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We classify all essential extensions of the form

0 →W → D → A → 0,

where W is the unique separable simple C*-algebra with a unique tracial state, which

is KK-contractible and has finite nuclear dimension, and A is a separable amenable

W-embeddable C*-algebra, which satisfies the Universal Coefficient Theorem (UCT). We

actually prove more general results. We also classify a class of amenable C∗-algebras,

which have only one proper closed ideal W.

1 Introduction

Motivated by the goal of classifying all essentially normal operators using Fredholm

indices, Brown–Douglas–Fillmore (BDF) classified all extensions of the form

0 → K → D → C(X) → 0,
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Extensions of C∗-Algebras by a Small Ideal 10351

where X is a compact subset of the plane, and later, where X is an arbitrary compact

metric space ([3, 5, 7]; see also [8]).

The C∗-algebra K is perhaps the simplest non-unital simple C∗-algebra. In

recent developments of the classification of separable simple amenable C∗-algebras,

however, some other seemingly nice non-unital simple C∗-algebras arise. One piquant

example is W, which was first studied by Razak [59], and is a non-unital sepa-

rable simple C∗-algebra with a unique tracial state and Ki(W) = {0}, i = 0, 1.

It is in fact stably projectionless. It is proved in [19] that W is the only separable stably

projectionless simple C∗-algebra with finite nuclear dimension satisfying the Universal

Coefficient Theorem (UCT), which has said properties. It is also algebraically simple.

Moreover, as we will later elaborate, W has another very nice feature shared with K,

namely that the corona algebra C(W) = M(W)/W is a purely infinite simple C∗-algebra.

A natural question is whether one can classify essential extensions of the following

form:

0 →W → E→C(X) → 0. (1.1)

Since Ki(W) = 0 for i = 0, 1, one immediately realizes that KK1(C(X),W) = 0.

However, as we will see soon, there are many nontrivial essential extensions of C(X) by

W and a variety of unitary equivalence classes of these essential extensions. In other

words, the classification of these essential extensions will not follow from the usual

stable KK theory.

Other questions also naturally emerge. For example, how many extensions have

the form

0 →W → E →W → 0? (1.2)

More generally, can one classify all the essential extensions of the form

0 →W → E→A → 0 (1.3)

for some general class of separable amenable C∗-algebras A?

As mentioned above, the classification will not follow from the usual stable

KK-theory. As one may expect, some restrictions on A will be inevitably added. If A

is a separable amenable C∗-algebra, then, by [32], A can always be embedded into O2,

the separable purely infinite simple C∗-algebra in the UCT class, which has trivial

Ki-group (i = 0, 1). Since M(W)/W is simple purely infinite, O2 can be embedded

into M(W)/W. This immediately implies that, for the aforementioned C∗-algebras A,

essential extensions by W always exist. In order to have some nice description of a class
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10352 H. Lin and P. W. Ng

of extensions, like the ones in (1.3), one may at least want to have some trivial essential

extensions, that is, those essential extensions, in (1.3), that split. However, unlike the

classical case, this is in general hopeless. Note that if (1.3) is a trivial extension then it

induces a *-embedding of A into M(W). But M(W) has a faithful tracial state, which is

the extension of the unique tracial state of W. This implies that A has a faithful tracial

state. So we will assume that A has a faithful tracial state. Moreover, one may also want

to have some diagonal trivial extensions of the form (1.3). The conventional way to do

this is to allow A to be embeddable into W. We will then present a classification of these

extensions (see Theorem 9.9).

Recent successes in the theory of classification of simple C∗-algebras also make

it impossible to resist the attempt to classify at least some non-simple C∗-algebras. This

is an ambitious and challenging task. At this stage, our experiments will be limited to

the situation where the K-theory is still manageable and we will avoid the cases where

the tracial information becomes non-traceable. One of the goals of this research is to

classify some amenable C∗-algebras, which have only one ideal W. So these C∗-algebras

also have the form of E as in (1.3). Since we assume that W is the only ideal, A will be

a separable simple amenable C∗-algebra. As discussed above, we will assume that A is

embeddable into W, and so A is a stably projectionless simple C∗-algebra. Let us point

out that for any separable amenable C∗-algebra A, which has a faithful tracial state and

satisfies the UCT, A ⊗ Z0 is W embeddable, where Z0 is the unique separable simple

C∗-algebra with a unique tracial state, which satisfies the UCT such that K0(Z0) = Z,

K0(Z0)+ = {0}, K1(Z0) = {0} and has finite nuclear dimension (so K∗(A) = K∗(A⊗Z0) and

T(A) = T(A⊗ Z0)).

Denote by E the class of C∗-algebras E, which are essential extensions of the

form (1.3) such that A is any separable simple stably projectionless C∗-algebra with

K0(A) = kerρA, and, as customary, A has finite nuclear dimension and satisfies the UCT.

Note that, in the definition of the class E , we do not fix the quotient algebra A. We will

show that, when E1 and E2 are two such C∗-algebras, then E1
∼= E2, if and only if they

have isomorphic Elliott invariants (see Theorem 9.6).

For the remainder of this introduction, we elaborate on some aspects that were

earlier alluded to. Perhaps one reason for the success of the BDF theory was that their

multiplier algebra B(l2) and corona algebra B(l2)/K have particularly nice and simple

structure. Among other things, B(l2) has real rank zero (it is in fact a von Neumann

algebra) and strict comparison, and B(l2)/K is simple purely infinite. For example,

the the BDF–Voiculescu result, which roughly says that all essential extensions are

absorbing [1, 72], would not be true if the Calkin algebra B(l2)/K were not simple. We
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Extensions of C∗-Algebras by a Small Ideal 10353

may further note that, even in the case that the ideal is stable, as long as the corona

algebra is not simple, Kasparov’s KK1 group cannot be used to classify these essential

extensions up to unitary equivalence.

Recall that a non-unital σ -unital simple C*-algebra B is said to have continuous

scale if B has a sequential approximate unit {en} such that

(a) en+1en = en for all n, and

(b) for every a ∈ B+ \ {0}, there exists an N ≥ 1 such that for all m > n ≥ N,

em − en�a,

where em − en�a means that there exists a sequence {xk} in B for which

xkax∗k → em − en.

(See [33].)

In [39] (Theorem 2.4 of [39]; see also Theorem 2.8 of [33]), it was shown that a

simple non-unital non-elementary σ -unital C*-algebra B has continuous scale if and

only if the corona algebra C(B) is simple, and, if and only if C(B) is simple purely

infinite. Simple continuous scale C*-algebras are basic building blocks for generalizing

extension theory (see, e.g., [34, 37]) and have been much studied. As alluded to earlier,

aside from their basic role in the theory, the extension theory of these algebras are

in themselves quite interesting. For example, unlike the case of the classical theory of

absorbing extensions, there are no infinite repeats, and one needs to develop a type of

nonstable absorption theory, where, among other things, the class of a trivial extension

need not be the zero class. More refined considerations are required to take into account

the new K theory that arises. Some results in this direction were first derived many years

ago (see, e.g., [34] and [37]).

As mentioned above, in the present paper, we classify a class of extensions by the

Razak algebra W, which is a C*-algebra with continuous scale, K∗(W) = 0 and unique

trace. Unlike the previous cases, our canonical ideal W has no non-zero projections—in

fact, W is stably projectionless, which is like the “opposite” of being real rank zero. We

note that the property of real rank zero has been present implicitly since the beginnings

of the subject (even though the term “real rank zero” was invented after the BDF papers

[7, 8]). For example, the original BDF proof of the uniqueness of the neutral element (for

the case of compact subset of the plane) was essentially the Weyl–von Neumann–Berg

theorem, and it is well known among experts that under mild conditions on a C*-algebra

B, M(B) has a Weyl–von Neumann theorem for self-adjoint operators if and only if M(B)
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10354 H. Lin and P. W. Ng

has real rank zero [77]. Moreover, this phenomenon reoccurs throughout the original

and subsequent papers. We believe that our present result is the first classification of

a class of extensions by a simple projectionless C*-algebra (in fact, the first case of a

simple algebra which has real rank greater than zero).

To further illustrate the results of this research and the difference from the

usual stable results in the C*-algebra extension theory, we end this introduction by

presenting one of our main results. Notations and terminologies in the statement will

be explained later in the paper.

Theorem 1.1 (see Theorem 9.9). Let A be a separable amenable C∗-algebra, which is W
embeddable and satisfies the UCT.

(1) Let τ1, τ2 : A → C(W) be two essential extensions. Then τ1 ∼u τ2 if and only if

KK(τ1) = KK(τ2).

(2) The map

� : Extu(A,W) → KK(A, C(W)) ∼= Hom(K0(A),R) (1.4)

defined by �([τ ]) = KK(τ ) is a group isomorphism.

(3) An essential extension τ : A → C(W) is trivial and diagonal if and only if

KK(τ ) = 0, and all essential trivial and diagonal extensions of A by W are unitarily

equivalent. In fact, the essential trivial diagonal extensions induce the neutral element

of Extu(A,W).

(4) An essential extension τ : A → C(W) is trivial if and only if there exist

t ∈ Tf (A) (see Definition 2.2) and r ∈ (0, 1] such that

τ∗0(x) = r · rA(t)(x) for all x ∈ K0(A).

(5) Let T be the set of unitary equivalence classes of essential trivial extensions

of A by W. Then,

�(T ) = {r · h : r ∈ (0, 1], h ∈ Hom(K0(A),R)Tf (A)} (see Definition 2.6).

(6) All quasidiagonal essential extensions of A by W are trivial and are unitarily

equivalent.

(7) In the case where kerρf ,A = K0(A), all essential trivial extensions of A by W
are unitarily equivalent. Moreover, in this case, an essential extension τ : A → C(W) is

trivial if and only if KK(τ ) = {0}.
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Extensions of C∗-Algebras by a Small Ideal 10355

(8) In the case where kerρf ,A �= K0(A), there are essential trivial extensions of A

by W which are not quasidiagonal, and not all essential trivial extensions of A by W are

unitarily equivalent (see (5) above).

2 Notation

Definition 2.1. For each C∗-algebra B, M(B) denotes the multiplier algebra of B, and

C(B) := M(B)/B denotes the corresponding corona algebra. For each C*-algebra extension

0 → B → D → C → 0 (2.1)

(of C by B, (in the literature, the terminology is sometimes reversed and this is sometimes

called an “extension of B by C”), we will work with the corresponding Busby invariant

which is a homomorphism φ : C → C(B). Recall that (2.1) is essential if and only if φ is

injective. We will mainly be working with essential extensions.

An extension is unital if the corresponding Busby invariant is a unital map. We

will mainly be working with non-unital extensions.

Let φ, ψ : C → C(B) be two essential extensions. We say that φ and ψ are (weakly)

equivalent and write φ ∼ ψ if there is a partial isometry v ∈ C(B) such that v∗vφ(c) =
φ(c)v∗v = φ(c) and vv∗ψ(c) = ψ(c)vv∗ = ψ(c) for all c ∈ C and

vφ(c)v∗ = ψ(c) for all c ∈ C. (2.2)

Ext(A, B) denotes the collection of all (weak) equivalence classes of essential

extensions φ : A → C(B).

Let π : M(B) → M(B)/B = C(B) be the quotient map. Throughout this paper,

unless otherwise stated, π always denotes this quotient map.

We say that φ and ψ are unitarily equivalent (and write φ ∼u ψ ) if there exists a

unitary u ∈ M(B) such that

φ(c) = π(u)ψ(c)π(u)∗

for all c ∈ C.

Extu(A, B) denotes the collection of all unitary equivalence classes of essential

extensions φ : A → C(B).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/12/10350/6594977 by U
niversity of O

regon Libraries user on 25 June 2023



10356 H. Lin and P. W. Ng

Definition 2.2. Let A be a C∗-algebra. Denote by T(A) the tracial state space of A

(which could be an empty set), given the weak* topology. Denote by Tf (A) the set of all

faithful tracial states of A. Tf (A) is a convex subset of T(A). Let T̃(A) be the cone of

densely defined, positive, (norm) lower semi-continuous traces on A, equipped with the

topology of pointwise convergence on elements of the Pedersen ideal Ped(A) of A. Let B

be another C∗-algebra with T(B) �= ∅ and let φ : A → B be a homomorphism which maps

an approximate unit of A to an approximate unit of B. We will then use φT : T(B) → T(A)

for the induced continuous affine map.

Let I be a (closed two-sided) ideal of A and τ ∈ T(I). It is well known that τ can

be uniquely extended to a tracial state of A (by taking τ(a) = limα τ(aeα) for all a ∈ A,

where {eα} is an approximate identity for I). In what follows, we will continue to use τ

for the extension. Also, when A is not unital and τ ∈ T(A), we will use τ for the extension

to Ã as well as to M(A), the multiplier algebra of A.

Definition 2.3. Let r ≥ 1 be an integer and τ ∈ T̃(A). We will continue to use τ to

denote the trace τ ⊗Tr on A⊗Mr, where Tr is the standard non-normalized trace on Mr.

Let S ⊂ T̃(A) be a convex subset. Denote by Aff(S) the space of all continuous real-valued

affine functions on S. Define (see [62])

Aff+(S) := {f : C(S,R)+ : f affine, f (τ ) > 0 for all τ �= 0} ∪ {0}, (2.3)

LAff+(S) := {f : S → [0,∞] : ∃{fn}, fn ↗ f , fn ∈ Aff+(S) for all n}, and (2.4)

LAff∼(S) := {f1 − f2 : f1 ∈ LAff+(S) and f2 ∈ Aff+(S)}. (2.5)

Note that 0 ∈ LAff+(S). For most of this paper, S = T̃(A) or S = T(A) will be used in the

above definition.

Recall that T(A) is compact, and hence a compact convex set, when A is unital

or A is simple separable finite and has continuous scale. Also, when A is simple,

Tf (A) = T(A).
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Definition 2.4. For any δ > 0, we let fδ, : [0,∞) → [0, 1] be the unique continuous map

satisfying

fδ(t):=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 t ∈ [0, δ/2]

1 t ∈ [δ,∞)

linear on [δ/2, δ].

Definition 2.5. Recall that every τ ∈ T̃(A) extends uniquely to a strictly lower

semicontinuous trace on M(A)+, which we also denote by τ .

For any τ ∈ T̃(A) and a ∈ A+ (or a ∈ Mm(A)+ for some integer m ≥ 1),

dτ (a) := lim
n→∞ τ(f1/n(a)).

Note that f1/n(a) is in the Pedersen ideal of A. It follows that dτ (a) is a lower

semicontinuous, positive homogeneous, additive function on T̃(A). (Recall that in the

case where a ∈ Mm(A)+, we continue to use τ for τ ⊗ Tr, where Tr is the standard non-

normalized trace on Mm.)

Definition 2.6. Let A be a C∗-algebra. Let Hom(K0(A),R) be the set of homomorphism s

from K0(A) to R. Denote by Hom(K0(A),R)+ the set of all homomorphism s f : K0(A) → R

such that f (x) ≥ 0 for all x ∈ K0(A)+. Denote

kerρA := {x ∈ K0(A) : f (x) = 0 for all f ∈ Hom(K0(A),R)+}.

It is possible that Hom(K0(A),R)+ = {0}. In that case, kerρA = K0(A). There is a

homomorphism rA : T(A) → Hom(K0(A),R)+ induced by rA(τ )([p]) = τ(p) for all

projections p ∈ Mm(Ã). The image of rA is denoted by Hom(K0(A),R)T(A) (or just

Hom(K0(A),R)T ). Note that for any τ ∈ T(A), τ([1Ã]) = 1. If A is unital and exact, then by

Corollary 3.4 of [2],

Hom(K0(A),R)+ = {r · s : r ∈ R+, s ∈ Hom(K0(A),R)T(A)}. (2.6)

Let Y be a locally compact metric space and A = C0(Y). Then,

Hom(K0(A),R)+ = {r · s|K0(A) : r ∈ R+, s ∈ Hom(K0(Ã),R)T(A)}.
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Let A be a separable exact simple C∗-algebra. Choose a nonzero element

e ∈ Ped(A)+. Let Ae = Her(e) = eAe. Then, R+rAe
(T(Ae)) = Hom(K0(Ae),R)+. By [4],

the embedding ι : Ae → A induces an isomorphism ι∗ : K0(Ae)
∼= K0(A). Then,

Hom(K0(A),R)+ = {r · s ◦ ι∗−1 : r ∈ R+ and s ∈ Hom(K0(Ae),R)T(Ae)
}.

In particular,

kerρA = {x ∈ K0(A) : rAe
(τ )(ι∗−1(x)) = 0 for all τ ∈ T(Ae)}.

Denote Hom(K0(A),R)Tf
:= rA(Tf (A)). Define

kerρf ,A := {x ∈ K0(A) : λ(x) = 0 for all λ ∈ Hom(K0(A),R)Tf
}.

It should be noted that kerρA ⊂ kerρf ,A ⊂ K0(A). Recall that if A is simple, then Tf (A) =
T(A) (see Remark 8.2 for more comments on Hom(K0(A),R)Tf

).

Suppose that A is a σ -unital simple C∗-algebra such that A has continuous scale,

every 2-quasi-trace of A is a trace and T̃(A) �= {0}. Then T(A) is compact and T̃(A)

is a cone with base T(A). There is an order preserving homomorphism ρA : K0(A) →
Aff(T(A)) such that ρA([p])(τ ) = τ(p) for all projections p ∈ M∞(Ã). For any unital stably

finite C∗-algebra A, ρA can also be similarly defined (see Theorem 3.3 of [2]). We note

that, with A as in this paragraph, the kernel of the group homomorphism ρA is the same

as the object kerρA, which is defined at the beginning of the present Definition 2.6 – and

this is consistent with conventional notation.

Finally, when the context is clear, we often omit A and f and write ρ for ρA or

ρf ,A.

Definition 2.7. For a C∗-algebra D and for a, b ∈ D+, a � b means that there exists a

sequence {xn} in D such that xnbxn → a. We write a ∼ b if a � b and b � a. To avoid

possible confusion, if both p and q are projections in D, we write p ≈ q to mean that

p and q are Murray–von Neumann equivalent in D. For a ∈ D+, we let HerD(a) := aDa,

the hereditary C*-subalgebra of D generated by a. Sometimes, for simplicity, we write

Her(a) in place of HerD(a). Similarly, for a C*-subalgebra C ⊆ D, we let HerD(C) or Her(C)

denote CDC, the hereditary C*-subalgebra of D generated by C.

Definition 2.8. Let A and C be C∗-algebras. We say that a map φ : A → C is c.p.c. if it is

linear and completely positive contractive. Let F ⊂ A be a finite subset and let δ > 0 be
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given. A c.p.c. map ψ : A → C is said to be F-δ-multiplicative if ‖ψ(fg) − ψ(f )ψ(g)‖ < δ

for all f , g ∈ F .

Definition 2.9. A non-unital C∗-algebra B stably has almost stable rank one if for any

integer m ≥ 1, and for any hereditary C*-subalgebra D ⊆ Mm(B), D ⊆ GL(D̃).

We note that, in the literature, almost stable rank one often means only taking

m = 1 in the above definition. (See, e.g., [63, Definition 3.1] and [19].)

Definition 2.10. Let A and B be C∗-algebras and let φ : A → B be a homomorphism.

We let KK(φ) denote the element in KK(A, B) induced by φ, and we let KL(φ) denote the

element in KL(A, B) induced by φ.

Finally, we will be a bit loose in our terminology and use the term “extension” to

refer both to an extension 0 → B → E → A → 0 as well as the extension algebra E in the

exact sequence.

3 Nonstable Absorption

Definition 3.1. Let A be a separable C∗-algebra, and let B be a non-unital but σ -unital

C∗-algebra with continuous scale. Let φ, ψ : A → C(B) be two essential extensions. The

BDF sum of φ and ψ is defined to be

(φ+̇ψ)(.) := Sφ(.)S∗ + Tψ(.)T∗,

where S, T ∈ C(B) are any two isometries such that

SS∗ + TT∗ ≤ 1.

The BDF sum φ+̇ψ is well defined (i.e., independent of choice of S and T) up to

weak equivalence. If, in addition, φ or ψ is non-unital then the BDF sum φ+̇ψ is well-

defined up to unitary equivalence (see, e.g., [49, 52]).

Definition 3.2. Let A be a separable C∗-algebra, and let B be a non-unital but

σ -unital C∗-algebra with continuous scale. Recall that Ext(A, B) denotes the collection

of all (weak) equivalence classes of essential extensions φ : A → C(B).
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We make Ext(A, B) into an abelian semigroup with the sum induced by the BDF

sum, that is, for all [φ], [ψ ] ∈ Ext(A, B),

[φ]+ [ψ ] := [φ+̇ψ ].

We often also call the sum on Ext(A, B) the BDF sum. Similarly, when A is non-

unital, with the BDF sum, Extu(A, B) is also a semigroup.

The next result is well known, but we provide it for the convenience of the reader.

Lemma 3.3. Let A be a separable C∗-algebra, and let B be a σ -unital C∗-algebra. Let

φ : A → C(B) be a non-unital essential extension. Then there exists a nonzero element

c ∈ C(B)+ such that

c ⊥ ran(φ).

Proof. If A is a unital C∗-algebra, then we can simply take

c := 1C(B) − φ(1A).

Suppose that A is non-unital. Then D := φ(A)C(B)φ(A) is a σ -unital proper

hereditary C*-subalgebra of C(B). Then, by Pedersen’s double annihilator theorem (see

Theorem 7.7 of [57]), D⊥ is nonzero, and hence, we can take c ∈ D⊥+ \ {0}. �

Proposition 3.4. Let A be a separable C∗-algebra and B be a σ -unital C∗-algebra such

that M(B)/B = C(B) is purely infinite and simple. Let φ1, φ2 : A → C(B) be two non-unital

essential extensions.

Then φ1 ∼ φ2 if and only if φ1 ∼u φ2.

Moreover, if φ1 and φ2 are approximately unitarily equivalent, then there exists

a sequence of unitaries Un ∈ M(B) such that

lim
n→∞π(Un)∗φ1(a)π(Un) = φ2(a) for all a ∈ A. (3.1)

Proof. This is Proposition 2.1 of [52]. �

Proposition 3.5. Let B be a σ -unital simple C∗-algebra with continuous scale. Let

φ1, φ2, ψ : A → C(B) be three non-unital essential extensions. Suppose that there is a
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unitary U ∈ M2(M(B)) such that

π(U)∗(φ1(a)⊕ φ2(a))π(U) = ψ(a) for all a ∈ A. (3.2)

Then there is a unitary V ∈ M(B) such that

π(V)∗(φ1(a)+̇ψ2(a))π(V) = ψ(a) for all a ∈ A, (3.3)

where φ1⊕φ2 : A → M2(C(B)) is the orthogonal direct sum of φ1 and φ2, and φ1+̇φ2 is the

BDF sum.

Proof. Write the BDF sum as

φ1+̇φ2 = Sφ1(.)S∗ + Tφ2(.)T∗, (3.4)

where S, T ∈ C(B) are isometries as in 3.1. Set ps = SS∗ and pt = TT∗. Then, ps ⊥ pt.

As in 3.1, there are unitaries v1, v2 ∈ C(B) such that

v1Sφ1(a)S∗v∗1 = φ1(a) and v2Tφ2(a)T∗v2 = φ2(a) for all a ∈ A. (3.5)

Put E1 = diag(1, 0) and E2 = diag(0, 1). There is a partial isometry v3 ∈ M2(C(B)) such

that v∗3v3 = E1 and v3v∗3 = E2. Define w = v1ps + v3v2pt. Then,

ww∗ = v1psv
∗
1 + v3v2ptv

∗
2v∗3 ≤ 1M2(C(B)) and (3.6)

w∗w = psv
∗
1v1ps + ptv

∗
2v∗3v3v2pt = ps + pt. (3.7)

Moreover,

w(Sφ1(a)S∗ + Tφ2(a)T∗)w∗ = φ1(a)⊕ φ2(a) for all a ∈ A. (3.8)

Therefore,

1C(B)π(U)w(Sφ1(a)S∗ + Tφ2(a)T∗)w∗π(U)∗1C(B) = ψ(a) for all a ∈ A. (3.9)

Since ψ is not unital, ψ(A)⊥ �= {0}. As C(B) is purely infinite and simple, it has

real rank zero (see [76]). Let e0 ∈ ψ(A)⊥ be a non-zero projection and p = 1C(B) − e0. Let
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q = wπ(U)pπ(U)∗w∗. Note that

q = wπ(U)pπ(U)∗w∗ �= wπ(U)1C(B)π(U)∗w∗ ≤ ps + pt ≤ 1C(B). (3.10)

In other words, 1C(B) − q �= 0. Note that p and q are equivalent projections in C(B). This

implies that 1C(B) − q and e0 = 1C(B) − p are equivalent in C(B). Thus, there is a partial

isometry v0 ∈ C(B) such that v∗0v0 = 1C(B)−p and v0v∗0 = 1C(B)−q. Set v1 = qwπ(U)p+v0.

Then,

v∗1v1 = (v∗0 + pπ(U)∗w∗q)(v0 + qwπ(U)p) (3.11)

= v∗0v0 + pπ(U)∗w∗qwπ(U)p = 1C(B) − p+ p = 1C(B) and (3.12)

v1v∗1 = (v0 + qwπ(U)p)(v∗0 + pπ(U)∗w∗q) (3.13)

= v0v∗0 + qwπ(U)pπ(U)∗w∗q = 1C(B) − q+ q = 1C(B). (3.14)

So v1 is a unitary. Moreover,

v1(Sφ1(a)S∗ + Tφ2(a)T∗)v∗1 = ψ(a) for all a ∈ A. (3.15)

Since both ψ and Sφ1(·)S∗ + Tφ2(·)T∗ are not unital, by 3.4, there is a unitary V ∈ M(B)

such that

π(V)(Sφ1(a)S∗ + Tφ2(a)T∗)π(V)∗ = ψ(a) for all a ∈ A. (3.16)

This completes the proof. �

Remark 3.6. By Proposition 3.5, from now on, we will not distinguish between the

usual orthogonal sum of two non-unital essential extensions and the BDF sum of the

same two non-unital essential extensions. Proposition 3.5 should of course be known.

Let us point out the following fact: Suppose that H1, H2 : A → M(B) are two maps such

that π ◦H1 and π ◦H2 are non-unital essential extensions. Then, in general, one may not

be able to find unitaries U, V ∈ M(B) such that Ad U ◦ H1 ⊥ Ad V ◦ H2 even in the case

that both H1 and H2 are diagonal maps and π ◦ H1 ⊥ π ◦ H2.

Theorem 3.7. Let A be a separable nuclear C∗-algebra, and let B be a σ -unital simple

C∗-algebra with continuous scale. Then Ext(A, B) is an abelian group. Moreover, if A is

non-unital, then Extu(A, B) is also an abelian group.
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Proof. This is Theorem 2.10 of [52]. See also Theorem 3.5 of [49]. The second part

follows from 3.4. �

Theorem 3.8. Let A be a separable nuclear C∗-algebra and let B be a σ -unital simple

C∗-algebra with continuous scale. Suppose that φ, ψ : A → C(B) are two monomorphisms

with φ non-unital.

Then

φ ∼u ψ ⊕ ψ0 (3.17)

for some non-unital monomorphism ψ0 : A → C(B).

Proof. This is Proposition 2.7 of [52]. �

4 Quasidiagonality

Definition 4.1. Let B be a non-unital but σ -unital C∗-algebra. A sequence {bn} of

norm one elements in B+ is said to be a system of quasidiagonal units if the following

statements are true:

1. bm ⊥ bn = 0 for all m �= n.

2. If {xn} is a bounded sequence in B such that xn ∈ bnBbn for all n, then the

sum
∑

xn converges in the strict topology on M(B).

Note that every σ -unital non-unital C∗-algebra has a system of quasidiagonal

units (see, e.g., Lemma 2.2 of [53]).

The first result is an exercise in the strict topology.

Lemma 4.2. Let B be a separable non-unital C∗-algebra, which stably has almost

stable rank one and let C be a separable C∗-algebra. Suppose that {bn} is a system of

quasidiagonal units in B and φn : C → bnBbn is a sequence of c.p.c maps. For any

permutation λ : N → N,
∑∞

n=1 φλ(n)(c) converges strictly for all c ∈ C and there exists a

unitary U ∈ M(B) such that

U∗
( ∞∑

n=1

φλ(n)(c)

)
U =

∞∑
n=1

φn(c) for all c ∈ C. (4.1)

Definition 4.3. Let B be a σ -unital non-unital C∗-algebra.
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An element x ∈ M(B) is said to be diagonal, if there exists a system {bn} of

quasidiagonal units in B, and there exists a bounded sequence {xn} for which xn ∈ bnBbn

for all n, such that

x =
∑

xn.

An element x ∈ M(B) is said to be (generalized) quasidiagonal if x is a sum of a

diagonal element with an element of B.

A collection S ⊆ M(B) is (generalized) quasidiagonal if there exists a single

system of quasidiagonal units with respect to which all the elements in S can be

simultaneously (generalized) quasidiagonalized.

Definition 4.4. Let A be a separable C∗-algebra and B a σ -unital non-unital C∗-algebra.

An extension φ : A → C(B) is said to be (generalized) quasidiagonal if π−1(φ(A))

is a (generalized) quasidiagonal collection of operators.

For the rest of this paper, unless it is clearly false, when we write “quasidiago-

nal”, we mean generalized quasidiagonal.

It is easy to prove the following analogue of a classical quasidiagonality result:

Proposition 4.5. Let A be a separable C∗-algebra, and B a non-unital but σ -unital

C∗-algebra.

Suppose that φ : A → C(B) is a quasidiagonal extension such that φ can be lifted

to a c.p.c. map 
′ : A → M(B) (so π ◦
′ = φ).

Then there exist a system {bn} of quasidiagonal units, and, for each n, a c.p.c.

map φn : A → bnBbn such that φ = π ◦
, where 
 : A → M(B) is the c.p.c. map defined

by


 :=
∑

φn.

Moreover, {φn} is asymptotically multiplicative, that is, for all a, b ∈ A,

‖φn(ab)− φn(a)φn(b)‖ → 0 as n →∞.

In the above setting, we often write 
 = ⊕∞
n=1 φn.

Proof. This is Proposition 2.5 of [53]. �
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Theorem 4.6. Let A be a separable C∗-algebra and B be a σ -unital non-unital simple

C∗-algebra. Then the pointwise norm limit of quasidiagonal extensions of A by B is

quasidiagonal.

As a consequence, let h : A → C(B) be an essential quasidiagonal extension and

let σ : A → C(B) be an essential extension. If there exists a sequence {Un} of unitaries in

M(B) such that

lim
n→∞π(Un)h(a)π(Un)∗ = σ(a) for all a ∈ A (4.2)

then σ is a quasidiagonal extension.

If, in addition, B has continuous scale and the extension h is non-unital, then in

the above statement, the unitaries can be taken to simply be in C(B). In other words, for

A and B as above, suppose, in addition, that B has continuous scale, h : A → C(B) is a

non-unital essential quasidiagonal extension and σ : A → C(B) is an essential extension.

If there exists a sequence {un} of unitaries in C(B) such that

lim
n→∞u∗

nh(a)un = σ(a) for all a ∈ A

then σ is a quasidiagonal extension.

Proof. This is Theorem 3.7 of [53] together with the present paper’s Proposition 3.4.�

Quasidiagonality was first defined by Halmos [25] in 1970. There is a long

history of K-theoretical characterizations of quasidiagonality, going back to BDF’s

observation that an essentially normal operator is quasidiagonal if and only if it

induces the zero element in Ext [7]. BDF were essentially the first to recognize that

quasidiagonal extensions might be approached by K-theory, and another one of their

fundamental results was that (in their setting) limits of trivial extensions correspond to

quasidiagonal extensions [8]. Brown pursued this further in [5]. Further developments

in the study of quasidiagonality can be found in [65], [73], and [74]. Schochet proved that

stably quasidiagonal extensions are the same as limits of stably trivial extensions and

can be characterized by Pext(K∗(A), K∗(B)) if A is assumed to be nuclear, quasidiagonal

relative to B and satisfying the Universal Coefficient Theorem [67]. More recent

developments in the general nonstable case, with additional regularity assumptions

on B, and a historical summary, can be found in [40]. We will be implicitly using ideas

with its origins in the above paper. Starting with the next result, we will be presenting
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various K theoretic conditions and characterizations for quasidiagonality in our setting.

A good example of this is Proposition 7.18.

Theorem 4.7. Let A be a separable nuclear C∗-algebra, which satisfies the UCT and

let B be a non-unital separable simple C∗-algebra with continuous scale. Suppose that

there exists a non-unital essential quasidiagonal extension σ : A → C(B) such that

KL(σ ) = 0. If φ : A → C(B) is a non-unital essential extension such that KL(φ) = 0 then φ

is quasidiagonal.

Proof. Let

A+ :=
⎧⎨⎩A∼ if A is non-unital

A⊕ C otherwise.

Let

φ+, σ+ : A+ → C(B)

be the unique unital monomorphisms that extend φ and σ respective. Then,

KL(φ+) = KL(σ+).

Hence, by [40] Theorem 3.7, φ+ and σ+ are approximately unitarily equivalent.

Consequently, φ and σ are approximately unitarily equivalent. It follows from Theorem

4.6 that φ is quasidiagonal. �

5 Stable Uniqueness

Moving towards a non-unital stable uniqueness result, we next provide some definitions

and results from [19].

Definition 5.1. ([19] Definition 3.13.)

Let r0, r1 : N → Z+ be maps, T : N × N → Z+ be a map, and s, R ≥ 1 be integers.

We say that a C∗-algebra D belongs to the class C(r0,r1,T,s,R) if all of the the following

statements hold:
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(a) For any integer n ≥ 1 and any pair of projections p, q ∈Mn(D̃) with

[p] = [q] in K0(D̃),

p⊕ 1Mr0(n)(D̃) ∼u q⊕ 1Mr0(n)(D̃).

(a’) For any integer n ≥ 1 and any pair of projections p, q ∈Mn(D̃), if

[p]− [q] ≥ 0,

then there exists a projection p′ ∈Mn+r0(n)(D̃) such that

p′ ≤ p⊕ 1Mr0(n)(D̃) and p′ ∼ q⊕ 1Mr0(n)(D̃).

(b) For any integers n, k ≥ 1 and any x ∈ K0(D̃) such that

− n[1D̃] ≤ kx ≤ n[1D̃],

− T(n, k)[1D̃] ≤ x ≤ T(n, k)[1D̃].

(c) The canonical map

U(Ms(D̃))/U0(Ms(D̃)) → K1(D)

is surjective.

(d) For any integer n ≥ 1, if u ∈ U(Mn(D̃)) and [u] = 0 in K1(D), then

u⊕ 1Mr1(n)(D̃) ∈ U0(Mn+r1(n)(D̃)).

(e) For any integer m ≥ 1, the exponential rank

cer(Mm(D̃)) ≤ R.
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Proposition 5.2. Let B be a separable simple stably finite C∗-algebra with continuous

scale, finite nuclear dimension, UCT, unique tracial state and K0(B) = kerρB. Let T :

N× N→ Z+ be defined by T(n, k) = n. Then,

B ∈ C0,0,1,T,7.

Proof. It follows from Theorem 4.3 of [22] that cer(Mn(̃B)) ≤ 6+ ε.

Since B has stable rank one and K0(̃B) is weakly unperforated, it is easy to check

that B ∈ C0,0,1,T,7. �

Definition 5.3. Let A be a separable C∗-algebra, B be a non-unital C∗-algebra, and let

σ : A → B be a positive map. Let F : A+ \ {0} → N×R, and let E ⊂ A+ \ {0} be a finite set.

We say that σ is F-E full if for any ε > 0, for any b ∈ B+ with ‖b‖ ≤ 1 and for

any a ∈ E , there are x1, x2, ..., xm ∈ B with m ≤ N(a) and ‖xj‖ ≤ M(a), where F(a) =
(N(a), M(a)), and such that

‖
m∑

j=1

x∗j σ(a)xj − b‖ ≤ ε. (5.1)

We say that σ is exactly F-E full if (5.1) holds with ε = 0. If σ is F-E-full for every

finite subset E of A+ \ {0}, then we say that σ is F-full.

Definition 5.4. We introduce some notation that will be used in the next result and

later parts of the paper. For a linear map φ : A → B between C*-algebras, we often let

φ also denote the induced map φ ⊗ idMm
: Mm(A) → Mm(B) for all m. If A and B are

not unital, to simplify notation, we understand that φ(x) is φ∼(x) for any x ∈ Ã, where

φ∼ : Ã → B̃ is the unitization of φ.

Let A be a unital C∗-algebra and let x ∈ A. Suppose that ‖xx∗ − 1‖ < 1 and

‖x∗x − 1‖ < 1. Then x|x|−1 is a unitary. Let us use �x� to denote x|x|−1. Now let A be

any separable amenable C∗-algebra. Let P ⊂ K(A) be a finite subset. Then there exist

a finite subset F and ε > 0 such that for any C∗-algebra B and any F-ε-multiplicative

c.p.c map L : A → B, L induces a homomorphism [L] : G(P) → K(B), where G(P) is the

subgroup of K(A) generated by P. Moreover (by choosing sufficiently small ε and large

F ), if L′ : A → B is another F-ε-multiplicative c.p.c. map such that ‖L(x)− L′(x)‖ < ε for

all x ∈ F , then [L′]|G(P) = [L]|G(P). Such a triple (ε,F ,P) is sometimes called a KL-triple.

In what follows, when we write [L]|P , we assume that L is at least F-ε-multiplicative so

that [L]|G(P) is well defined (see 1.2 of [38], 3.3 of [17], and 2.11 of [43], or 2.12 of [23]).
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Theorem 5.5. Let A be a non-unital separable amenable C∗-algebra that satisfies the

UCT, let r0, r1 : N → Z+ and T : N × N → N be three maps, s, R ≥ 1 be integers, and let

F : A+ \ {0} → N× (0,∞) and L :
⋃∞

m=1 U(Mm(Ã)) → [0,∞) be two additional maps.

For any ε > 0 and any finite subset F ⊂ A, there exist δ > 0, a finite subset

G ⊂ A, a finite subset P ⊂ K(A), a finite subset U ⊂ ⋃∞
m=1 U(Mm(Ã)), a finite subset

E ⊂ A+ \ {0}, and an integer K ≥ 1 satisfying the following:

For any C∗-algebra B ∈ C(r0,r1,T,s,R), for any two G-δ-multiplicative c.p.c. maps

φ, ψ : A → B, and for any F–E full G-δ-multiplicative map σ : A → Ml(B) such that

cel(�φ(u)��ψ(u)∗�) ≤ L(u)

for u ∈ U , and

[φ]|P = [ψ ]|P ,

there exists a unitary U ∈ M1+Kl(̃B) such that

‖Ad(U) ◦ (φ ⊕ S)(a)− (ψ ⊕ S)(a)‖ < ε

for all a ∈ F , where

S(a) := diag(σ (a), σ(a), ..., σ(a))

(the “σ(a)” is repeated K times in the diagonal).

Furthermore, if B stably has almost stable rank one, then one can choose

U ∈ ˜M1+Kl(B).

Proof. This is Theorem 3.14 of [19]. �

Remark 5.6. Note that the finite subset U in the statement of 5.5 may be assumed

to be a subset of U(Mm(Ã)) for some integer m ≥ 1. Let �U� be the image of U in

U(Mm(Ã))/U0(Mm(Ã)) and let G(�U�) be the (finitely generated) subgroup generated by

�U�.

We provide some notation that will be used in Theorem 5.8, in the proof of

Lemma 7.12, and in other places.
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Definition 5.7. Let A be a non-unital C∗-algebra.

1. Let

�1 : U(M∞(Ã)) → U(M∞(Ã))/U0(M∞(Ã)) = K1(A),

�cu : U(M∞(Ã)) → U(M∞(Ã))/CU(M∞(Ã)),

and

�1,cu : U(M∞(Ã))/CU(M∞(Ã)) → K1(A)

be the usual quotient maps.

2. Fix a homomorphism

JA : K1(A) → U(M∞(Ã))/CU(M∞(Ã))

so that the following short exact sequence splits

0 −→ U0(M∞(Ã))/CU(M∞(Ã))

−→ U(M∞(Ã))/CU(M∞(Ã))
�1,cu

� JA
K1(A) → 0 (5.2)

(see Cor. 3.3 of [68]). In other words, �1,cu ◦ JA(x) = x for all x ∈ K1(A). We

will also use J instead of JA for brevity. Moreover, in what follows, once A is

given, we will assume that J is fixed.

Fix a map �−
cu :U(M∞(Ã))/CU(M∞(Ã))→U(M∞(Ã)) such that �cu(�−

cu(z)) = z

for all z ∈ �cu(U(M∞(Ã))). Then for each u ∈ U(M∞(Ã)), we write

u = �−
cu(�cu(u))ucu

where

ucu = �−
cu(�cu(u))∗u ∈ CU(M∞(Ã)).

Note that �−
cu is just a map between sets. Once A is given, we will assume

that �−
cu is fixed.
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3. Let

J∼ : K1(A) → U(M∞(Ã))

be given by

J∼ := �−
cu ◦ J.

4. Once J and �−
cu are fixed, for any u ∈ U(M∞(Ã)), one may uniquely write

u = �−
cu(J ◦�1(u))u0,cu, (5.3)

where

u0,cu = �−
cu(J ◦�1(u))∗u ∈ U0(M∞(Ã)). (5.4)

Let J∼0 : U(M∞(Ã)) → U0(M∞(Ã)) be defined by J∼0 (u) = J∼(�1(u))∗u (=
u0,cu as in (5.4).

We repeat for emphasis: For a fixed C∗-algebra A, we will fix one splitting

map J and a map �−
cu as above, which then determine J∼ and J∼0 .

5. Suppose that B is another C∗-algebra and h : A → B is a homomor-

phism. Denote by h† : U(M∞(Ã))/CU(M∞(Ã)) → U(M∞(̃B))/CU(M∞(̃B)) the

induced homomorphism. Denote by h‡ : K1(A) → U(M∞(̃B))/CU(M∞(̃B))

the homomorphism defined by h† ◦ J, as J is fixed. Note that in the

case where B has stable rank one (see [68, Cor. 3.4], and its remark),

U(M∞(̃B))/CU(M∞(̃B)) = U (̃B)/CU (̃B). In this case, h† is a homomorphism

from U(Ã)/CU(Ã) to U (̃B)/CU (̃B) and h‡ maps K1(A) to U (̃B)/CU (̃B).

6. Denote by � : U (̃B)/CU (̃B) → Aff(T (̃B))/ρB(K0(̃B)) the determinant map which

is an isometric group isomorphism (see Section 3 of [68] and Proposition 3.23

of [23]).

Theorem 5.8. Let A be a non-unital separable amenable C∗-algebra that satisfies the

UCT, let r0, r1 : N → Z+ and T : N × N → N be three maps, s, R ≥ 1 be integers, and let

F : A+ \ {0} → N× (0,∞) and L : J∼(K1(A)) → [0,∞) be two additional maps.

For any ε > 0 and any finite subset F ⊂ A, there exist δ > 0, a finite subset G ⊂ A,

a finite subset P ⊂ K(A), a finite subset U ⊂ J∼(K1(A)), a finite subset E ⊂ A+ \ {0}, and

an integer K ≥ 1 satisfying the following:
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For any C∗-algebra B ∈ C(r0,r1,T,s,R), for any two G-δ-multiplicative c.p.c. maps

φ, ψ : A → B, and for any F–E full G-δ-multiplicative map σ : A → Ml(B) such that

cel(�φ(u)��ψ(u)∗�) ≤ L(u) for all u ∈ U , and

[φ]|P = [ψ ]|P ,

there exists a unitary U ∈M1+Kl(̃B) such that

‖Ad(U) ◦ (φ ⊕ S)(a)− (ψ ⊕ S)(a)‖ < ε

for all a ∈ F , where

S(a) := diag(σ (a), σ(a), ..., σ(a))

(the “σ(a)” is repeated K times in the diagonal).

Furthermore, if B stably has almost stable rank one, then one can choose

U ∈ ˜M1+Kl(B).

Proof. It suffices to show that there is a map L1 : U(M∞(Ã)) → [0,∞), which depends

only on A and L, such that for any finite subset U ⊂ U(M∞(Ã)), if

cel(�φ(u)��ψ(u)∗�) ≤ L(u) for all u ∈ J∼ ◦�1(U), (5.5)

then one always has that

cel(�φ(u)��ψ(u)∗�) ≤ L1(u) for all u ∈ U , (5.6)

for any φ and ψ that are G1-δ1-multiplicative, where δ1 is sufficiently small and G1 is

sufficiently large and which depend only on U and L, as we then apply Theorem 5.5 for

this L1 (choosing δ < δ1, large G ⊃ G1 and K and so on).

Let us provide the details for the resolution of this issue. As A is given, we fix

a splitting homomorphism J and a map �−
cu as in 5.7 (so J∼ and J∼0 are also fixed).

Define L0 : U0(M∞(Ã)) → [0,∞) as follows: For each u ∈ U0(M∞(Ã)), there is a smallest

m(u) ≥ 1 such that u ∈ U0(Mm(u)(Ã)). Define L0(u) = cel(u) in U0(Mm(u)(Ã)).

Suppose that a finite subset U ⊂ U(Mm(Ã)) is fixed. Without loss of generality,

we may assume that J∼0 (u) ∈ U0(Mm(Ã)) for all u ∈ U .
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For each u ∈ U , there are h1(u), h2(u), ..., hk(u)(u) ∈ Mm(Ã)s.a. such that

exp(ih1(u)) exp(ih2(u)) · · · exp(ihk(u)(u)) = J∼0 (u). (5.7)

We choose a small δ1 > 0 and a large finite subset G1 of A such that for all u ∈ U ,

‖φ(J∼0 (u))− exp(iφ(h1(u))) exp(iφ(h2(u))) · · · exp(iφ(hk(u)(u)))‖ < 1/16π (5.8)

for any G1-δ1-multiplicative c.p.c. map φ from Ã. In particular,

cel(�φ(J∼0 (u))�) ≤ cel(J∼0 (u))+ 1/4 for all u ∈ U . (5.9)

We may also assume that

�φ(u)� ≈1/64π �φ(J∼(�1(u)))��φ(J∼0 (u))� for all u ∈ U . (5.10)

Define L1(u) = L(J∼(�1(u)))+ 2L0(J∼0 (u))+ 1 for all u ∈ U(M∞(Ã)).

Note that, as had been demonstrated, if δ1 is small enough and G1 is large enough

independent of φ or ψ (and also independent of B in the class Cr0,r1,t,s,R), when both φ

and ψ are G1-δ1-multiplicative and satisfy (5.5), for all u ∈ U ,

cel(�φ(u)��ψ(u)�∗) (5.11)

≤ 1/16 + cel(�φ(J∼(�1(u)))��φ(J∼0 (u))��ψ(J∼0 (u))∗��ψ(J∼(�1(u)))∗�) (5.12)

≤ 2(L0(J∼0 (u))+ 1/4)+ L(J∼(�1(u))) ≤ L1(u). (5.13)

In other words, (5.6) holds. The theorem then follows from Theorem 5.5. �

6 Existence and Exponential Length

Lemma 6.1. Let A be a separable algebraically simple C∗-algebra with finite nuclear

dimension, which satisfies the UCT and has a unique tracial state τA. Suppose that A is

non-unital and stably projectionless. Then we have the following:

1. A is Z-stable and has stable rank one.

2. K0(A) = kerρA.
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Proof. By [70], A is Z-stable. It follows from [63] that A stably has almost stable rank

one. Since A has only one tracial state, it follows from Corollary A7 of [19] that K0(A) =
kerρA. By Theorem 15.5 of [22], A is classifiable and is in the class D, which is defined

in 3.9 of [22] (see also 8.1 of [18]). Therefore, by Theorem 11.5 of [18], A has stable rank

one. �

Definition 6.2. Let W be the Razak algebra, which is a non-unital, simple, separable,

nuclear, continuous scale, stably projectionless C∗-algebra with a unique tracial state

τW and K∗(W) = 0. (Sometimes, we will write tW , instead of τW , for the unique tracial

state of W.) W also has stable rank one and is Z-stable (see [26, 59, 71]). It is proved

in [19] that W is the only non-unital simple separable C∗-algebra with finite nuclear

dimension, Ki(W) = {0} (i = 0, 1) and with a unique tracial state which satisfies the UCT

and has continuous scale. From this, one can also conclude that W is *-isomorphic to

any of its nonzero hereditary C*-subalgebras.

Remark 6.3. In fact, the proof of Lemma 6.1 shows that the C∗-algebra A is in the

classifiable class D defined in [22] 3.9. We also note that it is not hard to check directly

that W has properties (1) and (2) of Lemma 6.1. (See, e.g., [26].)

Lemma 6.4 (Theorem 1.1 of [62]). Let B be a separable infinite dimensional simple

Z-stable C∗-algebra with stable rank one, and for which every 2-quasi-trace of bBb is a

trace, for any b ∈ Ped(B)+ \ {0}. Then there is an embedding φw,b : W → B.

If B also has continuous scale and is stably projectionless, we may require that

φw,b maps strictly positive elements to strictly positive elements.

Moreover, if φ1, φ2 : W → B are two monomorphisms such that dτ (φ1(a)) =
dτ (φ2(a)) holds for all τ ∈ T(B) and for one non-zero a ∈ W+ \ {0}, then there exists a

sequence of unitaries un ∈ B̃ such that

lim
n→∞Ad un ◦ φ1(c) = φ2(c) for all c ∈W.

Proof. Since K0(W) = {0} and W has a unique tracial state, from Proposition 6.2.3 of

[62], one computes that Cu∼(W) = (−∞,∞]. It is easy to see that for the first part of

the Lemma, we may assume that B has continuous scale (see, e.g., Proposition 5.4 of

[18]). Since B is simple, has stable rank one, and since every 2-quasi-trace of B is a trace,

T(B) �= ∅. Since B has continuous scale, it is well known that T(B) is compact (see, e.g.,

Theorem 5.3 of [18]).
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It follows from Theorem 7.3 of [18] (see also Theorem 6.2.3 of [62]) that when B is

stably projectionless, Cu∼(B) = K0(B)� (LAff∼(T(B))\ {0}) (recall that T(B) is compact as

B has continuous scale). This also holds for the case that B is not stably projectionless

(see the proof of Proposition 6.1.1 of [62]; in fact, here we can replace the trace space by

T(pMm(B)p) for some nonzero projection p ∈ Mm(B), and for some m ≥ 1).

Fix a strictly positive element eW ∈ W with ‖eW‖ = 1 and a strictly positive

element eB ∈ B with ‖eB‖ = 1. Then eW is represented by 1 ∈ (−∞,∞] in Cu∼(W).

Note also dτ (eB) = 1 for all τ ∈ T(B). Choose 0 < a < 1. Define a map j : (−∞,∞] →
LAff∼(T(B)) ⊆ Cu∼(B) by j(r) = ar, where we view ar as a constant function on T(B).

Thus, j is a morphism from Cu∼(W) to Cu∼(B). Hence, by Theorem 1.0.1 of [62], there is

a *-homomorphism φw,b : W → B, such that

Cu∼(φw,b) = j.

In the case that B is stably projectionless, eB is not a projection. So if, in the

previous paragraph, we choose a = 1, then φw,b(eW) is Cuntz equivalent to eB. Since B

has stably rank one, Her(φw,b(eW)) is isomorphic to Her(eB) = B. So we may also assume

that φw,b maps strictly positive elements to strictly positive elements.

The second part of the Lemma follows immediately from the fact that Cu∼(W) =
(−∞,∞] and Theorem 1.1 of [62]. �

Definition 6.5. Let B be a separable (non-unital) simple C∗-algebra with stable rank

one and with continuous scale such that K0(B) = kerρB. Then U(M∞(̃B))/CU(M∞(̃B)) =
U (̃B)/CU (̃B). Fix J : K1(B) = K1(̃B) → U (̃B)/CU (̃B). Then, by 5.7, one may write

U (̃B)/CU (̃B) = (Aff(T (̃B))/Z)⊕ J(K1(̃B)). (6.1)

Recall that Aff(T (̃B)) ∼= Aff(T(B))⊕ R.

Suppose that D is a hereditary C∗-subalgebra of B, which also has continuous

scale. If γD : T(B) → T(D) is an affine continuous map, denote by γ D : Aff(T(D)) →
Aff(T(B)) the induced linear map defined by γ D(f )(τ ) = f (γD(τ )) for all f ∈ Aff(T(D)) and

τ ∈ T(B). Let γ D : Aff(T(D̃))/Z→ Aff(T (̃B))/Z be the map induced by γ D.

Let jD : D → B be the inclusion map. Note that if u ∈ D̃ is a unitary, then we may

write u = e2π iθ · 1D̃ + ud, where θ ∈ (−1, 1] and ud ∈ D. Note that jD(u) = e2π iθ · 1B̃ + ud.

Also, (jD)∗1 : K1(D) → K1(B) is an isomorphism. Moreover, by Proposition 4.5 of [22],

j†
D : U(D̃)/CU(D̃) → U (̃B)/CU (̃B) is an isomorphism.
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Lemma 6.6. Let B be a non-unital separable finite simple C∗-algebra with finite

nuclear dimension and with continuous scale.

(1) B is Z-stable and every quasitrace on B is a trace. For each t ∈ (0, 1), there

are elements at, a1−t ∈ B+ such that ata1−t = 0, dτ (at) = t and dτ (a1−t) = 1 − t for all

τ ∈ T(B), and at + a1−t is a strictly positive element of B.

(2) Suppose, in addition, that K0(B) = kerρB and B satisfies the UCT.

Then for any t ∈ (0, 1), for any at ∈ B+ \ {0} with dτ (at) = t for all τ ∈ T(B),

there is an isomorphism φt : B → Bt := Her(at) such that KL(φt) = KL(idB), (φt)T = γ−1
Bt

:

T(Bt) → T(B), where γBt
: T(B) → T(Bt) is defined by γBt

(τ )(b) = τ(b)/t for all b ∈ Bt and

τ ∈ T(B), and

(φt)
†|J(K1(B)) = (j†

Bt
)−1|J(K1(B)) and (φt)

†|Aff(T (̃B))/Z = (γ Bt)−1,

where γ Bt : Aff(B̃t)/Z→ Aff(B̃)/Z is the induced map given in Definition 6.5.

Moreover, for any u ∈ U0(̃B),

dist(uCU (̃B), j†
Bt

(φ
†
t (u))) ≤ (1− t)dist(u, 1B̃). (6.2)

Proof. We firstly prove part (1). It follows from [70] that B is Z stable. By [10], every

quasitrace on B is a trace. By Theorem 6.8 of [20] (see also [9] Theorem 2.5), Cu(B) =
V(B) � (LAff+(T(B)) \ {0}). For both parts (1) and (2), we may assume that T(B) �= ∅.

If B is not stably projectionless, then there is a projection e ∈ Mm(B) for

some m ≥ 1. It follows from Cor. 3.1 of [69] that eMm(B)e is a unital simple Z-stable

C∗-algebra. By Theorem 6.7 of [64], eMm(B)e has stable rank one. It follows that B has

stable rank one.

Fix a strictly positive element eB of B. Note that dτ (eB) = 1 for all τ ∈ T(B).

For any t ∈ (0, 1), choose elements a′1−t, a′t ∈ B+ that are not projections (as Cu(B) =
V(B) � (LAff+(T(B)) \ {0}) ) such that dτ (a

′
1−t) = 1 − t and dτ (a

′
t) = t for all τ ∈ T(B). Let

b = a′1−t ⊕ a′t ∈ M2(B)+. Then dτ (b) = 1 for all τ ∈ T(B). Therefore dτ (b) = dτ (eB) and

both b and eB are not projections. If B is not stably projectionless, applying Theorem 3

of [14] (see also Theorem 3.3 of [9]), as eMm(B)e is unital and has stable rank one, and if

B is stably projectionless, applying (the last part of) Theorem 1.2 of [63], one obtains an

isomorphism h : bM2(B)b → B. Let at = h(a′t) and a1−t = h(a′1−t). Then ata1−t = 0 and

at + a1−t is a strictly positive element of B.

For part (2), note that since B is finite and Z stable, it is stably finite. Note also

that since K0(B) = kerρB, B is stably projectionless. By Theorem 15.6 of [22], B ∈ D0
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and B ∈ BT as defined there. Then, part (2) follows from Theorem 12.8 of [22]. In fact,

note that Ki(Her(at)) = Ki(B), i = 0, 1. Define κ0 := idK0(B) and κ1 := idK1(B). Note that

Bt := Her(at) also has continuous scale as dτ (at) is continuous on T(B) (see Proposition

5.4 of [18]). Fix t ∈ (0, 1). The map defined by γBt
(τ )(b) = τ(b)/t for all b ∈ Bt and τ ∈ T(B)

is an affine homeomorphism from T(B) onto T(Bt). Let κT := (γBt
)−1 :T(Bt) → T(B). Note

also that since K0(B) = kerρB, U (̃B)/CU (̃B) ∼= Aff(T (̃B))/Z⊕K1(B). Let κcu : U (̃B)/CU (̃B) →
U(B̃t)/CU(B̃t) be the map defined by

κcu|JB(K1(B)) = (j†
Bt

)−1|JB(K1(B)) and κcu|Aff(T (̃B))/Z = (γ Bt)−1. (6.3)

Then by Theorem 12.8 of [22], there is an isomorphism ht : B → Bt such that KL(ht) =
KK(idB), h†

t = κcu, and s(ht(b)) = κT(s)(b) for all s ∈ T(Bt) and all b ∈ B.

For the last part of the lemma, let u ∈ U0(̃B). Write u = exp(i2πa)w, where

a = α · 1B̃ +ab, ab ∈ Bs.a., α ∈ R and w ∈ CU (̃B). Moreover, we may assume that �(u)(τ ) =
α + τ(ab) for all τ ∈ T (̃B) (see [68] and Corollary 2.12 of [21], as well as (6) of 5.7). We

compute that

j†
Bt

(h†
t (u)) = exp(i2π(α · 1B̃ + ht(ab))), (6.4)

where τ(ht(ab)) = tτ(ab) for all τ ∈ T(B). Therefore,

u(j†
Bt

(h†
t (u)))∗ = exp(i2π(ab − ht(ab))). (6.5)

Note that

τ(ab − ht(ab)) = (1− t)τ (ab) for all τ ∈ T(B). (6.6)

Then (6.2) follows from the fact that � is an isometric isomorphism. �

Lemma 6.7. Let B be an algebraically simple, σ -unital C∗-algebra , and let C be a

σ -unital C∗-algebra. Suppose that σ : C → B is a nonzero homomorphism.

Then there exists a map:

F : C+ \ {0} → N× R

such that for every finite subset E ⊂ A+ \ {0}, σ is F-E full.
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Proof. Let A = σ(C). Then A ⊂ B is a σ -unital C*-subalgebra. Then Proposition 5.6 of

[18] applies. �

Definition 6.8. Let A be a separable C∗-algebra. We say that A is W embeddable if

there is a monomorphism φ : A ↪→W.

Since W is projectionless, if A is W embeddable, then A is non-unital. Let

eA ∈ A be a strictly positive element. Consider a = φ(eA). There is an isomorphism

s : aWa → W. Then s ◦ φ : A → W is an embedding which maps eA to a strictly positive

element of W. So, if it is needed, one may assume that φ maps strictly positive elements

to strictly positive elements.

Remark 6.9. If A is W embeddable, then Tf (A) �= ∅. In particular, A is not purely

infinite. Let τW be the unique tracial state of W and suppose that φ : A ↪→ W is an

embedding. Then the normalization of τW ◦ φ is a faithful tracial state of A.

Recall that Z0 is the unique separable stably projectionless simple C∗-algebra

with finite nuclear dimension, which satisfies the UCT and has a unique tracial state,

and for which K0(Z0) = Z and K1(Z0) = {0} (see Cor. 15.7 of [22]).

Theorem 6.10. Let A be a separable amenable C∗-algebra that is W embeddable,

and let B be a separable simple stably projectionless C∗-algebra with finite nuclear

dimension and with continuous scale. Suppose that kerρB = K0(B) and both A and B

satisfies the UCT.

Then for any x ∈ KL(A, B), there is a monomorphism h : A → B such that

KL(h) = x.

Proof. By Theorem 15.6 of [22], B ∼= B ⊗ Z0. It follows from Theorem 10.8 of [22] that

there exists a sequence of c.p.c. maps φn : A → B⊗K such that

lim
n→∞‖φn(a)φn(b)− φn(ab)‖ = 0 for all a, b ∈ A and [{φn}] = x. (6.7)

Without loss of generality, we may assume that φn : A → B ⊗ Mr(n) for some sequence

{r(n)} ⊂ N. Since B ⊗ Mr(n) is also a separable simple stably projectionless C∗-algebra

with finite nuclear dimension, with continuous scale, and which satisfies the UCT, by

part (2) of 6.6, and by replacing φn by φ 1
r(n)

◦ φn, we may assume that φn : A → B.
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Let F1 ⊂ F2 ⊂ · · ·Fn, ... be an increasing sequence of finite sets whose union

is dense in the unit ball of A. Let {εn} be a sequence of positive numbers such that∑∞
n=1 εn < 1.

Fix an embedding ιA :A → W. For each u ∈ U(Mm(Ã)) (m = 1, 2, ...,), ιA(u) (which

abbreviates (ιA ⊗ idMm
)(u)) is in U0(Mm(W̃)). Define L1 :

⋃∞
m=1 U(Mm(A)) → R+ by

L1(u) = cel(ιA(u)) for all u ∈ ⋃∞
m=1 U(Mm(A)).

By Lemma 6.4, there is a homomorphism φw,b : W → B, which maps strictly

positive elements to strictly positive elements. Put σA := φw,b ◦ ιA : A → B. Note that

cel(σA(u)) ≤ L1(u) for all u ∈
∞⋃

m=1

U(Mm(A)). (6.8)

By Lemma 6.7, let F : A+ \ {0} → N× (0,∞) be such that σA is F-full in B.

Let L = L1 + 2π + 1. Let T : N × N → Z+ be the map defined by T(n, k) = n. We

will apply Theorem 5.5. Note that by Proposition 5.2, B ∈ C0,0,1,T,7. So let r0 = r1 = 0,

s = 1 and R = 1.

For the above data, and for each n, let δn > 0 (in place of δ), Gn ⊂ A (in place of

G) be a finite subset, Pn ⊂ K(A) (in place of P) be a finite subset, Un ⊂ U(Mm(n)(Ã)) ∩
J∼(K1(A)) (in place of U ) be a finite subset (for some integer m(n)), En ⊂ A+ \ {0} (in

place of E ) be a finite subset, and an integer Kn ≥ 1 (in place of K) be as provided

by Theorem 5.8 for εn/2 (in place of ε) and for Fn (in place of F ), as well as for the

given L and T above. Passing to a subsequence if necessary, we may assume that φn is

Gn-δn-multiplicative and �φn(u)� is well defined for all u ∈ Un. We may also assume that

Kn ≤ Kn+1, n ∈ N.

For each u ∈ Un, define

z(1)
n = JB(�1,cu(�φn(u)�)). (6.9)

Then, for each u ∈ Un,

�φ(u)� = z(0)
n z(1)

n and z(0)
n := �φn(u)�JB(�1,cu(�φn(u)�∗)) ∈ U0(Mm(n)(̃B)). (6.10)

Define, for each n,

λ′n = max{cel(�φn(u)�JB(�1,cu(�φn(u)�∗))) : u ∈ Un}. (6.11)
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Define, for each n,

λn = max{cel(�φn(u)��φn+1(u∗)�) : u ∈ Un}, n = 1, 2, ....

Choose Jn ∈ N such that

2(λ′n + λn)+ 7π/Jn < 1 and Jn+1 > Jn > Kn, n = 1, 2, .... (6.12)

Choose tn ∈ (0, 1) ∩Q such that

tn+1 < tn, (1− tn) > 2Jn(4(Kn + 1)+ 1)tn, n = 1, 2, .... (6.13)

Define, for each n,

Nn = 2Jn(4(Kn + 1)+ 1), dn = (1/Nn)(1− tn), rn+1 = (tn − tn+1). (6.14)

One can check that

0 < tn < dn, rn+1 < 2Jndn + (tn − tn+1) < (2Jn + 1)dn, (6.15)

tn + 2Jndn + rn+1 < (4Jn + 2)dn, 8Jn(Kn + 1) > (4Jn + 2)Kn and (6.16)

(1− tn+1) = rn+1 + (1− tn) = rn+1 + 2Jndn + 8Jn(Kn + 1)dn (6.17)

= rn+1 + 2Jndn + (Nn − 2Jn)dn,

Nn − 2Jn ≥ 4(Kn + 1)2Jn. (6.18)

By Lemma 6.6, choose atn
, a1−tn

∈ B such that atn
a1−tn

= 0 and dτ (atn
) = tn and

dτ (a1−tn
) = 1−tn for all τ ∈ T(B). Also, let adn

, arn
∈ Her(a1−tn

) be such that dτ (adn
) = dn

and dτ (arn
) = rn for all τ ∈ T(B), n ∈ N. Let

sn : B → Bn,1 := Her(adn
) ⊂ Her(a1−tn

), (6.19)

sr
n : B → Bn,r := Her(arn

) ⊂ B, and (6.20)

s(0)
n : B → Bn,0 := Her(atn

) ⊂ Her(atn−1
) ⊂B (6.21)
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be the isomorphisms given by part (2) of Lemma 6.6, n ∈ N. In particular,

KL(sn) = KL(sr
n) = KL(s0

n) = KL(idB) and

(s(0)
n )†|JB(K1 (̃B)) = (jBtn

)†−1|JB(K1 (̃B)) and (6.22)

dist(z, (jBtn
)†((s(0)

n )†(z))) ≤ (1− tn)dist(z, 1) for all z ∈ U0(̃B)/CU (̃B). (6.23)

Moreover, viewing Her(atn+1
) ⊂ Her(atn

) and letting j′Btn+1
: Btn+1

→ Btn
to be the

inclusion map,

(s(0)
n )†(x)(j′Btn+1

)†((s(0)
n+1)†(x−1)) = 1 for all x ∈ JBtn

(K1(B̃tn
)) (6.24)

and, as at the end of the proof of 6.6,

dist((s(0)
n )†(z), (j′Btn+1

)†((s(0)
n+1)†(z))) ≤ (tn − tn+1)dist(z, 1) (6.25)

for all z ∈ U0(M∞(̃B))/CU(M∞(̃B)).

Define �n,0 := s(0)
n ◦ φn : A → Bn,0. We may assume that

[�n,0]|Pn
= x|Pn

= [�n+1,0]|Pn
, (6.26)

n ∈ N. By (2) of Lemma 6.6, Her(a1−tn
) ∼= MNn

(Bn,1). Moreover, define, for each n,

Sn :=
Nn⊕

sn ◦ σA : A → Her(a1−tn
) = MNn

(Bn,1), (6.27)

Rn := sr
n ◦ σA : A → Her(arn

), (6.28)

Sl
n :=

2Jn⊕
sn ◦ σA : A → M2Jn

(Bn,1) ⊂ Her(a1−tn
), and (6.29)

S′n :=
Nn−2Jn⊕

sn ◦ σA : A → MNn−2Jn
(Bn,1). (6.30)

Note that each sn ◦ σA is F-full in Bn,1. By (6.17) and the second part of Lemma 6.4, the

maps
⊕Nn+1 sn+1 ◦ φw,b and (sr

n+1 ◦ φw,b ⊕
⊕2Jn sn ◦ φw,b ⊕

⊕Nn−2Jn sn ◦ φw,b) induce the

same map on Cu(W) = [0,∞]. Since K0(W) = 0, they induce the same map on Cu∼(W).

As Ki(W) = {0} (i = 0, 1), by Theorem 1.11 of [62], there are unitaries vn,k ∈ ˜Her(a1−tn+1
)
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such that

lim
k→∞

v∗n,k(

Nn+1⊕
sn+1 ◦ φw,b(c))vn,k = (sr

n+1 ◦ φw,b ⊕
2Jn⊕

sn ◦ φw,b ⊕
Nn−2Jn⊕

sn ◦ φw,b)(c)

(6.31)

for all c ∈ W. By replacing vn,k by e
√−1θvn,k for some θ ∈ (−π , π), we may assume that

vn,k = 1 ˜Her(a1−tn+1 )
+ v̄n,k for some v̄n,k ∈ Her(a1−tn+1

). Set v′n,k = 1B̃+ v̄n,k, k = 1, 2, ..., and

n = 1, 2, .... Define

�n := �n,0 ⊕ Sl
n = �n,0 ⊕

2Jn⊕
sn ◦ σA : A → Her(Bn,0 ⊕M2Jn

(Bn,1)) ⊂ Bn,0,1,

where Bn,0,1 := Her(Bn,0 ⊕M2Jn
(Bn,1))⊕Her(arn+1

), and

� ′
n := �n+1,0 ⊕

2Jn⊕
sn ◦ σA ⊕ sr

n+1 ◦ σA : A → Her(Bn+1,0 ⊕M2Jn
(Bn,1))⊕Her(arn+1

).

Define �n := �n,0 ⊕ Sn = �n ⊕ S′n : A → B and define �′
n+1 := �n+1,0 ⊕ Rn+1 ⊕ Sl

n ⊕ S′n
n = 1, 2, .... Note that

�′
n+1 = � ′

n ⊕ S′n. (6.32)

By (6.31),

lim
k→∞

(v′n,k)∗�n+1(a)v′n,k = �′
n+1(a) for all a ∈ A. (6.33)

Now consider the maps �n, � ′
n : A → Bn,1,0 (recall Bn+1,0 ⊂ Bn,0; see (6.21)). Then since

Ki(W) = {0}, by (6.26),

[�n]|Pn
= [� ′

n]|Pn
= x|Pn

. (6.34)

Note that by viewing �n,0 and �n+1,0 as maps from A into Her(atn
) (as tn+1 ≤ tn), and

by computing inside U(Mm(n)(
˜Her(atn

)))/CU(Mm(n)(
˜Her(atn

))) and omitting (j′Btn+1
)†, we

have that

��n,0(u)���n+1,0(u∗)� = s(0)
n (�φn(u)�)s(0)

n+1(�φn+1(u)�∗) (6.35)

= s(0)
n (�φn(u)�)s(0)

n+1(�φn(u)�∗)s(0)
n+1(�φn(u)��φn+1(u)�∗) (6.36)
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= s(0)
n (z(0)

n )s(0)
n+1(z(0)

n
∗
)s(0)

n (z(1)
n )s(0)

n+1(z(1)
n

∗
)s(0)

n+1(�φn(u)��φn+1(u)�∗) (6.37)

= s(0)
n (z(0)

n )s(0)
n+1(z(0)

n
∗
) · 1 · s(0)

n+1(�φn(u)��φn+1(u)�∗) (by (6.24)) (6.38)

(recall the notation in (6.9) and (6.10)). Recall, by Theorem 4.4 of [22] (see also

Theorem 15.5 and the end of 3.9 of [22] for notation), that

cel(w) ≤ 7π for all w ∈ CU(Mm(D̃)) (6.39)

for any hereditary C∗-subalgebra D of B.

By (6.38), (6.25), and (6.39) (computing inside Mm(n)(
˜Her(atn

))),

cel(��n,0(u)���n+1,0(u∗)�) ≤ (tn − tn+1)λ′n + λn + 7π for all u ∈ Un. (6.40)

Then, by Lemma 4.2 of [22] and by (6.12) (computing inside M(2Jn+1)m(n)(
˜Her(atn

))),

cel(��n(u)��(�n+1,0 ⊕ Sl
n)(u)�∗) (6.41)

= cel(��n,0(u)���n+1,0(u)∗� ⊕ Sl
n(uu∗)) ≤ (λ′n + λn + 7π)/Jn + 2π . (6.42)

It follows from the definition of Rn+1 (computing inside Mm(n)(
˜Her(arn+1

))) that

cel(Rn+1(u∗)) ≤ L1(u) for all u ∈ Un. (6.43)

Hence,

cel(��n(u)��� ′
n(u)∗�) ≤ 1+ 2π + L1(u) = L(u) for all u ∈ Un. (6.44)

Recall that Nn−2Jn ≥ 4(Kn+1)2Jn (see (6.18)). Using (6.44), (6.34) and the fact that sn◦σA

is F-full in Bn,1, and applying Theorem 5.5, we obtain a unitary u′
n ∈ B̃ such that

(u′
n)∗(�′

n+1(a))u′
n ≈εn/2 �n(a) for all a ∈ Fn. (6.45)

It follows from (6.33) that there is a unitary un ∈ B̃ such that

(un)∗�n+1(a)un ≈εn
�n(a) for all a ∈ Fn. (6.46)
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Define �′′
1(a) := �1(a) and �′′

n(a) := u∗
1 · · ·u∗

n−1�n(a)un−1 · · ·u1 for all a ∈ A, n = 2, 3...

Then by (6.46),

�′′
n(a) ≈εn

�′′
n+1(a) for all a ∈ Fn, n = 1, 2, .... (6.47)

It follows that for any m > n,

‖�′′
n(a)−�′′

m(a)‖ <

m∑
j=n

εj for all a ∈ Fn. (6.48)

Note that limn→∞
∑∞

j=n εj = 0. Since Fn ⊂ Fn+1 and
⋃

Fn is dense in the unit ball of A,

we conclude that for each a ∈ A, {�′′
n(a)} is Cauchy in B. Let 
(a) = limn→∞ �′′

n(a) for

each a ∈ A. It is clear that 
 is a positive linear map. Since

lim
n→∞‖�′′

n(ab)−�′′
n(a)�′′

n(b)‖ = 0 for all a, b ∈ A, (6.49)


 : A → B is a homomorphism. Since σA is an embedding, 
 is injective. Finally, by

(6.34), we have that

KL(
) = x. (6.50)

�

Theorem 6.11. Let A be a separable amenable C∗-algebra, which satisfies the UCT.

Suppose that A is W embeddable. Let B be a separable simple C∗-algebra with

finite nuclear dimension, with continuous scale, which satisfies the UCT and with

K0(B) = kerρB.

Let κ ∈ KL(A, B), and let κku : K1(A) → U (̃B)/CU (̃B) be a homomorphism that is

compatible with κ, that is,

κ(z) = �1,cu ◦ κku(z),

for all z ∈ K1(A). Then there exists a monomorphism h : A → B such that

KL(h) = κ and h‡ = κku.
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Proof. Note that we are fixing injective homomorphism s JA : K1(A) → U(Ã)/CU(Ã)

and JB : K1(B) → U (̃B)/CU (̃B), which split the following short exact sequences:

0 −→ U0(M∞(Ã))/CU(M∞(Ã)) −→ U(M∞(Ã))/CU(M∞(Ã))
�1,cu

� JA
K1(A) → 0 and

0 −→ U0(M∞(̃B))/CU(M∞(̃B)) −→ U(M∞(̃B))/CU(M∞(̃B))
�1,cu

� JB
K1(B) → 0

(see 5.7). Recall that for any homomorphism ρ : A → B, we let ρ‡ : K1(A) → U (̃B)/CU (̃B)

denote the induced map.

Note also that Ki(A) is a countable abelian group for i = 0, 1. By Theorem 7.11

of [22], there is a stably projectionless simple C∗-algebra C, in the classifiable class and

with continuous scale, such that Ki(C) ∼= Ki(A), i = 0, 1, and T(C) = T(B). Let ιi : Ki(A) →
Ki(C) be a group isomorphism. By Theorem 6.10, let φ : A → C be a *-embedding such

that φ∗i = ιi (i = 0, 1). Fix an injective homomorphism JC : K1(C) → U(C̃)/CU(C̃) such that

�1,cu ◦ JC = idK1(C) and consider the group homomorphism

φD : K1(A) → U0(C̃)/CU(C̃)

induced by φ, that is, φD := φ† ◦ JA − JC ◦ φ∗1. In particular, φD(x) ∈ U0(C̃)/CU(C̃) for all

x ∈ K1(A).

Consider the group homomorphism λ : K1(C) → U(C̃)/CU(C̃), which is defined by

λ(z) = JC(z)− φD ◦ ι−1
1 (z) (6.51)

for all z ∈ K1(C).

Define λ1 : U(C̃)/CU(C̃) → U(C̃)/CU(C̃) by

λ1|U0(C̃)/CU(C̃) = idU0(C̃)/CU(C̃) and λ1|JC(K1(C)) = λ ◦ J−1
C ,

where J−1
C = �1,cu|JC(K1(C)). By Lemma 12.10 of [22], there is a homomorphism j : C → C

such that KK(j) = KK(idC), jT = idT(C) and j† = λ1.

Let ψ : A → C be defined by

ψ = j ◦ φ.
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Then for all x ∈ K1(A),

ψ‡(x) = ((j ◦ φ)† ◦ JA)(x) = j† ◦ φ† ◦ JA(x)

= j†(φD(x)+ JC ◦ φ∗1(x)) = λ1(φD(x)+ JC ◦ φ∗1(x))

= φD(x)+ λ ◦ φ∗1(x)

= φD(x)+ JC ◦ φ∗1(x)− φD ◦ ι−1
1 (φ∗1(x))

= φD(x)+ JC ◦ φ∗1(x)− φD(x) = JC ◦ ι1(x). (6.52)

By the UCT, since ιi is an isomorphism (i = 0, 1), it gives a KK equivalence and hence,

there is a ζ ∈ KK(C, A) such that

ζ × KK(ψ) = KK(idC).

Let ζ be the element in KL(C, A) induced by ζ . By Lemma 12.10 of [22], there is a

homomorphism h1 : C → B such that KL(h1) = κ ◦ ζ , (h1)−1
T is the identification of

T(C) and T(B) and

h†
1|JC(K1(C)) = κku ◦ ι−1

1 ◦ J−1
C .

It follows from (6.52) that if we define h := h1 ◦ ψ : A → B, then

h‡ = h†
1 ◦ ψ† ◦ JA = (κku ◦ ι−1

1 ◦ J−1
C ) ◦ ψ‡ = (κku ◦ ι−1

1 ◦ J−1
C ) ◦ JC ◦ ι1 = κku.

Then one verifies that the map h satisfies the requirements. �

7 Quasidisagonal Extensions by W

The following proposition is an easy fact and known to the experts. We include a proof

for the convenience of the reader.

Proposition 7.1. Let B be a σ -unital C∗-algebra and let p ∈ M(B) \ B be a projection.

Suppose that pBp = Her(a) for some a ∈ B+.

Then a1/n → p (as n →∞) in the strict topology on M(B).

Moreover, p is the open projection in B∗∗ corresponding to Her(a).
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Proof. Fix any x ∈ B+. Note that {a1/n} is an approximate unit for Her(a) = pBp. Also,

px2p ∈ pBp = Her(a), and a1/n = a1/np = pa1/n for all n.

Hence,

‖x(p− a1/n)‖2

= ‖(p− a1/n)x2(p− a1/n)‖
= ‖px2p− px2pa1/n − a1/npx2p+ a1/npx2pa1/n‖
→ ‖px2p− px2p− px2p+ px2p‖ = 0.

By a similar argument, ‖(p − a1/n)x‖ → 0. Since x is an arbitrary element of

B+, a1/n → p in the strict topology on M(B).

We may assume that a is a contraction. Since a1/n ↗ p in the strict topology

on M(B), a1/n ↗ p in the weak* topology on B∗∗. So p is also the open projection in B∗∗

corresponding to Her(a). �

The next lemma should also be known.

Lemma 7.2. Let B be a separable simple C∗-algebra with continuous scale such that B

and B⊗K stably have almost stable rank one. Suppose that Cu(B) = V(B)�(LAff+(T(B))\
{0}).

Then, if p, q ∈ Mm(M(B))\Mm(B) are two projections (for any integer m ≥ 1) such

that τ(p) = τ(q) for all τ ∈ T(B), then p ≈ q in Mm(M(B)). Moreover,

K0(M(B)) ∼= Aff(T(B)) and K0(M(B))+ ∼= Aff+(T(B)). (7.1)

In fact,

V(M(B)) = V(B) � (Aff+(T(B)) \ {0}). (7.2)

Proof. Let {ei,j} be a system of matrix units for K. In what follows, we will identify B

with e1,1(B ⊗K)e1,1. (Here, we abuse notation and identify e1,1 with 1M(B) ⊗ e1,1. Similar

for ei,j for all i, j.) We also note that in this way, we identify M(B) with e1,1M(B⊗K)e1,1. In

what follows, in this proof, we also identify 1m := ∑m
i=1 ei,i with the unit of Mm(M(B)).

Moreover, for each τ ∈ T(B), we will also use τ for the extensions of τ to (B⊗K)+ as well

as to M(B⊗K)+.

Set C = B⊗K.
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Let p, q ∈ M(C) \ C be two projections such that τ(p) = τ(q) for all τ ∈ T(B). Let

a ∈ pCp and b ∈ qCq be strictly positive elements of pCp and qCq, respectively. Note that

neither a nor b are projections, as p, q �∈ C. Then the fact that τ(p) = τ(q) for all τ ∈ T(B)

implies that

dτ (a) = dτ (b) for all τ ∈ T(B). (7.3)

It follows that a ∼ b in C. Since C = B⊗K stably has almost stable rank one, there exists

a partial isometry v ∈ C∗∗ such that c := vav∗ is a strictly positive element of Her(b),

v∗va = av∗v = a, and va, v∗b ∈ C. (7.4)

(See Proposition 3.3 of [63] and the paragraph above it.) From the above and since

b1/m, c1/m → q and a1/m → p in the weak* topology on C∗∗, q = vpv∗. Also, qvp ∈ C∗∗

is a partial isometry with left support q and right support p. So replacing v with qvp if

necessary, we may assume that v∗v = p and vv∗ = q. By Proposition 7.1,

va1/m → vp in the strict topology on M(C). (7.5)

Therefore, v = vp ∈ M(C). So v witnesses that p ≈ q in M(C).

From what has been just proven, we conclude that if p, q ∈ Mm(M(B)) \ Mm(B)

(for some integer m ≥ 1) are two projections and τ(p) = τ(q) for all τ ∈ T(B), then p and

q are equivalent in Mm(M(B)).

Let p ∈ Mm(M(B)) be a projection. Then τ(p) may be viewed as a function in

LAff+(T(B)). However, 1m − p ∈ Mm(M(B)) is also a projection. Therefore, τ(1m − p) ∈
LAff+(T(B)) (τ ∈ T(B)). It follows that τ(p) is an affine function in Aff+(T(B)). This

implies that the map

ρ : K0(M(B)) → Aff(T(B)) (7.6)

is an order preserving homomorphism, and we just proved that the map ρ is injective.

We now show that ρ is surjective. By the assumption, for any f ∈ Aff+(T(B))\{0},
there is a nonzero positive element a ∈ B such that dτ (a) = f (τ ) for all τ ∈ T(B). It

follows from Kasparov’s absorption theorem (Theorem 2 of [31]) that there is a projection

p1 ∈ M(B ⊗ K) such that p1(B ⊗ K) ∼= a(B⊗K), where the isomorphism is a unitary

isomorphism of Hilbert B⊗K-modules.
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Therefore, by Proposition 7.1, replacing a with a Cuntz equivalent positive

element if necessary, we may assume that a1/m converges to p1 in the strict topology

on M(B⊗K). It follows that τ(p1) = dτ (a) for all τ ∈ T(B).

There exists an integer m such that m ≥ f (τ )+ 1 for all τ ∈ T(B). Let g = m − f .

Then g ∈ Aff+(T(B)) \ {0}. From what has just been proved, we obtain a projection

q ∈ M(B⊗K) such that τ(q) = g. Without loss of generality, we may assume that p1 ⊥ q.

Then p1 + q = e is a projection in M(B ⊗K) such that τ(e) = τ(1m) for all τ ∈ T(B). From

the first part of the proof above, we conclude that there is v ∈ M(B⊗K) such that

v∗v = e and vv∗ = 1m. (7.7)

This implies that p := vp1v∗ ≤ 1m. In other words, p ∈ Mm(M(B)) (see the first part of

the paragraph of this proof). Note that τ(p) = f (τ ), for all τ ∈ T(B). This proves that the

map ρ is surjective. The rest of the proposition also follows. �

Remark 7.3. As in the beginning of the proof of Theorem 6.6, if A is a separable simple

finite C∗-algebra, which is Z-stable and has continuous scale and for which every

2-quasi-trace is a trace, then Cu(B) = V(B)�(LAff+(T(B))\{0}). Later on, we often assume

that B is a separable simple finite C∗-algebra, which is Z-stable and has continuous

scale.

Theorem 7.4. Let B be a σ -unital, stably projectionless, finite, simple, Z-stable,

amenable C∗-algebra with a unique tracial state τB.

Then K0(M(B)) = R, K1(M(B)) = {0}, K0(C(B)) = R⊕K1(B), and K1(C(B)) = kerρB =
K0(B). In particular, K0(M(W)) = R, K1(M(W)) = {0}, K0(C(W)) = R and K1(C(W)) = {0}.

Moreover, if p, q ∈ Mm(M(B))\Mm(B) are two projections (for some integer m ≥ 1)

and τB(p) = τB(q), then there exists v ∈ Mm(M(B)) such that v∗v = p and vv∗ = q.

Proof. By [51], K1(M(B)) = {0}. It follows from Lemma 7.2 that K0(M(B)) = R. Thus, the

six-term exact sequence

K0(B) → K0(M(B)) → K0(C(B))

↑ ↓
K1(C(B)) ← K1(M(B)) ← K1(B)
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becomes

K0(B) → R → K0(C(B))

↑ ↓
K1(C(B)) ← 0 ← K1(B)

Note that the map from K0(B) into R = K0(M(B)) is induced by the map ρB : K0(B) →
Aff(T(B)) = R. However, by Corollary A7 of [19], since B has a unique tracial state,

K0(B) = kerρB. In other words, ρB(K0(B)) = {0}.
It follows from the exact sequence that

K1(C(B)) = kerρB = K0(B) and

0 → R→ K0(C(B)) → K1(B) → 0.

Since R is divisible, we may write K0(C(B)) = R ⊕ K1(B). Note that B is stably

projectionless and Z-stable. Therefore, the last statement follows from 7.2 (see also

Remark 7.3). �

Definition 7.5. Let A be a separable C∗-algebra, and let B be a non-unital and σ -unital

C∗-algebra.

A trivial extension φ : A → M(B) is said to be diagonal if φ is quasidiagonal as

in Definition 4.4 and Proposition 4.5, with the additional property that the maps φn in

Proposition 4.5 can be taken to be homomorphism s.

In the above setting, we often write φ = ⊕∞
n=1 φn (where the sum converges in

the pointwise-strict topology).

Definition 7.6. Td extensions Let B be a separable simple non-unital C∗-algebra with

continuous scale, and let C be a separable C∗-algebra. A monomorphism σ : C → M(B) is

called a Td extension with model σ0 if π ◦σ is non-unital and if σ is a diagonal essential

extension of the form

σ =
∞⊕

n=1

n⊕
φn ◦ σ0 =

∞⊕
n=1

(

n︷ ︸︸ ︷
φn ◦ σ0 ⊕ ...⊕ φn ◦ σ0).
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Here, σ0 : C → B is a fixed injective *-homomorphism such that σ0(eC) is a strictly

positive element of B, where eC ∈ C is a strictly positive element of C.

More precisely, this means the following:

1. There exists a system {bn} of quasidiagonal units for B.

2. There exists a nonzero positive element bn,1 ∈ bnBbn such that

Her(bn,1)⊗Mn
∼= Mn(bn,1Bbn,1) = bnBbn

for all n ≥ 1. Moreover, we may write

bn =
n∑

j=1

bn,j, (7.8)

where bn,j := bn,1 ⊗ ej,j, and {ei,j} ⊂ Mn is a system of matrix units.

3. φn : B → bn,1Bbn,1 is an isomorphism such that φn ◦ σ0(eC) = bn,1, and

(

n︷ ︸︸ ︷
φn ◦ σ0 ⊕ ...⊕ φn ◦ σ0) : C → Mn(Her(bn,1))=Her(bn) is the diagonal map, for

all n ≥ 1.

Remark 7.7. With notation as in Definition 7.6, let us suppose that F : C+ \ {0} →
N × (0,∞) is a map such that σ0 is F-full. (F exists by Lemma 6.7.) Then each φn ◦ σ0 is

also F-full.

Note also that ⊕m
n=1

⊕n
φn ◦ σ0(c) converges strictly to σ(c) for all c ∈ C (as

m →∞). Note that σ = φ ◦ σ0, where φ = ⊕∞
n=1

⊕n
φn : B → M(B).

Finally, note that our definition of Td extension requires that π◦σ be a non-unital

essential extension.

Remark 7.8. With notation as in Definition 7.6, note that if KK(σ0) = 0 then, since

σ = φ ◦ σ0 and φ is a *-homomorphism, KK(π ◦ σ) = 0.

Also, when C is amenable and satisfies the UCT, and when B is stably projec-

tionless, Z-stable, and has a unique tracial state, since K∗(M(B)) ∼= (R, 0) is divisible, a

sufficient condition for the above is that

K0(σ0) = 0.
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10392 H. Lin and P. W. Ng

Proposition 7.9. Let A be a separable amenable C∗-algebra, which is W embeddable.

Then there exists a Td extension τ : A → C(W). Moreover,

KK(τ ) = 0.

Proof. Fix a *-embedding σA : A → W, which maps strictly positive elements to

strictly positive elements. Denote by τW the unique tracial state of W. Fix a system

of quasidiagonal units {bk} for W as in 4.1. Passing to a subsequence if necessary, we

may assume that

∞∑
k=n+1

dτW
(bk) <

1

n
dτW

(bn) for all n. (7.9)

Let tn = 1
n+1dτW

(bn), n ∈ N. There is an element an ∈ Her(bn)+ \ {0} with dτW
(an) ≤ tn

such that Mn(Her(an)) ⊆ Her(bn) (by Theorem 6.6 of [20] and by strict comparison).

There is, for each n, an isomorphism φn : W → Her(an). Define σ : A → M(W) by σ(a) =∑∞
n=1(

⊕n
φn ◦ σA)(a) for all a ∈ A. Note that since {bn} is a system of quasidiagonal

units, the sum above converges in the strict topology on M(W) for each a ∈ A. One then

checks, from Definition 7.6, that π ◦ σ is a Td extension with model σA.

That KK(π ◦ σ) = 0 follows from Remark 7.8. �

Proposition 7.10. Let C be a separable amenable C∗-algebra, which is W embeddable

and satisfies the UCT, and let φ : C → M(W) be a monomorphism. Then φ∗0(kerρf ,C) = {0}
and φ∗1 = 0.

If X is a connected and locally connected compact metric space, and C := C0(X \
{x0}) for some x0 ∈ X, then KK(φ) = 0 and KK(π ◦ φ) = 0.

Proof. Recall that K0(M(W)) = R and K1(M(W)) = {0}. The first part follows from the

fact that if p, q ∈ Mn(M(W)) (for some integer n) are two projections and τW(p) = τW(q),

then there exists a v ∈ Mn(M(W)) such that v∗v = p and vv∗ = q. (See Theorem 7.4.)

In the case that C = C0(X \ {x0}), since X is connected, K0(C) = kerρC. It follows

that φ∗i = 0, i = 0, 1. Since K0(M(W)) = R is divisible, ExtZ(K1(C), K0(M(W))) = {0}. By

the UCT, KK(φ) = 0. Then KK(π ◦ φ) = 0 follows. �

Denote by D the class of simple C∗- algebras defined in Definition of 8.1 of [18].

Suppose that A ∈ D. Then for any integer k ≥ 1, Mk(A) ∈ D (see 8.5 of [18]). Moreover, A

is stably projectionless (see 9.3 of [18]). We note that W ∈ D (see 9.6 of [18]).
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Extensions of C∗-Algebras by a Small Ideal 10393

Let us quote the following lemma for the convenience of the reader.

Lemma 7.11 (Theorem 4.4 of [22]). Let A be a separable simple C∗-algebra in D and let

u ∈ CU(Mm(Ã)). Then u ∈ U0(Mm(Ã)) and cel(u) ≤ 7π .

Proof. Note that, as mentioned above, Mm(A) ∈ D. Let π : Mm(Ã) → Mm(C) be the

quotient map. Then w = π(u) is a scalar unitary. Denote by W ∈ Mm(C · 1Ã) the

same scalar matrix. Then W∗u ∈ M̃m(A). By Theorem 4.4 of [22], W∗u ∈ U0(Mm(Ã))

and cel(W∗u) ≤ 6π . Since W ∈ Mm(C · 1Ã), we conclude that u ∈ U0(Mm(Ã)) and

cel(u) ≤ 7π . �

Lemma 7.12. Let C be a separable amenable C∗-algebra, which is W embeddable and

satisfies the UCT. Let σ : C → M(W) be a Td extension, and let ψ : C → M(W) be a

diagonal c.p.c. map of the form

ψ =
∞⊕

n=1

ψn

as in Proposition 4.5 such that π ◦ ψ is a non-unital essential extension.

Then there is a diagonal extension h : C → C(W) such that

π ◦ σ ⊕ π ◦ ψ ∼u π ◦ σ ⊕ h.

Proof. Fix a strictly positive element eC ∈ C with ‖eC‖ = 1. By working in M2(M(W))

if necessary, without loss of generality, we may assume that ran(ψ) ⊥ ran(σ ) (see

Proposition 3.5).

Since σ is a Td extension, using a variation on the notation of Definition 7.6, we

write

σ =
∞⊕

n=1

n+1⊕
φn ◦ σ0.

We also write
⊕n+1

φn ◦ σ0 = σn,0 ⊕ σn,1 ⊕ · · · ⊕ σn,n and σ = ⊕∞
n=1

⊕n
j=0σn,j.

Continuing to follow Definition 7.6, let

bn,j := σn,j(eC)

and let bn be as in Definition 7.6, for all n, j.
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10394 H. Lin and P. W. Ng

Also, let {an} be the system of quasidiagonal units for W from Proposition 4.5

that corresponds to {ψn}. Recall (see 4.5) that

lim
n→∞‖ψn(a)ψn(b)− ψn(ab)‖ = 0 for all a, b ∈ C. (7.10)

Since σ is a Td extension, as in Remark 7.7, there exists a map F : C+ \ {0} →
N× (0,∞) such that for all n, j, σn,j : C → bn,jWbn,j is F-full.

Let {εn}∞n=1 be a strictly decreasing sequence in (0, 1) such that
∑∞

n=1 εn < ∞.

Let F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · be a sequence of finite subsets of the unit ball of C,

whose union is dense in the unit ball of C.

We will apply Theorem 5.8. Note that by Proposition 5.2, W ∈ C0,0,1,T,7, with T as

in Proposition 5.2. Let L := 7π + 1. As C is given, we fix maps J, �−
cu and J∼ as in 5.7.

For each n, let δn > 0, Gn ⊂ C be a finite subset, Pn ⊂ K(C) be a finite subset,

Un⊂ Un+1 ⊂J∼(K1(C)) be finite subsets, En ⊂ C+ \ {0} be a finite subset, and Kn be an

integer associated with Fn and εn/4 (as well as F and L above) as provided by Theorem

5.8 (for C∗- algebras in C0,0,1,T,7).

We may assume that δn+1 < δn, Gn ⊆ Gn+1, Kn < Kn+1, and Un ⊂ U(Mm(n)(C̃))

for all n. Without loss of generality, we may assume that each ψn is Gn-δn-multiplicative

and �ψn(u)� is well defined for all u ∈ Un.

Moreover, without loss of generality, we may also assume (see Theorem 14.5 of

[46]) that for any n, there is a group homomorphism

λn : G(�1(Un)) → U(Mm(n)(
˜Her(an)))/CU(Mm(n)(

˜Her(an))) ∼= Aff(T(W̃))/Z

such that

dist(λn(x), �cu(�ψn(J∼(x))�)) <
1

16π(n+ 1)
for all x ∈ �1(Un), (7.11)

where G(�1(Un)) is the subgroup generated by the finite subset �1(Un). Since

Aff(T( ˜Her(an)))/Z = Aff(T(W̃))/Z is divisible, there is a homomorphism λ̄n : K1(C) →
Aff(T(W̃))/Z such that λ̄n extends λn.

It follows from Theorem 6.11 that for each n, there is a monomorphism

hn : C → Her(an) such that KL(hn) = KL(ψn) = 0 and

h‡
n = λ̄n. (7.12)
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Extensions of C∗-Algebras by a Small Ideal 10395

Define H : A → M(W) by H = ⊕∞
n=1 hn. Note that by 4.1, the sum converges pointwise-

strictly and H gives a diagonal extension.

Since W is KK contractible, we may assume that

[�m
k=nhk]|Pn

= [�m
k=nψk]|Pn

= 0 for all m ≥ n, n = 1, 2, .... (7.13)

Throwing away finitely many terms and relabelling if necessary, we may assume

that

∞∑
n=1

dτW
(an) < dτW

(bK1,0).

Let {nk}∞k=1 be a subsequence of Z+ with n1 = 1 and nk + 2 < nk+1 for all k such

that

∞∑
l=nk

dτW
(al) < dτW

(bKk,0).

By (7.12) and (7.11), for any u ∈ Unk
, for any nk ≤ l ≤ nk+1 − 1, there is a

vl ∈ CU(Mm(l)(H̃er(al))) such that

hl(u)�ψl(u)�∗ ≈1/16π(l+1) vl. (7.14)

It follows from Lemma 7.11 that for all u ∈ Unk
,

cel((�
nk+1−1
l=nk

hl)(u)�(�nk+1−1
l=nk

ψl)(u)�∗) ≤ 7π + 1, (7.15)

where the length is computed in Mm(nk)( Her(
∑nk+1−1

l=nk
al)).

Since W has stable rank one, there is a unitary U ′
k ∈ W̃ such that

(U ′
k)∗((

nk+1−1∑
l=nk

al)W(

nk+1−1∑
l=nk

al))U
′
k⊆bKk,0WbKk,0. (7.16)

For each k, consider the two maps

Ad U ′
k ◦ (�

nk+1−1
l=nk

ψl), Ad U ′
k ◦ (�

nk+1−1
l=nk

hl) : C → Her(bKk,0) ∼=W.
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10396 H. Lin and P. W. Ng

Recall that ψn is Gn-δn-multiplicative and φn ◦σ0 is F-full, for all n. Also, keeping

in mind of (7.15) and (7.13) and applying Theorem 5.8, for all k, there is a unitary

u′
k ∈ MKk+1( ˜Her(bKk,0)) such that

u′
k(U ′

k
∗

nk+1−1∑
l=nk

hl(c)U ′
k +

Kk∑
l=1

σKk,l(c))(u′
k)∗ ≈εk/4 (U ′

k)∗
nk+1−1∑

l=nk

ψl(c)U ′
k +

Kk∑
l=1

σKk,l(c)

(7.17)

for all c ∈ Fk.

For each k, there are ek ∈ Her(bKk,0)+ and e′k ∈ U ′
k
∗Her(

∑nk+1−1
l=nk

al)+U ′
k with

‖ek‖ ≤ 1 and ‖e′k‖ ≤ 1 such that for all c ∈ Fk,

e′kU ′
k
∗

nk+1−1∑
l=nk

ψl(c)U ′
ke′k ≈εk/16 U ′

k
∗

nk+1−1∑
l=nk

ψl(c)U ′
k, (7.18)

e′kU ′
k
∗

nk+1−1∑
l=nk

hl(c)U ′
ke′k ≈εk/16 U ′

k
∗

nk+1−1∑
l=nk

hl(c)U ′
k, and (7.19)

Kk∑
l=1

ekσKk,l(c)ek ≈εk/16

Kk∑
l=1

σKk,l(c), (7.20)

where in (7.20), we identify MKk
(Her(bKk,0)) with Her(

∑Kk
l=1 bKk,l).

Set Xk = U ′
ke′k + diag(

Kk︷ ︸︸ ︷
ek, ek, · · · , ek), k = 1, 2, .... Note that e′kU ′

k
∗d = 0 for all

d ∈ ran(σ ). Then for all c ∈ Fk, by (7.18),

Xk

⎛⎝U ′
k
∗

nk+1−1∑
l=nk

ψl(c)U ′
k +

Kk∑
l=1

σKk,l(c)

⎞⎠ X∗
k ≈εk/16

nk+1−1∑
l=nk

ψl(c)+
Kk∑
l=1

σKk,l(c) (7.21)

and by (7.19),

X∗
k(

nk+1−1∑
l=nk

hl(c)+
Kk∑
l=1

σKk,l(c))Xk ≈εk/16 U ′
k
∗

nk+1−1∑
l=nk

hl(c)U ′
k +

Kk∑
l=1

σKk,l(c). (7.22)
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Extensions of C∗-Algebras by a Small Ideal 10397

For all k, let uk = Xku′
kX∗

k . Note that uk ∈ Her
(∑nk+1−1

j=nk
aj +

∑Kk
l=1 bKk,l

)
. Then we

have, by (7.22), (7.17), and (7.21), that for all c ∈ Fk,

uk(

nk+1−1∑
l=nk

hl(c)+
Kk∑
l=1

σKk,l(c))u∗
k ≈εk/2

nk+1−1∑
l=nk

ψl(c)+
Kk∑
l=1

σKk,l(c). (7.23)

Let

Y :=
∞∑

j=1

uj ∈ M(W),

where the sum converges strictly. Note that ‖Y‖ ≤ 1.

For all c ∈ C, let

ξ(c)m =
m∑

k=1

⎛⎝uk

⎛⎝nk+1−1∑
l=nk

hl(c)+
Kk∑
l=1

σKk,l(c)

⎞⎠ u∗
k −

nk+1−1∑
l=nk

ψl(c)+
Kk∑
l=1

σKk,l(c)

⎞⎠ ,

m = 1, 2, ...., and

ξ(c) = Y(H(c)⊕σ(c))Y∗ − ψ(c)⊕ σ(c).

Since Fj ⊂ Fj+1 for all j and since
∑∞

k=m εk → 0 as m → ∞, it follows from (7.23) that

for all j, for all c ∈ Fj,

lim
n→∞‖ξ(c)n − ξ(c)‖ = 0. (7.24)

Since ξ(c)n ∈ W, one concludes that ξ(c) ∈ W, for all c ∈ Fj, j = 1, 2, .... Thus, for any

c ∈ Fj,

π(Y)(π ◦ H(c)+ π ◦ σ(c))π(Y)∗ = π ◦ ψ(c)+ π ◦ σ(c). (7.25)

By a similar argument, for any c ∈ Fj,

π ◦ H(c)+ π ◦ σ(c) = π(Y)∗(π ◦ ψ(c)+ π ◦ σ(c))π(Y). (7.26)

Since Fj ⊂ Fj+1 for all j and ∪∞j=1Fj is dense in the unit ball of C, (7.25) and (7.26)

implies that

π(Y)(π ◦ H(c)+ π ◦ σ(c))π(Y)∗ = π ◦ ψ(c)+ π ◦ σ(c) for all c ∈ C (7.27)
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and

π ◦ H(c)+ π ◦ σ(c) = π(Y)∗(π ◦ ψ(c)+ π ◦ σ(c))π(Y) for all c ∈ C. (7.28)

Set d := ∑∞
n=1(an + bn). Then Y ∈ Her(d). Since Her(d)⊥ �= {0}, π(Y)∗π(Y)

and π(Y)π(Y)∗ are each not invertible. Since C(W) is simple purely infinite, it has

weak cancellation. Hence, by Corollary 1.10 of [37], π(Y) = u(π(Y)∗π(Y))1/2, where

u ∈ U(C(W)). By (7.27) and (7.28),

π(Y)∗π(Y)(π ◦ H(c)+ π ◦ σ(c))π(Y)∗π(Y) = π ◦ H(c)+ π ◦ σ(c) for all c ∈ C. (7.29)

Hence,

(π(Y)∗π(Y))1/2(π ◦ H(c)+ π ◦ σ(c))(π(Y)∗π(Y))1/2 = π ◦ H(c)+ π ◦ σ(c) for all c ∈ C.

(7.30)

Therefore, by (7.30) and (7.27),

u(π ◦ H(c)+ π ◦ σ(c))u∗ = π(Y)(π ◦ H(c)+ π ◦ σ(c))π(Y)∗

= π ◦ ψ(c)+ π ◦ σ(c) for all c ∈ C.

Since K1(C(W)) = 0 and since C(W) is simple purely infinite, u can be lifted to a

unitary in M(W). �

Corollary 7.13. In Lemma 7.12, if π ◦ ψ is in fact a diagonal extension, that is,

ψ = ⊕∞
n=1 ψn where each ψn is a homomorphism, and if ψ

‡
k = 0 for all k, then

π ◦ ψ ⊕ π ◦ σ ∼u π ◦ σ .

Proof. Note that KL(ψn) = 0 for all n. Since ψ
‡
n = 0, ψn(u) ∈ CU(Mm(n)(W)) (instead of

(7.14)) for all u ∈ J∼(K1(A)) ∩ U(Mm(n)(
˜Her(an))). Therefore, in the proof of Lemma 7.12,

(7.15) becomes

cel

⎛⎝nk+1−1∑
l=nk

ψl(u)

⎞⎠ ≤ 7π + 1 for all u ∈ Unk
. (7.31)

Therefore, the proof of Lemma 7.12 works when we take hn = 0 for all n. �
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Lemma 7.14. Let C be as in Lemma 7.12. Fix a sequence of homomorphism s

λn ∈ Hom(K1(C), U(W)/CU(W)).

Then for every system {bn} of quasidiagonal units for W, there is a diagonal homomor-

phism H := ⊕∞
n=1 hn : C → M(W), where hn : A → Her(bn) is a homomorphism for every

n. Moreover, for each n, h‡
n = λm for some m; and for each k, there are infinitely many n

such that h‡
n = λk.

Proof. Let {bn} be a system of quasidiagonal units for W. Write N = ∪∞n=1Sn, where

each Sn is a countably infinite set, and Si ∩ Sj = ∅ if i �= j. For each j ∈ Sn, choose a

homomorphism hj : C → Her(bj) such that h‡
j = λn (see Theorems 6.10 and 6.11). Then it

is easy to check that H := ⊕
k∈N hk satisfies the requirements of the lemma. �

Lemma 7.15. Let C be a separable amenable C∗-algebra, which is W embeddable and

satisfies the UCT. Let σ : C → M(W) be a Td extension, and let ψ : C → M(W) be a

diagonal c.p.c. map with the form

ψ =
∞⊕

n=1

ψn

as in Proposition 4.5, for which π ◦ ψ is non-unital essential extension. Then

π ◦ σ ⊕ π ◦ ψ ∼u π ◦ σ .

As a consequence,

KK(π ◦ ψ) = 0.

Proof. By Lemma 7.12, we may assume that ψ is a (non-unital) diagonal extension.

So suppose that ψ = �∞
n=1ψn : C → M(W) is a diagonal homomorphism, where each

ψn : C → Her(an) is a homomorphism, and where {an} is a system of quasidiagonal

units for W.

Denote λ2n = ψ
‡
n and λ2n−1 = −λ2n, for n = 1, 2, ....
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Let H : C → M(B) be as in Lemma 7.14, associated with the present {λn} and {an}.
It is easy to see that there is a permutation γ : N→ N such that

h‡
γ (2n−1) = −h‡

γ (2n), for all n = 1, 2, .....

Define bk = aγ (2k−1) + aγ (2k), for all k = 1, 2, .... Then {bk} is also a system

of quasidiagonal units. Let hn,0 : C → Her(aγ (2n−1) + aγ (2n)) be defined by hn,0(c) =
hγ (2n−1)(c) + hγ (2n)(c) for all c ∈ C and for all n. Now define H0 : C → M(B) by

H0(c) = ⊕∞
n=1 hn,0(c) for all c ∈ C. Then H0 is unitarily equivalent to H (see Lemma

4.2). However, h‡
n,0 = 0 for all n. It follows from Corollary 7.13 that

π ◦ H0 ⊕ π ◦ σ ∼u π ◦ σ .

Therefore,

π ◦ H ⊕ π ◦ σ ∼u π ◦ σ . (7.32)

Then ψ ⊕H is another diagonal extension and by the same argument as that for

H,

π ◦ ψ ⊕ π ◦ H ⊕ π ◦ σ ∼u π ◦ σ . (7.33)

Hence, by (7.32),

π ◦ ψ ⊕ π ◦ σ ∼u π ◦ σ . (7.34)

Hence, KK(π ◦ ψ) = 0. �

Lemma 7.16. Let A be a separable amenable C∗-algebra, which is W embeddable and

satisfies the UCT. Suppose that τ : A → C(W) is an essential extension with KK(τ ) = 0.

Then τ is a quasidiagonal extension.

Proof. Let σ : A → M(W) be a Td extension. Note that KK(π ◦ σ) = 0. Consider the

unitizations π̃ ◦ σ , τ̃ : Ã → C(W). Then KK(π̃ ◦ σ) = KK(̃τ ). By Theorem 2.5 of [41], there

exists a sequence {un} of unitaries in C(W) such that limn→∞ u∗
n(π ◦ σ)(a)un = τ(a) for

all a ∈ A. By Theorem 4.6, since W has continuous scale and π ◦ σ is non-unital, τ is

quasidiagonal. �
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Lemma 7.17. Let A be a separable amenable C∗-algebra, which is W embeddable and

satisfies the UCT. Suppose that τ : A → C(W) is a quasidiagonal essential extension.

Then for any Td extension σ : A → M(W),

τ ∼u π ◦ σ . (7.35)

Also, KK(τ ) = 0.

Proof. By Theorem 3.8,

τ ∼u π ◦ σ ⊕ τ0 (7.36)

for some essential extension τ0 : A → C(W). By [13], τ can be lifted to a c.p.c. map

A → M(W). So by Proposition 4.5 and Lemma 7.15, KK(τ ) = 0. Since KK(τ ) = 0 and

KK(π ◦ σ) = 0, KK(τ0) = 0. By Lemma 7.16, τ0 is quasidiagonal. By [13], τ0 also can be

lifted to a c.p.c. map A → M(W). So by Proposition 4.5 and Lemma 7.15,

τ ∼u π ◦ σ ⊕ τ0 ∼u π ◦ σ . (7.37)

�

We have the following K theory characterization of quasidiagonality (see the

paragraph before Theorem 4.7 for some brief history and references):

Proposition 7.18. Let A be a separable amenable C∗-algebra, which is W embeddable

and satisfies the UCT, and let τ : A → C(W) be an essential extension. Then the following

statements are equivalent:

1. KK(τ ) = 0.

2. τ is quasidiagonal.

3. τ is unitarily equivalent to an essential trivial diagonal extension.

4. τ is unitarily equivalent to every essential trivial diagonal extension.

5. τ is in the class of zero of Extu(A,W).

Proof. Let us recall that A is non-unital as it is a C∗-subalgebra of the stably

projectionless C∗-algebra W. It follows from Theorem 3.7 that Extu(A,W) is a group.

That (1) ⇔ (2) follows from Lemmas 7.16 and 7.17.
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10402 H. Lin and P. W. Ng

That (2) ⇒ (4) and (3) ⇒ (4) follows immediately from Lemma 7.17, which says

that every essential quasidiagonal extension (including every essential trivial diagonal

extension) is unitarily equivalent to every Td extension.

(4) ⇒ (2) and (4) ⇒ (3) are immediate.

That (4) ⇒ (5) follows from the facts that Extu(A,W) is a group and if ρ is a

trivial diagonal extension then so is ρ ⊕ ρ.

(5) ⇒ (2): From (4) ⇒ (5), we know that the neutral element of Extu(A,W) is the

class of an essential trivial diagonal extension. But then, any essential extension, which

is unitarily equivalent to a trivial diagonal extension is a trivial diagonal extension. �

8 Classification of Extensions by W

Lemma 8.1. Let B be a non-unital separable simple C∗-algebra with a unique tracial

state tB such that B stably has almost stable rank one. Suppose that Cu(B) = V(B) �
(LAff+(T(B)) \ {0}) ∼= V(B) � (0,∞).

Let A be a separable exact C∗-algebra with a faithful tracial state, which

satisfies the UCT.

Then for any t ∈ Tf (A) and r ∈ (0, 1], there is an embedding φA : A → M(B) such

that tB ◦ φA = rt and π ◦ φA is injective.

Proof. Fix t ∈ Tf (A) and r ∈ (0, 1]. By Theorem A of [66], let D be a unital simple

AF-algebra with a unique tracial state τD and let ψ : A → D be a *-embedding such that

t = τD ◦ ψ .

By Lemma 7.2,

K0(M(B)) ∼= R and V(M(B)) ∼= V(B) � (0,∞).

Let λ : K0(D) → K0(M(B)) be the homomorphism defined by

λ([p]) = rtD([p]) for all p ∈ Proj(D⊗K).

Note that this gives an ordered semigroup homomorphism λV : V(D) → (0,∞) ∪ {0} ⊂
V(M(B)). Note also that (0,∞)∩V(B) = ∅. By Lemma 4.2 of [58], there is a homomorphism

φ0 : D → M(B) ⊗ K such that V(φ0) = λV . Without loss of generality, one may assume

that φ0(D) ⊂ Mm(M(B)) for some integer m ≥ 1. One also has that [φ0(1D)] = r ≤ 1. It
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Extensions of C∗-Algebras by a Small Ideal 10403

follows, from Lemma 7.2, that there is a unitary U ∈ Mm(M(B)) such that

U∗φ0(1D)U ≤ 1M(B).

Define φ(d) = U∗φ0(d)U for all d ∈ D. Since D is simple, φ is an embedding. Then set

φA := φ ◦ ψ .

One checks that the embedding φA meets the requirements. �

Remark 8.2. Recall that Hom(K0(A),R)Tf
is defined in 2.6. Several comments about it

are in order. Firstly, under current assumptions, K0(A)+ might be zero; and also, one

may not have traditional order preserving homomorphism s in Hom(K0(A),R). Secondly,

there could still be a pairing ρA : K0(A) → Aff(T(A)) even in the case that K0(A)+ = {0}.
Therefore, an element in Hom(K0(A),R) need not be induced by a homomorphism from

A (to M(B)). Thirdly, there is a possibility that, given two tracial states t1, t2 ∈ Tf (A), one

might have rA(t1) = rA(t2). In other words, rA(t1) and rA(t2) may give the same element

in Hom(K0(A),R)Tf
and, of course, they will not be distinguished.

We are ready to present the following classification of essential extensions by

W :

Theorem 8.3. Let A be a separable amenable C∗-algebra, which is W embeddable and

satisfies the UCT.

(1) If τ1, τ2 : A → C(W) are two essential extensions, then τ1 ∼u τ2 if and only if

KK(τ1) = KK(τ2).

(2) The map

� : Extu(A,W) → KK(A, C(W)) ∼= Hom(K0(A),R) (8.1)

defined by �([τ ]) = KK(τ ) is a group isomorphism.

(3) An essential extension τ : A → C(W) is trivial and diagonal if and only if

KK(τ ) = 0, and all essential trivial and diagonal extensions of A by W are unitarily

equivalent. In fact, the essential trivial diagonal extensions of A by W induce the neutral

element of Extu(A,W).
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10404 H. Lin and P. W. Ng

(4) An essential extension τ : A → C(W) is trivial if and only if there exist t ∈
Tf (A) and r ∈ (0, 1] such that

τ∗0(x) = r · rA(t)(x) for all x ∈ K0(A).

(5) Let T be the set of unitary equivalence classes of essential trivial extensions

of A by W. Then

�(T ) = {r · h : r ∈ (0, 1] and h ∈ Hom(K0(A),R)Tf (A)} (see Definition 2.6).

(6) All quasidiagonal essential extensions of A by W are trivial and are unitarily

equivalent.

(7) In the case where kerρf ,A = K0(A), all essential trivial extensions of A by W
are unitarily equivalent. Moreover, an essential extension τ : A → C(W) is trivial if and

only if KK(τ ) = {0}.
(8) In the case where kerρf ,A �= K0(A), there are essential trivial extensions of A

by W which are not quasidiagonal, and not all essential trivial extensions of A by W are

unitarily equivalent (see (5) above).

Proof. Statements (3) and (6) follow from Proposition 7.18.

(2): That KK(A, C(W)) = Hom(K0(A),R) follows from the UCT, since K∗(C(W))

is divisible and K1(W) = 0. Note that Hom(K0(A),R) is an abelian group. Recall

that by Theorem 3.7, Extu(A,W) is also an abelian group. It is obvious that � is a

semigroup homomorphism. By 7.18, � sends zero to zero, and therefore, � is a group

homomorphism.

We next show that � is surjective. Let x ∈ KK(A, C(W)) be given. Note that

K0(Ã) = K0(A)⊕ Z. Define η ∈ Hom(K0(Ã), K0(C(W))) by η|K0(A) = x and η([1Ã]) = [1C(W)].

Then η gives an element of KK(Ã, C(W)). It follows from Corollary 8.5 of [41] that there

is a homomorphism τ1 : Ã → C(W) such that KK(τ1) = η. Define τ = τ1|A. Then one

computes that KK(τ ) = x. Since x is arbitrary in KK(A, C(W)), the map � is surjective.

It remains to prove that � is injective. But by Proposition 7.18, if [ψ ] ∈
Extu(A,W) is such that �([ψ ]) = 0, that is, KK(ψ) = 0, then [ψ ] = 0 in Extu(A,W).

Hence, � is injective. This completes the proof of (2).

(1) follows from (2).

(4): Say that τ : A → C(W) is an essential trivial extension. Then there is a

monomorphism H : A → M(W) such that π ◦ H = τ . Let t1(a) = tW ◦ H(a) for all a ∈ A.
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Extensions of C∗-Algebras by a Small Ideal 10405

Then t1 is a faithful trace on A with ‖t1‖ ≤ 1. Let r = ‖t1‖. Then t(a) = t1(a)/r is a

faithful tracial state on A. Hence, H∗0(x) = rρA(t)(x) for all x ∈ K0(A). It follows that

τ∗0(x) = r · ρA(t)(x) for all x ∈ K0(A).

Conversely, suppose now that t ∈ Tf (A), r ∈ (0, 1] and τ : A → C(W) are such

that τ∗0(x) = r · ρA(t)(x) for all x ∈ K0(A). By Lemma 8.1, there is a monomorphism

ψA : A → M(W) such that tW ◦ψA(a) = r · t(a) for all a ∈ A. Then π ◦ψA : A → C(W) is an

essential trivial extension such that

(π ◦ ψA)∗0 = τ∗0. (8.2)

Hence, KK(π ◦ ψA) = KK(τ ). So, by (1), τ ∼u π ◦ ψA. It follows that τ is trivial. This

completes the proof of (4).

(5) follows from (4).

(7): If K0(A) = kerρf ,A and H : A → M(W) is a monomorphism, then H∗0 = 0. As

mentioned before, since K0(C(W)) = R is divisible and K1(C(W)) = {0}, KK(π ◦ H) = 0.

Thus, (7) follows from (3).

(8): Suppose that kerρf ,A �= K0(A). Then there is a t ∈ Tf (A) such that ρA(t) �= 0.

Then �(T ) �= {0}. So by (5), there is a trivial essential extension τ such that KK(τ ) �= 0.

By (3), τ is not unitarily equivalent to a diagonal trivial extension, and by (6), τ is not

even quasidiagonal. �

For the second question of the introduction, we offer the following statement:

Corollary 8.4. There is, up to unitary equivalence, only one essential extension of the

form

0 →W → E →W → 0. (8.3)

Moreover, this extension splits.

Proof. By Theorem 9.9,

Extu(W,W) = Hom(K0(W),R) = {0}. (8.4)

�

As one expected, the C∗- algebras that we were originally interested in do satisfy

the hypotheses of Theorem 9.9 and even (7) of Theorem 9.9.
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10406 H. Lin and P. W. Ng

Proposition 8.5. Let X be a connected and locally connected compact metric space, and

let x0 ∈ X be a point. Then C := C0(X \ {x0}) is W embeddable. Moreover, K0(C) = kerρC.

Proof. We firstly show that there is an embedding ιC : C0(X \ {x0}) → C0((0, 1]). By the

Hahn–Mazurkiewicz theorem, there exists a continuous surjection s0 : [1/2, 1] � X. Let

y0 = s0(1/2) ∈ X. By the assumptions on X, there is a continuous path s1 : [0, 1/2] →
X such that s1(0) = x0 and s1(1/2) = y0. Define s : [0, 1] → X by s|[0,1/2] = s1 and

s|[1/2,1] = s0. Then s : [0, 1] → X is a continuous surjection, which induces an embedding

ιC : C → C0((0, 1]). Since W is projectionless, one easily embeds C0((0, 1]) into W. This

shows that C is W-embeddable.

Let C1 = C(X) = C̃. Since X is connected, ρC1
is the rank function and

ρC1
(K0(C1)) = Z. The short exact sequence

0 → K0(C) → K0(C1) → Z→ 0

also shows that K0(C) = kerρC1
= kerρC. �

The following is a corollary of Theorem 9.9 (and Corollary 8.5).

Theorem 8.6. Let X be a connected and locally connected compact metric space, let

x0 ∈ X and let C := C0(X \ {x0}).
(1) All trivial essential extensions of C by W are unitarily equivalent and hence,

are unitarily equivalent to a diagonal extension π ◦ σ in Td.

(2) [π ◦ σ ] is the class of zero in Extu(C,W).

(3) There is a group isomorphism

Extu(C,W) ∼= KK(C, C(W)) = Hom(K0(C),R).

There are many non-commutative C∗-algebras, which are W embeddable includ-

ing W itself. In fact, we have the following:

Proposition 8.7. Let A be a stably projectionless algebraically simple separable

C∗-algebra with finite nuclear dimension, which satisfies the UCT. Suppose that

kerρA = K0(A). Then A is W embeddable.

Proof. Let C = A ⊗ Q, where Q is the UHF-algebra with (K0(Q), K0(Q)+, [1Q]) =
(Q,Q+, 1). It follows that there exists an element c ∈ C1+ such that cCc has continuous
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Extensions of C∗-Algebras by a Small Ideal 10407

scale (see Remark 5.2 of [18]). Let eA ∈ A1+ be a strictly positive element of A. Since A is

algebraically simple, Ped(A) = A. It follows that eC := eA⊗1Q is in Ped(C). Note also that

c ∈ Ped(C). It follows that there is an integer n ≥ 1 such that 〈eC〉 ≤ n〈c〉. Without loss of

generality, we may assume that eC ∈ Mn(cCc). Let D = Mn(cCc). Then A is embeddable

into D. It suffices to show that D is W embeddable.

Note that D is a stably projectionless simple C∗-algebra with continuous scale

and which satisfies the UCT. Moreover, kerρD = K0(D). Furthermore, D has finite nuclear

dimension. Since D is stably projectionless, T(D) �= ∅. By Theorem 15.5 of [22] (see the

last line of the proof too), D ∈ D0. We then apply Theorem 12.8 of [22] as W has the form

BT (with Ki(W) = 0, i = 0, 1, and W having unique tracial state). We choose κ = 0, and

κT : T(D) → T(W) by mapping all points to one point, and κcu compatible with (κ, κT).

Thus, Theorem 12.8 of [22] provides an embedding from D into W. �

Remark 8.8. Note that A, as in 8.7 but with finite nuclear dimension replaced by

nuclearity, can also be embedded into A ⊗ Z (by the map a → a ⊗ 1Z ). Also, A ⊗ Z
is a separable simple Z-stable nuclear C∗-algebra. Therefore, by a recent result [12],

A ⊗ Z has finite nuclear dimension. Also, our assumptions on A imply that A ⊗ Z is

stably projectionless and kerρA⊗Z = K0(A ⊗ Z). Therefore, by Proposition 8.7, A ⊗ Z
can be embedded into W. Consequently, A is W embeddable. So the assumption of finite

nuclear dimension in Proposition 8.7 can be replaced by nuclearity.

Recall that there is a separable simple stably projectionless C∗-algebra Z0 with

a unique tracial state τz, with finite nuclear dimension and that satisfies the UCT such

that K0(Z0) = Z = kerρZ0
and K1(Z0) = 0. By [22], there is only one such simple

C∗-algebra up to isomorphism. Note that for any separable C*-algebra A, T(A) =
T(A⊗ Z0). Moreover, as abelian groups,

Ki(A⊗ Z0) ∼= Ki(A), i = 0, 1. (8.5)

Proposition 8.9. Let A be a separable exact C∗-algebra, which satisfies the UCT

and has a faithful amenable tracial state. Then C := A ⊗ Z0 is W embeddable and

kerρf ,C = K0(C).

Proof. It follows from Theorem A of [66] that there is a unital simple AF-algebra B with

a unique tracial state τB and a monomorphism φ : A → B. There is also an embedding

ψz,w : Z0 → W. Thus, we obtain an embedding φA := φ ⊗ ψz,w : A ⊗ Z0 → B ⊗W. Note
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10408 H. Lin and P. W. Ng

that K∗(B⊗W) = {0}. Since B⊗W has only one tracial state (namely τB⊗τW ), by Theorem

7.5 of [19], B⊗W ∼=W. Thus, A⊗ Z0 is W embeddable.

To see the last part of the statement, note that every y ∈ K0(A ⊗ Z0) may be

written as x ⊗ x0, where x0 ∈ K0(Z0) = Z is a generator. Note that every faithful tracial

state of A⊗ Z0 has the form τ ⊗ τz, where τ ∈ Tf (A). But τ(x ⊗ x0) = τ(x)τz(x0) = 0. �

Theorem 8.10. Let B be a separable amenable C∗-algebra, which has a faithful tracial

state and satisfies the UCT, and let A = B⊗ Z0.

(1) If τ1, τ2 : A → C(W) are two essential extensions, then τ1 ∼u τ2 if and only if

KK(τ1) = KK(τ2).

(2) The map

� : Extu(A,W) → KK(A, C(W)) ∼= Hom(K0(A),R) (8.6)

defined by �([τ ]) = KK(τ ) is a group isomorphism.

(3) An essential extension τ , of A by W, is trivial if and only if KK(τ ) = 0, and all

essential trivial extensions of A by W are unitarily equivalent.

For the rest of this section, we consider essential extensions of the form

0 →W → E → C(X) → 0,

where X is a connected and locally connected compact metric space.

Lemma 8.11. Let p ∈ C(W) be a nonzero projection such that [p]K0(C(W)) ∈ (0, 1). Then

p can be lifted to a projection in M(W).

Moreover, if p �= 1C(W) and [p]K0(C(W)) �∈ (0, 1), then p cannot be lifted to a nonzero

projection in M(W).

Proof. Say that [p]K0(C(W)) = r ∈ (0, 1). By Corollary 4.6 of [47] (see also Section 5 of [30]),

let Q ∈ M(W) \W be a projection such that τW(Q) = r. Therefore, by our computation of

K0(C(W)), and since C(W) is simple purely infinite,

π(Q) ≈ p in C(W).
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Extensions of C∗-Algebras by a Small Ideal 10409

Since C(W) is simple purely infinite and since π(Q) �= 1 �= p, there is a unitary u ∈ C(W)

such that

uπ(Q)u∗ = p.

Since C(W) is simple purely infinite and since K1(C(W)) = 0, u lifts to a unitary

U ∈ M(W). It follows that π(UQU∗) = p.

The last part follows from the fact that if P ∈ M(W) is a non-zero projection,

then τW(P) ∈ (0, 1]. �

Lemma 8.12. Let X be a connected and locally connected compact metric space and

let x0 ∈ X. Suppose that φ : C(X) → C(W) is an essential extension. Then there exists a

proper subprojection p ≤ φ(1) such that

pφ(f ) = φ(f )p = φ(f ) for all f ∈ C0(X \ {x0}).

Moreover, for all s ∈ (0, 1), we may choose p such that there is a projection

P ∈ M(W) for which π(P) = p and τW(P) = s.

Proof. Let eC be a strictly positive element of C0(X \ {x0}) for which ‖eC‖ = 1. Let

B = Her(φ(eC)) ⊂ C(W). Note that sp(eC) = [0, 1]. Write e = φ(1). If ey = 0 for all y ∈ B⊥,

then (1 − e)y = y = y(1 − e) for all y ∈ B⊥. This implies that B⊥ = (1 − e)C(W)(1 − e).

Then by Theorem 15 of [55], B = (B⊥)⊥ = eC(W)e. So B is unital. This contradicts that

sp(eC) = [0, 1]. Therefore, there is a y ∈ (B⊥)+ such that eye �= 0. Since eC(W)e has real

rank zero, there is a projection p1 ∈ eC(W)e such that p1 �= e and p1b = bp1 = b for all

b ∈ B.

Since C(W) is simple purely infinite, we can find a projection q1 ∈ (e − p1)

C(W)(e − p1) with q1 �= e − p1 such that [p1 + q1] = s ∈ (0, 1). If we define p := p1 + q1

then pb = b for all b ∈ B.

Also, by Lemma 8.11, p lifts to a projection P ∈ M(W). Necessarily, τW(P) = s. �

Theorem 8.13. Let X be a connected and locally connected compact metric space, and

let φ, ψ : C(X) → C(W) be essential extensions.

(1) Then KK(φ) = KK(ψ) if and only if

φ ∼ ψ .
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(2) If both φ and ψ are unital or both are non-unital, then KK(φ) = KK(ψ) if and

only if

φ ∼u ψ .

(3) The map

� : Ext(C(X),W) → KK(C(X), C(W)) = Hom(K0(C(X)),R)

defined by �([τ ]) = KK(τ ) is a group isomorphism.

(4) The zero element of Ext(C(X),W) (or KK(C(X), C(W))) is not the class of a

trivial extension.

(5) Let τ : C(X) → C(W) be an essential extension. Then τ is trivial if and only if

KK(τ |C0(X\{x0})) = 0 and either [τ(1C(X))] ∈ (0, 1) or τ(1C(X)) = 1C(W).

Remark 8.14. Suppose that p ∈ C(W) is a projection such that [p] = [1C(W)] but

p �= 1C(W). Let φ : C(X) → C(W) be an essential extension with KK(φ|C0(X\{x0})) = 0

and φ(1) = p. Then φ ∼ φ0 for some trivial essential extension φ0 : C(X) → C(W) with

φ0(1) = 1C(W). But φ is not itself a trivial extension, as p cannot be lifted to a projection

in M(W) (see 8.11).

Proof. (1): Suppose that φ ∼ ψ . Then there is a w ∈ C(W) such that w∗φ(c)w = ψ(c)

for all c ∈ C(X) with w∗w = ψ(1) and ww∗ = φ(1). Since M2(C(W)) is simple and purely

infinite, there exists a unitary W ∈ M2(C(W)) such that Wψ(1) = w. Then W∗φ(c)W =
ψ(c) for all c ∈ C(X). It follows that KK(φ) = KK(ψ).

Conversely, suppose that KK(φ) = KK(ψ). Fix x0 ∈ X and s ∈ (0, 1). Let

p := φ(1) and q := ψ(1). By Lemma 8.12, choose a proper subprojection p0 ≤ p such

that p0φ(f ) = φ(f )p0 = φ(f ) for all f ∈ C0(X \ {x0}), and choose a projection P0 ∈ M(W)

such that π(P0) = p0 and τW(P0) = s. The same argument shows that there is a proper

subprojection q0 ≤ q such that q0ψ(f ) = ψ(f )q0 = ψ(f ) for all f ∈ C0(X \ {x0}), and there

exists a projection Q0 ∈ M(W) such that π(Q0) = q0 and τW(Q0) = s.

Since C(W) is purely infinite simple, p0 ≈ q0 and p−p0 ≈ q−q0. Without loss of

generality, we may assume that p0 = q0 and φ(1) = p = q = ψ(1).

Since D := P0WP0
∼= W, M(D) = P0M(W)P0 and C(D) = p0C(W)p0, one may view

φ|C0(X\{x0}), ψ |C0(X\{x0}) as maps from C0(X \ {x0}) to C(D). By applying Proposition 8.5 and
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Extensions of C∗-Algebras by a Small Ideal 10411

Theorem 9.9, one obtains a unitary u ∈ C(D) = p0C(W)p0 such that

u∗φ(c)u = ψ(c) for all c ∈ C0(X \ {x0}).

If we define v := u + (p − p0), then v is a partial isometry in C(B) such that vv∗ = φ(1),

v∗v = ψ(1) and

v∗φ(c)v = ψ(c) for all c ∈ C(X).

This completes the proof of (1).

(2): If φ ∼u ψ then it is immediate that KK(φ) = KK(ψ). Hence, we only need to

prove the converse direction.

So suppose that KK(φ) = KK(ψ). Suppose that both φ(1C(X)) and ψ(1C(X)) are

equal to 1C(W). Then by (1), since KK(φ) = KK(ψ), φ ∼ ψ . In other words, there is a

w ∈ C(W) such that w∗φ(x)w = ψ(x) for all x ∈ C(X). Moreover, by Definition 2.1,

1C(W) = φ(1C(X)) = ww∗ and 1C(W) = ψ(1C(X)) = w∗w.

Hence, w is a unitary. Since K1(C(W)) = 0 and C(W) is simple and purely infinite, every

unitary in C(W) can be lifted to a unitary in M(W). Hence, φ ∼u ψ .

Now suppose that both φ and ψ are non-unital. Then by (1), since KK(φ) =
KK(ψ), φ ∼ ψ . So we have a partial isometry v ∈ C(W) such that vv∗ = φ(1), v∗v = ψ(1)

and v∗φ(c)v = ψ(c) for all c ∈ C(X). Since φ(1), ψ(1) are proper subprojections of 1C(W)

and since C(W) is simple and purely infinite, we can find a unitary u ∈ C(W) such that

φ(1)u = v. Hence, u∗φ(c)u = ψ(c) for all c ∈ C(X). Since C(W) is simple and purely

infinite and K1(C(W)) = 0, u can be lifted to a unitary in M(W). So φ ∼u ψ .

This completes the proof of (2).

(3) The injectivity of the group homomorphism � follows from (1). Hence, it

remains to prove that � is surjective.

Let α ∈ KK(C(X), C(W)) be given. Fix a point x0 ∈ X. Let ι : C0(X \ {x0}) → C(X) be

the inclusion map and q : C(X) → C be the corresponding quotient map (point evaluation

at x0). So we have the following split exact sequence:

0 → C0(X \ {x0}) ι−→ C(X)
q−→ C→ 0, (8.7)
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10412 H. Lin and P. W. Ng

which induces the split exact sequence

0 → KK(C, C(W))
[q]−→ KK(C(X), C(W))

[ι]−→ KK(C0(X \ {x0}), C(W)) → 0. (8.8)

Consider the Kasparov product

β := [ι]× α ∈ KK(C0(X \ {x0}),C(W)).

By Proposition 8.5 and Theorem 9.9, let φ : C0(X \{x0}) → C(W) be an essential extension

such that KK(φ) = β.

Note that φ can be extended to a monomorphism C(X) → C(W), which brings

1C(X) to 1C(W). So by Lemma 8.12, let p ≤ 1C(W) be a proper subprojection such that

pφ(f ) = φ(f ) for all f ∈ C0(X \ {x0}). Since C(W) is simple and purely infinite, one may

choose a proper subprojection q ≤ 1C(W) − p such that

[p+ q] = α([1C(X)]).

Let φ1 : C(X) → C(W) be the non-unital essential extension given by

φ1|C(X\{x0}) = φ and φ1(1C(X)) = p+ q.

Hence, viewing [ι] ∈ KK(C0(X \ {x0}), C(X)), [ι]× [φ1] = [φ1 ◦ ι] = [φ] = [ι]× α.

Towards seeing that KK(φ1) = α, consider the inclusion map j : C ↪→ C(X). The

map j splits the exact sequence (8.7), that is, q ◦ j = idC. We have an induced morphism

[j] : KK(C(X), C(W)) → KK(C, C(W)) for which [j] ◦ [q] = idKK(C,C(W)). Alternatively,

viewing [j] ∈ KK(C, C(X)) and [q] ∈ KK(C(X),C), [j] × [q] = idKK(C,C). Moreover, by this

and (8.8), we have a group isomorphism

K(C(X), C(W)) ∼= KK(C, C(W))⊕ KK(C0(X \ {x0}), C(W)) : y &→ ([j]× y, [ι]× y). (8.9)

Let us note that we have already shown that [ι] × α = [ι] × [φ1]. Also, in KK(C, C(W)) =
K0(C(W)), [j]× α = α([1C(X)]) = [φ1(1C(X))] = [j]× [φ1]. Hence, by (8.9),

α = KK(φ1).

Therefore, �([φ1]) = α as required. This completes the proof of the surjectivity of � and

hence, the proof of (3).
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Extensions of C∗-Algebras by a Small Ideal 10413

(4): Say that KK(φ) = 0. Then [φ(1)] = 0 ∈ R = K0(C(W)). By Lemma 8.11, there is

no non-zero projection P ∈ M(W) such that π(P) = φ(1). It follows that φ is not liftable.

(5): Say that τ : C(X) → C(W) is an essential trivial extension. Then by Theorem

8.6, KK(τ |C0(X\{x0})) = 0. Also, τ(1C(X)) ∈ C(W) must be liftable to a nonzero projection in

M(W). Hence, by Lemma 8.11, either [τ(1C(X))]K0(C(W)) ∈ (0, 1) or τ(1C(X)) = 1C(W).

Conversely, suppose that τ : C(X) → C(W) is an essential extension such that

KK(τ |C0(X\{x0})) = 0 and either [τ(1C(X))]K0(C(W)) ∈ (0, 1) or τ(1C(X)) = 1C(W).

By the hypotheses on τ(1C(X)) and by Lemma 8.11, τ(1C(X)) can be lifted to a

(nonzero) projection P ∈ M(W).

Consider the extension τ |C0(X\{x0}) : C0(X \ {x0}) → C(PWP). Since PWP ∼= W
and since KK(τ |C0(X\{x0})) = 0, it follows, by Theorem 8.6, that there is monomorphism

H0 : C0(X \ {x0}) → PM(W)P such that

π ◦ H0 = τ |C0(X\{x0}).

Let H : C(X) → M(W) be the monomorphism given by

H|C0(X\{x0}) = H0 and H(1C(X)) = P.

Then π ◦ H = τ , that is, τ is trivial. This completes the proof. �

Corollary 8.15. Let Tn be the n torus.

1. Ext(C0(Tn \ {1}),W) = R2n−1−1.

2. Ext(C(Tn),W) = R2n−1
.

9 Classification of Some Non-simple C∗-Algebras

This section is for the second goal of our original research plan. We study non-simple

C∗- algebras E, which are essential extensions of the form

0 →W → E
πE−→ A → 0, (9.1)

where A is some separable stably finite simple C∗-algebra with finite nuclear dimension

such that kerρA = K0(A). In other words, E has a unique ideal I ∼= W and E/W is

a separable stably finite simple C∗-algebra with finite nuclear dimension such that

kerρA = K0(A). Denote by E the class of such C∗-algebras, which satisfy the UCT.

(Warning: Here we do not assume that A is fixed, but it is any separable stably finite
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10414 H. Lin and P. W. Ng

simple C∗-algebra with finite nuclear dimension such that kerρA = K0(A), and which

satisfies the UCT.)

Let Ec be the subclass of those C∗- algebras E in E such that A := πE(E) has

continuous scale, where πE : E → E/W is the quotient map.

In general, if E is an essential extension by W then E is a subalgebra of M(W).

Recall that we identify the unique tracial state τW on W with its unique extension to a

tracial state on M(W), which we also denote by τW . Therefore, τW also induces a tracial

state on E which, again, we denote by τW . There is a group homomorphism λE : K0(E) →
R induced by τW , that is, λE(x) = τW(x) for all x ∈ K0(E). Since A = E/W and since

Ki(W) = {0} (i = 0, 1), by the six-term exact sequence in K-theory, one computes that

πE∗i : Ki(E) → Ki(A) is a group isomorphism (i = 0, 1).

Lemma 9.1. Let E be an essential extension of the form

0 →W → E
πE−→ A → 0,

where A is a separable amenable C∗-algebra with K0(A) = kerρf ,A, which is W
embeddable and satisfies the UCT. Let ψ : A → C(W) be the Busby invariant for the

above extension.

Then

ψ∗,0 = λE ◦ πE
−1
∗0 in Hom(K0(A),R).

Proof. Denote by π : M(W) → C(W) the quotient map. One has the following

commutative diagram:

K0(E)
λE−→ K0(M(W)) = R

↓(πE)∗0
↓π∗0

K0(A)
ψ∗0−→ K0(C(W)) = R.

By Theorem 7.4, π∗0 is a group isomorphism. Since πE∗0 is also a group isomorphism,

the lemma follows. �

Before defining the classification invariant, we recall some definitions and other

items.

Again, let E ∈ Ec and let A := πE(E). Then, as per our definitions, A is a separable

stably finite simple continuous scale C∗-algebra satisfying the UCT, with finite nuclear
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Extensions of C∗-Algebras by a Small Ideal 10415

dimension such that kerρA = K0(A). Since A is stably finite, A is stably projectionless.

(Here is a short proof: Suppose, for contradiction, that p ∈ Mm(A) is a nonzero projection

for some integer m ≥ 1. Since T(A) �= ∅, τ(p) �= 0 for some τ ∈ T(A). This contradicts

that kerρA = K0(A).)

If τ ∈ T(A), then τ ◦ πE ∈ T(E). The map (πE)T : T(A) → T(E), defined by

(πE)T(τ )(b) = τ(πE(b)) for all b ∈ E and τ ∈ T(A), is an affine homeomorphism onto

a closed convex subset of T(E). Denote by TA the closed convex subset (πE)T(T(A)). Then

T(E) is the convex hull of TA and τW . Since A has continuous scale, T(A) is compact. It

follows that T(E) is compact. Note that TA is a face of T(E).

Let S(K0(Ẽ)) be the state space of K0(Ẽ), that is, the set of all group homomor-

phism s s : K0(Ẽ) → R such that s(x) ≥ 0, for all x ∈ K0(Ẽ)+, and s([1Ẽ ]) = 1. Denote

S(K0(E)) := {s|K0(E) : s ∈ S(K0(Ẽ))}.
The map rE : T(E) → S(K0(E)) is defined by rE(τ )(x) = τ(x) for all x ∈ K0(E) and

τ ∈ T(E).

Now we can define our classification invariant.

Definition 9.2. Let E ∈ Ec. The Elliott invariant Inv(E) is defined as follows:

Inv(E) = (K0(E), K1(E), T(E), rE). (9.2)

Let E1, E2 ∈ Ec. We say that Inv(E1) and Inv(E2) are isomorphic, and write

Inv(E1) ∼= Inv(E2), if there is an isomorphism

� : Inv(E1) = (K0(E1), K1(E1), T(E1), rE1
) → Inv(E2) = (K0(E2), K1(E2), T(E2), rE2

),

that is, if there are a group isomorphism �i : Ki(E1) → Ki(E2), i = 0, 1, and an affine

homeomorphism �T : T(E1) → T(E2), which maps Tf (E1) onto Tf (E2), such that

rE2
(τ )(�0(x)) = rE1

(�−1
T (τ ))(x) for all x ∈ K0(E1) and τ ∈ T(E2). (9.3)

Theorem 9.3. Let E1, E2 ∈ Ec. Then E1
∼= E2 if and only if

Inv(E1) ∼= Inv(E2). (9.4)

Moreover, if � : Inv(E1) → Inv(E2) is an isomorphism, then there exists an isomorphism

� : E1 → E2 such that � induces �.
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10416 H. Lin and P. W. Ng

Proof. We have two short exact sequences

0 →W → E1

πE1−→ A → 0 and

0 →W → E2

πE2−→ B → 0.

Both A and B are separable simple stably projectionless C∗- algebras with finite nuclear

dimension and continuous scale, which satisfy the UCT. Moreover, K0(A) = kerρA and

K0(B) = kerρB.

Suppose that � : Inv(E1) → Inv(E2) is an isomorphism. Then one has a group

isomorphism γi := πE2∗i
◦ �i ◦ πE1

−1
∗i

: Ki(A) → Ki(B), i = 0, 1. Note that � induces an

affine homeomorphism �T : T(E1) → T(E2), which maps Tf (E1) to Tf (E2). Since �T is

an affine homeomorphism, it maps extreme points to extreme points. It follows that

�T(τW) = τW . Since the extreme points of the face TA are also extreme points of T(E), �T

maps TA onto TB, and (πE2
)−1
T ◦�T◦(πE1

)T : T(A) → T(B) is also an affine homeomorphism.

Since both E1 and E2 satisfy the UCT, A and B also satisfy the UCT. It follows that, by

the classification results in [22] (see Theorem 13.1 and Theorem 15.5 of [22]), there is an

isomorphism φ : A → B such that φ∗i = γi, i = 0, 1, and φT = (πE1
)−1
T ◦�−1

T ◦ (πE2
)T . Recall

that λEi
: K0(Ei) → R is defined by λEi

(x) = τW(x) for all x ∈ K0(Ei).

In (9.3), with τ = τW , we have that (as �T maps τW to τW )

τW(�0(x)) = τW(x) for all x ∈ K0(E1). (9.5)

In other words,

λE2
◦ �0 = λE1

. (9.6)

Let σA : A → C(W) and σB : B → C(W) be the Busby invariants associated with E1 and E2

respectively. Define an essential extension ψ : A → C(W) by ψ = σB ◦ φ. Hence,

ψ∗,0 = (σB)∗,0 ◦ φ∗,0

= (λE2
◦ πE2

−1
∗,0

) ◦ (πE2∗,0
◦ �0 ◦ πE1

−1
∗,0

) (by Lemma 9.1 and since φ∗,0 = γ0)

= λE2
◦ �0 ◦ πE1

−1
∗,0

= λE1
◦ πE1

−1
∗,0

(by 9.6)

= (σA)∗,0 (by 9.1).
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Extensions of C∗-Algebras by a Small Ideal 10417

Hence,

KK(ψ) = KK(σA). (9.7)

It follows from Theorem 9.9 that there is a unitary U ∈ M(W) such that

π(U∗)ψ(a)π(U) = σA(a) for all a ∈ A. (9.8)

Note that, by (9.8),

U∗eU ∈ E1 for all e ∈ E2. (9.9)

Define � : E2 → E1 by

�(e) = U∗eU for all e ∈ E2. (9.10)

� is a monomorphism. Note that �(W) = W. By (9.8), � is surjective. So � is an

isomorphism. Moreover, from the construction, one checks that � induces �.

Conversely, if there is an isomorphism � : E1 → E2, then � induces an

isomorphism � : Inv(E1) → Inv(E2). �

Towards classifying C∗- algebras in E , we again recall some terminology and

other items.

Let A be a C∗-algebra with T̃(A) �= {0} and with a strictly positive element eA.

Denote by �A ∈ LAff (T̃(A)) the lower semicontinuous affine function defined by

�A(τ ) = lim
n→∞ τ(f1/n(eA)) for all τ ∈ T̃(A).

One notes that �A, as a lower semicontinuous affine function on T̃(A), is independent

of the choice of eA.

Recall also that there is a unique embedding E ↪→ M(W), which is the identity

map on W, and also that the group homomorphism λE : K0(E) → R is defined by

λE(x) = τW(x) for all x ∈ K0(E).

Definition 9.4. For any E ∈ E , define

Inv(E) = (K0(E), K1(E), T̃(E), �E , λE). (9.11)
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10418 H. Lin and P. W. Ng

Denote by T̃f (E) the set of all faithful traces in T̃(E), that is, the set of all τ ∈ T̃(E)

for which τ(a) �= 0 for every a ∈ Ped(E)+ \ {0}. Write A = πE(E). Let (πE)T : T̃(A) → T̃(E)

be the affine homomorphism defined by (πE)T(τ )(e) = τ ◦ πE(e) for all e ∈ Ped(E) and

τ ∈ T̃(A). The cone T̃(E) is generated by (πE)T(T̃(A)) and τW .

Let E1, E2 ∈ E . We say that Inv(E1) and Inv(E2) are isomorphic, and write

Inv(E1) ∼= Inv(E2), if there is an isomorphism

� : Inv(E1) = (K0(E1), K1(E1), T̃(E1), �E1
, λE1

) ∼= Inv(E2) = (K0(E2), K1(E2), T̃(E2), �E2
, λE2

),

that is, if there are a group isomorphism �i : Ki(E1) → Ki(E2), i = 0, 1, and a topological

cone isomorphism �T : T̃(E1) → T̃(E2), which maps T̃f (E1) onto T̃f (E2) such that

λE2
◦ �0 = λE1

and �E2
◦ �T = �E1

. (9.12)

Lemma 9.5. Let E ∈ E be an essential extension of the form:

0 →W → E
πE−→ A → 0. (9.13)

Suppose that e1, e2 ∈ E+ are such that dτ (πE(e1)) = dτ (πE(e2)), for all τ ∈ T̃(A), and

W ⊂ HerE(ei), i = 1, 2. Then there is an isomorphism

ψ : HerE(e1) ∼= HerE(e2) (9.14)

such that KL(ψ) = KL(idE) and τ ◦ ψ(e) = τ(e) for all τ ∈ T̃(E) and e ∈ HerE(e1)+.

Proof. Since A has stable rank one (see Theorem 11.5 of [22]), it follows from [14] (see

Proposition 3.3 of [63]; see also the paragraph above Proposition 3.3 of [63], and [44])

that there is an element u ∈ A∗∗ such that uHerA(πE(e1))u∗ = HerA(πE(e2)). Moreover,

uπE(e1), u∗πE(e2) ∈ A and u∗u = p and uu∗ = q, where p and q are open projections of A

corresponding to πE(e1) and πE(e2), respectively. Let x = uπE(e1) ∈ A. Since A has stable

rank one, by Theorem 5 of [56], for each n, there is a unitary un ∈ Ã such that

unπE(f1/n(e1)) = uπE(f1/n(e1)). (9.15)
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Extensions of C∗-Algebras by a Small Ideal 10419

Since K1(C(W)) = {0} (see Theorem 7.4) and C(W) is purely infinite simple, there is a

unitary wn ∈ M(W) such that π(wn) = un. Therefore, wn ∈ Ẽ. Since

unπE(f1/n(e1))u∗
n ∈ HerA(πE(e2)), (9.16)

wnf1/n(e1)w∗
n ∈ HerE(e2). (9.17)

(Recall that W ⊆ HerE(e2).) It follows that, for all n,

f1/n(e1) � e2. (9.18)

Therefore,

e1 � e2. (9.19)

Symmetrically,

e2 � e1. (9.20)

Hence, e1 ∼ e2. By (9.13) and the fact that Ki(W) = {0}, i = 0, 1, and by applying part

(ii) of Proposition 4 of [48], E has stable rank one. It follows from [14] that there is an

isomorphism

ψ : HerE(e1) ∼= HerE(e2)

such that ψ(a) = U∗aU for all a ∈ HerE(e1). Here, U ∈ E∗∗ is a partial isometry such that

U∗a, Ub ∈ E for all a ∈ HerE(e1) and b ∈ HerE(e2), UU∗ = P, and U∗U = Q, where P is the

open projection corresponding to e1 and Q is the open projection corresponding to e2.

Let z = U∗e1 ∈ E. Since E has stable rank one (which we just proved), by

Theorem 5 of [56], for each n, there is a unitary Vn ∈ Ẽ such that VnPn = U∗Pn, where

Pn is the spectral projection of e1 in A∗∗ corresponding to (1/(3n), ‖z‖]. It follows that

Vnf1/n(e1)af1/n(e1)V∗
n ∈ HerE(e2) for all a ∈ HerE(e1), and

lim
n→∞VnaV∗

n = lim
n→∞Vnf1/n(e1)af1/n(e1)V∗

n = lim
n→∞U∗f1/n(e1)af1/n(e1)U = ψ(a) (9.21)
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for all a ∈ HerE(e1). It follows that KL(ψ) = KL(idE) and τ ◦ ψ(a) = τ(a) for all τ ∈ T̃(E)

and a ∈ HerE(e1)+. �

Theorem 9.6. Let E1, E2 ∈ E . Then E1
∼= E2 if and only if there is an isomorphism

� : Inv(E1) = (K0(E1), K1(E1), T̃(E1), �E1
, λE1

) ∼= Inv(E2) = (K0(E2), K1(E2), T̃(E2), �E2
, λE2

).

Moreover, if such an isomorphism � exists, then there is an isomorphism ψ : E1 → E2,

which induces �.

Proof. Suppose that we have an isomorphism � : Inv(E1) ∼= Inv(E2).

We have two short exact sequences

0 →W → E1

πE1−→ A → 0 and 0 →W → E2

πE2−→ B → 0.

Both A and B are separable simple stably projectionless C*-algebras with finite nuclear

dimension and which satisfy the UCT. Moreover, K0(A) = kerρA and K0(B) = kerρB.

Let e0 ∈ (E1)+ \ {0} with ‖e0‖ = 1 be a strictly positive element of E1. Let

e1 = f1/2(e0). Choose a0 ∈ A+ \ {0} such that a0 ≤ πE1
(e1) and dτ (a0) is continuous

on T̃(A) (see 11.11 of [18] and Theorem 15.5 of [22]). So Her(a0) has continuous scale (see,

e.g., Proposition 5.4 of [18]). Choose a′1 ∈ (E1)+ such that f1/8(e0)a′1 = a′1 and πE1
(a′1) = a0

(see Lemma 7.2 of [18]). Then a′1 ∈ Ped(E1). Let eW ∈ W be a strictly positive element in

W. Since Ped(W) = W, a′′1 = a′1 + eW ∈ Ped(E1)+. Let a1 = a′′1/‖a′′1‖. Then a1 ∈ M(W)+. It

follows that τW(f1/n(a1)) ≤ 1 for all n. Obviously,

eW � a′′1 ∼ a1.

We conclude that dτW
(a1) = 1. Since every t ∈ T̃(E1) has the form α · tA ◦πE1

+ (1−α) · tW ,

where tA ∈ T̃(A) and 0 ≤ α ≤ 1, one also verifies that dτ (a1) is continuous on T̃(E1).

Let A1 = Her(a0) and E1,c = Her(a1). Note that πE1
(E1,c) = A1. So E1,c ∈ Ec.

Let g ∈ Aff(T̃(B)) be such that g ◦ �T(τ ) = dτ (πE1
(a1)) for all τ ∈ T̃(A). By

Theorem 11.11 of [18] and Theorem 15.5 of [22], there exists a b0 ∈ B+ such that

dt(b0) = g(t) for all t ∈ T̃(B). Let B1 = Her(b0). Then B1 also has continuous scale (see

Proposition 5.4 of [18]). Choose b′1 ∈ (E2)+ such that πE2
(b′1) = b0 and b′′1 = b′1 + eW .

Set b1 = b′′1/‖b′′1‖ ∈ E2 ⊂ M(W). Then for any n, τW(f1/n(b1)) ≤ 1. It follows that

dτW
(b1) ≤ 1. Note that eW � b′′1 ∼ b1. Therefore, dτW

(b1) = 1. Note that for each
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τ = αtB ◦ πE2
+ (1− α)tW ∈ T̃(E2), where tB ∈ T̃(B) and 0 ≤ α ≤ 1,

dτ (b1) = αg(tB)+ (1− α).

Define E2,c = Her(b1). Then E2,c ∈ Ec. We note that Ej,c is a full hereditary

C∗-subalgebra of Ej, which contains W as an ideal (j = 1, 2). In particular,

Ki(Ej,c) = Ki(Ej), i = 0, 1 and j = 1, 2.

Consider Ta = {τ ∈ T̃(E1) : dτ (a1) = 1}. Since dτ (a1) is continuous on T̃(E1), Ta

is a compact convex subset of T̃(E1). Note that �T(Ta) = Tg = {t ∈ T̃(E2) : dτ (b1) = 1}.
Moreover, �T maps Ta affinely and homeomorphically onto Tg.

Let γ1 : Ta → T(E1,c) be defined by γ1(τ )(e) = τ(e) for all e ∈ E1,c and τ ∈ Ta.

Then γ1 is an affine homeomorphism. Let γ2 : Tg → T(E2,c) be defined by γ2(t)(d) = t(d)

for all d ∈ E2,c and t ∈ Tg. Then γ2 is also an affine homeomorphism.

Now define

�′ : (K0(E1,c), K1(E1,c), T(E1,c), rE1,c
) → (K0(E2,c), K1(E2,c), T(E2,c), rE2,c

) (9.22)

as follows: �′
i := �i : Ki(E1,c) = Ki(E1) → Ki(E2) = Ki(E2,c), i = 0, 1, and �′

T := γ2◦�T ◦γ−1
1 .

We also check that since λE2
◦ �0 = λE1

, for any x ∈ K0(E1,c),

τW(�′
0(x)) = τW(�0(x)) = τW(x). (9.23)

Since K0(A) = kerρA and K0(B) = kerρA, (9.23) implies that

rE2,c
(τ )(�′

0(x)) = rE1,c
(�−1

T (τ ))(x) for all x ∈ K0(E1,c) and τ ∈ T(E2,c). (9.24)

Hence, �′ : Inv(E1,c) → Inv(E2,c) is an isomorphism. It follows from Theorem 9.3 that

there exists an isomorphism � : E1,c → E2,c, which induces �′. This provides (also

denoted by �) an isomorphism � : E1,c ⊗K → E2,c ⊗K.

By Brown’s stable isomorphism theorem [4], we may view E1 as a full hereditary

C∗-subalgebra of E1,c ⊗ K. Then we obtain an embedding �|E1
: E1 → E2,c ⊗ K. Let e′1 be

a strictly positive element of E1 and e′2 = �(e′1). Let e′′2 be a strictly positive element of

E2. Since � induces �′ and since �E2
◦ �T = �E1

, we have that

dτ (e
′
2) = dτ (e

′′
2) for all τ ∈ T̃(E2).
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10422 H. Lin and P. W. Ng

Finally, by applying Lemma 9.5, there is an isomorphism ψ : Her(e′2) ∼= Her(e′′2)

with KL(ψ) = KL(idE2
) and which preserves the traces. Therefore,

E1
∼= E2 (9.25)

and the isomorphism induces �. �

Remark 9.7. In Section 7, we do not include a classification statement for the essential

extensions of the form in (9.1), for the case that A does not have continuous scale.

Theorem 9.6 is a classification with a different flavor. It should be noted, though, that

if A does not have continuous scale, then there may not be any trivial extensions of the

form in (9.1). To see this, consider the case where A = A ⊗ K. Then A does not have any

faithful tracial states. If there were a monomorphism j : A → M(W) such that

πE ◦ j = idA, (9.26)

then τW ◦j would induce a faithful tracial state on A. This is not possible. So no essential

extensions of the form in (9.1) splits. This explains, partially, why we choose not to

include this case in Section 7.

The following is another version of 7.9. We should keep 7.9 and remove this—we

can use this (slightly different) presentation.

Lemma 9.8. Let A be a separable amenable C∗-algebra, which is W embeddable. Then

A has a T extension π ◦ σ : A → C(W).

Proof. Let {bn} be a system of quasidiagonal units for W. We assume, of course, bn �= 0.

Let Dn = Her(bn). Then Dn
∼= Mn(W). Let {e(n)

i,j : 1 ≤ i, j ≤ n} be a system of matrix units

for Mn, n = 1, 2, .... We may assume (by choosing an diagonal element in Dn
∼= Mn(W)),

that bn = ⊕n
i=1 e(n)

j,1 bne1,j. Put bn,j = ej,1bne1,j, j = 1, 2, ..., n.

Fix an embedding ιA : A → W which maps strictly positive elements to strictly

positive elements. For each n, there is an isomorphism ψn : W → Her(bn,1). So we have

an embedding
⊕n

ψn ◦ ιA : A → Dn
∼= Mn(W). Define

σ : A → M(W) by σ(a) =
∞⊕

n=1

(

n⊕
ψn ◦ ιA). (9.27)
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By Definition 7.6, π ◦ σ is a T extension. �

Theorem 9.9. Let A be a separable amenable C∗-algebra, which is W embeddable and

satisfies the UCT. Suppose also that kerρA = K0(A).

(1) If τ1, τ2 : A → C(W) are two essential extensions, then τ1 ∼u τ2 if and only if

KK(τ1) = KK(τ2).

(2) The map � : Ext(A,W) → KK(A, C(W)) defined by �([τ ]) = KK(τ ) is a group

isomorphism.

(3) An essential extension τ is trivial if and only if KK(τ ) = 0, and all trivial

extensions are unitarily equivalent.

Proof. We first show (3). If τ is trivial, then there exists monomorphism φ : A → M(W)

such that π ◦ φ = τ . It follows from 7.10 that τ∗0(K0(A)) = τ∗0(kerρA) = 0 and τ∗1 = 0.

Since K0(C(W)) = R is divisible and K1(C(W)) = {0}, by the UCT, one computes that

KK(τ ) = 0. It follows from 7.16 that τ is quasidiagonal. Moreover, by 7.17, τ ∼u π ◦ σ .

Conversely, if KK(τ ) = 0, then we just showed that τ ∼u π ◦ σ .

We now show (2). Define � : Extu(A,W) → KK(A, C(W)) by �([τ ]) = KK(τ ). It is

a semigroup homomorphism. That the map is injective follows by (1).

Fix x ∈ KK(A, C(W)). By the UCT, oen computes that KK(A, C(W)) =
Hom(K0(A), C(W)). Note that K0(Ã) = K0(A) ⊕ Z. Define η ∈ Hom(K0(Ã), C(W)) by

η|K0(A) = x and η([1Ã]) = [1C(W)]. Then η gives an element in KL(Ã, C(W)). It follows from

Corollary 8.5 of [41] that there is a homomorphism τ1 : Ã → C(W) such that KK(τ1) = η.

Define τ = τ1|A. Then KK(τ ) = x. So the map � is surjective. It follows that Extu(A,W)

is a group.

We then see (1) follows from (2). �

10 Extensions by a Simple C∗-Algebra in I

In this section, we consider essential extensions of the form

0 → B → E → C → 0,

where B is a separable simple C∗-algebra with a unique tracial state and with finite

nuclear dimension and that satisfies the UCT and C is a separable amenable C∗-algebra,

which is W embeddable.
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Definition 10.1. Denote by I the class of all non-unital stably projectionless separable

simple amenable Z-stable C∗- algebras with a unique tracial state and that satisfies the

UCT.

Note that if B ∈ I, then K0(M(B)) = R, K1(M(B)) = {0}, K1(C(B)) = K0(B) and

K0(C(B)) = R ⊕ K1(B) (see Theorem 7.4). C∗- algebras in I have been classified by their

Elliott invariant in [22]. All C∗- algebras in I have stable rank one. Moreover, kerρB =
K0(B) for every C∗-algebra B ∈ I (see Lemma 6.1). We will also use the fact that every

hereditary C∗-subalgebra , of a C∗-algebra in I, is also in I.

Lemma 10.2. Let B ∈ I. Let A be a separable amenable C∗-algebra, which is W
embeddable. Then there exists an essential Td extension (see 7.6) σ : A → M(B), with

model σA that factors through W and, in particular, KK(σA) = 0.

Proof. Fix an embedding ιA : A → W and an embedding ιw,B : W → B (given, e.g.,

by 6.4) such that both ιA and ιw,B map strictly positive elements to strictly positive

elements (see 6.4 and 6.8). Let σA = ιw,B ◦ ιA : A → B. Denote by τ the unique tracial state

of B. Fix a system of quasidiagonal units {bk}, for B, as in 4.1. Passing to a subsequence

if necessary, we may assume that

∞∑
k=n+1

dτ (bk) < (1/n)dτ (bn) for all n. (10.1)

Let tn = (1/n)dτ (bn), n ∈ N. There is an element an ∈ Her(bn) with dτ (an) = tn

(since B has strict comparison and since Cu(B) ∼= V(B) � (0,∞]; see Proposition 11.11

of [18] and Theorem 15.5 of [22]). Moreover, Her(bn) ∼= Mn(Her(an)). By part (2) of 6.6,

there is, for each n, an isomorphism φn : B → Her(an). Define σ : A → M(B) by

σ(a) = ∑∞
n=1(

⊕n
φn ◦ σA)(a) for all a ∈ A. One then checks, from Definition 7.6, that

π ◦ σ is a Td extension with model σA, which factors through W and KK(σA) = 0. �

Lemma 10.3. Let C be a separable amenable C∗-algebra, which is W embeddable and

satisfies the UCT. Suppose that Ki(C) is finitely generated (i = 0, 1). Let B ∈ I, and

let π ◦ σ : C → C(B) be an essential Td extension with a model map σC, which factors

through W. Then for any essential quasidiagonal extension τq : C → C(B), there is a

trivial diagonal essential extension σd : C → C(B) such that

τq ⊕ π ◦ σ ∼u σd ⊕ π ◦ σ . (10.2)
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Proof. Exactly as at the beginning of the proof of 7.12, without loss of generality,

we may assume that ran(σ ) ⊥ ran(ψ), where ψ : C → M(B) is a c.p.c. map for which

τq = π ◦ ψ .

We write

σ =
∞⊕

n=1

n+1⊕
φn ◦ σC

as in Definition 7.6 and Lemma 10.2.

Since τq is quasidiagonal, we may write ψ = ⊕∞
n=1 ψn, and let {an} be a system

of quasidiagonal units from Proposition 4.5 that corresponds to {ψn}. Recall that

lim
n→∞‖ψn(ab)− ψn(a)ψn(b)‖ = 0 for all a, b ∈ C. (10.3)

We now write
⊕n+1

φn ◦ σC = σn,0 ⊕ σn,1 ⊕ · · · ⊕ σn,n and σ = ⊕∞
n=1

⊕n
j=0 σn,j.

Following the notation of Definition 7.6, let

bn,j := σn,j(eC) for all n, j.

Since σ is a Td extension, by 7.7, there exists a map F : C+ \ {0} → N× (0,∞) such

that for all n, j, σn,j : C → bn,jBbn,j is F- full.

Let {εn}∞n=1 be a strictly decreasing sequence in (0, 1) such that
∑∞

n=1 εn < ∞. Let

F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · be a sequence of finite subsets of the unit ball of C, whose

union is dense in the unit ball of C.

We will apply Theorem 5.8. Note that by Proposition 5.2, every hereditary

C∗-subalgebra of B is in C0,0,1,T,7, with T as in Proposition 5.2. Let L := 7π + 1. Recall

that for the given C, we fix maps J, �−
cu and J∼ as in 5.7.

For each n, let δn > 0, Gn ⊂ C be a finite subset, Pn ⊂ K(C) be a finite subset,

Un ⊂ J∼(K1(C)) be a finite subset, En ⊂ C+ \ {0} be a finite subset, and Kn be an integer

associated with Fn and εn (as well as F and L above), as provided by Theorem 5.8 (for

C∗- algebras in C0,0,1,T,7).

We may assume that δn+1 < δn, Gn ⊂ Gn+1, Pn ⊂ Pn+1, Un ⊂ Un+1, Un ⊂
U(Mm(n)(C̃)), and Kn < Kn+1, for all n. Without loss of generality, we may assume that

each ψn is Gn-δn-multiplicative and �ψn(u)� is well defined for all u ∈ Un.
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Moreover, without loss of generality, we may also assume that (see Theorem 14.5

of [46]) for any n, there is a group homomorphism

λn : G(�cu(Un)) → U(Mm(n)(H̃er(an)))/CU(Mm(n)(H̃er(an)))

such that

dist(λn(x), �cu(�ψn(J∼(x))�)) < 1/16π(n + 1) for all x ∈ �cu(Un), (10.4)

where G(�cu(Un)) is the subgroup generated by the finite subset �cu(Un). Recall that

�cu ◦ J∼(x) = �cu ◦�−
cu(J(x)) = J(x) for all x ∈ K1(C). Without loss of generality, we may

assume that Pn ∩ K1(C) generates the same group as �1 ◦ �cu(Un) does (in the current

case, K1(C) is assumed to be finitely generated).

Moreover, since Ki(C) is finitely generated, we may assume that KL(ψn) and λn◦J

are well defined, and since λn is determined by ψn, we may also assume that λn ◦ J is

compatible with KK(ψn).

Again, throwing away finitely many terms and relabelling if necessary, we may

assume that

∞∑
n=1

dτ (an) < dτ (bK1,0),

where τ is the unique tracial state of B. Let {nk}∞k=1 be a subsequence of Z+ with n1 = 1

and nk + 2 < nk+1 for all k such that

∞∑
l=nk

dτ (al) < dτ (bKk,0).

Since B has stable rank one, there is a unitary U ′
k ∈ B̃ such that

(U ′
k)∗((

nk+1−1∑
l=nk

al)B(

nk+1−1∑
l=nk

al))U
′
k ⊂ bKk,0BbKk,0. (10.5)

Let Bk,0 = Her(
∑nk+1−1

l=nk
al). Hence, (U ′

k)∗Bk,0U ′
k ⊂ Her(bKk,0).

For each n, by Theorem 6.11, there is a homomorphism hn : C → Her(an) such

that KL(hn) = KK(ψn) and h‡
n = λn ◦ J.
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In other words,

[ψn]|Pn
= [hn]|Pn

and h†
n|�cu(Un) = λn|�cu(Un). (10.6)

By the second part of (10.6) and (10.4), and since Un ⊂ Un+1 for all n, for any

u ∈ Unk
and nk ≤ l ≤ nk+1 − 1, there is a vl ∈ CU(Mm(l)(H̃er(al))) such that

hl(u)�ψl(u)�∗ ≈1/16π(l+1) vl. (10.7)

It follows from Lemma 7.11 that for all u ∈ Unk
,

cel(Ad U ′
k ◦ (�

nk+1−1
l=nk

hl)(u)�Ad U ′
k ◦ (�

nk+1−1
l=nk

ψl)(u)�∗) ≤ 7π + 1, (10.8)

where the length is computed inside Mm(nk)(Her(bKk,0)).

For each k, consider the two maps Ad U ′
k ◦ (�

nk+1−1
l=nk

ψl), AdU ′
k ◦ (�

nk+1−1
l=nk

hl) : C →
Her(bKk,0).

Recall that ψn is Gn-δn-multiplicative and φn◦σC is F-full, for all n. Also, keeping

in mind of (10.6) and (10.8), we apply Theorem 5.8 to get that for each k, there is a unitary

u′
k ∈ MKk+1( ˜Her(bKk,0)) such that

u′
k

⎛⎝U ′
k
∗

nk+1−1∑
l=nk

hl(c)U ′
k

⊕ Kk∑
l=1

σKk,l(c)

⎞⎠ (u′
k)∗ ≈εk

U ′
k
∗

nk+1−1∑
l=nk

ψl(c)U ′
k

⊕ Kk∑
l=1

σKk,l(c)

(10.9)

for all c ∈ Fk.

Define H : C → M(B) by H(c) = ⊕∞
k=1 hk(c) for all c ∈ C. Note that the sum

converges strictly and H is a homomorphism. Set σd := π ◦ H.

By exactly the same argument as in the later part of the proof of Lemma 7.12,

from (10.9), we obtain a unitary u ∈ C(B) such that

u(σd(c)⊕ π ◦ σ(c))u∗ = π ◦ ψ(c)+ π ◦ σ(c) for all c ∈ C. (10.10)

Now since Her(π ◦ ψ(eC) + π ◦ σ(eC))⊥ �= {0}, and since C(B) is purely infinite

simple, there is a non-zero projection e1 ∈ Her(π ◦ ψ(eC)+π ◦ σ(eC))⊥. There is a unitary

v ∈ e1C(B)e1 such that [v] = [u∗]. Let u1 = (v⊕ (1− e1))u. Replacing u by u1 if necessary,

we may assume that u ∈ U0(C(B)). Therefore, we may assume that there is a unitary

U ∈ M(B) such that π(U) = u. �
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Corollary 10.4. In Lemma 10.3, if τq is in fact a diagonal extension, that is, τq = π ◦�,

where � : C → M(B) is defined by �(c) = ⊕∞
n=1 ψn(c) such that ψn is a homomorphism

for all n, and if KK(ψn) = 0 and ψ
‡
n = 0 for all n, then

π ◦� ⊕ π ◦ σ ∼u π◦σ .

Proof. In the proof of Lemma 10.3, let each ψn be a homomorphism such that

KK(ψn) = 0 and ψ
‡
n = 0. Since ψ

‡
n = 0, ψn(u) ∈ CU(Mm(n)(W)) (instead of (10.4)) for

all u ∈ J∼(K1(A)) ∩ U(Mm(n)(
˜Her(an))). Therefore, in the proof of Lemma 10.3, (10.8)

becomes

cel(
nk+1−1∑

l=nk

ψl(u)) ≤ 7π + 1 for all u ∈ Unk
. (10.11)

Therefore, the proof works when we use hn = 0 for all n. In other words,

π ◦ σ ∼u π ◦� ⊕ π ◦ σ .

�

Lemma 10.5. Let C and B be as in 10.3. Fix two sequences

{xn} ⊂ KL(C, B) and {yn} ⊂ Hom(K1(C), U(B)/CU(B)) (10.12)

such that xn and yn are compatible, that is, xn(z) = �1,cu(yn(z)) for all z ∈ K1(C),

for all n. Let {bn} be a system of quasidiagonal units for B. Then there is a diagonal

monomorphism hd := ⊕∞
n=1 hn : C → M(B), where hn : A → Her(bn) is a monomorphism

for all n, and for each m, KK(hm) = xn and h‡
m = yn at the same time for some n, and for

each k, there are infinitely many l such that KK(hl) = xk and h‡
l = yk at the same time.

Proof. Write N = ∪∞n=1Sn, where each Sn is an infinite countable set, and Si ∩ Sj = ∅ if

i �= j. For each j ∈ Sn, choose a monomorphism hj : C → Her(bj) such that KK(hj) = xn

and h‡
j = yn (see Theorems 6.10 and 6.11). Then set hd := ⊕

k∈N hk. One can check that

hd satisfies the requirements of the lemma. �
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Lemma 10.6. Let C, B and σ be as in 10.3. For any essential trivial diagonal extension

τ : C → C(B),

τ ⊕ π ◦ σ ∼u π ◦ σ .

Proof. Let � = ⊕∞
n=1 ψn : C → M(B) be any diagonal map, where ψn : C → bnBbn

is a homomorphism for all n, and where {bk} is a system of quasidiagonal units. Let

x2n−1 = KK(ψn), y2n−1 = ψ
‡
n, x2n = −KK(ψn) and y2n = −ψ

‡
n, n = 1, 2, .... Note that xn

and yn are compatible for all n.

Let hd : C → M(B) be as in Lemma 10.5 associated with the sequences {xn}, {yn}
and {bk}. We claim that there is a permutation λ : N→ N such that

KK(hλ(2n−1)) = −KK(hλ(2n)) and h‡
λ(2n−1) = −h‡

λ(2n), n = 1, 2, .....

For n = 1, there is an integer γ (1) ∈ N \ {1} such that KK(hγ (1)) = −KK(h1) and

h‡
γ (1) = −h‡

1.

Then define λ(1) = 1 and λ(2) = γ (1). Suppose that λ has been defined on

{1, 2, ..., 2n} such that

KK(hλ(2k−1)) = −KK(hλ(2k)) and h‡
λ(2k−1)

= −h‡
λ(2k)

, k = 1, 2, ..., n.

Choose the smallest integer m such that m∈N\{λ(1), λ(2), ..., λ(2n)}. Define λ(2n+1)=m.

Note that (KK(hm), h‡
m) ∈ {(xn, yn)}. Find an integer m′ ∈ N \ ({λ(j) : 1 ≤ j ≤ 2n} ∪ {m})

such that KK(hm′) = −KK(hλ(2n+1)) and h‡
m′ = −h‡

λ(2n+1). Define λ(2n + 2) = m′. The

claim follows by induction.

Define ak = bλ(2k−1) + bλ(2k), k = 1, 2, ..., Then {ak} is also a system of

quasidiagonal units. Let hn,0 : C → Her(bλ(2n−1) + bλ(2n)) be defined by hn,0(c) =
hλ(2n−1)(c) + hλ(2n)(c) for all c ∈ C. Now define H0 : C → M(B) by H0(c) = ⊕∞

n=1 hn,0(c)

for all c ∈ C. Then H0 is unitarily equivalent to hd (see 4.2). However, KK(hn,0) = 0 and

h‡
n,0 = 0 for all n. It follows from Corollary 10.4 that with σ as in 10.3,

π ◦ H0 ⊕ π ◦ σ ∼u π ◦ σ .

Therefore,

π ◦ hd ⊕ π ◦ σ ∼u π◦σ . (10.13)
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Hence, � ⊕ hd is another diagonal map and if we write � ⊕ hd = ⊕∞
n=1 h′n, then

for all n, (KK(h′n), (h′n)‡) ∈ {(xl, yl)}, and for each k, there are infinitely many n with

(KK(h′n), (h′n)‡) = (xk, yk). From what has been proven, we conclude that

(π ◦� ⊕ π ◦ hd)⊕ π ◦ σ ∼u π ◦ σ . (10.14)

Then by (10.13),

π ◦� ⊕ π ◦ σ ∼u π ◦� ⊕ (π ◦ hd ⊕ π ◦ σ) ∼u π ◦ σ .

�

Theorem 10.7. Let B ∈ I. Let A be a separable amenable C∗-algebra, which is W
embeddable and satisfies the UCT. Suppose that Ki(A) is finitely generated (i = 0, 1).

(1) If τ1, τ2 : A → C(B) are two essential extensions, then τ1 ∼u τ2 if and only if

KK(τ1) = KK(τ2).

(2) The map � : Extu(A, B) → KK(A, C(B)), defined by �([τ ]) = KK(τ ), is a group

isomorphism.

(3) An essential extension τ , of A by B, is trivial and diagonal if and only if

KK(τ ) = 0, and all essential trivial and diagonal extensions of A by B are unitarily

equivalent.

(4) All quasidiagonal essential extensions of A by B are trivial and are unitarily

equivalent.

(5) If kerρf ,A = K0(A), then all trivial essential extensions of A by B are unitarily

equivalent. Moreover, an essential extension τ , of A by B, is trivial if and only if

KK(τ ) = 0.

(6) If kerρf ,A �= K0(A), then there are essential trivial extensions of A by B, which

are not quasidiagonal, and not all essential trivial extensions of A by B are unitarily

equivalent.

Proof. Let us prove (3) first. Suppose that τ : A → C(B) is an essential extension such

that KK(τ ) = 0. Consider a Td extension π ◦ σ as in Lemma 10.2. Then KK(σ ) = 0. It

follows that KK(π ◦ σ) = 0. Let π̃ ◦ σ , τ̃ : Ã → C(B) be the unital extensions of π ◦ σ and

τ , respectively. So KK(π̃ ◦ σ) = KK(τ̃ ). By Theorem 2.5 of [41], there exists a sequence of

unitaries {vn} in C(B) such that

lim
n→∞v∗n(π ◦ σ(a))vn = τ(a) for all a ∈ A. (10.15)
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Since A is not unital and C(B) is simple purely infinite, by 3.4, we obtain a sequence of

unitaries {un} in M(B) such that

lim
n→∞π(un)∗(π ◦ σ(a))π(un) = τ(a) for all a ∈ A. (10.16)

By Theorem 4.6, τ is a quasidiagonal extension. By Lemma 10.3 and Lemma 10.6, there

is an essential trivial diagonal extension σd such that

τ ⊕ π ◦ σ ∼u σd ⊕ π ◦ σ ∼u π ◦ σ .

On the other hand, by Theorem 3.8,

τ ∼u π ◦ σ ⊕ τ1

for some essential extension τ1. We then compute that KK(τ1) = KK(τ ) = KK(π ◦ σ) = 0.

From what has just been proved,

τ1 ⊕ π ◦ σ ∼u π ◦ σ .

It follows that

τ ∼u π ◦ σ . (10.17)

This shows that if KK(τ ) = 0 then τ ∼u π ◦ σ , and in particular, τ is trivial and diagonal.

Conversely, suppose that τ : A → C(B) is an essential trivial diagonal extension.

Then, by 10.6, τ ⊕ π ◦ σ ∼u π ◦ σ . It follows that KK(τ ) = 0. This proves the converse

direction. The above argument also gives that every essential trivial diagonal extension

is unitarily equivalent to π ◦ σ . This proves (3).

We next prove (1) and (2). Let � : Extu(A, B) → KK(A, C(B)) be the map defined

by �([τ ]) = KK(τ ). It is a semigroup homomorphism.

Towards proving that � is surjective, let x ∈ KK(A, C(B)). Note that KK(Ã, C(B)) =
KK(A, C(B)) ⊕ KK(C, C(B)) = KK(A, C(B)) ⊕ K0(C(B)). Let y := x ⊕ [1C(B)] ∈ KK(A, C(B)) ⊕
K0(C(B)). By Corollary 8.5 of [41], there exists a monomorphism φ : Ã → C(B) such that

KK(φ) = y. Let φ0 := φ|A : A → C(B). Then KK(φ0) = x. This shows that � is surjective.

Fix an essential extension τ : A → C(B). Since � is surjective, there exists an

essential extension τ−1 such that KK(τ−1) = −KK(τ ). Then KK(τ ⊕ τ−1) = 0. By part (3),
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with σ as in 10.2,

τ ⊕ τ−1 ∼u π ◦ σ . (10.18)

Let τ1 : A → C(B) be any essential extension with KK(τ1) = KK(τ ). Then the same

argument gives that τ1 ⊕ τ−1 ∼u π ◦ σ . Then,

τ ⊕ π ◦ σ ∼u τ ⊕ (τ−1 ⊕ τ1) ∼u (τ ⊕ τ−1)⊕ τ1 ∼u π ◦ σ ⊕ τ1. (10.19)

On the other hand, by Theorem 3.8, for some essential extension τ ′,

τ ∼u π ◦ σ ⊕ τ ′. (10.20)

Since KK(π ◦ σ) = 0, KK(τ ′) = KK(τ ). Therefore, replacing τ1 with τ ′ in (10.19), we get

that

τ ∼u π ◦ σ ⊕ τ ′ ∼u π ◦ σ ⊕ τ . (10.21)

Hence, replacing τ with τ1 in (10.21), τ1 ∼u π ◦ σ ⊕ τ1. Hence, by (10.19),

τ ∼u τ1. (10.22)

This implies that � is one-to-one. Since KK(A, C(B)) is a group, this implies that

Extu(A, B) is a group with zero [π ◦ σ ]. Moreover, � is a group isomorphism. This proves

(1) and (2).

To see that (4) holds, let τq be an essential quasidiagonal extension. Then, by

Lemma 10.3, with σ as in 10.2,

τq ⊕ π ◦ σ ∼u τd ⊕ π ◦ σ

for some trivial diagonal essential extension τd. From this and (3), KK(τq) = KK(τd) = 0.

It follows from (3) that τq ∼u π ◦ σ . Thus, (4) holds.

To see (5), consider a trivial essential extension with the form τ = π ◦H for some

monomorphism H : A → M(B). Recall that K1(M(B)) = 0 and K0(M(B)) = Aff (T(B)) = R.

Since we now assume that K0(A) = kerρf ,A, H∗0 = 0. Hence, KK(τ ) = 0. Then (5) follows

from (3).
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Finally, for (6), we note that, if kerρf ,A �= K0(A), then there is a t ∈ Tf (A) such

that ρA(t) �= 0.

By Lemma 8.1, for any r ∈ (0, 1), there is an monomorphism ψA,r : A → M(B),

with π ◦ ψA,r being injective, such that tB ◦ ψA,r(a) = r · t(a) for all a ∈ A. Recall that

K0(M(B)) = Aff(T(B)) = R and K0(C(B)) = R⊕ K1(B). Hence, if we let λ : K0(A) → R : z &→
t(z), then K0(ψA,r) = rλ �= 0. Hence, K0(π ◦ ψA,r) = rλ �= 0. Then π ◦ ψA,r : A → C(B) is an

essential trivial extension such that

KK(π ◦ ψA,r) �= 0. (10.23)

Thus, we produce an essential trivial extension that is not unitarily equivalent to the

trivial diagonal extension π ◦σ (since KK(π ◦σ) = 0 by (3)). By (4), it is not quasidiagonal.

In fact, if r1, r2 ∈ (0, 1) and r1 �= r2, then π ◦ ψA,r1
is not unitarily equivalent to

π ◦ ψA,r2
. �

Remark 10.8. Note that Theorem 10.7 does not describe exactly what the set T , that

is, the set of unitary equivalence classes of trivial essential extensions, looks like. The

next statement will do that.

Recall that KK(A, M(B)) = Hom(K0(A),R). So we may view Hom(K0(A),R)Tf (A)

as a subset of KK(A, M(B)). Let [π ] : KK(A, M(B)) → KK(A, C(B)) be the homomorphism

induced by the quotient map π : M(B) → C(B). Define

N = [π ]({r · h : r ∈ (0, 1], h ∈ Hom(K0(A),R)Tf (A)}).

Theorem 10.9. Let B ∈ I and let A be a separable amenable C∗-algebra, which is W
embeddable and satisfies the UCT. Suppose that Ki(A) is finitely generated (i = 0, 1).

Then,

(i) the map [π ] is one-to-one on KK(A, M(B)) = Hom(K0(A),R), and

(ii) an essential extension τ : A → C(B) is trivial if and only if

�([τ ]) = KK(τ ) ∈ N = [π ]({r · h : r ∈ (0, 1], h ∈ Hom(K0(A),R)Tf (A)}).

Moreover, � is one-to-one on T , the set of unitary equivalence classes of trivial essential

extensions of A by B.

Proof. Recall that K1(M(B)) = 0.
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Note also that K0(M(B)) = R, K0(C(B)) = R⊕K1(B), and [π ] maps injectively from

Hom(K0(A), K0(M(B))) into Hom(K0(A), K0(C(B))) as π∗0 is injective from R into R⊕K1(B).

This proves part (i).

For (ii), suppose that τ is an essential trivial extension. Then there is a

monomorphism H : A → M(B) such that τ = π ◦H. Then tB ◦H is a faithful bounded trace

on A. Define r := ‖tB ◦ H‖ ∈ (0, 1]. Therefore, tB ◦ H = r · t for some t ∈ Tf (A). It follows

that KK(H) ∈ rHom(K0(A),R)Tf
. Therefore, �([τ ]) ∈ N.

For the converse, let τ : A → C(B) be an essential extension such that KK(τ ) ∈ N.

So there is a λ ∈ Hom(K0(A),R)Tf (A) such that KK(τ ) = [π ] ◦ r·λ for some r ∈ (0, 1]. Let

t ∈ Tf (A) be a faithful tracial state that induces λ. By Lemma 8.1, let ψA,r : A → M(B) be

a monomorphism with ran(ψA,r)∩B = {0} so that τB ◦ψA,r(a) = rt(a) for all a ∈ A. Hence,

KK(ψA,r) = rλ. Then KK(π ◦ ψA,r) = KK(τ ). By part (2) of Theorem 10.7, τ ∼u π ◦ ψA,r.

The last statement also follows from part (2) of Theorem 10.7. �

Remark 10.10. Theorem 10.9 uses N to describe the trivial essential extensions under

the assumptions of this section (see also Theorem 10.7). When kerρf ,A �= K0(A), N �= {0}.
In fact, there are uncountably many different elements in N. Moreover, T is not a

semigroup. One first notes that, for any λ ∈ Hom(K0(A),R)Tf (A) and r ∈ (1,∞), if τ is

an essential extension with KK(τ ) = [π ] ◦ (r · λ), then τ is not a trivial (or splitting)

extension, since there is no homomorphism H : A → M(B) such that H∗0 = r · λ. Suppose

that λ ∈ Hom(K0(A),R)Tf (A) and τ ∈ T such that �(τ) = λ, and suppose that τ0 ∈ T is

another essential trivial extension. Then τ +̇τ0 ∈ T if and only if �([τ0]) = 0, that is, τ0 is

a trivial diagonal extension. This shows that T is not a semigroup.

Note that, by the UCT, there is a short exact sequence

0 → extZ(K∗(A), K∗−1(B)) → KK(A, C(B)) → Hom(K∗(A), K∗(C(B))) → 0. (10.24)

Suppose that τ is an essential extension with τ∗1 = 0 and τ∗0 ∈ Hom(K0(A),R)Tf (A). One

realizes that KK(τ ) may not be in N.
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