If f(g) = rog, then f(—g) < —rp. Note that if g € G, then mg € G for any m € Z.
Hence mf(g) > ro for all m € Z. It follows that f(g) =0 forall g € G and ry <O.

By (3.2),
—f(@s)>—-rg>0 forallseS,. 3.3)

Let f' = —f. Since Aff,(A) =S, U{0} C S,
f'(s) =0 forall s € Aff(A), = {s € Aff(A) : s(z) > 0}. (3.4)

In other words, f’ is a positive linear functional on Aff(A). Let f1 = f'/Ilf'l.
Then fi(15o) = 1. Consider Aff(A) C C(A). By the Hahn—Banach extension
theorem there is a linear functional fl on C(A) such that ( f])| Aff(A) = f1, and
I fill = I fill = 1. Since || fill = fi(1a) = 1, f; is a positive functional (see
Proposition 3.1.4 of [Pedersen 1979]), and therefore it is a state of C(A). Let
S(C(A)) be the state space. Then it is compact and convex. By the Krein—-Milman
theorem, fl is the limit of {u,}, where

m(n)

Mn = E UniPniis
i=1

0 < a,,; <1 are positive numbers with Z:":('ll) an; = 1, and p,; are pure states

of C(A). Note that, for each i and n, there is #; , € A such that p, ;(a) = a(t; )
for all a € C(A). Since A is convex,
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Then a(t,) = a(u,) for all a € Aff(A), by the computation

m(n) m(n)

a(pn) =Y ey ialpni) =Y ayialtin)

i=1 i=1

m(n)
= a(z an,it,-,n) =ua(t,) forall ae Aff(A).

i=1
Since A is compact, we conclude that there is T € A such that
fi(a) =a(r) forall a € Aff(A). (3.5)
We have just shown that
g(t)=0 forall geG. ([l

Corollary 3.6 (cf. [Elliott et al. 2020a, Corollary A.7]). Let A € D be a separable
simple C*-algebra with continuous scale. Then there exists t, € T (A) such that
pa(x)(t,) =0forall x € Ko(A).

Proof. By Theorem 11.5 and Proposition 11.8 of [Elliott et al. 2020b], A has stable
rank one and Cu(A) =LAff, (T (A)) (see also [Elliott et al. 2020b, Proposition 9.1]).
It follows from Corollary A.7 of [Elliott et al. 2020a] that

pa(Ko(A)) NAfEL (T (A)) = {0}
By Theorem 3.1, there is 7, € T (A) such that p4(x)(z,) =0 for all x € Ko(A). U

Theorem 3.7. Let A € D be a separable simple C*-algebra with continuous scale.
Then A has at least one WW-tracial state. Moreover, A has property (W), i.e., there is
amap T : A; \ {0} > N x Ry \ {0} and a sequence of approximately multiplicative
completely positive contractive linear maps ¢, : A — W such that, for any finite
subset H C Ay \ {0}, there exists no > 1 such that ¢, is exactly T-H-full (see
Definition 2.24) for all n > nq, and there exists a T € T (A) such that

T(a) =nli)nolorwo<pn(a) foralla e A.

Proof. Fix a strictly positive element e € A . It follows from Remark 9.2 of [Elliott
et al. 2020b] that, for any % > 1 > 0, we may choose f, > 1 —n in Definition 2.28. By
Definition 2.28, we obtain two sequences of mutually orthogonal C*-subalgebras
B,,C, C A, B, = a,Aa, for some positive elements a, € A with |la,|| = 1,
C, € Cp. We also have two sequences of completely positive contractive linear maps
@no:A— By,and ¢, : A— C, such that ¢, o(A) L C, and the following hold:
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Jlim [l = (@n,0(x) +@n,1 () =0 forall x € A, (3-8)
Lim (1@ (xy) = @i (D) @ni (NI =0 forallx,ye A, i=0,1, (3.9)
nlgglo sup{d.(a,):t € T(A)} =0, (3.10)
T(f12(¢n,1(e))) > 1—1n forall Tt € T(C,). 3.11)

Let b, = f12(¢n,1(e)) € C,. Then 0 < b, < 1. The inequality (3.11) implies

that
inf{t(b,): 1€ T(Cp)}>1—n. (3.12)
Hence A;(C,) > 1 — n (see Definition 2.22).

As noted in the middle of Definition 2.28, A is stably projectionless, and has stable
rank one, Ped(A) = A (see [Elliott et al. 2020b, Corollary 11.3]), QT(A) =T (A)
and Cu(A) = LAff, (T (A)). By Theorem 7.3 of [Elliott et al. 2020b] (see also
[Robert 2012, Theorem 6.2.3] of [Robert and Santiago 2021, Theorem 6.11]),

Cu™(A)=Kp(A)u LAff;(f(A)).

By Corollary 3.6, there is tp € T (A) such that p4(x)(tp) = 0 for all x € K¢(A).
Recall that Cu™ (W) = {0} U (RU {o0}); see [Robert 2012, Theorem 6.2.3]. lzeﬁne
Y :Cu”(A) = Cu” (W) by v|keay=0and y (f)(tw)= f (tp) for f eLAF (T (A)),
where 1y is the unique tracial state of YW. We can now see that y is a morphism
in Cu. Note that y ({c)) # 0 forany c € A; \ {0} as A is simple. Let ¢, : C,, —> A
be the embedding. By Theorem 1.0.1 of [Robert 2012], there exists, for each =,
a homomorphism v, : C,, — W such that Cu™ (y,) = y o Cu" (¢,). In particular,
by (3.12), d,, (¥u(ec,)) > 1 —n, where ec, is a strictly positive element of C,.
Since ¢, is injective, Cu™ (¥,)({c)) # 0 for any ¢ € C, \ {0}. It follows that v, is
injective. Define ®, =¥, 0¢, 1 : A = W. Then ®, is a sequence of completely
positive contractive linear maps satisfying the following:

lim ||®,xy)— P, x)P,(y)|| =0 forall x,y € A, (3.13)
m—00
lim || ®,x)] =|x] forall x € A, (3.14)
m—0o0
mli_l)lgo w(f12(Pm(e))) = (1 —n). (3.15)

Note that this holds for each % > n > 0. By choosing 1, — 0, we may further
assume that there exists an increasing sequence {e,} of positive elements with
0 < e, <1 such that, in the above, we have

lirrolO W (P (en)) = 1. (3.16)

Then, by passing to a subsequence, we may assume that there exists T € T (A) such

that
Iim oy (P, (a)) =1(a) foralla e A. 3.17)
n—oo
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The last part of the statement follows from the first part and Theorem 5.7 of
[Elliott et al. 2020b]. O

Theorem 3.18. Let C be a separable amenable C*-algebra with the property (W),
let A be a separable simple C*-algebra with continuous scale which satisfies the
UCT and has the property (W), and let k € KL(C, A). Then there exists a sequence
of completely positive contractive linear maps {¢,} from C to A @ M, (for some
integers m(n)) such that

lglolo lon (@)@, (b) — @n(ab)|| =0 foralla,b e C and [{¢,}] =«. (3.19)

Proof. Note that C satisfies the conditions in Definition 9.3 of [Gong and Lin
2020a]. Therefore, the theorem follows from the combination of Theorem 10.8
and Lemma 12.5 of [Gong and Lin 2020a], i.e., one first applies Theorem 10.8 to
obtain maps from C to A ® Z9 ® My ), and then applies Lemma 12.5 to obtain
maps from A ® Zo @ My to A ® M, (for some integers k(n) and [(n)). O

4. Range and Models

This section is a refinement of Elliott’s construction of model simple C*-algebras.
The main results of this section are stated as Theorem 4.118 and Theorem 4.137.
Both are restatements of Elliott’s original theorem [Elliott 1996] with some technical
additions. These refinements are needed for our purposes. Some subtle details
described in the Elliott construction are also dealt with (see, for example, the
first line of page 88 of [Elliott 1996]). To avoid some technical difficulties in
the construction described on page 88 of [Elliott 1996] in the general setting, we
do not restrict ourselves to those building blocks described in [Elliott 1996]; see
also [Li 2020, Remark 1.4]. The refined construction in this section is similar
to that of the unital case (see also Sections 2.1 and 2.2 of [Li 2020]) in spirit.
However, for the later purpose of the isomorphism theorem, we also require that the
nontorsion infinitesimal elements of Kq-groups be stored at the building blocks. So
the construction of the model C*-algebras in this section is somewhat different from
what is described in [Elliott 1996] and [Li 2020]. Other features in Theorem 4.118
and Theorem 4.137 are also needed. We also make this section self-contained as
much as possible. Some previously omitted computations are presented.

4.1. Let A be any compact metrizable Choquet simplex and let G be any countable
abelian group. Let p : G — Aff(A) be any homomorphism satisfying the condition
for any g € G, there is a T € A such that p(g)(7) <0. ()

In other words, p(G) N Aff (A) \ {0} = & (recall that Aff, (A) denotes the set of
all continuous affine functions f : A — R such that f(r) > 0 for any T € A and
the zero function). Note that we include the case that p(G) = {0}.



296 GUIHUA GONG AND HUAXIN LIN

In the first part of this section, we assume that G is torsion free, and construct a sta-
bly projectionless simple C*-algebra A with continuous scale such that Ko(A) = G,
Ki(A)={0}, T(A)=A and p, : Ko(A) — Aff(T (A)) is the map p : G — Aff(A),
when one identifies Ko(A) with G, and T (A) with A. The C*-algebra A is an
inductive limit of C*-algebras A, € Cy (Elliott—-Thomsen building blocks) of the
form

An =A(Fna En’ ,Bn,O’ lgn,l)
={(f,a) € C([0, 1], E,) @ F, | Bn.o(a) = f(0), Bu1(a) = f(D},

where F,, E, are finite-dimensional C*-algebras, and 8, o, B,.1 : F, = E, are (not
necessarily unital) homomorphisms.

Note that if 8,0 @ Bn.1 : F, — E, ® E, is injective, then the element a is
completely determined by f, so we can simply write ( f, @) as f. In our construction,
we will always be in this situation.

Since the limit algebra A to be constructed is stably projectionless, in each step,
the algebra A, will also be stably projectionless. The construction presented here
is a refinement of Elliott’s construction [1996] and is similar to [Gong et al. 2020a,
§13] (which is for the unital case).

4.2. Let us keep the notation in Notation 13.1 and 13.2 of [Gong et al. 2020a]. In
particular, .
x k= {x,x,...,x}.

Let A be an Elliott-Thomsen building block. Denoted by Sp(A) the set of the
equivalence classes of all irreducible representations of A, and RF(A) the set of
finite-dimensional representations of A. As in [Gong et al. 2020a], each element of
RF(A) can be regarded as a subset of Sp(A) with multiplicities. For any homomor-
phism ¢ : A — M (C), let Sp(¢) = {x € Sp(A); ker(¢) D ker(x)}.

Suppose that ¢ is (unitarily equivalent to) a direct sum of k; copies of xj,

ky copies of x», ..., and k; copies of x;, where xi, xp,...,x; € Sp(A). Then
we write SP(¢) = {xfk],x;kz, e xiwk"}. Note that if ¢, ¥ : A — My are two
homomorphisms then ¢ and ¥ are unitarily equivalent if and only if SP(¢) = SP().
Let C be a vector space and x = (xq, x2, ..., X,), wherex; e C,i =1,2,...,n.
For each integer k > 1, consider k-tuple S = (i1, i2, ..., ix), Where iy € {1, 2, ..., n}.
We write
diagjes(xj) = diag(x;,, Xiys - -+ 5 Xiy)

for a diagonal element in M (C). In particular, we use diag; - i<n (x;) to denote
diag(xy, x2, ..., Xp)-
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We adopt the following convention:
diag(diag(a, b), diag(c, d, e)) = diag(a, b, c, d, e),
diag(diag, ;-3(a;), diag, ; -, (b;)) = diag(a1, az, a3, by, b2),
diag(diag(ay?, a7, a3), diag(b, b5?)) = diag(ar, ai, a2, az, az, as, b1, ba, b, by).
As in Notation 13.1 and 13.2 of [Gong et al. 2020a], for any two subhomogeneous

algebras A and B, and a homomorphism ¢ : A — B, if 8 € Sp(B) is represented
by 6 : B — M (C), then we use ¢|y to denote O o : A — M (C).

4.3. Let us fix some notation for this section. Let

DPn In
Fo =@ Muy(©) and  E, =P M;,.(©),
i=1 i=1

where p,, I, [n, i], {n, i} are positive integers which will be constructed later. Let
Bn.0, Bn1: Fn = E, be two (not necessarily unital) homomorphisms. Put
An == A(an Ena ﬁn,Oa ﬁn,l)
={(f,a) e C(0, 11, E,) ® F,, | Bno(@) = f(0), B,1(a) = f(1)}.

Write (f,a)=(f1. f2, ..., fi,s a1, a2, ..., a,,) €Ay, where f; € C([0, 1], My, ;;(C))
and a; € My, j1(C). Let 0,,(t),0,,; € Sp(A,), for0 <t < 1,i=1,2,...,1,,
j=1,2,..., p,, be defined as

Mn,i ) (f,a) = fi(t) € Muiy(C) CE, and 6, ;(f,a) =a; € M, (C) C Fy.
We also use the notation 7, ; (0) and 7, ;(1) with

Mn,i (0)(f, @) = fi(0) and  n,; (D)(f,a)= fi(D).

But n,.;(0),n,.;(1)eRF(A,) (rather than Sp(A,)). Sometimes we use ( f, a)(n,,;(¢))
and (f, a)(6,,;) to denote n, ; (t)(f, a) and 6, ;(f, a), respectively, or simply use
S (i (1)), f (6, ;) without a, as in this paper, a is completely determined by f.
Moreover, we may write

lll
Sp(A,) = (Ll{n"’f(t) |t € (0, l)}) U{Bn,1560n,25 -+ On p,}- “4.4)
j=1
For § > 0, let

Iy
Sj={nu;@®):teT; C(0,1)} and S= <|_| Sj) U{0n1,0n2, -+ O p, )
j=1
where T is a §-dense subset of (0, 1). Then we say that S is §-dense in Sp(A,).
Let 7 C A, \ {0} be a finite subset. Then, for all sufficiently small §, if S is §-dense
in A,, then for each f € F, there exists s € S such that f(s) # 0.
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Wnte(ﬂn 0)*7(:37! D Ko(Fp) =2P"— Ko(Ey) = 7' as [’8—(570”) bn_(bl lJ)

with by ; i €N, by, ; € N. (If there is no confusion, we may omit n from b, b ; i

etc. in the notation above.) Then
"’b i ~by,i "“bO,i n
77111(0) { Olaenzoza"'aen,pnp}a
’\'b i ~b i ~b \ipn
M (D) = {6, 71, 0,502, ).

By Proposition 3.6 of [Gong et al. 2020a] (note that the unital condition is not used
in the proof), if «g, o) : F,, - E, satisfy

4.5)

(@0)x = (Bn,0)x> (@1)x = (Bn, 1)« : Ko(Fn) = Ko(Ep),

then A(Fy, Ey, oo, a1) = A(Fy, En, Bno, Bn,1) =

Let us introduce the followmg notation. For 1 < j < l,,, let © £l be the canonical
projection from E, = @k | M 1y (C) to E] M, j1(C) and let ﬂ] 0=Tgi o Bn.o
and,B’l_n ,oﬁnl

If (,B,{ o)+ lp D < (,Bn D+[1E1D), th¢n there is a unitary u; € Eé such that
Bl o(Lr) < Adujo B (15,), and if (8] ))«([15,1) = (B] Ds([1F, D), then there is
a unitary u; € E; such that ,3’ 0(an) >Adujo ,B,'L] (1f,). Thus, for convenience,
replacing ,8,{ by Adu;op;

o.1» if necessary, we may always assume:

If (,:3,{,0)*([1&]) = (ﬁ,ﬁ,l)*([an]), then ,3,{,0(151) < ,B,{’l(an); and if

B! (15D = (B] )u(l15D), then B (15,) > B, (15,). G0

If (%x) holds, max(ﬂ,{’o(lpn), ﬂr{’l(lpn)) makes sense. Let

Py j =1, —max(B) o(15,), B1 1 (1£)).

4.6. Let A= A(F, E, fo, f1), where F = @"_ Mg, (C), E =@®!_, M,,(C) and
(Bo)s, (B« : Ko(F) =277 — Ky(E) = Vs represented by matrices (b ;;), (b1,ij).
From [Gong and Lin 2020a, 3.4] (see also Definition 2.22), we have

Y1 boijR; Y0 buijR;

9
ri ri

As(A) =min
l

4.7. For C*-algebra A, = A(Fy,, E,, Bn.0, Bn.1) as in 4.3, we fix a strictly positive
element e, € A, defined by e/ =(f1, fa. ..., fi,- a1, a2, ..., ap,) witha; =15 € F}
and _ _

[i =0 =08 ((g)+18) | (1g) +1(1 =1) Py .

From the definition of P, ;, we know that for 0 <7 < 1,

rank(f; (1)) = rank(max (8] o(1F,), B2 | (15,))) + rank(P,, ;) = rank(E]) = {n, j}.
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Hence e,/? is strictly positive. Let a := (f, g) € A, be defined by

g=1g, and f()=1=10)Bu0(g)+1Bu1(g)- (4.8)
Then a? < e’'. Note that a* may not be a strictly positive element.

4.9 (order unit and M large). Suppose (G, A, p) is as in 4.1 with condition (x). Let
us assume that G is torsion free. Choose a countable dense subgroup G! C Aff(A)
with 15 € G'. Put H = G @ G' and define g : H — Aff(A) by 5((g, ) (1) =
p(g)(t) + f(z) for all (g, f) € G® G! and v € A. Define H, > 0 such that
H_ \ {0} is the set of elements (g, ) € G®G' with 5((g, f))(t) >0forall T € A.
Then (H, Hy, 1) is a simple ordered group with Riesz interpolation property (see
[Gong et al. 2020a, 13.9]). Following [Gong et al. 2020a, 13.9-13.12], write H as
an inductive limit of / /

7 (EAENY IRE NN ¥} (4.10)

of direct sum of finite copies of ordered group (Z, Z) with the property

Vi so(xX) € Hi\(0}  for any x € (H));\{0}. “.11)

Let H, = (2P, Z"") be with a p),-tuple @], of positive integers as the order unit.
Furthermore, y, , (,) =i, and y, . (i) = 1a.

We modify the order unit u, to a smaller one for future use. Since (H, H;) is
a simple Riesz group, we may assume that all maps y, ., have multiplicity at
least 3 (i.e., a;; > 3 for all i, j) if V;;,n+1 is represented by the matrix (ai.i)P;HXP,’,’
then the condition that for all y, 41> @ij > 0 forall i, j implies that (4.11) holds.
Consequently, the order unit it,, = (ay, az, . . ., ap) € ZP» satisfies a; >3 forall i,
provided n > 2. We assume that this is true for all n, since if it is not true for n =1,
then we simply drop the first term from the limit procedure.

Suppose @i, = (a1, s, ..., ap ) € ZPr. Choose u), = (a1 — 2, as, ..., ay ) € ZPn.
The assumption that y, ., has multiplicities at least 3 implies y, , ,(u,) < u, .
Now set ,

l / Pn
H, = (2P, 7", u,)

with the new order unit u;,. Note that y, . (u,) < 14, and for any element x € H,
with x < 14, there is an integer n such that y, . (u;) > x.

The inductive limit lim(H,, u,,, ¥, ,,) of the scaled ordered groups has the fol-
lowing property. For any n and M > 0, there is N such that if m > N, then y,, , is
M-large in the following sense: Suppose that the matrix (a;;)  x . represents y, .,

and u;, = (X1, X2, ..., Xp ), Uy, = (Y1, Y2, ..., ¥p,). Then
Py
. / . /
aj =M, yi—) apxe=M forl<i<p,. 1<j<p (4.12)

k=1
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We also use the inductive limit system lim(H,, i,,, ¥, ,,), which preserves the
units. Compare two inductive limit systems, writing hm((H,g, (H))+,uy,), yn,m) =
(H, Hy, ¥H) and lim((H,, (H,)+, i), ¥, ,) = (H, Hy, %1 H). We have

H={heHy:h<1pa} and X /H={he Hy:h<1,} (4.13)
Furthermore, y, ., (u,) < 1a and y, o (i,) = 1a.
For any fixed positive integer M, there is a positive integer N such thatif n > N,

and if we write u;, = (b1, b, ..., by ) and i, = (b1 +2, by, ..., by ), then by > 2M
and

)y = by 1
W) 2 i) = 5o = (1= ) dae @14)

Let G, = (¥5.050) ' (V.00 (H,) N G). Then G,, C H,,. Since G N H; = {0}, by
(4.11), we have

179

G, N (Hy) 4 ={0}. (4.15)
Furthermore, G is the inductive limit of
, 1’1/,2‘6/1 , 1’2/,3‘6/2 ,
G} G, =G, == G. (4.16)

Recall that a subgroup G C H is said to be relatively divisible if for any g € G,
m € N\ {0}, and h € H with g = mh, there is g’ € G such that g = mg’. As in
[Gong et al. 2020a, 13.12], G,, is a relatively divisible subgroup of H,, and H,/ G,
is a torsion-free finitely generated abelian group. Write H,/G, = Z'». We have the
following commutative diagram (see [Gong et al. 2020a, 13.12]):

G, rialon G, G
f Y12 f Jj
H] H; H
! ! |

HI/G 2 Gy — . — S HJG

In the process of the construction above, we use subsequences ({k(n)}) and obtain
the following diagram:

Vk/(l),k(Z)le(l)
Gy k) (f
f Vi) f
Hli(l) ng(l) If
, l’ Yk lG G
Hk(l)/Gk(l) » Hio)/ G H/
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Rewrite the sequence above as

1 712G, G, . G
P£ e ]—£ g (4.17)
L, |

H/G 2 H/Gy—— - —— H/G

Write H, = 7P (p, = p,’((n) as H,=H, )and H,/G, = 7 (1, = l,/c(n)), and write

(n)

) . 1 n.n+1 _ ( .n,n+l ) )
Yo+l = Yin) k(n+1) 7P — 7P as ¢ = (Cij N <i<pu1, 1<j<pa>

~ .7l l n,n+1 _ , gn.n+1
Vantl 2 L7 — 2 as D =(d;;"" Nzizlyr 15j<l,-

In case of no confusion, we write ¢! as ¢ = (¢;;) and 9""*! as 0 = (d;;) (omitting
n,n+1). Since G, & H,, we know that [, > 1.
Write

Yn,n+1

Hn =P — Hn+1 — [/ Pn+l
l”" [ (4.18)

H,/Gn=1" RGN Hyi1) Gyt = 7'+

where 7, is the (surjective) quotient map. We have

Tpgy - ¢Vt =gt g (4.19)

4.20 (construction of Ay). Choose k(1) > 1 such that

M;<(1) =(1,1],[L,2],...,[1, pl/c(l)]) c NPk
satisfies [1,1]>2-8 = 16. Let
Hy = Hyy, ur=ujq = (1,11[12],....[L pi]) € Hi,
pri=prays G = (11142, (1,21, ..., [1, p1]) € Hy.

Then, by (4.14),
,5()/1(/(1),00(”1)) = (1 — %) 1A

(thatis, 5(¥1,00(1)) = (1—§)- 1, after the diagram (4.17) is obtained). Recall that
we also have yk/(l),oo(ﬁl) =1A. Let G, = G;((l) andm : H=7" — H, /G, =7"
be the quotient map.

For a homomorphism 7k -~ 7! represented by a matrix B = (b;;)1<i<i, 1<j<k»
we define ||| B|| := max; ; |b;j| -k -1.

Let My = 2%|||7r1]]. The map 7; can be written as the difference b% — b(l) of two
maps

by, bl 2 2Pt — 7,
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corresponding to two /] X p; matrices
1 1 1 1
bo = (bg;j)i<i<n,1<j<p;, and by =(by;)i<i<i, 1<j<p (4.21)

such that
by =My and bj ;> M,. (4.22)

(Later on we will define M,, | when we construct A,+;.) Namely, we construct bl
and bi as below. Assume 7 : ZP' — 7' is given by the matrix (p”)1<l<lI 1<j<pi-
Choose b(l) = (b ) with bo ij = |pijl + M and b! —bé ij T Dij- Then bl and
b} satisfy (4.22) and bl —bl =m: 2P — 7.

Recall that the umt uy eH = H| can be written as ([1,1],[1,2],...,[1, p1]) eN?1,
Since b(l)’ > My, b 1 R ./\/ll, we have

1,ij

1 1
|b11; b(l),ij|§m”|nl||lfﬁ z./\/ll 2m1n(bou,b1 ij)-

Consequently, max(b} ; ;, b} i) = (1+35) min(bg, i 111) Hence

0,ij°

Pi
(1 + %) Zmax(b(l),ij’ by DI, j]

J=1 P1
<(1+ %)(1 + 3%) Zmin(b(l)’ij, bl )M, /]

= (( )Zmln(bOU’bl U)[Lj]) — 1. (4.23)

By (4.23), we may choose an integer {1, i} such that

p1
<1+%>Zmax(bé’i1, 1,])[1 j1={1,i}
j=1
=(1+ )mewol,,bl,,m,,-]. 42

Let F; = M[l 1(©), E; = l M1.o(©), and Bro, Bus - F _—
defined by
. ~boir ~boio Nbfl).ipl
Brol@ ®a® - ap,) =Pdiag(a, " a, ", . ap "),
i=l1
ll b] ’\’blv "’b}
,311(61169612@ @ap])_@dlag 1”,612 1,12"”’apl .l[)l)‘

i=1

Evidently, 81.0® B1.1: F1 — E| @ E| is injective. Then
(Bo.)« =by and  (B1.1)« =bi: Ko(F)) =77 — Ko(Ey) =7".
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Define

Ay =A(Fy, Ey, Bro, B1,1)
={(f,a) € C([0, 1], E1) ® F1 | Bro(a) = f(0), B1.1(a) = f(D}.

Then Ky(A1) =G and Ko (F;) = H}, and the quotient map nlA : A| — F defined by
n(f,a)=a induces (7{*).: Ko(A1) = G| — Ko(Fy) = Hy, which is the inclusion
map. Since b} — b(l) = 771 is surjective (onto 7, K1(A;) =0, by Proposition 3.5
of [Gong et al. 2020a]. Furthermore by (4.15), Ko(A1)+ = G1 N (Hy)+ = {0} (see
again Proposition 3.5 of [Gong et al. 2020a]) and thus A; € Cy.

By (4.24), we have

P bl 1,7 P b] 1,
)"S(Al) = min j=1 O’l]. [ ‘]]’ j=1 l,l]. [ .]] > 1 . §
i {1, 1} {1,1} ]_|_‘l‘ 4

4.25 (inductive assumption for A,). Suppose that we have constructed A, =
A(Fn, En» ﬁn,O» ﬂn,l) S CO with

Pn In
F,= @M[n,j](q:), E, = @ M{n,i}(q:), ,Bn,O’ ,Bn,l F,—> E,
j=1 i=1

such that the following conditions hold:
(a) Ko(F,)=H, = H,g(n), Ko(A) =G, = ,é(n) (for some k(n)) and the quotient

map 7t : A, — F, induces the inclusion map (7). : Ko(A,) = G, — Ko(F,) = Hy,
G, N (H,)+ =1{0}, and K (A,) = {0}.

(b) (ﬂn,O)* = bg = (b(r)l’ij)lfifln,lfjfpn and (ﬂn,l)* = brll = (brll’ij)lfifln,lfjfpn

with by ; i = M, by ; = M, for a pregiven positive number M,. (Note that
(b)) — (by) = m, : Ko(F) = H, = ZP" — Ko(E,) = H,/G, = 7!, which is

surjective.)

(¢) In Ky(F,), we have
[an] =Up = u;((n) = ([n’ 1]9 [n’ 2]9 RN [I’l, Pn]) € an
with [n, 1] > 2-8". As a consequence (see (4.14)), we have
~ 1 1 1
PP e = (1= g5 ) - T

(Note that u,, = ([n, 1]+ 2, [n, 2], ..., [n, p,]) € H, satisfies yk’(n)’oo(ﬁ,,) =1a.)
(d) B..0 and B, 1 satisfy the property (x:x) in the last paragraph of 4.3.
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(e) We have

< ) Zmax{bolj’ nzj}n jl1<{m,i}

Pn
1 .
< (14 35) o mint . ) )
Jj=1
Consequently, A;(A,) > 1 —1/4".

Note that the homomorphism 7/ : A, — F, induces the commutative diagram

Ko(Ay) 22 AfF(Ty(A,))

(ﬂf)*ol lnfﬁ

Ko(F,) 22 Aff(Ty(F,))

From (a), when we identify Ko(A,) = G, and Ko(F},) = H,, the map (nnA)*o is
identified with the inclusion from G,, to H,, and we have

G 2 Af(Ty(A,))
(””A)*Ol lﬂfn (4.26)
Hy =" AfI(To(F,)
From bg’ij > M, > 0 in part (b), we know B, o is injective, and hence so is
Bno® Pn1: Fn—> E, D E,.

We construct A,+1=A(Fu+1, Ent1, Bn+1,0, Bn+1.1) and a positive integer M, 41,
and two homomorphisms ¢, 10 Pnntl DA = A, as below.

4.27 (the definition of A, ). Let
Lpp1 =2 ‘max{{n,i}: 1 <i <1,}-nl,. (4.28)

Recall that H, = H,é(n) (in the inductive limit system in (4.10)) and H is a simple
Riesz group. There is k(n + 1) > k(n) such that the map yk’(n) knt1) 18 Lnt1 large
in the sense of (4.12) in 4.9. Write H,4| = Hk(n+1) = /P and represent the
map V. ni1 = yk/(n),k(n-i-l) : ZP» — 7P+ by the matrix ¢t = (c” "H)pn+l wp- We
further require that the unit

Unt1 =Upgyyy =+ 1,11 [n+1,2],....[n 41, ppy1]) € NP

satisfies the condition [n 4 1, 1] > 2-8"t! (see (c) in 4.25). Then we have

c:ljn+1 >Lyy1 and [n4+1,i]— Z c" ”H[n, k1> Loy (4.29)
k=1
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It follows from

Ve kut 1) W) = s
ﬁn = ﬁ;((n) = ([n’ 1] +27 [na 2]7 RN [na pn]),
ﬁn—i—l = ﬁi(n+1) = ([I’l + 17 1] +25 [n + 1’ 2]7 teey [l’l + 19 pn—i-l])

and (c) of 4.25 that
Pn

3, 1= (1 — 8l) n+ 1. (4.30)
=1

Write G4+ = G;((H]) C Hp41 and write H, 41/ G 41 = 7+, Suppose that the
map Vy.n+1 : Hy = Hpy1 induces

Yang1 i Hy)Gn=2" — Hy 1/ Gpyy = 2.
Write p, 11 = 0" = (d,-nj’nﬂ)lmxln’ where dl."j’"Jrl eZ. Set
Myt =220 (R4 2) - max{{n, k) : 1 <k <L} - [l lll, (4.31)

where 7,41 : Hyp1 =27P+"' — H, 11/ Gy = 7!+ is the quotient map and ||| - ||| is
defined in the end of 4.9.

We construct the algebra A,; as below (see 4.20 for similar construction
of Ay). Write the map 7,y : Hyy1 = 2P — Hy11/Gpy1 = 7'+ as a dif-
ference m,,.1 = b’]’H — bg“ of two matrices bg“ = (bgjjl)lf,-sl”% I1<j<pn, and

n+1 n+1 . .
by = (bl,ij N<i<lyir, 1<j<p,y Salisfying

bS,T}EMnH and b’fj}zMnH forall i, j. (4.32)

Consequently, we obtain

|bl’l+1 _ bl’H—}

L~ boi | < e min(b} T}, bTh. (4.33)

Lij* Y0,ij
As in the calculation in (4.23), we have

Pn+1
1 ,
(1 gier) 2 maxC . -+ 1.5

j=l Pn+1

1 . ;
j=1

One may then choose an integer {n + 1, i} which satisfies

Pn+1
(1+ %) > max@tl DI+ 1, 1 < 1,0 (4.34)
j:1 Pn+1

I O :
= (14 7)) 2o min 3 B +1, 1. (435)
j=1
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From (4.19), we have
(brlH-l _ bg-ﬁ-l) ) Cn,n+1 — an,n+l . (qu _ 8) (4.36)

n lil
Let Fn+1 = f:ll M[n_,_l,j]((l:) and En—H = @1;11 M{n—t—l,j}(@)’ and define
Bn+1.05 Bat1.1 2 Fup1 = Eny1 by

In41 o+l ~pntl ~pitl

it : ot
: 0,i1 0.2 \iPp+1 ~ki
ﬂn+170(a169a269---69apn+1):@dlag(al Tay Mt ap,, 0T,
i=1

ln+l an-{_—l ’\’er-—l NbrlzJ_rl
B 1@ @@ ®---®ay,,) =Pdiagla, a7, ap,, " 0TH),
i=1
where ko={n+1,i} =Y 21 b [n41, jland ky ={n+1,i} =Y 7 b n+1, ]
0— s j=1Y0,ij sy J 1= 51 j=1 “1,ij n > J 1
Define A,11 = A(Fut1, Ent1, But1,0, Bur1,1). Moreover,

(But1,0)x = 00 (Buit )i = 07T Ko(Frg1) = ZP — Ko(Epgy) = 7.

We have
Ko(Ant1) = Gyt S Ko(Fui1) = Hu.
Since 7,4 is surjective, by [Gong et al. 2020a, Proposition 3.5], K1(A,+1) = 0.
Also Ko(An+1)+ = Gn+1 N (Hy41)+ = {0}, which implies A, 1| € Cp. Thus condi-
tions (a), (b), (¢), (d) and (e) (see (4.35)) in 4.25 for n + 1 follow. This ends the
construction of A, 4.
With A, 1 constructed above we construct two homomorphisms

90,(1),,,_;_1, ¢n,n+] . An — An+1
in the next few sections, namely from 4.37 to 4.76.

4.37 (definition of i and ). As notation introduced in 4.3, we have

Sp(An) = {On1: -+ s Opp, } U001 ()5 ooy g, () | 0 < 1 < 1.

To simplify the notation, let us use ¢ = (c;;) to denote ¢! = (c;'j’"H) and
0 = (d;;) to denote " = (di"j’”H). Let Yy nt1 : Fy — Fu41 be a (nonunital)
homomorphism defined by
Pn+1
Vint1(@1 @ax®---®ap,) = @diag(afc“ Lay L ap ™ 07T),  (4.38)
i=1
where 07 denotes some suitable number of copies of 0—to avoid introducing
too much notation, sometimes we do not indicate how many copies it has (but it is
usually easy to calculate, for example itis [n 4+ 1,i] — Z,f”zl cirx[n, k] copies here).
Then (Y nt1)s = Vunt1 =¢= (Cij) s Ko(Fy) = Ko(Fut1).
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Let ¥°: A, — F,11 be defined by ¥° = ¥y, 41 oyr,‘l“. Let
In

clj=cij—m—1)) by, forl<j=<p,. (4.39)
i=1

By 4.25, (4.28), and (4.29), we estimate

c1,j > Cjj=c1j— I)Zbou_cu — D, max{{n,i}:1<i < p,)

En,n—i—l 1
S > (1 _ —24(n+1))c1,. (4.40)

>C1,]
Define i : A, — F, 1 by sending
f: (fl’ f2, '-~7_fln7a17a2’ ...,Clpn)l—) w(f) :(b17b27 "'7bp,l+1)’

where
DG () (),

=5 (1) (D) (25
.,f,n(l),fln(%),...,ﬁn(”gl),af"’“,a;"ﬁ,...,a;f/‘”",0“> (4.41)

(from (4.29) and (4.28), Z " (n—1){n, z}+Zp” C1J n, jl <[n+1,1]), and for

i>2,

b =diag(a; ", a5, ... ap, ™, 077). (4.42)

Note that 7,11, (¥°(f)) = Tut1,i (W (f)) for i > 2, where 7,41 : Fuy1 > Fi|
is the projection map.
For each 0 <t < 1, define v : A, — F,4+1 by sending

f=U forens fiparan, ooosap) = Y (f) = (01, D5, .. D, )
with bf = b; fori > 2 (see (4.42)) and
v =ding(fi(2(1-0)..... A("=La-n). (a-n).
L a(Eta-n). o (Ra-n),

n—1 ~c] ~c/ ~cy
ﬁ( - ),al N ay, ”ﬂ). (4.43)

When ¢ = 0, we have b| = b; (see (4.41)), and therefore ¢ = . Fort =1,

by = diag(f1(0)~" D, )"V ., f(0)"D, al”C’n , a;ciz, apm).
By (4.5) and the definition of c/l’j, we have SP(y;) = SP(y?). Hence
KK (Y) = KK (Y0) = KK (Y1) = KK (¥°) € KK (Ay, Fyt1)- (4.44)
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4.45 (definition of x and p). Recall that 0 = (d;;);,,, =, 1s the matrix which repre-
sents Y ni1: Hy/Gp=2Z" — Hy1/Gpy1 = ZM+ For 1 < j <l 1 <k <1,
define

5 {|d/k| if djk ;ﬁ O, (446)

dix =
K72 ifdy =o.

For 1 < j <lys1,let L; = Y0 djeln, k). Define x : A, — @"*} My, (C[0, 1])

j=1
by sending
Int1
f=f fos fanan, . ap) > X () =EDF (), Fj200), ..., Fju, (1)),
j=1
where
{fi(e) ™11y if djx >0,
Fir@) = {{fi(1 =)~} if djy <0, (4.47)

k@, il =n)} ifdjp =0.

Forany 1 <j <I[,41,let nf: i”;'l M, (C[0,1]) — ML/.(C[O, 1]) be the projection.
Then, for any 0 <t < 1,

i (1), Mai (1 =1) 2 1 <0 <1} CSP(GT} 0 ) USSP 0 0)1r).  (4.48)

This implies that Sp(A,) = UOStSl Sp(xl:). Hence x is injective.

Define two subsets Jy, J; of the index set {1, 2, ..., [,4+1} by j € Jp if and only
if b} > b{*}; and j € Jy if and only if b} %] > by, (Note that if b} = bi™*],
then j is neither in Jy nor in J;.)

Let Bj = by} — b}l and Kj = (n— B, - Y1 {n, i},

Define u: A, — @jeJoUh Mk, (C[0, 1]) by sending

F=U foro faraa. . ap) = u(H)= @D (G111, Ga(0). ... Gy, (1),

jedoUd
where
diag(fi(2(1—0)"" fe(2a—)™", if j e J
Gj(t) = s (A _t))NBj) | (4.49)

diag(fi(10)™%, £ (B)™ . f(2=)P) ifj e .

Note that, for j € Jy,

Gr(0) = diag(fk(%)NBj, fk<%)~3f’ L fk<n;1)”31)’
G ji(1) = diag(f; (0)~"~ "),

(4.50)
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and, for j € Ji,
G jx(0) = diag(fi(0)~ D8,

Gjr(l) = diag(fk(rll)ij, fk(%)NBj, e fk(n_

4.52 (notation: k{ (Bn.i), &} (0n.i), & (6n.i), &1 (6n.;) — the multiplicities of 6, ; for
certain homomorphisms).

Let £ &, &. £11 Ay — Eys1 =] Miy41.(C) be defined by & = 1,009,
§7 = Bn+1.10¥%, 60 = Bur100Y and & = Byr11 0.

It is also convenient to introduce the following notation: for a homomorphism
¢ A— M;(CIO0, 1]), we use ¢|g, ¢|1 : A = M;(C) to denote the map given by
¢lo(a) :=¢(a)(0) and ¢|i(a) := ¢(a)(1).

For fixed 1 <i <I,1, let m; E be the projection from E, | = @lj"*‘l M11, (O
to the i-th summand E’ +1 = Miu1,(0), from QB”“ C([0, 1], M1, (C)) to the
i-th summand C ([0, 1], ML (©)), or from @”“ C([ 0 1, ML, +k; ((C)) to the i-th
summand C ([0, 1], My, 1k, (C)).

In the next two lemmas, we compare n o SO and 71 o gl with (7‘[ o X)lo
and (71 o x)|1, and compare 7‘[ o0& and 7‘[ X3 W1th (71 o(x ® ,u))|0 and

7 O(X S )l

1)~B,-)' 4.51)

Let = fan ooy fi,, a1, a2, ..., ap,). Up to conjugating unitaries, we write
(7} 0 0lo(f) = diag(afK(’(e" v NKO(@” SO aNKO(Q” m o,
(E o 0l (f) = diag(ay T, 10D L ap O ),
7 0 £0(f) = diag(a; " ” N“O“’”), o a;fo(‘)" " 0,

~K; (9)1 ) ~K (en,) ~K; (9}1 n) ~~
ni o & (f) =diag(a; e, UL ap, 07T,

(Here again we use 0~ to denote some 0’s without specifying how many copies
there are.) The motivation of the above notation is that 6, ; is the representation of
A, by sending f to a;.

Lemma 4.53. Forany 1 <i < p,, we have

] . _ . 1 .
R ) = K4 0n) = 7] On) =] On) = (1= 50y )R Oni). (454

Proof. The equality follows from (4.36), i.e., (07! —bgth).cnn+l =g+l (g2 —pt).
To see this, we first note that
(7} 0 X)lo(f) = diag(diagy.,, -0y (fi 0) ™),

diag.g,, <o) (S (D9, diag ., oy (fe(0), fi(1))),
(7} 0 )N (f) = diag(diagg.,, -0y (fi (1)),

diagy.q,, <oy (fe(0) 7)), diagyy. .o (i (D), fi(0))).
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Note that Ko (6n.1) is the mult1phc1ty of 6,; in SP((n o x)lo), and /cll ©n.i)
the multiplicity of 6, ; in SP((rr ox)|1). Also note that the homomorphism
(f1, f2sovos fi,n a1, a2, .. apn)—> Jx(0) defines 1, 1 (0) e SP(A,) (see 4.3). Hence

SP((7f o x)lo)
= [ (0) % s dj > 0} U ke (D12 d e < 03U {14 (0), i (1) 2 djic = O}

By (4.5), we have

KO(Q,,,)— Z b idjk + Z by wildjk] + Z (Do ki + b7 i)-

{k:d >0} {k:djr <0} {k:d =0}

Similarly, we have

"1(9”1)— Z b widjk + Z b kild k] + Z (0% ji + 06 1)-

{k:dj;>0) {k:dj; <0} {k:dj;=0)

Hence &7 (6n.1) — k3 (0n.0) = Y (B 1; — bt ;) jk.. On the other hand,

Pn+1 Pn+1
ko Oni) =Y bitiew and & (0n) =) biticu. (4.55)
k=1 k=1
Hence -
n+

®] On) — &) (On.i) = Z(b;ﬁ,ﬁ byt ek

That is, ] (6,.;) — kg (6,1) is the ji-th entry of the matrix 0"+ (b7 — b}); and
i} Oni) — /Zé (6.;) is the ji-th entry of the matrix (b’]”rl — bg“)c”’”“. By (4.36),
we have _ _ _ '
i) Bn.i) — 1§ Bn.i) =] (Bn.i) — K4 (On.i),
as desired.
Furthermore, it follows from bgj,lc > M, 1 that

j l)‘l 2 1
kg Oni) < Y _(Idjel +2){n. k) < St Mt
k=1

n+1 1

=
= S P01 = Sarn <o Oni)- (4.56)

Hence the inequality in (4.54) also follows. U

4.57 (notation: o/ (1.1, &} (n.i)s M, (6n.i), A1 (Bn.i) for k=0, 1 — the multiplicities
of n,.;(l/n) and 6, ; for certain homomorphisms).
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Let f =(f1, f2, ..., fi,»a1, a2, ..., ap,). Then, for each fixed j, one may write
(mF o (x®m)lo(f)
NUj(ﬂn, ) NGj(ﬂn, ) — NGj(']n, )
:diag(f1(1> ot ,f1<2) (" 1) B

n

n n
1 )'\'0-01 (n,2) (n —1 )'\'0-01 (n,2)
f2<n o b
1\~ (1) 17— 1\~ (s
Ay
n n
~d (6, ~d (0, ~d (6, e
al ()( ,I)’a2 ()( .2),...,6117”0( ,pn)’o >’

(rfo(x@mI(f) | |
_ diag(ﬁ(l)wf{(ﬂn,l), fl<%)~0,’('7n,1)’ L fl<n_1)~a|’(n,,11)’

n

n
1 )"'O’ii (Mn,2) (n -1 )"'O'i/ (Mn.2)
f2<n o h(E
1\~01 Ol n— 1\~ i)
A A
arx{(en,.) a;)x{(@,,_z) a;)\{(@,,ﬂ") O””)
(] o &)(f)
, 1N~00 ) 72\ ~53 () — 1\~G7 )
(1) () ey
1\~ (mn.2) n— 1\~ 0n2)
f2<—) ,...,fz( )
n n
1\~ ) 1 — 1\ ~50 o)
A A
~A Oy ~A 62 T ) e
a, L a, anap, L0 )
(] 0 &)(f)
. 1 ~&{ (1) 2 ~6{ (1) n—1 ~&] (1)
e () )
1\ ~61 (1.2) n— 1\ ~6 (n2)
A1) (T
n n
] N&lj (n"’ln) n— 1 N6{(n)1,ln)
ﬁn<_) "“7ﬁn( ) ’
n n
~24 (6, ~24 (6, ~d (O ——~
a, i ’1),a2 i ’2),...,(11,"‘( "’”),0 )

In particular, the multiplicities of f;(1/n), f;(2/n), ..., fi((n —1)/n), in each of
the four homomorphisms above, are the same — this is why we use the notation
o (i) instead of oy (17,,;(1/n)).
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Lemma 4.58. Foralll1 <i <1,

&3 (i) — 03 (n.i) = &{ (i) — 07 (na,1) < min(by 1, BTED), (4.59)

and forall 1 <i < p,,
5 J 7 J 2 \o
5000 = 300, = 1000 = 10, = (1= 5505 ) & On).

Proof. By (e) of 4.25 (and [n, i] > 2), (4.28) and (4.29) as well as (4.55), for any
1 <i < p,, we obtain

I In
n n n n n 1
(n — 1) max(bj 1, boj})<§ :bo,k,) < max (b}, boj})<§(n -1 fn, k})
k=1 k=1
1

: n+1 n+1
= min(By j1. Do 1) €1 Saam

< iy Min(E 6. & ). (4.60)

From the definition of &, &; (see the first paragraph of 4.52 and (4.41) and (4.42)),
we have

(T} o &0)(f)
~pit]

() ()
fz(n—l)”’&?i P (1)””331 P (n—1>~h331

n n n
+1 Pn+1 +1 +1 Pn+1 +1
N(Cﬁlbg,,‘l"‘zkiz Cklb(';,jk) N(C/lzbg,jl""zkiz Ck2b8.jk)
a, ,ay R
~(c anr.]+an+] cx b"Jr.I
1pn 20,1 k=2 SkpnPo_jk
apn( pn0.j n=0,j )) (461)

Hence we always have 6({ (Mn.i) = bgtll Similarly, we have 61j (Mn.i) = P 1t

1,j1°
follows that

Gy (Mni) — 09 i) <bG5 and &) (mai) —of (i) < B

So, for (4.59), it remains to show that 6 (,.i) — 0 (i) = &7 (Mn.i) — 7 (Mai)-
Combining (4.61), (4.39), and (4.55), we calculate (see also 4.57)

Pn+1 ln Pn+1
¥ N opntl gl . n n+1 it
Ao (On,i) = )by 1 + Z ciby = (Cll - Zbo,ki)bo,jl + Z ckiby
k=2 k=1 k=2
Pn+1

Iy
= byt — (n—Dbgt (Z bS,ki)
k=1 k=1

In
=i} (0n,) — (n— 1)bgj} (Z bg,ki) (4.62)
k=1
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Similarly,

Pn+1 Iy
2 Oni) = b+ cubl =k 0n0) — (n— Db (Z b{)’,ki). (4.63)
k=2 k=1

We divide the proof into three cases: j ¢ JoU Jy, j € Jp and j € Ji.
Case 1: j ¢ JoU J;. In this case, bgj} = b'fj}, Kj=0and JTJE o(x®np) = nf ox.
Consequently,
03 (M) =0=0{ (). Ay (Oni) =63 Oni) and 2] (0ni) =k (On). (4.64)
Hence 53 (nn.i) — 0 (i) = by b1 = b5} = & (i) — o (a)-
It follows from (4.64), b "} = b]*1, (4.62), (4.63), Lemma 4.53 and (4.60) that
. . . ln .
2 On) = 1] (Bn.i) = (0n.0) — (0 — b (Z bg,k,-) — k] (O.i)
i . k=1
= 1{(6n.i) — 25 (On.i)
Iy
= &y (On.)) — K3 (Bn.i) — (n — D] (Z bg,k,)
k=1
2 \oJ
> (1= 3577 )R n)- (4.65)
Case 2: j € Jo. Leti €{1,2,...,1,}. By (4.50),
of (1) =0 and of (i) =B; =b"| — b} (4.66)
Recall that we have computed above that 6({ (M) = bgj} and 61j (Mni) = b’fﬂ
Thus (by (4.66))

53 (i) — 0 (nn.i) = by oy — (B} — b1 = b1 = 6] (ni) — o ().
Now let i € {1,2,..., p,}. We calculate A}(6,.1), A}(6n.i), A} (6,.i) and 17 (0,,.,).
From (4.50) (and (4.5)), we have that

~(n—1)B; Y\ b1
SP(rFoul) =m0~ 081 <k <p) ={o, I E i<, )

and that SP((T[JE o )]o) does not contain any 6, ;.
Recall that k{ (6,.:) 1s the multiplicity of 6, ; of the spectrum of (; jE o(x®u)li.
Hence
I
M Oni) =] @)+ (n=1)B; Y by and 2500 =] Oni).  (467)
k=1
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By (4.62), (4.63) and (4.67) as well as 4.53, we have

53 Oni) = N (Oni) = & On.i) — k3 Oni) — (n — DG (Z by kl)
=] (On.i) — K] Bn.1) — (0 — Db} (Z b k,)

In
= ic{ On,i) — &] (On,i) — (n — 1)(B;j +bY ]1)(2 b()’,ki)
k=1
= 2] On.i) = 2{ (On.0).
Also, by (4.60) and Lemma 4.53, we estimate

In
3000 = 1000 = & On.) — K On.t) — (n — DB (Z bg,ki)
k=1

2 .
> (1 — m)l(é (On,i)-

Case 3: j € J;. This case is proved exactly the same as Case 2, but replacing (4.50)
with (4.51). O
4.68 (definition of ¢?, ¢). Set

(1) = ) Oni) — K On) =] On) — 1] (00.),

07 (i) = &) (n.i) — 09 (Mn.i) = 5] (i) — 07 (00,0),

3 ) = 2 Oni) = 2 Oni) = 2] 0n.0) = 2] 0r.).
Letg?: A, — C([O 1], {B 1 1 Mo j)((D)) be the homomorphism defined by sending
=0 fa .. fln’alaaZa ...,ap,) to

ln+]

o°(f) = @dlag o x(f), aNKj(l),a;Kj(z),...,a;"j(””)), (4.69)
j=1

where o(j) =L; + Y 1" k7 ()[n, i]. Letp : A, — C([0, 1] @"“ My j(C)) be
the homomorphism defined by sending f = (f1, f2,..., fi,, a1, a2, ..., ap,) to

n+1

o(f) = @dlag((n scomn. fi(1)

2\~ () 1\~ 1\~ @
AT AT ()T

n—1\~o'® 1\~ ) n—1\~0" )
A(50) e hG) ()

S Q) (m), (4.70)

1 s ¥ LA p
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where
p}l

o'()=Lj+Kj+ - 1>Zaj<k){n K+ W O)ln, il.
k=1 i=1
With the following lemma, both maps ¢° and ¢ can be regarded as maps from
A, to C([0, 1], E,41) by adding suitably many copies of O’s in the equations (4.69)
and (4.70).

Lemma 4.71. We have the inequalities o(j) < {n+1, j} and o'(j) < {n+1, j}
(see 4.68). Furthermore, we have

Pn+1

Pa
ij(i)[n,i]>( 4+1){n+1 i

Proof. Recall (see 4.68) that k/ (i) < i (Gn D, M) < AJ (0h.i) < j(@,,,,-). Also
from Lemma 4.58, we have o/ (k) < mm(bgji, D). By (4.28) and (4.29), we
have

4.72)

ln ln
n Z ol (k){n, k} <n Z min(bj 1, b1 4D

1

1 1
= 24(n+1) 010 b1 )

»Cn—H mln(b()]]» 1,j1

. n+1 n+1
< —24(n+1)c11 mln(bojl, b, Jl)

< S+l min(yG %1, b1 4. (4.73)

From the definition of M,,1 (see (4.31)), we know that

n+l

Z(L +K)) < 24(n+1) M. (4.74)

Combining with (4.55), (4.31), (4.32) and (4.33), (and recall L; = Zi”zl cijk{n, k}),

we have
pil

o(j)=L; +ZK’(1)[n i< Li+ Y & Ou)ln, il

i=1 i=1

Pn Pn+l In Pn+1
=L+ Y byticuln.il=Y duln. k}+ Y [n+1.klbgT
i=1 k=1 k=1 k=1
Mn+1 Pn+1 2 Pn+1

= 240+ +Z[”+1 KIbp i < <1+24(n+1))2 min(b %y, b b+ 1,k
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Combining (4.74), (4.31) and (4.73), we obtain

Iy Pn
O(N=Lj+Kj+mn—1)> oltfn, k}+ Y 2 @)n, il
k=1 i=1
Pn+1 ln

2
<1+24(n+1)) me(bgt}{,b’ft}()[n+l K+ -1 ol k) n k)
k=1
3 Pn+1

. 1 1
=(1+ W> > min(tL Bt D+ 1, k.
k=1

In summary, we conclude from (4.35) that

Pn+1

3 . .
max(0(/). 0'(/) = (14 37077 ) 2 min( 51 LD+ 1K1 < (n+ 1. ).
k=1

The first inequality of (4.72) follows from Lemma 4.58 and (4.55). Using (4.30)
and (e) in 4.25 (with n + 1 in place of n), we calculate

Pn Pn+1 Pn
S 1w 1= (1= 5e) D0 D bhewtn, i
i=1 k=1 i=1
2 1 Pn+1
+1
> (1- 24(n+1))(1 . 8—) > byt 4 1.4]
k=1
2 1
= (1 N 24<n+1>)(1 - 8_"><1 4n+1){”+1 /)
2 .

From the definition of ¢ and ¢, we get the following lemma.

Lemma 4.75. We have SP(¢°|o) = SP(§7), SP(¢°|1) = SP(§7), SP(¢lo) = SP(&))
and SP(¢l1) = SP(§1).

Proof. Note that SP(x Fog?|p) = {SP((nfoX)|o), oD gD g ) =
SP(T[ 0&g) since KIG) = Ko (On,i) — KO (6,.i)- The proofs of the other three parts
are 51m11ar O

4.76 (definition of <p§’n +1 and @y n41). By the lemma above, there are unitaries
Vo, V1, U, Uy € Ejp 1 such that Ad V;o(¢°];) =&/ and Ad U;o(¢|;) =§; fori =0, 1.
Since the unitary group of E, | is path connected, there are two continuous paths
of unitaries V := V(t),U :=U(¢),0 <t <1 such that V(0) = Vp, V(1) =V,
UO)=Upand U(1) =U,.
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Now we define two homomorphisms ¢, 1> Punt1 P Ay = Aygy by

Pp a1 () =(AdV o) (/) ®Y(f) € Ap1 CC(0, 1], Eny1) @ Fry1, (4.77)
Pnn+1(f) = (AdU o) (/) DY (f) € Apy1 CC((0, 1], Eny) @ Frgr. (4.78)

Note that

(AdV 09”)(f)(0) = (Ad Voo (¢°lo)(f) = &5 (/) = But1,0(¥° (/).
(AdV o) (f)(1) = (Ad V1o (@’ |D(f) =& () = But11(¥° (/).

In other words, the element ¢Z’n+1 (f)isin A, rather than C ([0, 1], E;;+1)® F+1.
Similarly, ¢, ,+1 is also a homomorphism from A, to A,41.

So the construction is completed. We obtain two inductive systems A° =
lim(A,,, <p37n+1) and A =1lim(A,, ¢n.n+1). We summarize the properties of §03,n+1
and @, ,41 in 4.80, 4.101 and Theorem 4.107 below, and use these properties to
prove that A is a simple C*-algebra which satisfies the desired properties in 4.1.

Before we present other properties of ¢, . | and ¢y n41, let us point out that both
of them are injective, since x is injective. Also let us rewrite the part of property
(c)in 4.25 as

(©) AVmoo(n)) = (1= 1/87) - 15 (SINCE Yi.00 = V] 00)-
4.79 (K-theory of ¢, ,+1). Let

I, =Co((0, 1), Ex) CA, and 1 =Co((0, 1), Eny1) C Apqr.

From the definition of ¢ , . |, we have the commutative diagram

(prl.n+l

An An—',—l

A
J/nll+l
1abn.nJrl

An/ln = Fn I An+1/ln+1 = Fn+1

Note that Ko(A,) = Gy, Ko(Ant1) = Gny1, Ko(Fn) = Hy, Ko(Fpy1) = Hp1 1, and
the maps

(i Ko(Ay) — Ko(F) =H, and (. )w: Ko(Ans1) = Ko(Fuy1) = Hyy

are inclusions. Also, recall that (¥, y+1)« = Vn.n+1 : Hy — Hp+1. Consequently,
(‘/’Z,nﬂ)* = Ynn+1lG, : Ko(An) = Ko(An+1). The commutative diagram

o o
Y12 $23

Ay Aj

A©
l Y12 l Y23 I‘L

F ')
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induces the commutative diagram

Yi2lG, y2lG,

Ko(A)) =G —— Ko(A2) =Gy Ko(A°) =G

l Lo

Ko(F)) = Hy —2— Ko(F,) = H, —= Ko(F)=H

Hence K¢(A?) = G as a subgroup of Ko(F) = H.
On the other hand, n}fﬂ op, ,+1 =¥’ is homotopy equivalent to ﬂ,fH 0P+l =Y
(see (4.44)). Thus we know that

(Tt 1 0 Pt = (T 1 000 1 Dx : Ko(An) = Gy = Ko(Fyg1) = Hyg1.

A A : A :
Consequently, (nn+1)* o (@nnt1)s = (TTyy )% © Vnn+1lG,. Since (nn+1)* is an
inclusion, we have (¢n,n+1)x = Vu.n+1lc,. Therefore, the inductive limit

AIMAZ(pﬁ)A3—>---—>A
also induces the K-theory maps
Ko(A1) = G 2% Ko(A2) 2% Ko(A3) — - — Ko(A)  (or Ko(A”)).
Hence K¢(A) = G = Ky(A?). Since A, € Cy, K{(A) ={0}.
Lemma 4.80. A is a simple C*-algebra.

Proof. Note that, by 4.58 and 4.68, A/ (i) > 0. From (4.78) and (4.70), it follows
that

{Oni 21 <i < pu} CSP@nntiln ;) forany 1 <j <L, 0<r<1. (4.81)

Note that from (4.78), for any 6 € Sp(Fy,+1), SP(@n.n+1lo) = SP(¥|p) (see 4.2). It
follows from the definition of ¥ in 4.37 (see (4.41) and (4.42)) that we have

{Oni 21 <i<pn} CSpl@nn+ile,, ;) foralll<j<pp, (4.82)
M, j k1), On i :1<i < pu, 1< j<ly, 1 <k<n—1}CSp(@nn+il,,,,) (4.83)

(see also (4.41)).

From equations (4.70) (which tells us y is a part of ¢), (4.78) (which tells us, for
any 1,+1,j(t) € (0,1); C Sp(C([0, 1], M{y41,jy(C))), that SP((@n.n+1) s ;1)) =
SP(@ly,41.;(r))), and (4.48), we know that for all 1 < j </,1,

{nn,i(t)a nn,i(l_t) : lfl fln} C Sp((pn,n—H |n,,+1,_/(t))usp(¢n,n+l |7},,+11j(1—t))- (484)

For the composition of two homomorphisms ¢ : A — B and v : B — C among
three subhomogeneous algebras, it is well known and easy to see that, for any
x € Sp(C), one has Sp(Y o @) |, = UyeSp(wlx) Sp(¢ly). We will repeatedly use this
fact.
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From (4.82), we have
{Oni | 1 =i < pn} CSp(@nmls, ;) foralll=<j=<pp. (4.85)
From (4.84), we know that, foranym >n+1and 1 < j </,

{nn,i(t)a nn,i(l - t) 01 = i = ln} C SP(¢n,m|r;,,,,_,~(t)) ) Sp((pn,m|nm_j(l—t))- (486)

Fixm+2>m>n. Let Z:={ny, j(k/m), 04 ;i : 1<i <pp,1<j<Ilp,1<k<m—1}.
It follows from (4.86) and (4.85) that

(M, j(k/m), 0,1 <i<pp, 1<j<l,1<k<m—1}C U Sp(@nmlz)-
zeZ
(When n = m, we use the convention ¢, , = id.) Applying (4.83) with m in place
of n, we know that Z C Sp(¢m.m+1l6,,,,)- For any x € Sp(A;,+2), from (4.83) with
m 4+ 1 in place of n, we have 6,11 C Sp(¢m+1.m+2|x). Hence

SP(@nmsale) D {n(%) l<k<m—1,1<i sln}uwn,i 1<i<py). (487)

The latter is 1/m-dense in Sp(A,) (see (4.4) and lines below that).

It is standard to show that A is simple (see [Dadarlat et al. 1992]). To see this,
leta,b e A}r \ {0}. It suffices to show that b is in the (closed) ideal generated by a.
Let % > ¢ > 0. There are n > 1 and ag € (An)}r such that ||@y 0o (ag) —all <e/4. It
follows from Lemma 3.1 of [Elliott et al. 2020b] that there is ry € A such that

0 # (¢n,00(ao) — /4) 4 =rgar. (4.88)

Put a; := (ap — ¢/4)+ € A,. Choose an integer m’ > n and b, € A,/ such that
l@m’.0co(b1) —bll < /4. By (4.4) and lines below that, we may assume that, for some
8 > 0 and for any §-dense subset S of Sp(A,), there is s € S such that a;(s) > 0.
Choose m > n such that 1/m < §. Then by what has been proved above (see (4.87)),

we have
Yn.m+2(a)(x) >0 forall x € Sp(Ay+2). (4.89)

By choosing a large m, we may assume that m > m’. It follows from Proposition 6.3
of [Elliott et al. 2020b] that ¢, ,,42(ay) is full in A, 5. Therefore, there are
X1,X2,...,Xg € Ao such that

K
> X Pnn2(@)x = g2 (b)) | < 7. (4.90)
i=1
This implies (see (4.88)) that
K
Z (pm+2,oo(xi)*rgarofpm—&-loo(xi) - bH <é&. 4.91)

i=1
This shows that b is in the closed ideal generated by a, whence A is simple. [
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4.92. Let 0,(T (A)) denote the set of extremal tracial states of A. It is well known
(see Lemma 2.2 of [Thomsen 1998]) that there is a one-to-one correspondence
between Sp(A,) and 9,(T(A,)) given by sending the irreducible representation
0 : A, — M;(C) to the extremal trace 1y defined by t4(a) = tr(6(a)), where tr is
the normalized trace on M;(C). Using the calculation in [Gong et al. 2020a, 3.8]
(see [Thomsen 1998] also), we know that Aff(Ty(A,,)) (for the definition of Ty(A,,),
see Definition 2.2) consists of elements

(glagZa ---’glnaxlaXZa --~a-xl’l) € C([O’ 1]7 Rln)eaan

with the conditions

g;j(0) = Fli}ibg’jixi[n’i] and gj(l)_ ibl Jlx,[n il. (4.93)
i=
Note that the norm on Aff(7y(A,)) is given by
(g1, &2, - - -5 81> X15 X2, -, Xl =maX{1S<lzlg1 lgi O, 1xi|:1<j <[y, 1<i<py}.
Let [ 1 To(Fay1) = To(Fy) and iﬁn il Aff(To(Fn)) — Aff(To(Fy+1)) be

the afﬁne maps induced by ¥y, 41 : F, = Fy41, and (pn ntt - To(Ant1) = To(An)
and (pn nl :Aff(To(A,)) — Aff(To(An+1)) be induced by @, +1: A — Ant1. Note
that F), is unital. There is a unique element in Aff(7y(F,)), denoted by 17(f,), such
that 17(g,)(7) =1 for all T € T'(F},). Even though Aff(7y(F},)) and Aff(To(F,+1))

respectively, w“ does not preserve the units,

have units 17(r,) and 17 n.n+1

n+1)’
since ¥y, ,+1 1S not unital.

Lemma 4.94. (a) We have 1//3,”+1(1T(Fn)) > (1 -1/8")-17,,,). (Equivalently,
forany v € T(Fyy1), ||wn n+1(‘[)|| > (1 —1/8").) Consequently,

m—1

Vi (1) = (l_[ <1 - é)) 1r(p,)

i=n
for any m > n.

(b) Suppose that f € Aff(Ty(A,)) with || f|| < 1 satisfying
T E(f) = - (s, € Aff(To(F))

for some a € (0, 1], where 71,, . Aff(Ty(A,)) — Aff(To(Fy,)) is induced by
A, — F,. Then, for any v € T(A,11), (pnyn_H(f)(r) > (1 —2/4" Ha.
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Consequently, for a,‘?, efl‘ € (A,)+ (see 4.6), we have

~ —~ 2
O 1@ () = ¢ L @M (T) = 1— gt forany T € T(Ani),

L (€M (1) = ¢, (ah)(7) (4.95)

m—2

2(1_[(1—%))(1—4%) foranym >n+1,

i=n

where e/{:‘ and c’z',;Z are the elements in Aff(Ty(A,)) corresponding to eg‘ and a,’?,
respectively. (Also, foranyt €T (A,+1), ||<pnT’nJrl o= —2/4"“).) Furthermore,
foranyt € T(A),

0F sole) (1) > ¢ (D) (D) = ﬁ(l - —) (1 - 4i) (4.96)

Proof. (a) We only need to show that

Vi ()@ =] () 21— o

for T € 9.(T (Fr11)). Let T = 19, ; be defined by

T(Cll? a27 L] ap,H,]) = tr(ai)a

where tr is the normalized trace of F’ ,i 1 =Mt (©). Let tr; denote the normalized
trace on F;] = My, ;j)(C). Then, for b = (b, ba, ..., bp,), we have

Y1 (D) (B) = Ztrj(b )cijln, jl

[n+1,i]

n,n+1

(recalling ¢;; = = ). In particular, if b =1f, , then by (4.30) (noting 1 £, =17F,)),

we have
1 Dn 1
T _ (b ; _ =
Vrnst O08) = ] ijl wyGpein. 12 (1- ;)

(b) Keep the notation from the proof of part (a). Again we only need to calcu-
late gog’nH(f)(r) for © € 9.(T (Fy+1)). First suppose that T = 7y, , defined by
©(f1, f2r - os S1s a1, a2, ... ap,, ) = tr(a;). Writing

f=(1,8,....8,.b1,b2, ..., b)) € Aff(To(A,)),
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we have b; > « € R for all i. Then, by (4.78), (4.41), (4.42) and (4.40), we have

@ i1 (D@0 ) = W ()(T,0,)

1 , Pn .
=t 1] (trl(bl)cil[”’ 1+ ; trj (bj)cijln, J])
Pn

1 1
> (1— ) trj(bj)cijln, jl
i 4(n+1) JAZIIE
[n+1,i] 2% 1

J=

1 R < .
= (1 - 24(n+1)> [n+1,i] Zlacij[n’ Jl
Jj=

(12
Now suppose that T = 7, () (for 0 <7 < 1) is defined by
©(f1, foo -5 fi, a1, a2, ... ap,, ) =t(f(1)),
where tr is the normalized trace on EiH = M{,11,j;(C). By (4.78), (4.70) and

(4.72), we have

1 P .
@it ) @) = @ () T, 0) = e (;jtr,- )M ()[n, i])

1 N i 2
= —{n+ ) (;aﬂ(z)[n, l]) > (1 — W)a.

Other parts of (b) follow from nrf (e?) = ﬂrf (@) =1 F, and et > a”. U

4.97. Note that the map 7, * : Aff(To(A,)) — Aff(To(F,)) induced by 74 : A, — F,
is given by

A
7, jj(gl,gz,...,gln,xl,xz,...,xn) = (X1, X2, ..., Xp,).

Define &, : Aff(To(F,)) — Aff(Ty(A,)) by

‘i:l’l('xl’ -x2’ ] -xp,l) = (glﬂ g25 R glna -xla -x27 R ] -xpn)
{n, 1}g1(®) [n, 1]x;
{n,2}g2(1) ; L [, 2]x2
where ) = (by +1(b] —by)) . . (4.98)
n Lne, () [, palxy,

Then 7, o &, - id |ar(r,)- Define & i1+ Aff(T(An) — AM(T (4n41)) by
Ennt1 =Ens10W] ,jom *. Notethatif 7 (x1, x2, ..., %) = (1, Y2, - 30,
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then
[n+1, 1]y [, 1]x;
[n+ 1 2]y2 _ ot [, ?]Xz (4.99)
[n+1, p;,+1]ypn+1 [n, p.n]xp,,
If & nr1(815 825 v 8l X1 X2s ooy Xp,) = (hyshoy ooy hyy V1 Y20 oo Vi)
then (4.99) holds and
{n+1, 1}h1 (1) [n+1, 11y
{n+ 1,:2}h2(t) @) [n+ 1 2]y2 | 4.100)
{n+1, ln-l'-l}hl,ﬁ.] (t) [n+1, P;z+1]ypn+.
Lemma 4.101. The following estimate holds:
15 = Ennstll < 5 (4.102)

Proof. Let g = (g1, 82, .-, &I,» X1, X2, ..., Xp,) € Aff(T (A,)) with || g|| < 1. With-
out lose of generality, we assume that 0 < g;(r) <1l and 0 <x; < 1foralli, j, .
Write

Vi) € AT (Aui1)),

O 1@ = (i, hay o b Y1 Y2s - Ypo) € AT (Ang)),
Ennr1(8) = (N1, f2, - vy Zpayr) € ATE(T (Ap1)).

(ps’n+lj(g) = (h/ ’ h/27 R h;n+1’ y;v yés e

s Sl 215 22,

Recall that nr‘:‘H

1# tAy > Fn-H-
Note that

0 .0 A . A —
Py il = Vo =Yunt10m, 1 Ay = Fpprand 7,7 0 @ppt1 =

i

At g A A
T o&nny1 = T, 0&nt10 (Yt o, )t = (Yun+1 o, )ﬁ =T, OQD;)UH_]n-

Hence we have z; = y/ forall 1 <i < p, 1.
Using (4.38), (4.42) and (4.41), we calculate that

yi=y =2z fori>2,
/ | Pn '
= m;cl,ﬂi[nal],
| RE K\, e .
Y= m(ig;;gi(;){”’l}+§CL,~Xi[n,l])-
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Since [l¢2 ;"I < 1. 1yj| < 1. By (4.28) and (4.29), we have

1, 1
S a(E)onit| < 00— Dby max{n, iy 1 < < )
i=1 k=1 1 1

= 24(n+1)£"+1 = 54040

n—

[n4+1,1]. (4.103)

RN YICes)

Hence (1/[n + 1, 1)\21 Vi gi(k/m) (n, i}| < 1/24¢+D. Combining with
(4.40) (recall ¢;; = c" "+1) we obtain

1 , 1
v =¥l = WL Y (e =y xiln, i1+ Py
T =l

_ 1 1 Pn , 1
— 24(n+1) [n+ 1, 1] _X;Clixi [I’l, l] + 24(n+1)
1=

2
= 24D )1 T 23 = 5ae D

By (4.33), (4.35) and (4.100) (note that z; € [0, 1]), we know that

Pn+1

1
1) = O] £ ——— > Bt = b In + 1, klz
n+1,i} &=

1 1 Pn+1 1
n+1 pn+l1
= gty g 2 B LK< i
k=1

forany 1 <i <[,y and 0 <t <1.
Note that, by (4.74) and (4.32) as well as (4.34),
Li+K;

M ———(n+1,j} (4.104)

1
i= 24(n+1) ntl = 24(n+1)

It is easy to see from the definition of ¢, ,11 (see (4.78) and (4.70)) that all the
functions h/j (¢) and h () are approximately constant within 1/ 24+ To be more
precise, we may regard ¢, ,4+1 as a homomorphism from A, to C([0, 1], E,+1)
which is unitarily equivalent to ¢ (see (4.78)). Hence

(h1,ha, s ) = 9F(8) € AFE(T (C(0, 1], Eqt1)))-

On the other hand, by (4.70), ¢ = @]”“1 @j can be written as (x @ u) ® ¢’ =
B (x ® ), ® ), where

Int1 Iny1

x®w=Pxdw;: Av—> P ML 1k, (CI0, 1]

j=1 j=1
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is defined in 4.45 and

ln+| ln+|
¢ = @w; tAp — @ M1, jy—L;+k,)(ClO, 1])
j=1 j=1
sends f = (f1, f2,..., fi,,a1,a2,...,ap,) to

Int1

¢'(f) = @diag(fl (%)N"'i(”’ f1(%>w(1), o (n;l)wcf(l)’ f2<%)wj(2),
j=1

n_1)~aj(2) (1)~af(zn) <n1>~of<ln>
..,fz( - SN N ,
P O a~xf(pn),0~~). (4.105)

1 s U2 ’ > Y pn

In particular, (¢')*(g) is constant (that is, (¢})*(g)(t) = (¢/)*()(0) for 1 € [0, 1]
andi €{1,2,...,[,+1}). Consequently, forany 1 <i <[,;;and 0 <t <1, we
obtain

i (1) = hi (0)] = ¢} (8)(t) — ¢ (2)(0)]

= {,1+1—1j}|(1<j +L)((x @ wh©)®) — (x ® 1) (2)(0)
+n+ 1, j} =K~ L (@) @) — @)* () (0)]

< Ki+L < !

~{n+1,j} ~ 240+D°

Note that y; = y/ = z; forall i > 2, y| =z; and |y; — y;| < 1/2*"TD. By the
formulae (4.93), we have 1/(0) = £;(0) and |; (0) — £ (0)| < 1/2*" D (as B,11.0
is a homomorphism). Consequently,

2 1
|hi(t)_fi(t)|§m<ﬁ- O

4.106. For a separable C*-algebra A, one has a standard metric on Ty(A) (see
Definition 2.2), i.e., d(t1, ;) :== ZZOZI (1/2”“) [t1 (a,) —tr(ay)]| for all ty, tr € Ty(A),
where {a,} is a fixed dense sequence of A!, . In the following proof, we will use
this metric.

Theorem 4.107. The C*-algebra A =1im(A,,, ¢, ) satisfies the following condi-
tions:

(a) A is simple,

) Ko(A) =G, K1 (A)=0,T(A)=Aand pa : Ko(A) — Aff(T (A)) is the map
o from G to Aff A identifying Ko(A) with G and T (A) with A.

Moreover, A € D (see Definition 2.28) and has continuous scale.
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Proof. From 4.79 and Lemma 4.80, A is simple, and Ko(A) = G. Consider the
projective limit , ,
¢ @

To(A1) <= To(Az) <= To(A3z) < -+ < To(A), (4.108)

where (pfi 41 To(Air1) — To(Ai) is the affine continuous map induced by ¢; ;4.

Suppose that 7 € T(A)Y is written as 7 = limk_, » Tk, Where 7, € T (A). Then, for
any fixed n, by (4.96),

T@nooEl) = lim gnco(ef)) = Jim (95 (D) (@ = (1- 57

Hence ||| > (1 —1/4"). Since n is arbitrary, ||7||=1and t € T(A). Thatis, T (A)
is compact. Note that F is a nonunital simple AF algebra with

(Ko(F), Ko(F)+, ©(F)) = (H, Hy, {x € Hy : p(x)(t) < 1 for all T € A)).

Therefore T'(F) = A, identifying pp : Ko(F) — Aff(T(F)) and p : H — Aff(A).
On the other hand, by Lemma 4.101, we have the approximately commuting
diagram

it it
AFF(To(A 1)) —2 AFF(To(As)) —2s AFE(Tp(As)) —— - - - —— AF(Ty(A))

v w5 w5
AFf(To(F)) —— Aff(To(F2)) ——s Aff(To(F3)) —s - - - —— AFF(To(F))
of real Banach spaces (recall &, ,+1 =&,+1 m//rtzi,n-i-l orr,f‘j and J'r,f1 tiogn =id |afr(T(F,)))-
Let IT* : Aff(Ty(A)) — Aff(To(F)) be the continuous linear isomorphism induced
by the above approximately commutative diagram. Note that we also have the
projective limit
T T
To(F)) <2 Ty(Fy) 2 Ty(Fy) < -+ < Ty(F). (4.109)
Together with (4.108), by applying the above approximately commutative dia-

gram, we obtain the approximately commutative diagram

T

ol @
To(A)) +—— T (A3) ¢ To(A3) «—— - - - Tp(A)

[ S
vl vy

To(Fi) +—— To(Fy) +—— To(F3) «—— - -- To(F)

as compact convex sets with the metric mentioned in 4.106, which gives an affine
continuous map I17 : To(F) — To(A). Combining the two approximately commu-
tative diagrams above, we have IT¢(f)(t) = f(IT17 (¢)) for all t € T (F). Consider
the functions g, := (pﬁ,oo(efl‘) e Aff(To(A)). By (4.96), on T(A) C To(A), gn



ON CLASSIFICATION OF NONUNITAL AMENABLE SIMPLE C*-ALGEBRAS, II1 327

converges uniformly to the affine function g4 with g4(r) =1 for all T € T(A)
(ga(0) =0). Since g,(rr) =rtforallt € T(A)and 0 <r <1, and T (A) is com-
pact, g, converges to g4 uniformly on Ty(A). Note that T1*(g,) = ¥ 5o (T2 (e)).
It follows from (4.95) that T1%(g,) converges to 1 uniformly on 7 (F). Then,
by the first approximately commutative diagram above, I1°(g4) = 1 on T (F).
Since TT*(f)(t) = f(IT7 (¢)) for all t € T(F), 1T maps 7T (F) to the compact set
{t € To(A) : ga(t) = 1}. The fact that IT* is an isomorphism implies that 17 is an
affine homeomorphism. Since T(A) = {t € To(A) : ga(t) = 1}, this implies that
M7 maps A = T(F) onto T (A).
Recall from (4.26) that we have, for each n, the commutative diagram

Gy —2 s AFE(To(Ay))

(ﬂ,f‘)*ol ln;ﬂ
PFy

H, —— Aff(To(F,))

where pa, : G, = Ko(A,) — Aff(T (A,)) is induced by pj : KO(Zn) — Aff(T(Z,,))
(see (2.14)). Let ps : Ko(A) — Aff(T(A)) be the map given as in 2.12 by
Px: KO(Z) — Aff(T(;f)). Then p4 =lim,_,» pa,. We obtain the approximately
commutative diagram

Pn,n+1,%0 Pn+1,n+2,%0

Gy Gnti e G

I
PAy PAL4+1 on
Aff(To(A,)) — Aff(To(Apy1)) — - — -+ — Aff(TH(A))
Punt1 Putln42
oo T 140 ¢
i ”:Jr]: *

‘//n,n+1*0 ‘/’n+l.n+2*0

Hn Hn+1 1 H

/)Fn\ PFyq1 PE

A (To(Fn)) —— AfH(To(Fys1)) — - — - — AfH(To(F))

l/fn,nJrl ¢n+l,n+2

where the top, bottom and the back diagrams are commutative, and the front plane
is approximately commutative. Thus, we obtain the commutative diagram

G —1 s AFR(Ty(A))

T

H — s Aff(Ty(F))
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where the map from G to H is given by 4.79. Since pr = p, we obtain py =
0 : G — Aff(A) as desired.

To see A € D, choose ng > 1 such that A;(A,,) > 64 3 forall n > no (see (e) of 4.25).
Let e € A, be a strictly positive element. By (4.95), we may assume that

T(@Pngn(e) =2 forall T € T(A,), @.110)
t(Pnyo0(€)) = S forall 1 € T(A). '
In particular, ¢, ,(e) is full in A, for all n > 1. Choose § > 0 such that

T(@ngn((e=8)4)) = 3 forall 7 € T(Ay),
1 (@ng,00(e —8)4) > —é forall r € T(A).

[SS1[98)

Choose k > 1 such that
fija@") = (e —8)4. (4.111)

Let B =¢y,.00(€) A@p,,00(e). Then B is a hereditary C*-subalgebra of A. Let us first
show B € D. Puta = (pno,oo(el/k) and choose §, = % Let By = @ng.n(€) An@ny.nle).
Note that B, € C|, (recall Definition 2.26).

Now fix a finite subset 7 C B and 0 < & < 7. We may assume that 7 C ¢, 00 (By)
for some n > ng. Choose 0 < n < € such that ifaj,a € By with0 <aj,a, <1
and |la; — az|| < n, then || f14(a1) — fi/a(a2)| < e/8.

Choose a completely positive contractive linear map ¢ : B — B, = ¢y, 00(Bn)
(see 2.3.13 of [Lin 2001], for example) such that

Iy (b) —bl <% forallbe FUla), 4.112)

Then
| fia(¥ (@) — fija(@]| < g. (4.113)

It follows, for all T € T'(B,), by identifying ¢, o (B,) with B, that

t(fia(W (@) = T(f17a(@ugn(e'/%))) — &
> T(Pnyn(€—8)1)) = 3 — § > fa. (4.114)

Define ¢ = 0. By (4.112), (4.114) and Definition 2.28, B € D. By Corollary 11.3
of [Elliott et al. 2020b], B = Ped(B), and by Theorem 9.4 of [Elliott et al. 2020b],
B has strict comparison for positive elements. It follows from [Brown 1977] that
ARK = BQK. Therefore A is isomorphic to a hereditary C*-subalgebra of B ® K.
It follows that A has strict comparison for positive elements. Let e4 be a strictly
positive element. Since T (A) is compact, d;(e4) =1 for all T € T (A). It follows
that (e/A\) is continuous on T(A). By Theorem 5.4 of [Elliott et al. 2020b], A has
continuous scale. Therefore A = Ped(A) (see Theorem 3.3 of [Lin 1991]). Hence
a € Ped(A). It follows from Proposition 11.7 of [Elliott et al. 2020b] (see also
Definition 1.6 of [Elliott et al. 2020b]) that A € D. U
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4.115. Now let G and K be any countable abelian groups, A a compact Choquet
simplex and p : G — Aff A a homomorphism with the property that for any g € G,
there is a T € A such that p(g)(t) < 0 (see condition (x) in 4.1).

We construct a simple stably projectionless, stably finite C*-algebra A such that
Ko(A)=G,K1(A) =K, T(A) = A, and the map p4 : Ko(A) — Aff(T (A)) is the
map p when one identifies Ko(A) with G and 7' (A) with A.

Note that if K =0 and G is torsion free, then the algebra satisfying the condition
is already constructed (see Theorem 4.107 above).

Note Tor(G) C ker p. Write G = G/ ker p, which may be viewed as a subgroup
of Aff A, and write G y = ker p/ Tor(G), which is a torsion free group.

Lemma 4.116. G can be written as an inductive limit of finitely generated sub-
groups (G, = G, 7 @ Gp r ® Gy o, Vam) With Tor(G,) = Gy wor Such that the
following hold:

(a) According to the decompositions G, = G, 7 @ Gp f @ Gpor and Gpy1 =
Gn—H,T @ Gn—H,f S Gn—i—l,tor, the map Yn n+1 may be written as

n,n+1
Yr.r 0 0

n,n+1 n,n+1

Yriy Ve 0
n,n+1 _nn+l _ nn+l

yT,tor yf,tor ytor,tor

that is, the components of yu nt1 from Gy tor 10 Guy1,7 © Guy1, r and from G, 5 to
G, are zero maps. In particular,

Vn,n—i—l(Gn,tor) C Gn+l,tor and Vn,n—',—l(Gn,Inf) C Gn+1,Infa

where G int = G, f ® G, tor-
(b) kerp = lim(Gn,Inf’ VYn,m |Gn,1nf) and Tor(G) = lim(Gn,tOT’ ymmlGn,tor)'

(c) Let

1

~ n,n+1 |
Yan+tl =VYrr - Gn,T = Gn/Gn,Inf - Gn+1,T = Gn+1/Gn+1,Inf,

» 7/n,n-i—l 0
)7n,n+1 = )/7;;’,£+1 yn,n+1 . Gn,T ¥ Gn,f = Gn/Gn,tor
T, )

! e = Gui1,1 ® Gyt f = Guy1/Guiitpor
be the quotient maps induced by y, n+1. Then Gr = G/ ker p = im(G,,. 7, Vu.m)
and G/ tor(G) =1im(G,, 7t ® Gp, f, Vn,m)-

(d) y}’”?“, y'f”?“ and yt’f,;ﬁ;l are injective. Consequently, Yy y+1, Vunt1 and

Yn.n+1 are injective.

Proof. Let G s =ker p/ tor(G). Write Gy =|Jr— | Gu7 With G 7 CGar C-+- C
Gnr C-CGr,Gy=\Upe GpywWithG, s CGysC---CGpysC---CGy,
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and Tor(G) =72 | Gp.tor With G tor C G2,10r €+ -+ C Gy por C - - - C Tor(G), where
each G, 7, G,y and G, 1o are finitely generated. Denote by ¢, ;0 Gnf—> Gy
the embedding.

Since G is torsion free, the extension 0 — Tor(G) — kerp — Gy — 0 is
pure, i.e., every finitely generated subgroup lifts. Thus, for each n, there is a
homomorphism &, : G, s — ker p such that the diagram

G s

£ e
A
1’4

ker p LA Gy

commutes (7 0, =1, ;,,n=1,2,...). Define yr:’f : Gy, r — Tor(G) by y,;’f(h) =
&,(h)—&,41(h) € Tor(G). Since G, ¢ is finitely generated, there is an integer m > n
such that y,i’ f(Gm ) C G or- By passing to a subsequence, we may assume

V;;’f(Gn,f) C Gn+1,t0r~ Define y}l”tr(l)jl = V;;,f and

Xn,n+1: Gn,Inf = Gn,f ©® Gn,tor — Gn+1,Inf = Gn+1,f & Gn+1,tor

n,n+1
_(vrr 0
Xn,n+1 = n,n+1 n,n+l1 ]
yf’ tor ytor, tor

where y;-”;fﬂ :Gn,f = Guq1,f and ytﬁ’rf’grl : Gpotor = Gp1 tor are the inclusion
maps. Then ker p =1im(G,,, s ® Gy tor, Xn,n+1) and x, ,41 are injective. Repeating
this procedure with G7 in place of G ; and ker p in place of Tor(G), and of course
passing to a subsequence again, we obtain the other parts of the map ¥, ,+1 as
desired. O

4.117. Let us recall Theorem 7.11 of [Gong and Lin 2020a]. Let Gy, G| be
any countable abelian groups and 7' be any compact metrizable Choquet simplex.
There is a simple Z-stable C*-algebra By € Dy with continuous scale such that
Ko(Br) =ker(pp,) = Go, K1(Br) =G and T(Br) =T . Moreover Br is locally
approximated by subhomogeneous C*-algebras with spectrum having dimension
no more than 3 (see Proposition 7.7 of [Gong and Lin 2020a]). More precisely,
Br = limk_wQ(En(k) @b Wi, Ok k+1), where E,, = M(m)z (AW, ay,)) and Wy, is in Cy
with Ko(Wy) = {0}, and &y x4+ is injective (see the constructions in Definition 7.2
of [Gong and Lin 2020a]; also the notation in [Gong and Lin 2020a, 11.3] and the
discussions in [Gong and Lin 2020a, 7.3—7.10]). Note that, by [Gong and Lin 2020a,
Proposition 7.7], Br is locally approximated by subhomogeneous C*-algebras with
spectrum having dimension no more than 3.

If A is a compact metrizable Choquet simplex, then Aff(A) can be regarded
as a subset of LAff, (A) (here A is the cone generated by A and 0) by regarding

by
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f:A—> Ras f: A — R defined by f(kf) = Af(t) for A € [0,00) and T € A.
In particular 15 € LAff+(A). For o > 0, denote by oA the subset {«7 : T € A}
of A. Note that when A is compact, we may identify Aff(A) with Aff(A) (recall
f(0) =0 and see the end of Definition 2.2) —that is, for f € Aff(A), we assume f
is extended to f € Aff(A) defined by f(at) = af (t) for any « € R, and 7 € A.

Theorem 4.118. Let A be a metrizable Choquet simplex, G a countable abelian
group, p : Go — Aff(A) a homomorphism such that p(Go) N AffL(A) = {0}, and
G| a countable abelian group. Then there is a simple C*-algebra

A - llm (Bn @ Cn @ Dn7 §0n,m)’
n—oo

where C, and D, are simple C*-algebras in Theorem 4.107 and B, is in 4.117
(as By — see [Gong and Lin 2020a, Theorem 7.11 (and 7.2)]) such that ¢, maps
strictly positive elements to strictly positive elements,

((Ko(A), (Ko(A)), T(A), pa, Xa), K1(A) =((Go, {0}, A, p, 14), G1),  (4.119)

¢n,00(Ko(Cp)) Nker pa = {0}, ker pc, = {0}, ker pp, = Ko(Dy), and Ko(B,) is
torsion. Moreover, A has continuous scale, A € D and

lim inf{d; (¢n.00(xn)) : T € A} =0,

where x,, € B, @ D,, is any strictly positive element.
Moreover, one may require that ¢n,;|k.(B,)> PnxilK;(C,) and Qni|k;(D,) are all
injective, and K;(B,,), K;(C,) and K;(Dy,) are finitely generated.

Proof. For convenience, we write Go = G and G| = K. Choose finitely generated
subgroups K1 C K» C --- C K, C --- C K such that K = | J2, K,. Write
G =1m(G,,r @ Gy, r ® Gutors ¥n,m) as in Lemma 4.116. We adopt the notation
Yn.nt1 and y;‘,’,f‘ﬂ, where a, b =T, f and tor from Lemma 4.116.

It follows from Theorem 7.11 and Proposition 7.8 of [Gong and Lin 2020a] that

there is a simple C*-algebra B,, € By such that

((Ko(Bn), X(Ko(By)), T(Bn), pB,): K1(By)) = (G ,tor, {0}, Ao, 0), Ky),

where Ay is a single point. Here we mean pp, = 0. Note that B, € Dy C D is a
Z-stable simple C*-algebra with continuous scale (see [Gong and Lin 2020a, 7.7]).

By Theorem 4.107, there is also a simple C*-algebra C, with continuous
scale and with the form in Theorem 4.107 such that (K¢ (C,), T(C)), pc;) =
(Gn.1, A, €T 1.00), Where €7, o 1s the homomorphism of the form

Gn.1 %, G /kerp = Gp C Aff(A)
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induced by the inductive limit Gy = lim,_, (G, T, ¥2.m). Note that, by [Robert
2012, Theorem 6.2.3],

Cu™(C) = Ko(C) ULAFF(A), (4.120)

where A is the cone generated by A and {0}. Note that Yn.n+1 and ida induce a
morphism £z, :Cu™(C;) — Cu™(C, ). By [Robert 2012, Theorem 1.0.1], there is
a homomorphism v, : C, — C,_; which sends strictly positive elements to strictly
positive elements and Cu™ () = ;“n In particular, ¥,.0 = S%‘n| Ko(C)) = Vnun+1-
We continue to write 1, for the extension v, ® idy, : M3(C,) — M3(C,, ;). Note
that, since C| € D, by Proposition 11.8 of [Elliott et al. 2020b], one may choose
c1 € (C})4 such that d(c1) = % for all T € T(C}). Let C; = ¢;Cjcy. Let n > 2.
Choose ¢,.0, Cn.bs Cn.er Cn.d € (Cl))4 such that d;(c,0) = 1/2"F1, and d; (cnp) =
di(cna)= 1/2”+2 (and d(cp,c)=1—1/2")forallt e T(C))andn=2,3,.... Put
Cni=Cnp D Cne Pcnag € M3(C,) and C, = ¢, M3(C))c,. Note that ¢, € M3(C))
satisfies that t(c,) = (1 — 1/2") 4+ 1/2"T2 4+ 1/2"+? = 1 — 1/2"*! and defines
(C/n\) =(1—=1/2"Y .1, € LAff+(A) C Cu™(C)). Similarly, ¢, also defines
(Cns1.c) = (1—1/2"+1) .15 € LAff4 (A) C Cu™(C, ). Consequently, (cu11.c) =
(Y, (cp)) in CU(C;/1+1)~ By [Robert 2016, Theorem 1.2], one has Her(y,,(C,,)) =
an,CC;chH’C. Therefore, there is a homomorphism ¢, .. : C;, — Cp41 such
that Cu™ (¢n.c.c) = Cu™ (Ynlc,) and (@ ¢ c(cn)) = (cnt1.c). Note this fact, which
will be used later: when we identify both 7 (C,) and T (C,+1) with A, the map
(pﬁ,c,c CAff(T(Cy)) = Aff(A) — Aff(T (Cry1)) = Aff(A) is given by

1— 1/2n+1

O () = o1/ fordll f € ARCT(C)) (4.121)

Denote by C,, p = m, where p = b, ¢, d.

By Theorem 4.107, there is a simple C*-algebra D,, of the form in Theorem 4.107
such that Ko(D,) = G,, s and ker pp, = Ko(D,), and T'(D,) = Ay, the single point.
As in the previous case, there is ¥4, : D, — Dyy1 such that ¥y, = yf"-”;ﬂ :
Gn,r — Guy1, 5 (see Lemma 4.116), and v, 4 sends strictly positive elements to
strictly positive elements (using again [Robert 2012, Theorem 1.0.1]). Choose
dn,ba dn,Ca dn,d € (Dn)+ such that dr(dn,b) = dr(dn,d) = 1/211—',-2’ and dt(dn,c) =

1 —1/2™*! for all T € T(D,,). Define

D;l = (dn,b @ dn,c ® db,d)M3(Dn)(dn,b ® dn,c ® dnd)

Then, by [Robert 2016], D, = D,,. Without loss of generality, we may assume
that D, = D,, and d,, ., dy,. and d, 4 are mutually orthogonal in D,. Put D, , =
Her(d, p), p=0>b,c,d.

Choose by p, by.c, bn.a € (Bp)+ such that d; (b, p) = dr(bpg) = 1/2’”r2 and
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d;(by)=1—1/2"*for all t € T(B,). Define

B,; = (bn,b ® bn,c ® bn,d)MZ(B)(bn,b ® bn,c @ bn,d)-

Since B, is stably projectionless and Z-stable [Gong and Lin 2020a], by [Robert
2016, Theorem 1.2], B, = B,,. We may assume that b, j,, b, . and b, 4 are mutually

orthogonal in B, and B;, = B,. Define B, , = b, yBb, ,, Wwhere p =10, ¢, d.
Denote by t,blyp : B,y — B, the embedding (p =b, ¢, d). Note that for p=>, ¢, d,

((Ko(Bup), T(Bup), 0), Ki(Bup)) = (Ko(By), T(By), 0), K1(By))
= ((Gp.or, A0, 0), K ). (4.122)

By Theorem 12.8 of [Gong and Lin 2020a], there is a homomorphism (p;l’ bb ' Bn—>
By+1.» C Bp41 which sends strictly positive elements to strictly positive elements
such that @, 4 b0 = ytgi'flt—(i)_rl :Ko(Bn) =Gy tor = Ko(Bn+1) = Gnitor and @p b by =
t: Ki(By) = Ky = Ki(Bug1) = Kupi. Let gupp =10, 09,,, LetW,
be a simple C*-algebra which is an inductive limit of C*-algebras in Cy such
that Ko(W,,)) = K1(W,,)) =0 and T(W,,)) = Ay, n = 1,2, .... It follows from
Theorem 12.8 of [Gong and Lin 2020a] again that there is hj, p 4 : B, — W, which
sends strictly positive elements to strictly positive elements and 4,, 5, 7 gives the

identity on Ag. Note that, for p = b, ¢, d,

(Ko(Cnp)s Z(Ko(Cup)), T (Cup), P, p)s K1(Cip))
= ((Ko(C)), {0}, A, pcy), {0}).  (4.123)

By [Robert 2012, Theorem 1.0.1], there is a homomorphism %, . : Wy, = Cyy1p
mapping strictly positive elements to strictly positive elements. Define ¢, 5 . : B, —
Chut1.0 CCoy1 Y Onp.c:=hyw.cohy pyw. Similarly, one obtains a homomorphism
Yn.b.d ' By — Dyy1p C Dy which factors through W, and sends strictly positive
elements to strictly positive elements.

Note that, by [Elliott et al. 2020b, Theorem 11.5], B,+; has stable rank one,
and by [Robert 2012, Theorem 6.2.3] (see also Theorem 7.3, Corollary 11.3 and
Proposition 11.8 of [Elliott et al. 2020b]),

Cu™(Bys1p) = Ko(Bur D ULAF (T(Bysr)), p=c.b,d.  (4.124)

Let 1,0 € T(C,) be such that pc, (x)(1y,0) = 0 for all x € K¢(C,) given by
Theorem 3.1. Define &, : Cu™ (C,) — Cu™ (By+1,¢) by

Ecnlko(cr) = Vin 't Ko(Cn) = G1 = Ko(Buy1.c) = Ko(But1) = G tor

and & plLate(7(c,)) BY &6 (f) (1) =f (T 0) for fELAL (T (Cy)) and 1 €T (By11,c)-
Note that pp, = 0. One then checks that & ; is a morphism in Cu. Since By .
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has stable rank one, by applying [Robert 2012, Theorem 1.0.1] again, one obtains
a homomorphism (p;z,c,b : C, = By41,c such that Cu(w,;,c’ ») = &c» Which sends
strictly positive elements to strictly positive elements. Define ¢, ¢ 5 := LZ e <174 b
where t2+1’c : Byt1,c = Bpn41 is the embedding.

Using 7,0 and [Robert 2012, Theorem 1.0.1] again, one obtains a homomorphism
¢n,e.d : Cn = Dyy1,c C Dygq such that ¢, ¢ g, = y}’”"}“ :Gur —> Guy1,r, which
sends strictly positive elements of C,, to strictly positive elements of D,y .

Denote by Lg,p : D, p — D, the embedding (p = b, ¢, d). As above, applying
[Robert 2012, Theorem 1.0.1], as B, 1| has stable rank one, one obtains a homo-
morphism ¢, 4.5 : Dy = Bpy1,a C By such that ¢, 4 4,0 = V}i}ﬁjl : Ko(Dp) =
Gnr — Ko(Byt1,0) = Guyi,1or- By factoring through W, again, one obtains
a homomorphism ¢, 4. : D, = Cpt+14 C Cp41, Which sends strictly positive
elements of D, to strictly positive elements of C,; 4. By applying Theorem 1.0.1
of [Robert 2012] again (recall pp, = 0 for all n), one also has a homomorphism
®ndd - Dn = Dpy1,a C Dyt such that ¢, 4.4,0 = V_?,’.?H : Ko(Dp) = Gy —
Ko(Dp11,d4) = Guy1, 5, which sends strictly positive elements to strictly positive
elements.

Now define Pn,n+l - B, ®C,® D, — Bn+l S Cn+l @ Dn+l by

Onn+11B, = Cnbb ® Cnbc D Pubd,
Dn,n+1 |C,, =®n,c,b S Pn,c,c S @n,c.d>s
Gun+11D, = Cndb @ On,d,c ® Pnod.d-

Put An - Bn®cn®Dn Then KO(An) == Gn = GT,n@Gn,f@Gn,tor and Kl (An) == Kn-
It is clear that ¢, ,4 sends strictly positive elements to strictly positive elements as
constructed above. Moreover,

Pn,n+140 = Vnn+1 - G, —> Gpy1 and Onntle =1L K, = Kpy1.  (4.125)
Denote by ¢, : C,, — C,, the embedding and by ¢, : T(C,) — T (C,) the induced
affine homeomorphism defined by

tar(T)(€) = T(tn(0))

1
1—1/2n+1
for all ¢ € C,, (recall T(C),) = A). Then, for any

(fv 8f> gt) € Gn,T ® an ©® Gn,tor = Gny

we have
Pa, (fDEr ®8)(T) = p(Vuoo(f)tap (7)) forallz € T(Cp),  (4.126)
pa,(fDgr®g)(r)=0 forall T € T(B,), 4.127)

Pa,(fREgr®g)(t)=0 forall Tt € T(D,) (4.128)
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(recall p : G — Aff(A) = Aff(A)). Define A = lim,_ o0 (A, ©@n.n+1). Then
Ko(A) =G = Gp and K (A) = K = G;. Since B,, C,, and D, are simple, and
all maps ¢, p 4 (both p and q are among b, ¢, and d) are nonzero, @, 11 maps any
nonzero element of B, ® C,, ® D,, to a full element in B, 1| & Cp,11 & D1 It
follows that A is simple. Note that, for any b € B, @ D, and any t € T (A,+1),

[T (@n.nt+1(b))| < %Ilbll- (4.129)

Letgnap:An— By, Gnac:An — Cyand gy 4.0 : An — D, be the projection

maps. Denote by j, ¢4 :Cn — A, the homomorphism defined by j, .., (c) =0PcB0

for all ¢ € C,,. Identify T (C,) = A as above. Let A, : Aff(T(C,,)) = Aff(T (Cp+1))

be defined as id : Aff(A) — Aff(A), where we identify both 7 (C,) and T (C,+1)
with A. Then, by (4.121),

1— 1/2n+1

”)‘n(f) - (pg,c,c(f)” = H (1 B w

)fH <lIfl. @130

For each f € Aff(T'(A,)), we may write f = f, @ f. D fu, where fo =qn.a.6(f),
fe=qna.c(f)and fy =qnaqa(f). By (4.129) and (4.130), we have
1 8 _
lipst.ca©2n0bnac(f)—p 1 (O
2
< An(fe) = @f e (fO + II</),3,,1+1(fb ®0 fa)ll < 2—,,||f||- (4.131)

Let A, =X, 0 qﬁ,a,c. Then we have

. ~ 2 ~ .
lins 1.0 © 20 () =€ wir (DI < 5z 11 and - Ao iy =n.  (4132)

Recall that T(A,) and T (C,) = A are all compact as constructed above. Moreover,
by (4.132), we obtain the following approximately commutative diagram:

i i
ARE(T(A})) 22 ARE(T (Ag)) 225 AFE(T(A3)) — - - - — AFE(T(A))

A A

AFE(T(C))) =5 AFE(T(Cr)) =2 AFE(T(C3)) — - - - —— AFE(A)

Note that, since ¢, ,+1 maps strictly positive elements to strictly positive elements,
(pﬁm+1 D Aff(T (A,)) — Aff(T(A,+1)) and A, : Aff(T(Cp)) — Aff(T(Cyy1)) are
identities when we identify all T(C,) with A. Therefore there is an affine home-
omorphism A : A — T (A) which induces the diagram above. In other words,
T(A) = A. Moreover, by (4.126), identifying Ko(A,) with G,, we obtain the
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following commutative diagram:

f it
AFE(T(A))) —25 AFF(T (A)) —225 AF(T (A3)) —— - - - —— AFE(T(A))

TﬂAl TPAZ Tﬂ@ T,oA
©1,240 ©2,3+0

Gl G2 G3 e G

Combining with (4.133), we obtain
((Ko(A), T(A), pa), Ki(A)) = ((Go, A, p), Gy). (4.134)

Since y}’”?“ is injective, we have @, ,11,0(C,) Nkerps = {0}. By (4.129),
limy,— o0 Inf{d; (¢ 00 (x,)) : T € A} =0, where x,, € B, ® D,, is any strictly positive
element. It follows from Lemma 4.116 that ¢,,,; |k, (B,)> ¥n«i|k:(C,) a0d @unyilk;(D,)
are all injective, and K;(B,), K;(C,) and K;(D,) are finitely generated. It remains
to show that A € D. However, this follows from the fact that B,,, C, and D,, are in
D and have continuous scales (and A is simple). By Theorem 9.4 of [Gong and
Lin 2020a], A has strict comparison. Since T (A) = A is compact, by Theorem 5.3
of [Gong and Lin 2020a], A has continuous scale. O

Remark 4.135. With the last part of Lemma 4.116 in mind and with some obvious
modification, one may also have the following forms of inductive limit:

(1) A =limy— o (By ® Cy, @n.n+1), in Which B, € Br, Ko(B,) = Tor(Ko(A)),
Ki(B,) =K (A), T(B,) = A, and C,, is a simple C*-algebra as in Theorem 4.107,
KO(Cn) = Gn,T ® Gn,f and T(Cn) = T(A)

(2) A = limy_0(By ® Cp, @uny1), in which B, € Br, Ko(B,) = Inf(Ko(A)),
K{(B,) =K(A), T(B,) = A, and C,, is a simple C*-algebra as in Theorem 4.107,
Ko(C,) =G, r and T(C,) =T (A), ker pc, = 0.

In particular, in this modified construction, B, = B; for all n > 1. However,
while Ko(C},) is finitely generated, K;(B,) is not. Thus, one also has the following
form:

3) A=lim,_ (B, ® C, & D,) as in Theorem 4.118 except that B, = B for all
n > 1 (thus K;(B,) may not be finitely generated).

Definition 4.136. Let M, denote the class of stably projectionless simple C*-
algebras with continuous scale constructed in Theorem 4.118, or in Remark 4.135.

By, Theorem 4.107, there is a simple C*-algebra A which is an inductive
limit of C*-algebras in Cy such that A has a unique tracial state, Ko(A) = Z,
ker ps = Ko(A) = Z, and K{(A) = {0}. By Corollary 15.7 of [Gong and Lin
2020a], A = Z, the unique stably finite separable simple C*-algebra with finite
nuclear dimension in the UCT class.
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For future usage, let us state the following version of Elliott’s theorem [1996]
(see also Theorem 1.3 of [Li 2020]).

Theorem 4.137. Let A be a metrizable Choquet simplex, Gy and G| countable
abelian groups, and p : Go — Aff(A) a homomorphism with p(Go)NAffL (A) ={0}.
There is a simple C*-algebra A € M with continuous scale such that

((Ko(A), T(A), pa), Ki1(A)) = ((Go, A, p), G1). (4.138)

Moreover, if A is as constructed in Theorem 4.118 or as (3) in Remark 4.135,
then it also satisfies the following conditions: for any finitely generated group
Go,1 @ G fint ® Gotor ® G, C K(A), where G, N Ko(A) = {0}, Go,r C Ko(A)
is a free subgroup with Go.r Nker pa = {0}, G sint C Ker pa is a free subgroup,
Go.1or C Tor(Ko(A)), any ¢ > 0, any finite subset F C A, and any o > 0, there
are mutually orthogonal C*-subalgebras E, as defined in [Gong and Lin 2020a,
Definition 7.2 and Proposition 7.7] (see 4.117) with strictly positive element a,
and Cy, D, € Co with strictly positive elements a. ,, and aq , respectively, satisfying

Go.1DG0.10:DG0.intDG Cltnl(E,®C,DDy), Ko(E,)=Tor(Ko(E,)), (4.139)
Go,1 C tuxo(Ko(Cn))s  Goinf C tuso(Ko(Dy)),  Gojtor C tuso(En),  (4.140)
tns0(Ko(Cn)) Nker pa = {0}, ty40(Ko(Dy)) NTor(Ko(A)) = {0},  (4.141)

tnx0(Ko(Dy)) Cker pa, (4.142)

where i, . E, ® C, ® D, — A is the embedding,
a g Qe n(a) @ @en(a)®ean(a) forallae F, (4.143)

where @ : A — Eyn, e 1 A — Cyand ¢q., : A — D, are completely positive
contractive linear maps which are F-¢ /2-multiplicative,

de(aen)+di(agn) <o and di(ac,)>1—o0 forallteT(A), (4.144)

AM(Cp)>1—0 and M(D,)>1-—o0. (4.145)

Proof. Let A =1im(A, = B, ® C,, ® D,,, ¢».») be as in Theorem 4.118 such that

(4.138) holds (or A is as in (3) of Remark 4.135). Note that the ¢, ,41 are injective,

so we can regard A, as a subalgebra of A. Choose m with the strictly positive
elements b € B,,, ¢ € C,, and d € D,, such that

() F CeytoAn=B,®C,, ®D,,
(i) Go,r ® Go,tor ® Go,int ® G, C [t](A},), and
Go,1 Ct0(Ko(C))).  Goinf C tso(Ko(D},)),  Goor C tx0(Bm),

(i) de(b+d) <o/2 and dy(c) > | — /4 for all T € T(A).
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Note that D), and C,, can be written, respectively, as inductive limits of D,, , and
Cin With Dy, ., Cpy o € Co. Also from 4.117, By, = limy,— 00 (Exn) @ Wy, @pnt1),
where Ex = M2 (A(W, ay)) and W, is in Cy with Ko(W;) = {0}. Since B, has
continuous scale (see 4.117), for n large enough, we have A;(Ex(,)) > 1 —o0 and
rs(W,) > 1 — o [Elliott et al. 2020b]. One can choose n large enough so that

(IV) F CS/S Ek(n) @ Wn ® Cm,n ® Dm,n,

(V) Go.r ® Gotor ® Go,int ® Gy C [L1(Ek(n)y ® Wy & Ciyn ® Diy.n), and also
Go,7 C t50(Ko(Cin,n)),s Go,int C ts0(Ko(Dp,n)),

(vi) for the strictly positive element e € C,y ., d- (e) > 1—o /4 forall T € T(C,),
(vii) As(Cyn) >1—0,A(Dyyp) >1—0 and A, (W,) > 1 —o0.

Let Cy, = Cpyn, Dy = Dy ® Wy, E;y = Egny and let a., = e € Cyy, apy € Ey,
aqn € D, be strictly positive elements. Then (4.144) follows from (iii) and (vi). It
is standard to construct completely positive contractive linear maps ¢, , : A — E,,
@Qen:A— Cyand ¢q, : A— D, to finish the proof. O

Remark 4.146. In the statement of Theorem 4.137 we may replace B, by a simple
C*-algebra of the form By, as in Theorem 7.11 of [Gong and Lin 2020a], with
continuous scale, and C, and D,, are simple C*-algebras which are constructed in
Theorem 4.107 with continuous scale and retain (4.139) and (4.140). Moreover,
we may assume that a, , +a., +aq ., is a strictly positive element. Note that all
K;(B,), K;(Cy) and K;(D,)) are finitely generated (i =0, 1).

The technical conditions (4.139), (4.140), (4.141) and (4.142) will be used later
in the isomorphism theorem in [Gong and Lin 2020b].

5. Range of the Elliott invariant

The following statement implies that, in the case that A is simple, the pairing does
not depend on where the unitization occurs.

Proposition 5.1. Let A be a o-unital simple C*-algebra with a € Ped(A)4 \ {0}.
Suppose that 1 : B := Her(a) — A is the embedding. Then v,q is an isomorphism
and pp(x)(t7 (1)) = paltso(x))(T) for all x € Ko(B) and for all T € f(A), where
i - T(A) — T(B) is the map induced by 1.

Proof. We claim that in general, without assuming A is simple, if B is a o-unital
full hereditary C*-subalgebra of A, then ¢,; : K;(B) — K;(A) is an isomorphism
(i =0, 1). This is a reconstruction of the argument in [Brown 1977].

If B is a full corner of A, i.e., B = pAp for some projection p € M(A), then
the claim follows from Corollary 2.6 of [Brown 1977]. In general, let C be the
C*-subalgebra of A ® M, consisting of the sum Zaij ® e;; such that a;; € B,
app € BA, ap; € AB and ay; € A, where {eij}1<i,j<2 is a system of matrix units. We
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identify B with the full corner B ® e;; and A with the full corner A ® ey, of C; see
the proof of Theorem 2.8 of [Brown 1977]. Let j4: A — C and jg: B — C be
embeddings. Then (j).; and (jg)4; are isomorphisms (i =0, 1).

On the other hand, jp(B) and j4ot(B) may be identified with BQe; and BRey»
in M>(B) C C. Denote by j : M>(B) — C the embedding. Then j o jp = jp and
J 0 jalB®er = jAlB@er- SINCE jii = (0 jB)si = (J © ja|Boer )i : Ki(B) — K;(C),
one has that (ja)«i otsi = (jaot)x = (jo jp)xi = (jB)«i 1s also an isomorphism.
Since (j4)« is an isomorphism, so is ty; (i =0, 1). This proves the claim.

The lemma follows from the claim and the commutative diagram (2.18) immedi-
ately. O

Let us state the following result (see Definition 2.19), which also holds if we
replace the condition that A has finite nuclear dimension by that A is Z-stable (i.e.,
A= A® 2) and all 2-quasitraces are traces.

Theorem 5.2. Let A be a separable ﬁmte szmple C*-algebra with finite nuclear
dimension. Then (Ko(A), X (Ky(A)), T(A) ( A)s pa) is a scaled simple ordered
group pairing (see Definitions 2.7 and 2.15).

Proof. 1t follows from [Winter 2012; Tikuisis 2014] that A is Z-stable. By [Rgrdam
2004, Corollary 5.1] (see also [Kirchberg 1997]), f(A) = {0}. Then, if A is unital,
(Ko(A), Ko(A)4, [14]) is a weakly unperforated simple ordered group (see [Gong
et al. 2000]) with the scale determined by the order unit [14], and g € Ko(A)+ \ {0}
if and only if p4(g)(r) > 0 for all T € T(A). So the unital case follows. Suppose
that A is not unital and Ko(A)4+ # {0}. Let x € Ko(A)+ \ {0}. Then there is a
nonzero projection p € M, (A) for some integer r > 1 such that [p] = x. If follows
that A; := pAp is a unital simple C*-algebra with finite nuclear dimension (see
Corollary 2.8 of [Winter and Zacharias 2010]). Therefore (Ko(A;), Ko(A1)+) is
a weakly unperforated simple ordered group such that g € Ko(A1)4+ \ {0} if and
only if pa,(g)(r) >0forall T € T(Ay). Note that AQ K = A; ® K. It follows that
(Ko(A), T, p) is a simple ordered group pairing.

Let e4 € A be a strictly positive element with |le4|| =1 and let s(7) = d;(en) for
allt e T(A). If p € A is a projection, then, f1/,(es)p ~1,2 p for some integer n > 1.
It follows that there is a projection g € Her(f1,,(ea)) such that [¢g] = [p]. It follows
that

Sijm(ea)g=q and (1 —gq)f12.(ea)(1 —¢q) #0.

Since A is simple, this implies that 7(p) = t(g¢) < d:(ea). Then
Y (Ko(A)) ={g € G4 : g =[p] for some projection p € A} ={ge G+ :p(g) <s}.

It follows that (K¢(A), X (Ky(A)), f(A), s, pa) is a scaled simple ordered group
pairing. (Even though Ky(A) # {0}, it is still possible that X (Ky(A)) = {0}.)
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Now assume that Ky(A)+ = {0}. In other words, A is stably projectionless. It
follows from Remark 5.2 of [Elliott et al. 2020b], for example, that one may choose
a € A4\ {0} such that A; := aAa has continuous scale. It follows from (1) of
Theorem 5.3 of [Elliott et al. 2020b] that 7 (A) is nonempty and compact (see
also [Lin 1991, Theorem 3.3; Rgrdam 2004, Corollary 5.1]). By [Pedersen 1979,
5.2.2], every tracial state T € T (A;) extends to a lower semicontinuous trace on A,
which is finite on Ped(A) as A is simple. Again, since A is simple, the extension
is unique. It follows that T(A;) is a basis for the cone T(A). Since Aff(f(A))
is a lattice (see [Pedersen 1966, Corollary 3.3; 1969, Theorem 3.1]), f(A) isa
convex topological cone with a Choquet simplex as its base. For any x € Ko(A1),
by Corollary A.7 of [Elliott et al. 2020a], p4, (x)(r) =0 for some T € T(Aq). Since
AQK = A ® K, this implies that (Kq(A), {0}, T(A) ( A), pa) is a scaled simple
ordered group pairing (see Proposition 5.1). ([

The following range theorem was given in [Elliott 1996] (see also [Li 2020]).

Theorem 5.3. Let (Go, X(Gy), T, s, p) be a scaled simple ordered group pairing
and G be a countable abelian group. Then there is a simple separable amenable
C*-algebra A which satisfies the UCT such that

((Ko(A), 2(Ko(A)), T(A), {ea). pa). Ki(A)) = ((Go. £(Gp). T.5.p), G1). (54)

A is unital if and only if £(Go) has a unit u. (This means that u is the nonzero
maximum in X(Go) and p(u) = s. See Definition 2.7.) If p(Go) N Aff(T) # {0},
then A can be chosen to have rationally generalized tracial rank at most one
(see Definition 2.28) and be an inductive limit of subhomogeneous C*-algebras
of spectra with dimension no more than 3. If p(Gg) N Aff,(T) = {0}, then A is
stably projectionless and A can be chosen to have generalized tracial rank one (see
Definition 2.28) and be locally approximated by subhomogeneous C*-algebras with
the spectra having dimension no more than 3.

If G1 = {0} and Gy is torsion free, then A can be chosen to be an inductive limit
of 1-dimensional NCCW complexes in Cy.

Proof. Let us first consider the case that ¥(Gg) has a unit u. Let

A:={teT: pw)=1}.

Then A is a base for the cone 7. Recall that p(G) C Aff(T). Therefore A is a
compact convex subset. Moreover, it is a base for T. Since T has a metrizable
Choquet simplex as a base, Aff(T) = Aff(A) is a lattice. Therefore A is a Choquet
simplex. Let Go,. = {g € G : p(g) > 0} U{0}. It follows from Theorem 13.50 of
[Gong et al. 2020a] that there is a unital simple C*-algebra A which has rationally
generalized tracial rank at most one and is an inductive limit of subhomogeneous
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C*-algebras of spectra with dimension no more than 3 such that
((Ko(A), Ko(A)+,[14], K1(A), T(A), pa), Ki(A)=((Go, Goy, u, G1, A, p), G1).

Put T(A):={rt:r € Ry, T € T(A)}. Then T(A) =T. Also, £(K(A)) = =(Go).
This proves the case that X(Gy) has a unit.

Consider the case p(Go) NASfL (T') # {0} and X (Gg) has no unit. Choose v € Gy
such that p(v) € Aff,(T) \ {0}. Put £1(G) ={g € G+ : p(g) < v}U{v}. Since
p(v) € Aff, (T), as above, A :={t € T : p(v)(¢t) = 1} is a Choquet simplex. Then,
by what has been shown, there is a C*-algebra A; which has rationally tracial rank
at most one such that

((Ko(A1), X(Ko(A)), T(A1), pa([1a,]), pa,), K1(A1))
= ((Go, Z1(Go), T1, p), G1),  (5.5)

where Ty :={ré :r e R, € € A} =T and p’' : G — Aff(T}) is defined to be the
same as p, when we identify 77 with 7. Choose an element e4 € A; ® K such
that (;\A)(t) =s(t) forall t T(Al) =T, =T (see Theorem 5.5 of [Brown et al.
2008]). Define A = e4(A1 ® K)e. One then checks that

((Ko(A), Z(Ko(A)). T(A), (ea). pa). K1(A)) = ((Go. £(Gp). T. 5. p). G1). (5.6)

Now we consider the case that p(G) N Aff, (T) = {0}. Let A be a base of T
which is a Choquet simplex. Define p’ : G — Aff(A) to be the same map as p by
restricting a function in Aff(7) to Aff(A). By Theorem 4.118, there is a simple C*-
algebra A| € D with continuous scale which is an inductive limit of B, & C,, & D,,,
where B, is locally approximated by subhomogeneous C*-algebras with spectra
having dimension no more than 3 (see 4.117), and C,, & D,, is an inductive limit of
C*-algebras in Cy such that

(KO(AI)’ T(Al)v PA;> KI(AI)) = (GOs G15 A, /0/’ Gl) (57)

— l/l’l

Choose ex € (A1 ® K)4 \ {0} such that (e4)(r) = lim, o (e, ) = s(¢) for all
t € A. Define A :=e4(A; ® K)es. Then A has generalized tracial rank one (see
Definition 2.28). One then checks that

(Ko(A), £(Ko(A)), T(A), (ea), pa), K1(A)) = ((Go, {0}, T, 5, p), G1). (5.8)
The last part of the lemma follows immediately from Theorem 4.107. O

Corollary 5.9. Let Ay be a simple separable C*-algebra in D with continuous
scale, U be an infinite-dimensional UHF algebraand A=A Q U.

There exists an inductive limit algebra B as constructed in Theorem 4.118 such
that A = A1 ® U and B have the same Elliott invariant. Moreover, the C*-algebra
B has the following properties:
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Let Gg be a finitely generated subgroup of Ko(B) with decomposition Gy =
Goo ® Go1, where Gog vanishes under all states of Ko(B). Suppose P C K(B) is a
finite subset which generates a subgroup G such that Gy C G N Ky(B).

Then, for any € > 0, any finite subset F C B, any 1 > r > 0, and any positive
integer K, there is an F-e-multiplicative map L : B — B such that:

(1) [L]|p is well defined.

(2) [L] induces the identity maps on Gyy, G N K{(B), G N Ko(B,Z/kZ) and
GNK((B,Z/kZ) fork=1,2,...,andi =0, 1.

QB) llppo LI <rllpp(g)|l forall g € GN Ky(B), where pp is the canonical
positive homomorphism from Ko(B) to Aff(T (B)).

(4) For any element g € Go1, we have g —[L](g) = K f for some f € Ko(B).
(5) di(eg) <rforall T € T(B), where eg € L(B)BL(B) is strictly positive.

Proof. Consider Ell(A;). By Theorem 4.118, there is an inductive system B; =
lim(7; © Ci, ¥ii+1) (where T; := B; @ D; in Theorem 4.118) such that

(1) pr, =0: Ko(T;) — Aff(T(T;)) and C; € Cp with K{(C;) = {0},

(i) for the strictly positive element ez; € T;, lim 7(¢; oo (e7;)) = 0 uniformly on
Tt e€T(By),

(i) ker(pp,) = Uie; (¥i00)0(Ko(T})), and
(iv) EIl(B;) = Ell(A;).

Put B= B ®U. Then Ell(A) = Ell(B). Let P C K(B) be a finite subset, and
let G be the subgroup generated by P, which we may assume to contain Gy. Then
there is a positive integer M’ such that G N K, (B, Z/kZ) = {0} if k > M’. Put
M =M". Then Mg=0forany g€ GNK.(B,Z/kZ),k=1,2,....

Let ¢ > 0, a finite subset F C B, and 0 < r < 1 be given. Choose a finite
subset G C B and 0 < ¢’ < ¢ such that 7 C G and for any G-¢’-multiplicative map
L : B — B, the map [L]p is well defined, and [L] is a homomorphism on G.

Since B = B ® U, we may write U = im(M,,(n), tn,n+1), Where m(n) | m(n +
1) and 14,441 : Mp@n) = Mm@+ 1s defined by a — a ® 1,,(,+1). Choosing a
sufficiently large i¢ and g, we may assume that [/, oo 1(K (T3, @ Ciy) @ Mn(ny))) D
G. In particular, we may assume, by (i) and (iii) above, that pr,gm,,,, = 0 and
G NKer pg, @M,y ) C (Vig,00) 50 (Ko (1) @ Min(ng))- Let G'CK (T3 @ Ci)) ® Min(ng))
be such that [, 1(G") D G.

One may assume that, for each f € G, there exists i > iy, ng such that

f=fo® f))®1ne (T ®C) M, (5.10)
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for some fy € T/, fi € C;, and m > 2MK/r, where m = m(n)/m(i), T =
Vi o (Ti®Mui)), C; =V . (Ci®My i), and where ¥ = Vi 0o ®1; 00 Moreover,
one may assume that r(lTl/) <r/2forallt e T(A}).

Choose a large n such that m = Mo+ with My divisible by KM and 0 <[/ < KM.
Then define amap L : (T/ ® C)) ® M, — (I/ ® C]) ® M,, to be

L((fl] ®gi,j)mxm) = (fi,j)mxm S El(gi,j)mmelv

where
E] = diag(l(cl{)~, l(Cl{)~, ey 1(Ci/)N’ 0, O, ey 0)

i Mo

Note that L is also a contractive completely positive linear map from (7/®C)) ® M,,
to B, where we identify B with B ® M,,. (Note also that E; ¢ C; ® M,, but
E(gij))E €C l’ ® M,,.) We then extend L to a completely positive linear map from
B to B. Also define R : (T/ @ C)) ® M, = T/ @ C; to be

fii®gir fie®g2 - fimDgim

L1®g1 f2Pg2 - fomDP&m
) =g1.1, (5.11)

fm,l ® 8m,1 fm,2 ¥ 8m,2 - fm,m ® 8m.,m

where fj € T/ and g € C}, and extend it to a contractive completely positive
linear map B — B, where T/ @ C/ is regarded as a corner of (7; ® C;) ® M,, C B.
Then L and R are G-¢’-multiplicative. Hence [L]|p is well defined. Moreover,

[ r MK
d;(eg) =d;(L(ep)) < df(eTl/) + - < 3 + W =r forall t € T(B),

where ep and ey are strictly positive elements in B and T/, respectively.
Note that, for any f in the form (5.10), if f is written in the form (fx @ g jx)mxm>
then g;; = g11 and g = 0 for j # k. Hence one has

f=L()+R().
where R(f) may be written as

R(f) =diag{0,0,...,0, 0®g1.1),..., 0D g1.1)}.
———

l My

Hence for any g € G,
g =I[LI1(g) + Mo[R1(g).

Then, if g € (Go,1)+ C (Go)+, one has

My
g —[L1(g) = Mo[R](g) = K<<7)[R](g))-
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Alsoif ge GNK;(B,Z/kZ) (i =0, 1), one also has

—[L1(g) = Mo[R](g).

Since Mg =0 and M | My, one has g —[L](g) =

Since L is the identity on wi/,oo(Ti ® M) and i > ip, by (iii), [L] is the
identity map on G Nker pp. Since K;(S;) = 0 for all i, L induces the identity map
on G N K (B). It follows that L is the desired map. [l

Lemma 5.12. Let C = A(F, F», Bo, B1) € Cy and let Ny > 1 be an integer. There
exists o > 0 sattsfymg the following condition: For any order preserving homomor-
phism k : KO(C) — R such that, for any x € KO(C)+ \ {0} with Nok(x) > 1 and
k([1]) = 1, there exists t € T (C) such that

t(h) > o/ T(A(h)(s))du(s) forallhe Cy, (5.13)
s€[0,1]
k(x) = pc(x)(t) forall x € Ko(a), (5.14)

where A : C — C([0, 1], F3) is the natural embedding and T (b) = ZJ Lt (i (b))
forall b € F>, where F, = EB] \ My, ¥ : Fo — M, ;) is the projection map, tr;
is the normalized trace on M, (jy, and w is Lebesgue measure.

Proof. Let us write F| = @ﬁ:l Mg ). Denote by g; : F1 — MEg(;) the projection
map and 7; the tracial state of Mg(),i =1,2,...,[. Letw, : C — F) be the quotient
map and T : Ko(F,) — R be defined by T'(x) = Y_5_, pu,(,, 0 ¥jx0(x)(tr;) for all
x € Ko(Fy).

Define homomorphisms B : C — F> by B(1¢) := 1p, — Bo(1F,) and B{(1¢) :=
1r, — B1(1F,) (at least one of them is not zero as C is not unital). We may write
C= A(F[, F2, By, B ), where F|" = Fi ®C and B;” = B; 69,3,-’, i =0, 1. Denote
by g;+1 : F{” — C the projection map and 7~ :C—>F | the quotient map which
extends .. Recall that T ([, (7, (1#))]) = k and for any projection p € M, (5),
T(p) =mT By (x, (1g)]) = mk.

Let p1, p2,..., ps € M,,(C) be a set of minimal projections for some integer
m > 1 such that they generate I(O(G)Jr (see Theorem 3.15 of [Gong et al. 2020a]).
There is o9 > 0 such that oymk < 5. Choose o := gy/2Ny. Since Nok (x) > 1 for
all x € KO(C)Jr \ {0}, for any p € {pl, D2, ..., Ps}, we have

Nok ([p]) — 00T o (Boom.)(p) > 0. (5.15)
Define I : Ko(t‘v) — R by
['(x) =«k(x) —00T o (By ome)s0(x) forallx e Ko(a). (5.16)

By Proposition 3.5 of [Gong et al. 2020a], 740 : KO(E) — Ko(F[") is an order
embedding. It follows from Theorem 3.2 of [Goodearl and Handelman 1976]
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that there is an order preserving homomorphism I'” : Ko(F;") — R such that
[omeso=T". Putaj:=I"([e;]) >0, wheree; :=gjom, (1), j=1,2,...,1+1.
Define, for (f,b) € C™ ={C([0, 1], F2)® F[": f(0) = B, (b) and f(1) = B (D)},

k I+1
H(f.b) =0 f 20 dm(s)+ Y a;fi(qi(r7 (). (5.17)
j=175€®: i=1

For any projection p = (p, 7, (p)) € MN((’E) (for some N > 1), we have

pc(pD(@) =t(p, 7, (p))

s€(0,1)

k I+1
o) / tr(p) () dm(s) + e i Gy (p)))
j=1 i=1

=00T o (By ome)so([pD) + T ([, (p)D) =k ([pD. (5.18)

Moreover, if h = (f, b) € C4, we have

k
f(h)ZJZ/ trj(f)(s)dm(s)=o/ o T du(s). O
i—1Ys s€lv,

<(0,1)

Lemma 5.19. Let C € Cy and let G| C Aff(A) be a countable subgroup such that
G| NAffL(A) = {0}, where A is a metrizable Choquet simplex. Let 1) : KO(E) —
G 1+7Z1 A be an order preserving homomorphism, where 1 o € Aff(A) is the constant
Sfunction with value 1 (with Aff.(A) as the (strictly) positive cone of Aff(A)—see
Definition 2.2). Then there is a morphism n~ : Cu™ (5) — G ULAff (A) in Cu
such that 0™ | g, & =1

Proof. Write C = A(By. B1. F1. F2), where Fi = @, M), F, = @';_; My).
and B; : F| — F, are homomorphisms. Recall that Aff(7(C)) is identified as a
subspace of C([0, 1], R') @ R¥ and Cu™(C) is identified with a subgroup of

Ko(C)uLSC([0, 1], Z") @ Z**! (5.20)

(see Proposition 3.6 of [Gong and Lin 2020a]). Since KO(E )+ is finitely generated
(see Theorem 3.15 of [Gong et al. 2020a]) by g1, g2, . . ., &s, there exists an integer
No > 1 such that

Non(x) > 15 forall x € Ko(C)4 \ {0} (5.21)

Let 0 > 0 be given by Lemma 5.12 for 2Nj.

Recall that the map p : K0(5 ) —> Aff(T(5 )) is injective (see Proposition 3.5 of
[Gong et al. 2020a] for example). By [Tsang 2005, Lemma 5.1], we may write
Aff(A) =1im,_, oo (R4 A,)), where a(n) > 1 are integers and A, : Re™ s Rat+D)
is an order preserving map which also preserves the canonical order unit. Let
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G, :=n(Ko(C)). Note that G, is a finitely generated subgroup of G;. Therefore
there is a sequence of subgroups G, » C R4 guch that G, = limy, 00 (Gp 2, An)
and A,|g,, is injective. Let G, ) = Gn2+Z-1and Gy := Gy +Z- 14.

Since K0(5 )+ is finitely generated, one obtains (for all large n) an order pre-
serving map 7y, : Ko(a) — R2™ guch that An.oo © Ny = N, Where A; o« is induced
by the inductive limit system. There exists n; > 1 such that, for all n > n;,

2Nona(x) > 1 forall x € Ko(C)4 \ {0} (5.22)

Write R4 = @fg’f R;. Define g; : | R*™ — R; to be the projection. Consider the
order preserving map ¢; o1, : Ko(C) — R which preserves the order unit. Since
0 1s injective, we may view Ko(a) as an order subgroup of C ([0, 1], R @ R+,
By Lemma 5.12, there is an order preserving map y,; : C([0, 1], R @ R - R,
such that y;, ; |K0(5) =g; on, and

Vi () > %/ T(h)(t)dp, (5.23)
[0,1]

where h e 5+\{0}, which we identify with the corresponding element in C ([0, 1], F>),
and £ is the associated affine function (for all large n > ny).
Define

Yo C([0, 11, RY @ R — R g5 (1,1(8)s ¥2(8)s - -+ Vst (©))

for all g. Note that y, | ¢, & =1 for all n. Define y : C([0, 1], R) R — Aff(A)
by y(g) :=An.co 0 ¥». Then y is an order preserving map which preserves the order
unit. It is linear and therefore continuous (with the supremum norm). The condition
An,oo 0 p = 1 implies that y | & = 1. Note also that the condition (5.23) implies
that, for each f e (C([0, 1], R) @ R\ {0},

y(f)(t) >0 forallteA. (5.24)

Then y~ extends to an order preserving affine map from LSC([0, 1], Z) @ Z¥+!
to LAff (A). Define n™ : Cuw(a) — Gy ULAff (A) by n7|g,@ = n and
N lLscqo.11.zhezc+ = ¥ lLsc(o.1].zy@zx+ - It is then straightforward to verify that
n~ is a map in Cu. ]

Theorem 5.25. Let A € D be with continuous scale and C € Cy. Suppose that there
is a strictly positive homomorphism o : Ko(a) — KO(AV) such that a([1]) = [17]
and a(Ko(C)) C Ko(A). Then there exists a homomorphism h : C — A such
that hyo = o.

Proof. Since A is a stably projectionless Z-stable simple C*-algebra with stable
rank one (i.e., all C*-algebras in D have stable rank one [Elliott et al. 2020b,
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Proposition 11.11]), by [Robert 2012, Theorem 6.2.3] (see also [Elliott et al. 2020b,
Theorem 7.3; Robert and Santiago 2021, Theorem 6.11],

Cu™(A) = Ko(A) ULAST (T (A)). (5.26)

By Lemma 5.19, o extends to a morphism o™ : Cuw(a) — CuN(AV) in Cu. Let
ec € C be a strictly positive element with |lec|| = 1. Then a™ ({ec)) < [1#]. Let
e € A be a strictly positive element. Since A has continuous scale, d;(es) = 1
for all T € T(A). Therefore, by Theorem 7.3 of [Elliott et al. 2020b] (see also
Lemma 6.10 of [Robert and Santiago 2021]), o™ ({ec)) < {e4) in Cu™ (A). Since
A has stable rank one, by [Robert 2012, Theorem 1.0.1], there is a homomorphism
h: C — A such that Cu™ (h) = a” |cu~(c). In particular, h, = o. U

6. Reduction

This section is a nonunital version of the corresponding results in [Elliott et al. 2015].
Most of the results are taken from [Elliott et al. 2015] with some modification.

Lemma 6.1 [Elliott et al. 2015, Lemma 3.1]. Let A be a nonunital simple separable
amenable quasidiagonal C*-algebra satisfying the UCT. Assume that A= AR Q. Let
a finite subset G of;f® Q and ey, gy > 0 be given. Let py, pa, ..., ps € Mm(AV(X) 0)
(for an integer m > 1) be projections such that [1], [p1], [p2], ..., [ps] € KO(Z(X) 0)
are Q-linearly independent. (Recall that KO(X ® Q) = KO((X RO Q)=
K0(§® Q) ® Q.) There are a G-e1-multiplicative completely positive linear map

0:AR® Q — Q witho(l) aprojection satisfying
tr(o (1)) < &

(where tr denotes the unique tracial state on Q), and § > 0 such that for any

ri,ra, ..., rs € Qwith
lril <6, i=1,2,...,s,

there is a G-e1-multiplicative completely positive linear map [ : A® 0 — Q with
w(1) = o (1) such that

[o(p)]—[u(p)l=ri, i=1,2,...,5.

Proof. Let us first consider the case m = 1. The proof in this case is exactly
the same as that of Lemma 3.1 of [Elliott et al. 2015]. The only place in that
proof mentioning simplicity is the lines shortly after equation (3.1), where one
claims that the algebra is the closure of an increasing sequence of unital amenable
RFD C*-algebras. We replace this part as follows: Since A is simple, separable,
amenable and quasidiagonal, by Corollary 5.5 of [Blackadar and Kirchberg 2001],
A is a strong NF-algebra. Since Q is a strong NF-algebra, by Corollary 7.1.6 of
[Blackadar and Kirchberg 1997], A® Q is a strong NF-algebra. It follows from
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Corollary 6.16 of [Blackadar and Kirchberg 1997] that, indeed, A® Q is the closure
of an increasing sequence of unital amenable RFD C*-algebras. The rest of the
proof of this case remains the same.

If m > 1, one notes that there are p; € A® Q such that [p]] = (1/m)[p;],
i=1,2,...,s. Then [1],[p}], ..., [p;] are Q-linearly independent. Replace r;
byri/mfori=1,2,....s. fo([p;]) —n(p;]) =ri/mfori=1,2,...,s, then
o(lpi) —pu(pi)=rifori=1,2,...,s. 0

Corollary 6.2 [Elliott et al. 2015, Lemma 3.1]. Let A be a nonunital simple separa-
ble amenable quasidiagonal C*-algebra satisfying the UCT. Assume that A= A® Q.
Let a finite subset G ofAv and €1, & > 0 be given. Let py, p2, ..., ps € Mm(X) (for
some integer m > 1) be projections such that [1], [p1], [p2], ..., [ps] € Ko(’AV) are
Q-linearly independent. There are a G-g1-multiplicative completely positive linear
map o : A— Q with o (1) a projection satisfying

tr(o (1)) < &

(where tr denotes the unique tracial state on Q), and § > 0 such that for any
ri,ra, ..., rg € Qwith
lril <6, i=1,2,...,s,

there is a G-g1-multiplicative completely positive linear map | : A— Q, with
w(l) =0 (1), such that

[o(p)]—[n(pd)l=ri, i=1,2,....5.
Proof. Let B = A® Q. One has the split short exact sequence
0— A®Q—>AV®Q—> 0 — 0.
This gives the split short exact sequence
0— Ko(A® Q) > Ko(A® 0) > @ — 0.

Since AZA®R Q, Kg(A) =Ko(A® Q) and KO(AV) = Ko(A® Q)P Z is a subgroup
of Ko(A® Q). Apply Lemma 6.1 to B, and then choose o |7 and p|3. U

Remark 6.3. Let A= A® Q be a separable stably projectionless simple C*-algebra.
Suppose that Ko(A) # {0}. Then there exists x = [p] — k[13] € Ko(A) \ {0},
where k € N, and p € M,,(Z). If [p] = r[13] for some rational number r € Q,
then x = (r — k)[13]. Since x # 0, r # k. But then either x = (r — k)[13] or
—x = (k—r)[15] is a nonzero positive element in K((A). This contradicts the fact
that Ko(A)+ = {0}. In other words, [p] and [1 ;] are Q-linearly independent. Put

p1:= p. Choose r; # 0 and let [0 (p1)] — [ (p1)] =r1. Then [u](x) # [0](x). In
other words, at least one of the maps |4 and o |4 is not zero.



ON CLASSIFICATION OF NONUNITAL AMENABLE SIMPLE C*-ALGEBRAS, II1 349

Lemma 6.4 [Elliott et al. 2015, Lemma 3.3]. Let A be a nonunital simple separable
amenable quasidiagonal C*-algebra satisfying the UCT. Assume that A= A® Q.
Let G be a finite subset of A, let €1, &, > 0, and let p1, p2, ..., ps € Mm(AV) (for
some integer m) be projections such that [14], [p1], [p2], ..., [ps] € KO(AV) are
Q-linearly independent. There exists § > 0 satisfying the following condition:

Let vy, : Ql — 0", k=0, 1, be unital homomorphisms, where l,r € {1,2,...}.
Set

D= {xe@": Yo)o(x) = (s} C Q.

There exists a G-&1-multiplicative completely positive linear map X : A— Q! such
that X(173) is a projection, with the properties

T(Z(17) <&, TET(Q),
[(ZAp], [Z2(p)leD, j=1,2,...,5,
and, foranyry,ry, ..., rs € Q" satisfying
|rijl <8,
where ri = (ri1,ri2, ..., rir), i =1,2,...,s, there is a G-g1-multiplicative com-
pletely positive linear map . : A — Q", with u(13) a projection, such that
[Yoo Z(p)]—lu(p)l=ri, i=12,....slp(dp]=[Yoo Z(7)]

Proof. The proof is exactly the same as that of Lemma 3.3 of [Elliott et al. 2015]
but using Lemma 6.1 (and Corollary 6.2) above instead of [Elliott et al. 2015,
Lemma 3.1]. O

Lemma 6.5 [Elliott et al. 2015, Lemma 3.4]. Let A be a nonunital simple separable
amenable quasidiagonal C*-algebra satisfying the UCT. Assume that A= A® Q.
Let G C A be a finite subset, let €1,y > 0 and let py, p2,..., ps € Mm(g) be
projections such that [13], [p1], [p2]. ..., [ps] € Ko(;f) are Q-linearly independent.
Then there exists § > 0 satisfying the following condition:

Let Yy, : Ql — Q", k=0, 1, be unital homomorphisms, where l,r € {1,2,...}.
Set

D= {x e : (Yo)w) = W) Q.

There exists a G-e1-multiplicative completely positive linear map X : A— Q! such
that ¥ (17%) is a projection, with the properties

1(Z(1y) <&, TeT(Q)),
[E(l;)], [2(pi)] €D, i=1,2,...,s,

and, foranyry,ra, ..., rs € Q satisfying

i, jl <8,
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where ri = (ri1,ri2, ..., Fi1),i =1,2,...,5, there is a G-e1-multiplicative com-
pletely positive linear map ju : A — Q!, with u(13) = X (15), such that

[(X(pD)] = [u(p)l=ri, i=12,...,5s.

Proof. The proof is exactly the same as that of Lemma 3.4 of [Elliott et al. 2015], also
using Lemma 6.1 (and Corollary 6.2) instead of [Elliott et al. 2015, Lemma 3.1]. [J

Lemma 6.6. Ler A be a nonunital simple separable amenable C*-algebra with
T (A) = T4a(A) # @ which satisfies the UCT. Assume that A® Q = A and A have
continuous scale. For any o > 0, ¢ > 0, and any finite subset F of A, there exist a
finite set of P C Ko(A) and § > 0 with the following property:

Denote by G C Ky(A) the subgroup generated by P. Let k : G — Ky(C) be a ho-
momorphism which extends to a positive homomorphism k™~ : G+Z-[137] — Ko(C)
such that k™~ ([13]) = [1c], where C = C([0, 1], Q), and let A : T(C) — T (A) be
a continuous affine map such that

[Tk (x)) —pa(L(z))(x)| <6, xeP,teT(C). 6.7)

Then there is an F-e-multiplicative completely positive linear map L : A — C such

that
[toL(a)—A(t)(a)| <o, aeF,1eT(C). (6.8)

Proof. Let e, o and F be given. We may assume that every element of F has norm
at most one. Fix a strictly positive element e € A with |le|| = 1. Choose

0 <d <inf{t(f12(e)) : T € T(A)}.

This is possible since 7' (A) is compact.

Let 8; (in place of §), G, and P; (in place of P) be as assured by Lemma 7.2 of
[Elliott et al. 2020a] for F and ¢, as well as d. We may assume that 7 C G and
fi2(e), fi/a(e) €G. _

We may assume P; = {xy, x2, ..., x¢}, where x; =[q;]1—[g;], where g; € M,,,(A)
is a projection and g; € M,,,(C-17) is a scalar matrix. Take P~ ={13, p1, p2, ..., Ps}
such that x; is in the subgroup G generated by {[13], [p1], [p2]. ..., [ps]} (in
Ko(;f)). Deleting one or more of pi, p2, ..., ps (but not 13), we may assume that
the set {[14], [p1], ..., [ps]} is Q-linearly independent. Define

P={lpil—Ipil:1<i <s},

where p; € M,,(C-15) is a scalar matrix such that né (pi)=pi (1 <i <s), where
né : A — Cis the quotient map.

Note that p; = p; + y;, where p; € M,,(C-15) is a scalar projection and y; € A,
i=1,2,...,s. Letc; be therank of p;, i = 1,2,...,s. We may assume that
Go N Ko(A) is generated by P (by enlarging P if necessary). Then Gy is the
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subgroup of KO(X) generated by [13] and G. Therefore we may assume that
[pil=cill;] for some integer 1 <¢; <m,i=1,2,...,s. Choose M =14 m and
choose 0 < 07 < min{o, d/32} such that (1 —o7)/(1 +07) > 127/128.

Let 0 < 8, < 1 (in place of §) be as given by Lemma 6.1 for ) =61, &2 =01/4,G
and {p1, p2,..., ps}. Write y,-=(y§.f,)c)mxm, where yﬁf,)ceA. Choose g1={y§f)k:j, k,i}
and G, =GUG.

Put 63 = min{§,/M, 6,/32M, d/128}. We choose 0 < § < §3 and a finite subset
G3 D G, such that for any G3-§-multiplicative contractive completely positive linear
map L : A — B (any unital C*-algebra B), [L(p;)] is well defined and

IIL(p)] = L(p)ll <83, i=12,...5. (6.9)

Let us show that P and § are as desired.
Let « and X be given satisfying (6.7). We write « for k™ for convenience. Then
recall k([15]) =[1c]. Note that

AMT)(pi)=ci=t(p)), i=12,.... (6.10)

So, as k is positive, we may identify « ([ p;]) with a projection in M,,(C) as M,,,(C)
has stable rank one. Hence, by (6.7) and (6.10), for all T € T (C),

It ([piD) — pa(A () (ApiDl <8, i=1,2,...,5. (6.11)
Let A, : Aff(T (A)) — Aff(T(C)) be defined by
() (T) = f(A (7))
for all f € Aff(T(A)) and T € T(C). Identify 9,(T(C)) with [0, 1], and put
n = min(8, o1/12}. Choose a partition
O=to<ti<thh<---<thpj<t,=1

of the interval [0, 1] such that

A (8) (1)) = A(@)(tj-1)] < # g§€Gs, j=1,2,....n (6.12)

Since T (A) = Tqq(A), there are unital G3-6-multiplicative completely positive
linear maps W; : A — Q, j =0,1,2,...,n, such that

r o W;(8) = 1@l <. gebs (6.13)

Denote by \IJJ.N CA > Q the unitization (which maps 13 to 1p). Recall that
[pil=mi[13]+x;,i=1,2,...,s. It then follows from (6.9), (6.13) and (6.11),
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that, foreachi =1,2,...,sandeach j=1,2,...,n,
lee([V; " (p) D) — ([ (pi) DI
< | (W (pi) — (W (pi))] + 283
<283+ 2n + A (Pi) () — As(Pi) (20) |
<283+ 2n+28 + |trom,; (k ([pi])) — tromo(k ([pi]))]
=283+ 2n+26 <6353 < 8. (6.14)

(Here, as before, 7, is the point evaluation at ¢ € [0, 1].) We also have, by (6.12)
and (6.13), that

lr(W;(g)) —tr(W;1(e)l <3n, gebs j=12,....n. (6.15)
Recall that k(r)(m)) >d forall r € T(C). So we also have, by (6.12),
(W, (f1/2(€))) > 35d. (6.16)
Consider the differences
rij =W (p)) — (Yo (p)D), i=1,2,...,5, j=1,2,...,n. (6.17)

Recall that [\IJJ.”(p,-)] and [V, (p;i)] are in Ko(Q). By (6.14), |r; j| < 8. Applying
Lemma 6.1, we obtain a projection e € Q with tr(e) < o1/4 and G-6;-multiplicative
unital completely positive linear maps v/, Y tA—>eQe j=1,2,...,n,such
that

(Vo (POl =¥ (p)l=rij, i=1,2,....s, j=1,2,....n (6.18)
Consider the direct sum maps
T i=yYT OV A (1@)MA(Q)(1De), j=0,1,2,....n.
Since § < §;, these maps are G-6;-multiplicative. By (6.17) and (6.18),
[q>/j“(pi)] =[®5(p)], i=1,2,....s, j=1,2,...,n (6.19)
Define s : @ — Q by s(x) = x/(1 +tr(e)), x € Q. Choose a (unital) isomorphism

S:(1@e)M(Q)(1De) —> O
such that Syo = s.
Consider the composed maps (still G-§;-multiplicative and now unital)
®j:=S0d:A—Q, j=0,1,2,...,n

By (6.19),
[Dllp =[Pj-1llp, Jj=1,2,...,n,
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and by (6.15) and the fact that tr(e) < o01/4,
[tro®;(a) —tro®;_i(a)| < 317—1—? < 5 aeF, j=1,2,...,n. (6.20)
Moreover, by (6.16) and by the choice of o7,

tr(\Ilj(fl/z(e)))z%, j=12,...,n. (6.21)

Applying Lemma 7.2 of [Elliott et al. 2020a] successively for j =1,2,...,n (to
the pairs (®g, 1), (Adu; o @, Adu; 0 d3), ..., (Aduy—j0---0oAdu;o®,_y,
Adu,_j0---0Adujod,)), one obtains, for each j, a unitary u; € Q and a unital
JF-e-multiplicative completely positive linear map L; : A — C([t;_1, ¢;], Q) such
that

TTt OL] :Adulodbl, (622)

JT()OL1=CDO, |

and
ny,_oLj=m;, oLj 1, moL;j=Adujo---0Adujo®;, j=2,3,...,n. (6.23)
Furthermore, in view of (6.20), we may choose the maps L ; such that
ltrom;oLj(a)—A(trom;)(a)| <o, teltji—y,tjl,aeF, j=1,2,...,n. (6.24)

Define L : A — C([0,1], Q) by myo L =m o L;, t € [tj—1,t], j=1,2,...,n
Since L, j =1,2,...,n, are F-e-multiplicative (use (6.22) and (6.23)), we have
that L is a F-e-multiplicative completely positive linear map A — C([0, 1], Q). It
follows from (6.24) that L satisfies (6.8), as desired. U

6.25. Let Abe a separable stably projectionless simple C*-algebra with continuous
scale. Recall that ‘L’C is the tracial state of A which vanishes on A and T(A)
{s- t@ +({1—s)-1:71€T(A), 0<s <1} (see 2.12). For each projection p € M,, (A)
one may write p = p+-a, where p is a scalar matrix in M,,(C-13) anda € M,,(A)s.a..
Let p have rank k(p). For each v € T(A), define I‘A(‘L')([p]) = k(p) + t(a)
and rA(r )([p]) = k(p). This gives a map rj : T(A) — Hom(Ko(A) R). Let
ra:T(A) — Hom(Ko(A), R) be defined by r4(t) =73(1)|kya) forany v € T(A)
and ry : T(A) — Hom(KO(AV), R) be defined by 7, =rzlr(a).

Suppose that C is another separable stably projectionless simple C*-algebra with
continuous scale and suppose that there is an isomorphism

[': (Ko(A), T(A), pa) = (Ko(C), T(C), pc). (6.26)

Recall that this means I'| g, 4) is a group isomorphism, I'|7(4) is an affine homeo-
morphism, and p4 (I "'(1))(x) = pc(1)(T'(x)) for x € Ko(A) and T € T(C).
Then I" extends to an order isomorphism

Y (Ko(A), Ko(A)y, [15], T(A), r7) = (Ko(C), Ko(C)+, [1¢], T(C), rg)
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by defining I'"([13]) = [1#] and F”(té‘) = rg. To see this, we note that ko)
is an isomorphism and F;( I is an affine homeomorphism. If y :=m - [137]+x >0
for some positive integer m and x € K¢(A), then there is a projection p € Mg (A)
for some integer K > 1 such that [p] = y. Assume that y # 0. Then p 7~ 0. Choose
ace (pAp)}r \ {0}. Then a < p. It follows that t(a) > 0 for all T € T (A). Therefore
7(p) > 0 for all T € T(A). This also means that m +r4(7)(x) > 0forall T € T(A).

On the other hand, né (p) # 0, where ﬂé : A — Cisthe quotient map. It follows
that rq’:“ (p) > 0. This implies that #(p) > 0 for all ¢ € T(Z). One checks that, for
teT(C),

A (@)@ =y TN @ m+x) =m+ra@H(@)(x) > 0. (6.27)

Also
(@) EEN ) =ra@d)(y) =m > 0. (6.28)

This implies that
re @) =r (M) ™H () > 0. (6.29)
Therefore I'™ is an order isomorphism.

Lemma 6.30. Let A be a nonunital but o-unital simple C*-algebra with strict
comparison for positive elements which has almost stable rank one. Suppose that
QT(A) = T(A), A =Ped(A) and the canonical map 1 : W(A) — LAff, (T (A)%)
is surjective. Fix a strictly positive element a € A. Then A has an approximate
identity {e,} such that e, Ae, has continuous scale of each n. Moreover, eyae, ~ e,
for all n.

Proof. Let a € Ay with |la|| = 1 be a strictly positive element. We may assume
that a is not Cuntz equivalent to a projection as A is not unital. For ¢; = %, by
Lemma 7.2 of [Elliott et al. 2020b], there are 0 < &, < }L and e; € A such that
0 < fe(a) < e1 < fe,(a) and e; Ae; has continuous scale (see also Lemma 5.3
of [Elliott et al. 2020b], for example). By an induction and repeatedly applying

Lemma 7.2 of [Elliott et al. 2020b], one obtains a sequence {e,} C A ﬂr such that

0= fe, (@) =en = fe,,(a), (6.31)

e, Ae, has continuous scale and 0 < ¢, < 1/2",n=1,2,.... Since { f,, (a)} forms
an approximate identity, one then verifies that {e,} also forms an approximate
identity for A.

To see the last part of the lemma, we note that

en ~ enenen < ey fo,. (a)e, Sepae, < e,. (6.32)

It follows that e,, ~ e,ae, for all n. O
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The following is a nonunital version of Theorem 2.2 of [Winter 2016].

In the next statement, as in Definition 5.3 of [Elliott et al. 2020a], S is a fixed
class of nonunital separable amenable C*-algebras C such that T(C) # & and
0¢ T(C)”. A simple C*-algebra A is said to be in the class R if A is separable,
has continuous scale and 7 (A) # <.

Theorem 6.33 (cf. [Winter 2016, Theorem 2.2; Elliott et al. 2020a, Theorem 5.4]).
Let A be a stably projectionless separable simple C*-algebra with continuous scale
and with dimy,c A =m < o0.
Fix a positive element e € A with 0 < e <1 such that T(e), T(f1,2(e)) =19 >0
forallt € T(A). Let
C=U2 G

be a nonunital simple C*-algebra with continuous scale, where C, C Cp11 and
C, € S, which also satisfies condition (1) in [Elliott et al. 2020a, Definition 5.3].
Suppose that there is an affine homeomorphism I" : T (C) — T (A) and suppose that
there is a sequence of completely positive contractive linear maps o, : A — C with
im(o,) C C, and a sequence of injective homomorphisms p, : C, — A such that

11)nc‘>1o llon(ab) — o0,(a)o,(b)|| =0, a,beA, (6.34)
ll)n;o sup{|t oo, (a) =T (t)(a)|:t € T(C)} =0, acA, (6.35)
li)ngo sup{|t(ppo00,(a)) —t(a)|: T € T(A)} =0, acA. (6.36)

Then A has the following property: For any finite set F C A and any € > 0, there
are a projection p € M4(m+2)(g), a C*-subalgebra S € pMyon+2)(A)p with S € S
and an F-e¢-multiplicative completely positive contractive linear map L : A — S
such that

D) IIlp, lagny2) alll < e foralla € F,

(2) p(agny2y®a)p € S forall a € F,

(3) IL(a) — p(lagn+2) ® a)pll <& foralla € F,
@) p~ en in Mygni2)(A),

(5) (L. T(a(le)) > 35
(6) (lagn+2) — PYMagn+2)(A)(Lagn+2) — p) € R and

(7 t(f14(L(e))) = %O)Ls(Cl)for allt € T(S) (see Definition 2.22 for \;).

forall t € T(Magmi2)(A)),

Proof. This is a slight modification of Theorem 5.4 of [Elliott et al. 2020a], which
is a variation of Theorem 2.2 of [Winter 2016]. The proof is almost the same as that
of Theorem 5.4 of [Elliott et al. 2020a], which itself is a repetition of the original
proof of Theorem 2.2 of [Winter 2016].



356 GUIHUA GONG AND HUAXIN LIN

Since A has finite nuclear dimension, one has that A = A ® Z (see [Winter 2012]
for the unital case and [Tikuisis 2014] for the nonunital case). Therefore, A has
strict comparison for positive elements (see Corollary 4.7 of [Rgrdam 2004]).

The proof is essentially the same as that of Theorem 2.2 of [Winter 2016]. We
give the proof in the present very much analogous situation for the convenience of
the reader. Let e € A} with |le|| =1, T(e) > rg and T(f,2(e)) > ro forall T € T (A).

Let (e,) be an (increasing) approximate unit for A. Since A € R, and A is
also assumed to be projectionless, one may assume that sp(e,) = [0, 1]. Since
dimpyc (A) <m, by Lemma 5.2 of [Elliott et al. 2020a], there is a system of (m + 1)-
decomposable completely positive approximations

AL, FPoFle  oF"eC A j=12...

such that
pi(FYC A, 1=01,....m, (6.37)
gjlc(le) =1z —e;j, (6.38)
where e; is an element of (e,).
Write
<p;1) =<pj|Fng) and go}mH) =¢jlc, [=0,1,...,m.

Set F;mH) =C. Let w;l) =mov;for j=0,1,2,...,m+ 1, where

m+1

. 0 0
m.@Fj — F{'VSP2

k=0

is the projection. As in Lemma 5.2 of [Elliott et al. 2020a], one may assume that

lim oy Y1 pa—eyP@)=0, 1=01,....m acA. (639
]—)OO N N

Note that (pj.l) : F;l) — A is of order zero, and the relation for an order zero map is
weakly stable (see (P) and (P1) of [Kirchberg and Winter 2004, Proposition 2.5]).
On the other hand, if i is large enough, then o; o goﬁ.[) satisfies the relation for
order zero to within an arbitrarily small tolerance, since o; will be sufficiently
multiplicative. It follows that there are order zero maps

~(l l
gz);z : FJO — C;
such that
. ~(l ) !
1im 1|} (c) — (@ ()| =0, ceF.
1—> 00 N N

We identify C; with S; = p;(C;) C A,0;: A — C; with p;oo; : A— §; € A and
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(EE{) with p; o @;[3 There is a positive linear map (automatically order zero)

GV Col 15—0i(e;) €5 =C"(S;. 1) CA, ieN.

Note that ) ) )
~(m m "
g W =oaile; W), reF"T=C, (6.40)

where one still uses o; to denote the induced map A §,
Note that foreach!/ =0,1, ..., m,

lim [[£@E)@ = oi(f@ )N =0, ceE)e. feCo((0. 1]

(see [Winter and Zacharias 2009, 4.2] for the definition of f (i), where ¥ is an
order zero map) and hence, from (6.36),

1lim sup |T(f(@ D) = f@ )N =0. ce(F)y, feColO. 1)y

[=00 1T (A)

Also note that

limsup || £ (@ D@l < 1f @)@l ce(F)y, feCol(O. 1)y

1—00
Applying Lemma 5.1 of [Elliott et al. 2020a] to (¢))ien and ¢’ for each
[=0,1,..., m, we obtain contractions

s e My(a) S My(A), i eN,
such that, for all c € F ;l),
1im s\ (14® ¢ (©)) — (e11 ® @ ()5 ]| = 0. (6.41)
1—> 00
1im (1,1 ® @) ()s D" —er1 @ ¢k (o)l =0. (6.42)
11— 00
Note that sp(e;) = [0, 1]. Put Co = Co((0, 1]). Define
Aj(f) =inf{z(f(e;)): T € T(A)} forall f e (Co)y\ {0} (6.43)

Since A is assumed to have continuous scale, T'(A) is compact and A ;( f ) > 0 for
all f € (Co)+ \{0}. For I =m + 1, since sp(e;) = [0, 1], by considering A ; for
each j, since i is chosen after j is fixed, by applying Corollary A.16 of [Elliott
et al. 2020a], one obtains unitaries

~

s e A ieN,

Jri
such that D) D)
. m m
lim ”Sjj ej— G,'(ej)sj’l. | =0,
1—> 00
and hence

. 1 1
Tim [|s1 V(13 —ej) — 1z — 03 (e sV =0.
1—> 00
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By (6.38) and (6.40), one has

tim [|s{7 0"V (e) = "V (0s V=0, ce F"V =C.
i—00 ’ ’ ’ 7

(m+1)
Jsi

(m+1)

Considering the element e; | ® s € My® A, and still denoting it by s i

one has

. 1 1 - 1 1 1
Tim [|s{"0 (14 ®<P§~m+ ') = (er ®§0§-f7+ )(C))SYT;Jr 1=0, ce F;er '=C
1—> 00

Js
and
(r1@¢) @s T GITT = e @) )
Therefore,
1im [Is¢)(1a® ¢ () — (e1.1 @ ¢ (c)s ] =0, (6.44)
11— 00 ‘
lim [|(e1,1 ® @) =gl =0 (6.45)
oo 1,1 Dji IR R Qj,i =Y, .

forc e F;l),lzo, 1,...,m+1. Leto; ‘A (Nfi and p; : (~7,- — A denote the unital
maps induced by o; : A — C; and p; : C; — A, respectively.
Consider the contractions

s = 6ien e Ma® Ao, 1=0.1,....m+1, j=12,....

By (6.44) and (6.45), these satisfy

V(1@ e ) = (e11 @ 55 (0" (©)s?,

(e11® 505 @NsV ) = (11505 ().
where

o0 o0 o0 o0
6:2%“@/@6‘; and ,5:1_[6;/@6;%(;)00
n=1 n=1 n n

are the homomorphisms induced by &; and p;, and the map ¢ : A— (Z)c>o is the
canonical embedding. Let

I (D)oo = (Aoo)oc

be the embedding induced by the canonical embedding ¢ and let
7t (Ao = (Aoc)oo

denote the homomorphism induced by the composed map

56 A= (A)eo.
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Foreach!/=0,1,...,m+1, let
" 1_[ F;l) / @F}l) — Ao and YD :A - HFJ@ / @ FJQ) (6.46)
J J J J

denote the maps induced by gz);[) and 1//](.1).
Consider the contraction
50 =(57) e My ® Ao e
Then
50140109 (@) = (1,1 @79V ¥ P @)V, aeA,

(e11® 79V (@)Ns D) = (e1.1 @ 70V ().

By (6.39), one has
¢ VU pua)=¢"¥ @), aeA.

Hence [¢Vy D (17), «(b)] =0and (PO (1 1)) = @Dy D)) 20(b!/?)
for any b € A,. It follows that
@Ou PN 2ia) e C (VPP (A)) forace A,

and hence

§0 (1@ @ 1)) (14 ® 1))
=510 00 @)
= (11 7@ ¥ 7) u(a))s?
= (e11 @ 7u(a) (@YD 1)) )5"
= (1.1 ®@7(@))(er,1 @ 7@V ¥V 1) HFV . (6.47)

Set

m+1
b= e ® e @7 ¥ (17)"*5Y)
=0
1 - ~
e11® GV (1 @' P 1 7))%) € My12(C) ® Ma(C) ® (Ano) oo-
=0

~

3

~

Then
m+1
vt = Z e11® 1 @7 v P(U))=er1®e1®@7(17).
1=0
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Thus, v is a partial isometry. Moreover, for any a € A,

V(142 @ 14 @ 1(a))

m+1
=Y e®GE 10y 1n"M (i 0u(a)

=0

m+1 ~
=Y e®(e11®7 @) (e @@ P17 %5Y)  (by (6.47))

=0 m—+1 ~
=(e11®e11®7@)) Y e ®er1 @7 @017 %50)

=0

=(e1,1 Q€11 @y ((a)))v.
Hence, we obtain
0 (12 ®14Q1(a) = 0% (e1.1®e1.1Q71(a) 0 = (1,142 Q14Q11(a)) T*V, a € A.
Then for any finite set GC A and 8> 0, there are i €N and v; € M, 12(C)QM4(C)QA
such that

vivf =e1®e1 ®pi(lg) =er1®e1 1 ®17, (6.48)

Ivfvi, ln2 ® ly®all| <8 forallacG,  (6.49)

[0/ Vi (Ln2 @ L4 ®a) — v (e1,1 ®er,1 ® pi6i(a))vi|| <8 forall aeg, (6.50)

15r¢

22 forallteT(A). (651)

T(piooi(e)), T(fi2(pio0i(e)))=
Define «; : 3’1 = M2 @My ® A by

Ki(s) = v;"(e1,1 @e1,1 ® pi(5)v;.
Note that
ki(Si)) S My 2 @My R A.
Then «; is an embedding; and on setting p; = LGy = viv;, we have
(i) pi~e1®e,1®17,
(i) I[pis Im+2® 14 ®alll <8,a €g,
(i) pi(lp2® 14 ®a)p; €5 ki(S;), a €.
Note that A is Z-stable (by [Winter 2012]) and hence has strict comparison (by
[Robert 2016]). Let ¢’ € (1agnt2) — Pi) Magn+2)(A)(lam+2) — pi) be a strictly
positive element. By (i), d;(¢’) = t(lagn42) — pi) = 2(14(m+2) —e11®e,1®1%)
for all T € T(A), where 7 is naturally extended to A. Since A and M4(n42)(A)
have continuous scale, 7 — d; is continuous on 7 (A). Hence

(L4m+2) — Pi)Magny2)(A)(Aamt2) — pi)
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also has continuous scale (see Proposition 5.4 of [Elliott et al. 2020b]) and is still
in the reduction class R (so condition (6) holds).

Define L; : A — «;(S;) by L;(a) = v (e1,1 ®e1,1 ® p;(0i(a)))v; for all a € A.
Then

(iv) ILi(a@) — pi(lagmi2) @ a)pill < 6 for all a € G and
) 1L, T(fiallieN) = g
Let 7; € T(k;(S;)). Then 7; o L; is a positive linear functional. Let ¢ be a weak
*-limit of {7; o L;}. Note that, for any % > & > 0, since A has continuous scale,
there is e4 € A with |les|| = 1 such that 7(e4) > 1 —¢/2 for all T € T(A). By
(6.36) (see also (6.48)), we may assume that 7; o Li(eq) > 1 — ¢ for all large i. It
follows that 7(e4) > 1 — &. Hence ||| > 1 — & for any % > ¢ > 0. It follows that
is a state of A. Then, by (6.34) and (6.36), ¢ is a tracial state of A. Therefore, with
sufficiently small § and large G (and sufficiently large i), also by (6.51), we may

assume that Tro

1(f1/4(Li(e))) = % forall 7 € T (x;(S;)). (6.52)

Recall that «;(S;) = C;. Fix (a large i) above and set S = «;(S;) and L = L;.
Recall also that A;(Cy) < 1. So (6.52) also implies that

for all T € T (M4n42)(A)).

t(fi7a(L(e))) = SSﬂ)»S(Cl) forall t € T(S). (6.53)

The conclusion of the theorem follows from (i),(ii), (iii), (iv), (v), and (6.53). [

Theorem 6.54 (cf. [Elliott et al. 2020a, Theorem 5.7]). Let A be a stably projec-
tionless separable simple C*-algebra with continuous scale and with dimpy. A =
m < oQ.

Suppose that every hereditary C*-subalgebra B of A with continuous scale has
the following properties: Let eg € B be a strictly positive element with ||eg|| =1 and
t(eg) > 1— 6—14 forall T € T(B). Let C be a nonunital simple C*-algebra which is
an inductive limit C = Uflozl C,, where C,, C Cy41 and C,, € Cy, with continuous
scale such that T (C) = T (B). For each affine homeomorphism y : T(B) — T (C),
there exist sequences of completely positive contractive linear maps o, : B — C
with im(o,) C C,, and injective homomorphisms p, : C,, — B such that

lim ||o,(xy) —o0,(x)o, ()| =0 forallx,y e B, (6.55)
n—oo

Tim sup{lt o0, (b) =y~ ()(B)|:1 € T(C)} =0 forallbeB, (6.56)
Tim sup{|t(p, 00,(B) —T(B)| : T € T(B)} =0 forallbe B. (6.57)

Suppose also that every hereditary C*-subalgebra A is tracially approximately
divisible. Then A € D.
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Proof. The proof is exactly the same as that of Theorem 5.7 of [Elliott et al. 2020a].
By [Tikuisis 2014] (see also [Winter 2012]), A’ ® Z = A’ for every hereditary
C*-subalgebra A’ of A. It follows from [Robert 2016] that A has almost stable
rank one. Let B be a hereditary C*-subalgebra with continuous scale. Then B has
finite nuclear dimension (see [Winter and Zacharias 2010]). By [Tikuisis 2014]
again, B is Z-stable. It follows from Theorem 6.6 of [Elliott et al. 2011] that the
map from Cu(B) to LAff+(f(B)) is surjective. Note that the map from W (B) to
LAff, (T (B)) is also surjective. We apply Theorem 6.33 above and Lemma 5.5
of [Elliott et al. 2020a].

Since B has continuous scale, we may choose a strictly positive element e € B
with [le]l = 1 and ¢’ € B, with |l¢’|| < 1 such that fi»(e)e’ =€’ fi/2(e) = ¢’ and
d:(fi2(e") >1-1/(128(m+2)) forall t € T(B). Let 1 > ¢ >0, F C B be a finite
subset and b € B, \ {0}. Choose by € B\ {0} such that 64(m+2)(bg) < (b) in Cu(A).
Since we assume that B is tracially approximately divisible (see Definitions 10.1
of [Elliott et al. 2020b] or 5.6 of [Elliott et al. 2020a]), there are ¢p € B+ and a
hereditary C*-subalgebra Ag of B such that ey L Man42)(Ao), eo S b and

dist(x, By 4) < for all x € F U {e},

&
64(m—+2)
where B 4 C Bs :=egBey @ M4(m+2)(A0) C B and

4(m+2)
Bia=xo®x1®x1B---Px1):x0 €eoBeg, x1 € Ap}. (6.58)

Without loss of generality, we may further assume that 7 U {¢’} € Bj 4. Let
P : By — My(n12)(Ag) be a projection map and PV : Myn12)(Ag) — Ao = Ag®er;
be defined by PM(a) = (13, ® e1)a(lz, ® ei1) for a € Mugni2)(Ag), where
{€ij}am+2)xa(n42) 18 @ system of matrix unit. Put o = {P(x) : x € F}. Therefore,
we may assume, without loss of generality, that ||egx — xeg|| < &/(64(m + 2)), and
there is e; € Myn12)(Ag) with 0 <e; <1 such that |le;x —xe1|| <&/(64(m+2)) and
ler P(x) — P(x)]| < &/(64(m +2)) for all x € FUle, &', fi/2(e), fi/a(@). fija(€).
Moreover, as the map from W (A)4 to LAff, (T (A)) is surjective by Lemma 6.30,
without loss of generality, we may assume that Ap has continuous scale.
Without loss of generality, we may further assume that 7 U {e} C By 4. Write

4(m+1)
X=x0+x1Dx1D---Dx;.

4(m+2)
Let 71 = {x1 : x € FU{e}} C Ap. Note that we may write x| Bx; ®--- P x| =
X1 ® l4gn+2). Note that dimy,ec Ag = m (see [Winter and Zacharias 2010]). Also,
Ay is a nonunital separable simple C*-algebra which has continuous scale. We may
then apply Theorem 6.33 to Ag with S = Cy. By Theorem 4.107, C = |72, C,
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where C,, € Cy, C,, C C11, and C,, satisfies condition (1) in Definition 5.3 of [Elliott
et al. 2020a]. Moreover, A;(C,) > % for all n. Put ro =1—1/(64(m + 2)). Choose
no=7/3B2(m+2)) and A = %. Thus, by applying Theorem 6.33, we have the
below estimates, with ¢ (b) = (E — p)b(E — p) for all b € M4n42)(Ao), where
E = 1M4<,,1+2>(AV(>)’ and p € M4(m+2)(;17)) is a projection given by Theorem 6.33,
and L : Ag — D1 C pMugu+2)(Ap) p is an Fi-¢-multiplicative completely positive
contractive linear map:

lx ® lagn+2) — (@1(x @ lagn42)) + L(x))]| < i for all x € F7, (6.59)

1
~ 4(m+2)
forall T € T(M4(m+2)(Ao)), (660)

T (@1 (P@). T (firzlp1(P@) Zro— 5

forall T’ € T((1 — p)Magm+1y(A0)(1 — p)), (6.61)

Dy € Co, D1 © pMagn+2)(Ao)p, (6.62)
T(L(PV () = rono

for all T € T (M4gn12)(Ao)), (6.63)

t(fi/a(L(PD(e)))) = ror forall t € T(Dy). (6.64)

de(p1(P(e)) <1

Let By = (1—p)Magn+1)(Ag)(1—p)DeoBep and ¢ : B — B be defined by ¢(a) =
@1(eaer) + epaeq for a € A. Define Ly : B — Dy by Ly (b) = L(P1V (e}’ be,?)).
Then both ¢ and L are F-g-multiplicative. Put

o < 1o
2 1+¢/(64(m+2))

Then, in addition to (6.64) and (6.63),

77:

lx —(e(x)+Li(x)|| <e for all x € F,
d:(p(e)) <1—n forallteT(B),
t'(p(e)), T'(fipplp(e)) =r—e forallt’ e T(By),
T(Li(e)) =ron for all T € T(B).
Note that these hold for every such B. Thus, the hypotheses of Theorem 5.5 of

[Elliott et al. 2020a] are satisfied. We then apply Theorem 5.5 of [Elliott et al.
2020a]. O

Theorem 6.65 (cf. [Elliott et al. 2015, Theorem 4.4]). Let A be a separable stably
projectionless simple C*-algebra of finite nuclear dimension which satisfies the UCT.
Assume that A has continuous scale, T (A) = Tqa(A) # &, Cu(A) = LAff (T (A)).
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Suppose that there exists a simple C*-algebra C with continuous scale such that
C =1limy,_, 5o (Cp, t,), where each C, = C,, ® Q and C, € Cy, and such that

(Ko(A® Q0), T(A® Q),ragg) = (Ko(C), T(C), rc). (6.66)
Then, A® Q € D.

Proof. Since A is simple, the assumption 7'(A) = Tyq(A) # <& immediately implies
that A is both stably finite and quasidiagonal. We may assume that A ® Q = A.
Let B C A be a hereditary C*-subalgebra with continuous scale. We may write
B = Her(b) for some b € Ay. Since A = A ® Q, there is ay € A such that
d: (apy®1y) =d; (b) for all T € T (A). Since we assume that Cu(A) = LAff (T (A)),
(ap ® 1y) = (b). By Theorem 1.2 of [Robert 2016], B = Her(ap ® 1y). However,
Her(ao ® 1y) = agAag ® Q. It follows that B = agAag @ U = B ® Q.

By Theorem 4.107, together with the assumption A = A ® Q, there is a simple
C*-algebra C =1lim,,_, o (C,, 1) With continuous scale, where each C,, is the tensor
product of a C*-algebra in Cy with Q and 1, is injective, such that

(Ko(A), T(A), ra) = (Ko(C), T(C), rc)
is given by I'. It follows that there is an order isomorphism
™ : (Ko(A), Ko(A)4, [17], T(A), r7) = (Ko(C), Ko(C)+, [1g], T(C), ).

We continue to write 7, and 1, » for the inclusions of i, : 5,1 — 5,,+1 and
In.oo: 5,1 — 5, n=1,2,.... Letus write I'a¢ and I"\; for the corresponding maps
from Aff(T (A)) to Aff(T (C)) and from Aff(T(AV)) to Aff(T(g)). Since A and C
have continuous scale, T(A) and 7' (C) are compact.

Let a finite subset F of A and ¢ > 0 be given. Fix a strictly positive element
e € A with |le|| = 1. Choose

0 <d <inf{t(fi2(e)) : T € T(A)}. (6.67)

This is possible since T'(A) is compact. Let 0 < o0 < min{d, ¢}/2'0. Since A has
continuous scale, one may choose e; = f/(e) for some % > ¢’ > 0 such that
T(e1) > 1 — 35 forall T € T(A). (6.68)

Without loss of generality, we may assume that e, f,2(e), f1/4(e) and e; € F.

Let the finite set P of Ko(A), the finite subset G; (in place of G) of A, and
8o > 0 (in place of §) be as assured by Lemma 7.2 of [Elliott et al. 2020a] for
F and &/4. We may also assume that, for any G;-§p-multiplicative contractive
completely positive linear map L from A,

I f1/2(L(e)) = L(fi2(e)] < % and || fer(L(e)) = L(fer ()]l < % (6.69)
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Choose a finite subset Py of projections in M,n(Z) (for some integer m > 1)
such that P C {[p] — [q] : p,q € Po}. We may assume that 137 € P. Write
Po={13, p1, P2, ..., ps}. Deleting some elements (but not 1,), we may assume
that the set

Po= {151, [p1), [p2l, - .., [ps]} C Ko(A)

is Q-linearly independent.

Choose &, = 8o /4m?. We may also assume, without loss of generality, that L™
is G1 U Po-8o-multiplicative, if L is a G;-§;-multiplicative contractive completely
positive linear map from A to a C*-algebra B, and L™ : My, (Z) — Mm(E) is the
usual extension of the unitization of L.

Put G = FUGy and § = min{e/8, §/2, d/2'%}. We may further assume, without
loss of generality, that every element of G has norm at most one.

Let 6; > 0 (in place of §) be as assured by Lemma 6.4 for G, § (in place of ¢),
and o/64 (in place of &;) and for Py. We may assume that §; <§.

Let §3 > 0 (in place of §) be as assured by Lemma 6.5 for G, §,/8 (in place of &)
and min{§; /32, 0/256} (in place of &) (and for Pp).

Let P; (in place of P) and §, > 0 (in place of §) be as assured by Lemma 6.6
for 61/8 (in place of ¢), min{é, /32, 0/256} (in place of o), and G (in place of F).
Replacing P and P; by their union, we may assume that P = P;. Note that we still
use the notation Py for the related set of projections.

By Lemmas 2.8 and 2.9 of [Elliott and Niu 2016], there are unital positive linear
maps

y 1 Aff(T (A)) — AFF(T (Cp,))

for some n; > 1 such that

lamoaroy () =Tag(Hll <minf-2o. 5, 2L rerum (670
(recall that f is the element in Aff(T(X)) corresponding to f € Ay C ZJF).

We may assume, without loss of generality, that for i = 1,2, ..., s, there are
projections P; eM, (C,,l) such that I'" ([ p;]) =1, 00([1’1]) To s1rnp11fy notation,
assume that n; = 1. Let G denote the subgroup of KO(A) generated by P, and Go =
Ko(A)NGy. Since G is free abelian, there is a homomorphism I'" : Gy — KO(Cl)
such that

(t1.00)x00T[G, =TlG, and (11.00)s00 T =T" 5.
We may assume (since P is a basis for G) that

C'dpi)=1[pl, i=12...,s. (6.71)
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Since the pair (I, I'™| Ko(A)) is compatible, as a consequence of (6.70) and (6.71)

we have ~ N ] 83 .
||pl{—y(p,-)||oo<m1n{52,?}, i=1,2,...,s (6.72)

Write
Ci = o, ¥1, 0", O
={(f.a) € C([0,1], ") & Q" : £(0) = Yo(a) and f(1) = Y1 (a)},
where ¥, ¥ : Q' — Q" are homomorphisms. Note that since we assume that
Ko(Cy1)+ = {0}, Cy is stably projectionless.

Set 17 := idgr and 1’ := idp,. Define ;" : Q' ® C — Q" by y;(a,c) =
Yola) + (17 —yo(19))c for all (a,¢) € Q' ®C (a € Q' and ¢ € C), and define
Y Q'®C — Q" by Yy (@, ¢) = Yi(a) + (1" — ¢y (1))c for all (a,c) € Q' @ C.
It is understood that if v is unital, ¥;” = v, and if ¥ is unital, ¥|" = ;. We
then identify

Ci=Wy . ¥7. 2. Q"
={(£,b) €C([0, 1], Q") & (Q"®C) : f(0) = Yy (b) and £ (1) =y (b)}.
Denote by
7e:Ci— Q0 (fia)>a, and x7:Ci— Q'®C, (f,b)>b
the canonical quotient map, and by j : C; — C([0, 1], Q") the canonical maps

J((fra)=f. (f.a)eCy.

For convenience, in what follows, we also consider :é 1 ® Q. We continue to use
¥, for the extension 77y (a, x) := Yo(a) + (1" — Yo (1)x for all (a, x) € Q' ® Q
(where a € Q' and x € Q), and define

Y QM = 07 (a,x) e Y(@) + (17 =y (1D)x
for all (a, x) € Q'T!. We also identify
C1®Q={(f,b) €C([0, 11, Q") ® Q"' : £(0) = ¥y (b) and £ (1) = Y7 (b)}.

We also continue to write 7r,” for the extension C1® (0] —> Ql“. Denote by
y* T(C 1) — T(A) the continuous affine map dual to y. Let JTC :C 1 — C be the
quotlent map and ‘L’C be the trace of C;, which factors through C. We also write
1 for the extension 77(1: . C 1® 0 — Q0 and rC‘ for the tracial state of C 1® 0
Vamshmg on Cj.
It follows from (6.70) that

@)l <m1n{— 5, 53} foralla € F. 6.73)

128° 2
Note that, for any 7 € T(Cy), t=stc+(1—s)t’, where T € T(C;) and 0 < s < 1.
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Denote by 6, 65, ..., 6; the extreme tracial states of C; factoring through
7e:Cy— Q. Put O,y = 1c.

For any finite subset G’ © G, and 0 < n < min{8;/8, §3/8}, by the assumption
T(A) T4a(A), there is a unital G'-n-multiplicative completely posmve linear map
d:A— Q'*! (in fact, we can define each component 7 ; jod: A — Q of &
separately) such that

. [1381 63 o
trj 0@ (@) — (@)@ < min| =51, %2, 2L,

aeGUPy, j=1,2,....01,1+1, (6.74)

where tr; is the tracial state supported on the j-th direct summand of Q' for
j=1,2,...,1, and tr;y is the tracial state of C (recall that we also write tro®
for tr ® Tr,,, o(® ®id,,), where Tr,, is the nonnormalized trace on M,,). We also
assume that ®|4 maps A to 0! (namely, ;41 0P : A — Q can be defined to be
the homomorphism taking Ato0e Qand l3tol e Q)and ®(17)=(1,1,...,1).

| ——
We may also assume that 41

wi(fip@e) =20 =12, 1 6.75)

Moreover, we may also assume that

s : :
o (@ (p)D) —trj (@)l < F i=1.2,....s. j=1.2.....[+1. (676)

Set
Do := (ﬂe)*o(Ko(Cl)) = ker((¥0)x0 — (¥1)x0) € @', 6.77)
D := ()0 (Ko(C1 ® Q) = ker((¥g)s0 — (¥ )s0) € Q.
It follows from (6.74) that
(@ @)~ an(y @) (@] <min 2012 T aeg reT@), 679)

where (7)) afr : Aff(T(C; ® Q)) — Aff(T(Q'*)) is the map induced by 7;". By
(6.78) for a € Py, together with (6.76) and (6.72),

[T @(p)D) —To (s o ' ([piDl <83, TeT(Q™), i=12..5s.
Therefore, applying Lemma 6.5, with
=[®(p)] = (w00 ' (Lpi]) € Q@

(note that |r;;| < &3 for j =1,2,...,I+1andi =1,2,...,5), we obtain G-
81/8-multiplicative completely positive linear maps X1, iy : A — Q'T!, with
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21(13) = pn1(13) a projection, such that

T(B1(1y) < mm{g2 256} T e T(QM, (6.79)
[Z1(P)]C D, and (6.80)

[Z1(p)] =1 (p)]=ri =[®(p)] = ()00 T ([pi]), i=1,2,...,s. (6.81)
Consider the (unital) direct sum map
P =d®uA— 1T 1N)M(QTHU @ Ti(1))). (6.82)
Note that @', like 1 and P, is G-8;/8-multiplicative. It follows from (6.81) that
[Yo(@'(piN] = (¥ )so(lp1 (p)] + [P (p)])

= ()0 Z1(p)]+ ()0 o T ([pi])), (6.83)
Y1 (@' (piN] = (W so([p1 (p)1+ [P (pi)])
= WD Z1(p)]+ ()0 o T'([pi1) (6.84)

fori =1,2,...,s. It follows from (6.83) and (6.84), in view of (6.80) and the fact
(using (6.71)) that (1e)«0 o I'([pi]) € (1) 40(Ko(C1 ® Q)) = D, that [®'(p;)] € D,
i=1,2,...,s,1.e.,

[Yo(®'(pi)] = [Y1 (@' (p))], i=12,....5. (6.85)

Set B =C([0, 1], Q"), and (as before) write 7, : B — Q" for the point evaluation
att € [0, 1]. Since 13 € Py, by (6.80), [X1(17)] € D. Hence there is a projection
eo € B such that mo(eo) = ¥, (Z1(13)) and 71 (eg) = ¥ (X1(17)). It then follows
from (6.79) (applied just for = factoring through v/;” — alternatively, for 7 factoring
through ") that

= 256} r € T(B). (6.86)

Let j* T(B) — T(C 1) denote the continuous affine map dual to the canonical
unital map j : Ci — B. Let y1:T(B) —> T(A) be defined by y1 :=y*o j*, and
let k : Go — Ko(B) be defined by x := j.ooI'". Then, by (6.71) and (6.72), for all
te€T(B),

[T ([piD) = 1 (@) (Pl =T Gro (T [P D)) = (¥ 0 j) (@) (P
=" @UApi D=y PDG NI <&, 1<i<k. (6.87)

The estimate (6.87) ensures that we can apply Lemma 6.6 with « and y; (note
that I''([13]) = [1'51] and hence « ([13]) = [13]) to obtain a G-6;/8-multiplicative
completely positive linear map W’ : A — B such that

T(eg) < mln{

Iz oW (a) — yl(r)(a)|<m1n{32 256} a€G, teT(B). (6.88)
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Let W™ : A — B be the unitization of W' Amplifying W' slightly (by first
identifying Q" with Q" ® Q and then considering Hy(f)(¢) = f(t) @ (1 +eo(2))
for t € [0, 1]), we obtain a unital G-6;/8-multiplicative completely positive linear
map W : A— (1 eg)M>(B)(1 & ep) such that (by (6.88) and (6.86)), for alla € G
and T € T(B),

_ ah o infdL o
|T oW(a) yl(r)(a)|<2m1n{ 3 256} m1n{16,128}. (6.89)

By (6.67), as y1(t) e T(A) and 0 < d/2'°,

dQ2°—1)
T(V(fi12(e))) = > for all T € T(B). (6.90)
Note that, for any element a € Cy,
T(Yi(me(a)) = t(m;(j(a)), TteT(Q),i=0,1 (6.91)

(Recall that j : 61 — B is the canonical map.) Therefore (by (6.91)), for any a € G,

IT(Wo(P(a))) — y(a@)(Tomgo j)l =t (Yo(P(a))) — ¥ (a) (T o Yo o)
= |t 0 Yo(P(a)) — (e) asr(y (@) (T 0 Yo

139, "} (by (6.78)) (6.92)

< mln{—32 , ﬁ

for all T € T(Q"). The same argument shows that

1381 o

1z(Y1(®(a))) —y (@) (tom o) <mm{ L g

} acG, TeT(Q). (693)

Then, for any t € T(Q") and any a € G, we have

[T oYgo® (a)—tompoW¥(a)l
= [t o Yo(P(a) ® ni1(a)) —tompoV(a)l

<70 Yo(®(@) & 11 @) — N (z o) @] +minf L T
361 3o

<[z o Yo(®(@) — yi(z o) (@] +min{ L, SZ | by (6.79))
361 3o }
327256

I oy 6:89)

=170 Yo(®(@) — 7 (@(x om0 )| +min{

nf 130021 i3 30 )
<mm{ b2 minf L 22 by 692)
<1381, 36 _ 4 (6.94)

=32 "3 2
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The same argument, using (6.93) instead of (6.92), shows that

o 1381 o) a3 30
[T oo ®'(a) romo\ll(a)|<m1n{ 0 ,32}+mln{ 32’256}

< %1 forallt € T(Q")anda €G.  (6.95)

(The o estimates (6.94) and (6.95) will be used later to verify (6.106) and (6.107)).
Noting that ¥ and &’ are §;/8-multiplicative on {17, p1, p2, ..., ps}, we may
assume

(W (P — (W (p)] < L and (@ (D — (@ ()] < 2

forall t € T(Q") and 1 <i <s. Combining these inequalities with (6.94) and
(6.95), we have

[z([mo 0o W(p)) —t([Yoo @' (p)DI <é1, i=1,2,....5 7T€T(Q"). (6.96)
Therefore (in view of (6.96)), applying Lemma 6.4 with
ri=[mooW(pi)]—[Yoo @ (pi)] €@,

we obtain unital G-8-multiplicative completely positive linear maps £, : A — Q't!
and uy : A — (', taking 15 into projections, such that

[VioXo(Ip]=[m21)], k=0,1, (6.97)
[Z2(P)] € () 50(Ko(C1)) = D, i=1,2,...,s, (6.98)
T(Za(17) < 6“—4, TeT(Q', (6.99)

and, taking (6.98) into account,

[Voo Xa(pi)] —[p2(pi)l = [¥1 0 Xa(pi)] — [2(pi)]

=r]=[mooW(pi)]— Yoo @ (pi)]l, (6.100)
where i = 1,2,...,s. It should be also noted that, since 7 oy € T(Ql+1) for
k=0,1,

T(ua(17)) < g—4 forall T € T(Q"). (6.101)

Consider the four G-§-multiplicative direct sum maps (note that & and W are
G-61/8-multiplicative, and §; < 88), from A to M3(Q"),

Dy = (Ypo CD/) @ (Yoo 2p), P1:=Wo QD/) @ (Y1 0 Xp), (6.102)
Yy := (oo V) @ ua, Yy = (m10W) D ua. (6.103)
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We then have foreachi =1, 2, ..., s that

[Wo(pi)] —[Po(pi)] = ([(r0 o W) (pi)] + [2(pi)])
— ([(Wo 0 @) (P + [(Yo 0 Z2)(pi)])
= ([(7r0 0 W) (pi)] — [(Yo 0 D) (pi)])
— ([(Yo 0 X2)(pi)] — [2(pi)])
=0 (by (6.100)),
and
[W1(p)]—[D1(pi)]
= ([T o W) (pi)] + [2(pi)])
— ([(Y1 0 D) (p)]+ [(¥1 0 Z2)(pi)])
= ([(r1 0 W) (pi)] = [(W1 0 D) (pi)]D)
= ([(Yr1 0 Z2)(pi)] = [2(pi) D)
= ([(r0 0 W) (pi)] — [(¥1 0 D) ()]
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— ([(Yr1 0 X2)(pi)] — [u2(pi)]) (7o and 7y are homotopic)

= ([(m0 0 W) ()] = [(Y0 0 @) (p)])
— ([(Y1 0 X2)(p)] = [n2(pi)]) =0 (by (6.85)).

Note also that, by construction,

V(1) =o,(17) =1®mi(ep), i=0,1. (6.104)

Summarizing the calculations in the preceding paragraph, we have

[®i]lp =[Yillp, i=0,1. (6.105)

On the other hand, for any ¢ € 7 C G and any t € T(Q"), we have

|7 (Po(a)) — 7(Wo(a))|
= |T((Yo 0 @) (@) ® (Y0 0 X2)(a)) — T (7m0 0 V) (@) ® p2(a))|
< |t((Yo 0 @) (a)) — T((7mo 0 ¥)(a))| + ;—2 (by (6.99))

138, o : {381 30}+" (by (6.94))

<mm{_l6 »3—2}+mm 16 256] T3

<3 (6.106)

=%
The same argument, using (6.95) instead of (6.94), also shows that

[T(P1(a)) —t(¥1(a))| < 5—0, aeF, teT(Q). (6.107)

64
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Since 13 € P, by (6.98), [Z2(13)] € D, and so there is a projection e; € B such
that mo(e1) = Yo(Z2(137)) and mi(e1) = Y¥1(X2(17)). It then follows from (6.99)
(applied just for t factoring through 1o — alternatively, for t factoring through vr;)

that

T(ey) < g—4, T € T(B). (6.108)

Set E(/) =1 my(eg) D moley), Ei =16 mi(ey) Bmi(er), and Dy = E(/)Mz(Qr)E/,
D= EiMz(Q’)Ei. We estimate that, using (6.90), (6.101), (6.103) and (6.101),

w(Wo(fipa @) = 2L for zo € T(Dy), (6.109)

a@(fip@) = 2L forn e (D)), (6.110)
Then, by (6.106) and (6.107),

w(@o(fip2@) = 2L for € T(Dy), 6.111)

n@(fip@) =24 forreroy. (6.112)

By the choice of Gy, §g, and (6.69), we have

W(fi(@o@) = 2, w(fipa(Wo(@) = 3 forzo € T(Dy),  (6.113)

T’
a(fip@ @) =2 a(fip@e) =3 foreT).  (©114)

Pick a sufficiently small 7" € (0, 1) such that
r’ 1+7/
1427 1428
It follows from [Elliott et al. 2020a, Lemma 7.2] (with (6.105), (6.113), (6.114),
(6.106), (6.107) and (6.104)) that there exist unitaries ug € Do and u| € D1, and unital
F-¢/4-multiplicative completely positive linear maps Lo : A — C([—r/, 0], Dy)
and L{: A — C([1, 1+7r'], Dy), such that

19 (@) (142" — ') — W (@) (1) || < g—4, acg, te[ ] (6.115)

w_poLy=®y, myolLg= Aduo o Wy, (6.116)
711+r/oL]=CI)1, 7T10L1=Adu]o\111, (6.117)
[tom oLg(a) —tomyo Lo(a)| < 53—3, te[—r,0], (6.118)
[tomoLi(a)—tom oLi(a)| < 53—3, tell,1+7] (6.119)

where a € F, T € T(Q") and (as before) 7; is the point evaluation atz € [—r', 1+7'].
Write E3 =1®eo® ey € M3(C([0, 1], Q")) and B = E5(M3(C([0, 1], 0"))) Es.
There exists a unitary u € By such that u(0) = ug and u(1) = u;. Consider the
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projection E4 € M3(C([—r', 1 +r'], Q")) defined by E4|(_,0) = E{, Eslj0,11 = E3
and E4|[1,1+r] = Ei Set

By = E4(M5(C([—r', 1+1'], Q")) E4

Define a unital F-¢/4-multiplicative (note that 7 C G and § < ¢/8) completely
positive linear map L' : A — B; by

LO(a)(t)v re [_rlv O)’
L'(a)(t) = {Adu(t)o(m, oV ® us)(a), tel0,1], (6.120)
Li(a)(), te(l, 147

Note that for any a € G, and any 7 € T(Q"), by (6.120), if ¢ € [0, 1], then

|7 (7 (L (@) — yi (] () (@)
= [t(Adu(r) o (m; o W @ p2)(a)) — y1 /(1)) (@)
= |t (7, (¥ () + T(n2(a)) — y1(7; (1)) (a)|
<16 )W @) =@ @)@+ by (6.97) and (6:99))
o } o 30

16" 128 T 62 =128 (by (6.89)), (6.121)

< mm{

where 77, : T(Q") — T (B) is the dual of 77; : B — Q". Furthermore, if € [—r’, 0],
then for any a € F and any t € T(Q"),

[z (i (L (@) — 15 (1) (@)
= |t (Lo(a)(1)) — y1 (75 (1)) ()]

< |t (Lo(a)(0)) — y1 (g (1)) (@)| + 53—; (by (6.118))
= |t (Wo(a)) — y1 (g (1) (@)| + 5—0 (by (6.116))
= |t ((m9 o W) (a) ® pa(a)) — y1 (g (1)) (a)| + 32
< |t (oo W) (a) — yi (7 (7)) (@) ~|— — + g—; (by (6.97) and (6.99))
51 O S50 230
< mm{ oL 128} +Z g < ST (by (6.89)). 6.122)

Again, if t € [1, 1 + '], then the same argument shows that for any a € F and any
TeT(Q"),
230

7 (L' (@) = 71 (T (@) @) < T3¢

(6.123)
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Let us modify L’ to a unital map from A to B. First, let us renormalize L'.
Consider the isomorphism 7 : Ko(Q") = Q" — Ko(Q") = Q" defined by

1 1 1
n('xlﬂxz""ﬂx):( xl? 'x2""7 'x)?
! tri(E3)" tra(E3) tr,(E3) "

for all (x1, x2, ..., x,) € Q", where (as before) tr is the tracial state supported on
the k-th direct summand of Q". Then there is a (unital) isomorphism

@:By,— C([—r', 1477, Q0"

such that ¢,o = 7. Let us replace the map L with the map ¢ o L', and still denote it
by L’. Note that it follows from (6.121), (6.86) and (6.108) that for any ¢ € [0, 1],
anya € Fandany t € T(Q"),

[T (m (L (@) — i (] (T) (@) < 7= +T(€0)+T(€1)

30 61 o o To

The same argument, using (6.122) and (6.123) instead of (6.121), shows that for
any a € F,

2 (L' @) = g () @] < 222, 1€, 0], (6.125)
IT( (L' ())) — y1 (71 (7)) ()| < 21;(;; rell, 1+r. (6.126)

Now, put
L"(a)@)=L"(a)(1+2rt—r"), t€l0,1]. (6.127)

This perturbation does not change the trace very much, as for any @ € F and any
T eT(Q"),ifr €[0,r'/(142r")], then

[T(L"(@)(1)) — (L' (a)(1))]
= |t(L'(@)((1+2r)t —1") — (L (a)(1))] (by (6.127))
= |t (Lo(a)((1+2r")t — ")) — (x (¥ (@) (1)) + p2(a))]
< |t(Lo(a) (1 +2r"Yt — ")) — (W (a)(@®))| + 60_4 (by (6.97) and (6.99))

< [t (Lo(@ O) — T (@) + 22 + (by (6.118))
= 11 (W(@) () — T (W@ O] + 17 (by (6.116))
110 30
< 6_4 + 6_4 = E (by (697) and (699))
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Furthermore, the same argument, now using (6.119) and (6.117), shows that for
anyae F,teT(Qandte[(1+7)/(1+2r),1],

IT(Lo(a)(142r")t — ")) — (1 (¥ (@) (1)) + ua(a))| <
and, if r € [r'/(1 +2r"), (1+) /(1 +2r")], then
IT(L' (@) (1 +2r" )t —r")) — (L' (@) ()| = |t (¥ (a) (1 +2r" )t — ") — W (a) (1))

< g—4 (by (6.115)).

30
16°

Thus
It (L"(a)(t)) —t (L (a)())| < 3;—2, aceF,teT(Q), te[0,1]. (6.128)
Hence, by (6.128), (6.124), (6.125) and (6.126),

|7 (i (L" (@) — y1 (/" () (a)]
< [t(L"(@®) — (L @O+t (L"(@)(®) — y1 (7 (1)) (@)

30 270 _ Slo
< E+1_28_ 28" (6.129)

Note that L” is a unital map from A to B. It is also F-e-multiplicative, since L’
is. Consider the order isomorphism 7’ : Ko(Q'*!) = Q"' — Ko(Q'*!) = Q!
defined by

051 Y2s oo s 1) = (@11, a2ya, ... ay)  for (yi, y2, ..., y) € QT

where
1

T e ® (1))

and (as before) tr; is the tracial state supported on the j-th direct summand of [y
There exists a unital homomorphism

g:10Ti(1p @ (I))M(Q"TH( e (1) & Ta(17) — o'

such that

J=12,...,0+1, (6.130)

Ps0 = 77,-
Therefore, by the constructions of L”, L', Ly and L; (see (6.127), (6.120), (6.116)
and (6.117)), we may assume that

Y000 (D @) =mpoLl” and Y10G0(d BT =mol’, (6.131)

replacing L” with Ad w o L” for a suitable unitary w if necessary.

Define L : A — C; by L(a) = (L"(a), $(d'(a) ® =»(a))), an element of C; by
(6.131). Since L” and @ o (O’ @ X,) are unital and F-¢/4-multiplicative (since @’
and X, are G-§-multiplicative, F C G, and § < ¢/8), so too is L.
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Moreover, for any a € F, any t € T(Q"), and any ¢ € (0, 1), it follows from

6.129) that
( ) 51o

[t (r(L (@) = 71T () @)] < 32

(6.132)

If € T(Q'), then for any a € F,

|7 (e(L(a))) — y* (7 (1)) (@)
=1(@(?'(a) ® Z2(0))) — y* (1 (1)) (@)
< [T(®'(@) ® £2(a)) — y* (@) (@] + <= (by (6.130), (6.86) and (6.99))

32
< [2(®(a)) — y* (T (D)) (@)| + 2—3 (by (6.99))
< |t(@(a)) — y* k() (@) + % (by (6.79))
3—2 + % = 2—‘; (by (6.78)).

Since each extreme trace of C 1 factors through either the evaluation map 7, or the
canonical quotient map ., by (6.132),

51c

3" teT(Cy), aelF. (6.133)

IT(L(a)) —y* (D) (@) < 755
From (6.73), we have |y* (tC‘)(a)| < o/128 for all f € F. Combing with (6.133),
we have
S (L(a))| < 222 foralla e F. (6.134)
¢ 128
That is, ||7TC](L(a))|| < 520/128. For eacha € F, puta’ = L(a) — A1, where

A= JTCI(L(CZ)) € C. Choose an element ec, € C; with 0 < e, <1 such that

o
lec,a’ec, —a'|l < 8 foralla € F. (6.135)
Then
lee, L(@)ec, — L@ < -2 +320 =339 ¢orallae F. (6.136)

128 128 128

Define L : A — C; by L(a) = ec,L(a)ec, for all a € A. (Note that L is F-g/2-
multiplicative.) Therefore, for any a € F and T € T (C), we have

|7(11.00(L(a))) = Tas(@) (7))
< |T(11,00(L(@))) = ™ (11,00 (T))(@)] + |74 (t1,00(2)) (@) — Cae(@) (7))

= 17 (t1,00(L(@)) = ¥ (11,00 ()@ + |(t1,00) Afr(@) (T) = Tasr(@) ()]

510 | 530 o _ 1050
<% + T8 + 58 = 128 (by (6.133) and (6.70))
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Recalling f./(e) € F, combining the above inequality with (6.68), one has

o )_ 1050 1060

r(ll,oo(lj(fg/(e))))z(l—m g = |~ ag forallteT(C). (6.137)

Choose a strictly positive e4 € A such that eq > fr(e) and put ¢; =11 0(L(€4)).
Then, by (6.137),

1060

T(c1)>1— 18 forall Tt € T(C). (6.138)
Let H; : A — C be defined by H] =11, o L. Then
7 (H, (@) — Tag(@)(1)] < % foralla € F, T € T(C)). (6.139)

Since F, ¢, and o are arbitrary, in this way we obtain a sequence of completely
positive linear maps H, : A — C such that

lim ||H,(ab) — H,(a)H,(b)| =0 foralla,be A, (6.140)
n—oo

lim sup{|t o Hy(a) — Tag(@)(x)|: T € T(C)} =0 forallaec A,  (6.141)

n—oo

and t(H,(e4)) — 1 uniformly on 7 in T (C).
Recall that C, = Cp,, ® Q, where Cy,, € Cy. Write Q = UZOZI M, and each
1, 1s the identity of Q. Choose a subsequence {m(n)} C {n!} such that

€=U Cn,

where C,, := Con®Mpumy,n=1,2,...,and As(Cp) 1 (see Definition 5.3 of
[Elliott et al. 2020a]). Without loss of generality, we may assume that, in (6.140)
and (6.140), H,:A— C, —> C,n=1,2,....

On the other hand, I'"! : (Ko(C), T(C), rc) = (Ko(A), T(A),r4) gives an
affine homeomorphism Ay : T(A) — T (C) such that TCage(a) (A7 (1)) = t(a) for all
a € As, and 7 € T(A). Since K,(C) = {0}, by Corollary 7.8 of [Lin 2022], there
is a sequence of injective homomorphisms /) : C;y — A such that, for any c € Cm,

lim  sup {|7 (A 0 tn k(€)) = A7 (T) (bn,oo())[} = 0. (6.142)

k=00 1T (4)

It follows that, by an appropriate choice of a subsequence {k(n)} and defining
hy == h;{(n) O Ly k(n), ONE obtains that

lim sup{|toh,o Hy(a)—t(a)|:t€T(A)} =0 forallac A. (6.143)
n—>oo

Note that, as shown at the beginning of the proof, for any nonzero hereditary C*-
subalgebra B of A with continuous scale, B® Q = B. So all the above work holds
for any such B. Also, B = B ® Q is tracially approximately divisible. By (6.140),
(6.141) and (6.143), applying Theorem 6.54 to each hereditary C*-subalgebra B of
A with continuous scale, described in Theorem 6.54, we conclude A®Q Q € D. [
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Theorem 6.144. Let A be a separable simple C*-algebra with continuous scale.
Suppose that A @ U € D for some infinite-dimensional UHF-algebra U. Then
A ® B € D for any infinite-dimensional UHF-algebra B.

Proof. Suppose that A® U € D. Then A ® U has at least one tracial state. Since
the map a — a ® 1y maps A into A ® U, A must be stably finite. Moreover, if t is
a 2-quasitrace for A, then v ® fy is a trace since A ® U € D (see Proposition 9.1 of
[Elliott et al. 2020b]), where #; is the unique tracial state on U. It follows that T
is a trace. In other words, QT (A) = T (A). Let B be a unital infinite-dimensional
UHF-algebra. Choose a strictly positive element e4 € A with |les|| = 1. We may
assume that, as A ® U has continuous scale,

d=inf{t(ea®1y): 1€ T(AQU)} > 1. (6.145)

Fix ¢ > 0, a finite subset F C AQ B and a € (A ® B) \ {0}. Note that A® B is
finite and Z-stable, and has strict comparison for positive elements (see Corollary 4.6
of [Rgrdam 2004]). There is a nonzero element ay = agg @ by € (A ® B)y for
some ago € A+ and by € B, such that gy < a in A ® B. We may also assume that
bo=b0.1,19b0,12®bo2 € By, where by 1,1, bo,1,2 and bg 2 are mutually orthogonal
nonzero positive elements. Put by 1 = bg 1,1 D bo.1,2-

As A ® B is simple, there is an integer Ng > 1 such that

ea® 1p S Nofaoo ® bo.2). (6.146)

We write B = limy,_, o (By, ¥), where B, = Mgy and ¥, : B, — B,41 is a
unital embedding. If n > m, put ¥, , = Yp_10---0 Yy, : By — B,. Denote
by Y00 : By — B the unital embedding induced by the inductive limit. By
Proposition 2.2 and Lemma 2.3(b) of [Rgrdam 1992], to simplify notation, without
loss of generality, replacing by by a smaller (in Cuntz relation) element, we may
assume that bg 1,1, bo,1,2, bo.2 € B, for some large n. Since B is simple, we may
assume that R(n) > 4Ny for all n. It follows from (6.146) that we may assume that
the range projection of by has rank at least two (as a matrix).

By changing notation, without loss of generality, we may further assume that
FCA®Bjand by 11,b01.2,b02 € Bj.

Since A := A ® Mga) ® U € D has continuous scale, there are F-¢/128-
multiplicative completely positive contractive linear maps ¢ : A} — A; and
¥ Ay — Dy for some C*-subalgebra Dy C A with Dy € Cy, Dy L @(Ay),
and
x@1y — (xR 1)+ ¥ (x @ 1y))| < ILZS forall x e FU{es @ 1}, (6.147)

plea® 1y) Sao:=ap®bo1,1® ly, (6.148)

t(fia((ea®1))) > % for all t € T (Dy) (6.149)
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(see also Proposition 2.10 of [Elliott et al. 2020b]). Replacing ¢ by the map defined
by ¢’ (x) = f(plea ® 1))@ (x) fr(p(ea® 1y)) for all x € A; for some sufficiently
small n, we may assume that there is ey € A; such that epp(x) = @(x)eg = @(x)
forall x € Ay, eg L Do and eg < ago @ bo.1.1 ® 1y.

Let G C Dy be a finite subset such that, for every x € F, there exists x’ € G such
that || (x ® 1y) — x| < €/128. We may also assume that G contains a strictly
positive element ep of Dy with |lep] = 1.

Write U = Uzozl M, (ny, where lim,,_, o, r(n) = 00 and M, ;) C M, ,+1) unitally.
For each n, there are a,,, b, € A Q@ Mr1) ® My, 0 < a,, b, <1 such that

a, L b,, nlgl;o la,da, —d|| =0 forall de Dy,

(6.150)
lim ||b, —eo|| =0, lim ||b,@(a)b, —¢(a)]| =0 forallae A;.
n— 0o n—oo

Since e < ago ® bo,1 ® 1y, by Proposition 2.2 of [Rgrdam 1992], for each n, there
exists k(n) such that fi,,(brn)) S aoo @ bo,1 ® 1y. Therefore, without loss of
generality, replacing b, by f1/,(bk()), we may assume (in Ay)

bp Sapn®bo11® 1y. (6.151)

Put C, = a,(AQ® Mry® Mr(n))an and C,/l =D, (A® Mry® Mr(n))bn. Note
that C, L C,,.

Since each Dy is weakly semiprojective, we can choose n( large enough such that
there exists a unital homomorphism /1 : Dy — AQ Mg1) @ My (ny) (CAQME1)QU)
satisfying

Ih(x) —x'|| < 6“7—4 for all x’ € G, (6.152)
t(fijah(P(ea ®1)))) > % for all t € T (h(Dy)). (6.153)

Consider ®': AQ Mg(1) — A; defined by ®'(a) =¢(a®1y) fora e AQ Mg(). Let
50: Mp1)y@U — Mgy ® M, @, be a completely positive contractive linear map
such that so|mg, @M,y = 1dMg1,@M, (- Define J :=ids ®so: A ® Mr1y @ U —
AQ Mpay ® M) and define ®p: A ® Mpgay — Cr/zo CAQMpa ® My, by
Do(a) =b,(Jod'(a))b, foralla € AQ Mg(1y. Choosing a larger n if necessary, we
may also assume that @ is an F-¢/64-multiplicative completely positive contractive
linear map such that

[Po(x) —(x @ 1y)]| < 68_4 for all x € F. (6.154)

We also assume that (viewing x as an element in A @ Mp(1))

lx ® 1y

r(ng)

— (@o(x)+hoy(x @ 1) < 38—2 for all x € F. (6.155)
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Note that ®o(A;) L h(Dg). Moreover, by (6.151), we have, for all T € T(A}),
de(Po(es)) = dr(ap ® bo,1,1 ® 1u,,,,) < dr(aoo @ bo1 @ 1u,,,).  (6.156)

Recall that ®g(e4), ago®@bo.1 @ 1Mr<no> € AQ Mgy ® M, (n,. Hence (6.156) holds
for any trace with the form r ® Tr, where t € T (A ® Mg(1)) and Tr is the normalized
tracial state on M, ().

We may assume that vy ,,, : By — B,, has multiplicities at least N > 1 such that

2r(ng)R(1) -

1. 6.157
N ( )

Write
R(ny) =NR(1) =Ir(no)R(1) +m, (6.158)
where [ > 1 and r(ng) R(1) > m > 0 are integers. It follows that

m r(ng)R(1)  r(ng) 1
< < < .
R(ny) R(ny) N 2R(1)

(6.159)

Since R(1) | R(n1), we may write m = m " R(1). Define p : Mgay — M, by
X—>x® le(r), if m > 0. If m = 0, then we omit p, or view p = 0.
It follows from (6.159) that, if m # 0, by viewing M,, = M, ® Oru)—m C
Mpg@u,) C B,
1

de(ea® p(lig)) < s forall T €T(A@ B). (6.160)

Therefore, by (6.146) and the fact that R(1) > 4Ny,
t(ea ® p(1mgyy)) S aoo ® bo . (6.161)

Let 11 : Myp)r(1) = Mir@ne)r(1) be the embedding defined by a — a ® 1yy,. Let
12 ¢ Mirig)r(1) = Mg@n,) be defined by the embedding which sends rank one
projections to rank one projections. Puti3 =1,011. Define 14 : AQ Mg(1) @ My (ny) —
AR® Mgu) by 14(a®b) =a®i3(b) forallac Aand b € M, gy R(1)- Note that, for
all a € By = Mg(1), we may write

Y10, (@) =13010(a) ® p(a)

(modulo an inner automorphism, and if m =0, p =0). Define:1: A® B,, > A®B
to be the map given by a @ b = a @ Y100 (b).

Put E; =1 014(h(Dy)). Then E| € Cy. Let s : B — Bj be a completely positive
contractive linear map such that s|p, =idp,. Let j :==1ds ®s: A® B - A® B;.
Define @ : A® B> A® Bby ®|:=10140Ppo0 j. Define ®; : A®QB—> A® B
by ®1(a) = @ (a) ® 1((ida ®p)(j(b))) for all a € A and b € B. Note that ¥,
is a F-¢/2-multiplicative map and ®;(A® B) L E;. Put ¥’ : AQ B — Dy by
Y (@a®b)=y@®sb)R1y)foraec Aand b € B. Define ¥ : AQ B — E;
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by W :=10140ho’. Then V¥ is an F-g/2-multiplicative completely positive
contractive linear map. Note that ((x ® 1 M,(no)) =1to14(x) for all x € F. Recall also
Mg,y =Mpra)®My. Hence, by (6.155), for all x € F and (viewing x € AQ Mg (1)),
we estimate that

=1 ® 1ygy) = 1 ® Lagy ) L ® 1y00) (6.162)
= to14(10(x)) ® t(id4 ®p)(x) (6.163)
Res30 (O] (x) + W (x)) @ t(idg ®p)(x) = Py (x) + W (x). (6.164)

By (6.153), we also have
t(fia(¥(ea® 1)) >3 forallt e T(E)). (6.165)

By [Rgrdam 2004], A® B has strict comparison. By the lines right below (6.156) and
(6.161) (viewing ago ® bp,1 ® er(n()) as an elementin A® Mpg1) ® My,,) CAQ B),
we conclude that

Di(ea®1p) = Pl(ea®1p) D i((ids ®p)(ea ® j(1p))) (6.166)
< tlaoo ® bo,1 ® 1) D Llea ® p(1p,)) (6.167)
< (aoo ® bo,1) @ (apo @ bo2) S ap @by Sap Sa. (6.168)

Combining the last relation with (6.164) and (6.165), we obtain AQ B D. [

Theorem 6.169. Let A be a separable simple stably projectionless amenable C*-
algebra with continuous scale such that T (A) # {0} and satisfying the UCT. Then
A ® U € D for any infinite-dimensional UHF-algebra U.

Proof. Note that U = U; ® U, for some infinite-dimensional UHF-algebras U
and U;. Consider A; = A ® U,. Since U, is Z-stable, so is Aj. It follows from
[Castillejos and Evington 2020] that A has finite nuclear dimension. Thus, to prove
the theorem, we may assume that A has finite nuclear dimension. By [Tikuisis
et al. 2017], every tracial state of A is quasidiagonal. Then, by Theorems 5.2,
4.107 and 6.65, A® Q € D. Thus, by Theorem 6.144, A ® U € D for any infinite-
dimensional UHF-algebra U. ([
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