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Abstract
In this paper, we show that every separable simple
tracially approximately divisible 𝐶∗-algebra has strict
comparison, and it is either purely infinite or has sta-
ble rank one. As a consequence, we show that every
(non-unital) finite simple-stable𝐶∗-algebra has stable
rank one.

MSC 2020
46L35 (primary), 46L05 (secondary)

1 INTRODUCTION

Approximate divisibility for𝐶∗-algebraswas introduced in [5] in the study of noncommutative tori
following the earlier work of M. Rørdam (see [37] and [38]). It is shown in Theorem 1.4 of [5] that
a unital separable simple 𝐶∗-algebra 𝐴 which is approximately divisible has strict comparison,
and is either purely infinite or has stable rank one.
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3009

Tracial approximation was introduced in the Elliott program of classification for simple 𝐶∗-
algebras at the end of last century (see, e.g., [24, 25] and [26]). The term of tracially approximate
divisibility appeared at the same time as the study of simple 𝐶∗-algebras of tracial rank one (see
Definition 5.3 and the proof of Theorem 5.4 of [28]). It was shown, for example, that every uni-
tal non-elementary simple 𝐶∗-algebra with tracial rank at most one is tracially approximately
divisible. A more general version of tracially approximate divisibility was given in [16, Defini-
tion 5.2]. Similar variations of tracially approximate divisibility also occurred (see Definition 4.4
below, and also in [12, Definition 10.1]). A concept with the same nature was also given in [18]
which was called tracially -absorbing (see also [9] and [1]). As a continuation of [16] (and also
of [15]), we first show that these notions of tracially approximate divisibility are all equivalent for
(not necessarily unital) non-elementary separable simple 𝐶∗-algebras (see Theorem 4.11).
With the same spirit of [5], we also show that a separable simple 𝐶∗-algebra which is tracially

approximately divisible has strict comparison, and is either purely infinite or has stable rank one
(see Theorem 5.2 and Corollary 6.5). Moreover, we show that if 𝐴 is a non-elementary separable
simple 𝐶∗-algebra which is tracially approximately divisible, then its Cuntz semigroup can be
written as Cu(𝐴) = (𝑉(𝐴) ⧵ {0}) ⊔ LAf f+(𝑄𝑇(𝐴)) (see Theorem 5.7 and Remark 5.8).
We would like to point out that the Jiang-Su algebra  is not approximately divisible since it

has no non-zero projection other than the unit [20]. However, using [16, Theorem 5.9], every sim-
ple 𝐶∗-algebra which can be essentially tracially approximated by separable-stable 𝐶∗-algebras
(see [16, Definition 3.1] and Definition 6.6 below) is tracially approximately divisible. In particu-
lar, simple -stable 𝐶∗-algebras are tracially approximately divisible. In Example 7.1, we observe
that there are a whole set of non-nuclear separable simple 𝐶∗-algebras which are tracially approx-
imately divisible. Since every unital simple 𝐶∗-algebra which has tracial rank zero is tracially
approximately divisible, there exist tracially approximately divisible 𝐶∗-algebras which are not
-stable by [31].
Gong, Jiang and Su showed in [17] that a unital simple -stable 𝐶∗-algebra 𝐴, that is, 𝐴 ≅

𝐴⊗, is either purely infinite, or is stably finite, and has weakly unperforated 𝐾0(𝐴). In [39],
Rørdam showed that a unital simple -stable 𝐶∗-algebra 𝐴 is either purely infinite, or has stable
rank one, and has almost unperforated Cuntz semigroup. If 𝐴 is a separable simple -stable 𝐶∗-
algebra and contains a non-zero projection 𝑝, then 𝑝𝐴𝑝 is also -stable [43, Corollary 3.1]. One
then quickly concludes that 𝐴 has stable rank one if it is finite. In [36], L. Robert showed that
every stably projectionless simple 𝐶∗-algebra 𝐴 which is -stable has almost stable rank one. It
left open whether a stably projectionless simple -stable 𝐶∗-algebra has stable rank one (see [36,
Question 3.5]). As a by-product, we show that every finite simple -stable 𝐶∗-algebra always has
stable rank one (Corollary 6.8). In particular, we answer Robert’s question affirmatively. Some
applications and examples to dynamical systems can be found at the end of this paper. We also
refer the reader to the recent papers [41] and [2] for further related results about 𝐶∗-algebras of
stable rank one.
The paper is organized as follows. Section 2 is a preliminary. Section 3 discusses the so-called

Cuntz-null sequences. In Section 4, we discuss several variations of tracial approximate divisibil-
ity and we show in Theorem 4.11 that they are actually all equivalent. In Section 5, we show that
a separable simple tracially approximately divisible 𝐶∗-algebra has strict comparison (see Theo-
rem 5.2). Moreover, we also show that the canonical map from the purely non-compact elements
in Cuntz semigroup Cu(𝐴) to the set of strictly positive lower semi-continuous affine functions
in LAff+(𝑄𝑇(𝐴)) is an order-isomorphism (see Theorem 5.7). In Section 6, we show that a sep-
arable simple tracially approximately divisible 𝐶∗-algebra is either purely infinite, or has stable
rank one (see Corollary 6.5). We end Section 6 by showing that every (non-unital) simple-stable
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3010 FU et al.

𝐶∗-algebra is either purely infinite or has stable rank one (see Corollary 6.8). Finally, we include
some examples in Section 7.

2 PRELIMINARY

In this paper, the set of all positive integers is denoted by ℕ. The set of all compact operators on a
separable infinite-dimensional Hilbert space is denoted by.

Notation 2.1. Let 𝐴 be a normed space and  ⊂ 𝐴 be a subset. Let 𝜖 > 0. Let 𝑎, 𝑏 ∈ 𝐴, we write
𝑎 ≈𝜖 𝑏 if ‖𝑎 − 𝑏‖ < 𝜖. We write 𝑎 ∈𝜀  , if there is 𝑥 ∈  such that 𝑎 ≈𝜀 𝑥.

Notation 2.2. Let 𝐴 be a 𝐶∗-algebra and let 𝑆 ⊂ 𝐴 be a subset of 𝐴. Denote by Her𝐴(𝑆) (or just
Her(𝑆), when 𝐴 is clear) the hereditary 𝐶∗-subalgebra of 𝐴 generated by 𝑆. Denote by 𝐴𝟏 the
closed unit ball of𝐴, by𝐴+ the set of all positive elements in𝐴. Put𝐴𝟏+ ∶= 𝐴+ ∩ 𝐴

𝟏. Denote by𝐴
the minimal unitization of𝐴. When𝐴 is unital, denote by 𝐺𝐿(𝐴) the group of invertible elements
of 𝐴, and denote by 𝑈(𝐴) the unitary group of 𝐴. Let Ped(𝐴) denote the Pedersen ideal of 𝐴 and
Ped(𝐴)+ ∶= Ped(𝐴) ∩ 𝐴+. Denote by 𝑇(𝐴) the tracial state space of 𝐴.

Definition 2.3. Let𝐴 and𝐵 be𝐶∗-algebras and𝜑 ∶ 𝐴 → 𝐵 be a linearmap. Themap𝜑 is positive,
if 𝜑(𝐴+) ⊂ 𝐵+. The map 𝜑 is completely positive contractive, abbreviated as c.p.c., if ‖𝜑‖ ⩽ 1 and
𝜑 ⊗ id ∶ 𝐴 ⊗𝑀𝑛 → 𝐵 ⊗𝑀𝑛 are positive for all 𝑛 ∈ ℕ. A c.p.c. map 𝜑 ∶ 𝐴 → 𝐵 is said to have
order zero, if for any 𝑥, 𝑦 ∈ 𝐴+,𝑥𝑦 = 0 implies 𝜑(𝑥)𝜑(𝑦) = 0.
In what follows, {𝑒𝑖,𝑗}𝑛𝑖,𝑗=1 (or just {𝑒𝑖,𝑗}, if there is no confusion) is a system of matrix unit for

𝑀𝑛, and, 𝜄 ∈ 𝐶0((0, 1]) is the identity function on (0,1], i.e., 𝜄(𝑡) = 𝑡 for all 𝑡 ∈ (0, 1].

Definition 2.4. A 𝐶∗-algebra 𝐴 is said to have stable rank one [34], if 𝐴 = 𝐺𝐿(𝐴), that is, 𝐺𝐿(𝐴)
is dense in 𝐴. A 𝐶∗-algebra 𝐴 is said to have almost stable rank one [36], if for any hereditary
𝐶∗-subalgebra 𝐵 ⊂ 𝐴, 𝐵 ⊂ 𝐺𝐿(𝐵).

Notation 2.5. Let 𝜖 > 0. Define a continuous function 𝑓𝜖 ∶ [0, +∞) → [0, 1] by

𝑓𝜖(𝑡) =

⎧⎪⎨⎪⎩
0 𝑡 ∈ [0, 𝜖∕2],

1 𝑡 ∈ [𝜖,∞),

linear 𝑡 ∈ [𝜖∕2, 𝜖].

Definition 2.6. Let 𝐴 be a 𝐶∗-algebra and let 𝑀∞(𝐴)+ ∶=
⋃
𝑛∈ℕ 𝑀𝑛(𝐴)+. For 𝑥 ∈ 𝑀𝑛(𝐴), we

identify 𝑥 with diag(𝑥, 0) ∈ 𝑀𝑛+𝑚(𝐴) for all 𝑚 ∈ ℕ. Let 𝑎 ∈ 𝑀𝑛(𝐴)+ and 𝑏 ∈ 𝑀𝑚(𝐴)+. We may
write 𝑎 ⊕ 𝑏 ∶= diag(𝑎, 𝑏) ∈ 𝑀𝑛+𝑚(𝐴)+. If 𝑎, 𝑏 ∈ 𝑀𝑛(𝐴), we write 𝑎 ≲ 𝑏 if there are 𝑥𝑖 ∈ 𝑀𝑛(𝐴)
such that lim𝑖→∞ ‖𝑎 − 𝑥∗

𝑖
𝑏𝑥𝑖‖ = 0. We write 𝑎 ∼ 𝑏 if 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎 hold. The Cuntz relation

∼ is an equivalence relation. Set𝑊(𝐴) ∶= 𝑀∞(𝐴)+∕ ∼. Let ⟨𝑎⟩ denote the equivalence class of
𝑎. We write ⟨𝑎⟩ ⩽ ⟨𝑏⟩ if 𝑎 ≲ 𝑏. (𝑊(𝐴), ⩽) is a partially ordered abelian semigroup. Let Cu(𝐴) =
𝑊(𝐴 ⊗).𝑊(𝐴) (resp. Cu(𝐴)) is called almost unperforated, if for any ⟨𝑎⟩, ⟨𝑏⟩ ∈ 𝑊(𝐴) (resp.
Cu(𝐴)), and for any 𝑘 ∈ ℕ, if (𝑘 + 1)⟨𝑎⟩ ⩽ 𝑘⟨𝑏⟩, then ⟨𝑎⟩ ⩽ ⟨𝑏⟩ (see [38]). Denote by 𝑉(𝐴) the
subset of those elements in𝑊(𝐴) represented by projections.
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3011

Remark 2.7. It is known to experts that 𝑊(𝐴) is almost unperforated is equivalent to say that
Cu(𝐴) is almost unperforated. To see this briefly, let 𝑎, 𝑏 ∈ (𝐴 ⊗)+ such that (𝑘 + 1)⟨𝑎⟩ ⩽ 𝑘⟨𝑏⟩.
Let {𝑒𝑖,𝑗} be the system of matrix units for  and 𝐸𝑛 =

∑𝑛
𝑖=1 1𝐴̃ ⊗ 𝑒𝑖,𝑖 and let 𝜀 > 0. Note that

𝐸𝑛𝑎𝐸𝑛 ∈ 𝑀𝑛(𝐴)+ for all 𝑛 ∈ ℕ. Moreover, 𝑎 ≈𝜀∕8 𝐸𝑛𝑎𝐸𝑛 for some large 𝑛 ∈ ℕ. It follows from
[38, Proposition 2.2] that (𝑎 − 𝜀)+ ≲ (𝐸𝑛𝑎𝐸𝑛 − 𝜀∕4)+ and (𝐸𝑛𝑎𝐸𝑛 − 𝜀∕4)+ ≲ (𝑎 − 𝜀∕8)+. By [38,
Proposition 2.4] , there exists 𝛿 > 0 such that (𝑘 + 1)⟨(𝑎 − 𝜀∕8)+⟩ ⩽ 𝑘⟨(𝑏 − 𝛿)+⟩. Repeating Rør-
dam’s results ([38]), one obtains that ⟨(𝑏 − 𝛿)+⟩ ⩽ ⟨𝐸𝑚𝑏𝐸𝑚⟩ for some even larger𝑚. Now one has
(𝑘 + 1)⟨(𝐸𝑛𝑎𝐸𝑛 − 𝜀∕4)+⟩ ⩽ 𝑘⟨𝐸𝑚𝑏𝐸𝑚⟩. Since𝑊(𝐴) is almost unperforated, (𝑎 − 𝜀)+ ≲ (𝐸𝑛𝑎𝐸𝑛 −
𝜀∕4)+ ≲ 𝐸𝑚𝑏𝐸𝑚. Then, (𝑎 − 𝜀)+ ≲ 𝐸𝑚𝑏𝐸𝑚 ≲ 𝑏. It follows that 𝑎 ≲ 𝑏. Therefore,𝑊(𝐴) is almost
unperforated implies Cu(𝐴) is almost unperforated.
To see the converse, just notice that𝐴 is a hereditary 𝐶∗-subalgebra of𝐴⊗ and ⟨𝑎⟩ ⩽ ⟨𝑏⟩ in

Cu(𝐴) = 𝑊(𝐴 ⊗) implies ⟨𝑎⟩ ⩽ ⟨𝑏⟩ in𝑊(𝐴).
Definition 2.8. Let 𝐴 be a 𝐶∗-algebra. A densely defined 2-quasi-trace is a 2-quasi-trace defined
on Ped(𝐴) (see [4, Definition II.1.1]). Denote by𝑄𝑇(𝐴) the set of densely defined 2-quasi-traces on
𝐴⊗. Inwhat followswewill identify𝐴with𝐴⊗ 𝑒1,1, whenever it is convenient. Let 𝜏 ∈ 𝑄𝑇(𝐴).
Note 𝜏(𝑎) ≠∞ for any 𝑎 ∈ Ped(𝐴)+ ⧵ {0}.
Note, for each 𝑎 ∈ (𝐴 ⊗)+ and 𝜀 > 0, 𝑓𝜀(𝑎) ∈ Ped(𝐴 ⊗)+. Define

𝑑𝜏(𝑎) = lim
𝜀→0

𝜏(𝑓𝜀(𝑎)) for all 𝜏 ∈ 𝑄𝑇(𝐴). (e2.1)

A simple 𝐶∗-algebra𝐴 is said to have (Blackadar’s) strict comparison, if, for any 𝑎, 𝑏 ∈ (𝐴 ⊗)+,
one has 𝑎 ≲ 𝑏, if

𝑑𝜏(𝑎) < 𝑑𝜏(𝑏) for all 𝜏 ∈ 𝑄𝑇(𝐴) ⧵ {0}. (e2.2)

Let𝐴 be a simple𝐶∗-algebra. By [39, Proposition 3.2] (and [13, Proposition 6.2]), ifCu(𝐴) is almost
unperforated then 𝐴 has strict comparison (see also Proposition 4.2 of [13]).
We endow 𝑄𝑇(𝐴) with the topology in which a net {𝜏𝑖} converges to 𝜏 if {𝜏𝑖(𝑎)} converges to

𝜏(𝑎) for all 𝑎 ∈ Ped(𝐴) (see also (4.1) on page 985 of [13]).
Let 𝐴 be a simple 𝐶∗-algebra. Note that, if 𝜏 is a lower semicontinuous quasitrace on 𝐴⊗

defined in [13], and if 𝜏(𝑎) < ∞ for some 𝑎 ∈ Ped(𝐴)+ ⧵ {0}, then 𝜏(𝑐) ∈ ℂ for all 𝑐 ∈ Ped(𝐴). In
other words, 𝜏 ∈ 𝑄𝑇(𝐴). If 𝜏(𝑎) = ∞ for some 𝑎 ∈ Ped(𝐴)+ ⧵ {0}, then, in this case, 𝜏(𝑐) = ∞ for
all 𝑐 ∈ Ped(𝐴)+ ⧵ {0}. Note that we exclude the constant∞ from 𝑄𝑇(𝐴).
Choose any 𝑒 ∈ Ped(𝐴)+ ⧵ {0}. Put 𝑇𝑒 = {𝜏 ∈ 𝑄𝑇(𝐴) ∶ 𝜏(𝑒) = 1}. Then 𝑇𝑒 is compact (see [13,

Theorem 4.4], note that 𝑇𝑒 = {𝜏 ∈ 𝑄𝑇2(𝐴) ∶ 𝜏(𝑒) = 1} is a closed subset in the compact space
𝑄𝑇2(𝐴), which is used in [13]). Suppose that 𝑄𝑇(𝐴) ≠ {0}. Since 𝐴 is simple, if 𝜏 ∈ 𝑄𝑇(𝐴) ⧵ {0},
then 𝜏(𝑒) > 0. Note that, for any 𝜏 ∈ 𝑄𝑇(𝐴) ⧵ {0}, 𝜏(⋅)∕𝜏(𝑒) ∈ 𝑇𝑒. In other words, 𝜏(𝑎) < 𝜏(𝑏) for
all 𝜏 ∈ 𝑄𝑇(𝐴) ⧵ {0} if and only if 𝜏(𝑎) < 𝜏(𝑏) for all 𝜏 ∈ 𝑇𝑒.

Definition 2.9. Let Aff+(𝑄𝑇(𝐴)) be the set of all continuous affine functions 𝑓 on 𝑄𝑇(𝐴) such
that 𝑓(𝜏) > 0 for all 𝜏 ∈ 𝑄𝑇(𝐴) ⧵ {0} and 𝑓(0) = 0, and, the zero function.
Let LAff+(𝑄𝑇(𝐴)) be the set of those lower semi-continuous affine functions 𝑓 ∶ 𝑄𝑇(𝐴) →

[0,∞] such that there exists an increasing sequence of functions 𝑓𝑛 ∈ Aff+(𝑄𝑇(𝐴)) such that
𝑓(𝜏) = lim𝑛→∞ 𝑓𝑛(𝜏) for all 𝜏 ∈ 𝑄𝑇(𝐴).
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The canonical map fromCu(𝐴) to LAff+(𝑄𝑇(𝐴)) is defined as follows: for each 𝑎 ∈ (𝐴 ⊗)+,
the map ⟨𝑎⟩→ ⟨̂𝑎⟩ is defined by ⟨̂𝑎⟩(𝜏) = 𝑑𝜏(𝑎) for all 𝜏 ∈ 𝑄𝑇(𝐴).
3 CUNTZ-NULL SEQUENCES

In this section, we will introduce the notion of Cuntz-null sequence and discuss the related
properties of the (closed two-sided) ideal consisting of Cuntz-null sequences.

Definition 3.1. Let 𝐴 be a 𝐶∗-algebra. A bounded sequence {𝑎𝑛} in 𝐴 is said to be Cuntz-null, if
for any 𝑎 ∈ 𝐴+∖{0} and any 𝜀 > 0, there is 𝑛0 ∈ ℕ such that 𝑓𝜀(𝑎∗𝑛𝑎𝑛) ≲ 𝑎 for all 𝑛 ⩾ 𝑛0.
Let 𝑙∞(𝐴) be the 𝐶∗-algebra of bounded sequences of 𝐴. Recall that 𝑐0(𝐴) ∶= {{𝑎𝑛} ∈ 𝑙∞(𝐴) ∶

lim𝑛→∞ ‖𝑎𝑛‖ = 0} is a (closed) two-sided ideal of 𝑙∞(𝐴). Let 𝐴∞ ∶= 𝑙∞(𝐴)∕𝑐0(𝐴). Let 𝜋∞ ∶
𝑙∞(𝐴) → 𝐴∞ be the quotient map. We view 𝐴 as a subalgebra of 𝑙∞(𝐴) via the canonical map
𝑎 ↦ {𝑎, 𝑎, …} for all 𝑎 ∈ 𝐴. In what follows, we will identify 𝑎with the constant sequence {𝑎, 𝑎, …}
in 𝑙∞(𝐴) without further warning. Denote by 𝑁𝑐𝑢(𝐴) (or just 𝑁𝑐𝑢) the set of all Cuntz-null
sequences in 𝑙∞(𝐴). Let us also write that

𝜋−1∞ (𝐴
′) = {{𝑥𝑛} ∈ 𝑙

∞(𝐴) ∶ lim
𝑛→∞

‖𝑥𝑛𝑎 − 𝑎𝑥𝑛‖ = 0 for all 𝑎 ∈ 𝐴}. (e3.1)

Remark 3.2. For a free (ultra)filter 𝜔 on ℕ, we may similarly define 𝜔-Cuntz-null sequences as
follows: the set of those {𝑎𝑛} ∈ 𝑙∞(𝐴) such that, for any 𝑎 ∈ 𝐴+∖{0} and any 𝜀 > 0, there is𝑊 ∈ 𝜔

satisfying 𝑓𝜀(𝑎∗𝑛𝑎𝑛) ≲ 𝑎 for all 𝑛 ∈ 𝑊. Similar results in this section also works for 𝜔-Cuntz-null
sequences. But we will not explore this further in this paper.

Proposition 3.3. Let 𝐴 be a 𝐶∗-algebra and 𝐵 ⊂ 𝐴 be a 𝐶∗-subalgebra. Let

𝐼 ∶= {𝑎 ∈ 𝐴 ∶ 𝑎∗𝑎 ≲ 𝑏 for all 𝑏 ∈ 𝐵+∖{0}}.

If 𝐵 has no one-dimensional hereditary 𝐶∗-subalgebras, then 𝐼 is a closed two-sided ideal of 𝐴.

Proof. First, let us show that 𝐼 is a ∗-invariant linear space. To see this, let 𝑎 ∈ 𝐼. If 𝜆 ∈ ℂ
and 𝑏 ∈ 𝐵+ ⧵ {0}, then |𝜆|2𝑎∗𝑎 ≲ 𝑎∗𝑎 ≲ 𝑏. Thus 𝜆𝑎 ∈ 𝐼. Since 𝑎∗𝑎 ∼ 𝑎𝑎∗, we also have 𝑎∗ ∈ 𝐼.
Now let 𝑎1, 𝑎2 ∈ 𝐼 and 𝑏 ∈ 𝐵+∖{0}. By our assumption, Her𝐵(𝑏) ≇ ℂ. Then there exist 𝑏1, 𝑏2 ∈
Her𝐵(𝑏)+∖{0} such that 𝑏1𝑏2 = 0. By the definition of 𝐼, we have 𝑎∗

𝑖
𝑎𝑖 ≲ 𝑏𝑖 , (𝑖 = 1, 2). Then

(𝑎1 + 𝑎2)
∗(𝑎1 + 𝑎2) ⩽ 2(𝑎

∗
1
𝑎1 + 𝑎

∗
2
𝑎2) ≲ 𝑏1 + 𝑏2 ≲ 𝑏. It follows 𝑎1 + 𝑎2 ∈ 𝐼. Consequently, 𝐼 is a

∗-invariant linear space.
Next, let us show that 𝐼 is a two-sided (algebraic) ideal. Let 𝑎 ∈ 𝐼 and𝑥 ∈ 𝐴. For any 𝑏 ∈ 𝐵+∖{0},

we have (𝑎𝑥)∗𝑎𝑥 = 𝑥∗𝑎∗𝑎𝑥 ≲ 𝑎∗𝑎 ≲ 𝑏. Similarly, (𝑥𝑎)∗𝑥𝑎 = 𝑎∗𝑥∗𝑥𝑎 ≲ 𝑎∗𝑎 ≲ 𝑏. Thus 𝑎𝑥, 𝑥𝑎 ∈
𝐼. This shows that 𝐼 is a two-sided (algebraic) ideal of 𝐴.
It remains to show that 𝐼 is norm closed. Let {𝑎𝑛} ⊂ 𝐼 and 𝑎 ∈ 𝐴 such that ‖𝑎𝑛 − 𝑎‖→ 0 (𝑛 →

∞). Let 𝑏 ∈ 𝐵+∖{0}. For any 𝜀 > 0, there is 𝑚 ∈ ℕ such that 𝑎∗𝑎 ≈𝜀∕2 𝑎∗𝑚𝑎𝑚. Since 𝑎𝑚 ∈ 𝐼, we
have 𝑎∗𝑚𝑎𝑚 ≲ 𝑏. Thus there exist 𝑟 ∈ 𝐴 such that 𝑎∗𝑚𝑎𝑚 ≈𝜀∕2 𝑟𝑏𝑟

∗. Then 𝑎∗𝑎 ≈𝜀 𝑟𝑏𝑟∗. Since 𝜀 is
arbitrary, we have 𝑎∗𝑎 ≲ 𝑏. Since 𝑏 ∈ 𝐵+∖{0} is arbitrary, we have 𝑎 ∈ 𝐼. Thus 𝐼 is norm closed as
desired. □
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Proposition 3.4. An element {𝑎𝑛} in 𝑙∞(𝐴) is a Cuntz-null sequence if and only if 𝜋∞({𝑎∗𝑛𝑎𝑛}) ≲
𝜋∞(𝑎) for all 𝑎 ∈ 𝐴+∖{0}.

Proof. To see the “if” part, let us assume that {𝑎𝑛} ∈ 𝑙∞(𝐴) has the property that, for any 𝑎 ∈
𝐴+∖{0},

𝜋∞({𝑎
∗
𝑛𝑎𝑛}) = 𝜋∞({𝑎𝑛})

∗𝜋∞({𝑎𝑛}) ≲ 𝜋∞(𝑎). (e3.2)

For any 𝜀 > 0, there is 𝑟 = 𝜋∞({𝑟𝑛}) ∈ 𝑙∞(𝐴)∕𝑐0(𝐴) such that ‖𝜋∞({𝑎∗𝑛𝑎𝑛}) − 𝑟∗𝜋∞(𝑎)𝑟‖ < 𝜀∕2.
Then there is 𝑛0 ∈ ℕ such that ‖𝑎∗𝑛𝑎𝑛 − 𝑟∗𝑛𝑎𝑟𝑛‖ < 𝜀∕2 for all 𝑛 ⩾ 𝑛0. By [38, Proposition 2.2], we
have 𝑓𝜀(𝑎∗𝑛𝑎𝑛) ≲ 𝑟

∗
𝑛𝑎𝑟𝑛 ≲ 𝑎 for all 𝑛 ⩾ 𝑛0. So {𝑎𝑛} ∈ 𝑁𝑐𝑢(𝐴).

Conversely, we assume that {𝑎𝑛} ∈ 𝑁𝑐𝑢(𝐴). Let 𝑎 ∈ 𝐴+∖{0} and 𝜀 > 0.
Choose 𝛿 > 0 such that𝑓𝛿(𝑎) ≠ 0. Since {𝑎𝑛} is a Cuntz-null sequence, there is𝑛1 ∈ ℕ satisfying

𝑓𝜀∕2(𝑎
∗
𝑛𝑎𝑛) ≲ 𝑓𝛿(𝑎) for all𝑛 ⩾ 𝑛1. By [38, Proposition 2.4 (iv)], for each𝑛 ⩾ 𝑛0, there is 𝑟𝑛 ∈ 𝐴 such

that 𝑓𝜀(𝑎∗𝑛𝑎𝑛) = 𝑟
∗
𝑛𝑓𝛿(𝑎)𝑟𝑛. Note that ‖𝑓𝛿(𝑎)1∕2𝑟𝑛‖ = ‖𝑟∗𝑛𝑓𝛿(𝑎)𝑟𝑛‖1∕2 = ‖𝑓𝜀(𝑎∗𝑛𝑎𝑛)‖ is bounded

for all 𝑛 ⩾ 𝑛1. For 𝑛 ∈ ℕ, let 𝑠𝑛 = 𝑓𝛿(𝑎)1∕2𝑟𝑛 if 𝑛 ⩾ 𝑛1, and let 𝑠𝑛 = 0 if 𝑛 < 𝑛1. Then 𝑠 = {𝑠𝑛} ∈
𝑙∞(𝐴). Moreover, 𝑓𝜀(𝑎∗𝑛𝑎𝑛) = 𝑠

∗
𝑛𝑓𝛿∕2(𝑎)𝑠𝑛 for all 𝑛 ⩾ 𝑛1. Then

‖𝑓𝜀(𝜋∞({𝑎∗𝑛𝑎𝑛})) − 𝑠∗𝑓𝛿∕2(𝜋∞(𝑎))𝑠‖ = ‖𝜋∞(𝑓𝜀({𝑎∗𝑛𝑎𝑛}) − 𝑠∗𝑓𝛿∕2(𝜋∞(𝑎))𝑠‖ (e3.3)

⩽ sup
𝑛⩾𝑛1

‖𝑓𝜀(𝑎∗𝑛𝑎𝑛) − 𝑠∗𝑛𝑓𝛿∕2(𝑎)𝑠𝑛‖ = 0. (e3.4)

Therefore 𝑓𝜀(𝜋∞({𝑎
∗
𝑛𝑎𝑛})) ≲ 𝑓𝛿∕2(𝜋∞(𝑎)) ≲ 𝜋∞(𝑎). It follows 𝜋∞({𝑎

∗
𝑛𝑎𝑛}) ≲ 𝜋∞(𝑎) as

desired. □

Proposition 3.5. If 𝐴 is a 𝐶∗-algebra which has no one-dimensional hereditary 𝐶∗-subalgebras,
then 𝑁𝑐𝑢(𝐴) is a closed two-sided ideal of 𝑙∞(𝐴) and 𝑐0(𝐴) ⊂ 𝑁𝑐𝑢(𝐴). If 𝐴 is a non-elementary
separable simple 𝐶∗-algebra, then 𝑐0(𝐴) ≠ 𝑁𝑐𝑢(𝐴).

Proof. Let 𝐽 ∶= {𝑥 ∈ 𝑙∞(𝐴)∕𝑐0(𝐴) ∶ 𝑥∗𝑥 ≲ 𝑎 for all 𝑎 ∈ 𝜋∞(𝐴)+∖{0}}. Since 𝐴 has no one-
dimensional hereditary 𝐶∗-subalgebra, by Proposition 3.3, 𝐽 is a norm closed two-sided ideal of
𝑙∞(𝐴)∕𝑐0(𝐴). Then, by Proposition 3.4,𝑁𝑐𝑢(𝐴) = 𝜋−1∞ (𝐽) is a normclosed two-sided ideal of 𝑙∞(𝐴).
Moreover, 𝑐0(𝐴) = 𝜋−1∞ (0) ⊂ 𝜋

−1
∞ (𝐽) = 𝑁𝑐𝑢(𝐴).

Suppose now that 𝐴 is non-elementary, separable and simple, by [15, Lemma 4.3], there exists
a sequence {𝑠𝑛} ⊂ 𝐴+ with ‖𝑠𝑛‖ = 1 such that, for any 𝑎 ∈ 𝐴+ ⧵ {0}, there exists 𝑛0 ⩾ 1 such that
𝑠𝑛 ≲ 𝑎 for all 𝑛 ⩾ 𝑛0. In other words, {𝑠𝑛} ∈ 𝑁𝑐𝑢(𝐴). Note that {𝑠𝑛} ∉ 𝑐0(𝐴). □

Definition 3.6. Let𝐴 be a 𝐶∗-algebra which has no one-dimensional hereditary 𝐶∗-subalgebras.
Let 𝐴𝑐𝑢 ∶= 𝑙∞(𝐴)∕𝑁𝑐𝑢(𝐴) and 𝜋𝑐𝑢 ∶ 𝑙∞(𝐴) → 𝐴𝑐𝑢 be the quotient map. Let 𝜋∞(𝐴)′ ∶= {𝑥 ∈
𝐴∞ ∶ 𝑥𝑎 = 𝑎𝑥 for all 𝑎 ∈ 𝜋∞(𝐴)}. Let 𝜋∞(𝐴)⊥ ∶= {𝑥 ∈ 𝐴∞ ∶ 𝑥𝑎 = 0 = 𝑎𝑥 for all 𝑎 ∈ 𝜋∞(𝐴)}.
Let 𝜋𝑐𝑢(𝐴)′ ∶= {𝑥 ∈ 𝐴𝑐𝑢 ∶ 𝑥𝑎 = 𝑎𝑥 for all 𝑎 ∈ 𝜋𝑐𝑢(𝐴)}. Let 𝜋𝑐𝑢(𝐴)⊥ ∶= {𝑥 ∈ 𝐴𝑐𝑢 ∶ 𝑥𝑎 = 0 =
𝑎𝑥 for all 𝑎 ∈ 𝜋𝑐𝑢(𝐴)}. Recall that 𝑐0(𝐴) ⊂ 𝑁𝑐𝑢(𝐴). Denote by 𝜋 ∶ 𝐴∞ → 𝐴𝑐𝑢,𝜋∞({𝑎𝑛}) ↦
𝜋𝑐𝑢({𝑎𝑛}) the well-defined quotient map. Moreover, 𝜋 ∶ 𝐴∞ → 𝐴𝑐𝑢 induces canonical maps 𝜋′ ∶
𝜋∞(𝐴)

′ → 𝜋𝑐𝑢(𝐴)
′ and 𝜋⊥ ∶ 𝜋∞(𝐴)⊥ → 𝜋𝑐𝑢(𝐴)

⊥.
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3014 FU et al.

Remark 3.7. It is obvious that 𝜋∞(𝐴)⊥ is a closed two-sided ideal of 𝜋∞(𝐴)′, and 𝜋𝑐𝑢(𝐴)⊥ is a
closed two-sided ideal of 𝜋𝑐𝑢(𝐴)′.

Proposition 3.8. Let 𝐴 be a non-elementary separable simple 𝐶∗-algebra with 𝑄𝑇(𝐴) ≠ {0}. Let
𝑒 ∈ Ped(𝐴)+ ⧵ {0} and let 𝑇𝑒 = {𝜏 ∈ 𝑄𝑇(𝐴) ∶ 𝜏(𝑒) = 1}. Define

𝐼𝑇,0 = {{𝑥𝑛} ∈ 𝑙
∞(𝐴) ∶ lim

𝑛→∞
sup{𝜏(𝑥∗𝑛𝑥𝑛) ∶ 𝜏 ∈ 𝑇𝑒} = 0} and (e3.5)

𝐼𝑇 ∶= {{𝑥𝑛} ∈ 𝑙
∞(𝐴) ∶ lim

𝑛→∞
sup{𝜏((𝑥∗𝑛𝑥𝑛 − 𝜀)+) ∶ 𝜏 ∈ 𝑇𝑒} = 0 for all 𝜀 > 0}. (e3.6)

Suppose that 𝐴 has strict comparison. Then

𝐼𝑇,0 ⊂ 𝐼𝑇 = 𝑁𝑐𝑢(𝐴). (e3.7)

Moreover, if 𝐴 = Ped(𝐴), then 𝐼𝑇,0 = 𝑁𝑐𝑢(𝐴) = 𝐼𝑇 .

Proof. To see (e3.7), we first notice that 𝐼𝑇,0 ⊂ 𝐼𝑇 . Let {𝑥𝑛} ∈ 𝐼𝑇 . Fix 𝑎 ∈ 𝐴𝟏+ ⧵ {0}. Choose 0 < 𝜂1 <‖𝑎‖∕2. Then (𝑎 − 𝜂1)+ ∈ Ped(𝐴)+ ⧵ {0}. Since 𝑇𝑒 is compact, 𝐴 is simple and 𝜏 ↦ 𝜏((𝑎 − 𝜂1)+) is
continuous, we have

𝜎0 ∶= inf {𝜏((𝑎 − 𝜂1)+) ∶ 𝜏 ∈ 𝑇𝑒} > 0.

Fix any 𝜀 ∈ (0, 𝜂1). Then

𝑓𝜀∕2(𝑥
∗
𝑛𝑥𝑛) ⩽ (

16

𝜀
)(𝑥∗𝑛𝑥𝑛 − 𝜀∕8)+ for all 𝑛 ⩾ 1. (e3.8)

There exists 𝑁 ⩾ 1 such that, for all 𝑛 ⩾ 𝑁,𝜏((𝑥∗𝑛𝑥𝑛 − 𝜀∕8)+) <
𝜀⋅𝜎0
16

for all 𝜏 ∈ 𝑇𝑒. By (e3.8), we
have

𝑑𝜏(𝑓𝜀(𝑥
∗
𝑛𝑥𝑛)) ⩽ 𝜏(𝑓𝜀∕2(𝑥

∗
𝑛𝑥𝑛)) < 𝜎0 ⩽ 𝑑𝜏(𝑎) for all 𝜏 ∈ 𝑇𝑒 and for all 𝑛 ⩾ 𝑁. (e3.9)

Since 𝐴 has strict comparison (see Definition 2.8), for all 𝑛 ⩾ 𝑁,𝑓𝜀(𝑥∗𝑛𝑥𝑛) ≲ 𝑎. Thus {𝑥𝑛} ∈
𝑁𝑐𝑢(𝐴). It follows that 𝐼𝑇 ⊂ 𝑁𝑐𝑢(𝐴). Since 𝑁𝑐𝑢(𝐴) is closed, we conclude 𝐼𝑇,0 ⊂ 𝑁𝑐𝑢(𝐴).
Now let {𝑥𝑛} ∈ 𝑁𝑐𝑢(𝐴) and 𝜀 > 0. We may assume that ‖{𝑥𝑛}‖ ⩽ 1. Fix 𝜀1 ∈ (0, 𝜀). For any 𝜂 >

0, since 𝐴 is simple, infinite-dimensional, and non-elementary, Her𝐴(𝑒) is also simple, infinite-
dimensional, and non-elementary. It follows from [15, Lemma 4.3] (see also [23, Lemma 2.4]) that
there is 𝑎𝜂 ∈ Her𝐴(𝑒)+ ⧵ {0} such that 𝑑𝜏(𝑎𝜂) < 𝜂 for all 𝜏 ∈ 𝑇𝑒. There exists an integer 𝑁1 ⩾ 1
such that

(𝑥∗𝑛𝑥𝑛 − 𝜀1)+ ≲ 𝑎𝜂 for all 𝑛 ⩾ 𝑁1. (e3.10)

It follows that, for all 𝑛 ⩾ 𝑁1,

sup{𝜏((𝑥∗𝑛𝑥𝑛 − 𝜀1)+) ∶ 𝜏 ∈ 𝑇𝑒} ⩽ sup{𝑑𝜏((𝑥
∗
𝑛𝑥𝑛 − 𝜀1)+) ∶ 𝜏 ∈ 𝑇𝑒} ⩽ sup{𝑑𝜏(𝑎𝜂) ∶ 𝜏 ∈ 𝑇𝑒} ⩽ 𝜂.
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Therefore lim𝑛→∞ sup{𝜏((𝑥∗𝑛𝑥𝑛 − 𝜀1)+) ∶ 𝜏 ∈ 𝑇𝑒} = 0. In other words, {𝑥𝑛} ∈ 𝐼𝑇 . This proves the
first part of the proposition.
If, in addition, we assume 𝐴 = Ped(𝐴), then, by [12, Proposition 5.6], there are 𝑀(𝑒) > 0 and

an integer 𝑁(𝑒) ⩾ 1 such that, for any 𝑏 ∈ 𝐴𝟏+, there are 𝑦1, 𝑦2, … , 𝑦𝑚 ∈ 𝐴 with ‖𝑦𝑖‖ ⩽ 𝑀(𝑒) and
𝑚 ⩽ 𝑁(𝑒) such that

𝑚∑
𝑖=1

𝑦∗𝑖 𝑒𝑦𝑖 = 𝑏. (e3.11)

Let 𝜏 be a 2-quasi-trace on 𝐴 = Ped(𝐴), which extends to a 2-quasi-trace on 𝑀𝑚(𝐴). Let 𝑍 ∶=
(𝑧𝑖,𝑗)𝑚×𝑚, where, for each 𝑖, 𝑧𝑖,1 = 𝑦𝑖 and 𝑧𝑖,𝑗 = 0 for 1 < 𝑗 ⩽ 𝑚 and 𝑒𝑚 = diag(𝑒, 𝑒, … , 𝑒). We then
estimate

𝜏(𝑏) = 𝜏

(
𝑚∑
𝑖=1

𝑦∗𝑖 𝑒𝑦𝑖

)
= 𝜏(𝑍∗𝑒𝑚𝑍) = 𝜏((𝑒𝑚)

1∕2𝑍𝑍∗(𝑒𝑚)
1∕2) (e3.12)

⩽ ‖𝑍𝑍∗‖𝜏(𝑒𝑚) = ‖𝑍‖2 ⋅𝑚𝜏(𝑒) ⩽ 𝑁(𝑒)3𝑀(𝑒)2𝜏(𝑒). (e3.13)

It follows that

Δ ∶= sup{‖𝜏‖ ∶ 𝜏 ∈ 𝑇𝑒} ⩽ 𝑁(𝑒)3𝑀(𝑒)2. (e3.14)

Let {𝑥𝑛} ∈ 𝐼𝑇 and let 𝜀, 𝛿 > 0. Choose 𝜀1 ∶= 𝜀∕𝑁(𝑒)3𝑀(𝑒)2. Then there is 𝑁 ∈ ℕ such that

sup{𝜏((𝑥∗𝑛𝑥𝑛 − 𝜀1)+) ∶ 𝜏 ∈ 𝑇𝑒} < 𝛿 for all 𝑛 ⩾ 𝑁. (e3.15)

Let 𝑛 ⩾ 𝑁 and 𝜏 ∈ 𝑇𝑒. Consider the commutative 𝐶∗-subalgebra 𝐵 of 𝐴 generated by 𝑥∗𝑛𝑥𝑛. Then
𝜏 extends to a positive linear functional on 𝐵. Then,

𝜏(𝑥∗𝑛𝑥𝑛) = 𝜏((𝑥
∗
𝑛𝑥𝑛 − 𝜀1)+) − 𝜏((𝑥

∗
𝑛𝑥𝑛 − 𝜀1)−) + 𝜏(𝜀1) (e3.16)

⩽ 𝜏((𝑥∗𝑛𝑥𝑛 − 𝜀1)+) + 𝜀1‖𝜏‖ < 𝛿 + 𝜀. (e3.17)

This implies lim𝑛→∞ sup{𝜏(𝑥∗𝑛𝑥𝑛) ∶ 𝜏 ∈ 𝑇𝑒} = 0. It follows that {𝑥𝑛} ∈ 𝐼𝑇,0. Therefore, we have
shown 𝐼𝑇 ⊂ 𝐼𝑇,0.
In conclusion, when 𝐴 = Ped(𝐴), we have 𝐼𝑇,0 = 𝑁𝑐𝑢(𝐴) = 𝐼𝑇 . □

Remark 3.9. In Proposition 3.8, if 𝐴 = Ped(𝐴), for any 𝑒 ∈ 𝐴+ ⧵ {0},

𝐼𝑇,0 = {{𝑥𝑛} ∈ 𝑙
∞(𝐴) ∶ lim

𝑛→∞
sup{‖𝑥𝑛‖2,𝜏 ∶ 𝜏 ∈ 𝑇𝑒} = 0} = 𝑁𝑐𝑢(𝐴), (e3.18)

where ‖𝑥𝑛‖2,𝜏 = 𝜏(𝑥∗𝑛𝑥𝑛)1∕2. Note that, 𝐼𝑇,0 and 𝐼𝑇 are independent of the choice of 𝑒 in Ped(𝐴)+ ⧵
{0}.
However, 𝑁𝑐𝑢(𝐴) ≠ 𝐼𝑇,0 in general. To see this, let 𝐵 be a unital separable simple 𝐶∗-algebra

which has a nontrivial 2-quasi-trace and 𝐴 = 𝐵 ⊗. Let {𝑒𝑖,𝑗} be a system of matrix units for .
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3016 FU et al.

Fix 𝑒 ∈ Ped(𝐴)+ ⧵ {0}. Note that 1∕2 <
∑2𝑛
𝑖=𝑛(1∕𝑖) < 1. Define 𝑦𝑛 =

∑2𝑛
𝑖=𝑛(1∕

√
𝑖)(1𝐵 ⊗ 𝑒𝑖,𝑖) ∈ 𝐴,

𝑛 ∈ ℕ. Note 𝑦∗𝑛𝑦𝑛 ∈ Ped(𝐴)+ and ‖𝑦𝑛‖ ⩽ 1. For any 𝜀 > 0, let 𝑚 ∈ ℕ such that 1∕𝑚 < 𝜀. Then
(𝑦∗𝑛𝑦𝑛 − 𝜀)+ = 0 for all 𝑛 > 𝑚. Therefore {𝑦𝑛} ∈ 𝑁𝑐𝑢(𝐴). Also, 𝜏(𝑦

∗
𝑛𝑦𝑛) > (1∕2)𝜏(1𝐵 ⊗ 𝑒1,1) for all

𝜏 ∈ 𝑇𝑒 (but 𝜏(𝑦∗𝑛𝑦𝑛) < 𝜏(1𝐵 ⊗ 𝑒1,1) for each 𝑛). So {𝑦𝑛} ∉ 𝐼𝑇,0.

Recall Definition 3.6. We have the following version of central surjectivity (c.f. [22, Proposition
4.5(iii) and Proposition 4.6], see also [30, Theorem 3.1]). Note that the following proposition is
related to the so-called 𝜎-ideal [21, Definition 1.5, Proposition 1.6].

Proposition 3.10. For a non-elementary separable simple 𝐶∗-algebra 𝐴, the canonical maps 𝜋′ ∶
𝜋∞(𝐴)

′ → 𝜋𝑐𝑢(𝐴)
′ and 𝜋⊥ ∶ 𝜋∞(𝐴)⊥ → 𝜋𝑐𝑢(𝐴)

⊥ are surjective.

Proof. Let {𝑑𝑛} ⊂ 𝐴𝟏+ be a sequence of positive contractive elements with ‖𝑑𝑛‖ = 1 for all 𝑛 ∈ ℕ
such that for any 𝑎 ∈ 𝐴+∖{0}, there exists 𝑁 ∈ ℕ satisfying 𝑑𝑛 ≲ 𝑎 for all 𝑛 ⩾ 𝑁 (see [15, Lemma
4.3]). Let 𝑥 = {𝑥𝑛} ∈ 𝑙∞(𝐴)𝟏 such that𝜋𝑐𝑢(𝑥) ∈ 𝜋𝑐𝑢(𝐴)′ and g = {g𝑛} ∈ 𝑙∞(𝐴)𝟏 such that𝜋𝑐𝑢(g) ∈
𝜋𝑐𝑢(𝐴)

⟂. Let 𝐹1 ⊂ 𝐹2 ⊂ … ⊂ 𝐴 be a sequence of finite subsets with ∪𝑚𝐹𝑚 = 𝐴. Let 𝑚 ∈ ℕ, then
𝜋𝑐𝑢(𝑥)𝜋𝑐𝑢(𝑦) − 𝜋𝑐𝑢(𝑦)𝜋𝑐𝑢(𝑥) = 0 and 𝜋𝑐𝑢(g)𝜋𝑐𝑢(𝑦) = 0 = 𝜋𝑐𝑢(𝑦)𝜋𝑐𝑢(g) for all 𝑦 ∈ 𝐹𝑚, that is,
𝑥𝑦 − 𝑦𝑥, g𝑦, 𝑦g ∈ 𝑁𝑐𝑢(𝐴). By the existence of quasi-central approximate identity, there exists
𝑒(𝑚) = {𝑒(𝑚)𝑛 }∞

𝑛=1
∈ 𝑁𝑐𝑢(𝐴)

𝟏
+ such that

‖(1 − 𝑒(𝑚))(𝑥𝑦 − 𝑦𝑥)(1 − 𝑒(𝑚))‖ < 1∕3𝑚 and ‖𝑒(𝑚)𝑦 − 𝑦𝑒(𝑚)‖ < 1∕3𝑚 for all 𝑦 ∈ 𝐹𝑚,(e3.19)

which implies

‖(1 − 𝑒(𝑚))𝑥(1 − 𝑒(𝑚))𝑦 − 𝑦(1 − 𝑒(𝑚))𝑥(1 − 𝑒(𝑚))‖ < 1∕𝑚 for all 𝑦 ∈ 𝐹𝑚. (e3.20)

Similarly, we also assume that

‖(1 − 𝑒(𝑚))g(1 − 𝑒(𝑚))𝑦‖ < 1∕𝑚 and ‖𝑦(1 − 𝑒(𝑚))g(1 − 𝑒(𝑚))‖ < 1∕𝑚 for all 𝑦 ∈ 𝐹𝑚. (e3.21)

Let 𝑧(𝑚) ∶= 𝑥 − (1 − 𝑒(𝑚))𝑥(1 − 𝑒(𝑚)) = 𝑒(𝑚)𝑥 + 𝑥𝑒(𝑚) − 𝑒(𝑚)𝑥𝑒(𝑚) ∈ 𝑁𝑐𝑢(𝐴) and let 𝜁(𝑚) ∶= g −
(1 − 𝑒(𝑚))g(1 − 𝑒(𝑚)) = 𝑒(𝑚)g + g𝑒(𝑚) − 𝑒(𝑚)g𝑒(𝑚) ∈ 𝑁𝑐𝑢(𝐴). Write 𝑧(𝑚) = {𝑧(𝑚)

𝑘
}∞
𝑘=1

and 𝜁(𝑚) =
{𝜁(𝑚)
𝑘
}∞
𝑘=1

. Then, for any𝑚 ∈ ℕ, there is 𝐾(𝑚) ∈ ℕ such that

𝑓1∕𝑚

(
𝑧(𝑚)∗
𝑘

𝑧(𝑚)
𝑘

)
≲ 𝑑𝑚 and 𝑓1∕𝑚

(
𝜁(𝑚)∗
𝑘

𝜁(𝑚)
𝑘

)
≲ 𝑑𝑚 for all 𝑘 ⩾ 𝐾(𝑚). (e3.22)

We may assume that 𝐾(𝑚 + 1) > 𝐾(𝑚) > 0 for all 𝑚 ∈ ℕ. For each 𝑘 ⩾ 𝐾(1), define 𝑚𝑘 ∶=
max{𝑚 ∈ ℕ ∶ 𝐾(𝑚) ⩽ 𝑘} < ∞. Note that

𝐾(𝑚𝑘) ⩽ 𝑘. (e3.23)

For 𝑘 < 𝐾(1), define 𝑤𝑘 = 0 = 𝑣𝑘. For 𝑘 ⩾ 𝐾(1), define

𝑤𝑘 ∶= 𝑧
(𝑚𝑘)

𝑘
and 𝑣𝑘 ∶= 𝜁

(𝑚𝑘)

𝑘
. (e3.24)
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3017

For any 𝜀 > 0 and any 𝑎 ∈ 𝐴+∖{0}, let 𝑟1 ∈ ℕ such that 𝑑𝑚 ≲ 𝑎 for all 𝑚 ⩾ 𝑟1. Then, for any 𝑘 ⩾
𝐾(max{[1∕𝜀] + 1, 𝑟1}), we have𝑚𝑘 ⩾ max{1∕𝜀, 𝑟1}, and by (e3.23) and (e3.22), we have

𝑓𝜀(𝑤
∗
𝑘
𝑤𝑘) = 𝑓𝜀

(
𝑧
(𝑚𝑘)∗

𝑘
𝑧
(𝑚𝑘)

𝑘

)
≲ 𝑓1∕𝑚𝑘

(
𝑧
(𝑚𝑘)∗

𝑘
𝑧
(𝑚𝑘)

𝑘

)
≲ 𝑑𝑚𝑘 ≲ 𝑎 and (e3.25)

𝑓𝜀(𝑣
∗
𝑘
𝑣𝑘) = 𝑓𝜀

(
𝜁
(𝑚𝑘)∗

𝑘
𝜁
(𝑚𝑘)

𝑘

)
≲ 𝑓1∕𝑚𝑘

(
𝜁
(𝑚𝑘)∗

𝑘
𝜁
(𝑚𝑘)

𝑘

)
≲ 𝑑𝑚𝑘 ≲ 𝑎, (e3.26)

which shows {𝑤𝑘}, {𝑣𝑘} ∈ 𝑁𝑐𝑢(𝐴).
Now define

𝑥̄𝑘 ∶= 𝑥𝑘 − 𝑤𝑘 = 𝑥𝑘 − 𝑧
(𝑚𝑘)

𝑘
= (1 − 𝑒

(𝑚𝑘)

𝑘
)𝑥𝑘(1 − 𝑒

(𝑚𝑘)

𝑘
) and (e3.27)

ḡ𝑘 ∶= g𝑘 − 𝑣𝑘 = g𝑘 − 𝜁
(𝑚𝑘)

𝑘
= (1 − 𝑒

(𝑚𝑘)

𝑘
)g𝑘(1 − 𝑒

(𝑚𝑘)

𝑘
). (e3.28)

Since {𝑤𝑘}, {𝑣𝑘} ∈ 𝑁𝑐𝑢(𝐴), we have

𝜋(𝜋∞({𝑥̄𝑘})) − 𝜋𝑐𝑢(𝑥) = 𝜋𝑐𝑢({𝑥̄𝑘 − 𝑥𝑘}) = −𝜋𝑐𝑢({𝑤𝑘}) = 0 and

𝜋(𝜋∞({ḡ𝑘})) − 𝜋𝑐𝑢(g) = 𝜋𝑐𝑢({ḡ𝑘 − g𝑘}) = −𝜋𝑐𝑢({𝑣𝑘}) = 0. (e3.29)

Fix 𝑟 ∈ ℕ and 𝑦 ∈ 𝐹𝑟. Let 𝛿 > 0. Then, for any 𝑘 ⩾ 𝐾(max{𝑟, [1∕𝛿] + 1}), we have𝑚𝑘 ⩾ 𝑟,𝑦 ∈ 𝐹𝑚𝑘 ,
and 1∕𝑚𝑘 ⩽ 𝛿. In particular,

lim
𝑘→∞

1∕𝑚𝑘 = 0. (e3.30)

By (e3.20) and (e3.21), for 𝑦 ∈ 𝐹𝑟 and 𝑘 ⩾ 𝐾(max{𝑟, [1∕𝛿] + 1}),

‖𝑥̄𝑘𝑦 − 𝑦𝑥̄𝑘‖ = ‖(1 − 𝑒(𝑚𝑘)
𝑘

)
𝑥𝑘

(
1 − 𝑒

(𝑚𝑘)

𝑘

)
𝑦 − 𝑦

(
1 − 𝑒

(𝑚𝑘)

𝑘

)
𝑥𝑘

(
1 − 𝑒

(𝑚𝑘)

𝑘

)‖ ⩽ 1∕𝑚𝑘, (e3.31)

‖ḡ𝑘𝑦‖ = ‖(1 − 𝑒(𝑚𝑘)
𝑘

)
g𝑘
(
1 − 𝑒

(𝑚𝑘)

𝑘

)
𝑦‖ ⩽ 1∕𝑚𝑘, and (e3.32)

‖𝑦ḡ𝑘‖ = ‖𝑦(1 − 𝑒(𝑚𝑘)
𝑘

)
g𝑘
(
1 − 𝑒

(𝑚𝑘)

𝑘

)‖ ⩽ 1∕𝑚𝑘. (e3.33)

Combining with (e3.30), this implies that, for each 𝑦 ∈ 𝐹𝑟,

‖𝜋∞({𝑥̄𝑘})𝜋∞(𝑦) − 𝜋∞(𝑦)𝜋∞({𝑥̄𝑘})‖ = 0 and (e3.34)

‖𝜋∞({ḡ𝑘})𝜋∞(𝑦)‖ = 0 = ‖𝜋∞(𝑦)𝜋∞({ḡ𝑘})‖. (e3.35)

Since ∪𝑟𝐹𝑟 = 𝐴, we have

𝜋∞({𝑥̄𝑘}) ∈ 𝜋∞(𝐴)
′ and 𝜋∞({ḡ𝑘}) ∈ 𝜋∞(𝐴)

⊥. (e3.36)

Then (e3.29) and (e3.36) show that 𝜋′ and 𝜋⊥ are surjective. □
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3018 FU et al.

4 TRACIAL APPROXIMATE DIVISIBILITY

In this section we will discuss several versions of tracial approximate divisibility. The main result
of this section is Theorem 4.11 which states that these versions are all equivalent.

Definition 4.1. Let 𝐴 be a simple 𝐶∗-algebra. We say that 𝐴 has property (TAD) if the following
holds: for any 𝜀 > 0, any finite subset  ⊂ 𝐴, any 𝑠 ∈ 𝐴+ ⧵ {0}, and any integer 𝑛 ⩾ 1, there are
𝜃 ∈ 𝐴𝟏+ and a 𝐶

∗-subalgebra 𝐷 ⊗𝑀𝑛 ⊂ 𝐴 such that

(i) 𝜃𝑥 ≈𝜀 𝑥𝜃 for all 𝑥 ∈  ,
(ii) (1 − 𝜃)𝑥 ∈𝜀 𝐷 ⊗ 1𝑛 for all 𝑥 ∈  , and
(iii) 𝜃 ≲ 𝑠.

Remark 4.2.

(1) It is straightforward to show that if 𝐴 has (TAD), we may further require that
(iv) (1 − 𝜃)𝑥 ≈𝜀(1 − 𝜃)1∕2𝑥(1 − 𝜃)1∕2 ∈𝜀 𝐷 ⊗ 1𝑛 for all 𝑥 ∈  , and
(v) 𝑥 ≈𝜀 𝜃1∕2𝑥𝜃1∕2 + (1 − 𝜃)1∕2𝑥(1 − 𝜃)1∕2 for all 𝑥 ∈  .

(2) It is also easy to see that if 𝐴 ≠ ℂ has property (TAD), then for any integer 𝑛 ⩾ 1,𝑀𝑛(𝐴) has
the property (TAD) as well.

(3) If 𝐴 = ∪∞
𝑛=1
𝐴𝑛, where each 𝐴𝑛 has the property (TAD), then 𝐴 has property (TAD). To see

this, let 𝜀 > 0,  ⊂ 𝐴 be a finite subset and 𝑠 ∈ 𝐴+ ⧵ {0}. Choose 𝑛 ⩾ 1 such that 𝑥 ∈ 𝜀∕4𝐴𝑛 for
all 𝑥 ∈  and 𝑎 ∈ (𝐴𝟏𝑛)+ such that 𝑠1 ∶= (𝑎 − 𝜀‖𝑎‖∕4)+ ≲ 𝑠. Using the assumption that 𝐴𝑛
has property (TAD), one concludes that 𝐴 has property (TAD). As a consequence, if 𝐴 ≠ ℂ

and has property (TAD), then 𝐴⊗ has property (TAD).

Next we would like to recall the definition of tracial approximate divisibility which is slightly
different from [16]. One should note that if a simple 𝐶∗-algebra𝐴 is tracially approximately divis-
ible in the sense of Definition 4.3, then 𝐴 is tracially approximately divisible in the sense of
[16, Definition 5.2] below. Of course these two definitions of tracial approximate divisibility are
equivalent for non-elementary separable simple 𝐶∗-algebras, see Remark 4.12 (1).

Definition 4.3 [16, Definition 5.2]. Let 𝐴 be a simple 𝐶∗-algebra. 𝐴 is said to be tracially
approximately divisible, if, for any 𝜀 > 0, any finite subset  ⊂ 𝐴, any element 𝑒𝐹 ∈ 𝐴𝟏+ with
𝑒𝐹𝑥 ≈𝜀∕4 𝑥 ≈𝜀∕4 𝑥𝑒𝐹 for all 𝑥 ∈  , any 𝑠 ∈ 𝐴+ ⧵ {0}, and any integer 𝑛 ⩾ 1, there are 𝜃 ∈ 𝐴𝟏+, a
𝐶∗-subalgebra 𝐷 ⊗𝑀𝑛 ⊂ 𝐴 and a c.p.c. map 𝛽 ∶ 𝐴 → 𝐴 such that

(1) 𝑥 ≈𝜀 𝑥1 + 𝛽(𝑥) for all 𝑥 ∈  , where ‖𝑥1‖ ⩽ ‖𝑥‖, 𝑥1 ∈ Her(𝜃),
(2) 𝛽(𝑥) ∈𝜀 𝐷 ⊗ 1𝑛 and 𝑒𝐹𝛽(𝑥) ≈𝜀 𝛽(𝑥) ≈𝜀 𝛽(𝑥)𝑒𝐹 for all 𝑥 ∈  , and
(3) 𝜃 ≲ 𝑠.

Suppose that 𝐴 has property (TAD). Let 𝜀 > 0,  be a finite subset and 𝑒𝐹 ∈ 𝐴𝟏+ such that
𝑒𝐹𝑥 ≈𝜀∕4 𝑥 ≈𝜀∕4 𝑥𝑒𝐹 for all 𝑥 ∈  . Let 𝑠 ∈ 𝐴+ ⧵ {0} and 𝑛 ∈ ℕ be given. Put 1 =  ∪ {𝑒𝐹}. Then,
by Definition 4.1 and Remark 4.2, (i), (iii), (iv) and (v) hold for 1 with 𝜀∕4 (in place of 𝜀).
Put 𝑥1 = 𝜃1∕2𝑥𝜃1∕2 for 𝑥 ∈  and define a c.p.c. map 𝛽 ∶ 𝐴 → 𝐴 by 𝛽(𝑦) = (1 − 𝜃)1∕2𝑦(1 −

𝜃)1∕2 for all 𝑦 ∈ 𝐴. Then (1) and (3) in Definition 4.3 hold.Moreover, 𝛽(𝑥) ∈𝜀 𝐷 ⊗ 1𝑛 for all 𝑥 ∈  .
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3019

Note that, if 𝑥 ∈  , then

𝑒𝐹𝛽(𝑥) = 𝑒𝐹(1 − 𝜃)
1∕2𝑥(1 − 𝜃)1∕2 ≈𝜀∕4 𝑒𝐹(1 − 𝜃)𝑥 ≈𝜀∕4 (1 − 𝜃)𝑒𝐹𝑥 (e4.1)

≈𝜀∕4 (1 − 𝜃)𝑥 ≈𝜀∕4 (1 − 𝜃)
1∕2𝑥(1 − 𝜃)1∕2 = 𝛽(𝑥). (e4.2)

Similarly 𝛽(𝑥)𝑒𝐹 ≈𝜀 𝛽(𝑥).
It other words, we have just shown that if 𝐴 has property (TAD), then 𝐴 is tracially

approximately divisible. This is essentially the same as [16, Proposition 5.3].
In [18] (Definition 2.1), a unital 𝐶∗-algebra 𝐴 which is not ℂ is called tracially -absorbing, if

for any finite subset  ⊂ 𝐴, any 𝜀 > 0, any 𝑠 ∈ 𝐴+∖{0}, and any integer 𝑛 ⩾ 1, there is an order
zero c.p.c. map 𝜑 ∶ 𝑀𝑛 → 𝐴 such that the following condition hold:

(i) 𝜑(g)𝑥 ≈𝜀 𝑥𝜑(g) for all 𝑥 ∈  and g ∈ 𝑀𝟏
𝑛, and

(ii) 1 − 𝜑(1𝑛) ≲ 𝑠.

We state a non-unital variation of this notion (taken from [1], see also [14, Definition 6.6] and
[9, Definition 2.1]) as follows.

Definition 4.4. (c.f. [1]) Let 𝐴 be a simple 𝐶∗-algebra. We say that 𝐴 has property (TAD-2)
if the following holds: for any 𝜀 > 0, any finite subset  ⊂ 𝐴, any 𝑒𝐹 ∈ 𝐴𝟏+ with 𝑒𝐹𝑥 ≈𝜀 𝑥 ≈𝜀
𝑥𝑒𝐹 , any 𝑠 ∈ 𝐴+ ⧵ {0}, any integer 𝑛 ⩾ 1, and any finite subset  ⊂ 𝐶0((0, 1]) ⊗𝑀𝑛, there is a
homomorphism 𝜑 ∶ 𝐶0((0, 1]) ⊗𝑀𝑛 → 𝐴 such that (recall that 𝜄 is the identity function on
(0,1])

(1) 𝜑(g)𝑥 ≈𝜀 𝑥𝜑(g) for all 𝑥 ∈  and g ∈ , and
(2) ((𝑒𝐹 − 𝑒

1∕2
𝐹
𝜑(𝜄 ⊗ 1𝑛)𝑒

1∕2
𝐹
) − 𝜀)+ ≲ 𝑠.

Remark 4.5. When 𝐴 has a unit 1𝐴, then (2) in the above definition is equivalent to ((1𝐴 −
𝜑(𝜄 ⊗ 1𝑛)) − 𝜀)+ ≲ 𝑠. Indeed, by choosing 𝑒𝐹 = 1𝐴, (2) becomes ((1𝐴 − 𝜑(𝜄 ⊗ 1𝑛)) − 𝜀)+ ≲ 𝑠. Con-
versely, let 1∕2 > 𝜀 > 0,  , 𝑒𝐹 , 𝑠, 𝑛 and  be given. Define 𝜄1 ∈ 𝐶0((0, 1])+ by 𝜄1(𝑡) = 1 if 𝑡 ∈ [1 −
𝜀, 1], 𝜄1(0) = 0 and 𝜄1(𝑡) is linear on [0, 1 − 𝜀). Define a homomorphism 𝛼 ∶ 𝐶0((0, 1]) ⊗𝑀𝑛 →

𝐶0((0, 1]) ⊗𝑀𝑛) by 𝛼(𝑓(𝜄) ⊗ 𝑒𝑖,𝑗) = 𝑓(𝜄1) ⊗ 𝑒𝑖,𝑗 for all 𝑓 ∈ 𝐶0((0, 1]). Put 1 = {𝛼(g) ∶ g ∈ }.
Suppose that 𝜑 is as in the definition associated with 𝜀, , 𝑠, 𝑛 and 1. Define 𝜓 ∶ 𝐶0((0, 1]) ⊗
𝑀𝑛 → 𝐴 by 𝜑◦𝛼. Then, we have
(i) 𝜓(g)𝑥 = 𝜑◦𝛼(g)𝑥 ≈𝜀 𝑥𝜓(g) for all g ∈ . Moreover, (ii)

1𝐴 − 𝜓(𝜄 ⊗ 1𝑛) = 1𝐴 − 𝜑◦𝛼(𝜄 ⊗ 1𝑛) =
1

1 − 𝜀
(1𝐴 − 𝜑(𝜄 ⊗ 1𝑛) − 𝜀)+ ≲ 𝑠. (e4.3)

In other words, in the case that 𝐴 is unital, the property (TAD-2) is equivalent to the property of
tracially -absorbing in the sense of [18, Definition 2.1].
Let 𝜓′ ∶ 𝑀𝑛 → 𝐴 be the c.p.c. order zero map defined by 𝜓′(𝑒𝑖,𝑗) = 𝜑(𝜄 ⊗ 𝑒𝑖,𝑗) (1 ⩽ 𝑖, 𝑗 ⩽ 1).

Since the unit ball of𝑀𝑛 is compact, with a large , (1) is equivalent to that ‖[𝜓′(g), 𝑥]‖ < 𝜀 for
all 𝑥 ∈  and g ∈ 𝑀𝟏

𝑛.

The following Lemma 4.6 and Corollary 4.7 are taken from [21]. We include proofs here for the
reader’s convenience.
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3020 FU et al.

Lemma4.6 (c.f. [21, Proposition 1.9 (3)]). Let𝐴 be a𝐶∗-algebra,𝐵 ⊂ 𝐴 be a subset,𝐵′ ∶= {𝑎 ∈ 𝐴 ∶
𝑎𝑏 = 𝑏𝑎 for all 𝑏 ∈ 𝐵},𝐵⊥ ∶= {𝑎 ∈ 𝐴 ∶ 𝑎𝑏 = 0 = 𝑏𝑎 for all 𝑏 ∈ 𝐵}, then 𝐵⊥ is a closed two-sided of
𝐵′. Let𝜋 ∶ 𝐵′ → 𝐵′∕𝐵⊥ be the quotient map. Suppose that 𝑒 ∈ 𝐵′ satisfies 𝑒𝑏 = 𝑏𝑒 = 𝑏 for all 𝑏 ∈ 𝐵,
then 𝐵′∕𝐵⊥ is unital and 𝜋(𝑒) is the unit.

Proof. It is straightforward to see that 𝐵⊥ is a closed two-sided ideal of 𝐵′. If 𝑥 ∈ 𝐵′, then
for any 𝑏 ∈ 𝐵,(𝑒𝑥 − 𝑥)𝑏 = 𝑏(𝑒𝑥 − 𝑥) = 𝑏𝑒𝑥 − 𝑏𝑥 = 𝑏𝑥 − 𝑏𝑥 = 0. Also, (𝑥𝑒 − 𝑥)𝑏 = 𝑥𝑒𝑏 − 𝑥𝑏 =
𝑥𝑏 − 𝑥𝑏 = 0. Then 𝑥𝑒 − 𝑥, 𝑒𝑥 − 𝑥 ∈ 𝐵⊥. Thus 𝜋(𝑒)𝜋(𝑥) = 𝜋(𝑥) = 𝜋(𝑥)𝜋(𝑒). This completes the
proof. □

Corollary 4.7 (c.f. [21, Proposition 1.9 (3)]). Let 𝐴 be a 𝜎-unital 𝐶∗-algebra without one-
dimensional hereditary𝐶∗-subalgebras. Then both𝜋∞(𝐴)′∕𝜋∞(𝐴)⊥ and𝜋𝑐𝑢(𝐴)′∕𝜋𝑐𝑢(𝐴)⊥ are uni-
tal.

Proof. Let 𝑒 ∈ 𝐴𝟏+ be a strictly positive element. Set 𝑒0 = {𝑒1∕𝑛} ∈ 𝑙∞(𝐴). Then 𝜋∞(𝑒0) (resp.
𝜋𝑐𝑢(𝑒0)) is a local unit of 𝜋∞(𝐴) (resp. 𝜋𝑐𝑢(𝐴)). Hence, by Lemma 4.6, the corollary holds. □

Definition4.8. Let𝐴 be a𝜎-unital non-elementary simple𝐶∗-algebra.We say that𝐴has property
(TAD-3), if, for any 𝑛 ∈ ℕ, there is a unital homomorphism 𝜑 ∶ 𝑀𝑛 → 𝜋𝑐𝑢(𝐴)

′∕𝜋𝑐𝑢(𝐴)
⊥.

Lemma 4.9. Let 𝐴 be a non-elementary separable simple 𝐶∗-algebra.

(1) If 𝐴 is tracially approximately divisible, then 𝐴 has property (TAD-3).
(2) If 𝐴 has property (TAD-3), then 𝐴 has the property (TAD-2).

Proof. Proof of (1). Note that if 𝐴 is tracially approximately divisible, then 𝐴 is tracially approx-
imately divisible in the sense of [16]. In what follows, we will show that if 𝐴 is tracially
approximately divisible in the sense of [16], then 𝐴 has property (TAD-3).
Fix𝑁 ∈ ℕ. By [15, Lemma4.3], there exists a sequence {𝑠𝑛} ⊂ 𝐴𝟏+∖{0} such that, for any𝑎 ∈ 𝐴+ ⧵

{0}, there exists 𝑛0 ⩾ 1 such that 𝑠𝑛 ≲ 𝑎 for all 𝑛 ⩾ 𝑛0. Choose 0 < 𝜀𝑛 < 𝜀 such that
∑∞
𝑛=1 𝜀𝑛 < 1

and an increasing sequence of finite subsets 𝑛 ⊂ 𝐴𝟏 such that and ∪∞𝑛=1𝑛 is dense in 𝐴
𝟏.

Since 𝐴 is separable, for each 𝑛 ∈ ℕ, there are 𝑒′𝑛, 𝑒𝑛 ∈ 𝐴
𝟏
+ such that 𝑒

′
𝑛𝑥 ≈𝜀𝑛∕3 𝑥 ≈𝜀𝑛∕3 𝑥𝑒

′
𝑛 and

𝑒𝑛𝑒
′
𝑛 = 𝑒

′
𝑛 for all 𝑥 ∈ 𝑛. Define ′𝑛 = {𝑒

′
𝑛𝑥𝑒

′
𝑛 ∶ 𝑥 ∈ 𝑛}. Note that 𝑥 ≈2𝜀𝑛∕3 𝑒

′
𝑛𝑥𝑒

′
𝑛 and 𝑒𝑛(𝑒

′
𝑛𝑥𝑒

′
𝑛) =

(𝑒′𝑛𝑥𝑒
′
𝑛) = (𝑒

′
𝑛𝑥𝑒

′
𝑛)𝑒𝑛, 𝑛 ∈ ℕ.

If 𝐴 is tracially approximately divisible in the sense of [16], then there exist a sequence of 𝐶∗-
subalgebras 𝐷𝑛 ⊗𝑀𝑁 ⊂ 𝐴, a sequence of c.p.c. maps 𝛽𝑛 ∶ 𝐴 → 𝐴, and a sequence of positive
elements 𝜃𝑛 ∈ 𝐴𝟏 satisfying the following: for any 𝑦 ∈  ′𝑛, there is 𝑦

(𝑛) ∈ Her(𝜃𝑛)
𝟏 such that

(i) 𝑦 ≈𝜀𝑛∕3 𝑦
(𝑛) + 𝛽𝑛(𝑥),

(ii) 𝛽𝑛(𝑦) ∈𝜀𝑛∕3 𝐷𝑛 ⊗ 1𝑁 , and
(iii) 𝜃𝑛 ≲ 𝑠𝑛.

In particular, we have that {𝜃𝑛} ∈ 𝑁𝑐𝑢(𝐴). For each 𝑥 ∈ 𝑛, let 𝑥(𝑛) = (𝑒′𝑛𝑥𝑒
′
𝑛)
(𝑛) ∈ Her(𝜃)𝟏 as

above. Then we also have (i’) 𝑥 ≈𝜀𝑛 𝑥
(𝑛) + 𝛽𝑛(𝑥) and (ii’) 𝛽𝑛(𝑥) ∈𝜀𝑛 𝐷𝑛 ⊗ 1𝑁 .

For convenience, we put 𝐽 = 𝜋𝑐𝑢(𝐴)⟂. By Lemma 4.6, 𝐽 is an ideal of 𝜋𝑐𝑢(𝐴)′. Denote by 𝜋𝑐𝑢,𝐽 ∶
𝜋𝑐𝑢(𝐴)

′ → 𝜋𝑐𝑢(𝐴)
′∕𝐽 the quotient map.
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3021

For each 𝑥 ∈ 𝑘, we have {𝑥(𝑛)} ∈ 𝑁𝑐𝑢(𝐴). It follows from (i) that, for each 𝑘 and each 𝑥 ∈ 𝑘,

𝜋𝑐𝑢({𝛽𝑛(𝑥)}) = 𝜋𝑐𝑢(𝑥). (e4.4)

Choose 𝑑𝑛 ∈ 𝐷𝟏𝑛+ such that, for any 𝑥 ∈ 𝑘,

(𝑑𝑛 ⊗ 𝑒𝑖,𝑗)𝛽𝑛(𝑥) ≈3𝜀𝑛 𝛽𝑛(𝑥)(𝑑𝑛 ⊗ 𝑒𝑖,𝑗) and (e4.5)

(𝑑𝑛 ⊗ 1𝑁)𝛽𝑛(𝑥) ≈3𝜀𝑛 𝛽𝑛(𝑥) ≈3𝜀𝑛 𝛽𝑛(𝑥)(𝑑𝑛 ⊗ 1𝑁). (e4.6)

Since ∪∞
𝑛=1

𝑛 is dense in 𝐴𝟏, combining this with (e4.4), we obtain that

𝜋𝑐𝑢({𝑑𝑛 ⊗ 𝑒𝑖,𝑗})𝜋𝑐𝑢(𝑥) = 𝜋𝑐𝑢(𝑥)𝜋𝑐𝑢({𝑑𝑛 ⊗ 𝑒𝑖,𝑗}) and (e4.7)

𝜋𝑐𝑢({𝑑𝑛 ⊗ 1𝑁})𝜋𝑐𝑢(𝑥) = 𝜋𝑐𝑢(𝑥) = 𝜋𝑐𝑢(𝑥)𝜋𝑐𝑢({𝑑𝑛 ⊗ 1𝑁}) for all 𝑥 ∈ 𝐴. (e4.8)

In other words, {𝜋𝑐𝑢({𝑑𝑛 ⊗ 𝑒𝑖,𝑗}) ∶ 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁} ⊂ 𝜋𝑐𝑢(𝐴)′, and 𝜋𝑐𝑢({𝑑𝑛 ⊗ 1𝑁}) is a local unit of
𝜋𝑐𝑢(𝐴).
By (e4.8) and Lemma 4.6, 𝜋𝑐𝑢,𝐽({𝑑𝑛 ⊗ 1𝑁}) is the unit of 𝜋𝑐𝑢(𝐴)′∕𝐽. Then the map 𝜑 ∶ 𝑀𝑁 →

𝜋𝑐𝑢(𝐴)
′∕𝐽 defined by 𝜑(𝑒𝑖,𝑗) = 𝜋𝑐𝑢,𝐽◦𝜋𝑐𝑢({𝑑𝑛 ⊗ 𝑒𝑖,𝑗}), 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁, is a unital homomorphism.

Since, for every 𝑁 ∈ ℕ, there is a unital embedding 𝜑 ∶ 𝑀𝑁 → 𝜋𝑐𝑢(𝐴)
′∕𝜋𝑐𝑢(𝐴)

⊥,𝐴 has property
(TAD-3).
Proof of (2). Let 𝜀 > 0 and any finite subset  ⊂ 𝐴, any 𝑠 ∈ 𝐴+∖{0}, and any integer 𝑁 ⩾ 1 be

given. Choose 𝑒𝐹 ∈ 𝐴𝟏+ such that

𝑒𝐹𝑥 ≈𝜀∕32 𝑥𝑒𝐹 ≈𝜀∕32 𝑥 for all 𝑥 ∈  . (e4.9)

Recall that 𝐽 = 𝜋𝑐𝑢(𝐴)⟂. Since 𝐴 is separable and 𝐴 has (TAD-3), there exists a unital embedding
𝜑 ∶ 𝑀𝑁 → 𝜋𝑐𝑢(𝐴)

′∕𝐽 such that

𝜑(1𝑁)𝜋𝑐𝑢,𝐽(𝑎) = 𝜋𝑐𝑢,𝐽(𝑎) = 𝜋𝑐𝑢,𝐽(𝑎)𝜑(1𝑁) for all 𝑎 ∈ 𝐴. (e4.10)

Define a homomorphism Φ ∶ 𝐶0((0, 1]) ⊗𝑀𝑁 → 𝜋𝑐𝑢(𝐴)
′∕𝐽 by Φ(𝑓 ⊗ 𝑒𝑖,𝑗) = 𝜑(𝑓(1) ⊗ 𝑒𝑖,𝑗) for

all 𝑓 ∈ 𝐶0((0, 1]), 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁.
By Proposition 3.10, 𝜋(𝜋∞(𝐴)′) = 𝜋𝑐𝑢(𝐴)′. Since𝐶0((0, 1]) ⊗𝑀𝑁 is projective, there is a homo-

morphism Ψ ∶ 𝐶0((0, 1]) ⊗𝑀𝑁 → 𝜋∞(𝐴)
′ such that 𝜋◦Ψ = Φ. We may write Ψ = 𝜋∞◦{𝜓𝑛},

where 𝜓𝑛 ∶ 𝐶0((0, 1]) ⊗𝑀𝑁 → 𝐴 is a homomorphism for all 𝑛 ∈ ℕ. Thus, for any finite subset
 ⊂ 𝐶0((0, 1]) ⊗𝑀𝑁 , there exists 𝑛1 ⩾ 1 such that

𝜓𝑛(g)𝑥 ≈𝜀 𝑥𝜓𝑛(g) for all 𝑥 ∈  , all g ∈  and all 𝑛 ⩾ 𝑛1. (e4.11)

Put 𝑒𝑛 ∶= 𝜓𝑛(𝜄 ⊗ 1𝑁) and 𝜂𝑛 ∶= 𝑒
1∕2
𝐹
− 𝑒

1∕4
𝐹
𝑒𝑛𝑒

1∕4
𝐹

. By (e4.10),

𝜋𝑐𝑢({𝜂𝑛}) = 𝜋𝑐𝑢

({
𝑒
1∕2
𝐹

}
−
{
𝑒
1∕4
𝐹
𝑒𝑛𝑒

1∕4
𝐹

})
∈ 𝐽. (e4.12)
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3022 FU et al.

Thus, by Proposition 3.10, there are 𝑦 = {𝑦𝑛} ∈ 𝑁𝑐𝑢(𝐴) and 𝑧 = {𝑧𝑛} ∈ 𝑙∞(𝐴) with 𝜋∞(𝑧) ∈
𝜋∞(𝐴)

⊥, such that {𝜂𝑛} = 𝑦 + 𝑧. So 𝜋∞(𝑎𝑧𝑎) = 0 in 𝑙∞(𝐴)∕𝑐0(𝐴) for all 𝑎 ∈ 𝐴. It follows

𝜋∞

(
𝑒𝐹 − 𝑒

1∕2
𝐹 {𝜓𝑛(𝜄 ⊗ 1𝑁)}𝑒

1∕2
𝐹

)
= 𝜋∞

(
𝑒
1∕4
𝐹
{𝜂𝑛}𝑒

1∕4
𝐹

)
= 𝜋∞

(
𝑒
1∕4
𝐹
𝑦𝑒
1∕4
𝐹

)
∈ 𝜋∞(𝑁𝑐𝑢(𝐴)).(e4.13)

In other words,

𝑒𝐹 − 𝑒
1∕2
𝐹
{𝜓𝑛(𝜄 ⊗ 1𝑁)}𝑒

1∕2
𝐹
∈ 𝑁𝑐𝑢(𝐴). (e4.14)

It follows that there exists 𝑛2 ⩾ 𝑛1 such that, for all 𝑛 ⩾ 𝑛2,(
𝑒𝐹 − 𝑒

1∕2
𝐹
𝜓𝑛(𝜄 ⊗ 1𝑁)𝑒

1∕2
𝐹
− 𝜀

)
+
≲ 𝑠. (e4.15)

The lemma then follows (see also (e4.11)). □

Proposition 4.10. Let 𝐴 be a simple 𝐶∗-algebra which has the property (TAD-2). Then 𝐴 has the
property (TAD).

Proof. Fix 𝜀 > 0, a finite subset  ⊂ 𝐴 and an integer 𝑛 ⩾ 1. Wemay assume that  ⊂ 𝐴𝟏. Choose
𝑒𝐹 ∈ 𝐴

𝟏
+ such that, for all 𝑥 ∈  ,

𝑒
1∕2
𝐹
𝑥 ≈𝜀∕32𝑛 𝑥 ≈𝜀∕32𝑛 𝑥𝑒

1∕2
𝐹

and 𝑒𝐹𝑥 ≈𝜀∕32𝑛 𝑥 ≈𝜀∕32𝑛 𝑥𝑒𝐹. (e4.16)

Put 1 =  ∪ {𝑒𝐹, 𝑒
1∕2
𝐹
}. Let 0 < 𝜂 < 𝜀. Put

 = {𝜄 ⊗ 1𝑛, 𝜄
1∕2 ⊗ 1𝑛, 𝜄 ⊗ 𝑒𝑖,𝑗, 𝜄

1∕2 ⊗ 𝑒𝑖,𝑗, 𝜄 ⊗ 1𝑛 ∶ 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛}⊂ 𝐶0((0, 1]) ⊗𝑀𝑛

Let 𝑒 ∈ 𝐴+ ⧵ {0}. Since 𝐴 has (TAD-2), there is a homomorphism 𝜑 ∶ 𝐶0((0, 1]) ⊗𝑀𝑛 → 𝐴 such
that

‖[𝑥, 𝜑(𝑓)]‖ < 𝜂∕32𝑛 for all 𝑓 ∈  and ((𝑒𝐹 − 𝑒
1∕2
𝐹
𝜑(𝜄)𝑒

1∕2
𝐹
) − 𝜀∕32𝑛)+ ≲ 𝑒. (e4.17)

Put 𝑑1 = 𝜑(𝜄 ⊗ 𝑒1,1). Define 𝐷 ∶= 𝑑1𝐴𝑑1. Put

𝐶0 =

{
𝑛∑

𝑖,𝑗=1

𝜑(𝜄1∕2 ⊗ 𝑒𝑖,1)𝑎𝜑(𝜄
1∕2 ⊗ 𝑒1,𝑗) ∶ 𝑎 ∈ 𝐴

}
.

Note that 𝐶0 is a ∗-subalgebra of 𝐴. Put 𝐶 = 𝐶0. Define a homomorphism Φ ∶ 𝐶 → 𝐷 ⊗𝑀𝑛 by

Φ(𝜑(𝜄1∕2 ⊗ 𝑒𝑖,1)𝑎𝜑(𝜄
1∕2 ⊗ 𝑒1,𝑗)) = 𝑑

1∕2
1
𝑎𝑑

1∕2
1
⊗ 𝑒𝑖,𝑗, (e4.18)

for all 𝑎 ∈ 𝐴. It is easy to verify thatΦ is an isomorphism. So𝐶 ≅ 𝐷 ⊗𝑀𝑛. Put 𝜃 = (𝑒𝐹 − 𝑒
1∕2
𝐹
𝜑(𝜄 ⊗

1𝑛)𝑒
1∕2
𝐹
− 𝜀∕64𝑛)+. Then by (e4.16) and (e4.17), we have the following (i)–(iii).

(i) 𝜃𝑥 ≈𝜀∕32𝑛 (𝑒𝐹 − 𝑒
1∕2
𝐹
𝜑(𝜄 ⊗ 1𝑛)𝑒

1∕2
𝐹
)𝑥 ≈4𝜀∕32𝑛 𝑥(𝑒𝐹 − 𝑒

1∕2
𝐹
𝜑(𝜄 ⊗ 1𝑛)𝑒

1∕2
𝐹
) (e4.19)
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3023

≈𝜀∕32𝑛 𝑥𝜃 for all 𝑥 ∈  . (e4.20)

(ii) (1 − 𝜃)𝑥 ≈𝜀∕32𝑛 (1 − (𝑒𝐹 − 𝑒
1∕2
𝐹
𝜑(𝜄 ⊗ 1𝑛)𝑒

1∕2
𝐹
))𝑥 (e4.21)

≈𝜀∕32𝑛 (𝑒
1∕2
𝐹
𝜑(𝜄 ⊗ 1𝑛)𝑒

1∕2
𝐹
)𝑥 ≈2𝜀∕64𝑛 𝜑(𝜄 ⊗ 1𝑛)𝑥 (e4.22)

=

𝑛∑
𝑖=1

𝜑(𝜄 ⊗ 𝑒𝑖,𝑖)𝑥 =

𝑛∑
𝑖=1

𝜑(𝜄1∕2 ⊗ 𝑒𝑖,1)𝜑(𝜄
1∕2 ⊗ 𝑒1,𝑖)𝑥 (e4.23)

≈𝜂∕32

𝑛∑
𝑖=1

𝜑(𝜄1∕2 ⊗ 𝑒𝑖,1)𝑥𝜑(𝜄
1∕2 ⊗ 𝑒1,𝑖) ∈ 𝐷 ⊗ 1𝑛. (e4.24)

(iii) 𝜃 ≲ 𝑒. □

Now we can unify different variations of tracial approximate divisibility for separable simple
𝐶∗-algebras in the following theorem.

Theorem 4.11. Let 𝐴 be a non-elementary separable simple 𝐶∗-algebra. Then the following are
equivalent.

(1) 𝐴 is tracially approximately divisible,
(2) 𝐴 has the property (TAD),
(3) 𝐴 has the property (TAD-2), and,
(4) 𝐴 has the property (TAD-3).

Proof. The implications (1) ⇒ (4) and (4) ⇒ (3) follow from Lemma 4.9. That (3) ⇒ (2)

follows from Proposition 4.10. Finally, we note that (2) ⇒ (1) is shown earlier right after
Definition 4.3. □

Remark 4.12.

(1) Let us point out that [16, Definition 5.2] and Definition 4.3 are equivalent for non-elementary
separable simple 𝐶∗-algebras. Suppose that 𝐴 is a non-elementary separable simple 𝐶∗-
algebra. As we mentioned earlier, if 𝐴 is tracially approximate divisible in the the sense of
Definition 4.3, then𝐴 is tracially approximate divisible in the the sense of [16, Definition 5.2].
Now assume that 𝐴 is tracially approximately divisible in the sense of [16, Definition 5.2]. By
the first paragraph of the proof of (1) of Lemma 4.9, we see that𝐴 has property (TAD-3). Then,
by Theorem 4.11, 𝐴 is tracially approximately divisible in the sense of Definition 4.3.

(2) Let𝐴 be a non-elementary separable simple𝐶∗-algebra which satisfies one of four conditions
inTheorem4.11 and𝐵 ⊂ 𝐴 be a non-zero hereditary𝐶∗-subalgebra. Then, by [16, Theorem5.5]
and Theorem 4.11 above, 𝐵 satisfies all conditions in Theorem 4.11. We note that the element
𝑒𝐹 plays important role in [16, Theorem 5.5]. One might notice that neither property (TAD)
nor property (TAD-3) are straightforward to pass to hereditary 𝐶∗-subalgebras. However, one
of the purposes of this section is to simplify Definition 4.3. In fact, we have the next remark.
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3024 FU et al.

(3) Suppose that 𝐴 is a non-elementary separable simple 𝐶∗-algebra which is tracially approx-
imate divisible (in the sense of Definition 4.3). Then, for any 𝜀 > 0, any finite subset  ⊂ 𝐴,
any 𝑠 ∈ 𝐴+ ⧵ {0}, and any integer𝑁 ⩾ 1, there are 𝜃 ∈ 𝐴𝟏+, a 𝐶

∗-subalgebra 𝐷 ⊗𝑀𝑁 ⊂ 𝐴 and
a c.p.c. map 𝛽 ∶ 𝐴 → 𝐴 such that
(i) 𝑥 ≈𝜀 𝑥1 + 𝛽(𝑥) for all 𝑥 ∈  , where ‖𝑥1‖ ⩽ ‖𝑥‖, 𝑥1 ∈ Her(𝜃),
(ii) 𝛽(𝑥) ∈𝜀 𝐷 ⊗ 1𝑁 for all 𝑥 ∈  , and
(iii) 𝜃 ≲ 𝑠.

Conversely, suppose that a non-elementary separable simple 𝐶∗-algebra 𝐴 satisfies conditions
above. Choose 𝑛 and 𝜀𝑛 as in the proof of Lemma 4.9 (1). Then (i’) (ii’) and (iii) in the proof of
Lemma 4.9 (1) hold. As in the proof of Lemma 4.9 (1), these imply that 𝐴 has (TAD-3). In other
words, by Theorem 4.11, one may drop the reference to 𝑒𝐹 in Definition 4.3.

Wewould like to include the following statement. Note that, by Theorem 5.2 in the next section,
if 𝐴 has (TAD-2), 𝐴 automatically has strict comparison.

Proposition 4.13. Let 𝐴 be a non-elementary separable simple exact 𝐶∗-algebra which has strict
comparison and at least one nonzero densely defined trace. Then𝐴 is uniformly McDuff in the sense
of [9, Definition 1.3] if and only if 𝐴 has the property (TAD-2) (or (TAD-3)).

Proof. Suppose that𝐴 is uniformlyMcDuff and has strict comparison. Let 𝑎 ∈ Ped(𝐴)+ ⧵ {0}with
0 ⩽ 𝑎 ⩽ 1. We will show that 𝐵 = Her(𝑎) has property (TAD-2). Let  ⊂ 𝐵 be a finite subset and
𝑒𝐹 ∈ 𝐵

𝟏
+ such that 𝑒𝐹𝑥 ≈𝜀∕4 𝑥 ≈𝜀∕4 𝑥𝑒𝐹 for all 𝑥 ∈  . Fix 𝜀 > 0 and 𝑠 ∈ 𝐵+ ⧵ {0}.

We will retain notions used in [9, Section 1] regarding the notion of uniformMcDuff. Fix a free
ultrafilter 𝜔 ∈ 𝛽(ℕ) ⧵ ℕ. Let 𝑛 ∈ ℕ. Since𝐴 is uniformly McDuff, choose a sequence of order zero
c.p.c. maps {𝜓𝑘} ∶ 𝑀𝑛 → 𝜋−1∞ (𝐴

′) (see (e3.1) for the notation) such that Π𝜔◦{𝜓𝑘} = 𝜓 ∶ 𝑀𝑛 → 𝐹𝜔
is an order zero map, where Π𝜔 ∶ 𝜋−1∞ (𝐴

′) → 𝐹𝜔 = (𝜋
−1
∞ (𝐴

′)∕𝑐𝜔(𝐴))∕(𝐴
⟂∕𝑐𝜔(𝐴)) is the quotient

map. Moreover, 𝜏𝜔((1 − 𝜓(1𝑛))𝑏) = 0 for 𝜏𝜔 ∈ 𝑇+𝜔(𝐴) for any 𝑏 ∈ 𝐵+.
Let {𝑒𝑘} ∈ Her(𝑎) be an approximate identity of 𝐵 and {𝛿𝑘} ⊂ (0, 1∕2) be a given sequence such

that 𝛿𝑛 ↘ 0. Since {𝜓𝑘} maps𝑀𝑛 to 𝜋−1∞ (𝐴
′), for each 𝑘 ∈ ℕ, there is 𝑛𝑘 such that ‖𝑒1∕2𝑘 𝜑𝑚(𝑏) −

𝜑𝑚(𝑏)𝑒
1∕2

𝑘
‖ < 𝛿𝑘 for all 𝑏 ∈ 𝑀𝟏

𝑛 (recall that𝑀
𝟏
𝑛 is compact) if 𝑚 ⩾ 𝑛𝑘. We may assume that 𝑛𝑘 <

𝑛𝑘+1. Define 𝑐𝑗 = 𝑒1 if 𝑗 ⩽ 𝑛2, 𝑐𝑗 = 𝑒𝑘, if 𝑛𝑘 < 𝑗 ⩽ 𝑛𝑘+1, 𝑘 ⩾ 2. Then {𝑐𝑗} is an approximate identity
for 𝐵 and ‖𝑐1∕2

𝑘
𝜑𝑚(𝑏) − 𝜑𝑚(𝑏)𝑐

1∕2

𝑘
‖ < 𝛿𝑘 if𝑚 > 𝑘 for all 𝑏 ∈ 𝑀𝟏

𝑛.
Denote by 𝑇𝑒𝐹 = {𝜏 ∈ 𝑇

+(𝐴) ∶ 𝜏(𝑒𝐹) = 1}. We claim that

lim
𝑘→𝜔

sup{𝜏((1 − 𝜓𝑘(1𝑛))𝑒𝐹) ∶ 𝜏 ∈ 𝑇𝑒𝐹 } = 0. (e4.25)

Otherwise, there exists 𝑑 > 0 satisfying the following: for each  ∈ 𝜔, there exists 𝑚 ∈  and
𝜏 ∈ 𝑇𝑒𝐹 such that

𝜏 ((1 − 𝜓𝑚
(1𝑛))𝑒𝐹) ⩾ 𝑑. (e4.26)

Fix one 𝜏1 ∈ 𝑇𝑒𝐹 . Let 𝑆 = {𝑠 = 𝑚 ∶  ∈ 𝜔}. Then 𝑆 ∩  ≠ ∅ for any  ∈ 𝜔. Fix 𝑠 ∈ 𝑆. Let 𝜔𝑠 =
{ ∈ 𝜔 ∶ 𝑠 = 𝑚()}. For each 𝑠 ∈ 𝑆, choose one 𝑠 ∈ 𝜔𝑠. Find a sequence 𝜏𝑘 ∈ 𝑇𝑒𝐹 such that, if
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3025

𝑠 ∈ 𝑆,𝜏𝑠 = 𝜏𝑠 (if 𝑠 = 𝑚(𝑠)), and 𝜏𝑘 = 𝜏1 if 𝑘 ∉ 𝑆. Then, if 𝑠 ∈ 𝑆,

𝜏𝑠((1 − 𝜓𝑠(1𝑛))𝑒𝐹) ⩾ 𝑑. (e4.27)

Since 𝑆 ∩  ≠ ∅ for any  ∈ 𝜔, this contradicts the fact that 𝜏𝜔((1 − 𝜓(1𝑛))𝑒𝐹) = 0 for all 𝜏 ∈
𝑇+𝜔(𝐴). This proves the claim.
Define {𝜑′

𝑘
} ∶ 𝑀𝑛 → 𝜋−1∞ (𝐵

′) by 𝜑′
𝑘
(𝑏) = 𝑐

1∕2

𝑘
𝜓𝑘(𝑏)𝑐

1∕2

𝑘
for all 𝑏 ∈ 𝑀𝑛. Then 𝜓′

𝑘
∶ 𝑀𝑛 →

Her(𝑒
1∕2

𝑘
) is a c.p.c. map andΠ𝜔◦{𝜑𝑘} ∶ 𝑀𝑛 → 𝐹′𝜔 = 𝐵𝜔 ∩ 𝐵

′∕𝐵𝜔 ∩ 𝐵
⟂ is an order zero c.p.c. map.

By choosing 𝛿𝑘 sufficiently small at the beginning, using the projectivity of 𝐶0((0, 1]) ⊗𝑀𝑛, we
obtain a sequence of order zero c.p.c. maps 𝜑𝑘 ∶ 𝑀𝑛 → Her(𝑐

1∕2

𝑘
) ⊂ 𝐵 such that

lim
𝑘→∞

‖𝜓′
𝑘
− 𝜑𝑘‖ = 0, (e4.28)

(see [44, Lemma 1.2.5]). Since {𝑐1∕2
𝑘
} is an approximate identity of 𝐵, we have that

lim𝑘→∞ ‖(𝑒1∕2
𝐹
(𝑐
1∕2

𝑘
𝜓𝑘(𝑐)𝑐

1∕2

𝑘
− 𝜓𝑘(𝑐))𝑒

1∕2
𝐹

‖ = 0 for each 𝑐 ∈ 𝑀𝑛, Hence, by the claim (and
(e4.28)),

lim
𝑘→𝜔

sup
{
𝜏
(
𝑒𝐹 − 𝑒

1∕2
𝐹
𝜑𝑘(1𝑛)𝑒

1∕2
𝐹

)
∶ 𝜏 ∈ 𝑇𝑒𝐹

}
= 0. (e4.29)

Define 𝜑𝑐,𝑘 ∶ 𝐶0((0, 1]) ⊗𝑀𝑛 → 𝐵 by 𝜑𝑐,𝑘(𝜄 ⊗ 𝑦) = 𝜑𝑘(𝑦) for all 𝑦 ∈ 𝑀𝑛. Thus we obtain a
subsequence {𝑛(𝑘)} such that

lim
𝑘→∞

‖𝜑𝑐,𝑛(𝑘)(𝑧)𝑦 − 𝑦𝜑𝑐,𝑛(𝑘)(𝑦)‖ = 0 for all 𝑦 ∈ 𝐴 and 𝑦 ∈ 𝐶0((0, 1]) ⊗𝑀𝑛 and

lim
𝑘→∞

sup{𝜏(𝑒𝐹 − 𝑒
1∕2
𝐹
𝜑𝑐,𝑛(𝑘)(𝜄 ⊗ 1𝑛)𝑒

1∕2
𝐹
) ∶ 𝜏 ∈ 𝑇𝑒𝐹 } = 0. (e4.30)

It follows that {𝑒𝐹 − 𝑒
1∕2
𝐹
𝜑𝑐,𝑛(𝑘)(𝜄 ⊗ 1𝑛)𝑒

1∕2
𝐹
} ∈ 𝐼𝑇,0. Since 𝐴 has strict comparison, by Proposi-

tion 3.8, {𝑒𝐹 − 𝑒
1∕2
𝐹
𝜑𝑐,𝑛(𝑘)(𝜄 ⊗ 1𝑛)𝑒

1∕2
𝐹
} ∈ 𝑁𝑐𝑢(𝐴). Hence, for a fixed finite subset  ⊂ 𝐶0((0, 1]) ⊗

𝑀𝑛, by choosing 𝜑 = 𝜑𝑐,𝑛(𝑘) for some large 𝑘, we obtain

‖𝜑(𝑧)𝑦 − 𝑦𝜑(𝑧)‖ < 𝜀 for all 𝑦 ∈  and 𝑧 ∈  and (e4.31)

(𝑒𝐹 − 𝑒
1∕2
𝐹
𝜑(𝜄 ⊗ 1𝑛)𝑒

1∕2
𝐹
− 𝜀)+ ≲ 𝑠. (e4.32)

Hence𝐵 has property (TAD-2). By Theorem4.11,𝐵 has property (TAD). It follows (3) of Remark 4.2
and Brown’s stable isomorphism [6] that 𝐴⊗ has property (TAD) and hence has property
(TAD-2), by Theorem 4.11 again. By (2) of Remark 4.12, 𝐴 has (TAD-2).
Conversely, let 𝐴 have strict comparison and property (TAD-3). Let 𝜑 ∶ 𝑀𝑛 → 𝐴′𝑐𝑢∕𝐴

⟂
𝑐𝑢 be

a unital homomorphism. By [44, Proposition 1.2.4] and the central surjectivity (see 3.10),
there exists a sequence of order zero c.p.c. maps {𝜓𝑘} ∶ 𝑀𝑛 → 𝜋−1∞ (𝐴

′) such that Π◦{𝜓𝑘} =
𝜑, where Π ∶ 𝑙∞(𝐴) ∩ 𝐴′ → 𝐴′𝑐𝑢∕𝐴

⟂
𝑐𝑢 is the quotient map. Since 𝑐𝜔(𝐴) is an ideal of 𝑐0(𝐴),

the map 𝜓 = Π𝜔◦{𝜓𝑘} ∶ 𝑀𝑛 → 𝐹𝜔 is also an order zero c.p.c. map. The fact that 𝜑 is unital
implies that {(1 − 𝜓𝑘(1𝑛))𝑏}𝑘∈ℕ ∈ 𝑁𝑐𝑢(𝐴) for any 𝑏 ∈ 𝐴+. We choose 𝑏 ∈ Ped(𝐴)+ ⧵ {0}. Then
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3026 FU et al.

{𝑏1∕2(1 − 𝜓𝑘(1𝑛))𝑏
1∕2}𝑘∈ℕ ∈ 𝑁𝑐𝑢(𝑏𝐴𝑏). Since 𝑏𝐴𝑏 is algebraically simple, by Proposition 3.8,

lim
𝑘→∞

sup{𝜏((1 − 𝜓𝑘(1𝑛))𝑏) ∶ 𝜏 ∈ 𝑇𝑏} = lim
𝑘→∞

sup{𝜏(𝑏1∕2(1 − 𝜓𝑘(1𝑛))𝑏
1∕2) ∶ 𝜏 ∈ 𝑇𝑏} = 0.

It follows that, for any {𝜏𝑘} ∈ 𝑇𝑏,lim𝑘→𝜔 𝜏𝑘((1 − 𝜓𝑘(1𝑛))𝑏) = 0. Thus 𝐴 has uniform McDuff in
the sense of [9]. □

Remark 4.14. We note that the implication from (TAD-2) to the uniform McDuff property is also
proved in [9, Proposition 4.6].
In view of Proposition 4.13, one may make the following definition: Let 𝐴 be a separable sim-

ple (exact) 𝐶∗-algebra with at least one nontrivial densely defined trace. Let 𝐼𝑇 be the closed
ideal defined in Proposition 3.8 and let 𝜋𝐼𝑇 ∶ 𝑙

∞(𝐴) → 𝑙∞(𝐴)∕𝐼𝑇 be the quotient map. We say that
𝐴 has the uniform McDuff property, if for each 𝑛 ∈ ℕ, there is a unital embedding 𝜑 ∶ 𝑀𝑛 →
𝜋𝐼𝑇 (𝐴)

′∕𝜋𝐼𝑇 (𝐴)
⟂.

When 𝐴 is exact and also has strict comparison, 𝐴 is uniformly McDuff if and only if 𝐴 has
property (TAD-3) (see Proposition 4.13 and Proposition 3.8).

5 STRICT COMPARISON AND CUNTZ SEMIGROUP

In this section, we show that the Cuntz semigroups of simple 𝐶∗-algebras which are tracially
approximately divisible behave nicely as those of simple-stable 𝐶∗-algebras. The main result of
this section is stated in Theorem 5.7 which will also be used in the proof of Corollary 6.5 in next
section.

Proposition 5.1. Let𝐴 be a simple𝐶∗-algebra with the property (TAD). Then, for any integer 𝑛 ⩾ 1,
any 𝜀 > 0, any finite subset  ⊂ 𝐴, and any 𝑠 ∈ 𝐴+ ⧵ {0}, there are 𝜃 ∈ 𝐴𝟏+ and 𝐶

∗-subalgebra 𝐷 ⊗
𝑀𝑛 ⊂ 𝐴 such that

(i) 𝜃𝑥 ≈𝜀 𝑥𝜃 for all 𝑥 ∈  ,
(ii) (1 − 𝜃)𝑥 ∈𝜀 𝐷 ⊗ 1𝑛 for all 𝑥 ∈  ,
(iii) 𝜃 ≲ 𝑠,
(iv) (1 − 𝜃)1∕2𝑥(1 − 𝜃)1∕2 ∈𝜀 𝐷 ⊗ 1𝑛 for all 𝑥 ∈  ,
(v) 𝑥 ≈𝜀 𝜃1∕2𝑥𝜃1∕2 + (1 − 𝜃)1∕2𝑥(1 − 𝜃)1∕2 for all 𝑥 ∈  ,
(vi) for any finite subset  ⊂ 𝐶0((0, 1]), there is 𝑑 ∈ 𝐷𝟏+∖{0} such that, for all 𝑥 ∈  ,

(1 − 𝜃)1∕2𝑥(1 − 𝜃)1∕2 ≈𝜀∕64𝑛2 (𝑑 ⊗ 1𝑛)
1∕2𝑥(𝑑 ⊗ 1𝑛)

1∕2 and (e5.1)

𝑥(𝑓(𝑑) ⊗ 𝑒𝑖,𝑗) ≈𝜀 (𝑓(𝑑) ⊗ 𝑒𝑖,𝑗)𝑥 for all 𝑓 ∈ , 1 ⩽ 𝑖, 𝑗 ⩽ 𝑘, (e5.2)

(vii) if 𝑥 ∈  and 𝑥 ⩾ 0, we may choose 𝑑 such that

𝑥 − 𝑥1∕2(𝑑 ⊗ 1𝑛)𝑥
1∕2 ≈𝜀∕4 𝑥

1∕2𝜃𝑥1∕2. (e5.3)
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3027

Proof. Fix 𝑎 ∈ 𝐴+∖{0},𝜀 ∈ (0, 1), and a finite subset 1 ⊂ 𝐴. Without loss of generality, we
may assume that for all 𝑥 ∈ 1,‖𝑥‖ ⩽ 1. By a standard perturbation, we may assume that
there is 𝑒𝐹, 𝑒𝐴 ∈ 𝐴𝟏+ satisfying 𝑥𝑒𝐹 = 𝑒𝐹𝑥 = 𝑥 for all 𝑥 ∈  and 𝑒𝐴𝑒𝐹 = 𝑒𝐹𝑒𝐴 = 𝑒𝐹 . Put  = 1 ∪

{𝑒𝐹, 𝑒
1∕2
𝐹
, 𝑒𝐴}.

Let𝑚 ∈ ℕ such that for any 𝑐 ∈ 𝐴𝟏+,𝑐 ≈𝜀∕4 𝑐 ⋅ 𝑐
1∕𝑚. Let 𝜂 ∈ (0, 𝜖) be such that, for any element

𝑧 ∈ 𝐴𝟏, any 𝑐 ∈ 𝐴𝟏+, ‖𝑧𝑐 − 𝑐𝑧‖ < 20𝜂 implies ‖𝑧𝑐1∕𝑚 − 𝑐1∕𝑚𝑧‖ < 𝜀∕4.
By definition of (TAD), there are 𝜃 ∈ 𝐴𝟏+ and 𝐶

∗-subalgebra 𝐷 ⊗𝑀𝑛 ⊂ 𝐴 such that

(1) 𝜃𝑥 ≈𝜂 𝑥𝜃 for all 𝑥 ∈  ,
(2) (1 − 𝜃)𝑥 ∈𝜂 𝐷 ⊗ 1𝑛 for all 𝑥 ∈  , and
(3) 𝜃 ≲ 𝑎.

This implies that (i), (ii), and (iii) in the proposition hold (even for 𝜂). By Remark 4.2, we may
further assume that (iv) and (v) also hold (even for 𝜂).
By (2), for each 𝑥 ∈  , there exists 𝑦 ⊗ 1𝑛 ∈ 𝐷 ⊗ 1𝑛 such that

‖(1 − 𝜃)𝑥 − 𝑦 ⊗ 1𝑛‖ < 𝜂. (e5.4)

Since 𝑒𝐴 ∈  and (iv) holds (for 𝜂), we can choose 𝑑 ∈ 𝐷𝟏+∖{0} such that

(1 − 𝜃)𝑒𝐴 ≈𝜂 (1 − 𝜃)
1∕2𝑒𝐴(1 − 𝜃)

1∕2 ≈𝜂 𝑑 ⊗ 1𝑛. (e5.5)

It follows that

(𝑦 ⊗ 1𝑛)(𝑑 ⊗ 1𝑛) ≈3𝜂 (1 − 𝜃)𝑥(1 − 𝜃)𝑒𝐴 (e5.6)

≈𝜂 (1 − 𝜃)𝑥𝑒𝐴(1 − 𝜃) = (1 − 𝜃)𝑒𝐴𝑥(1 − 𝜃) (e5.7)

≈𝜂 (1 − 𝜃)𝑒𝐴(1 − 𝜃)𝑥 ≈3𝜂 (𝑑 ⊗ 1𝑛)(𝑦 ⊗ 1𝑛). (e5.8)

Thus ‖𝑦𝑑 − 𝑑𝑦‖ < 8𝜂. Note that, by (e5.5), (1), (e5.4) and the choice of 𝑒𝐴, for all 𝑥 ∈ 1 ∪

{𝑒𝐹, 𝑒
1∕2
𝐹
},

𝑥(𝑑 ⊗ 1𝑛) ≈2𝜂 𝑥(1 − 𝜃)𝑒𝐴 ≈𝜂 (1 − 𝜃)𝑥𝑒𝐴 = (1 − 𝜃)𝑥 ≈𝜂 𝑦 ⊗ 1𝑛. (e5.9)

Similarly,

(𝑑 ⊗ 1𝑛)𝑥 ≈2𝜂 (1 − 𝜃)𝑒𝐴𝑥 = (1 − 𝜃)𝑥 ≈3𝜂 𝑥(𝑑 ⊗ 1𝑛). (e5.10)

We compute that (recall 𝑒𝐴𝑥 = 𝑥𝑒𝐴 = 𝑥 if 𝑥 ∈ 1), for all 𝑥 ∈ 1,

𝑥(𝑑 ⊗ 𝑒𝑖,𝑗) ≈𝜖∕4 𝑥(𝑑 ⊗ 1𝑛)(𝑑
1∕𝑚 ⊗ 𝑒𝑖,𝑗) ≈3𝜂 (1 − 𝜃)𝑥(𝑑

1∕𝑚 ⊗ 𝑒𝑖,𝑗)

≈𝜂 (𝑦 ⊗ 1𝑛)(𝑑
1∕𝑚 ⊗ 𝑒𝑖,𝑗) = (𝑦𝑑

1∕𝑚 ⊗ 𝑒𝑖,𝑗)

≈𝜀∕4 (𝑑
1∕𝑚 ⊗ 𝑒𝑖,𝑗)(𝑦 ⊗ 1𝑛)

≈3𝜂 (𝑑
1∕𝑚 ⊗ 𝑒𝑖,𝑗)(𝑑 ⊗ 1𝑛)𝑥 ≈𝜀∕4 (𝑑 ⊗ 𝑒𝑖,𝑗)𝑥.
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3028 FU et al.

Thus, by choosing smaller 𝜂 (and 𝜀) if necessary, we conclude that the second part ((e5.2)) of (vi)
holds. The first part of (vi) follows from (e5.5) and a choice of small 𝜂.
To see (vii), combing (e5.9) and (e5.10), with sufficiently small 𝜂, we have, if 𝑥 ∈  ∪ {𝑒𝐹, 𝑒

1∕2
𝐹
}

and 𝑥 ⩾ 0,

𝑥1∕2(𝑑 ⊗ 1𝑛)𝑥
1∕2 ≈𝜀∕4 𝑥

1∕2(1 − 𝜃)𝑥1∕2, or 𝑥 − 𝑥1∕2(𝑑 ⊗ 1𝑛)𝑥
1∕2 ≈𝜀∕4 𝑥

1∕2𝜃𝑥1∕2. □

The following statement is already mentioned in [16, Remark 5.8].

Theorem 5.2 (c.f. [18, Theorem 3.3]). Let 𝐴 be a simple 𝐶∗-algebra which has property (TAD).
Then 𝐴 has the strict comparison for positive elements (or 𝐴 is purely infinite).

Proof. Following the original idea of Rørdam, wewill modify the argument in the proof of Lemma
3.2 of [18]. Let us assume that 𝐴 is not elementary. Let 𝑎, 𝑏 ∈ 𝑀∞(𝐴)+. Let us first assume that
0 is not an isolated point of sp(𝑏) ∪ {0}, and 𝑘⟨𝑎⟩ ⩽ 𝑘⟨𝑏⟩ for some integer 𝑘 ⩾ 1, we wish to show
that 𝑎 ≲ 𝑏. Without loss of generality, wemay assume that 𝑎, 𝑏 ∈ 𝑀𝑁(𝐴)+ for some large𝑁. Since
𝑀𝑁(𝐴) also has the property (TAD), we may assume 𝑎, 𝑏 ∈ 𝐴+. We may further assume ‖𝑎‖ =‖𝑏‖ = 1.
Fix 𝛿 > 0. By [38, Proposition 2.4 (iv)], we can choose 𝑐 = (𝑐𝑖,𝑗)𝑘×𝑘 ∈ 𝑀𝑘(𝐴) and 𝜀 ∈ (0, 𝛿), such

that

𝑐((𝑏 − 𝛿)+ ⊗ 1𝑘)𝑐
∗ = (𝑎 − 𝜀)+ ⊗ 1𝑘. (e5.11)

Since 0 is not an isolated point of sp(𝑏) ∪ {0}, there is a 𝑓0 ∈ 𝐶0((0, 1]) such that 𝑓0(𝑡) = 0 for
all 𝑡 ∈ (𝛿∕2, 1] and 𝑑 ∶= 𝑓0(𝑏) ≠ 0. So 𝑑 ⟂ (𝑏 − 𝛿)+. By replacing 𝑐𝑖,𝑗 with 𝑐𝑖,𝑗𝑞(𝑏) for some 𝑞 ∈
𝐶0((0, 1]) which vanishes in (0, 𝛿∕2] and 𝑞(𝑡) = 1 for all 𝑡 ∈ [𝛿, 1], we may assume that

𝑐𝑖,𝑗𝑑 = 0, 𝑖, 𝑗 = 1, 2, … , 𝑘. (e5.12)

By (e5.11), we compute

𝑘∑
𝑙=1

𝑐𝑖,𝑙((𝑏 − 𝛿)+)𝑐
∗
𝑗,𝑙
=

{
(𝑎 − 𝜀)+ if 𝑖 = 𝑗;
0 if 𝑖 ≠ 𝑗.

(e5.13)

Now let 𝜂 ∈ (0, 𝜀) be arbitrary. Put 0 = {(𝑎 − 𝜀)+, (𝑏 − 𝛿)+} ∪ {𝑐𝑖,𝑗, 𝑐∗𝑖,𝑗 ∶ 1 ⩽ 𝑖, 𝑗 ⩽ 𝑘}. Let g ∈
𝐶0((0, 1])

𝟏
+ such that g(𝑡) = 1 for 𝑡 ∈ [𝜂, 1]. Let𝑀 ∶= 1 +max{‖𝑥‖ ∶ 𝑥 ∈ 0}.

By Proposition 5.1, there are 𝜃 ∈ 𝐴𝟏+ and 𝐶
∗-subalgebra 𝐷 ⊗𝑀𝑘 ⊂ 𝐴 such that

(i) 𝜃𝑥 ≈𝜂 𝑥𝜃 for all 𝑥 ∈ 0,
(ii) (1 − 𝜃)𝑥 ∈𝜂 𝐷 ⊗ 1𝑛 for all 𝑥 ∈ 0,
(iii) 𝜃 ≲ 𝑑,
(iv) (1 − 𝜃)1∕2𝑥(1 − 𝜃)1∕2 ∈𝜂 𝐷 ⊗ 1𝑘 for all 𝑥 ∈ 0,
(v) 𝑥 ≈𝜂 𝜃1∕2𝑥𝜃1∕2 + (1 − 𝜃)1∕2𝑥(1 − 𝜃)1∕2 for all 𝑥 ∈ 0,
(vi) there is 𝑒 ∈ 𝐷𝟏+ such that, for all 𝑥 ∈ 0,

(1 − 𝜃)1∕2𝑥(1 − 𝜃)1∕2 ≈𝜂 (𝑒 ⊗ 1𝑘)
1∕2𝑥(𝑒 ⊗ 1𝑘)

1∕2, and (e5.14)
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3029

‖𝑥(g(𝑒) ⊗ 𝑒𝑖,𝑗) − (g(𝑒) ⊗ 𝑒𝑖,𝑗)𝑥‖ < 𝜂∕(𝑘𝑀)4 (1 ⩽ 𝑖, 𝑗 ⩽ 𝑘). (e5.15)

Put 𝑎1 = (1 − 𝜃)1∕2(𝑎 − 𝜀)+(1 − 𝜃)1∕2 and 𝑎2 = 𝜃1∕2(𝑎 − 𝜀)+𝜃1∕2. Then by (v),

‖(𝑎 − 𝜀)+ − (𝑎1 + 𝑎2)‖ ⩽ 𝜂. (e5.16)

Denote 𝑐 ∶=
∑𝑘
𝑖,𝑗=1(𝑒

1∕2 ⊗ 1𝑘)(g(𝑒) ⊗ 𝑒𝑖,𝑗)𝑐𝑖,𝑗 . We compute that (using (e5.15) and (e5.13))

𝑐((𝑏 − 𝛿)+)𝑐
∗ (e5.17)

= (𝑒1∕2 ⊗ 1𝑘)

(
𝑘∑

𝑖,𝑗,𝑙,𝑚

(g(𝑒) ⊗ 𝑒𝑖,𝑗)𝑐𝑖,𝑗((𝑏 − 𝛿)+)𝑐
∗
𝑙,𝑚
(g(𝑒) ⊗ 𝑒𝑚,𝑙)

)
(𝑒1∕2 ⊗ 1𝑘) (e5.18)

≈3𝜂 (𝑒
1∕2 ⊗ 1𝑘)

(
𝑘∑

𝑖,𝑗,𝑙,𝑚

(g(𝑒) ⊗ 𝑒𝑖,𝑗)(g(𝑒) ⊗ 𝑒𝑚,𝑙)𝑐𝑖,𝑗((𝑏 − 𝛿)+)𝑐
∗
𝑙,𝑚

)
(𝑒1∕2 ⊗ 1𝑘) (e5.19)

= (𝑒1∕2 ⊗ 1𝑘)

(
𝑘∑
𝑖,𝑗,𝑙

(g(𝑒)2 ⊗ 𝑒𝑖,𝑙)𝑐𝑖,𝑗((𝑏 − 𝛿)+)𝑐
∗
𝑙,𝑗

)
(𝑒1∕2 ⊗ 1𝑘) (e5.20)

= (𝑒1∕2 ⊗ 1𝑘)

(
𝑘∑
𝑖,𝑙=1

(g(𝑒)2 ⊗ 𝑒𝑖,𝑙)

(
𝑘∑
𝑗=1

𝑐𝑖,𝑗((𝑏 − 𝛿)+)𝑐
∗
𝑙,𝑗

))
(𝑒1∕2 ⊗ 1𝑘) (e5.21)

= (𝑒1∕2 ⊗ 1𝑘)

(
𝑘∑
𝑖=1

(g(𝑒)2 ⊗ 𝑒𝑖,𝑖)(𝑎 − 𝜀)+

)
(𝑒1∕2 ⊗ 1𝑘) (e5.22)

= (𝑒1∕2 ⊗ 1𝑘)(g(𝑒)
2 ⊗ 1𝑘)(𝑎 − 𝜀)+(𝑒

1∕2 ⊗ 1𝑘)

≈𝜂 (𝑒
1∕2 ⊗ 1𝑘)(𝑎 − 𝜀)+

(
𝑒1∕2 ⊗ 1𝑘

)
≈𝜂 𝑎1.

In other words, ‖𝑐(𝑏 − 𝛿)+𝑐∗ − 𝑎1‖ ⩽ 5𝜂.
Since 𝑎2 ≲ 𝜃 ≲ 𝑑, there exists 𝑐0 ∈ 𝐴 such that ‖𝑐0𝑑𝑐∗0 − 𝑎2‖ < 𝜂. Since 𝑑 ⟂ (𝑏 − 𝛿)+, we may

assume that 𝑐0((𝑏 − 𝛿)+) = 0. Now put 𝑧 = 𝑐 + 𝑐0. Recall (e5.12), we have

‖𝑧((𝑏 − 𝛿)+ + 𝑑)𝑧∗ − 𝑎‖ = ‖(𝑐(𝑏 − 𝛿)+𝑐∗ − 𝑎1) + (𝑐0𝑑𝑐∗0 − 𝑎2) + (𝑎1 + 𝑎2 − 𝑎)‖ < 6𝜂 + 𝜀.
Since 𝜀 and 𝜂 can be arbitrary small, it follows that 𝑎 ≲ 𝑏.
The case that 0 is an isolated point of sp(𝑏) ∪ {0} can be reduced to the case above by applying,

for example, [18, Lemma 3.1].
To show that𝑊(𝐴) is almost unperforated, suppose that 𝑘⟨𝑎⟩ ⩽ (𝑘 − 1)⟨𝑏⟩. Then 𝑘⟨𝑎⟩ ⩽ 𝑘⟨𝑏⟩.

From what has been proved, ⟨𝑎⟩ ⩽ ⟨𝑏⟩.
By [39, Corollary 5.1] (see also Proposition 4.9 of [16] as well as the end of Definition 2.6 and

Definition 2.8 of the current paper), 𝐴 has strict comparison (or 𝐴 is purely infinite). □

 14697750, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12654 by U

niversity O
f O

regon Libraries, W
iley O

nline Library on [25/06/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



3030 FU et al.

Remark 5.3. It is worth noting that Theorem 5.2 has also been independently proved in [9] with a
different point of view. More precisely, [9, Theorem 3.2] shows that (non-unital) 𝜎-unital simple
𝐶∗-algebras with (TAD-2) have strict comparison.

Corollary 5.4. Let 𝐴 be a unital stably finite simple 𝐶∗-algebra with the property (TAD). Then 𝐴
has strict comparison and has stable rank one.

Proof. This is a corollary of Theorem 5.2 and [16, Theorem 5.7]. □

In Section 6, we will show that the condition that 𝐴 is unital in Corollary 5.4 can be removed,
if we additionally assume that 𝐴 is separable.
Recall that, for 𝑥, 𝑦 ∈ Cu(𝐴), we write 𝑥 ≪ 𝑦, if for any increasing sequence {𝑦𝑛} with 𝑦 ⩽

sup{𝑦𝑛}, there exists 𝑛0 such that 𝑥 ⩽ 𝑦𝑛0 .
The following property is introduced by L. Robert [35]. It may be viewed as a tracial version of

almost divisibility which is closely related to Winter’s tracial 0-almost divisibility [45, Definition
3.5].

Definition 5.5 [35, Proposition 6.2.1]. Let𝐴 be a 𝐶∗-algebra. We say that Cu(𝐴) has property (D),
if for any 𝑥 ∈ Cu(𝐴), 𝑥′ ≪ 𝑥, and any integer 𝑛 ∈ ℕ, there exists 𝑦 ∈ Cu(𝐴) such that 𝑛𝑦 ⩽ 𝑥 and
𝑥′ ⩽ (𝑛 + 1)𝑦 (see Definition 2.9 for 𝑧,𝑧 ∈ Cu(𝐴)).

From [13, Corollary 5.8] as observed by L. Robert, he shows the following (in the proof of
Proposition 6.2.1 of [35]).

Lemma5.6. Let𝐴 be a finite simple𝐶∗-algebra with strict comparison. Suppose that𝐴 has property
(D). Then the canonical map from 𝐶𝑢(𝐴) to LAff+(𝑄𝑇(𝐴)) is surjective.

Proof. The proof is contained in the second paragraph of the proof of Proposition 6.2.1 of [35]. □

The following is an analogue of [13, Theorem 6.6]. Recall ([13, Proposition 6.4 (iv)]) that, in a
simple 𝐶∗-algebra 𝐴, every element of Cu(𝐴) is purely non-compact except for the elements [𝑝],
where𝑝 is a non-zero finite projection. In particular, if𝐴 has no infinite projections, then the set of
purely non-compact elements of Cu(𝐴) is precisely those elements which cannot be represented
by a projection.

Theorem 5.7. Let 𝐴 be a non-elementary separable simple 𝐶∗-algebra which is tracially approxi-
mately divisible. Then the map ⟨𝑎⟩→ ⟨̂𝑎⟩ is an isomorphism between ordered semigroups of purely
non-compact elements of Cu(𝐴) and LAff+(𝑄𝑇(𝐴)).

Proof. If 𝐴 is purely infinite, then, 𝑄𝑇(𝐴) = {0}, and every element in 𝐴 is purely non-compact,
and, all non-zero elements are Cuntz-equivalent. So, in this case, the conclusion uninterestingly
holds. Now we assume that 𝐴 is not purely infinite. Recall, from Theorem 5.2, 𝑊(𝐴) is almost
unperforated. By [39, Corollary 5.1] (see also [16, Proposition 4.9]),𝐴 is stably finite. Consequently,
𝐴 has no infinite projections.
Thus, from now on in this proof, we assume that purely non-compact elements are precisely

those which cannot be represented by projections.
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3031

Let 𝑎, 𝑏 ∈ (𝐴 ⊗)+ such that ⟨𝑎⟩ and ⟨𝑏⟩ are two purely non-compact elements and 𝑑𝜏(𝑎) =
𝑑𝜏(𝑏) for all 𝜏 ∈ 𝑄𝑇(𝐴). Then, since 𝐴 is simple and 0 is not an isolated point of sp(𝑎) ∪ {0}, for
any 𝜀 > 0,

𝑑𝜏((𝑎 − 𝜀)+) < 𝑑𝜏(𝑎) = 𝑑𝜏(𝑏) for all 𝜏 ∈ 𝑄𝑇(𝐴) ⧵ {0}. (e5.23)

Hence, by Theorem 5.2 and Theorem 4.11, we have (𝑎 − 𝜀)+ ≲ 𝑏 for any 𝜀 > 0. It follows that

𝑎 ≲ 𝑏. (e5.24)

Symmetrically, 𝑏 ≲ 𝑎. So 𝑎 ∼ 𝑏. This proves the map ⟨𝑎⟩→ ⟨̂𝑎⟩ is injective.
To prove the surjectivity, by the first paragraph of the proof of Lemma 6.5 of [13], it suffices to

show that the canonical map ⟨𝑎⟩↦ 𝑎 is surjective from Cu(𝐴) to LAff+(𝑄𝑇(𝐴)). Therefore, by
Lemma 5.6, it suffices to show that 𝐴 has property (D).
To see 𝐴 has property (D), let 𝑥, 𝑥′ ∈ Cu(𝐴) such that 𝑥′ ≪ 𝑥. Let 𝑎, 𝑏 ∈ (𝐴 ⊗)𝟏+ such

that ⟨𝑎⟩ = 𝑥′ and ⟨𝑏⟩ = 𝑥. By Remark 4.2 and [16, Proposition 5.3], 𝐴⊗ is tracially approxi-
mately divisible.
Then, for some 1∕16 > 𝜀 > 0,

𝑎 ≲ 𝑓2𝜀(𝑏). (e5.25)

In particular, we assume that (𝑏 − 𝜀)+ ≠ 0. Note that 𝑓𝜀∕128(𝑏) ≪ 𝑏.
Choose 0 < 𝜂 < 𝜀 such that (𝑏 − 𝜂)+ ≠ 0. Since 𝐴 is a non-elementary simple 𝐶∗-algebra,

there are 𝑛 + 1 mutually orthogonal and mutually Cuntz-equivalent elements 𝑠1, 𝑠2, … , 𝑠𝑛+1 ∈
Her((𝑏 − 𝜂)+) ⧵ {0}. Since 𝐴⊗ has property (TAD), there are 𝑑0, 𝑑1 ∈ (𝐴 ⊗)𝟏+ and a
𝐶∗-subalgebra 𝐷 ⊗𝑀𝑛 ⊂ 𝐴⊗ such that

(1) 𝑏 ≈𝜂∕64 𝑑0 + 𝑑1,
(2) 𝑑1 ∈𝜂∕64 𝐷 ⊗ 1𝑛, and
(3) 𝑑0 ≲ 𝑠1.

Choose 𝑑 ∈ 𝐷+ such that

𝑑1 ≈𝜂∕64

𝑛∑
𝑖=1

𝑑 ⊗ 𝑒𝑖,𝑖 . (e5.26)

Then

(𝑑1 − 𝜂∕64)+ ≈𝜂∕32

𝑛∑
𝑖=1

𝑑 ⊗ 𝑒𝑖,𝑖 and (𝑑1 − 𝜂∕32)+ ≈𝜂∕16

𝑛∑
𝑖=1

(𝑑 − 𝜂∕64)+ ⊗ 𝑒𝑖,𝑖 . (e5.27)

By applying [38, Proposition 2.2], we have

𝑛∑
𝑖=1

(𝑑 − 𝜂∕32)+ ⊗ 𝑒𝑖,𝑖 ≲ (𝑑1 − 𝜂∕64)+ and (𝑑1 − 3𝜂∕16)+ ≲

𝑛∑
𝑖=1

(𝑑 − 𝜂∕64)+ ⊗ 𝑒𝑖,𝑖 . (e5.28)
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3032 FU et al.

From (1) above and by [33, Lemma 1.7],

(𝑑1 − 𝜂∕64)+ ≲ ((𝑑0 + 𝑑1) − 𝜂∕64)+ ≲ 𝑏. (e5.29)

Put 𝑦 ∶= (𝑑 − 𝜂∕32)+ ⊗ 𝑒1,1. Then, for all 𝜏 ∈ 𝑄𝑇(𝐴), by the first inequality in (e5.28),

𝑛𝑑𝜏(𝑦) ⩽ 𝑑𝜏((𝑑1 − 𝜂∕64)+) ⩽ 𝑑𝜏(((𝑑0 + 𝑑1) − 𝜂∕64)+) ⩽ 𝑑𝜏(𝑏). (e5.30)

On the other hand, by (1) and (e5.26), we have

𝑏 ≈𝜂∕32 𝑑0 +

𝑛∑
𝑖=1

(𝑑 ⊗ 𝑒𝑖,𝑖) ≈𝜂∕32 𝑑0 +

𝑛∑
𝑖=1

(𝑑 − 𝜂∕32)+ ⊗ 𝑒𝑖,𝑖 . (e5.31)

It follows that

(𝑏 − 𝜂∕16)+ ≲ 𝑑0 +

𝑛∑
𝑖=1

⊗(𝑑 − 𝜂∕32)+ ⊗ 𝑒𝑖,𝑖 ≲ 𝑠1 ⊕

𝑛∑
𝑖=1

(𝑑 − 𝜂∕32)+ ⊗ 𝑒𝑖,𝑖 . (e5.32)

Recall that (𝑏 − 𝜂∕16)+ ∈ Ped(𝐴). So 𝑑𝜏((𝑏 − 𝜂∕16)+) < ∞ for all 𝑄𝑇(𝐴). It follows from (e5.32),
(3), and the choice of 𝑠1 that

𝑛𝑑𝜏(𝑦) ⩾ 𝑑𝜏((𝑏 − 𝜂∕16)+) − 𝑑𝜏(𝑠1) ⩾ 𝑑𝜏((𝑏 − 𝜂∕16)+) −
𝑑𝜏((𝑏 − 𝜂∕16)+)

𝑛 + 1
(e5.33)

⩾
(

𝑛

𝑛 + 1

)
𝑑𝜏((𝑏 − 𝜂∕16)+) for all 𝜏 ∈ 𝑄𝑇(𝐴). (e5.34)

In other words,

⟨(𝑏 − 𝜂∕16)+⟩̂ ⩽ (𝑛 + 1)𝑦. (e5.35)

By (e5.25), 𝑎 ≲ 𝑓2𝜀(𝑏) ≲ (𝑏 − 𝜀∕16)+. It follows that (recall 𝜂 < 𝜀)

𝑥′ = ⟨̂𝑎⟩ ⩽ ⟨(𝑏 − 𝜂∕16)+⟩̂ ⩽ (𝑛 + 1)𝑦.
Combining this with (e5.30), we conclude that 𝐴 has property (D) as desired. □

Remark 5.8. In Theorem 5.7, we may write

Cu(𝐴) = (𝑉(𝐴) ⧵ {0}) ⊔ LAf f+(𝑄𝑇(𝐴)).

Note that, here, 0 ∈ LAff+(𝑄𝑇(𝐴)) is the zero element, and, if [𝑝] ∈ 𝑉(𝐴) and 𝑧 ∈

LAff+(𝑄𝑇(𝐴)) ⧵ {0}, then [𝑝] + 𝑧 = 𝑝 + 𝑧 ∈ LAff+(𝑄𝑇(𝐴)). Moreover, for 𝑥 = ⟨𝑎⟩ and 𝑦 = ⟨𝑏⟩,
then 𝑥 < 𝑦 if and only if ⟨̂𝑎⟩ < ⟨̂𝑏⟩ (see also [41, Corollary 8.12] for the unital case).
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3033

6 STABLE RANK ONE

This section is devoted to prove that a separable simple tracially approximately divisible 𝐶∗-
algebra is either purely infinite, or has stable rank one (see Corollary 6.5). As a consequence,
we show that (non-unital) simple -stable 𝐶∗-algebras have stable rank one which answers a
question of L. Robert.

Lemma6.1. Let𝐴 be a𝐶∗-algebra,𝑎, 𝑏, 𝑐 ∈ 𝐴. Assume 𝑐𝑛 = 0 for some𝑛 ⩾ 1, and𝑎𝑏 = 𝑎𝑐 = 𝑐𝑎 =
𝑐𝑏 = 𝑏2 = 0. Then sp((𝑎 + 𝑏 + 𝑐)𝑛+1)∖{0} = sp(𝑎𝑛+1)∖{0}.

Proof. We first claim that (𝑎 + 𝑏 + 𝑐)𝑛+1 = 𝑎𝑛+1 + 𝑏𝑎𝑛.
To see this, let 𝑥 be a non-zero term in the expansion of (𝑎 + 𝑏 + 𝑐)𝑛+1. Note that 𝑥 is a product

of factors 𝑎, 𝑏, and 𝑐.
Case 1: 𝑥 = 𝑎 ⋅ 𝑦, where 𝑦 is a product of 𝑛 elements in {𝑎, 𝑏, 𝑐}. If 𝑦 has a factor 𝑏 or 𝑐, then 𝑥

must have a factor 𝑎𝑏 or 𝑎𝑐. Then, by the assumption 𝑎𝑐 = 𝑎𝑏 = 0,𝑥 would be zero. Therefore 𝑦
has no factor 𝑏 or 𝑐. Consequently, 𝑥 = 𝑎𝑛+1.
Case 2: 𝑥 = 𝑏 ⋅ 𝑦.
Case 2.1: If 𝑦 = 𝑎 ⋅ 𝑧, where 𝑧 is still a product of elements in {𝑎, 𝑏, 𝑐}. Since, again,𝑎𝑐 = 𝑎𝑏 = 0,

𝑧 could not have a factor 𝑏 or 𝑐. Therefore the only possible non-zero 𝑥, in this case, must be 𝑏𝑎𝑛.
Case 2.2: 𝑦 = 𝑏 ⋅ 𝑧. This actually is impossible, since 𝑏2 = 0.
Case 2.3: 𝑦 = 𝑐 ⋅ 𝑧. Then, by the assumption, 𝑐𝑎 = 𝑐𝑏 = 0,𝑧 could not have a factor 𝑎 or 𝑏.

Thus 𝑥 = 𝑏𝑐𝑛. However, by the assumption 𝑐𝑛 = 0, Case 2.3 will not occur.
Case 3: 𝑥 = 𝑐 ⋅ 𝑦. If 𝑦 contains factor 𝑎 or 𝑏, then 𝑥 contains factor 𝑐𝑎 or 𝑐𝑏. Then, by the

assumption 𝑐𝑎 = 𝑐𝑏 = 0, we have 𝑥 = 0. Hence 𝑦 could not contain factor 𝑎 or 𝑏. Hence the only
possible non-zero 𝑥, in this case, must be 𝑐𝑛+1. However, by the assumption 𝑐𝑛+1 = 0, this case
could not occur.
Thus, it leaves two terms: 𝑥 = 𝑎𝑛+1 and 𝑥 = 𝑏𝑎𝑛. In other words, (𝑎 + 𝑏 + 𝑐)𝑛+1 = 𝑎𝑛+1 + 𝑏𝑎𝑛.

This proves the claim.
As 𝑎𝑛𝑏 = 0, we see that

sp((𝑎 + 𝑏 + 𝑐)𝑛+1)∖{0} = sp((𝑎 + 𝑏)𝑎𝑛)∖{0} = sp(𝑎𝑛(𝑎 + 𝑏))∖{0} = sp(𝑎𝑛+1)∖{0}. (e6.1)

□

Corollary 6.2. Let 𝑎, 𝑏, 𝑐 be as in Lemma 6.1. If, in addition, 𝑎 is positive, then 𝑎 + 𝑏 + 𝑐 can be
approximated by invertible elements in 𝐴.

Proof. By Lemma 6.1 and the fact that 𝑎 ∈ 𝐴+, we have sp((𝑎 + 𝑏 + 𝑐)𝑛+1)∖{0} = sp(𝑎𝑛+1)∖{0} ⊂
ℝ+. By the spectral mapping theorem, sp(𝑎 + 𝑏 + 𝑐)∖{0} lies in the union of 𝑛 + 1 rays, which is

{𝑒𝑡+2𝑖𝑘𝜋∕(𝑛+1) ∶ 𝑡 ∈ ℝ, 𝑘 = 1,… , 𝑛 + 1}. (e6.2)

Hence 0 is not an interior point of sp(𝑎 + 𝑏 + 𝑐) ∪ {0}. Therefore 𝑎 + 𝑏 + 𝑐 can be approximated
by invertible elements. □

Recall the the definition of continuous scale from [23].
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3034 FU et al.

Definition 6.3. [23, Definition 2.5] Let 𝐴 be a 𝜎-unital, non-unital and non-elementary simple
𝐶∗-algebra. 𝐴 is said to have continuous scale, if there is an approximate identity {𝑒𝑛} such that,
for any 𝑎 ∈ 𝐴+∖{0}, there is 𝑁 ∈ ℕ, such that for any 𝑛 > 𝑚 ⩾ 𝑁,𝑒𝑛 − 𝑒𝑚 ≲ 𝑎.

Note that, by [23, Theorem 2.8] and [27, Theorem 2.4],𝐴 has continuous scale if and only if the
corona algebra𝑀(𝐴)∕𝐴 is simple. It also follows from [27, Theorem 2.4] that if 𝐴 has continuous
scale, then any approximate identity {𝑒𝑛}with 𝑒𝑛+1𝑒𝑛 = 𝑒𝑛𝑒𝑛+1 = 𝑒𝑛 for all 𝑛 ∈ ℕ has the property
that, for any 𝑎 ∈ 𝐴+ ⧵ {0}, there exists 𝑁 ⩾ 1 such that, for all𝑚 > 𝑛 ⩾ 𝑁, 𝑒𝑚 − 𝑒𝑛 ≲ 𝑎.
Moreover, for a 𝜎-unital non-elementary simple exact 𝐶∗-algebra 𝐴 with 𝑇(𝐴) ≠ ∅, if 𝐴 has

strict comparison, then𝐴 has continuous scale if and only if 𝑇(𝐴) is compact (see [12, Proposition
5.4], see also the proof of Theorem 5.3 of [12], and, an early version, [27, Proposition 2.2]). See also
the third paragraph of the proof of Corollary 6.5 bellow.

Theorem 6.4. Let 𝐴 be a 𝜎-unital projectionless simple 𝐶∗-algebra with continuous scale. Sup-
pose that, for any 𝜎-unital hereditary 𝐶∗-subalgebra 𝐵 ⊂ 𝐴, any non-invertible element in 𝐵 can be
approximated (in norm) by products of two nilpotent elements in 𝐵. Then 𝐴 has stable rank one.

Proof. Let {𝑒(𝑘)} be an approximate identity of𝐴 such that 𝑒(𝑘+1)𝑒(𝑘) = 𝑒(𝑘)𝑒(𝑘+1) = 𝑒(𝑘). By passing
to a subsequence, without loss of generality, we may assume 𝑒(𝑘2) − 𝑒(𝑘1) ≠ 0 for all 𝑘2 > 𝑘1 ∈ ℕ.
Let 𝐴 be the unitization of 𝐴 and 𝑦 + 𝜆 ∈ 𝐴, where 𝑦 ∈ 𝐴 and 𝜆 ∈ ℂ.
Fix 𝛿 ∈ (0, 1). To show 𝐴 has stable rank one, it is suffices to show the following:
Goal: there is 𝑧 ∈ 𝐺𝐿(𝐴) such that

‖(𝑦 + 𝜆) − 𝑧‖ < 𝛿. (e6.3)

To achieve the goal, we first choose 𝑘0 ∈ ℕ such that 𝑒(𝑘0)𝑦𝑒(𝑘0)≈𝛿∕4𝑦. Put 𝐵 ∶= Her𝐴(𝑒(𝑘0)) and
𝑦0 = 𝑒

(𝑘0)𝑦𝑒(𝑘0) ∈ 𝐵. Then

‖(𝑦0 + 𝜆) − (𝑦 + 𝜆)‖ < 𝛿∕4. (e6.4)

Note, since 𝐴 has no non-zero projection, 𝐵 is non-unital. Put 𝐴1 ∶= ℂ ⋅ 1𝐴 + 𝐵 ≅ 𝐵. Let 𝑣 ∈ 𝐴1
be such that 𝑣∗𝑣 = 1. Then 1 − 𝑣𝑣∗ ∈ 𝐴 is a projection. Since 𝐴 has no non-zero projections,
𝑣∗𝑣 − 𝑣𝑣∗ = 0. In other words, 𝐴1 is finite and hence every one-sided invertible element in 𝐴1
is invertible. If 𝑦0 + 𝜆 ∈ 𝐺𝐿(𝐴1) ⊂ 𝐺𝐿(𝐴), then, by (e6.4), our goal is achieved. So we assume that
𝑦0 + 𝜆 ∉ 𝐺𝐿(𝐴1). By [37, Proposition 3.2], there is a two-sided zero divisor 𝑦1 + 𝜆1 ∈ 𝐴1 such that‖𝑦 + 𝜆 − (𝑦1 + 𝜆1)‖ < 𝛿∕4, for some 𝑦1 ∈ 𝐵 and 𝜆1 ∈ ℂ. Therefore, to achieve the goal above, it is
suffices to show that 𝑦1 + 𝜆1 ∈ 𝐺𝐿(𝐴).
By [37, Lemma 3.5], working in 𝐴1 ≅ 𝐵, we can find 𝑎1 ∈ 𝐴1+ ⧵ {0} and a unitary 𝑢 ∈ 𝐴1 such

that

𝑎1𝑢(𝑦1 + 𝜆1) = 𝑢(𝑦1 + 𝜆1)𝑎1 = 0. (e6.5)

Since 𝐵 is an essential ideal of 𝐴1, there is 𝑏 ∈ 𝐵+ such that 𝑎1𝑏𝑎1 ≠ 0. Put 𝑎 = 𝑎1𝑏𝑎1 ∈ 𝐵, and
we may assume ‖𝑎‖ = 1. We write 𝑢(𝑦1 + 𝜆1) = 𝑥1 + 𝜂, where 𝑥1 ∈ 𝐵 and |𝜂| = |𝜆1|. Since 𝑢 is
invertible, to show 𝑦1 + 𝜆1 ∈ 𝐺𝐿(𝐴), it suffices to show that 𝑥1 + 𝜂 ∈ 𝐺𝐿(𝐴).
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3035

If 𝜂 = 0, then 𝜆1 = 0, and then 𝑦1 + 𝜆1 = 𝑦1 ∈ 𝐵 ⊂ 𝐴. By our assumption, 𝑦1 can be approx-
imated by products of two nilpotent elements in 𝐴, which can be approximated by invertible
elements in 𝐴. Thus we may assume that 𝜂 ≠ 0.
Put 𝑥 = 𝑥1

𝜂
∈ Her𝐴(𝑒

(𝑘0)). If 𝑥 + 1 = 𝑥1
𝜂
+ 1 ∈ 𝐺𝐿(𝐴), then 𝑥1 + 𝜂 ∈ 𝐺𝐿(𝐴).

Hence, it is suffices to show that 𝑥 + 1 ∈ 𝐺𝐿(𝐴).
To do that, let us fix 𝜀 > 0. As 𝐴 has continuous scale, we may choose 𝑒0, 𝑒1, ∈ 𝐴𝟏+ of the form

𝑒(𝑘) with 𝑘 > 𝑘0, such that 𝑒0𝑒1 = 𝑒1 = 𝑒1𝑒0,𝑒0 − 𝑒1 ≲ 𝑎. Note, since 𝑥 ∈ Her𝐴(𝑒(𝑘0)), and 𝑒1 is of
the form 𝑒(𝑘) with 𝑘 > 𝑘0, we also have

𝑒1𝑥 = 𝑥 = 𝑥𝑒1 and, hence 𝑒1(𝑥 + 1) = (𝑥 + 1)𝑒1. (e6.6)

Note, by (e6.5) and the choice of 𝑎 and 𝑥 + 1, we have 𝑎(𝑥 + 1) = (𝑥 + 1)𝑎 = 0. We also have

𝑥 + 1 = (1 − 𝑒0) + (𝑒0 − 𝑒1) + 𝑒1(𝑥 + 1). (e6.7)

Since 𝑒0 − 𝑒1 ≲ 𝑎 ∼ 𝑎2, there is 𝑟 ∈ 𝐴 such that

(𝑒0 − 𝑒1 − 𝜀)+ = 𝑟
∗𝑎2𝑟. (e6.8)

Note that, since (𝑒0 − 𝑒1)𝑒(𝑘0) = 𝑒(𝑘0)(𝑒0 − 𝑒1) = 0, and 𝑎 ∈ Her𝐴(𝑒(𝑘0)), we have

(𝑎𝑟)2 = 0. (e6.9)

Let 𝐶 = {𝑧 ∈ 𝐴 ∶ 𝑧𝑎 = 𝑎𝑧 = 0}. Then 𝐶 is a hereditary 𝐶∗-subalgebra of 𝐴. Since 𝑒1 com-
mutes with 𝑥 + 1 and 𝑎(𝑥 + 1) = (𝑥 + 1)𝑎 = 0, we have 𝑎𝑒1(𝑥 + 1) = 𝑎(𝑥 + 1)𝑒1 = 0, and 𝑒1(𝑥 +
1)𝑎 = 0. Thus 𝑒1(𝑥 + 1) ∈ 𝐶. Let 𝐷 = Her𝐴(𝑒1(𝑥 + 1)) ⊂ 𝐶, which is a 𝜎-unital hereditary 𝐶∗-
subalgebra. Note that, since𝐷 is projectionless, 𝑒1(𝑥 + 1) is not invertible in𝐷. By the assumption
of the theorem, there are two nilpotent elements 𝑠1, 𝑠2 ∈ 𝐷 such that

𝑠1𝑠2 ≈𝜀 𝑒1(𝑥 + 1). (e6.10)

Since 𝑒0𝑒1 = 𝑒1, and 𝐷 ⊂ Her𝐴(𝑒1), we have

𝑠1(1 − 𝑒0) = (1 − 𝑒0)𝑠1 = 0 = (1 − 𝑒0)𝑠2 = 𝑠2(1 − 𝑒0). (e6.11)

Also note that (recall, 𝑠1, 𝑠2 ∈ 𝐷 ⊂ 𝐶 = {𝑎}⊥)

(1 − 𝑒0)𝑎 = 0 = 𝑎(1 − 𝑒0), 𝑎𝑠1 = 𝑠1𝑎 = 0, 𝑎𝑠2 = 𝑠2𝑎 = 0. (e6.12)

Then by (e6.7), (e6.8), (e6.10), (e6.11), and (e6.12),

𝑥 + 1 = (1 − 𝑒0) + (𝑒0 − 𝑒1) + 𝑒1(𝑥 + 1) (e6.13)

≈2𝜀 (1 − 𝑒0) + (𝑒0 − 𝑒1 − 𝜀)+ + 𝑠1𝑠2 (e6.14)

= (1 − 𝑒0) + 𝑟
∗𝑎2𝑟 + 𝑠1𝑠2 (e6.15)

= ((1 − 𝑒0)
1∕2 + 𝑟∗𝑎 + 𝑠1)((1 − 𝑒0)

1∕2 + 𝑎𝑟 + 𝑠2). (e6.16)
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3036 FU et al.

Let 𝛼 = (1 − 𝑒0)1∕2,𝛽 = 𝑎𝑟, 𝛾 = 𝑠2. Then (1 − 𝑒0)1∕2 + 𝑎𝑟 + 𝑠2 = 𝛼 + 𝛽 + 𝛾. Note that 𝛼 is a pos-
itive element, 𝛾 is a nilpotent element, and by (e6.12), 𝛼𝛽 = 𝛾𝛽 = 0, by (e6.11), 𝛼𝛾 = 𝛾𝛼 = 0, by
(e6.9), 𝛽2 = 0. Then by Lemma 6.1 and Corollary 6.2, 𝛼 + 𝛽 + 𝛾 = (1 − 𝑒0)1∕2 + 𝑎𝑟 + 𝑠2 can be
approximated by invertible elements in 𝐴.
The same argument also holds for (1 − 𝑒0)1∕2 + 𝑎𝑟 + 𝑠∗1 = ((1 − 𝑒0)

1∕2 + 𝑟∗𝑎 + 𝑠1)
∗. Thus (1 −

𝑒0)
1∕2 + 𝑟∗𝑎 + 𝑠1 also can be approximated by invertible elements in𝐴. Then by (e6.16), we obtain

𝑧′ ∈ 𝐺𝐿(𝐴̃) such that ‖(𝑥 + 1) − 𝑧′‖ < 2𝜀. Since 𝜀 is arbitrary, this implies that
𝑥 + 1 ∈ 𝐺𝐿(𝐴) (e6.17)

as desired. Therefore 𝐴 has stable rank one. □

We have the following dichotomy for separable simple tracially approximately divisible 𝐶∗-
algebras.

Corollary 6.5. Let 𝐴 be a separable simple 𝐶∗-algebra which is tracially approximately divisible.
Then either 𝐴 is purely infinite or 𝐴 has stable rank one.

Proof. We assume that 𝐴 is not purely infinite. By Theorem 5.2 and Corollary 5.1 of [39] (see also
Proposition 4.9 of [16]), 𝐴 is stably finite. So from now on we will assume that 𝐴 is stably finite.
Wewill use the fact that every hereditary𝐶∗-subalgebra of𝐴 is tracially approximately divisible

(by [16, Theorem5.5]). Suppose that𝐴 contains a non-zero projection𝑝. Then the unital hereditary
𝐶∗-subalgebra𝑝𝐴𝑝 has stable rank one, by Corollary 5.4. It follows that𝐴 also has stable rank one.
We now assume that 𝐴 is projectionless.
By Theorem 5.7, we can choose 𝑒 ∈ Ped(𝐴)+ ⧵ {0} such that ⟨̂𝑒⟩ is continuous on 𝑄𝑇(𝐴). Let

𝐴0 = 𝑒𝐴𝑒 and let 𝑄𝑇(𝐴0) = {𝜏 ∈ 𝑄𝑇(𝐴) ∶ 𝑑𝜏(𝑒) = 1}. Recall that ⟨̂𝑒⟩(= 𝑑𝜏(𝑒)) is continuous on
𝑄𝑇(𝐴). It follows that 𝑄𝑇(𝐴0) is compact (see also the last paragraph of Definition 2.8). We
claim that 𝐴0 has continuous scale (see the proof of Proposition 5.4 of [12]). Indeed, let {𝑒𝑛} be
an approximate identity with property that 𝑒𝑛+1𝑒𝑛= 𝑒𝑛𝑒𝑛+1 = 𝑒𝑛. Then ⟨̂𝑒𝑛⟩ converges uniformly
on𝑄𝑇(𝐴0). Therefore, by strict comparison, for any 𝑎 ∈ 𝐴+ ⧵ {0}, there exists𝑁 ⩾ 1 such that, for
all𝑚 > 𝑛 ⩾ 𝑁,

𝑒𝑚 − 𝑒𝑛 ≲ 𝑎. (e6.18)

This proves the claim.
Next we claim that, by the proof of [16, Theorem 5.7], every element in a projectionless simple

𝐶∗-algebra which is tracially approximately divisible can be approximated by the products of two
nilpotent elements. To see this, let 𝑥′ ∈ 𝐴. Since 𝐴 is a non-unital separable 𝐶∗-algebra, for any
𝜀 > 0, there are 𝑎 ∈ 𝐴+ ⧵ {0} and 𝑥 ∈ 𝐴 such that 𝑥 ≈𝜀 𝑥′ and 𝑎𝑥 = 𝑥𝑎 = 0. It then suffices to
show that 𝑥 can be approximated by products of two nilpotents. Then the proof of [16, Theorem
5.7] from the second paragraph can be applied. Note that in the last estimate (e 5.29) at the end of
that proof, 𝑣 and 𝑤 are nilpotents. This proves the claim.
Aswepointed out at the beginning of the proof, every hereditary𝐶∗-subalgebra of𝐴0 is tracially

approximately divisible. So Theorem 6.4 implies that𝐴0 has stable rank one. By [34, Theorem 3.6],
𝐴0 ⊗ has stable rank one, so does 𝐴⊗ (by [6]). It follows from Corollary 3.6 of [7], 𝐴 itself
has stable rank one. □
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3037

Definition 6.6 [16, Definition 3.1]. A simple 𝐶∗-algebra 𝐴 is essentially tracially in the class
of -stable 𝐶∗-algebras, if for any finite subset  ⊂ 𝐴, any 𝜀 > 0, any 𝑠 ∈ 𝐴+ ⧵ {0}, there exist an
element 𝑒 ∈ 𝐴𝟏+ and a non-zero 𝐶

∗-subalgebra 𝐵 of 𝐴 which is -stable, such that

(1) ‖𝑒𝑥 − 𝑥𝑒‖ < 𝜀 for all 𝑥 ∈  ,
(2) (1 − 𝑒)𝑥 ∈𝜀 𝐵 and ‖(1 − 𝑒)𝑥‖ ⩾ ‖𝑥‖ − 𝜀 for all 𝑥 ∈  , and
(3) 𝑒 ≲ 𝑠.

Theorem 6.7. Let 𝐴 be a separable simple 𝐶∗-algebra which is essentially tracially in the class
of -stable 𝐶∗-algebras. Then 𝐴 is purely infinite, or 𝐴 has stable rank one and Cu(𝐴) = (𝑉(𝐴) ⧵
{0}) ⊔ LAf f+(𝑄𝑇(𝐴)).

Proof. It follows from [16, Theorem 5.9] that𝐴 is tracially approximately divisible. Then, by Theo-
rem 5.7 and Corollary 6.5,𝐴 is purely infinite, or has stable rank one, and Cu(𝐴) = (𝑉(𝐴) ⧵ {0}) ⊔
LAf f+(𝑄𝑇(𝐴)). □

Rørdam showed that every unital simple -stable 𝐶∗-algebra is either purely infinite, or has
stable rank one (see [39]). In [36], L. Robert showed that every stably projectionless simple -
stable 𝐶∗-algebra has almost stable rank one and left open whether it actually has stable rank
one. The following corollary answers his question affirmatively.

Corollary 6.8. Let 𝐴 be a simple-stable 𝐶∗-algebra. Then 𝐴 is either purely infinite or has stable
rank one.

Proof. If 𝐴 contains a non-zero projection 𝑝, then by [39, Theorem 6.7], 𝑝𝐴𝑝 is either purely
infinite, or has stable rank one. So the corollary follows by [6] and [34]. Therefore wemay assume
that 𝐴 is projectionless. Let 𝑥 + 𝜆 ∈ 𝐴, where 𝑥 ∈ 𝐴 and 𝜆 ∈ ℂ. Let 𝜀 > 0. Since  ≅

⨂∞
𝑛=1

(see [20, Corollary 8.8]) and 𝐴 is -stable, there is an isomorphism 𝛼 ∶ 𝐴 ⊗→ 𝐴 such that
𝛼(𝑥 ⊗ 1) ≈𝜀∕2 𝑥 (see [39, Lemma 4.4]). Note that 𝛼 extends to an isomorphism 𝛼̃ ∶ (𝐴 ⊗)̃ →

𝐴.
By the fact that 𝐴 is simple and by [3, Proposition 2.2], we obtain a separable simple 𝐶∗-

algebra 𝐵 ⊂ 𝐴 containing 𝐶∗(𝑥). Then 𝐵 ⊗ is separable, simple,-stable and projectionless. By
Theorem 6.7, there is an invertible element 𝑧 ∈ 𝐺𝐿((𝐵 ⊗)̃ ) ⊂ 𝐺𝐿((𝐴 ⊗)̃ ) such that 𝑧 ≈𝜀∕2
𝑥 ⊗ 1 + 𝜆. Then 𝛼̃(𝑧) ∈ 𝐺𝐿(𝐴) and 𝛼̃(𝑧) ≈𝜀∕2 𝛼̃(𝑥 ⊗ 1 + 𝜆) ≈𝜀∕2 𝑥 + 𝜆. It follows that 𝐴 has
stable rank one. □

Proposition 6.9. Let 𝐴 be a unital infinite-dimensional separable simple 𝐶∗-algebra with tracial
rank zero. Then 𝐴 is essentially tracially in the class of-stable 𝐶∗-algebras.

Proof. Let 𝜀 > 0, let  ⊂ 𝐴 be a finite subset of 𝐴 and let 𝑎 ∈ 𝐴𝟏+ ⧵ {0}. Since 𝐴 has tracial rank
zero, there is a non-zero projection 𝑝 ∈ 𝐴 and a finite-dimensional 𝐶∗-subalgebra 𝐷 ⊂ 𝐴 with
1𝐷 = 𝑝 such that

(1) 𝑥𝑝 ≈𝜀∕2 𝑝𝑥 for all 𝑥 ∈  ,
(2) 𝑝𝑥𝑝 ∈𝜀∕2 𝐹, and
(3) 1 − 𝑝 ≲ 𝑎.
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3038 FU et al.

Write 𝐷 = 𝑀𝑟(1) ⊕𝑀𝑟(2) ⊕⋯⊕𝑀𝑟(𝑚). Let {𝑒
(𝑘)
𝑖,𝑗
}1⩽𝑖,𝑗⩽𝑟(𝑘) be a system of matrix units for𝑀𝑟(𝑘),

1 ⩽ 𝑘 ⩽ 𝑚. By [32, Corollary 4.4], for each 𝑘, there is a unital simple AF-algebra 𝐵𝑘 and unital

embedding 𝜑𝑘 ∶ 𝐵𝑘 → 𝑒(𝑘)
1,1
𝐴𝑒(𝑘)

1,1
such that 𝑉(𝜑) ∶ 𝑉(𝐵𝑘) → 𝑉(𝑒(𝑘)

1,1
𝐴𝑒(𝑘)

1,1
) = 𝑉(𝐴) is surjective.

We claim that 𝑉(𝐴) is not finitely generated. To see this, suppose that 𝑉(𝐴) is generated by
[𝑝1], [𝑝2], … , [𝑝𝑚]. We may assume that 𝑝𝑖 ∈ 𝑀𝑙(𝐴) (for some 𝑙 ⩾ 1) is a non-zero projection, 1 ⩽
𝑖 ⩽ 𝑚. Note that𝑀𝑙(𝐴) is also a unital infinite-dimensional simple𝐶∗-algebra of real rank zero. By
repeatedly applying [47, Lemma 1.1], for example, we obtain a sequence of non-zero projections
{𝑞𝑛} ⊂ 𝑀𝑙(𝐴) such that lim𝑛→∞ sup{𝜏(𝑞𝑛) ∶ 𝜏 ∈ 𝑇(𝐴)} = 0. Then, for any non-negative integers
𝑘1, 𝑘2, … , 𝑘𝑚 (not all zero), there is an integer 𝑁 ⩾ 1 such that 𝜏(𝑞𝑁) <

∑𝑚
𝑖=1 𝑘𝑖𝜏(𝑝𝑖) for all 𝜏 ∈

𝑇(𝐴). Hence [𝑞𝑁] is not in 𝑉(𝐴). This proves the claim.
Since 𝑉(𝐴) can not be finitely generated, we deduce that each 𝑉(𝐵𝑘) is not finitely gen-

erated either, and in particular each 𝐵𝑘 is infinite-dimensional. Define 𝐶𝑘 ∶= {𝜑𝑘(𝑏) ⊗ 𝑒
(𝑘)
𝑖,𝑗
∶

1 ⩽ 𝑖, 𝑗 ⩽ 𝑟(𝑘), 𝑏 ∈ 𝐵𝑘} ≅ 𝐵𝑘 ⊗𝑀𝑟(𝑘) (1 ⩽ 𝑘 ⩽ 𝑚) and 𝐶 ∶=
⨁𝑚
𝑘=1 𝐶𝑘. Then, 𝐷 ⊂ 𝐶. By (2),

𝑝𝑥𝑝 ∈𝜀∕2 𝐶. (e6.19)

Since each 𝐶𝑘 is a unital simple infinite-dimensional AF-algebra, 𝐶𝑘 is -stable, 1 ⩽ 𝑘 ⩽ 𝑚 (see
[20, Corollary 6.3]). Therefore 𝐶 is -stable. By (1), (e6.19) and (3), 𝐴 is essentially tracially in the
class of -stable 𝐶∗-algebras. □

Example 6.10. In [31], Niu and Wang constructed a class of separable simple exact non-
nuclear 𝐶∗-algebras which have tracial rank zero but not -stable. Then, by Proposition 6.9, Niu
and Wang’s examples are unital separable simple exact 𝐶∗-algebras which are essentially tra-
cially -stable but not -stable. By [16, Theorem 5.9], these 𝐶∗-algebras are particularly tracially
approximately divisible.

7 EXAMPLES

Example 7.1. It is shown in [16, Theorem 5.9] that a simple 𝐶∗-algebra 𝐴 which is essentially
tracially in  (see [16, Notation 4.1]), then 𝐴 is tracially approximately divisible. Any simple
𝐶∗-algebras 𝐴𝐶𝑧 constructed in Theorem 8.4 of [16] and any hereditary 𝐶∗-subalgebra of 𝐴𝐶𝑧 (by
[16, Proposition 3.5]) are tracially approximately divisible. Therefore all (non-unital hereditary
𝐶∗-subalgebras) of 𝐶∗-algebras in [16, Theorem 8.6] are tracially approximately divisible and non-
nuclear 𝐶∗-algebras. By Corollary 6.5, all these 𝐶∗-algebras have stable rank one.

Recall that a II1 factor (𝑁, 𝜏) is said to have property Γ, if there is a sequence of unitaries {𝑢𝑛} ⊂
𝑁 satisfying lim𝑛→∞ ‖𝑢𝑛𝑥 − 𝑥𝑢𝑛‖2 = 0 for all 𝑥 ∈ 𝑁, and 𝜏(𝑢𝑛) = 0 for all 𝑛 ∈ ℕ.
The following is well-known to experts.

Proposition 7.2. Let𝐴 be a unital infinite-dimensional separable simple 𝐶∗-algebra with a unique
tracial state 𝜏 which is also tracially approximately divisible. Let 𝜋𝜏 be the GNS representation with
respect to 𝜏, and𝑁 ∶= 𝜋𝜏(𝐴)′′ the weak closure of 𝜋𝜏(𝐴). Then (𝑁, 𝜏) is a II1 factor with property Γ.

Proof. Since 𝜏 is an extreme point of 𝑇(𝐴) = {𝜏},𝑁 is a II1 factor ([10, Theorem 6.7.3]). From
Theorem 4.11 we know that if 𝐴 is tracially approximately divisible then 𝐴 has property
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(TAD-3). Thus there is a unital embedding 𝜓̂ ∶ 𝑀2 → 𝜋𝑐𝑢(𝐴)
′. By Proposition 3.10 and pro-

jectivity of 𝐶0((0, 1]) ⊗𝑀2, there is a homomorphism 𝜓̄ ∶ 𝐶0((0, 1]) ⊗𝑀2 → 𝜋∞(𝐴)
′ such that

𝜋∞◦𝜓̄(𝜄 ⊗ 𝑒𝑖,𝑗) = 𝜓̂(𝑒𝑖,𝑗),1 ⩽ 𝑖, 𝑗 ⩽ 1. Again, using projectivity of 𝐶0((0, 1]) ⊗𝑀2, there is a homo-
morphism 𝜓 ∶ 𝐶0((0, 1]) ⊗𝑀2 → 𝑙∞(𝐴) ⊂ 𝑙∞(𝑁) that lifts 𝜓̄. We may represent 𝜓 by a sequence
of homomorphisms 𝜓𝑛 ∶ 𝐶0((0, 1]) ⊗𝑀2 → 𝐴 ⊂ 𝑁. Then {𝜓𝑛} satisfies the following:

(1) lim𝑛→∞ ‖𝜓𝑛(𝑥)𝑎 − 𝑎𝜓𝑛(𝑥)‖ = 0 for all 𝑥 ∈ 𝐶0((0, 1]) ⊗𝑀2 and all 𝑎 ∈ 𝐴, and
(2) {1𝐴 − 𝜓𝑛(𝜄 ⊗ 1𝑀2)} ∈ 𝑁𝑐𝑢(𝐴).

By Proposition 3.8, (2) implies lim𝑛→∞ 𝜏(𝜓𝑛(1𝑀2)) = 1, hence

lim
𝑛→∞

𝜏(𝜓𝑛(𝜄 ⊗ 𝑒1,1)) = lim
𝑛→∞

𝜏(𝜓𝑛(𝜄 ⊗ 𝑒2,2)) = 1∕2. (e7.1)

Let 𝑦 ∈ 𝑁 and 𝜀 > 0. Let ‖𝑥‖2 = 𝜏(𝑥∗𝑥)1∕2 for all 𝑥 ∈ 𝑁. Since 𝐴 is dense in 𝑁 in the strong
operator topology, there is 𝑧 ∈ 𝐴 such that ‖𝑦 − 𝑧‖2 < 𝜀∕4. By (1), there is 𝐾 ∈ ℕ such that‖𝜓𝑛(𝜄 ⊗ 𝑒𝑖,𝑖)𝑧 − 𝑧𝜓𝑛(𝜄 ⊗ 𝑒𝑖,𝑖)‖ < 𝜀∕2 for all 𝑛 ⩾ 𝐾 and 𝑖 ∈ {1, 2}. Then

‖𝜓𝑛(𝜄 ⊗ 𝑒𝑖,𝑖)𝑦 − 𝑦𝜓𝑛(𝜄 ⊗ 𝑒𝑖,𝑖)‖2 ⩽ ‖𝜓𝑛(𝜄 ⊗ 𝑒𝑖,𝑖)𝑧 − 𝑧𝜓𝑛(𝜄 ⊗ 𝑒𝑖,𝑖)‖2 + ‖𝑦 − 𝑧‖2 < 𝜖. (e7.2)

It follows (e7.1) and (e7.2) that {𝜓𝑛(𝜄 ⊗ 𝑒1,1)} and {𝜓𝑛(𝜄 ⊗ 𝑒2,2)} are two mutually orthogonal
nontrivial central sequences of 𝑁. Therefore 𝑁 has property Γ (see, for example [40, Lemma
A.7.3]). □

Wenow present an example of unital non-elementary separable simple exact (but non-nuclear)
𝐶∗-algebra that has stable rank one, a unique tracial state, strict comparison, and 0-almost divis-
ible Cuntz semigroup, and contains a unital embedded copy of the Jiang-Su algebra , but is not
tracially approximately divisible.

Example 7.3. Let 𝐶∗𝑟 (𝔽∞) be the reduced group 𝐶∗-algebra of the free group on countably
infinitely many generators. It is well known that 𝐶∗𝑟 (𝔽∞) is a unital infinite-dimensional sepa-
rable simple 𝐶∗-algebra with a unique tracial state 𝜏. It is also well known that 𝐶∗𝑟 (𝔽∞) is exact.
Moreover, 𝐶∗𝑟 (𝔽∞) has stable rank one ([11]) and has strict comparison for positive elements
(see [35, Proposition 6.3.2]). Hence, the Cuntz semigroup of 𝐶∗𝑟 (𝔽∞) is almost divisible by [41,
Corollary 8.12]. By [35, Proposition 6.3.1], The Jiang-Su algebra  can be unitally embedded into
𝐶∗𝑟 (𝔽∞). On the other hand, the group von Neumann algebra 𝐿(𝔽∞) does not have property Γ
(see, e.g., [40, Theorem A.7.2]). It follows from Proposition 7.2 that 𝐶∗𝑟 (𝔽∞) can not be tracially
approximately divisible.

From a recent result of Ma andWu in [29] on groupoid 𝐶∗-algebras, let us restate the following.

Theorem 7.4 (c.f.[29, Theorem 9.7]). Let 𝐺 be a locally compact, second countable and Haus-
dorff étale minimal groupoid on a compact metrizable space without isolated points. Suppose 𝐺
is almost elementary. Then 𝐶∗𝑟 (𝐺) is unital, separable, simple, tracially -absorbing, and, is either
purely infinite, or has stable rank one.
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Proof. By [29, Theorem 9.7], 𝐶∗𝑟 (𝐺) is unital, separable, simple and is tracially -absorbing in
the sense of [18]. It follows from Theorem 4.11 ((3) ⇒ (2)) and Corollary 6.5 that 𝐶∗𝑟 (𝐺) either has
stable rank one or is purely infinite. □

We end this section by the following dichotomy result on flow actions (see [35, Section 7] for
examples of both cases).

Theorem 7.5. Let 𝐴 be a separable 𝐶∗-algebra with finite nuclear dimension, and let 𝛼 ∶ ℝ →
Aut(𝐴) be a flow with no 𝛼-invariant ideals and with finite Rokhlin dimension. Then 𝐴⋊𝛼 ℝ is
either purely infinite or has stable rank one.

Proof. By [19, Theorem 4.5], 𝐴⋊𝛼 ℝ has finite nuclear dimension. Since 𝐴 is separable and has
no 𝛼-invariant ideals, and 𝛼 has finite Rokhlin dimension, we deduce that 𝐴⋊𝛼 ℝ is separable
and simple (see [19, Corollary 3.12]). Then by [42, Corollary 8.7], 𝐴⋊𝛼 ℝ is -stable. Then by
Corollary 6.8, 𝐴⋊𝛼 ℝ is either purely infinite or has stable rank one. □
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