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We classify all essential extensions of the form
0—-W-—->D—>A—0,

where W is the unique separable simple C*-algebra with a unique tracial state, which
is KK-contractible and has finite nuclear dimension, and A is a separable amenable
W-embeddable C*-algebra, which satisfies the Universal Coefficient Theorem (UCT). We
actually prove more general results. We also classify a class of amenable C*-algebras,

which have only one proper closed ideal W.

1 Introduction

Motivated by the goal of classifying all essentially normal operators using Fredholm

indices, Brown-Douglas—Fillmore (BDF) classified all extensions of the form

0—-K—-D—CX)— 0,
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where X is a compact subset of the plane, and later, where X is an arbitrary compact
metric space ([3, 5, 7]; see also [8]).

The C*-algebra K is perhaps the simplest non-unital simple C*-algebra. In
recent developments of the classification of separable simple amenable C*-algebras,
however, some other seemingly nice non-unital simple C*-algebras arise. One piquant
example is W, which was first studied by Razak [59], and is a non-unital sepa-
rable simple C*-algebra with a unique tracial state and K;(W) = {0}, i = O,1.
It is in fact stably projectionless. It is proved in [19] that W is the only separable stably
projectionless simple C*-algebra with finite nuclear dimension satisfying the Universal
Coefficient Theorem (UCT), which has said properties. It is also algebraically simple.
Moreover, as we will later elaborate, VW has another very nice feature shared with £,
namely that the corona algebra COV) = M(W)/W is a purely infinite simple C*-algebra.
A natural question is whether one can classify essential extensions of the following

form:
0—->W—E—>CX)— 0. (1.1)

Since K;(W) = 0 for i = 0,1, one immediately realizes that KK'(C(X), W) = 0.
However, as we will see soon, there are many nontrivial essential extensions of C(X) by
W and a variety of unitary equivalence classes of these essential extensions. In other
words, the classification of these essential extensions will not follow from the usual
stable KX theory.

Other questions also naturally emerge. For example, how many extensions have

the form
O->W-—->E—->W-=>0? (1.2)

More generally, can one classify all the essential extensions of the form
0O->W-—->E->A—->0 (1.3)

for some general class of separable amenable C*-algebras A?

As mentioned above, the classification will not follow from the usual stable
KK-theory. As one may expect, some restrictions on A will be inevitably added. If A
is a separable amenable C*-algebra, then, by [32], A can always be embedded into O,,
the separable purely infinite simple C*-algebra in the UCT class, which has trivial
K;-group (i = 0,1). Since M(OV)/W is simple purely infinite, O, can be embedded
into M(W)/W. This immediately implies that, for the aforementioned C*-algebras A,

essential extensions by WV always exist. In order to have some nice description of a class
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of extensions, like the ones in (1.3), one may at least want to have some trivial essential
extensions, that is, those essential extensions, in (1.3), that split. However, unlike the
classical case, this is in general hopeless. Note that if (1.3) is a trivial extension then it
induces a *-embedding of A into M(W). But M(W) has a faithful tracial state, which is
the extension of the unique tracial state of W. This implies that A has a faithful tracial
state. So we will assume that A has a faithful tracial state. Moreover, one may also want
to have some diagonal trivial extensions of the form (1.3). The conventional way to do
this is to allow A to be embeddable into WW. We will then present a classification of these
extensions (see Theorem 9.9).

Recent successes in the theory of classification of simple C*-algebras also make
it impossible to resist the attempt to classify at least some non-simple C*-algebras. This
is an ambitious and challenging task. At this stage, our experiments will be limited to
the situation where the K-theory is still manageable and we will avoid the cases where
the tracial information becomes non-traceable. One of the goals of this research is to
classify some amenable C*-algebras, which have only one ideal W. So these C*-algebras
also have the form of E as in (1.3). Since we assume that W is the only ideal, A will be
a separable simple amenable C*-algebra. As discussed above, we will assume that A is
embeddable into W, and so A is a stably projectionless simple C*-algebra. Let us point
out that for any separable amenable C*-algebra A, which has a faithful tracial state and
satisfies the UCT, A ® Z; is W embeddable, where Z; is the unique separable simple
C*-algebra with a unique tracial state, which satisfies the UCT such that K,(Z,) = Z,
Ky(Zy), = {0}, K| (Z,) = {0} and has finite nuclear dimension (so K,(A) = K, (A ® Z,) and
T(A) =TA® Z)).

Denote by £ the class of C*-algebras E, which are essential extensions of the
form (1.3) such that A is any separable simple stably projectionless C*-algebra with
Ky(A) = kerpy,, and, as customary, A has finite nuclear dimension and satisfies the UCT.
Note that, in the definition of the class £, we do not fix the quotient algebra A. We will
show that, when E; and E, are two such C*-algebras, then E;, = E,, if and only if they
have isomorphic Elliott invariants (see Theorem 9.6).

For the remainder of this introduction, we elaborate on some aspects that were
earlier alluded to. Perhaps one reason for the success of the BDF theory was that their
multiplier algebra B(l,) and corona algebra B(l,)/K have particularly nice and simple
structure. Among other things, B(l,) has real rank zero (it is in fact a von Neumann
algebra) and strict comparison, and B(l,)/K is simple purely infinite. For example,
the the BDF-Voiculescu result, which roughly says that all essential extensions are

absorbing [1, 72], would not be true if the Calkin algebra B(l,)/K were not simple. We
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may further note that, even in the case that the ideal is stable, as long as the corona
algebra is not simple, Kasparov’s KK! group cannot be used to classify these essential
extensions up to unitary equivalence.

Recall that a non-unital o -unital simple C*-algebra B is said to have continuous

scale if B has a sequential approximate unit {e,} such that

(a) e, e, =e, foralln, and

(b) foreverya € B, \ {0}, there exists an N > 1 such that forall m > n > N,

e, —e,sa,

where e, — e,<Sa means that there exists a sequence {x;} in B for which
Xpaxy — e, —ey,.
(See [33].)

In [39] (Theorem 2.4 of [39]; see also Theorem 2.8 of [33]), it was shown that a
simple non-unital non-elementary o-unital C*-algebra B has continuous scale if and
only if the corona algebra C(B) is simple, and, if and only if C(B) is simple purely
infinite. Simple continuous scale C*-algebras are basic building blocks for generalizing
extension theory (see, e.g., [34, 37]) and have been much studied. As alluded to earlier,
aside from their basic role in the theory, the extension theory of these algebras are
in themselves quite interesting. For example, unlike the case of the classical theory of
absorbing extensions, there are no infinite repeats, and one needs to develop a type of
nonstable absorption theory, where, among other things, the class of a trivial extension
need not be the zero class. More refined considerations are required to take into account
the new K theory that arises. Some results in this direction were first derived many years
ago (see, e.g., [34] and [37]).

As mentioned above, in the present paper, we classify a class of extensions by the
Razak algebra W, which is a C*-algebra with continuous scale, K,()/) = 0 and unique
trace. Unlike the previous cases, our canonical ideal WV has no non-zero projections—in
fact, W is stably projectionless, which is like the “opposite” of being real rank zero. We
note that the property of real rank zero has been present implicitly since the beginnings
of the subject (even though the term “real rank zero” was invented after the BDF papers
[7, 8]). For example, the original BDF proof of the uniqueness of the neutral element (for
the case of compact subset of the plane) was essentially the Weyl-von Neumann-Berg
theorem, and it is well known among experts that under mild conditions on a C*-algebra

B, M(B) has a Weyl-von Neumann theorem for self-adjoint operators if and only if M(B)
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has real rank zero [77]. Moreover, this phenomenon reoccurs throughout the original
and subsequent papers. We believe that our present result is the first classification of
a class of extensions by a simple projectionless C*-algebra (in fact, the first case of a
simple algebra which has real rank greater than zero).

To further illustrate the results of this research and the difference from the
usual stable results in the C*-algebra extension theory, we end this introduction by
presenting one of our main results. Notations and terminologies in the statement will

be explained later in the paper.

Theorem 1.1 (see Theorem 9.9). Let A be a separable amenable C*-algebra, which is W
embeddable and satisfies the UCT.

(1) Let 7;, 7, : A — C(W) be two essential extensions. Then r; ~% 7, if and only if
KK(7;) = KK (75).

(2) The map

A Ext“(A, W) - KK(A,C(WV)) = Hom(K,(A), R) (1.4)

defined by A([r]) = KK () is a group isomorphism.

(3) An essential extension t : A — C(W) is trivial and diagonal if and only if
KK(r) = 0, and all essential trivial and diagonal extensions of A by W are unitarily
equivalent. In fact, the essential trivial diagonal extensions induce the neutral element
of Ext“(A, W).

(4) An essential extension v : A — C(W) is trivial if and only if there exist
t e Tr(A) (see Definition 2.2) and r € (0, 1] such that

T,0X) =114 (x) forall x € Ky(4).

(5) Let 7 be the set of unitary equivalence classes of essential trivial extensions
of A by W. Then,

A(T)={r-h:re(,1], h e Hom(KO(A),R)Tf(A)} (see Definition 2.6).

(6) All quasidiagonal essential extensions of A by W are trivial and are unitarily
equivalent.

(7) In the case where kerpf’ 4 = Ky(A), all essential trivial extensions of A by W
are unitarily equivalent. Moreover, in this case, an essential extension 7 : A — C(W) is
trivial if and only if KK(z) = {0}.
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(8) In the case where ker,of'A # K,(A), there are essential trivial extensions of A
by W which are not quasidiagonal, and not all essential trivial extensions of A by W are

unitarily equivalent (see (5) above).

2 Notation

Definition 2.1. For each C*-algebra B, M(B) denotes the multiplier algebra of B, and

C(B) := M(B)/B denotes the corresponding corona algebra. For each C*-algebra extension

0O—-B—-D—-C—0 (2.1)

(of C by B, (in the literature, the terminology is sometimes reversed and this is sometimes
called an “extension of B by C”), we will work with the corresponding Busby invariant
which is a homomorphism ¢ : C — C(B). Recall that (2.1) is essential if and only if ¢ is
injective. We will mainly be working with essential extensions.

An extension is unital if the corresponding Busby invariant is a unital map. We
will mainly be working with non-unital extensions.

Let ¢, ¥ : C — C(B) be two essential extensions. We say that ¢ and ¢ are (weakly)
equivalent and write ¢ ~ ¢ if there is a partial isometry v € C(B) such that v*ve(c) =
¢(c)v*v = ¢(c) and vv*y(c) = ¥ (c)vv* = ¥ (c) for all c € C and

ve(c)v* = ¢ (c) forall c e C. (2.2)

Ext(A,B) denotes the collection of all (weak) equivalence classes of essential
extensions ¢ : A — C(B).

Let 7 : M(B) — M(B)/B = C(B) be the quotient map. Throughout this paper,
unless otherwise stated, = always denotes this quotient map.

We say that ¢ and ¢ are unitarily equivalent (and write ¢ ~% ) if there exists a

unitary u € M(B) such that

¢(c) =n(wy(c)mr(w*

forall c e C.
Ext“(A, B) denotes the collection of all unitary equivalence classes of essential

extensions ¢ : A — C(B).
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Definition 2.2. Let A be a C*-algebra. Denote by T(A) the tracial state space of A
(which could be an empty set), given the weak* topology. Denote by Tr(A) the set of all
faithful tracial states of A. Tr(A) is a convex subset of T(4). Let T(A) be the cone of
densely defined, positive, (norm) lower semi-continuous traces on A4, equipped with the
topology of pointwise convergence on elements of the Pedersen ideal Ped(4) of A. Let B
be another C*-algebra with T(B) # @ and let ¢ : A — B be a homomorphism which maps
an approximate unit of A to an approximate unit of B. We will then use ¢ : T(B) — T(A4)
for the induced continuous affine map.

Let I be a (closed two-sided) ideal of A and t € T(). It is well known that 7 can
be uniquely extended to a tracial state of A (by taking v(a) = lim, r(ae,) for all a € A,
where {e,} is an approximate identity for I). In what follows, we will continue to use =
for the extension. Also, when A is not unital and r € T(A), we will use 7 for the extension

to A as well as to M(A), the multiplier algebra of A.

Definition 2.3. Let r > 1 be an integer and t € T(A). We will continue to use 7 to
denote the trace t ® Tr on A ® M,., where Tr is the standard non-normalized trace on M,.
Let S C T(A) be a convex subset. Denote by Aff(S) the space of all continuous real-valued

affine functions on S. Define (see [62])

Aff (S) := {f:C(S /R), :f affine, f(r) > 0 forall = # 0} U {0}, (2.3)
LAff (S) = {f:S—[0,00l:3{f,}.f, /' [, fr € Aff (S) for all n}, and (2.4)
LAff~(S) = {fi —fo:f1 € LAff (S) and f, € Aff_(S)}. (2.5)

Note that 0 € LAff , (S). For most of this paper, S = T(A) or S = T(A) will be used in the

above definition.

Recall that T'(A) is compact, and hence a compact convex set, when A is unital
or A is simple separable finite and has continuous scale. Also, when A is simple,
T;(A) = T(A).
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Definition 2.4. For any § > 0, we let f§,: [0, 00) — [0, 1] be the unique continuous map

satisfying

0 tel0,8/2]
f@=11 te[s,00)

linearon [§/2,6].

Definition 2.5. Recall that every t € T(A) extends uniquely to a strictly lower
semicontinuous trace on M(A),, which we also denote by t.

Foranyr € T(A) and a € A, (ora e M,,(A), for some integer m > 1),
d,(a):= nll>nolo t(fl/n(a)).

Note that fl/n(a) is in the Pedersen ideal of A. It follows that d.(a) is a lower
semicontinuous, positive homogeneous, additive function on T(A). (Recall that in the
case where a € M,,(A)_, we continue to use t for t ® Tr, where Tr is the standard non-

normalized trace on IM,,.)

Definition 2.6. Let A be a C*-algebra. Let Hom(K;(4), R) be the set of homomorphism s
from K, (A) to R. Denote by Hom(Kj(4), R), the set of all homomorphism s f : Ky(A) — R
such that f(x) > 0 for all x € Ky(A), . Denote

kerp, 1= {x € Ky(A) : f(x) =0 for all f € Hom(Ky(4),R) }.
It is possible that Hom(Ky(A),R), = {0}. In that case, kerp, = Ky(A). There is a
homomorphism r, : T(A) — Hom(Ky(A),R), induced by r,(v)([p) = t(p) for all
projections p € Mm(ﬁ). The image of r, is denoted by Hom(K,(A), R)p, (or just
Hom(K,(A),R)). Note that for any r € T(4), 7([1;]) = 1. If A is unital and exact, then by
Corollary 3.4 of [2],

Hom(Ky(A),R), ={r-s:reR,,s € Hom(Ky(A), R) )} (2.6)

Let Y be a locally compact metric space and A = Cy(Y). Then,

Hom(Ky(A), R), = {r-s|g @ : 7 € Ry, s € Hom(Ky(A), R)pu)}-
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Let A be a separable exact simple C*-algebra. Choose a nonzero element
e € Ped(A),. Let A, = Her(e) = eAe. Then, R, 71, (T(A,) = Hom(Ky(4,),R),. By [4],
the embedding : : A, — A induces an isomorphism ¢, : K;(4,) = K,(A). Then,

Hom(Ky(4),R), ={r-so L*_l reR, and s € Hom(KO(Ae),R)T(Ae)}.
In particular,
kerp, = {x € Ky(A) : 1, (1)(t,” ' (x)) =0 for all € T(A,)}.
Denote Hom(KO(A),R)Tf =1 (T(A)). Define
kerpflA ={xeKyA): Ax)=0 for all A ¢ Hom(KO(A),R)Tf}.

It should be noted that kerp, C ker,of'A C Ky(A). Recall that if A is simple, then Tr(A) =
T(A) (see Remark 8.2 for more comments on Hom(KO(A),]R)Tf).

Suppose that A is a o-unital simple C*-algebra such that A has continuous scale,
every 2-quasi-trace of A is a trace and T(A) # {0}. Then T(A) is compact and T(A)
is a cone with base T(A). There is an order preserving homomorphism p, : Ky(4) —
Aff(T(A)) such that p, ([p])(r) = t(p) for all projections p € M, (A). For any unital stably
finite C*-algebra A, p, can also be similarly defined (see Theorem 3.3 of [2]). We note
that, with A as in this paragraph, the kernel of the group homomorphism p, is the same
as the object kerp,, which is defined at the beginning of the present Definition 2.6 — and
this is consistent with conventional notation.

Finally, when the context is clear, we often omit A and f and write p for p, or

Of.A-

Definition 2.7. For a C*-algebra D and for a,b € D, a < b means that there exists a
sequence {x,} in D such that x,bx,, — a. We writea ~ bif a £ b and b < a. To avoid
possible confusion, if both p and g are projections in D, we write p &~ g to mean that
p and g are Murray-von Neumann equivalent in D. For a € D, we let Herp(a) := aDa,
the hereditary C*-subalgebra of D generated by a. Sometimes, for simplicity, we write
Her(a) in place of Herp,(a). Similarly, for a C*-subalgebra C € D, we let Her(C) or Her(C)
denote CDC, the hereditary C*-subalgebra of D generated by C.

Definition 2.8. Let A and C be C*-algebras. We say that amap ¢ : A — Cisc.p.c. if itis

linear and completely positive contractive. Let 7 C A be a finite subset and let § > 0 be
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given. A c.p.c. map ¥ : A — C is said to be F-§-multiplicative if |y (fg) — v ()Y (9| < §
forall f,ge F.

Definition 2.9. A non-unital C*-algebra B stably has almost stable rank one if for any
integer m > 1, and for any hereditary C*-subalgebra D € M,,(B), D C GL(13).

We note that, in the literature, almost stable rank one often means only taking

m = 1 in the above definition. (See, e.g., [63, Definition 3.1] and [19].)

Definition 2.10. Let A and B be C*-algebras and let ¢ : A — B be a homomorphism.
We let KK (¢) denote the element in KK (A4, B) induced by ¢, and we let KL(¢) denote the
element in KL(A, B) induced by ¢.

Finally, we will be a bit loose in our terminology and use the term “extension” to
refer both to an extension 0 - B — E — A — 0 as well as the extension algebra E in the

exact sequence.

3 Nonstable Absorption

Definition 3.1. Let A be a separable C*-algebra, and let B be a non-unital but o-unital
C*-algebra with continuous scale. Let ¢, ¥ : A — C(B) be two essential extensions. The
BDF sum of ¢ and ¢ is defined to be

@+ () == Sp()S* + Ty ()T,

where S, T € C(B) are any two isometries such that

SS* 4+ TT* < 1.

The BDF sum ¢+ is well defined (i.e., independent of choice of S and T) up to
weak equivalence. If, in addition, ¢ or v is non-unital then the BDF sum ¢+ is well-

defined up to unitary equivalence (see, e.g., [49, 52]).

Definition 3.2. Let A be a separable C*-algebra, and let B be a non-unital but
o-unital C*-algebra with continuous scale. Recall that Ext(A4, B) denotes the collection

of all (weak) equivalence classes of essential extensions ¢ : A — C(B).
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We make Ext(4, B) into an abelian semigroup with the sum induced by the BDF
sum, that is, for all [¢], [¥] € Ext(4, B),

(9] + [y]:= [p+yl.

We often also call the sum on Ext(4, B) the BDF sum. Similarly, when A is non-

unital, with the BDF sum, Ext“(4, B) is also a semigroup.
The next result is well known, but we provide it for the convenience of the reader.

Lemma 3.3. Let A be a separable C*-algebra, and let B be a o-unital C*-algebra. Let
¢ : A — C(B) be a non-unital essential extension. Then there exists a nonzero element
¢ € C(B), such that

c L ran(¢).

Proof. If A is a unital C*-algebra, then we can simply take

Suppose that A is non-unital. Then D := ¢(A)C(B)p(A) is a o-unital proper
hereditary C*-subalgebra of C(B). Then, by Pedersen’s double annihilator theorem (see

Theorem 7.7 of [57]), D+ is nonzero, and hence, we can take ¢ € Di \ {0}. [ ]

Proposition 3.4. Let A be a separable C*-algebra and B be a o-unital C*-algebra such
that M(B)/B = C(B) is purely infinite and simple. Let ¢, ¢, : A — C(B) be two non-unital
essential extensions.

Then ¢; ~ ¢, if and only if ¢; ~% ¢,.

Moreover, if ¢, and ¢, are approximately unitarily equivalent, then there exists

a sequence of unitaries U,, € M(B) such that

lim 7 (U,)* ¢y (@ (Uy) = $p(@) for all a € A (3.1)
—00
Proof. This is Proposition 2.1 of [52]. |

Proposition 3.5. Let B be a o-unital simple C*-algebra with continuous scale. Let

¢1,¢2, % : A — C(B) be three non-unital essential extensions. Suppose that there is a
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unitary U € M,(M(B)) such that

7(U)*(, (@) ® (@) (U) = ¥(a) for all a < A. (3.2)
Then there is a unitary V € M(B) such that

7 (V)*(¢y(@)+¥, (@) (V) = ¥ (a) for all a € A, (3.3)

where ¢; ® ¢, : A — M,(C(B)) is the orthogonal direct sum of ¢, and ¢,, and ¢, +¢, is the
BDF sum.

Proof. Write the BDF sum as
¢1+dy = Sp()S* + T, ()T, (3.4)

where S, T € C(B) are isometries as in 3.1. Set p, = SS* and p, = TT*. Then, p, L p,.

As in 3.1, there are unitaries v, v, € C(B) such that
v1S¢,(a)S*vi = ¢,(a) and v,To,(a)T*v, = ¢,(a) for all a € A. (3.5)

Put E; = diag(1,0) and E, = diag(0, 1). There is a partial isometry v; € M,(C(B)) such

that vivs = E; and v3v; = E,. Define w = v, p; + v,v,p,. Then,

ww® = V|pV] + VaVap VoV < lyp o)) and (3.6)
W'W = PpVV|Dg+ DV3V3VaVaDy = Ps + Py (3.7)

Moreover,
w(S¢,(a)S* + T, (a) T HW* = ¢, (a) ® ¢,(a) for all a € A. (3.8)

Therefore,
1C(B)JT(U)W(S¢1(£Z)S* + T¢2(a)T*)w*n(U)*1C(B) =y (a) for all a € A. (3.9

Since v is not unital, ¥ (A)* # {0}. As C(B) is purely infinite and simple, it has

real rank zero (see [76]). Let e, € ¥ (A)* be a non-zero projection and p = lem) — €o- Let

€20z dunf Gz Uo Jasn saueiqr] uoBaiQ Jo ANsienun Aq 2/67659/0SE01/Z1L/EZ0Z/2191E/uIWl/woo"dno"oIWapED.//: Ay WOy Papeojumod



10362 H. Lin and P. W. Ng

q = wr(U)pr (U)*w*. Note that
g = wrn(U)pr(U)*w* # WIT(U)IC(B)JT(U)*W* <ps+D: < le)- (3.10)

In other words, 1¢ 5 — g # 0. Note that p and g are equivalent projections in C(B). This
implies that 155 — g and ey = 1, — p are equivalent in C(B). Thus, there is a partial
isometry v € C(B) such that vivy = 1, —p and vyvg = 1 —q. Set vy = qwn (U)p + vy,
Then,

vivy = (v + pr(U)*'w*q) (Vo + qwr (U)p) (3.11)
= vovo + pr(U)'wqwr(U)p = 1gp —p+P = l¢p and (3.12)
v1v] = (vo + qwr(U)p) (Vg + pr(U)*w*q) (3.13)
= vy + qwr(U)pr(U)*w*q = lew —q+9=1¢p). (3.14)

So v, is a unitary. Moreover,
v, (Sp,(a)S* + Tp,(a)T*)vi = ¢(a) for all a € A. (3.15)

Since both ¢ and S¢,(-)S* + T¢,(-)T* are not unital, by 3.4, there is a unitary V € M(B)
such that

7(V)(Sp,(a)S* + T, (a)T*)n(V)* = ¢ (a) for all a € A. (3.16)
This completes the proof. |

Remark 3.6. By Proposition 3.5, from now on, we will not distinguish between the
usual orthogonal sum of two non-unital essential extensions and the BDF sum of the
same two non-unital essential extensions. Proposition 3.5 should of course be known.
Let us point out the following fact: Suppose that H;,H, : A — M(B) are two maps such
that = o H, and = o H, are non-unital essential extensions. Then, in general, one may not
be able to find unitaries U,V € M(B) such that AdU o H; L AdV o H, even in the case
that both H; and H, are diagonal maps and 7 o H; L 7w o H,.

Theorem 3.7. Let A be a separable nuclear C*-algebra, and let B be a o-unital simple
C*-algebra with continuous scale. Then Ext(4, B) is an abelian group. Moreover, if A is

non-unital, then Ext“(4, B) is also an abelian group.
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Proof. This is Theorem 2.10 of [52]. See also Theorem 3.5 of [49]. The second part
follows from 3.4. |

Theorem 3.8. Let A be a separable nuclear C*-algebra and let B be a o-unital simple
C*-algebra with continuous scale. Suppose that ¢, ¥ : A — C(B) are two monomorphisms
with ¢ non-unital.

Then

¢~V ® Yy (3.17)
for some non-unital monomorphism v, : A — C(B).

Proof. This is Proposition 2.7 of [52]. |

4 AQuasidiagonality

Definition 4.1. Let B be a non-unital but o-unital C*-algebra. A sequence {b,} of
norm one elements in B is said to be a system of quasidiagonal units if the following

statements are true:

1. b, Lb,=0forallm#n.
2. If {x,} is a bounded sequence in B such that x,, € b, Bb,, for all n, then the

sum Y x,, converges in the strict topology on M(B).

Note that every o-unital non-unital C*-algebra has a system of quasidiagonal
units (see, e.g., Lemma 2.2 of [53]).

The first result is an exercise in the strict topology.

Lemma 4.2. Let B be a separable non-unital C*-algebra, which stably has almost
stable rank one and let C be a separable C*-algebra. Suppose that {b,} is a system of
quasidiagonal units in B and ¢, : C — b,Bb, is a sequence of c.p.c maps. For any
permutation A : N — N, >°7% | ¢, ,,(c) converges strictly for all ¢ € C and there exists a
unitary U € M(B) such that

U* (z ¢x(n)(0)) U= Z ¢, (c) for all ceC. @.1)
n=1

n=1

Definition 4.3. Let B be a o-unital non-unital C*-algebra.

£20Z dUNp Gz Uo Josn salieuqrT uoBalQ Jo Ausioaun Aq 2/6v659/0S€01/Z 1/EZ0Z/2101HE/UIWI/WOY"dNO" OIS PED.//:SARY WOl PAPEOjUMOC



10364 H.Lin and P. W. Ng

An element x € M(B) is said to be diagonal, if there exists a system {b,} of
quasidiagonal units in B, and there exists a bounded sequence {x,,} for which x,, € b,,Bb,,
for all n, such that

X = 2 X,

An element x € M(B) is said to be (generalized) quasidiagonal if x is a sum of a
diagonal element with an element of B.

A collection § € M(B) is (generalized) quasidiagonal if there exists a single
system of quasidiagonal units with respect to which all the elements in S can be

simultaneously (generalized) quasidiagonalized.

Definition 4.4. Let A be a separable C*-algebra and B a o-unital non-unital C*-algebra.
An extension ¢ : A — C(B) is said to be (generalized) quasidiagonal if 71 (¢(A))

is a (generalized) quasidiagonal collection of operators.

For the rest of this paper, unless it is clearly false, when we write “quasidiago-
nal”, we mean generalized quasidiagonal.

It is easy to prove the following analogue of a classical quasidiagonality result:

Proposition 4.5. Let A be a separable C*-algebra, and B a non-unital but o-unital
C*-algebra.

Suppose that ¢ : A — C(B) is a quasidiagonal extension such that ¢ can be lifted
toac.p.c. map ® : A — M(B) (som o ® = ¢).

Then there exist a system {b,,} of quasidiagonal units, and, for each n, a c.p.c.
map ¢,, : A — b, Bb, such that ¢ = 7 o ®, where ® : A — M(B) is the c.p.c. map defined
by

d .= Z¢>n.
Moreover, {¢,} is asymptotically multiplicative, that is, forall a,b € 4,
¢, (ab) — ¢p (@), (b)I| > 0 as n — oo.
In the above setting, we often write ® = ;. ¢,,.

Proof. This is Proposition 2.5 of [53]. |
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Theorem 4.6. Let A be a separable C*-algebra and B be a o-unital non-unital simple
C*-algebra. Then the pointwise norm limit of quasidiagonal extensions of A by B is
quasidiagonal.

As a consequence, let h : A — C(B) be an essential quasidiagonal extension and
let o : A — C(B) be an essential extension. If there exists a sequence {U,,} of unitaries in
M(B) such that

nlgrolo n(U,)h(a)n(U,)* =o(a) for all ac A (4.2)

then o is a quasidiagonal extension.

If, in addition, B has continuous scale and the extension h is non-unital, then in
the above statement, the unitaries can be taken to simply be in C(B). In other words, for
A and B as above, suppose, in addition, that B has continuous scale, h : A — C(B) is a
non-unital essential quasidiagonal extension and o : A — C(B) is an essential extension.

If there exists a sequence {u,} of unitaries in C(B) such that
nlggo uyh(a)u, =o(a)forallac A

then ¢ is a quasidiagonal extension.
Proof. This is Theorem 3.7 of [53] together with the present paper’'s Proposition 3.4.H

Quasidiagonality was first defined by Halmos [25] in 1970. There is a long
history of K-theoretical characterizations of quasidiagonality, going back to BDF's
observation that an essentially normal operator is quasidiagonal if and only if it
induces the zero element in Ext [7]. BDF were essentially the first to recognize that
quasidiagonal extensions might be approached by K-theory, and another one of their
fundamental results was that (in their setting) limits of trivial extensions correspond to
quasidiagonal extensions [8]. Brown pursued this further in [5]. Further developments
in the study of quasidiagonality can be found in [65], [73], and [74]. Schochet proved that
stably quasidiagonal extensions are the same as limits of stably trivial extensions and
can be characterized by Pext(K,(A), K, (B)) if A is assumed to be nuclear, quasidiagonal
relative to B and satisfying the Universal Coefficient Theorem [67]. More recent
developments in the general nonstable case, with additional regularity assumptions
on B, and a historical summary, can be found in [40]. We will be implicitly using ideas

with its origins in the above paper. Starting with the next result, we will be presenting
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various K theoretic conditions and characterizations for quasidiagonality in our setting.

A good example of this is Proposition 7.18.

Theorem 4.7. Let A be a separable nuclear C*-algebra, which satisfies the UCT and
let B be a non-unital separable simple C*-algebra with continuous scale. Suppose that
there exists a non-unital essential quasidiagonal extension ¢ : A — C(B) such that
KL(c) =0.If ¢ : A — C(B) is a non-unital essential extension such that KL(¢) = 0 then ¢

is quasidiagonal.
Proof. Let

A~ if A is non-unital

A®C otherwise.

Let

¢T, 0T AT > C(B)

be the unique unital monomorphisms that extend ¢ and o respective. Then,

KL(¢pT) = KL(c™).

Hence, by [40] Theorem 3.7, ¢* and ot are approximately unitarily equivalent.
Consequently, ¢ and o are approximately unitarily equivalent. It follows from Theorem

4.6 that ¢ is quasidiagonal. |

5 Stable Uniqueness

Moving towards a non-unital stable uniqueness result, we next provide some definitions

and results from [19].

Definition 5.1. ([19] Definition 3.13.)
Letry,ry : N— Z, bemaps, T: N x N — Z, be a map, and s,R > 1 be integers.
We say that a C*-algebra D belongs to the class C,, ,, rsr) if all of the the following

statements hold:
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(a) For any integer n > 1 and any pair of projections p,q € M, (D) with

[pl = [q] in Ky(D),

PO Ly, 0@ ~" 99D i, B
(@) For any integer n > 1 and any pair of projections p,q € Mn(ﬁ), if
[p] —[gl =0,

then there exists a projection p’ € M (D) such that

n+ro(n)
/ N r -
P =p®ly, ,® and p'~q® 1Mr0(n)(D)'

(b) For any integers n,k > 1 and any x € K| (D) such that

—nllzl < kx < n[lp],

—T(n,kllpl <x < Tn, kgl
(c) The canonical map
UM4(D))/Uy(M4(D)) — K, (D)

is surjective.
(d) For any integern >1,ifu € U(Mn(fJ)) and [u] = 0 in K (D), then

(e) For any integer m > 1, the exponential rank

cer(M,,, (D)) < R.
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Proposition 5.2. Let B be a separable simple stably finite C*-algebra with continuous
scale, finite nuclear dimension, UCT, unique tracial state and K,(B) = kerpg. Let T :
N x N — Z, be defined by T(n, k) = n. Then,

B e Coyon,1,7-

Proof. It follows from Theorem 4.3 of [22] that cer(Mn(E)) <6+e.
Since B has stable rank one and K (B) is weakly unperforated, it is easy to check
that Be Gy 7.7 |

Definition 5.3. Let A be a separable C*-algebra, B be a non-unital C*-algebra, and let
o :A — Bbeapositive map. Let F: A, \ {0} > Nx R, and let £ C A, \ {0} be a finite set.

We say that o is F-& full if for any € > 0, for any b € B, with ||b|| < 1 and for
any a € &, there are x;,%,,...,X,, € Bwith m < N(a) and ;I < M(a), where F(a) =
(N(a), M(a)), and such that

m
I Zx]’fo(a)xj —b| <e. (5.1)
j=1

We say that o is exactly F-£ full if (5.1) holds with € = 0. If o is F-£-full for every
finite subset £ of A \ {0}, then we say that o is F-full.

Definition 5.4. We introduce some notation that will be used in the next result and
later parts of the paper. For a linear map ¢ : A — B between C*-algebras, we often let
¢ also denote the induced map ¢ ® idy, : M,,(A) — M,,(B) for all m. If A and B are
not unital, to simplify notation, we understand that ¢ (x) is ¢~ (x) for any x € A, where
#~ : A — Bis the unitization of ¢.

Let A be a unital C*-algebra and let x € A. Suppose that ||xx* — 1| < 1 and
|x*x — 1|| < 1. Then x|x|~! is a unitary. Let us use [x] to denote x|x|~!. Now let A be
any separable amenable C*-algebra. Let P C K(A) be a finite subset. Then there exist
a finite subset F and € > 0 such that for any C*-algebra B and any F-e-multiplicative
cp.cmap L : A — B, L induces a homomorphism [L] : G(P) — K(B), where G(P) is the
subgroup of K(A) generated by P. Moreover (by choosing sufficiently small € and large
F),if I’ : A — B is another F-e-multiplicative c.p.c. map such that |L(x) — L'(x)| < € for
all x € F, then [L’]|G(7;.) = [L]|G(p). Such a triple (¢, F,P) is sometimes called a KL-triple.
In what follows, when we write [L]|, we assume that L is at least F-e-multiplicative so
that [L]|G(7;) is well defined (see 1.2 of [38], 3.3 of [17], and 2.11 of [43], or 2.12 of [23]).
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Theorem 5.5. Let A be a non-unital separable amenable C*-algebra that satisfies the
UCT, let rg,7; : N — Z, and T : N x N — N be three maps, s,R > 1 be integers, and let
F:A, \{0} > Nx(0,00) and L : U1 U(Mm(Zl)) — [0, 00) be two additional maps.

For any € > 0 and any finite subset 7 C A, there exist § > 0, a finite subset
G C A, a finite subset P C K(A), a finite subset U/ C Uf,lo:l U(Mm(ﬁ)), a finite subset
& C A, \ {0}, and an integer K > 1 satisfying the following:

For any C*-algebra B € C,, ,, rsr) for any two G-5-multiplicative c.p.c. maps
¢,V : A — B, and for any F-£ full G-§-multiplicative map ¢ : A — M;(B) such that

cel(fp W1y (w™) < L(w)
for u e U, and
[Bllp = [Wlip,
there exists a unitary U € M, +Kl(§) such that
IAd(U) o (¢ ® S)(@) — (¥ ®S)(@)|l <€
for all a € F, where
S(a) := diag(o(a),o(a),...,o(a))
(the “o(a)" is repeated K times in the diagonal).

Furthermore, if B stably has almost stable rank one, then one can choose
UeM, , qB.

Proof. This is Theorem 3.14 of [19]. | |

Remark 5.6. Note that the finite subset ¢/ in the statement of 5.5 may be assumed
to be a subset of U(Mm(ﬁ)) for some integer m > 1. Let [U] be the image of I/ in
U(Mm(Zl)) / Uo(Mm(Zl)) and let G([U]) be the (finitely generated) subgroup generated by
[u.

We provide some notation that will be used in Theorem 5.8, in the proof of

Lemma 7.12, and in other places.
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Definition 5.7. Let A be a non-unital C*-algebra.

1. Let

M : UM (A)) — UM (A))/Uy(My, (A)) = K, (4),

Mgy, : UM (A)) — UM (A))/CUMy (A)),
and
I, ¢ : UM, (A))/CUM,,(A)) — K, (A)

be the usual quotient maps.

2. Fix a homomorphism
Ja  Ki(A) — UM (A))/CUM,(A))
so that the following short exact sequence splits
0 — Up(M,(A))/CUM,,(A))
y,cu

—> U(M(A))/CUM(A) = ; Ki(A)— 0 (5.2)

(see Cor. 3.3 of [68]). In other words, I1; ., o J,(x) = x for all x € K;(4). We
will also use J instead of J, for brevity. Moreover, in what follows, once A is
given, we will assume that J is fixed.

Fix a map I, : UM, (A))/CU(M,,(A)) — U(M,,(A)) such that 1, (M, (2)) = z
forall z ch(U(MOO(Z))). Then for each u € U(Moo(ﬁ)), we write

u = I, (Mg, (W)ug,
where
Uy, = Mg, (M, (W) u € CUM,,(A)).

Note that IT;, is just a map between sets. Once A is given, we will assume
that I, is fixed.
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3. Let
T 1Ky (A) — UM (A))
be given by
J” =TI, 0.
4. Once J and I, are fixed, for any u € U(MOO(Z)), one may uniquely write
u =T, (J o Iy (W) uUg oy (5.3)
where
U ou = Mg, (T o Ty (W) u € Ug(M, (A)). (5.4)

Let Jy : UMy (A) — Uy(M(A)) be defined by Jy(w) = J~(I1;(w)*u(=
Ug ey @S in (5.4).

We repeat for emphasis: For a fixed C*-algebra A, we will fix one splitting
map J and a map I1_, as above, which then determine J~ and Jj .

5. Suppose that B is another C*-algebra and h : A — B is a homomor-
phism. Denote by hf : UM, (4))/CUM,,(A)) — UM, (B))/CU(M.,(B)) the
induced homomorphism. Denote by h* : K,(4A) — U(MOO(E))/CU(MOO(E))
the homomorphism defined by h' o J, as J is fixed. Note that in the
case where B has stable rank one (see [68, Cor. 3.4], and its remark),
U(MOO(E))/CU(MOO(E)) = U(E)/CU(E). In this case, h' is a homomorphism
from U(A)/CU(A) to U(B)/CU(B) and h* maps K, (A) to U(B)/CU(B).

6. Denote by A : U(B)/CU(B) — Aff(T(B))/pz(Ky(B)) the determinant map which
is an isometric group isomorphism (see Section 3 of [68] and Proposition 3.23
of [23]).

Theorem 5.8. Let A be a non-unital separable amenable C*-algebra that satisfies the
UCT, letrg,r; : N — Z, and T : N x N — N be three maps, s,R > 1 be integers, and let
F:A \{0} > Nx (0,00) and L : J7(K;(A)) — [0, 00) be two additional maps.

For any € > 0 and any finite subset 7 C A, there exist § > 0, a finite subset G C A,
a finite subset P C K(A), a finite subset &/ C J~(K;(4)), a finite subset £ C A, \ {0}, and

an integer K > 1 satisfying the following:
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For any C*-algebra B € C, ,, rsr) for any two G-5-multiplicative c.p.c. maps
¢,V : A — B, and for any F-£ full G-§-multiplicative map ¢ : A — M;(B) such that

cel(fp ()Y (w)*]) < L(u) for all u e/, and

[Pllp = [Wlp,
there exists a unitary U € M, +Kl(§) such that
IAd(U) o (¢ ® S)(a) — (¥ ®S)(a)| <€
for all a € F, where
S(a) := diag(o(a),o(a),...,o(a))

(the “o(a)” is repeated K times in the diagonal).
Furthermore, if B stably has almost stable rank one, then one can choose
U e My, g(B).

Proof. It suffices to show that there is a map L, : U(MOO(Z)) — [0, o0), which depends
only on A and L, such that for any finite subset ¢/ C U(MOO(Z)), if

cel(¢p W) 1Ty (w)*]) < L(w) for all ueJ™ oI, WU), (5.5)
then one always has that
cel(fo(w) 1Ty (w)*) <L,(u) for all uel, (5.6)

for any ¢ and v that are G,-§,-multiplicative, where §; is sufficiently small and G, is
sufficiently large and which depend only on ¢/ and L, as we then apply Theorem 5.5 for
this L; (choosing § < §;, large G D G, and K and so on).

Let us provide the details for the resolution of this issue. As A is given, we fix
a splitting homomorphism J and a map I, as in 5.7 (so J~ and J; are also fixed).
Define L : UO(MOO(Z)) — [0, c0) as follows: For each u € UO(MOO(Z)), there is a smallest
m(u) > 1 such that u € Uy(M,,,,(A)). Define Ly(u) = cel(w) in Uy(M,,,(A)).

Suppose that a finite subset &/ C U(Mm(Z)) is fixed. Without loss of generality,
we may assume that Jj (u) € UO(Mm(Z)) forall u e U.

€20z dunf Gz Uo Jasn saueiqr] uoBaiQ Jo ANsienun Aq 2/67659/0SE01/Z1L/EZ0Z/2191E/uIWl/woo"dno"oIWapED.//: Ay WOy Papeojumod



Extensions of C*-Algebras by a Small Ideal 10373

For each u € U, there are hy (u), hy(w), ..., Ay, (w) € Mm(ﬁ)s_a. such that
exp(th; (u)) exp(thy(w)) - - - exp(thy,, (w) = Jy (w). (5.7)
We choose a small §; > 0 and a large finite subset G, of A such that for all u € U/,
¢ (Jg (W) — exp(ig (hy(w))) exp(ip (hy(w))) - - - €xp(ig (g, (W) < 1/167  (5.8)
for any G,-8,-multiplicative c.p.c. map ¢ from A. In particular,
cel([p (Jy (u))1) < cel(Jy (w)) + 1/4 for all ueld. (5.9)
We may also assume that

[p(W)] = jpar [¢WT T (W) 1[P Ty (w)] for all u e . (5.10)

Define L, (u) = L(J ™ (IT;(w))) + 2Ly(Jy (w)) + 1 forall u e U(MOO(Z)).

Note that, as had been demonstrated, if §; is small enough and G, is large enough

independent of ¢ or ¢ (and also independent of B in the class C, ,, ;¢ r), when both ¢
and  are G,-8;-multiplicative and satisfy (5.5), for all u € U,
cel(fo W1y w1 (5.11)

< 1/16 + cel(f¢ (I~ (Tl )T Ty @)Y Ty )y (I~ T w)*D  (6.12)

< 2(LoWJy (W) +1/4) + LI~ (I1; (w))) < Ly (w). (5.13)
In other words, (5.6) holds. The theorem then follows from Theorem 5.5. [ |

6 Existence and Exponential Length

Lemma 6.1. Let A be a separable algebraically simple C*-algebra with finite nuclear
dimension, which satisfies the UCT and has a unique tracial state 4. Suppose that A is

non-unital and stably projectionless. Then we have the following:

1. Ais Z-stable and has stable rank one.
2. Ky(A) =kerp,.
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Proof. By [70], A is Z-stable. It follows from [63] that A stably has almost stable rank
one. Since A has only one tracial state, it follows from Corollary A7 of [19] that Ky(4) =
kerp,. By Theorem 15.5 of [22], A is classifiable and is in the class D, which is defined
in 3.9 of [22] (see also 8.1 of [18]). Therefore, by Theorem 11.5 of [18], A has stable rank

one. ]

Definition 6.2. Let W be the Razak algebra, which is a non-unital, simple, separable,
nuclear, continuous scale, stably projectionless C*-algebra with a unique tracial state
7y and K, (W) = 0. (Sometimes, we will write t;,, instead of ty,, for the unique tracial
state of W.) W also has stable rank one and is Z-stable (see [26, 59, 71]). It is proved
in [19] that W is the only non-unital simple separable C*-algebra with finite nuclear
dimension, K;(W) = {0} (i = 0, 1) and with a unique tracial state which satisfies the UCT
and has continuous scale. From this, one can also conclude that W is *-isomorphic to

any of its nonzero hereditary C*-subalgebras.

Remark 6.3. In fact, the proof of Lemma 6.1 shows that the C*-algebra A is in the
classifiable class D defined in [22] 3.9. We also note that it is not hard to check directly
that W has properties (1) and (2) of Lemma 6.1. (See, e.g., [26].)

Lemma 6.4 (Theorem 1.1 of [62]). Let B be a separable infinite dimensional simple
Z-stable C*-algebra with stable rank one, and for which every 2-quasi-trace of bBb is a
trace, for any b € Ped(B), \ {0}. Then there is an embedding ¢, ; : W — B.

If B also has continuous scale and is stably projectionless, we may require that
¢y, , Mmaps strictly positive elements to strictly positive elements.

Moreover, if ¢;,¢, : W — B are two monomorphisms such that d,(¢,(a)) =
d,(¢,(a)) holds for all 7 € T(B) and for one non-zero a € W, \ {0}, then there exists a

sequence of unitaries u,, € B such that
lim Adu, o ¢,(c) = ¢,(c) for all ce W.
n—oo

Proof. Since K;()V) = {0} and W has a unique tracial state, from Proposition 6.2.3 of
[62], one computes that Cu™ (W) = (—oo, o¢]. It is easy to see that for the first part of
the Lemma, we may assume that B has continuous scale (see, e.g., Proposition 5.4 of
[18]). Since B is simple, has stable rank one, and since every 2-quasi-trace of B is a trace,
T(B) # . Since B has continuous scale, it is well known that T'(B) is compact (see, e.g.,
Theorem 5.3 of [18]).
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It follows from Theorem 7.3 of [18] (see also Theorem 6.2.3 of [62]) that when B is
stably projectionless, Cu™ (B) = Ky(B) U (LAff ™ (T(B)) \ {0}) (recall that T'(B) is compact as
B has continuous scale). This also holds for the case that B is not stably projectionless
(see the proof of Proposition 6.1.1 of [62]; in fact, here we can replace the trace space by
T(pM,,(B)p) for some nonzero projection p € M,,(B), and for some m > 1).

Fix a strictly positive element e, € W with |ley || = 1 and a strictly positive
element ey € B with |leg]| = 1. Then ey, is represented by 1 € (—o0,00] in Cu™(W).
Note also d.(eg) = 1 for all ¢ € T(B). Choose 0 < a < 1. Define a map j : (—oo, ool —
LAff~(T(B)) C Cu™(B) by j(r) = ar, where we view ar as a constant function on T(B).
Thus, j is a morphism from Cu™~ (W) to Cu™ (B). Hence, by Theorem 1.0.1 of [62], there is

a *-homomorphism ¢, , : W — B, such that

Cu~(¢w,b) = J

In the case that B is stably projectionless, ey is not a projection. So if, in the
previous paragraph, we choose a = 1, then ¢, ,(e,) is Cuntz equivalent to ep. Since B
has stably rank one, Her(¢,, ,(ey,)) is isomorphic to Her(ep) = B. So we may also assume
that ¢,, , maps strictly positive elements to strictly positive elements.

The second part of the Lemma follows immediately from the fact that Cu™ (W) =
(=00, 0] and Theorem 1.1 of [62]. [ |

Definition 6.5. Let B be a separable (non-unital) simple C*-algebra with stable rank
one and with continuous scale such that K,(B) = kerpg. Then UM, (E)) /CUM, (E)) =
U(B)/CU(B). Fix J : K, (B) = K, (B) — U(B)/CU(B). Then, by 5.7, one may write

U(B)/CU(B) = (Aff(T(B))/Z) ® J(K,(B)). (6.1)

Recall that Aff(T(B)) = Aff(T'(B)) @ R.

Suppose that D is a hereditary C*-subalgebra of B, which also has continuous
scale. If y, : T(B) — T(D) is an affine continuous map, denote by yP  Aff(T(D)) —
Aff(T(B)) the induced linear map defined by y?(f)(z) = f(yp(v)) for all f € Aff(T(D)) and
T € T(B). Let y_D : Aff(T(ﬁ))/Z — Aff(T(E))/Z be the map induced by y°.

Let j, : D — B be the inclusion map. Note that if u D is a unitary, then we may
write u = €% . 15 + uy, where 0 € (—1,1] and uy € D. Note that j,(w) = e - 15 + ug.
Also, (jp),; : K;(D) — K;(B) is an isomorphism. Moreover, by Proposition 4.5 of [22],
jb : UD)/cu(D) — U(B)/CU(B) is an isomorphism.
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Lemma 6.6. Let B be a non-unital separable finite simple C*-algebra with finite
nuclear dimension and with continuous scale.

(1) B is Z-stable and every quasitrace on B is a trace. For each t € (0, 1), there
are elements a,, a,_, € B, such that a;,a,_, =0,d. (a,) =tandd, (a;,_;) =1—tforall
T € T(B), and a; + a,_, is a strictly positive element of B.

(2) Suppose, in addition, that K;(B) = kerpy and B satisfies the UCT.

Then for any ¢ € (0,1), for any a, € B, \ {0} with d (a,) = t for all = € T(B),
there is an isomorphism ¢, : B — B, := Her(a,) such that KL(¢,) = KL(idp), (¢,)r = yB_tl :
T(B,) — T(B), where yp : T(B) — T(B,) is defined by yp, (r)(b) = 7(b)/t for all b € B, and
t € T(B), and

4 -1 _ 51
@0 b @) = Us) ™ ey and @) |agerd)z = P07

where E : Aff(ﬁt)/Z — Aff(B)/Z is the induced map given in Definition 6.5.

Moreover, for any u € UO(E),
dist(uCU(B), j} (¢] () < (1 — t)dist(u, 1). (6.2)

Proof. We firstly prove part (1). It follows from [70] that B is Z stable. By [10], every
quasitrace on B is a trace. By Theorem 6.8 of [20] (see also [9] Theorem 2.5), Cu(B) =
V(B) u (LAff ,(T(B)) \ {0}). For both parts (1) and (2), we may assume that T(B) # .

If B is not stably projectionless, then there is a projection e € M,,(B) for
some m > 1. It follows from Cor. 3.1 of [69] that eM,,(B)e is a unital simple Z-stable
C*-algebra. By Theorem 6.7 of [64], eM,,(B)e has stable rank one. It follows that B has
stable rank one.

Fix a strictly positive element e of B. Note that d (ez) = 1 for all t € T(B).
For any t € (0,1), choose elements a|_,,a; € B, that are not projections (as Cu(B) =
V(B) u (LAff . (T(B)) \ {0}) ) such that d (a}_,) =1 —tand d (a;y) = tforall r € T(B). Let
b=al_,®a; € My(B),. Then d (b) = 1 for all € T(B). Therefore d,(b) = d,(ep) and
both b and ey are not projections. If B is not stably projectionless, applying Theorem 3
of [14] (see also Theorem 3.3 of [9]), as eM,,,(B)e is unital and has stable rank one, and if
B is stably projectionless, applying (the last part of) Theorem 1.2 of [63], one obtains an
isomorphism h : bM,(B)b — B. Let a, = h(a,) and a,_, = h(a}_,). Then a,a,_, = 0 and
a; + a,_, is a strictly positive element of B.

For part (2), note that since B is finite and Z stable, it is stably finite. Note also

that since K;(B) = kerpg, B is stably projectionless. By Theorem 15.6 of [22], B € D,
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and B € By as defined there. Then, part (2) follows from Theorem 12.8 of [22]. In fact,
note that K;(Her(a,)) = K;(B), i = 0,1. Define «; := idKo(B) and «; := idg, (5, Note that
B, := Her(a,) also has continuous scale as d(a,) is continuous on T(B) (see Proposition
5.4 of [18]). Fix t € (0, 1). The map defined by th(r)(b) =t(b)/tforall b € B, and v € T(B)
is an affine homeomorphism from T(B) onto T(B,). Let ky := (;/Bt)_l :T(B;) — T(B). Note
also that since Ky(B) = kerpy, U(B)/CU(B) = Aff(T(B))/Z ® K, (B). Let k, : U(B)/CU(B) —
U(Et)/CU(Et) be the map defined by

N | _ _ (. B—1
Keulspa, @) = (]J'Bt) Lz, By and Keulaser @)z = (yB)~. (6.3)

Then by Theorem 12.8 of [22], there is an isomorphism h; : B — B, such that KL(h,) =
KK (idp), h: = kg, and s(h,(b)) = kp(s)(b) for all s € T(B,) and all b € B.

For the last part of the lemma, let u € UO(E). Write u = exp(i2wra)w, where
a=a-13+ap a, € By, ,a € Rand w € CU(B). Moreover, we may assume that A(u)(r) =

o+ t(ap) forall v € T(B) (see [68] and Corollary 2.12 of [21], as well as (6) of 5.7). We

compute that

Jt (hj(w) = exp(i27 (@ - 15 + hy(a))), (6.4)

where 7 (h,(ap)) = tr(ay) for all t € T(B). Therefore,

w(, (hf () = exp(izn (@, — hy(@y). (6.5)

Note that
t(ay — hy(ap)) = (1 —t)r(ay) for all v € T(B). (6.6)
Then (6.2) follows from the fact that A is an isometric isomorphism. |

Lemma 6.7. Let B be an algebraically simple, o-unital C*-algebra , and let C be a
o-unital C*-algebra. Suppose that o : C — B is a nonzero homomorphism.
Then there exists a map:

F:C,\{0) > NxR

such that for every finite subset £ C A, \ {0}, o is F-€ full.
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Proof. Let A = o(C). Then A C B is a o-unital C*-subalgebra. Then Proposition 5.6 of
[18] applies. |

Definition 6.8. Let A be a separable C*-algebra. We say that A is W embeddable if
there is a monomorphism ¢ : A < W.

Since W is projectionless, if A is W embeddable, then A is non-unital. Let
e, € A be a strictly positive element. Consider a = ¢(e,). There is an isomorphism
s:aWa — W. Thenso¢: A — W is an embedding which maps e, to a strictly positive
element of W. So, if it is needed, one may assume that ¢ maps strictly positive elements

to strictly positive elements.

Remark 6.9. If A is W embeddable, then T((4) # §. In particular, A is not purely
infinite. Let 7, be the unique tracial state of W and suppose that ¢ : A — W is an

embedding. Then the normalization of 7y, o ¢ is a faithful tracial state of A.

Recall that Z, is the unique separable stably projectionless simple C*-algebra
with finite nuclear dimension, which satisfies the UCT and has a unique tracial state,
and for which K,(Z,) = Z and K, (Z,) = {0} (see Cor. 15.7 of [22]).

Theorem 6.10. Let A be a separable amenable C*-algebra that is W embeddable,
and let B be a separable simple stably projectionless C*-algebra with finite nuclear
dimension and with continuous scale. Suppose that kerpy = K,(B) and both A and B
satisfies the UCT.

Then for any x € KL(A,B), there is a monomorphism h : A — B such that
KL(h) = x.

Proof. By Theorem 15.6 of [22], B = B ® Z,. It follows from Theorem 10.8 of [22] that

there exists a sequence of c.p.c. maps ¢,, : A - B® K such that

;}an}o ¢, (@), (D) — ¢, (ab)] =0 for all a,b e A and [{¢,}] = x. (6.7)

Without loss of generality, we may assume that ¢, : A - B® M,

r(n) for some sequence

{r(n)} C N. Since B ® M, ,, is also a separable simple stably projectionless C*-algebra
with finite nuclear dimension, with continuous scale, and which satisfies the UCT, by

part (2) of 6.6, and by replacing ¢,, by qb% o ¢,,, we may assume that ¢, : A — B.
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Let /; C F, C ---F,, ... be an increasing sequence of finite sets whose union
is dense in the unit ball of A. Let {¢,} be a sequence of positive numbers such that
2ne16n < 1.

Fix an embedding ¢, :A — W. For each u € U(Mm(ZL)) (m=1,2,...), ,,(w) (which
abbreviates (14 ® idy, )(w)) is in UO(Mm(W)). Define L, : Up_ UM,,(A) — R, by
L, (uw) = cel(ty(w) for all u € Us._; UM, (A)).

By Lemma 6.4, there is a homomorphism ¢,,, : W — B, which maps strictly

positive elements to strictly positive elements. Put o, := ¢, , 014 : A — B. Note that

cel(o,(w) < Ly(w) for all ue | | UM,,(A)). (6.8)

m=1

By Lemma 6.7, let F: A, \ {0} — N x (0, 00) be such that o, is F-full in B.

LetL=1L; +27 + 1. Let T : N x N — Z, be the map defined by T(n,k) = n. We
will apply Theorem 5.5. Note that by Proposition 5.2, B € Cyg; 7. So let rg = r; =0,
s=landR=1.

For the above data, and for each n, let §,, > 0 (in place of §), G,, C A (in place of
G) be a finite subset, P, C K(A) (in place of P) be a finite subset, U, C UM, (A) N
J7(K;(A)) (in place of U) be a finite subset (for some integer m(n)), &, C A, \ {0} (in
place of &) be a finite subset, and an integer K,, > 1 (in place of K) be as provided
by Theorem 5.8 for ¢,/2 (in place of ¢) and for ¥, (in place of F), as well as for the
given L and T above. Passing to a subsequence if necessary, we may assume that ¢,, is
G, -8,-multiplicative and [¢, (u)] is well defined for all u € I/,,. We may also assume that
K, <K,,,,neN.

For each u € U,,, define

2y = Jp(My o, (6, (W) 6.9)
Then, for each u € U,
[P =2y 2y and zyy = [¢,(W1T5(ITy ¢, (6, W) € UgMypn)(B).  (6.10)

Define, for each n,

Ay = max{cel([p, (u)]Jp(IT; ¢, ([P, (W) : U € Uy} (6.11)
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Define, for each n,
A, = max{cel([¢,(u)] M)nﬂ(u*ﬂ) rueld,}, n=1,2,...
Choose J,, € N such that
20+ Ay + 7/, <1 and J,,, > J, >K,, n=1,2,.... (6.12)
Choose t,, € (0,1) N Q such that
thot <tn (1—t,) > 2J,(4K, + 1)+ Dt,, n=1,2,... (6.13)
Define, for each n,
N,=2J,4K,+1+1), d,=Q1/N,)(1 —t,), Ty =, —t, 1) (6.14)
One can check that
0<t,<d, Trp<2),d,+t,—t, ) < (@2J,+1d,, (6.15)
ty +2J,dy + Ty < (4, +2)d,, 81,(K,+1) > (4], +2)K, and  (6.16)
(1 —tp1) =Tyoy + A —t,) = 1y + 2J,dy, +8J, (K, + 1)d,, (6.17)

=Ty +2J,d, + N, — 2J,)d,,

N, —2J, > 4(K,, + 1)2J,,. (6.18)

By Lemma 6.6, choose a, ,a,_, € B such that q, a; , = 0 and d,(a;) = ¢, and

d.(a;_;)=1-t,forallt € T(B). Also, letay ,a, €Her(a,_, )besuchthatd (ag)=d,
and dr(arn) =r, forallr € T(B), n € N. Let

S, :B— B, ,:=Her(ay ) C Her(a;_, ), (6.19)

Sy :B— B, ,:=Her(a, ) CB, and (6.20)

sy’ :B— B, o :=Her(a, ) C Her(a, ) CB (6.21)
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be the isomorphisms given by part (2) of Lemma 6.6, n € N. In particular,
KL(s,) = KL(s,) = KL(s%) = KL(idp) and

(0) - N -
(50 ) g, @y = Uy lipacy @) and (6.22)

dist(z, (jg, ) ((sy)(2))) < (1 — t,,)dist(z,T) for all z e Uy(B)/CUB). (6.23)

Moreover, viewing Her(a;, ) C Her(a;,) and letting j%t . B — B, to be the
n n+1 n

tnyl
inclusion map,

(5w @0, (sl D)) =T for all x € Jp, (K, (B,,) (6.24)

and, as at the end of the proof of 6.6,
dist((sn) (@), G, ) (Sp) (@) = (8 — to41)dist(z,T) (6.25)

n+1

for all z € Uy(M,,(B))/CU(M,,(B)).

Define A, o := O, ¢, : A — B, o. We may assume that
[Anollp, = Xlp, = [Api10llp, (6.26)

n € N. By (2) of Lemma 6.6, Her(a;_, ) = My (B, ;). Moreover, define, for each n,

N,

S, =@Ds,00,:A— Her(a, ;) =My, (By,), (6.27)

R, :=spo00,:A— Her(a,), (6.28)
2Jn

Sho= @sn o0y A— My; (B,,) CHer(a;_, ), and (6.29)
Ny —2Jp

Spi= @ spo0u:A—> My, o5 (By)). (6.30)

Note that each s, o0 0, is F-full in B, ;. By (6.17) and the second part of Lemma 6.4, the
maps @+ Spt1 0 Pwp @nd (57, 0 by, & B*rs, o b p © @V, o #y, ) induce the
same map on Cu(W) = [0, ool. Since K;(W) = 0, they induce the same map on Cu™~(W).
As K;(W) = {0} (i = 0, 1), by Theorem 1.11 of [62], there are unitaries v, ; € Her(a,_;,, )
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such that
Npt1 2Jn Ny —2Jn
klgrolo V:L,k(@ Spy1 © ¢W,b(c))vn,k = (S:H-l ° ¢W,b ® @ Sp © ¢W,b ® @ Sp © ¢W,b)(C)

(6.31)

for all ¢ € W. By replacing v,, ; by eﬁgvn'k for some 6 € (—x, ), we may assume that

j— — 7 5 7 1~ - _
Vi = lHer(alith) + Vy, i for some v, , € Her(a,_;,, ). Setv, , =15+V,;, k=1,2,.., and

n=1,2,.... Define

2Jn
W, i=Apo®S, =7, P sno04:A— Her(B, o ®M,; (B,,)) CBpuyp,,

where B, ,; := Her(B, o ® My;, (B, ) ® Her(a, ), and

2Jn
W= Ay o@D s 00, @), 00, 1A Her(By,, o ® My, (By,))) ® Her(a

n+1 )

Define A, :=A, @S, =¥, ®S, : A— Banddefine A} | == A, 1 0®R,,; ® st e s,
n=1,2,.... Note that

Aoy =W, @S, (6.32)
By (6.31),
klggo(v’/%k)*A”“(a)v;“k = A} 1(a) for all a € A. (6.33)

Now consider the maps ¥,,, ¥, : A — B, 10 (recall B, ., g C B, o; see (6.21)). Then since
K;(W) = {0}, by (6.26),

W llp, = Wpllp =xlp, . (6.34)
Note that by viewing A, ; and A, o as maps from A into Her(a, ) (as t,,; < t,), and

by computing inside UM, (Her(a,,)))/CUMi,, (Her(a,,)) and omitting (j, O, we
n+
have that

Ao @TTA 10T = 55 ([, WS 1 (D41 (W17 (6.35)

=5 ([ WS | [ W19 | ([ (W1 T 1 (W %) (6.36)
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= stz @0 )5 (20 )50 20 )5 (T8, Ty W15 (6.37)
= s @)sO) @) T 50 (6, (W11 W) (by (6.24))  (6.38)

(recall the notation in (6.9) and (6.10)). Recall, by Theorem 4.4 of [22] (see also
Theorem 15.5 and the end of 3.9 of [22] for notation), that

cel(w) < 7n for all w e CU(Mm(ﬁ)) (6.39)

for any hereditary C*-subalgebra D of B.
By (6.38), (6.25), and (6.39) (computing inside M) (Her(atn))),

cel(TA, oW1 Ay 10U < (b, — bty Ay + A, + 7 for all u e l,. (6.40)
Then, by Lemma 4.2 of [22] and by (6.12) (computing inside M5} | 1ymn,) (H&E&:ﬂ))),

cel([W,, W1M(Ay410® Sln)(u)l*) (6.41)

= cel([Ap oW1 A1 oW ® SLUUM) < (), + Ay, +T10) /T, + 27, (6.42)

It follows from the definition of R,,,; (computing inside M, (Her/(E;+1))) that
cel(R, ., (u") < L;(u) for all uel,. (6.43)
Hence,

cel([W, (w1, (w*]) <1+ 27 +L;(u) = L(u) for all u el,. (6.44)

Recall that N,, —2J,, > 4(K,,+1)2J,, (see (6.18)). Using (6.44), (6.34) and the fact that s,,00,

is F-full in B, ;, and applying Theorem 5.5, we obtain a unitary u}, € B such that

n,lr
(Up)* (A1 (@) uy, N2 My(a@) for all a e F,. (6.45)

It follows from (6.33) that there is a unitary u,, € B such that

Wp)* Apy(@u, ~, Ay(a) for all a e F,. (6.46)
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Define A7 (a) := A (a) and A} (a) = uj---u},

i Ap@u,_;---ujforalla e A, n=2,3..
Then by (6.46),

Ap(@) ~, Ay, i (a) for all ae F,, n=1,2,... (6.47)

n

It follows that for any m > n,

m
A (@) — A (@) < Zej for all a € F,,. (6.48)

j=n

Note that lim,, ., > X, €; = 0. Since F,, C F,,;, and |J F,, is dense in the unit ball of 4,

we conclude that for each a € A, {A}(a)} is Cauchy in B. Let ®(a) = lim,,_, ., A} (a) for
each a € A. Tt is clear that ® is a positive linear map. Since
lim ||A}(@b) - Ap(@A;(®)]| =0 for all a,be 4, (6.49)

® : A — B is a homomorphism. Since o, is an embedding, & is injective. Finally, by
(6.34), we have that

KL(®) = x. (6.50)
[ ]

Theorem 6.11. Let A be a separable amenable C*-algebra, which satisfies the UCT.
Suppose that A is W embeddable. Let B be a separable simple C*-algebra with
finite nuclear dimension, with continuous scale, which satisfies the UCT and with
Ky (B) = kerpp.

Let k € KL(A,B), and let ki, : K;(A) — U(E)/CU(ﬁ) be a homomorphism that is

compatible with «, that is,
k(2) = T o 0 kg (2),
for all z € K; (A). Then there exists a monomorphism & : A — B such that

KL(h) =k and h* = Ky

€20z dunf Gz Uo Jasn saueiqr] uoBaiQ Jo ANsienun Aq 2/67659/0SE01/Z1L/EZ0Z/2191E/uIWl/woo"dno"oIWapED.//: Ay WOy Papeojumod



Extensions of C*-Algebras by a Small Ideal 10385

Proof. Note that we are fixing injective homomorphism s J, : K;(4) — U(A)/CU(A)
and Jg : K;(B) — U(E)/CU(E), which split the following short exact sequences:

~ ~ ~ ~ nl,cu
0 — Uy(M,,(A)/CUM,(A) — UM (A)/CUDM,A) = Ja K,(A) - 0 and

~ ~ ~ ~ I CU
0 — Up(M,(B)/CUM,,(B)) — UM, (B))/CU(M,,(B)) = 7 K1(B) = 0

(see 5.7). Recall that for any homomorphism p : A — B, we let p* : K, (A) — U(E)/CU(E)
denote the induced map.

Note also that K;(A) is a countable abelian group for i = 0, 1. By Theorem 7.11
of [22], there is a stably projectionless simple C*-algebra C, in the classifiable class and
with continuous scale, such that K;(C) = K;(A),i=0,1, and T(C) = T(B). Let ¢; : K;(A) —
K;(C) be a group isomorphism. By Theorem 6.10, let ¢ : A — C be a *-embedding such
that ¢,; = ¢; (i = 0, 1). Fix an injective homomorphism J, : K, (C) — U(E)/CU(E) such that

Iy ¢y 0 J¢ = idk, ) and consider the group homomorphism
¢p : K1 (A) — Uy(C)/CU(C)
induced by ¢, that is, ¢, = oo J4 —Jg 0 ¢,. In particular, ¢p(x) € UO(E)/CU(E) for all
x e K (4).
Consider the group homomorphism 1 : K, (C) — U(E’)/CU(E’), which is defined by

Mz) =Jp(2) — ¢p oty (2) (6.51)

for all z € K, (C).
Define A, : U(C)/CU(C) — U(C)/CU(C) by

~ P ~ - — —1
Ml@/co@ = 19u@cu@ a0 Mligaen =0 Jc
where JCTI = Iy cylpxy (c))- BY Lemma 12.10 of [22], there is a homomorphism j: C — C

such that KK(j) = KK(id), jr = idg, and j= A
Let ¢ : A — C be defined by

Y =joo.
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Then for all x € K, (4),

Vi = (o) od)@ =) o¢’ 0Ty x)
= JT(¢p®) +J¢ 0 ¢y () = 11 (@p(X) + J¢ 0 b,y (X))
= $px) +hod, ()
= ¢p&X) +Jc0d(X) —dpoiy ($,(X)

= ¢px) +Js00,,(X) —dpx) =J; 0 (X). (6.52)

By the UCT, since ¢; is an isomorphism (i = 0, 1), it gives a KK equivalence and hence,
there is a ¢ € KK(C, A) such that

¢ x KK(y) = KK (id).

Let ¢ be the element in KL(C,A) induced by ¢. By Lemma 12.10 of [22], there is a
homomorphism h; : C — B such that KL(h;) = « o z, (hl);1 is the identification of
T(C) and T(B) and

i _ -1 -1
h1|JC(K1(C))—Kku°‘1 oJg .

It follows from (6.52) that if we define h := h; o : A — B, then
h :hi owToJA = (Kkuotl_l oJEl)olpi = (Kkuotl_1 oJC_.l)oJCotl = Kpy-

Then one verifies that the map h satisfies the requirements. |

7 Quasidisagonal Extensions by W

The following proposition is an easy fact and known to the experts. We include a proof

for the convenience of the reader.

Proposition 7.1. Let B be a o-unital C*-algebra and let p € M(B) \ B be a projection.
Suppose that pBp = Her(a) for some a € B, .
Then a!/® — p (as n — o0) in the strict topology on M(B).

Moreover, p is the open projection in B** corresponding to Her(a).
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Proof. Fix any x € B,,. Note that {a'/™} is an approximate unit for Her(a) = pBp. Also,
px’p € pBp = Her(a), and a'/"* = a'/"p = pa'/™ for all n.

Hence,

Ix(p — a*/™)||?

= |l(p —a'™mx*(p —a'™)|

= |lpx*p — px*pal’™ — a'/"px’p + a'Mpx®pal/™|

— |px*p — px*p — px*p + px?p| = 0.

By a similar argument, |(p — al/?)x| — 0. Since x is an arbitrary element of
B, a'/" — pin the strict topology on M(B).

We may assume that a is a contraction. Since al/®

/' p in the strict topology
on M(B), a'/®  p in the weak* topology on B**. So p is also the open projection in B**

corresponding to Her(a). |
The next lemma should also be known.

Lemma 7.2. Let B be a separable simple C*-algebra with continuous scale such that B
and B® K stably have almost stable rank one. Suppose that Cu(B) = V(B)u(LAff  (T(B))\
{OD).

Then, if p, g € M,,,(M(B))\M,,,(B) are two projections (for any integer m > 1) such
that t(p) = v(q) for all € T(B), then p ~ q in M,,,(M(B)). Moreover,

Ky(M(B)) = Aff(T(B)) and Ky(M(B)), = Aff (T (B)). (7.1)
In fact,
V(M(B)) = V(B) U (Aff (T(B)) \ {0}). (7.2)

Proof. Let {e;;} be a system of matrix units for K. In what follows, we will identify B
with e; ; (B® K)e, ;. (Here, we abuse notation and identify e, ; with 1,/ ® €; ;. Similar
fore; ; for all 7, j.) We also note that in this way, we identify M(B) with e; ;M(B®K)e, ;. In
what follows, in this proof, we also identify 1,, :== >_" e; ; with the unit of M,,(M(B)).
Moreover, for each 7 € T(B), we will also use 7 for the extensions of 7 to (B® K), as well
asto MB®K),.

Set C=B®K.
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Let p, g € M(C) \ C be two projections such that 7(p) = t(q) for all t € T(B). Let
a € pCp and b € qCq be strictly positive elements of pCp and qCq, respectively. Note that
neither a nor b are projections, as p, q ¢ C. Then the fact that 7(p) = t(q) for all t € T(B)
implies that

d.(a) =d, () for all r € T(B). (7.3)

It follows that a ~ b in C. Since C = B® K stably has almost stable rank one, there exists

a partial isometry v € C** such that ¢ := vav* is a strictly positive element of Her(b),
v*va = av*v =a, and va,v*b e C. (7.4)

(See Proposition 3.3 of [63] and the paragraph above it.) From the above and since

pt/m cl/m _ g and a'/™

— p in the weak* topology on C**, ¢ = vpv*. Also, qvp € C**
is a partial isometry with left support g and right support p. So replacing v with gvp if

necessary, we may assume that v*v = p and vv* = q. By Proposition 7.1,
va'’™ — vp in the strict topology on M(C). (7.5)

Therefore, v = vp € M(C). So v witnesses that p ~ q in M(C).

From what has been just proven, we conclude that if p,q € M,,(M(B)) \ M,,(B)
(for some integer m > 1) are two projections and t(p) = 7(q) for all t € T(B), then p and
q are equivalent in M,,(M(B)).

Let p € M,,(M(B)) be a projection. Then 7(p) may be viewed as a function in
LAff,(T(B)). However, 1,, — p € M,,(M(B)) is also a projection. Therefore, 7(1,, — p) €
LAff (T(B)) (r € T(B)). It follows that z(p) is an affine function in Aff (T(B)). This
implies that the map

p : Ko(M(B)) — Aff(T(B)) (7.6)

is an order preserving homomorphism, and we just proved that the map p is injective.

We now show that p is surjective. By the assumption, for any f € Aff  (T'(B)) \ {0},
there is a nonzero positive element a € B such that d (a) = f(r) for all t € T(B). It
follows from Kasparov's absorption theorem (Theorem 2 of [31]) that there is a projection
p; € M(B® K) such that p;(B® K) = a(B® K), where the isomorphism is a unitary
isomorphism of Hilbert B ® K-modules.
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Therefore, by Proposition 7.1, replacing a with a Cuntz equivalent positive
element if necessary, we may assume that g'/™
on M(B ® K). It follows that t(p;) = d,(a) for all t € T(B).

There exists an integer m such that m > f(r) + 1 forall r € T(B). Letg=m — f.

converges to p; in the strict topology

Then g € Aff (T(B)) \ {0}. From what has just been proved, we obtain a projection
g € M(B ® K) such that t(q) = g. Without loss of generality, we may assume that p, L g.
Then p, + g = e is a projection in M(B ® K) such that t(e) = 7(1,,) for all r € T(B). From
the first part of the proof above, we conclude that there is v € M(B ® K) such that

v'v=e and vv* =1,,. (7.7)

This implies that p := vp,v* < 1,,. In other words, p € M,,(M(B)) (see the first part of
the paragraph of this proof). Note that t(p) = f(r), for all T € T(B). This proves that the

map p is surjective. The rest of the proposition also follows. |

Remark 7.3. As in the beginning of the proof of Theorem 6.6, if A is a separable simple
finite C*-algebra, which is Z-stable and has continuous scale and for which every
2-quasi-trace is a trace, then Cu(B) = V(B)U(LAff (T(B))\{0}). Later on, we often assume
that B is a separable simple finite C*-algebra, which is Z-stable and has continuous

scale.

Theorem 7.4. Let B be a o-unital, stably projectionless, finite, simple, Z-stable,
amenable C*-algebra with a unique tracial state 3.
Then K, (M(B)) = R, K, (M(B)) = {0}, Ko(C(B)) = R&K, (B), and K, (C(B)) = kerpy =
Ky(B). In particular, Ko(M(OWV)) = R, K;(M(OV)) = {0}, Ko(COV)) = R and K; (COWV)) = {0}.
Moreover, if p, q € M,,,(M(B))\M,,,(B) are two projections (for some integer m > 1)
and t3(p) = 13(q), then there exists v € M,,,(M(B)) such that v*v = p and vv* = q.

Proof. By [51], K;(M(B)) = {0}. It follows from Lemma 7.2 that K,(M(B)) = R. Thus, the

six-term exact sequence

KyB) — KyM(B) — KyC(B)

D !
K,C®) < K,M®B) <« KB
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becomes

KyB) — R — Ky C(®B))

1 !
K, (C(B) <« 0 <« KB

Note that the map from K,(B) into R = K,(M(B)) is induced by the map pz : K;(B) —
Aff(T(B)) = R. However, by Corollary A7 of [19], since B has a unique tracial state,
K,(B) = kerpg. In other words, p5(Ky(B)) = {0}.

It follows from the exact sequence that

K,(C(B)) = kerpy = Ky(B) and

0 —- R — Ky(C(B)) - K;(B) — 0.

Since R is divisible, we may write K,(C(B)) = R @ K;(B). Note that B is stably
projectionless and Z-stable. Therefore, the last statement follows from 7.2 (see also
Remark 7.3). |

Definition 7.5. Let A be a separable C*-algebra, and let B be a non-unital and o -unital
C*-algebra.

A trivial extension ¢ : A — M(B) is said to be diagonal if ¢ is quasidiagonal as
in Definition 4.4 and Proposition 4.5, with the additional property that the maps ¢,, in
Proposition 4.5 can be taken to be homomorphism s.

In the above setting, we often write ¢ = @, ¢,, (Where the sum converges in

the pointwise-strict topology).

Definition 7.6. 7; extensions Let B be a separable simple non-unital C*-algebra with
continuous scale, and let C be a separable C*-algebra. A monomorphism o : C — M(B) is
called a 7; extension with model o, if w oo is non-unital and if o is a diagonal essential

extension of the form

o= EB@(P” 00y = @((ﬁnooo@...@(ﬁnooo).
n=1 n=1

€20z dunf Gz Uo Jasn saueiqr] uoBaiQ Jo ANsienun Aq 2/67659/0SE01/Z1L/EZ0Z/2191E/uIWl/woo"dno"oIWapED.//: Ay WOy Papeojumod



Extensions of C*-Algebras by a Small Ideal 10391

Here, 0y : C — B is a fixed injective *-homomorphism such that oy(e;) is a strictly
positive element of B, where e, € C is a strictly positive element of C.

More precisely, this means the following:

1. There exists a system {b,,} of quasidiagonal units for B.

2. There exists a nonzero positive element b,, ; € b, Bb,, such that

Her(b, ,) ® M,, = M,,(b,, ; Bb,, ;) = b, Bb,,

for all n > 1. Moreover, we may write

n
b= b, (7.8)
j=1

where b, ; := b, ; ® ¢;;, and {e; ;} C M,, is a system of matrix units.

3. ¢, : B - b,,Bb,, is an isomorphism such that ¢, coy(e;) = b and

n
(pp 000 ® ... ® ¢, 0 0y) : C - M, (Her(b, ,))=Her(b,) is the diagonal map, for

alln > 1.

n,lr

Remark 7.7. With notation as in Definition 7.6, let us suppose that F : C, \ {0} —
N x (0, 00) is a map such that o, is F-full. (F exists by Lemma 6.7.) Then each ¢,, o g is
also F-full.

Note also that @' ; D" ¢, o 0y(c) converges strictly to o(c) for all ¢ € C (as
m — o0). Note that o = ¢ o 0y, where ¢ = D5, D" ¢,, : B— M(B).

Finally, note that our definition of 7; extension requires that 7 oo be a non-unital

essential extension.

Remark 7.8. With notation as in Definition 7.6, note that if KK(c,) = O then, since
o = ¢ ooy and ¢ is a *-homomorphism, KK(7 oo) = 0.

Also, when C is amenable and satisfies the UCT, and when B is stably projec-
tionless, Z-stable, and has a unique tracial state, since K, (M (B)) = (R, 0) is divisible, a

sufficient condition for the above is that

Ky(op) =0.
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Proposition 7.9. Let A be a separable amenable C*-algebra, which is W embeddable.

Then there exists a 7; extension t : A — C(WV). Moreover,
KK(t) =0.

Proof. Fix a *-embedding o, : A — W, which maps strictly positive elements to
strictly positive elements. Denote by 7y, the unique tracial state of W. Fix a system
of quasidiagonal units {b;} for W as in 4.1. Passing to a subsequence if necessary, we

may assume that

o
1
> d,, by < —dy, (by) for all n. (7.9)
k=n+1

Let t, = %ﬂdrw(bn), n € N. There is an element a,, € Her(b,), \ {0} with d, (a,) < t,
such that M, (Her(a,)) < Her(,) (by Theorem 6.6 of [20] and by strict comparison).
There is, for each n, an isomorphism ¢,, : W — Her(a,,). Defineo : A - M(OV) by o(a) =
Z;L'OZI(EB" ¢, 0o 0y)(a) for all a € A. Note that since {b,} is a system of quasidiagonal
units, the sum above converges in the strict topology on M (W) for each a € A. One then
checks, from Definition 7.6, that 7 o ¢ is a 7; extension with model o,4.

That KK (7 o o) = 0 follows from Remark 7.8. [ |

Proposition 7.10. Let C be a separable amenable C*-algebra, which is W embeddable
and satisfies the UCT, and let ¢ : C — M (VW) be a monomorphism. Then ¢*0(ker,of'c) = {0}
and ¢,; = 0.

If X is a connected and locally connected compact metric space, and C := Cy(X \
{xo}) for some x; € X, then KK(¢) = 0 and KK (w o ¢) = 0.

Proof. Recall that K(M(W)) = R and K; (M (W)) = {0}. The first part follows from the
fact that if p, g € M, (M (W)) (for some integer n) are two projections and ty,(p) = 7(q),
then there exists a v € M, (M(W)) such that v*v = p and vv* = q. (See Theorem 7.4.)

In the case that C = Cy(X \ {x4}), since X is connected, K,(C) = kerp,. It follows
that ¢,; = 0,1 = 0, 1. Since Ky(M(W)) = R is divisible, Ext,(K;(C), Ko(M(W))) = {0}. By
the UCT, KK (¢) = 0. Then KK (7 o ¢) = 0 follows. |

Denote by D the class of simple C*- algebras defined in Definition of 8.1 of [18].
Suppose that A € D. Then for any integer k > 1, M} (A) € D (see 8.5 of [18]). Moreover, A
is stably projectionless (see 9.3 of [18]). We note that W € D (see 9.6 of [18]).
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Let us quote the following lemma for the convenience of the reader.

Lemma 7.11 (Theorem 4.4 of [22]). Let A be a separable simple C*-algebra in D and let
u € CU(M,,(A)). Then u € Uy(M,,(A)) and cel(u) < 7x.

Proof. Note that, as mentioned above, M,,(A) € D. Let 7 : Mm(Zl) — M,,(C) be the
quotient map. Then w = m(u) is a scalar unitary. Denote by W € M,,(C - 13) the
same scalar matrix. Then W*u € M/m\(Z). By Theorem 4.4 of [22], W*u € UO(Mm(Z))
and cel(W*u) < 6x. Since W € M, (C - 1), we conclude that u € UO(Mm(ﬁ)) and
cel(u) < 7x. [ |

Lemma 7.12. Let C be a separable amenable C*-algebra, which is W embeddable and
satisfies the UCT. Let 0 : C — M(V) be a 7, extension, and let ¢ : C — M(V) be a

diagonal c.p.c. map of the form

v =P,
n=1

as in Proposition 4.5 such that 7 o ¢ is a non-unital essential extension.

Then there is a diagonal extension h : C — C(WW) such that
Too@moy ~Ymoo ®h.

Proof. Fix a strictly positive element e, € C with |e;| = 1. By working in M, (V))
if necessary, without loss of generality, we may assume that ran(y¥) L ran(c) (see
Proposition 3.5).

Since o is a T4 extension, using a variation on the notation of Definition 7.6, we

write

oo n+l

o= @ @(j}n 0 0g.
n=1

We also write "' ¢, 009 = 0,0 D0, ® - Doy, , and o = Py, D00 -

Continuing to follow Definition 7.6, let
bn,j = O'n’j(ec)

and let b,, be as in Definition 7.6, for all n, j.
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Also, let {a,} be the system of quasidiagonal units for W from Proposition 4.5
that corresponds to {y,}. Recall (see 4.5) that

nll)rrolo vy, @)y, (b) — ¥, (ab)|| =0 for all a,b e C. (7.10)

Since o is a 7, extension, as in Remark 7.7, there exists a map F : C,\ {0} —
N x (0, 00) such that for all n,j, o, ; : C — Wbm is F-full.

Let {€,}5° ; be a strictly decreasing sequence in (0, 1) such that > >° ; €, < oco.

Let F; C F, C --- C F,, C --- be a sequence of finite subsets of the unit ball of C,
whose union is dense in the unit ball of C.

We will apply Theorem 5.8. Note that by Proposition 5.2, W € Cy g ; 17, with T as
in Proposition 5.2. Let L := 7z + 1. As C is given, we fix maps J, I1, and J~ as in 5.7.

For each n, let §,, > 0, G,, C C be a finite subset, P,, C K(C) be a finite subset,
U,c U, CJ~(K,(C)) be finite subsets, £, C C, \ {0} be a finite subset, and K,, be an
integer associated with F,, and ¢, /4 (as well as F and L above) as provided by Theorem
5.8 (for C*- algebras in Cg g ; 7 7).

We may assume that 6,,; < 6,, G, € G,,1, K, < K,,;, and U, C U(Mm(n)(z‘))
for all n. Without loss of generality, we may assume that each ,, is G,,-8,,-multiplicative
and [y, (u)] is well defined for all u € U,,.

Moreover, without loss of generality, we may also assume (see Theorem 14.5 of

[46]) that for any n, there is a group homomorphism
A 1 G(TTy (Uy) = UMy, (Her(ay,)))/CU (M, (Her(ay))) = Aff(TOV))/Z
such that

dist(r,,(x), I, ([, (T~ )))) < for all x € IT; (U,), (7.11)

1
167(n + 1)
where G(I1,({,)) is the subgroup generated by the finite subset IT;(,). Since
Aff(T(Her(a,)))/Z = Aff(TON))/Z is divisible, there is a homomorphism 4, : K,(C) —
Aff(T(W))/Z such that X, extends A,,.

It follows from Theorem 6.11 that for each n, there is a monomorphism
h, : C — Her(a,) such that KL(h,) = KL(¢,,) = 0 and

hi =

(7.12)

n*
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Define H : A - M(W) by H = @), h,,. Note that by 4.1, the sum converges pointwise-
strictly and H gives a diagonal extension.
Since W is KK contractible, we may assume that

[E;;n:nhk]lfpn = [E;;n:nl/fk]lfpn = 0 fOI‘ all m 2 n, n = 1,2,.... (7.13)

Throwing away finitely many terms and relabelling if necessary, we may assume

that
o0
> d,, (@) < d,, (b, o)
n=1
Let {n;}3>, be a subsequence of Z* with n; = 1 and ny + 2 < ny, for all k such
that

> d,, (@) < d,,(bg, o).

l:nk

By (7.12) and (7.11), for any u € L{nk, for any n;, < I < Ngyp — 1, there is a
v, € CU(M,,,(Her(ap)) such that

WY W1 24 j167a41) V- (7.14)

It follows from Lemma 7.11 that forall u € i, ,

cel (4 hy ) TS5 ypw1™) < 77 +1, (7.15)

where the length is computed in My n,) Her(zln:";;_l ap)).

Since W has stable rank one, there is a unitary U,/c € W such that

ng—1 ng—1
U D apW( D a))UpChy, Wby, 0. (7.16)

l:nk l:nk

For each k, consider the two maps

Ad U o (2"’”{1%), AdUj} o (E’E”;*%l) 1 C — Her(bg, o) = W.

l=n l=n
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10396 H.Lin and P. W. Ng

Recall that ¢, is G,,-8,,-multiplicative and ¢, oo, is F-full, for all n. Also, keeping
in mind of (7.15) and (7.13) and applying Theorem 5.8, for all k, there is a unitary
uy € My, ., (Her(bg, ()) such that

Ngy1—1 N1 —1
up (U D hl(c)Uk+ZoKkl(c))(uk)* Ny TS D I/fl(C)Uk+ZaKk ,©
I=ny l=ng

(7.17)

for all ¢ € Fj.
For each k, there are e, € Her(bK o). and e € U”"Her(zn’“+1 1al)JrU]’C with
lexll < 1 and |le; || < 1 such that for all ¢ € F,

ngp1—1 Ngy1—1

U D wm©Uie, ~on6 U D, w©U, (7.18)
l=ng I=ng
Ng1—1 Ngp1—1

U D mMOUe, ~o 6 U™ Y. M(©U;, and (7.19)
lznk l=nk
Ky Ky
> ewog 08, Xons D0k (0, (7.20)
=1 =1

where in (7.20), we identify My, (Her(bg, o)) with Her(Zﬁ1 b, 1)-
Ky

. /_/—\
Set X = Ue, + diag(ey, ek, - ,e,), k = 1,2,.... Note that €,U;"d = 0 for all
d € ran(o). Then for all ¢ € 7y, by (7.18),

Nk+1-1 Ngy1—1
AN wl(C)Uk+ZGKkl(C) Xi N6 D wl(c)+ZaKkl(c) (7.21)
I=ng =1 I=ng =1
and by (7.19),
Ng1—1 Ngy1—1
X (> hl(c)—l—ZoKkl(c))Xk e U D hl(C)Uk+ZJKkl(C) (7.22)

l=ny =1 I=ny =1
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For all k, let u = X, u; X;. Note that u; € Her (Z]n:";;c_l a;+ Z{Z‘l ka,l) . Then we
have, by (7.22), (7.17), and (7.21), that for all ¢ € F,

Ngr1—1 ng1—1
u( Y hl(c)+ZaKkl(c))uk N2 D wl(c)+ZaKkl(c) (7.23)
1= ng = ng

Let
00
Y = ZuJ (S M(W)r
j=1

where the sum converges strictly. Note that ||Y| < 1.
Forall c € C, let

m ng1—1 ng1—1

E@Qm=> wm| D hl<c)+ZaKk,<c) up— > wl<c)+ZaKk,<c) :
k=1 I=ny I=ny

m=1,2,..., and

£(c) = Y(H(c)®o (c)Y" — y(c) ®o(c).

Since F; C Fj;, for all j and since > ¢, €, — 0 as m — oo, it follows from (7.23) that

forallj, forall c € Fiy
lim [|E(c), —&(0)] = 0. (7.24)
n—oo

Since &(c),, € W, one concludes that &(c) € W, for all ¢ ¢ ]—"j,j = 1,2,.... Thus, for any
ce ]-'J

7(Y)(mwoH(C) +moo(e)n(Y)*=nmo(c) +moao(c). (7.25)
By a similar argument, for any c € F;,
T oH(C)+moo(c) =n(Y) (wo(c)+mooa(c))n(Y). (7.26)

Since ]-"J - ]-"J-+1 for all j and U]?'il]-"j is dense in the unit ball of C, (7.25) and (7.26)
implies that

7YY@ oH()+moo(@)n(Y) =moy(c)+moo(c) for all ceC (7.27)
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10398 H. Lin and P. W. Ng
and
7 oH(c)+moo(c) =n(Y)(mwoy(c)+moo(c))n(Y) for all ¢ e C. (7.28)
Set d := > (a, +b,). Then Y € Her(d). Since Her(d)t # {0}, n(Y)*n(Y)
and 7 (Y)r(Y)* are each not invertible. Since C()V) is simple purely infinite, it has

weak cancellation. Hence, by Corollary 1.10 of [37], #(Y) = u(x(Y)*w(Y))'/?, where
u € U(C(W)). By (7.27) and (7.28),

a(Y)*n(Y)wr o H(c) + moo(c)n(Y)*n(Y) =moH(c)+moo(c) for all ce C. (7.29)
Hence,

(V) *n(Y) 2@ o H(C) + 7 00 (0) (V) n(Y)V2 = 0o H(c) + T 0oo(c) for all ¢ e C.
(7.30)

Therefore, by (7.30) and (7.27),

umoHE)+mooe)u* = a(Y)(wroH(C)+moo(0)rn(Y)*

=moy(c)+moo(c) for all ceC.

Since K, (C(W)) = 0 and since C(WV) is simple purely infinite, u can be lifted to a
unitary in M(W). [ ]

Corollary 7.13. In Lemma 7.12, if = o ¢ is in fact a diagonal extension, that is,
v = P, ¥, where each ¥, is a homomorphism, and if w,f = 0 for all k, then

oYy ®rmooc~Yrmoo.
Proof. Note that KL(y,,) = 0 for all n. Since 1/’% =0, ¥, (u) € CUM,,,,(W)) (instead of

(7.14)) for all u € I~ (K, (A)) N UM,,

(7.15) becomes

) (H;;\(;n))). Therefore, in the proof of Lemma 7.12,

Ngy1—1
cel( Z %(u)) <77 +1 for all uel,. (7.31)

I=ny

Therefore, the proof of Lemma 7.12 works when we take h,, = 0 for all n. [ |
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Extensions of C*-Algebras by a Small Ideal 10399

Lemma 7.14. Let C be as in Lemma 7.12. Fix a sequence of homomorphism s
A, € Hom(X,(C), UW)/CUW)).

Then for every system {b,} of quasidiagonal units for W, there is a diagonal homomor-
phism H := @, ; h,, : C > M(W), where h,, : A — Her(b,,) is a homomorphism for every
n. Moreover, for each n, h,:1 = A,, for some m; and for each k, there are infinitely many n
such that hj, = Ak

Proof. Let {b,} be a system of quasidiagonal units for WW. Write N = U>° | S, where
each S, is a countably infinite set, and S; N S; = ¥ if i # j. For each j € S,,, choose a
homomorphism h; : C — Her(b;) such that h; = 1, (see Theorems 6.10 and 6.11). Then it
is easy to check that H := @y hy satisfies the requirements of the lemma. |

Lemma 7.15. Let C be a separable amenable C*-algebra, which is W embeddable and
satisfies the UCT. Let ¢ : C — M(W) be a 7; extension, and let ¥ : C — M(OV) be a

diagonal c.p.c. map with the form

o
V=D
n=1
as in Proposition 4.5, for which 7 o ¥ is non-unital essential extension. Then
Too@moy ~“moo.
As a consequence,
KK(7 o) = 0.

Proof. By Lemma 7.12, we may assume that ¢ is a (non-unital) diagonal extension.
So suppose that y = X7° v, : C — M(V) is a diagonal homomorphism, where each
¥, : C - Her(a,) is a homomorphism, and where {a,} is a system of quasidiagonal
units for W.

Denote Ay, = ¥, and Aop_1 = Ay, forn=1,2, ...
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10400 H. Lin and P. W. Ng
Let H : C — M(B) be as in Lemma 7.14, associated with the present {A,} and {a,,}.
It is easy to see that there is a permutation y : N — N such that

hi

y@n-1) = —h foralln=1,2,....

ks
y(2n)’

Define by = a, k1) + Qy@x). for all k = 1,2,... Then {b;} is also a system
of quasidiagonal units. Let h, ; : C — Her(a,,_1) + @, 2n)) be defined by h, 4(c) =
h,2n-1)(€) + hy, (o) (c) for all ¢ € C and for all n. Now define H, : C — M(B) by
Hy(c) = @,2, hyo(o) for all ¢ € C. Then Hy is unitarily equivalent to H (see Lemma
4.2). However, hi,o = 0 for all n. It follows from Corollary 7.13 that

noHy®noo~Ymoo.
Therefore,
ToH®moo ~Ymwoo. (7.32)

Then v & H is another diagonal extension and by the same argument as that for

H,
ToYy @rnoH®moo ~*moo. (7.33)
Hence, by (7.32),
ToYy ®rooc ~Yrmoo. (7.34)
Hence, KK(r o ) = 0. ||

Lemma 7.16. Let A be a separable amenable C*-algebra, which is W embeddable and
satisfies the UCT. Suppose that 7 : A — C(W) is an essential extension with KK(zr) = 0.

Then 7 is a quasidiagonal extension.

Proof. Leto : A — M(W) be a 7, extension. Note that KK(w o o) = 0. Consider the
unitizations 7 6o, 7 : A — C(W). Then KK(7 6 0) = KK (7). By Theorem 2.5 of [41], there

exists a sequence {u,} of unitaries in C(/V) such that lim

oo Un (T 0 0)(@)u,, = t(a) for
all a € A. By Theorem 4.6, since W has continuous scale and 7 o o is non-unital, t is

quasidiagonal. [ |
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Lemma 7.17. Let A be a separable amenable C*-algebra, which is W embeddable and
satisfies the UCT. Suppose that t : A — C(W) is a quasidiagonal essential extension.

Then for any 7, extension o : A - M(W),

t~%mroo. (7.35)

Also, KK(t) = 0.

Proof. By Theorem 3.8,

T~ Too @1, (7.36)

for some essential extension 7y : A — C(A). By [13], T can be lifted to a c.p.c. map
A — M@). So by Proposition 4.5 and Lemma 7.15, KK(t) = 0. Since KK(t) = 0 and
KK(w o0) = 0, KK(7y) = 0. By Lemma 7.16, 7 is quasidiagonal. By [13], 7, also can be
lifted to a c.p.c. map A — M(W). So by Proposition 4.5 and Lemma 7.15,

t~Ymoo @y~ moo. (7.37)

We have the following K theory characterization of quasidiagonality (see the

paragraph before Theorem 4.7 for some brief history and references):

Proposition 7.18. Let A be a separable amenable C*-algebra, which is YW embeddable
and satisfies the UCT, and let t : A — C(W) be an essential extension. Then the following
statements are equivalent:

KK(7) = 0.

7 is quasidiagonal.

7 is unitarily equivalent to an essential trivial diagonal extension.

7 is unitarily equivalent to every essential trivial diagonal extension.

7 is in the class of zero of Ext“ (4, W).

gk w b=

Proof. Let us recall that A is non-unital as it is a C*-subalgebra of the stably
projectionless C*-algebra W. It follows from Theorem 3.7 that Ext“(4, W) is a group.
That (1) < (2) follows from Lemmas 7.16 and 7.17.
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That (2) = (4) and (3) = (4) follows immediately from Lemma 7.17, which says
that every essential quasidiagonal extension (including every essential trivial diagonal
extension) is unitarily equivalent to every 7, extension.

(4) = (2) and (4) = (3) are immediate.

That (4) = (5) follows from the facts that Ext“(4,W) is a group and if p is a
trivial diagonal extension then so is p ® p.

(5) = (2): From (4) = (5), we know that the neutral element of Ext“(4, W) is the
class of an essential trivial diagonal extension. But then, any essential extension, which

is unitarily equivalent to a trivial diagonal extension is a trivial diagonal extension. W

8 Classification of Extensions by W

Lemma 8.1. Let B be a non-unital separable simple C*-algebra with a unique tracial
state tp such that B stably has almost stable rank one. Suppose that Cu(B) = V(B) U

(LASf (T(B)) \ {0) = V(B) L (0, c0).

Let A be a separable exact C*-algebra with a faithful tracial state, which
satisfies the UCT.

Then for any t € Tr(A) and r € (0, 1], there is an embedding ¢, : A — M(B) such

that tz o ¢, = rt and 7 o ¢, is injective.

Proof. Fixt € Tr(A) and r € (0,1]. By Theorem A of [66], let D be a unital simple
AF-algebra with a unique tracial state t;, and let ¢ : A — D be a *-embedding such that

t=1p0.
By Lemma 7.2,

Ky(M(@B)) =R and V(M(B)) = V(B) U (0, 00).

Let A : Ky(D) — Ky(M(B)) be the homomorphism defined by

r(Ip])) = rtp([p]) for all p € Proj(D ® K).

Note that this gives an ordered semigroup homomorphism i : V(D) — (0,00) U {0} C
V(M (B)). Note also that (0, 00)NV(B) = ¥. By Lemma 4.2 of [58], there is a homomorphism
¢o : D - M(B) ® K such that V(¢y) = Ay,. Without loss of generality, one may assume
that ¢,(D) C M,,(M(B)) for some integer m > 1. One also has that [¢py(1p)] =r < 1. It
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follows, from Lemma 7.2, that there is a unitary U € M,,(M(B)) such that

U*do(1p)U < Ly p)-

Define ¢(d) = U*¢y(d)U for all d € D. Since D is simple, ¢ is an embedding. Then set

Qg i=¢oy.

One checks that the embedding ¢, meets the requirements. |

Remark 8.2. Recall that Hom(K(4), R) T is defined in 2.6. Several comments about it
are in order. Firstly, under current assumptions, Ky(A), might be zero; and also, one
may not have traditional order preserving homomorphism s in Hom(K,(A4), R). Secondly,
there could still be a pairing p, : Ky(A) — Aff(T(A)) even in the case that Ky(4), = {0}.
Therefore, an element in Hom(K,(4), R) need not be induced by a homomorphism from
A (to M(B)). Thirdly, there is a possibility that, given two tracial states t;,t, € T¢(A), one
might have r,(t;) = r4(t,). In other words, r,(t;) and r,(t,) may give the same element

in Hom(Ky(4), R)Tf and, of course, they will not be distinguished.

We are ready to present the following classification of essential extensions by
W

Theorem 8.3. Let A be a separable amenable C*-algebra, which is W embeddable and
satisfies the UCT.

(1) If 71,75 : A — C(W) are two essential extensions, then r; ~% 1, if and only if
KK(t;) = KK(1,).

(2) The map

A Ext“(A, W) — KK(A,C(WV)) = Hom(K,(A),R) (8.1)

defined by A([t]) = KK(7) is a group isomorphism.

(3) An essential extension r : A — C(W) is trivial and diagonal if and only if
KK(t) = 0, and all essential trivial and diagonal extensions of A by W are unitarily
equivalent. In fact, the essential trivial diagonal extensions of A by W induce the neutral
element of Ext“(4,W).
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(4) An essential extension 7 : A — C(W) is trivial if and only if there exist ¢t €
Tr(A) and r € (0, 1] such that

T,0x) =1 -1, (x) for all x € Ky(A).

(5) Let 7 be the set of unitary equivalence classes of essential trivial extensions
of A by W. Then

A(T)={r-h:re(,1] and h € Hom(KO(A),]R)Tf(A)} (see Definition 2.6).

(6) All quasidiagonal essential extensions of A by W are trivial and are unitarily
equivalent.

(7) In the case where ker,oflA = Ky(A), all essential trivial extensions of A by W
are unitarily equivalent. Moreover, an essential extension t : A — C(W) is trivial if and
only if KK(t) = {0}.

(8) In the case where kerpy 4 # Ky(A), there are essential trivial extensions of A
by W which are not quasidiagonal, and not all essential trivial extensions of A by W are

unitarily equivalent (see (5) above).

Proof. Statements (3) and (6) follow from Proposition 7.18.

(2): That KK(A,C(W)) = Hom(K,(A4),R) follows from the UCT, since K,(C(W))
is divisible and K;(W) = 0. Note that Hom(K,(4),R) is an abelian group. Recall
that by Theorem 3.7, Ext“(A,W) is also an abelian group. It is obvious that A is a
semigroup homomorphism. By 7.18, A sends zero to zero, and therefore, A is a group
homomorphism.

We next show that A is surjective. Let x € KK(A,C(WW)) be given. Note that
Ky(A) = Ky(A) @ Z. Define n € Hom(K,(A), Ko(COV))) by 1l a) = x and n([13]) = [1eom)]-
Then 5 gives an element of KK(A,C(W)). It follows from Corollary 8.5 of [41] that there
is a homomorphism 7, : A — C(W) such that KK(r,) = 7. Define t = 7,|,. Then one
computes that KK(t) = x. Since x is arbitrary in KK(4,C(W)), the map A is surjective.

It remains to prove that A is injective. But by Proposition 7.18, if [¢] €
Ext¥(A,W) is such that A([y]) = 0, that is, KK(¢y) = 0, then [¢y] = 0 in Ext“(4, W).
Hence, A is injective. This completes the proof of (2).

(1) follows from (2).

(4): Say that t : A — C()) is an essential trivial extension. Then there is a
monomorphism H : A — M(W) such that 7w o H = 7. Let t,(a) = ty; o H(a) for all a € A.
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Then t, is a faithful trace on A with ||¢;|| < 1. Let r = ||t;|. Then t(a) = t,(a)/r is a
faithful tracial state on A. Hence, H,;(x) = rp4(t)(x) for all x € K;(A). It follows that
T,0X) =71 pa(t)(x) for all x € Ky(A).

Conversely, suppose now that t € Tr(A), r € 0,11and t : A — C(W) are such
that 7,5(x) = r- ps(t)(x) for all x € K,(A). By Lemma 8.1, there is a monomorphism
Yyt A — M(W) suchthat ty,oy4(a) =r-t(a) foralla e A. Thenmoyy : A - C(W)is an

essential trivial extension such that

(T oY) o = Tuo- (8.2)

Hence, KK(7w o ¥4) = KK(7). So, by (1), t ~* 7w o ¢,. It follows that t is trivial. This
completes the proof of (4).

(5) follows from (4).

(7): If Ky(A) = ker,oflA and H : A — M(W) is a monomorphism, then H,; = 0. As
mentioned before, since K,(C(W/)) = R is divisible and K;(C(W)) = {0}, KK(w o H) = 0.
Thus, (7) follows from (3).

(8): Suppose that kerpf’A # Ky(A). Then thereisat e Tf(A) such that p, (¢) # 0.
Then A(T) # {0}. So by (5), there is a trivial essential extension t such that KK(r) # 0.
By (3), T is not unitarily equivalent to a diagonal trivial extension, and by (6), t is not

even quasidiagonal. |
For the second question of the introduction, we offer the following statement:

Corollary 8.4. There is, up to unitary equivalence, only one essential extension of the

form

0>W-—>E—>W-—0. (8.3)
Moreover, this extension splits.
Proof. By Theorem 9.9,

Ext“OV, W) = Hom(K,(W), R) = {0}. (8.4)
|

As one expected, the C*- algebras that we were originally interested in do satisfy

the hypotheses of Theorem 9.9 and even (7) of Theorem 9.9.

€20z dunf Gz Uo Jasn saueiqr] uoBaiQ Jo ANsienun Aq 2/67659/0SE01/Z1L/EZ0Z/2191E/uIWl/woo"dno"oIWapED.//: Ay WOy Papeojumod



10406 H.Lin and P. W. Ng

Proposition 8.5. Let X be a connected and locally connected compact metric space, and
let xy € X be a point. Then C := Cy(X \ {xy}) is W embeddable. Moreover, K,(C) = kerp,.

Proof. We firstly show that there is an embedding ¢ : Co(X \ {x5}) — Cy((0, 1]). By the
Hahn-Mazurkiewicz theorem, there exists a continuous surjection s, : [1/2,1] — X. Let
Vo = Sp(1/2) € X. By the assumptions on X, there is a continuous path s; : [0,1/2] —
X such that 5,(0) = x, and s,(1/2) = y,. Define s : [0,1] — X by sljg;,5 = s; and
Sl /2,11 = So- Then s : [0, 1] — X is a continuous surjection, which induces an embedding
tc : C — Cy((0,1]). Since W is projectionless, one easily embeds C,((0, 1]) into V. This
shows that C is W-embeddable.

Let C, = C(X) = C. Since X is connected, pc, is the rank function and

pe, Ko(Cy)) = Z. The short exact sequence
0 — Ky(C) - Ky(C)) - Z— 0
also shows that K, (C) = kerp, = kerp,. |
The following is a corollary of Theorem 9.9 (and Corollary 8.5).

Theorem 8.6. Let X be a connected and locally connected compact metric space, let
Xp € X and let C := Cy(X \ {x}).

(1) All trivial essential extensions of C by W are unitarily equivalent and hence,
are unitarily equivalent to a diagonal extension = o ¢ in 7.

(2) [r o o] is the class of zero in Ext¥(C, W).

(3) There is a group isomorphism
Ext“(C,W) Z KK(C,C(W)) = Hom(K,(C), R).

There are many non-commutative C*-algebras, which are JV embeddable includ-

ing W itself. In fact, we have the following:

Proposition 8.7. Let A be a stably projectionless algebraically simple separable
C*-algebra with finite nuclear dimension, which satisfies the UCT. Suppose that
kerp, = K(A). Then A is VW embeddable.

Proof. Let C = A ® Q, where Q is the UHF-algebra with (K,(Q),Ky(Q),, [15]) =

(Q,Q4, 1). It follows that there exists an element ¢ € Ci such that cCc has continuous
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scale (see Remark 5.2 of [18]). Let e, € A}r be a strictly positive element of A. Since A is
algebraically simple, Ped(4) = A. It follows that e; := e, ® 1, is in Ped(C). Note also that
¢ € Ped(C). It follows that there is an integer n > 1 such that (e;) < n(c). Without loss of
generality, we may assume that e; € Mn(%). LetD = Mn(@). Then A is embeddable
into D. It suffices to show that D is W embeddable.

Note that D is a stably projectionless simple C*-algebra with continuous scale
and which satisfies the UCT. Moreover, kerpy, = K, (D). Furthermore, D has finite nuclear
dimension. Since D is stably projectionless, T(D) # #. By Theorem 15.5 of [22] (see the
last line of the proof too), D € D,. We then apply Theorem 12.8 of [22] as WV has the form
By (with K;(W) = 0, i = 0,1, and W having unique tracial state). We choose « = 0, and
kp : T(D) — T(W) by mapping all points to one point, and «,, compatible with («, k).
Thus, Theorem 12.8 of [22] provides an embedding from D into W. |

Remark 8.8. Note that A, as in 8.7 but with finite nuclear dimension replaced by
nuclearity, can also be embedded into A ® Z (by the map a - a® 1z). Also, A® Z
is a separable simple Z-stable nuclear C*-algebra. Therefore, by a recent result [12],
A ® Z has finite nuclear dimension. Also, our assumptions on A imply that A ® Z is
stably projectionless and kerp,s= = Ky(A ® Z). Therefore, by Proposition 8.7, A ® Z
can be embedded into WW. Consequently, A is YV embeddable. So the assumption of finite

nuclear dimension in Proposition 8.7 can be replaced by nuclearity.

Recall that there is a separable simple stably projectionless C*-algebra Z, with
a unique tracial state r,, with finite nuclear dimension and that satisfies the UCT such
that K,(2y) = Z = kerpz, and K;(Z,) = 0. By [22], there is only one such simple
C*-algebra up to isomorphism. Note that for any separable C*-algebra A, T(4A) =
T(A ® Z,). Moreover, as abelian groups,

K(A® Z,) =K (A), i=0,1. (8.5)

Proposition 8.9. Let A be a separable exact C*-algebra, which satisfies the UCT
and has a faithful amenable tracial state. Then C := A ® Z, is )V embeddable and

Proof. It follows from Theorem A of [66] that there is a unital simple AF-algebra B with
a unique tracial state t; and a monomorphism ¢ : A — B. There is also an embedding
V,w + 20 — W. Thus, we obtain an embedding ¢, == ¢ ® ¢, ,, : A® Z; — B® W. Note

£20Z dUNp Gz Uo Josn salieuqrT uoBalQ Jo Ausioaun Aq 2/6v659/0S€01/Z 1/EZ0Z/2101HE/UIWI/WOY"dNO" OIS PED.//:SARY WOl PAPEOjUMOC



10408 H. Lin and P. W. Ng

that K, (B® W) = {0}. Since B® W has only one tracial state (namely 3 ® 7}/), by Theorem
7.50f [19], B® W = W. Thus, A ® Z; is W embeddable.

To see the last part of the statement, note that every y € Ky(4 ® Z,) may be
written as x ® x,, where x; € K,(Z,) = Z is a generator. Note that every faithful tracial
state of A ® Z; has the form v ® 7,, where t € Tr(A). But 1(x @ Xo) = T(X)7,(x9) =0. W

Theorem 8.10. Let B be a separable amenable C*-algebra, which has a faithful tracial
state and satisfies the UCT, and let A = B® Z,,.

(1) If 7;, 7, : A — C(W) are two essential extensions, then 7; ~* 7, if and only if
KK (1)) = KK(1y).

(2) The map

A Ext“(A, W) - KK(A,C(WV)) = Hom(K,(A),R) (8.6)

defined by A([r]) = KK () is a group isomorphism.
(3) An essential extension 7, of A by W, is trivial if and only if KK(r) = 0, and all

essential trivial extensions of A by W are unitarily equivalent.

For the rest of this section, we consider essential extensions of the form

0O—-W-—-E—CX)—0,

where X is a connected and locally connected compact metric space.

Lemma 8.11. Let p € C(V) be a nonzero projection such that [plg, cy) € (0,1). Then
p can be lifted to a projection in M(W).

Moreover, if p # leow) and [p]Ko(C(W)) ¢ (0,1), then p cannot be lifted to a nonzero
projection in M(W).

Proof. Say that [plg,oy) =T € (0,1). By Corollary 4.6 of [47] (see also Section 5 of [30]),
let Q € M(W) \ W be a projection such that t;(Q) = r. Therefore, by our computation of
Ky,(C(W)), and since C(W) is simple purely infinite,

7(Q) ~p in COW).
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Since C(W) is simple purely infinite and since 7(Q) # 1 # p, there is a unitary u € C(W)
such that

ur(Q)u* = p.

Since C(W) is simple purely infinite and since K;(C(W)) = 0, u lifts to a unitary
U € M(W). It follows that 7 (UQU*) = p.

The last part follows from the fact that if P € M (VW) is a non-zero projection,
then 7,(P) € (0, 11. [ |

Lemma 8.12. Let X be a connected and locally connected compact metric space and
let x, € X. Suppose that ¢ : C(X) — C(WV) is an essential extension. Then there exists a

proper subprojection p < ¢ (1) such that

po(f) =¢()p = ¢(f) for all f e Co(X\ {xp}).

Moreover, for all s € (0,1), we may choose p such that there is a projection
P € M(W) for which 7 (P) = p and t;(P) = s.

Proof. Let e; be a strictly positive element of Cy(X \ {x,}) for which |e;|| = 1. Let
B = Her(¢(e;)) C C(W). Note that sp(e;) = [0, 1]. Writee = ¢(1). If ey =0forally Bt,
then (1 — e)y = y = y(1 — e) for all y € BL. This implies that B = (1 — e)COWV)(1 — e).
Then by Theorem 15 of [55], B = (BY)* = eC(W)e. So B is unital. This contradicts that
sp(e;) = [0, 1]. Therefore, thereisa y ¢ (BL)Jr such that eye # 0. Since eC(W)e has real
rank zero, there is a projection p, € eC(WW)e such that p; # e and p;b = bp, = b for all
b € B.

Since C(W) is simple purely infinite, we can find a projection g, € (e — p;)
C(W)(e — p;) with q; # e — p; such that [p; + g;]1 = s € (0,1). If we define p :=p, + q,
then pb = b for all b € B.

Also, by Lemma 8.11, p lifts to a projection P € M(W). Necessarily, rj;(P) =s. W

Theorem 8.13. Let X be a connected and locally connected compact metric space, and
let ¢, ¥ : C(X) — C(W) be essential extensions.
(1) Then KK (¢) = KK () if and only if

¢~y
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(2) If both ¢ and v are unital or both are non-unital, then KK(¢) = KK (¥) if and
only if

(3) The map
A Ext(C(X), W) - KK(C(X),C(W)) = Hom(K,(C(X)),R)

defined by A([r]) = KK(7) is a group isomorphism.
(4) The zero element of Ext(C(X), W) (or KK(C(X),C(WW))) is not the class of a
trivial extension.

(5) Let 7 : C(X) — C(W) be an essential extension. Then 7 is trivial if and only if

Remark 8.14. Suppose that p € C(V) is a projection such that [p] = [1¢4y,)] but
p # legwy) Let ¢ 1 CX) — COV) be an essential extension with KK(lcyx\ixop) = O
and ¢(1) = p. Then ¢ ~ ¢, for some trivial essential extension ¢, : C(X) — C(W) with
$o(1) = 1¢()- But ¢ is not itself a trivial extension, as p cannot be lifted to a projection
in M(OW) (see 8.11).

Proof. (1): Suppose that ¢ ~ . Then there is a w € C(W) such that w*¢(c)w = ¢ (c)
for all ¢ € C(X) with w*w = ¢ (1) and ww™* = ¢(1). Since M,(C(W)) is simple and purely
infinite, there exists a unitary W € M,(C(W)) such that W (1) = w. Then W*¢(c)W =
¥ (c) for all ¢ € C(X). It follows that KK(¢) = KK ().

Conversely, suppose that KK(¢) = KK(y). Fix x, € X and s € (0,1). Let
p = ¢(1) and q := ¥ (1). By Lemma 8.12, choose a proper subprojection p, < p such
that pyo (f) = ¢(f)pg = ¢(f) for all f € Cy(X \ {x,}), and choose a projection P, € M(W)
such that 7 (P,) = p, and 7 (Py) = s. The same argument shows that there is a proper
subprojection g, < g such that gy¥ (f) = ¥ (f)gy = ¥ (f) for all f € C;(X \ {x4}), and there
exists a projection Q, € M(W) such that 7(Q,) = g, and t;,(Q) = s.

Since C(W) is purely infinite simple, p; & g4 and p — py ~ q — q5. Without loss of
generality, we may assume that p; = gy and ¢(1) =p =g =¥ (1).

Since D := PyWP, = W, M(D) = PyM(W)P, and C(D) = p,C(W)p,, one may view
Pleox\ixohr ¥lcomx\ixop @S maps from Cy(X \ {x,}) to C(D). By applying Proposition 8.5 and
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Theorem 9.9, one obtains a unitary u € C(D) = poC(W)p, such that
u*¢(c)u =y (c) for all c e Cyp(X \ {xp}).

If we define v := u + (p — py), then v is a partial isometry in C(B) such that vv* = ¢(1),
v*v = ¢ (1) and

vi¢(c)v = ¥ (c) for all ¢ € C(X).

This completes the proof of (1).

(2): If ¢ ~" o then it is immediate that KK(¢) = KK (/). Hence, we only need to
prove the converse direction.

So suppose that KK(¢) = KK (). Suppose that both ¢(ex) and V(lgx)) are
equal to 1. Then by (1), since KK(¢) = KK(y), ¢ ~ . In other words, there is a
w € C(W) such that w*¢ (x)w = ¢ (x) for all x € C(X). Moreover, by Definition 2.1,

Hence, w is a unitary. Since K; (C(W)) = 0 and C(W) is simple and purely infinite, every
unitary in C(WW) can be lifted to a unitary in M(W). Hence, ¢ ~% .

Now suppose that both ¢ and i are non-unital. Then by (1), since KK(¢) =
KK (), ¢ ~ ¥. So we have a partial isometry v € C()V) such that vv* = ¢ (1), v¥v = (1)
and v*¢(c)v = ¥ (c) for all ¢ € C(X). Since ¢ (1), ¥ (1) are proper subprojections of leaw
and since C(W) is simple and purely infinite, we can find a unitary u € C(V) such that
¢(1)u = v. Hence, u*¢(c)u = ¥(c) for all ¢ € C(X). Since C(W) is simple and purely
infinite and K;(C(W)) = 0, u can be lifted to a unitary in M(W). So ¢ ~* .
This completes the proof of (2).

(3) The injectivity of the group homomorphism A follows from (1). Hence, it
remains to prove that A is surjective.

Let o € KK(C(X),C(W)) be given. Fix a point x; € X. Let ¢ : Cy(X \ {Xg}) — C(X) be
the inclusion map and g : C(X) — C be the corresponding quotient map (point evaluation

at x,). So we have the following split exact sequence:

0 = Co(X \ {x,)) —> C(X) -5 C — 0, (8.7)
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which induces the split exact sequence

0 — KK(C,C(OWV)) ﬂ KK(C(X),COV)) 4, KK(Cy(X \ {xo}),CONV)) — 0. (8.8)

Consider the Kasparov product
B =[] xaeKK(CyX\ {xo}),COV)).

By Proposition 8.5 and Theorem 9.9, let ¢ : Cy(X\ {x,}) — C(W) be an essential extension
such that KK(¢) = B.

Note that ¢ can be extended to a monomorphism C(X) — C(WW), which brings
lew to 1eoyy. So by Lemma 8.12, let p < 15, be a proper subprojection such that
po(f) = ¢(f) for all f € Cy(X \ {xy}). Since C(W) is simple and purely infinite, one may
choose a proper subprojection g < 1, — p such that

Let ¢, : C(X) — C(WV) be the non-unital essential extension given by

D1lcanoy = ¢ and ¢;(1gx) =p +q.

Hence, viewing [i] € KK(Cy(X \ {xo}), C(X)), ld x [p;] =91 0l = [9p] =[] x .

Towards seeing that KK (¢;) = «, consider the inclusion map j : C — C(X). The
map j splits the exact sequence (8.7), that is, g o j = id-. We have an induced morphism
/1 : KK(C(X),C(OW)) — KK(C,C(W)) for which [jl o [q] = idKK((C,C(W))' Alternatively,
viewing [j] € KK(C, C(X)) and [q] € KK(C(X),C), [jl x [q] = idggc,c)- Moreover, by this

and (8.8), we have a group isomorphism
K(C(X),C(WV)) = KK(C,COV)) @ KK(Cy(X \ {xo}),COV) : vy = ([jl x ¥, [il x y). (8.9)

Let us note that we have already shown that [] x @ = [1] x [¢;]. Also, in KK(C,C(WV)) =
Ko(COWV), [l x @ = a(1ox))) = [¢1 (1)) = 7] x [¢,]. Hence, by (8.9),

o = KK($)).

Therefore, A([¢;]) = « as required. This completes the proof of the surjectivity of A and
hence, the proof of (3).
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(4): Say that KK(¢) = 0. Then [¢(1)] = 0 € R = K,(C(W)). By Lemma 8.11, there is
no non-zero projection P € M (W) such that 7 (P) = ¢(1). It follows that ¢ is not liftable.

(5): Say that t : C(X) — C(W) is an essential trivial extension. Then by Theorem
8.6, KK (Tl¢yx\(xop) = O- Also, (lgi)) € COV) must be liftable to a nonzero projection in
M@W). Hence, by Lemma 8.11, either [T(IC(X))]KO(C(W)) € (0, 1) or t(lgx) = legw)-

Conversely, suppose that 7 : C(X) — C(W) is an essential extension such that
KK (7|cyx\ixop) = O and either [f(IC(X))]Ko(C(W)) € (0,1) or t(lgxy) = Loy

By the hypotheses on 7(1;)) and by Lemma 8.11, 7(1¢)) can be lifted to a
(nonzero) projection P € M(WV).

Consider the extension 7|¢ x\(x,) @ CoX \ {Xo}) — C(PWP). Since PWP = W
and since KK(t|g,x\(x,))) = O, it follows, by Theorem 8.6, that there is monomorphism
Hy: Cy(X \ {x9}) = PM(ONV)P such that

7 oHy = Tle,x\(xo))-
Let H: C(X) - M (W) be the monomorphism given by
HlCo(X\{Xo}) = H, and H(l¢x) = P.
Then 7 o H = 7, that is, t is trivial. This completes the proof. |

Corollary 8.15. Let T™ be the n torus.

1. Ext(Co(T"\ {1}), W) = RZ" 'L,
2. Ext(C(T"), W) =R,

9 Classification of Some Non-simple C*-Algebras

This section is for the second goal of our original research plan. We study non-simple

C*- algebras E, which are essential extensions of the form
0>W-—>E5 A0, (9.1)

where A is some separable stably finite simple C*-algebra with finite nuclear dimension
such that kerp, = Ky(A). In other words, E has a unique ideal I = W and E/W is
a separable stably finite simple C*-algebra with finite nuclear dimension such that
kerp, = K,(A). Denote by £ the class of such C*-algebras, which satisfy the UCT.

(Warning: Here we do not assume that A is fixed, but it is any separable stably finite
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simple C*-algebra with finite nuclear dimension such that kerp, = K,(4), and which
satisfies the UCT.)

Let £, be the subclass of those C*- algebras E in £ such that A := ng(E) has
continuous scale, where 7y : E — E/W is the quotient map.

In general, if E is an essential extension by W then E is a subalgebra of M(WV).
Recall that we identify the unique tracial state ty, on WV with its unique extension to a
tracial state on M()V), which we also denote by ty,. Therefore, 7}, also induces a tracial
state on E which, again, we denote by ty,. There is a group homomorphism Ay : Ky(E) —
R induced by ty, that is, Ag(x) = 1 (x) for all x € Ky(E). Since A = E/)V and since
K;(W) = {0} (i = 0,1), by the six-term exact sequence in K-theory, one computes that
gy | Ki(E) — K;(A) is a group isomorphism (i = 0, 1).

Lemma 9.1. Let E be an essential extension of the form
0O—-W-—>E TE A 0,

where A is a separable amenable C*-algebra with K,(A) = kerps,, which is W
embeddable and satisfies the UCT. Let ¢/ : A — C(W) be the Busby invariant for the
above extension.

Then

V.0 = g 0 Tgy in Hom(Ky(A),R).

Proof. Denote by # : M(W) — C(W) the quotient map. One has the following

commutative diagram:

Ky (E) -5 K,MOW) =R
J’(T[E)*O \LH*O
K@) L% K,cov) =R
By Theorem 7.4, m,q is a group isomorphism. Since 7, is also a group isomorphism,

the lemma follows. [ |

Before defining the classification invariant, we recall some definitions and other
items.
Again, let E € £, and let A := nz(E). Then, as per our definitions, A is a separable

stably finite simple continuous scale C*-algebra satisfying the UCT, with finite nuclear
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dimension such that kerp, = K,(4). Since A is stably finite, A is stably projectionless.
(Here is a short proof: Suppose, for contradiction, that p € M,,,(A) is a nonzero projection
for some integer m > 1. Since T(A) # ¥, 1(p) # 0 for some t € T(A). This contradicts
that kerp, = Ky(4).)

If t € T(A), then v oy € T(E). The map (wg)y : T(A) — T(E), defined by
(mg)p(t)(D) = t(wg(D)) for all b € E and v € T(A), is an affine homeomorphism onto
a closed convex subset of T(E). Denote by T, the closed convex subset (7z);(T(A)). Then
T(E) is the convex hull of T, and ty,. Since A has continuous scale, T(A) is compact. It
follows that T'(E) is compact. Note that T, is a face of T(E).

Let S(KO(E')) be the state space of KO(E'), that is, the set of all group homomor-
phism s s : KO(E') — R such that s(x) > 0, for all x € KO(E')+, and s([1z]) = 1. Denote
S(Ko(E)) = {Slgym) : S € SKo(E))}.

The map ry : T(E) — S(Ky(E)) is defined by rz(r)(x) = 7(x) for all x € K,(E) and
t e T(E).

Now we can define our classification invariant.

Definition 9.2. Let E € &.. The Elliott invariant Inv(E) is defined as follows:
Inv(E) = (Ky(E), K, (E), T(E), rg). (9.2)

Let E|,E, € £, We say that Inv(E;) and Inv(E,) are isomorphic, and write

Inv(E;) = Inv(E,), if there is an isomorphism
I Inv(E)) = (Ko(E)), K, (Ey), T(Ey), 1g,) = Inv(Ey) = (Ky(Ey), K, (Ey), T(Ey), rg,),

that is, if there are a group isomorphism T'; : K;(E;) — K;(E,), i = 0,1, and an affine

homeomorphism I'; : T(E;) — T(E,), which maps Tr(E;) onto Ty(E,), such that
rg, (D (o(x)) =rg, (F;l(r))(x) for all x € Ky(E;) and 7 € T(E,). (9.3)
Theorem 9.3. Let E,E, € £,. Then E; = E, if and only if
Inv(E,) = Inv(E,). (9.4)

Moreover, if I' : Inv(E;) — Inv(E,) is an isomorphism, then there exists an isomorphism
V¥ : E; — E, such that ¥ induces T
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Proof. We have two short exact sequences

7ZE1
0>W-—>E —A—0 and

TR,
0—-W-—E,—B—0.

Both A and B are separable simple stably projectionless C*- algebras with finite nuclear
dimension and continuous scale, which satisfy the UCT. Moreover, K,(A) = kerp, and
Ky(B) = kerpg.

Suppose that ' : Inv(E;) — Inv(E,) is an isomorphism. Then one has a group
isomorphism y; := 7z, oI oy '+ Kj(A) — Ky(B), i = 0,1. Note that I' induces an
affine homeomorphism I' : T(E;) — T(E,), which maps Tr(Ey) to Tr(Ey). Since I'y is
an affine homeomorphism, it maps extreme points to extreme points. It follows that
I'r(ty) = tyy. Since the extreme points of the face T, are also extreme points of T(E), I'y
maps T, onto Ty, and (nEz);loFTo(nEl)T : T(A) — T(B) is also an affine homeomorphism.
Since both E; and E, satisfy the UCT, A and B also satisfy the UCT. It follows that, by
the classification results in [22] (see Theorem 13.1 and Theorem 15.5 of [22]), there is an
isomorphism ¢ : A — Bsuch that¢,; =y,,1=0,1, and ¢, = (7tE1);1 olzto (7g,)r- Recall
that Ag,  Ko(E) — R is defined by Ag, (%) = Ty (%) for all x € Ky(E)).

In (9.3), with t = 1y, we have that (as I'; maps 7y, to tyy)
T (Fo(x)) = 1y (x) for all x € Ky(Ey). (9.5)
In other words,
hg, 0To = Ap,. (9.6)

Leto, : A — C(W) and o : B— C(W) be the Busby invariants associated with E; and E,

respectively. Define an essential extension ¢ : A — C(W) by ¥ = o5 0 ¢. Hence,

w*,O = (GB)*,O © ¢*,0
= (Ag, omg, ;(1)) o (g, golg0 ]TEb:(l)) (by Lemma 9.1 and since ¢, o = )
-1 -1
= g °l007E o =25 ° 5, (by 9.6)

= (GA)*,O (by 9.1).
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Hence,

KK(y) = KK (o). (9.7)

It follows from Theorem 9.9 that there is a unitary U € M(W) such that

7 (U (a)r(U) = o4(a) for all a € A. (9.8)
Note that, by (9.8),
U*eU € E, for all e € E,. (9.9)
Define ¥ : E, — E; by
W(e) = U*eU for all e € E,. (9.10)

¥ is a monomorphism. Note that Y(W) = W. By (9.8), ¥ is surjective. So ¥ is an
isomorphism. Moreover, from the construction, one checks that ¥ induces I'.
Conversely, if there is an isomorphism ¥ : E, — E,, then ¥ induces an

isomorphism I'" : Inv(E;) — Inv(E,). u

Towards classifying C*- algebras in £, we again recall some terminology and
other items.

Let A be a C*-algebra with T(A) # {0} and with a strictly positive element e,.
Denote by ¥, € LAff (T(A)) the lower semicontinuous affine function defined by

T,(1) = nll)nolo ©(f1/n(en)) for all 7 e T(A).

One notes that ¥,, as a lower semicontinuous affine function on T(4), is independent
of the choice of e,.

Recall also that there is a unique embedding E — M (W), which is the identity
map on W, and also that the group homomorphism Ap : Ky(E) — R is defined by
Ag(x) = Ty (x) for all x € Ky(E).

Definition 9.4. For any E € &£, define

Inv(E) = (Ky(E), K, (E), T(E), S, Ag). (9.11)
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Denote by Tf(E) the set of all faithful traces in T(E), that is, the set of all 7 € T(E)
for which 7(a) # 0 for every a € Ped(E)_ \ {0}. Write A = ng(E). Let (ng)y : T(A) — T(E)
be the affine homomorphism defined by (ng)y(7)(e) = 7 o mx(e) for all e € Ped(E) and
7 € T(A). The cone T(E) is generated by (nE)T(T(A)) and ty.

Let E|,E, € £ We say that Inv(E,) and Inv(E,) are isomorphic, and write

Inv(E,) = Inv(E,), if there is an isomorphism
T :Inv(E) = (Ko(E)), K, (E)), T(E)), Bg,, Ag,) = Inv(Ey) = (Ko (Ey), K, (Ey), T(Ey), T, Ag,),

that is, if there are a group isomorphism I'; : K;(E;) — K;(E;), i =0, 1, and a topological
cone isomorphism I'; : T(El) — T(Ez), which maps Tf(El) onto Tf(Ez) such that

Ap,0To =g and Xp, oIy =g . (9.12)
Lemma 9.5. Let E € £ be an essential extension of the form:
0->WoSEXE Ao (9.13)

Suppose that e;,e, € E, are such that d (7z(e;)) = d, (7g(ey)), for all 7 ¢ T(A), and

W C Herg(e;), i = 1,2. Then there is an isomorphism
Y : Herg(e;) = Herg(ey) (9.14)

such that KL(y) = KL(idg) and t o y(e) = t(e) for all T € T(E)and e € Herg(ep), .

Proof. Since A has stable rank one (see Theorem 11.5 of [22]), it follows from [14] (see
Proposition 3.3 of [63]; see also the paragraph above Proposition 3.3 of [63], and [44])
that there is an element u € A** such that uHer, (7z(e;))u* = Her,(7z(e,)). Moreover,
ung(e;), u*ng(e,) € A and u*u = p and uu* = g, where p and g are open projections of A
corresponding to ngz(e;) and 7z(e,), respectively. Let x = ung(e;) € A. Since A has stable

rank one, by Theorem 5 of [56], for each n, there is a unitary u,, € A such that

un”E(fl/n(el)) = u”E(f]/n(el))- (9.15)
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Since K;(C(W)) = {0} (see Theorem 7.4) and C(W) is purely infinite simple, there is a

unitary w,, € M(W) such that 7(w,,) = u,,. Therefore, w,, € E. Since

unnE(fl/n(el))ufl € Her, (7z(ey)), (9.16)

W, f1/n (€)W}, € Herg(ey). (9.17)

(Recall that W C Hery(e,).) It follows that, for all i,

Sfim(e) < e, (9.18)
Therefore,
e; S e, (9.19)
Symmetrically,
e, Sep. (9.20)

Hence, e; ~ e,. By (9.13) and the fact that K;(W) = {0}, i = 0,1, and by applying part
(ii) of Proposition 4 of [48], E has stable rank one. It follows from [14] that there is an

isomorphism
Y : Herg(e;) = Herg(ey)

such that ¥ (a) = U*aU for all a € Herg(e,). Here, U € E** is a partial isometry such that
U*a,Ub € E for all a € Herg(e,) and b € Herg(e,), UU* = P, and U*U = Q, where P is the
open projection corresponding to e; and Q is the open projection corresponding to e,.

Let z = U*e; € E. Since E has stable rank one (which we just proved), by
Theorem 5 of [56], for each n, there is a unitary V,, € E such that V,P, = U*P,, where
P, is the spectral projection of e; in A** corresponding to (1/(3n), |z|]. It follows that
Vof1m(eaf n(e)Vy € Herg(e,) for all a € Herg(e;), and

lim V,aVy = lim V,.f) . (e)afy n(e)Vy = lim U'fy n(e)afyn(e)U =y (@)  (9.21)
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for all a € Herg(e,). It follows that KL(y) = KL(idg) and t o (@) = t(a) forall T € T(E)

and a € Herg(e),. |

Theorem 9.6. Let E,,E, € £. Then E; = E, if and only if there is an isomorphism
I:Inv(E) = (Ky(E)), K, (E)), T(E)), Zg,, Ag) = Inv(Ey) = (Ko (By), K\ (Ey), T(Ey), Tg, . Ag,)-

Moreover, if such an isomorphism I' exists, then there is an isomorphism v : E; — E,,

which induces I'.

Proof. Suppose that we have an isomorphism I" : Inv(E;) = Inv(E,).

We have two short exact sequences
7TE1 7TE2
0-W—-E —A—-0and 0> W —>E, — B— 0.

Both A and B are separable simple stably projectionless C*-algebras with finite nuclear
dimension and which satisfy the UCT. Moreover, K,(4) = kerp, and K,(B) = kerpg.

Let ey € (Ey), \ {0} with |leg = 1 be a strictly positive element of E;. Let
e; = fi/z(eg). Choose ag € A, \ {0} such that a; < 7y (e;) and d.(ay) is continuous
on T(A) (see 11.11 of [18] and Theorem 15.5 of [22]). So Her(a,) has continuous scale (see,
e.g., Proposition 5.4 of [18]). Choose a] € (E}), such that f} g(ep)a) = a] and 7, (a}) = a
(see Lemma 7.2 of [18]). Then a) € Ped(E,). Let e;; € W be a strictly positive element in
W. Since Ped(W) = W, a] = a| + ey, € Ped(E,), . Let a;, = a/|af|l. Thena, e M(OWV),. It
follows that 7y (f; ), (a1)) < 1 for all n. Obviously,

"
ey Saj ~a,.

We conclude that d, (a,) = 1. Since every ¢ € T(E;) has the form a - t, ong +(1—a)-ty,
where t, € T(A) and 0 < « < 1, one also verifies that d_(a,) is continuous on T(E;).

Let A, = Her(ay) and E, . = Her(a,). Note that 7g (E; ;) = A,. S0 Ey ; € &.

Let g € Aff(T(B)) be such that g o I'r(r) = d.(ng(ay)) for all T € T(A). By
Theorem 11.11 of [18] and Theorem 15.5 of [22], there exists a by € B, such that
d;(by) = g(t) forallt e T(B). Let B, = Her(by). Then B, also has continuous scale (see
Proposition 5.4 of [18]). Choose b| € (E,), such that ng (b]) = by and b] = b| + ey.
Set by = by/Ibill € E, C M(V). Then for any n, tyy(f/,(by)) < 1. It follows that
d., (b)) < 1. Note that ey, < b} ~ b,. Therefore, d,, (b)) = 1. Note that for each
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T =atgomg + (1 — )ty € T(E,y), wheretz € T(B)and 0 <a <1,
d,(b;) =agty) + (1 — ).

Define E, . = Her(b,). Then E, . € .. We note that E;; is a full hereditary
C*-subalgebra of EJ which contains W as an ideal (j = 1,2). In particular,
K,(E; ) =K;(E),i=0,1andj=1,2.

Consider T, = {r € T(E;) : d,(a;) = 1}. Since d,(a,) is continuous on T(E,), T,
is a compact convex subset of T(El). Note that I'y(T,) = T,={te T(Ez) 1 d (b)) =1}
Moreover, I'y maps T, affinely and homeomorphically onto T,.

Let y; : T, — T(E;.) be defined by y,(r)(e) = t(e) for all e € E; ; and 7 € T,.
Then y, is an affine homeomorphism. Let y, : Ty — T(Ey,) be defined by v, (t)(d) = t(d)
foralld € E, ; and t € Ty. Then y, is also an affine homeomorphism.

Now define
r: (Ko(Ey o) Ky (Eq o), T(El,c)'rELc) — (Ko(Ey0), Ky (Eg o), T(Ez,c),rEzyc) (9.22)

as follows: I'} := T; : K;(E, o) = K;(Ey) — K;(Ey) = Ky(E, ), i =0,1,and T := ppolpoy .

We also check that since Ag, o I'y = Ap , for any x € K (E ),
T (T (%) = 1y (T (X)) = Ty (X). (9.23)
Since K(A) = kerp, and K,(B) = kerp,, (9.23) implies that
rEz,c(T)(FE)(X)) = rELC(F;I(r))(X) for all x ¢ Ko(Ey ¢) and 7 € T(E, ). (9.24)

Hence, I'' : Inv(E, ;) — Inv(E, ) is an isomorphism. It follows from Theorem 9.3 that
there exists an isomorphism V¥ : E; . — E, . which induces I"". This provides (also
denoted by W) an isomorphism ¥ : E; . K — E, . ® K.

By Brown's stable isomorphism theorem [4], we may view E, as a full hereditary
C*-subalgebra of E; . ® K. Then we obtain an embedding ¥|g, : E; — E, . ® K. Let €] be
a strictly positive element of E; and e, = W(e)). Let €} be a strictly positive element of

E,. Since ¥ induces I'” and since Xp, o 'y = X, , we have that

d.(ey) =d,(ey) for all t € T(E,).
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Finally, by applying Lemma 9.5, there is an isomorphism v : Her(e,) = Her(e;
with KL(y) = KL(idg,) and which preserves the traces. Therefore,

E, =E, (9.25)

and the isomorphism induces I'. |

Remark 9.7. 1In Section 7, we do not include a classification statement for the essential
extensions of the form in (9.1), for the case that A does not have continuous scale.
Theorem 9.6 is a classification with a different flavor. It should be noted, though, that
if A does not have continuous scale, then there may not be any trivial extensions of the
form in (9.1). To see this, consider the case where A = A ® K. Then A does not have any

faithful tracial states. If there were a monomorphism j: A — M (W) such that
Tgpoj=1d,, (9.26)

then 1y, 0j would induce a faithful tracial state on A. This is not possible. So no essential
extensions of the form in (9.1) splits. This explains, partially, why we choose not to

include this case in Section 7.

The following is another version of 7.9. We should keep 7.9 and remove this—we

can use this (slightly different) presentation.

Lemma 9.8. Let A be a separable amenable C*-algebra, which is W embeddable. Then
A has a7 extensionm oo : A — COW).

Proof. Let{b,}be asystem of quasidiagonal units for YW. We assume, of course, b,, # 0.
Let D, = Her(b,)). Then D,, = M, (V). Let {el(.;) : 1 <1i,j < n} be a system of matrix units
for M,,, n = 1,2,.... We may assume (by choosing an diagonal element in D,, = M,,(W)),
that b, = Bf, €]} bye . Put by = € 1byey 5, j=1,2,..., 1.

Fix an embedding ¢, : A — W which maps strictly positive elements to strictly
positive elements. For each n, there is an isomorphism v, : W — Her(b,, ;). So we have

an embedding @" v, o1, : A — D,, = M,,(W). Define

o:A— MW) by o(a)=EPE v, o) (9.27)
n=1
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By Definition 7.6, ¥ o o is a 7 extension. [ |

Theorem 9.9. Let A be a separable amenable C*-algebra, which is W embeddable and
satisfies the UCT. Suppose also that kerp, = K(4).

(1) If 7y, 7y : A — C(W) are two essential extensions, then r; ~% 7, if and only if
KK (1)) = KK(1y).

(2) The map A : Ext(4,W) — KK(A,C(W)) defined by A([r]) = KK(7) is a group
isomorphism.

(3) An essential extension t is trivial if and only if KK(r) = 0, and all trivial

extensions are unitarily equivalent.

Proof. We first show (3). If 7 is trivial, then there exists monomorphism ¢ : A - M(W)
such that 7 o ¢ = 7. It follows from 7.10 that 7,4(K,(4)) = t,q(kerp,) = 0 and 7,; = 0.
Since K,(C(W)) = R is divisible and K;(C()V)) = {0}, by the UCT, one computes that
KK (t) = 0. It follows from 7.16 that 7 is quasidiagonal. Moreover, by 7.17, t ~* 7w o 0.
Conversely, if KK (r) = 0, then we just showed that t ~* 7 o o.

We now show (2). Define A : Ext“(A, W) — KK(A,COW)) by A(lz]) = KK (7). It is
a semigroup homomorphism. That the map is injective follows by (1).

Fix x € KK(A,C(W)). By the UCT, oen computes that KK(A,C(W)) =
Hom(Ky(4),C(W)). Note that Ky(A) = K,(A) ® Z. Define n € Hom(Ky(4),C(W)) by
Ny = X and n([1;]) = [1C(W)]. Then n gives an element in KL(A,COV)). It follows from
Corollary 8.5 of [41] that there is a homomorphism 7; : A — C(W) such that KK(t;) = 7.
Define v = 1;|,. Then KK(r) = x. So the map A is surjective. It follows that Ext“(4, W)
is a group.

We then see (1) follows from (2). [ |

10 Extensions by a Simple C*-Algebra in 7

In this section, we consider essential extensions of the form

0—->-B—FE—C—Q0,

where B is a separable simple C*-algebra with a unique tracial state and with finite
nuclear dimension and that satisfies the UCT and C is a separable amenable C*-algebra,
which is W embeddable.
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Definition 10.1. Denote by Z the class of all non-unital stably projectionless separable
simple amenable Z-stable C*- algebras with a unique tracial state and that satisfies the
UCT.

Note that if B € Z, then Ky(M(B)) = R, K;(M(B)) = {0}, K,(C(B)) = K,(B) and
Ky,(C(B)) = R ® K, (B) (see Theorem 7.4). C*- algebras in 7 have been classified by their
Elliott invariant in [22]. All C*- algebras in 7 have stable rank one. Moreover, kerpp; =
K,(B) for every C*-algebra B € Z (see Lemma 6.1). We will also use the fact that every
hereditary C*-subalgebra , of a C*-algebra in Z, is also in 7.

Lemma 10.2. Let B € Z. Let A be a separable amenable C*-algebra, which is W
embeddable. Then there exists an essential 7; extension (see 7.6) 0 : A — M(B), with

model o, that factors through W and, in particular, KK(o,) = 0.

Proof. Fix an embedding 14 : A — W and an embedding ¢, : W — B (given, e.g.,
by 6.4) such that both ¢, and (,, p map strictly positive elements to strictly positive
elements (see 6.4 and 6.8). Let o4 =, oty : A — B. Denote by t the unique tracial state
of B. Fix a system of quasidiagonal units {b;}, for B, as in 4.1. Passing to a subsequence

if necessary, we may assume that

> d.(by) < (1/n)d, (by) for all n. (10.1)
k=n+1

Let t, = (1/n)d,(b,), n € N. There is an element a, € Her(b,) with d (a,) = t,
(since B has strict comparison and since Cu(B) = V(B) u (0, oc0]; see Proposition 11.11
of [18] and Theorem 15.5 of [22]). Moreover, Her(b,,) = M, (Her(a,)). By part (2) of 6.6,
there is, for each n, an isomorphism ¢, : B — Her(a,). Define 0 : A — M(B) by
o(@) = > ("¢, 00,)(a) for all a € A. One then checks, from Definition 7.6, that
7 oo is a T; extension with model o4, which factors through W and KK(o,) = 0. n

Lemma 10.3. Let C be a separable amenable C*-algebra, which is /W embeddable and
satisfies the UCT. Suppose that K;(C) is finitely generated (i = 0,1). Let B € Z, and
let m o0 : C — C(B) be an essential 7; extension with a model map o, which factors
through W. Then for any essential quasidiagonal extension 7, : C — C(B), there is a

trivial diagonal essential extension o, : C — C(B) such that

®noo~tog@moo. (10.2)
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Proof. Exactly as at the beginning of the proof of 7.12, without loss of generality,
we may assume that ran(o) L ran(y), where v : C — M(B) is a c.p.c. map for which
Tg=mo V.

We write

oo n+l

o ZEBEB¢n°UC
n=1

as in Definition 7.6 and Lemma 10.2.
Since 7, is quasidiagonal, we may write ¢ = @, ¥,,, and let {a,} be a system

of quasidiagonal units from Proposition 4.5 that corresponds to {y,,}. Recall that
nli.'r{.lo Iy, (ab) — ¥, (@), (b)|| =0 for all a,b e C. (10.3)

We now write "' ¢, 00p =0, D0, - Doy, and o = Py, Do n,-

Following the notation of Definition 7.6, let

b, j=o0y(ec) for all n,j.

Since o is a 7; extension, by 7.7, there exists amap F : C, \ {0} — N x (0, c0) such
that for all n,j, 0, ; : C — m is F- full.

Let {€,}7° , be a strictly decreasing sequence in (0, 1) such that > 77 ; €, < co. Let
F, CFyC--- CF, C-- beasequence of finite subsets of the unit ball of C, whose
union is dense in the unit ball of C.

We will apply Theorem 5.8. Note that by Proposition 5.2, every hereditary
C*-subalgebra of B is in Cy g 7, with T as in Proposition 5.2. Let L := 77 + 1. Recall
that for the given C, we fix maps .J, I, and J~ as in 5.7.

For each n, let §,, > 0, G,, C C be a finite subset, P,, C K(C) be a finite subset,
U, C J7(K,(C)) be a finite subset, £, C C, \ {0} be a finite subset, and K,, be an integer
associated with F,, and ¢, (as well as F and L above), as provided by Theorem 5.8 (for
C*- algebras in Cg g ; 7 7)-

We may assume that 6,1 < 6,, G, C Gy, Py, C Py, Uy, C Uy, U, C
UM

each v, is G,-§,,-multiplicative and [y, (w)] is well defined for all u € U,,.

)(E‘)), and K,, < K,,,;, for all n. Without loss of generality, we may assume that
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Moreover, without loss of generality, we may also assume that (see Theorem 14.5

of [46]) for any n, there is a group homomorphism
b+ G(T gy Uy)) = U (M) (Her(@,)))/CU (M, (Her(a,)))
such that
dist(r, (x), T, ([¥, (J~(x)]) < 1/167(n + 1) for all x e M, U,), (10.4)

where G(I1,, (l4,)) is the subgroup generated by the finite subset IT_,({/,,). Recall that
[, oJ 7 (x) =T, oI, J(x)) =J(x) for all x € K;(C). Without loss of generality, we may
assume that P, N K;(C) generates the same group as II; o 1, (4,) does (in the current
case, K, (C) is assumed to be finitely generated).

Moreover, since K;(C) is finitely generated, we may assume that KL(y,,) and A, oJ
are well defined, and since A, is determined by ,,, we may also assume that A, o J is
compatible with KK (,,).

Again, throwing away finitely many terms and relabelling if necessary, we may

assume that

> d.(ay) < d, (b, o),

n=1

where 7 is the unique tracial state of B. Let {n;};_, be a subsequence of Z*T withn; =1

and ny + 2 < ny, for all k such that

> d.(a) < d,(bg, )

I=ny

Since B has stable rank one, there is a unitary U,’c € B such that

Ngp1—1 Ngp1—1
U*(( D apB( > @)Uy C by, oBbg, o. (10.5)
l:nk l:nk

Let By g = Her(3 1! a;). Hence, (Uy)*By oU; C Her(bg, o).

l=nk
For each n, by Theorem 6.11, there is a homomorphism h,, : C — Her(a,) such

that KL(h,)) = KK(¥,,) and hj, = 4,, o J.
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In other words,

By the second part of (10.6) and (10.4), and since U,, C U, for all n, for any
u €Uy, andng <l<ny ,—1, thereisav; e CUM, (l)(Her(al))) such that

hy(W) [V W1 24 j167041) Vi (10.7)
It follows from Lemma 7.11 that forall u € i, ,
cel(Ad Uy o (511 hpy W) TAd Uy o (5% g )1*) < 7m +1, (10.8)

where the length is computed inside M. (nk)(Her(ka 0))-

For each k, consider the two maps Ad U}, o (E”"*1 lt/fl) AdU; o (En’”1 1hl) :C —
Her(ka,O).

Recall that ¢, is G,,-8,,-multiplicative and ¢,, oo is F-full, for all n. Also, keeping
in mind of (10.6) and (10.8), we apply Theorem 5.8 to get that for each k, there is a unitary
uy € My, (Her(bg, ()) such that

Ng1—1 Ngy1—1
u (U D] h,(c)UkEBZaKk 10 | Wt ~, U D wl(C)Uk@ZaKkl(c)
I=ny I=ny

(10.9)

for all ¢ € Fy.

Define H : C — M(B) by H(c) = P, hi(c) for all ¢ € C. Note that the sum
converges strictly and H is a homomorphism. Set o; := 7 o H.

By exactly the same argument as in the later part of the proof of Lemma 7.12,

from (10.9), we obtain a unitary u € C(B) such that
u(og(c)®roo(c)u*=moy(c)+moo(c) for all ceC. (10.10)

Now since Her(w o y(es) + 7w o a(ec))l- # {0}, and since C(B) is purely infinite
simple, there is a non-zero projection e; € Her(w o ¥ (eo)+m o a(eC))J-. There is a unitary
v € e,C(B)e; such that [v] = [u*]. Let u; = (v® (1 —e;))u. Replacing u by u, if necessary,
we may assume that u € U,(C(B)). Therefore, we may assume that there is a unitary
U € M(B) such that 7 (U) = u. |
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Corollary 10.4. In Lemma 10.3, if T is in fact a diagonal extension, that is, Tg=mo v,
where ¥ : C — M(B) is defined by ¥(c) = ;. ; ¥,,(c) such that v, is a homomorphism

for all n, and if KK(y,,) = 0 and 1//31 = 0 for all n, then
ToV@rmoo ~%moo.

Proof. In the proof of Lemma 10.3, let each v, be a homomorphism such that
KK(¥,) = 0 and ¢, = 0. Since ¢5, = 0, ¥,,(w) € CUMy,,,(W)) (instead of (10.4)) for
all u € J7(K;(4) N UM,y (Her(ay))). Therefore, in the proof of Lemma 10.3, (10.8)

becomes

Ng1—1
cel( z Yy(w)) <7m +1 for all ue Uy, (10.11)

lznk

Therefore, the proof works when we use h,, = 0 for all n. In other words,

Too~YToVU@rmoo.

Lemma 10.5. Let C and B be as in 10.3. Fix two sequences
{x,} C KL(C,B) and {y,} Cc Hom(K,(C), U(B)/CU(B)) (10.12)

such that x,, and y, are compatible, that is, x,(z) = I, .,,(y,(2)) for all z € K;(C),
for all n. Let {b,} be a system of quasidiagonal units for B. Then there is a diagonal
monomorphism h; := @, h, : C > M(B), where h, : A — Her(b,,) is a monomorphism
for all n, and for each m, KK (h,,) = x,, and b, = ¥, at the same time for some n, and for
each k, there are infinitely many [ such that KK (h;) = x; and hf = y; at the same time.

Proof. Write N =U}? ,S,, where each S, is an infinite countable set, and S; N S; = @ if
i #j. For each j € S,,, choose a monomorphism hj :C —> Her(bj) such that KK(hj) = X,
and h; =y, (see Theorems 6.10 and 6.11). Then set h; := Py hi. One can check that

h, satisfies the requirements of the lemma. |
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Lemma 10.6. Let C, B and o be as in 10.3. For any essential trivial diagonal extension
t:C— C(B),

T@®moo ~Yrmwoo.

Proof. LetW¥ = @, v, : C — M(B) be any diagonal map, where ¢, : C — b, Bb,
is a homomorphism for all n, and where {b;} is a system of quasidiagonal units. Let
Xy 1 = KK, Von_1 = ¥, Xpy = —KK(¥,)) and y,, = —¥s, n = 1,2, .... Note that x,,
and y,, are compatible for all n.

Let h; : C — M(B) be as in Lemma 10.5 associated with the sequences {x,}, {y,}
and {b;}. We claim that there is a permutation A : N — N such that

b i
KK(hA(Zn—l)) = _KK(hk(zn)) and h)\(Zn—l) = _h)»(Zn)’ n = 1, 2, .....

For n = 1, there is an integer y(1) € N\ {1} such that KK(hy(l)) = —KK(h,) and
P i
hy(l) = —hj.
Then define A(1) = 1 and A(2) = y(1). Suppose that A has been defined on
{1,2,...,2n} such that

3 3
KK (hyok-1)) = —KK(h; qx)) and h3 g, = —=hj o k=1,2,...,n.

Choose the smallest integer m such that m e N\ {*(1), A(2), ..., A(2n)}. Define A(2n+1)=m.
Note that (KK(hm),hfn) € {(x,,, ¥y} Find an integer m’ € N\ ({A() : 1 <j < 2n} U {m})
such that KK(h,,) = —KK(h;(5,,,) and hi, = —h}, .. Define A(2n + 2) = m'. The
claim follows by induction.

Define ap = b;k_1) + byory, Kk = 1,2,..., Then {a;} is also a system of
quasidiagonal units. Let h, o : C — Her(b;, 1) + by 2n)) be defined by h, o(c) =
Ry 2n-1)(€) + Ry (any (c) for all ¢ € C. Now define H, : C — M(B) by Hy(c) = @, hy, 0(0)
for all ¢ € C. Then Hy is unitarily equivalent to h; (see 4.2). However, KK (h,, o) = 0 and
hi,o = 0 for all n. It follows from Corollary 10.4 that with ¢ as in 10.3,

moHy®moo ~Ymoo.
Therefore,

mohy®moo ~"moo. (10.13)
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Hence, ¥ & h, is another diagonal map and if we write ¥ @ hy = @, h},, then
for all n, (KK(h)), (h’n)i) € {(x;,¥p}, and for each k, there are infinitely many n with
(KK (h}), (h’n)i) = (Xy,¥). From what has been proven, we conclude that

(moVW@rmohy) oo ~*moo. (10.14)
Then by (10.13),

ToV@dnoo~“nmoV@mohy®moo)~“moo.
| |

Theorem 10.7. Let B € Z. Let A be a separable amenable C*-algebra, which is W
embeddable and satisfies the UCT. Suppose that K;(A) is finitely generated (i = 0, 1).

(1) If r;, 7, : A — C(B) are two essential extensions, then 7; ~* 7, if and only if
KK (1) = KK(1y).

(2) The map A : Ext“(4,B) — KK(A,C(B)), defined by A([t]) = KK(7), is a group
isomorphism.

(3) An essential extension t, of A by B, is trivial and diagonal if and only if
KK(t) = 0, and all essential trivial and diagonal extensions of A by B are unitarily
equivalent.

(4) All quasidiagonal essential extensions of A by B are trivial and are unitarily
equivalent.

(5) If kerpy 4 = K((A), then all trivial essential extensions of A by B are unitarily
equivalent. Moreover, an essential extension t, of A by B, is trivial if and only if
KK(t) = 0.

(6) If kerpf' a # Ky(A), then there are essential trivial extensions of A by B, which
are not quasidiagonal, and not all essential trivial extensions of A by B are unitarily

equivalent.

Proof. Let us prove (3) first. Suppose that 7 : A — C(B) is an essential extension such
that KK(r) = 0. Consider a 7; extension m o ¢ as in Lemma 10.2. Then KK(¢c) = 0. It
follows that KK(7r oo) = 0. Let 7 o0, 7 : A — C(B) be the unital extensions of 7 o o and
7, respectively. So KK (7 o o) = KK (7). By Theorem 2.5 of [41], there exists a sequence of

unitaries {v,} in C(B) such that

nli:r{.lo vy (m oo (a))v, = t(a) for all a € A. (10.15)
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Since A is not unital and C(B) is simple purely infinite, by 3.4, we obtain a sequence of

unitaries {u,} in M(B) such that
nlingo n(uy)* (oo (a)n(u,) =t(a) for all a € A. (10.16)

By Theorem 4.6, t is a quasidiagonal extension. By Lemma 10.3 and Lemma 10.6, there

is an essential trivial diagonal extension o; such that
T@nooc~o,®mo0 ~Ymoo.
On the other hand, by Theorem 3.8,
t~¥roodT

for some essential extension r;. We then compute that KK(zr;) = KK(r) = KK(wr o0) = 0.

From what has just been proved,
,®ro0 ~Ywoo.
It follows that
t~Y7moo. (10.17)

This shows that if KK(r) = 0 then t ~* 7 o0, and in particular, 7 is trivial and diagonal.

Conversely, suppose that r : A — C(B) is an essential trivial diagonal extension.
Then, by 10.6, t & m o 0 ~* 7w oo. It follows that KK(r) = 0. This proves the converse
direction. The above argument also gives that every essential trivial diagonal extension
is unitarily equivalent to 7 o o. This proves (3).

We next prove (1) and (2). Let A : Ext¥(A,B) — KK(A,C(B)) be the map defined
by A([r]) = KK (7). It is a semigroup homomorphism.

Towards proving that A is surjective, let x € KK(A,C(B)). Note that KK(A,C(B)) =
KK(A,C(B)) ® KK(C,C(B)) = KK(A,C(B)) ® Ko(C(B)). Let y 1= x & [l € KK(A,C(B)) &
K,(C(B)). By Corollary 8.5 of [41], there exists a monomorphism ¢ : A — C(B) such that
KK(¢) =y. Let ¢y := |, : A — C(B). Then KK (¢,) = x. This shows that A is surjective.

Fix an essential extension 7 : A — C(B). Since A is surjective, there exists an

essential extension t_; such that KK(r_;) = —KK(r). Then KK(r @ _;) = 0. By part (3),
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with o as in 10.2,
t@1_; ~rmwoo. (10.18)

Let ; : A — C(B) be any essential extension with KK(r;) = KK(tr). Then the same

argument gives that r; @ v_; ~* 7 oo. Then,
T@rnooc~Mt®(_ BT M TdT_ BT~ To0 BTy (10.19)
On the other hand, by Theorem 3.8, for some essential extension 7/,
T~¥roo®T. (10.20)

Since KK (7 o o) = 0, KK(z') = KK(7). Therefore, replacing r; with t’ in (10.19), we get
that

t~¥roo®t ~ oo D, (10.21)
Hence, replacing v with r; in (10.21), t; ~% 7 o 0 @ ;. Hence, by (10.19),
T ~% 1. (10.22)

This implies that A is one-to-one. Since KK(A,C(B)) is a group, this implies that
Ext“(A, B) is a group with zero [ o o]. Moreover, A is a group isomorphism. This proves
(1) and (2).

To see that (4) holds, let 7, be an essential quasidiagonal extension. Then, by

Lemma 10.3, with o as in 10.2,
T, ®no0 ~ry@roo

for some trivial diagonal essential extension r;. From this and (3), KK(ry) = KK(1g) = 0.
It follows from (3) that Tq ~% 7 o00. Thus, (4) holds.

To see (5), consider a trivial essential extension with the form r = 7= o H for some
monomorphism H : A — M(B). Recall that K, (M(B)) = 0 and Ky(M(B)) = Aff(T(B)) = R.
Since we now assume that K;(4) = ker,of,A, H,, = 0. Hence, KK(r) = 0. Then (5) follows
from (3).
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Finally, for (6), we note that, if kerpf,A # Ky(A), then thereisat e Tf(A) such
that p, (t) # 0.

By Lemma 8.1, for any r € (0,1), there is an monomorphism Var: A— M(B),
with 7 o ¥, . being injective, such that ¢z o ¥4 .(a) = r - t(a) for all a € A. Recall that
K,(M(B)) = Aff(T(B)) = R and Ky(C(B)) = R® K;(B). Hence, if welet 1 : Kj(A) > R:z —
t(z), then Ky(¥4 ) = ri # 0. Hence, Ky(r oYy ,) =72 #0. Thenw o, . : A — C(B) is an

essential trivial extension such that
KK(w oy ) # 0. (10.23)

Thus, we produce an essential trivial extension that is not unitarily equivalent to the
trivial diagonal extension 7 oo (since KK(x oo) = 0 by (3)). By (4), it is not quasidiagonal.
In fact, if ry,r, € (0,1) and r; # ry, then 7 o Var is not unitarily equivalent to
7T o I/IAyrZ. ||

Remark 10.8. Note that Theorem 10.7 does not describe exactly what the set 7, that
is, the set of unitary equivalence classes of trivial essential extensions, looks like. The
next statement will do that.

Recall that KK(A, M(B)) = Hom(K,(4),R). So we may view Hom(Ko(A),R)Tf(A)
as a subset of KK(A, M(B)). Let [7] : KK(A,M(B)) — KK(A,C(B)) be the homomorphism
induced by the quotient map 7 : M(B) — C(B). Define

N=[xl{r-h:re0,1]l,h e Hom(KO(A),R)Tf(A)}).

Theorem 10.9. Let B € 7 and let A be a separable amenable C*-algebra, which is W
embeddable and satisfies the UCT. Suppose that K;(4) is finitely generated (i = 0, 1).
Then,

(i) the map [7] is one-to-one on KK(A, M(B)) = Hom(K,(A4),R), and

(ii) an essential extension t : A — C(B) is trivial if and only if
A(lel) = KK (v) € N = [z]({r- h: 7 € (0,11, h € Hom(Ky(A), R) g (4))-

Moreover, A is one-to-one on 7, the set of unitary equivalence classes of trivial essential

extensions of A by B.

Proof. Recall that K, (M(B)) =0.
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Note also that K,(M(B)) = R, K;(C(B)) = R® K, (B), and [7] maps injectively from
Hom(K(A), Ky(M(B))) into Hom(K,(A), Ky(C(B))) as 7, is injective from R into RG K, (B).
This proves part (i).

For (ii), suppose that t is an essential trivial extension. Then there is a
monomorphism H : A — M(B) such that t = 7 oH. Then tz 0 H is a faithful bounded trace
on A. Define r := ||tz o H|| € (0, 1]. Therefore, tz 0o H = r -t for some t € Tr(A). It follows
that KK (H) € rHom(KO(A),IR)Tf. Therefore, A([]) € N.

For the converse, let  : A — C(B) be an essential extension such that KK(r) € N.
So thereisa A € Hom(KO(A),R)Tf(A) such that KK(t) = [7] o r-A for some r € (0, 1]. Let
t € T¢(A) be a faithful tracial state that induces A. By Lemma 8.1, let ¥, ,. : A — M(B) be
a monomorphism with ran(y, ,) NB = {0} so that g0V, ,(a) = rt(a) for all a € A. Hence,
KK (Y4 ,) = rr. Then KK (7 o ¥4 ) = KK (7). By part (2) of Theorem 10.7, T ~* 7w o ¢4 ..

The last statement also follows from part (2) of Theorem 10.7. |

Remark 10.10. Theorem 10.9 uses N to describe the trivial essential extensions under
the assumptions of this section (see also Theorem 10.7). When kerpfA # Ky(A), N # {0}.
In fact, there are uncountably many different elements in N. Moreover, 7 is not a
semigroup. One first notes that, for any 1 € Hom(KO(A),R)Tf(A) and r € (1,00), if 7 is
an essential extension with KK(r) = [r] o (r - 1), then 7 is not a trivial (or splitting)
extension, since there is no homomorphism H : A — M(B) such that H,; = r- A. Suppose
that A € Hom(KO(A),R)Tf(A) and t € 7 such that A(r) = A, and suppose that 7y € 7 is
another essential trivial extension. Then r+1, € 7 if and only if A([z]) = 0, that is, 7, is
a trivial diagonal extension. This shows that 7 is not a semigroup.

Note that, by the UCT, there is a short exact sequence
0 — ext,(K,(A),K, ,(B)) — KK(A,C(B)) - Hom(K,(A),K,(C(B))) — 0. (10.24)

Suppose that 7 is an essential extension with r,; =0 and 7, € Hom(KO(A),R)Tf(A). One

realizes that KK(r) may not be in N.
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