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1 | INTRODUCTION

Approximate divisibility for C*-algebras was introduced in [5] in the study of noncommutative tori
following the earlier work of M. Rerdam (see [37] and [38]). It is shown in Theorem 1.4 of [5] that
a unital separable simple C*-algebra A which is approximately divisible has strict comparison,
and is either purely infinite or has stable rank one.
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Tracial approximation was introduced in the Elliott program of classification for simple C*-
algebras at the end of last century (see, e.g., [24, 25] and [26]). The term of tracially approximate
divisibility appeared at the same time as the study of simple C*-algebras of tracial rank one (see
Definition 5.3 and the proof of Theorem 5.4 of [28]). It was shown, for example, that every uni-
tal non-elementary simple C*-algebra with tracial rank at most one is tracially approximately
divisible. A more general version of tracially approximate divisibility was given in [16, Defini-
tion 5.2]. Similar variations of tracially approximate divisibility also occurred (see Definition 4.4
below, and also in [12, Definition 10.1]). A concept with the same nature was also given in [18]
which was called tracially Z-absorbing (see also [9] and [1]). As a continuation of [16] (and also
of [15]), we first show that these notions of tracially approximate divisibility are all equivalent for
(not necessarily unital) non-elementary separable simple C*-algebras (see Theorem 4.11).

With the same spirit of [5], we also show that a separable simple C*-algebra which is tracially
approximately divisible has strict comparison, and is either purely infinite or has stable rank one
(see Theorem 5.2 and Corollary 6.5). Moreover, we show that if A is a non-elementary separable
simple C*-algebra which is tracially approximately divisible, then its Cuntz semigroup can be
written as Cu(A) = (V(A) \ {0}) u LAff +(6T (A)) (see Theorem 5.7 and Remark 5.8).

We would like to point out that the Jiang-Su algebra Z is not approximately divisible since it
has no non-zero projection other than the unit [20]. However, using [16, Theorem 5.9], every sim-
ple C*-algebra which can be essentially tracially approximated by separable Z-stable C*-algebras
(see [16, Definition 3.1] and Definition 6.6 below) is tracially approximately divisible. In particu-
lar, simple Z-stable C*-algebras are tracially approximately divisible. In Example 7.1, we observe
that there are a whole set of non-nuclear separable simple C*-algebras which are tracially approx-
imately divisible. Since every unital simple C*-algebra which has tracial rank zero is tracially
approximately divisible, there exist tracially approximately divisible C*-algebras which are not
Z-stable by [31].

Gong, Jiang and Su showed in [17] that a unital simple Z-stable C*-algebra A, that is, A =
A ® Z, is either purely infinite, or is stably finite, and has weakly unperforated K,(A). In [39],
Reordam showed that a unital simple Z-stable C*-algebra A is either purely infinite, or has stable
rank one, and has almost unperforated Cuntz semigroup. If A is a separable simple Z-stable C*-
algebra and contains a non-zero projection p, then pAp is also Z-stable [43, Corollary 3.1]. One
then quickly concludes that A has stable rank one if it is finite. In [36], L. Robert showed that
every stably projectionless simple C*-algebra A which is Z-stable has almost stable rank one. It
left open whether a stably projectionless simple Z-stable C*-algebra has stable rank one (see [36,
Question 3.5]). As a by-product, we show that every finite simple Z-stable C*-algebra always has
stable rank one (Corollary 6.8). In particular, we answer Robert’s question affirmatively. Some
applications and examples to dynamical systems can be found at the end of this paper. We also
refer the reader to the recent papers [41] and [2] for further related results about C*-algebras of
stable rank one.

The paper is organized as follows. Section 2 is a preliminary. Section 3 discusses the so-called
Cuntz-null sequences. In Section 4, we discuss several variations of tracial approximate divisibil-
ity and we show in Theorem 4.11 that they are actually all equivalent. In Section 5, we show that
a separable simple tracially approximately divisible C*-algebra has strict comparison (see Theo-
rem 5.2). Moreover, we also show that the canonical map from the purely non-compact elements
in Cuntz semigroup Cu(A) to the set of strictly positive lower semi-continuous affine functions
in LAff +(Q\T(A)) is an order-isomorphism (see Theorem 5.7). In Section 6, we show that a sep-
arable simple tracially approximately divisible C*-algebra is either purely infinite, or has stable
rank one (see Corollary 6.5). We end Section 6 by showing that every (non-unital) simple Z-stable

d ' TTOT ‘0SLL69YT

:sdiyy) SUORIpUO,) pue suLd I oy 995 “[£702/90/S7] U0 A1eIqr] SUIUQ AO[1AL “SOLBIQIT UOSOIQ) JO ANSIOAIUN Aq HSOTI*SWI/ZI | [°01/10p/WOdKo[1Ar”

Konm

25U91] SUOWIIOY) 9AER1)) d]qear[dde ayy £q PAWIGAOS I8 SOPILIE () 195N JO SO 10} AIBIQIT QUIUQ A[1A UO



3010 | FUET AL.

C*-algebra is either purely infinite or has stable rank one (see Corollary 6.8). Finally, we include
some examples in Section 7.

2 | PRELIMINARY

In this paper, the set of all positive integers is denoted by N. The set of all compact operators on a
separable infinite-dimensional Hilbert space is denoted by K.

Notation 2.1. Let A be a normed space and ¥ C A be a subset. Lete > 0. Let a,b € A, we write
a =, bif|la —b|| <e. Wewrite a €, F, if there is x € F such thata =, x.

Notation 2.2. Let A be a C*-algebra and let S C A be a subset of A. Denote by Her ,(S) (or just
Her(S), when A is clear) the hereditary C*-subalgebra of A generated by S. Denote by A! the
closed unit ball of A, by A, the set of all positive elements in A. Put A}L := A, n Al. Denote by A
the minimal unitization of A. When A is unital, denote by GL(A) the group of invertible elements
of A, and denote by U(A) the unitary group of A. Let Ped(A) denote the Pedersen ideal of A and
Ped(A), :=Ped(A) n A,. Denote by T'(A) the tracial state space of A.

Definition 2.3. Let A and B be C*-algebrasand ¢ : A — Bbe alinear map. The map g is positive,
if p(A,) C B,. The map ¢ is completely positive contractive, abbreviated as c.p.c., if ||¢|| < 1 and
pQ®id: AQ M, - B® M, are positive for all n € N. A c.p.c. map ¢ : A — B is said to have
order zero, if for any x,y € A, ,xy = 0 implies ¢(x)p(y) = 0.

In what follows, {e; j}ijl (or just {e; j}, if there is no confusion) is a system of matrix unit for
M, and, ¢ € Cy((0, 1]) is the identity function on (0,1], i.e., «(t) = ¢t for all t € (0, 1].

Definition 2.4. A C*-algebra A is said to have stable rank one [34], if A = GL(A), that is, GL(A)
is dense in A. A C*-algebra A is said to have almost stable rank one [36], if for any hereditary

C*-subalgebra B C A, B € GL(B).

Notation 2.5. Let ¢ > 0. Define a continuous function f, : [0,+o0) — [0,1] by

0 t €[0,e/2],
f(H) =141 t €[e, ),
linear t € [e/2,¢].

Definition 2.6. Let A be a C*-algebra and let M (A), := J,ey M, (A),. For x € M, (A), we
identify x with diag(x,0) € M,,,,,(A) for all m € N. Let a € M,,(A), and b € M,,,(A), . We may
write a @ b := diag(a,b) € M, ,(A),.Ifa,b € M, (A), we write a < b if there are x; € M, (A)
such that lim; ,  |la — xi*bxl- || = 0. We write a ~ b if a $ b and b < a hold. The Cuntz relation
~ is an equivalence relation. Set W(A) := M (A),/ ~. Let (a) denote the equivalence class of
a. We write (a) < (b) if a $ b. (W(A), <) is a partially ordered abelian semigroup. Let Cu(A) =
W(A ® K).W(A) (resp. Cu(A)) is called almost unperforated, if for any (a), (b) € W(A) (resp.
Cu(A)), and for any k € N, if (k + 1){a) < k(b), then {a) < (b) (see [38]). Denote by V(A) the
subset of those elements in W(A) represented by projections.
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Remark 2.7. 1t is known to experts that W(A) is almost unperforated is equivalent to say that
Cu(A) is almost unperforated. To see this briefly, let a, b € (A ® ), such that (k + 1)(a) < k(b).
Let {e; ;} be the system of matrix units for £ and E, = Y, 15®e;,; and let € > 0. Note that
E,aE, € M, (A), for all n € N. Moreover, a ~, /3 E,aE, for some large n € N. It follows from
[38, Proposition 2.2] that (a —¢), S (E,aE, —¢/4), and (E,aE, —¢/4), S (a—¢/8),. By [38,
Proposition 2.4] , there exists § > 0 such that (k + 1)((a —€/8),) < k{(b —5),.). Repeating Ror-
dam’s results ([38]), one obtains that ((b — J), ) < (E,,bE,,) for some even larger m. Now one has
(k+1)(E,aE, —€/4),) < k(E,,bE,,). Since W(A) is almost unperforated, (a —¢), < (E,aE, —
¢/4), S E,bE,,. Then, (a —¢), < E,,bE,, <b. It follows that a < b. Therefore, W(A) is almost
unperforated implies Cu(A) is almost unperforated.

To see the converse, just notice that A is a hereditary C*-subalgebra of A ® £ and (a) < (b) in
Cu(A) = W(A ® K) implies {(a) < (b) in W(A).

Definition 2.8. Let A be a C*-algebra. A densely defined 2-quasi-trace is a 2-quasi-trace defined
on Ped(A) (see [4, Definition I1.1.1]). Denote by QT(A) the set of densely defined 2-quasi-traces on
A ® K.Inwhat follows we will identify A with A ® €1 whenever itis convenient. Lett € ’Q\T (A).
Note 7(a) # oo for any a € Ped(A), \ {0}.

Note, foreacha € (A ® K), and € > 0, f.(a) € Ped(A ® K),.. Define

d (a) =lim7(f.(a)) for all 7 € QT (A). (e2.1)

A simple C*-algebra A is said to have (Blackadar’s) strict comparison, if, for any a,b € (A @ K),,,
one hasa < b, if

d.(a) < d,(b) for all T € QT(A)\ {0}. (e2.2)

Let A be a simple C*-algebra. By [39, Proposition 3.2] (and [13, Proposition 6.2]), if Cu(A) is almost
unperforated then A has strict comparison (see also Proposition 4.2 of [13]).

We endow QT(A) with the topology in which a net {r;} converges to 7 if {r;(a)} converges to
7(a) for all a € Ped(A) (see also (4.1) on page 985 of [13]).

Let A be a simple C*-algebra. Note that, if 7 is a lower semicontinuous quasitrace on A ® £
defined in [13], and if 7(a) < oo for some a € Ped(A), \ {0}, then 7(c) € C for all ¢ € Ped(A). In
other words, 7 € QT(A). If 7(a) = oo for some a € Ped(A) + \ {0}, then, in this case, 7(c) = oo for
all c € Ped(A), \ {0}. Note that we exclude the constant co from QT(A).

Choose any e € Ped(A), \{0}. PutT, ={r € QT(A) : 7(e) = 1}. Then T, is compact (see [13,
Theorem 4.4], note that T, = {r € QT,(A) : t(e) = 1} is a closed subset in the compact space
QT,(A), which is used in [13]). Suppose that QT(A) # {0}. Since A is simple, if 7 € QT(A) \ {0},
then 7(e) > 0. Note that, for any 7 € QT(A) \ {0}, ©(-)/7(e) € T,. In other words, 7(a) < 7(b) for
all 7 € QT(A) \ {0}if and only if 7(a) < 7(b) for allt € T,..

Definition 2.9. Let Aff +(6T (A)) be the set of all continuous affine functions f on QT(A) such
that f(zr) > Oforallt € QT(A) \ {0} and f(0) = 0, and, the zero function.

Let LAff +(6T(A)) be the set of those lower semi-continuous affine functions f : QT(A) —
[0, o] such that there exists an increasing sequence of functions f, € Aff +((5T (A)) such that
f(@) =lim,,_, , f,(t) for all T € QT(A).
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3012 | FUET AL.

The canonical map from Cu(A) to LAff +(6T (A)) is defined as follows: foreacha € (A ® K),.,
the map (a) - (a/\) is defined by @(r) =d (a)forallt € QT(A).

3 | CUNTZ-NULL SEQUENCES

In this section, we will introduce the notion of Cuntz-null sequence and discuss the related
properties of the (closed two-sided) ideal consisting of Cuntz-null sequences.

Definition 3.1. Let A be a C*-algebra. A bounded sequence {a,} in A is said to be Cuntz-null, if
for any a € A, \{0} and any ¢ > 0, there is ny € N such that f_(a;a,) < aforalln > n,,.

Let [*°(A) be the C*-algebra of bounded sequences of A. Recall that ¢,(A) := {{a,} € [®(A4) :
lim,_ , lla,ll =0} is a (closed) two-sided ideal of I®°(A). Let A, :=1%°(A)/c,(A). Let 7, :
[*°(A) —» A, be the quotient map. We view A as a subalgebra of [*°(A) via the canonical map
a+ {a,aq,..}foralla € A.Inwhat follows, we will identify a with the constant sequence {a, a, ...}
in [*°(A) without further warning. Denote by N, (A) (or just N,) the set of all Cuntz-null
sequences in [*(A). Let us also write that

71';1(14,) ={{x,} €l®(4): V}Lngo Ix,a —ax,|| =0 for all a € A}. (e3.1)

Remark 3.2. For a free (ultra)filter w on N, we may similarly define w-Cuntz-null sequences as
follows: the set of those {a,,} € [*°(A) such that, forany a € A, \{0}and any ¢ > 0, thereis W € w
satisfying f.(ara,) S a for all n € W. Similar results in this section also works for w-Cuntz-null
sequences. But we will not explore this further in this paper.

Proposition 3.3. Let A be a C*-algebra and B C A be a C*-subalgebra. Let
I'={a€A:a*ashb for all b € B, \{0}}.
If B has no one-dimensional hereditary C*-subalgebras, then I is a closed two-sided ideal of A.

Proof. First, let us show that I is a %-invariant linear space. To see this, let a€l. f A € C
and b € B, \ {0}, then |1|?a*a < a*a < b. Thus Aa € I. Since a*a ~ aa*, we also have a* € I.
Now let a;,a, € I and b € B, \{0}. By our assumption, Herg(b) ¢ C. Then there exist b;,b, €
Herg(b),\{0} such that b;b, = 0. By the definition of I, we have ai*al- < b;, (i=1,2). Then
(a1 + ay)"(a; + ay) < 2(ajay +ajay) S by + by $b. It follows a; + a, € I. Consequently, I is a
x-invariant linear space.

Next, let us show that I is a two-sided (algebraic) ideal. Leta € I and x € A. Forany b € B, \{0},
we have (ax)*ax = x*a*ax < a*a < b. Similarly, (xa)*xa = a*x*xa < a*a < b. Thus ax,xa €
I. This shows that I is a two-sided (algebraic) ideal of A.

It remains to show that I is norm closed. Let {a,} C I and a € A such that ||la, — a|| - 0 (n —
o). Let b € B, \{0}. For any ¢ > 0, there is m € N such that a*a ~;/, a;, a,,. Since a,, € I, we
have a; a,, < b. Thus there exist r € A such that a; a,, ~/, rbr*. Then a*a ~, rbr*. Since ¢ is
arbitrary, we have a*a < b. Since b € B, \{0} is arbitrary, we have a € I. Thus I is norm closed as
desired. O
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Proposition 3.4. An element {a,} in 1*°(A) is a Cuntz-null sequence if and only if 7 ,({a;a,}) <
e (a) foralla € A \{0}.

Proof. To see the “if” part, let us assume that {a,} € [*°(A) has the property that, for any a €
A+\{0}7

To({a,a,}) = ({0, 7o (fa,}) S 7o (). (e3.2)

For any ¢ > 0, there is r = 7, ({r,,}) € [*(A)/cy(A) such that ||z ({a,a,}) — r*7(a)r| <e/2.
Then there is n, € N such that ||la}a, —r;ar,|| <¢/2 for all n > n,. By [38, Proposition 2.2], we
have f.(aya,) Sryar, S aforalln > n,. So{a,} € N.,(A).

Conversely, we assume that {a,} € N,,(A). Leta € A \{0}and ¢ > 0.

Choose & > Osuch that f5(a) # 0. Since {a, }is a Cuntz-null sequence, there is n, € Nsatisfying
fg/z(a:an) < fs(a)foralln > n,.By|[38, Proposition 2.4 (iv)], for each n > ng, thereisr, € Asuch
that f.(a}a,) = r’fs(@)r,. Note that ||f5(a)"/2r, |l = IFif s(@)r, 112 = [If(aa,)]l is bounded
for all n > ny. For n €N, let s, = f5(a)'/?r, if n > n,, and let s, = 0if n < n;. Then s = {5,,} €
[*(A). Moreover, f.(ara,) = st5/2(a)sn for all n > n;. Then

Ife(mo({a,a, D)) — 8" f5/2(Too(@)sll = 17 (fe({a,a,}) — 5" f5 /2 (7 (@))s]] (e3.3)

< sup ”fs(a::an) - SZfzS/Z(a)Sn” =0. (e3.4)

nzn,

Therefore  f.(7({a;a,}) S f5/2(7Too(a)) S7e(a). It follows 7n({aya,}) S7(a) as
desired. O

Proposition 3.5. If A is a C*-algebra which has no one-dimensional hereditary C*-subalgebras,
then N, (A) is a closed two-sided ideal of I*°(A) and c,(A) C N, (A). If A is a non-elementary
separable simple C*-algebra, then c,(A) # N, (A).

Proof. Let J :={x €l®(A)/cy(A) : x*x S a for all a € m(A),\{0}}. Since A has no one-
dimensional hereditary C*-subalgebra, by Proposition 3.3, J is a norm closed two-sided ideal of
1°(A)/cy(A). Then, by Proposition 3.4, N, (A) = n;ol (J)isanorm closed two-sided ideal of [*°(A).
Moreover, ¢y (A) = 71(0) € 71 (J) = N, (A).

Suppose now that A is non-elementary, separable and simple, by [15, Lemma 4.3], there exists
a sequence {s,} C A, with ||s, || = 1 such that, for any a € A, \ {0}, there exists n, > 1 such that
s, S aforall n > ny. In other words, {s,} € N,,,(A). Note that {s,,} & c,(A). O

Definition 3.6. Let A be a C*-algebra which has no one-dimensional hereditary C*-subalgebras.
Let A,, :=1%°(A)/N,,(A) and 7., : I°(A) - A, be the quotient map. Let 7 (A) :={x €
A, i xa=axforalla € m (A} Let m (A)' :={x€A, : xa=0=axforalla € n(A)}.
Let 7, (A) :={x €A, : xa=axforalla € 7, (A)}. Let 7, (A :={x€A, :xa=0=
ax forall a € 7,,(A)}. Recall that c,(A) Cc N, (A). Denote by =7 : A, — A.,.7(a,}) —
7., ({a,}) the well-defined quotient map. Moreover, 7 : A,, — A, induces canonical maps 7z’ :

Too(A) = 7, (A)Y and 7t @ 7 (A — 7, (A
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3014 | FUET AL.

Remark 3.7. 1t is obvious that 7 (A)"* is a closed two-sided ideal of 7, (A), and 71'CM(A)l is a
closed two-sided ideal of 7, (A)'.

Proposition 3.8. Let A be a non-elementary separable simple C*-algebra with QT(A) # {0}. Let
e € Ped(A), \{O}andletT, ={r € QT(A) : 1(e) = 1} Define

Irg ={{x,} €17(A) : r}Lngo sup{r(x;x,) : T € T,} = 0} and (e3.5)

Iy :={{x,} €1°(A) : lim sup{r((x;x, —¢€),) : T €T,} =0 for all €>0}. (e3.6)
n—oo
Suppose that A has strict comparison. Then
Iro C Iy = Ny (A). (€3.7)
Moreover, if A = Ped(A), then Iy = N, (A) = I7.
Proof. To see (¢3.7), we first notice that I, C Ir. Let{x,} € I. Fixa € A% \ {0}. Choose 0 < 7, <
llall/2. Then (a — n,), € Ped(A), \ {0}. Since T, is compact, A is simple and 7 —~ 7((a —n,),) is
continuous, we have
oy i=inf{r((a—ny),) : 7 €T} >0.

Fix any ¢ € (0,7;). Then

fg/z(xr*;xn) < (%)(xr*;xn —¢/8), for all n>1. (e3.8)
There exists N > 1 such that, for all n > N,7((x}x, —€/8),) < % for all r € T,. By (e3.8), we
have

d.(fe(xpxp)) < T(fe2(x,%,)) < 0g < d(a) for all €T, and for all n>N. (e3.9)

Since A has strict comparison (see Definition 2.8), for all n > N,f (x}x,) < a. Thus {x,} €
N, (A). It follows that I C N, (A). Since N, (A) is closed, we conclude E C N, (A).

Now let {x,} € N,,(A) and £ > 0. We may assume that ||{x, }|| < 1. Fix¢; € (0,¢). For any 5 >
0, since A is simple, infinite-dimensional, and non-elementary, Her 4(e) is also simple, infinite-
dimensional, and non-elementary. It follows from [15, Lemma 4.3] (see also [23, Lemma 2.4]) that
there is a, € Hery(e), \ {0} such that d,(a,;) < for all T € T,. There exists an integer N; > 1
such that

(x;,

WX —€1)y Sa, for all n>Nj. (e3.10)

It follows that, for alln > N,

sup{r((x,x, —&)y) : T € T} < sup{d ((x,x, —€1);) : T €T} <sup{d.(ay) : T € T} <.
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE | 3015

Therefore lim,,_, , sup{z((x;;x, —&);) : T € T,} = 0. In other words, {x,,} € Ir. This proves the
first part of the proposition.

If, in addition, we assume A = Ped(A), then, by [12, Proposition 5.6], there are M(e) > 0 and
an integer N(e) > 1 such that, for any b € A}r, there are y,,¥,, ..., ¥, € A with ||y;|| < M(e) and
m < N(e) such that

m

> yrey; =b. (e3.11)

i=1

Let 7 be a 2-quasi-trace on A = Ped(A), which extends to a 2-quasi-trace on M,,(A). Let Z :=
(2i,j)mxm> Where, foreach i, z;; = y;and z; ; = 0for 1 < j < mand ¢,, = diag(e, e, ... ,e). We then
estimate

7(b) = T<Z yi*eyi> =1(z%¢,,Z) = 1((e,)"*Z2Z"(¢,,)"/?) (e3.12)
i=1
<12z \12(e) = I1Z11? - mz(e) < N(e)’M(e)*z(e). (e3.13)
It follows that
A=supf|r|| : T €T,}< N(e)*M(e)?. (e3.14)

Let{x,} € Iy and lete,§ > 0. Choose ¢; := ¢/N(e)*M(e)?. Then there is N € N such that
sup{f((xflxn —¢€)y) T€T, <6 foralln>N. (e3.15)

Letn > N and 7 € T,. Consider the commutative C*-subalgebra B of A generated by x7x,,. Then
7 extends to a positive linear functional on B. Then,

t(x;x,) = t((x;x, —&1);) — t((x)x, —&y)_) + 7(&;) (e3.16)

< t((xpx, —€e)) +elltll <5 +e. (e3.17)

This implies lim,,_, ,, sup{z(x;;x,) : T € T} = 0. It follows that {x,} € I . Therefore, we have
shown I C Iy .
In conclusion, when A = Ped(A), we have I = N,,(A) = I. O

Remark 3.9. In Proposition 3.8, if A = Ped(A), forany e € A, \ {0},

IT,O = {{xn} €l®(A): )}l_)nc}o Sup{”xn“2,f ‘TE Te} =0} = Ncu(A)a (e3.18)

where ||x,|l,; = r(x;"lxn)l/ 2. Note that, I, and I are independent of the choice of e in Ped(A), \
{0}.

However, N, (A) # I, in general. To see this, let B be a unital separable simple C*-algebra
which has a nontrivial 2-quasi-trace and A = B ® K. Let {e; ;} be a system of matrix units for K.
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3016 | FU ET AL.

Fix e € Ped(A), \ {0}. Note that 1/2 < ¥ (1/i) < 1. Define y, = ¥" (1/Vi)(15 ® ¢;;) € A,
n € N. Note y*y, € Ped(A), and ||y,|| < 1. For any ¢ > 0, let m € N such that 1/m < ¢. Then
¥y, —€)y = 0forall n > m. Therefore {y,} € N, (A). Also, ©(y;y,,) > (1/2)t(15 ® e, ;) for all
teT, (butz(y,y,) <t(lp ®e; ;) foreach n). So{y,} & I .

Recall Definition 3.6. We have the following version of central surjectivity (c.f. [22, Proposition
4.5(iii) and Proposition 4.6], see also [30, Theorem 3.1]). Note that the following proposition is
related to the so-called o-ideal [21, Definition 1.5, Proposition 1.6].

Proposition 3.10. For a non-elementary separable simple C*-algebra A, the canonical maps 7’ :
To(A) = 7, (A) and t @ (A — 7 ,,(A)* are surjective.

Proof. Let{d,}C Ai be a sequence of positive contractive elements with ||d, || = 1foralln € N
such that for any a € A \{0}, there exists N € N satisfying d,, < a for all n > N (see [15, Lemma
4.3]). Letx = {x,} € I°(A)' such that 7., (x) € 7.,,(A) and g = {g,} € [®(A)' such that 7, (g) €
7., (A)t. Let F; C F, C ... C A be a sequence of finite subsets with U,,,F,,, = A. Let m € N, then
7o ()7 (V) — 7w, (V)7 (x) = 0 and 7, (¢)7r, (¥) = 0 = m, (¥)7,, (g) for all y € F,,, that is,
Xy —yx, gy,yg € N, (A). By the existence of quasi-central approximate identity, there exists
em = {eglm)};":l € N, (A)! such that

11 = ") (xy — yx)(1 — ™) < 1/3m and llet™y — ye™|| < 1/3mforally € F,,,(e3.19)
which implies
11 = e"™)x(1 — ")y — y(1 — e"™)x(1 — e"™)|| < 1/mforally € F,,. (e3.20)
Similarly, we also assume that
(1 —e™)g(1 —e™)y|| <1/m and [[y(1 —e™)g(1 —e"™)|| < 1/mforally € F,,.  (e3.21)

Let z™ 1= x — (1 — e™)x(1 — &™) = ey + xe™ — e(Mxe(™ € N, (A) and let ¢ 1= g —
1 —eM)g(1 —e™) = Mg 4 gem — (M gem € N, (A). Write z™ = {zl({m)}l‘f=1 and ¢ =
{g’l({m)}z"zl. Then, for any m € N, there is K(m) € N such that

fim (zl({m)*z(km)> <d,, and fl/m( I({m)* ]({m)> < d,, for all k > K(m). (e3.22)

We may assume that K(m + 1) > K(m) > 0 for all m € N. For each k > K(1), define m;, :=
max{m € N : K(m) < k} < oo. Note that

K(my) <k. (e3.23)

For k < K(1), define w, = 0 = v. For k > K(1), define

wy :=z(kmk) and vy := §I((mk). (e3.24)
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE | 3017

For any € > 0 and any a € A, \{0}, let r; € N such that d,, < a for all m > r;. Then, for any k >
K(max{[1/e] + 1,7;}), we have m; > max{l/e,r;}, and by (e3.23) and (e3.22), we have

fe(wiwy) = f£<z](<mk)*z(kmk)> S fiym, (z]({mk)*z(kmk)> <dy,, Sa and (e3.25)
Fe@00 = (86 ) S Frym (6 6) S d, S @ (e3.26)
which shows {w; }, {v,.} € N, (4).
Now define
X 1= X — Wy = X — z(m") =(1- (mk))xk(l - e(kmk)) and (e3.27)
G *= 9k — Uk = G — (mk) =(1- e,({mk))gk(l - e,({mk))- (e3.28)

Since {wy },{v,} € N, (A), we have

(7 ((XiD) — 7y (%) = 70, (1% — X3 }) = =7, ({wy }) = 0 and

(7o {0 $) — 7 (9) = 7oy {0k — 9i}) = =7, ({vid) = 0. (€3.29)
Fixr € Nandy € F,.Let§ > 0. Then, forany k > K(max{r,[1/6] + 1}), wehavem) > r,y € F,,, ,
and 1/my. < §. In particular,
lim 1/m; = 0. (e3.30)
k—o0

By (e3.20) and (e3.21), for y € F, and k > K(max{r,[1/6] + 1}),

Iy = vl = (1= ef™ )i (1= ™ )y = (1 =™ Jxi(1= €™ NI < 1/my (@3.3D

131 = 1(1 = " ) g (1 - ¢ )yl < 1/my, and (e332)
acl = Iy (1 =™ ) g (1 =™ )l < 1/my. (e333)

Combining with (e3.30), this implies that, for each y € F,,

17 (X DT () — T W7 (X DIl = 0 and (e3.34)
17 {G DT W = 0 = |7 ()7 G DII- (e3.35)

Since U,F, = A, we have
T (%)) € o (A) and 7 ({G}) € o (A) . (€3.36)

Then (e3.29) and (e3.36) show that 7’ and 7 are surjective. O
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3018 | FUET AL.

4 | TRACIAL APPROXIMATE DIVISIBILITY

In this section we will discuss several versions of tracial approximate divisibility. The main result
of this section is Theorem 4.11 which states that these versions are all equivalent.

Definition 4.1. Let A be a simple C*-algebra. We say that A has property (TAD) if the following
holds: for any € > 0, any finite subset ¥ C A, any s € A, \ {0}, and any integer n > 1, there are
6 € Al and a C*-subalgebra D ® M,, C A such that

(i) Ox =, x6forallx € F,
(i) A-6)xe,D®1,forallx € F,and
(iii) 6 $'s.

Remark 4.2.

(1) Itis straightforward to show that if A has (TAD), we may further require that
(iv) 1-06)x ~,(1-6)"/?x(1-6)">€,D®1, for all x € F,and
(v) x =, 6/2x6/% + (1 — 0)/2x(1 — 6)/? forall x € F.

(2) Itis also easy to see that if A # C has property (TAD), then for any integer n > 1,M,(A) has
the property (TAD) as well.

(3) If A=U;? | A,, where each A, has the property (TAD), then A has property (TAD). To see
this, lete > 0, F C A be afinite subsetand s € A, \ {0}. Choose n > 1such thatx €, /4An for
allx e Fand a € (A}l) + such that s; := (a —¢l|lal|/4), < s. Using the assumption that A,
has property (TAD), one concludes that A has property (TAD). As a consequence, if A # C
and has property (TAD), then A ® K has property (TAD).

Next we would like to recall the definition of tracial approximate divisibility which is slightly
different from [16]. One should note that if a simple C*-algebra A is tracially approximately divis-
ible in the sense of Definition 4.3, then A is tracially approximately divisible in the sense of
[16, Definition 5.2] below. Of course these two definitions of tracial approximate divisibility are
equivalent for non-elementary separable simple C*-algebras, see Remark 4.12 (1).

Definition 4.3 [16, Definition 5.2]. Let A be a simple C*-algebra. A is said to be tracially
approximately divisible, if, for any ¢ > 0, any finite subset 7 C A, any element e, € Ai with
epX Ry X Ny Xep for all x € F, any s € A, \ {0}, and any integer n > 1, there are 6 € A}L, a
C*-subalgebra D ® M,, C Aandac.p.c. map § : A — Asuch that

@) x =, x; + B(x) for all x € F, where ||x;]| < ||x]|, x; € Her(0),
(2) B(x) €, D®1, and epf(x) =, B(x) =, B(x)e for all x € F, and
(3) 6%s.

Suppose that A has property (TAD). Let € > 0, F be a finite subset and e, € A}r such that
epX RYg 4 X Ry Xep forall x € F. Lets € A, \ {0} and n € N be given. Put 7; = F U {ej}. Then,
by Definition 4.1 and Remark 4.2, (i), (iii), (iv) and (v) hold for 7, with €/4 (in place of ¢).

Put x; = 8'/2x6'/2 for x € F and define a c.p.c. map 8 : A — A by f(y) = (1 —0)'/2y(1 —
6)!/2forall y € A. Then (1) and (3) in Definition 4.3 hold. Moreover, B(x) €. D®1, forallx € F.
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3019

Note that, if x € F, then

epf(x) = ep(1—0)"/7x(1—0)"/? ~, ), ex(1 — O)x &)y (1 — O)epx (e4.1)

Ress (1= 0)x vy (1—6)/2x(1 - 0)Y/? = B(x). (e4.2)

Similarly B(x)ey =, B(x).

It other words, we have just shown that if A has property (TAD), then A is tracially
approximately divisible. This is essentially the same as [16, Proposition 5.3].

In [18] (Definition 2.1), a unital C*-algebra A which is not C is called tracially Z-absorbing, if
for any finite subset 7 C A, any € > 0, any s € A, \{0}, and any integer n > 1, there is an order
zero c.p.c. map ¢ : M, — A such that the following condition hold:

(i) @(9)x ~; xp(g) for all x € F and g € M}, and
(i) 1—9(1,) $s.

We state a non-unital variation of this notion (taken from [1], see also [14, Definition 6.6] and
[9, Definition 2.1]) as follows.

Definition 4.4. (c.f. [1]) Let A be a simple C*-algebra. We say that A has property (TAD-2)
if the following holds: for any ¢ > 0, any finite subset 7 C A, any e; € Al with epx &, x =,
xep, any s € A, \ {0}, any integer n > 1, and any finite subset G C C,((0,1]) ® M,,, there is a
homomorphism ¢ : Cy((0,1]) ® M,, — A such that (recall that : is the identity function on
(0,1])

@) ¢(g)x =, xp(g) forallx € F and g € G, and

@ (ep — e’ @ 1,)e/) =), S .

Remark 4.5. When A has a unit 14, then (2) in the above definition is equivalent to ((1, —
p(t®1,)) —¢), S s.Indeed, by choosing e = 1,4, (2) becomes (1, — p(t ® 1,)) — ), < 5. Con-
versely, let 1/2 > ¢ > 0, F, ey, s, n and G be given. Define (; € Cy((0,1]), by 1(t) =1ift € [1 —
€,1], 4,(0) = 0 and ¢;(¢) is linear on [0, 1 — ¢). Define a homomorphism « : Cy((0,1]) ® M,, —
Co((0,1D ® M,) by a(f(D®e; ;) = f(1) ®e;; for all f € Cy((0,1]). Put G, ={a(g) : g € G}.
Suppose that ¢ is as in the definition associated with ¢,F, s, n and G,. Define ¢ : C,((0,1]) ®
M, — A by goa. Then, we have
1) P(g)x = poalg)x =, x(g) for all g € G. Moreover, (ii)

L - ®1,) =1, —goat®1,) = %_E(IA —p(®1,)—¢), $s. (e4.3)

In other words, in the case that A is unital, the property (TAD-2) is equivalent to the property of
tracially Z-absorbing in the sense of [18, Definition 2.1].

Let 3 : M,, — A be the c.p.c. order zero map defined by 9'(e; ;) = p(t®e¢; ;) (1 <i,j < D).
Since the unit ball of M,, is compact, with a large G, (1) is equivalent to that ||[¢)'(g), x]|| < € for
allx € Fand g € M}.

The following Lemma 4.6 and Corollary 4.7 are taken from [21]. We include proofs here for the
reader’s convenience.
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3020 | FUET AL.

Lemma 4.6 (c.f. [21, Proposition 1.9 (3)]). Let A bea C*-algebra, B C Abeasubset, B’ :={a € A :

ab = baforallb € B},B* :={a € A : ab = 0= ba forall b € B}, then B is a closed two-sided of
B'.Letr : B' — B’ /B be the quotient map. Suppose that e € B’ satisfieseb = be = b forallb € B,

then B' /Bt is unital and 7t(e) is the unit.

Proof. Tt is straightforward to see that B* is a closed two-sided ideal of B’. If x € B/, then
for any b € B,(ex — x)b = b(ex — x) = bex — bx = bx — bx = 0. Also, (xe — x)b = xeb — xb =
xb — xb = 0. Then xe — x,ex — x € B*. Thus 7(e)7(x) = n(x) = w(x)7(e). This completes the
proof. ]

Corollary 4.7 (c.f. [21, Proposition 1.9 (3)]). Let A be a o-unital C*-algebra without one-
dimensional hereditary C*-subalgebras. Then both 7 (A) /7 (A)* and 7, (A) /7, (A)t are uni-
tal.

Proof. Lete€ Ai be a strictly positive element. Set e, = {¢!/"} € [*(A). Then 7 (e,) (resp.
7..(ey)) is a local unit of 7 (A) (resp. 7., (A)). Hence, by Lemma 4.6, the corollary holds. O

Definition 4.8. Let A be a o-unital non-elementary simple C*-algebra. We say that A has property
(TAD-3), if, for any n € N, there is a unital homomorphism ¢ : M,, — 7., (A) /7, (A)*.

Lemma 4.9. Let A be a non-elementary separable simple C*-algebra.

(1) If Ais tracially approximately divisible, then A has property (TAD-3).
(2) If A has property (TAD-3), then A has the property (TAD-2).

Proof. Proof of (1). Note that if A is tracially approximately divisible, then A is tracially approx-
imately divisible in the sense of [16]. In what follows, we will show that if A is tracially
approximately divisible in the sense of [16], then A has property (TAD-3).

Fix N € N.By[15, Lemma 4.3], there exists a sequence {s,,} C A}r\{O} such that,foranya € A, \
{0}, there exists n, > 1 such that s, < a for all n > n,. Choose 0 < ¢, < ¢ such that 7 ¢, <1
and an increasing sequence of finite subsets 7,, C A! such that and U F, is dense in Al

Since A is separable, for each n € N, there are ¢/, e, € A} such thate)x =, /3 x =, /5 xe], and
eqe, = e, forall x € F,,. Define F = {e] xe] : x € F,}. Note that x ~,. /5 €] xe; ande,(e; xe) =
(e} xe)) = (e} xel Je,,n € N.

If A is tracially approximately divisible in the sense of [16], then there exist a sequence of C*-
subalgebras D, ® My C A, a sequence of c.p.c. maps 8, : A = A, and a sequence of positive
elements 6, € A! satisfying the following: for any y € F, there is y™ € Her(6,,)! such that

(D ¥~ 3 Y™+ Bu(x),
(ii) Bn(y) E5,1/3 Dn ® Iy, and
(iii) 6, < s,

In particular, we have that {6,,} € N, (A). For each x € F,, let x(M = (e;xe;)(”) € Her(0)! as
above. Then we also have (i’) x R, x4 B,(x) and (ii") B,,(x) €, D,®1y.

For convenience, we putJ = 7., (A)*. By Lemma 4.6, J is an ideal of 7z, (A)'. Denote by 7, ; :
7. (A) — m,,(A) /J the quotient map.
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For each x € F},, we have {x("} € N_,(A). It follows from (i) that, for each k and each x € F;,

7oy (B, (X)}) = 7., (X). (e4.4)

Choose d,, € Drll + such that, for any x € 7,

(dn ® ei,j)ﬁn(x) /’d3€n ﬁn(x)(dn ® ei,j) and (e4-5)

(dy, ® 1n)B,(x) &3 B,(x) &3 B,(x)(d, ® 1y). (e4.6)

Since U7? | F,, is dense in Al, combining this with (e4.4), we obtain that

ﬂcu({dn ® ei,j})ﬂcu(x) = ﬂcu(x)ﬂcu({dn ® ei,j}) and (647)

Teu{dn & InD7ey (%) = 7oy (%) = 7oy ()7, (1d, @ 1)) for all x € A. (e4.8)

In other words, {7, ({d, ® ¢; ;}) : 1 <i,j < N} C 7, (A), and 7., ({d, ® 15}) is a local unit of
7, (A).

By (e4.8) and Lemma 4.6, 7., ;({d,, ® 1y}) is the unit of 7., (A) /J. Then the map ¢ : My —
7., (A) /J defined by (p(ei’j) = oy yomt,({d, ® ei,j}), 1<i,j <N, is a unital homomorphism.
Since, for every N € N, there is a unital embedding ¢ : My — 7,,(A) /7., (A)*,A has property
(TAD-3).

Proof of (2). Let € > 0 and any finite subset F C A, any s € A, \{0}, and any integer N > 1 be
given. Choose e € A}r such that

epX Rz Xep N3 x for all x € F. (e4.9)

Recall that J = 7,,,(A)*. Since A is separable and A has (TAD-3), there exists a unital embedding
® : My — 7.,(A) /J such that

eIy, (@) = 7oy s(a) = 7y, ;(@)p(ly) for all a € A. (e4.10)

Define a homomorphism @ : Cy((0,1]) ® My — 7,,,(A) /J by &(f ® ei,j) =p(f(1)® ei’j) for
all f € Cy((0,1]),1<1i,j < N.

By Proposition 3.10, (7, (A)') = 7., (A) . Since C,((0, 1]) ® My is projective, there is a homo-
morphism ¥ : Cy((0,1]) ® My — 7, (A) such that 7o¥ = . We may write ¥ = 7 o{,},
where ¥, : Cy((0,1]) ® My — A is a homomorphism for all n € N. Thus, for any finite subset
G C Cy((0,1]) ® My, there exists n; > 1 such that

P,(9)x ~, x1p,(g) for all x € F,allg € Gandalln > n,. (e4.11)

Pute, :=9,(t®1y)andy, := ells/2 - e;/“ene}?/“. By (e4.10),

T, () = 7y, ( { e;/z } — {e}.}:/‘lenells/4 } ) elJ. (e4.12)
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3022 | FU ET AL.

Thus, by Proposition 3.10, there are y ={y,} € N.,(4) and z ={z,} € I®(A) with 7 (z) €
7T (A)L, such that {,} = y + z. So 7 (aza) = 0in [®(A)/cy(A) for all a € A. It follows

7o (e — e Wl ® 11l ) = s (e mdey/" ) = 7 (e e/ ) € (N AINe413)

In other words,

— e, ® 1)}ey* € Ny (A). (e4.14)

It follows that there exists n, > n; such that, for all n > n,,
<eF - el/zz,bn(z ® lN)el/2 >+ <s. (ed.15)
The lemma then follows (see also (e4.11)). O

Proposition 4.10. Let A be a simple C*-algebra which has the property (TAD-2). Then A has the
property (TAD).

Proof. Fixe > 0, afinite subset 7 C A and an integer n > 1. We may assume that ¥ C A'. Choose
er € Al such that, forallx € F,

/2 ~ 1/2 ~ ~
€ X R 3ap X Rg3pn Xe T and epX R 3y, X R j3n, Xep. (e4.16)

/2

Put 7, = F U{ep, e/ }. Let0 <7 <. Put

C={®1,,1""®1,,1®¢€;."*®e;,t®1, : 1<i,j <n}c Co((0,1) @M,

Lete € A, \ {0}. Since A has (TAD-2), there is a homomorphism ¢ : Cy((0,1]) ® M,, — A such
that

1/2

I[x, (]Il < n/32n for all f € G and ((ep — 611,/2§0(1)9F )—¢/32n), Se. (e4.17)

Putd; = p(t ® ey ;). Define D := d; Ad,. Put
n
= { Z p(l'? ® eiyl)acp(tl/2 ®e ;) :ae A}.
i,j=1
Note that C, is a %-subalgebra of A. Put C = C,. Define a homomorphism ® : C - D ® M,, by

1/2

(e ® ¢ )ap(t > ®@ e, ) = di%ad,* @ ey, (e4.18)

foralla € A.Itiseasy to verify that @ is an isomorphism. SoC =~ D ® M,,. Putf = (e — e;/ 2qo(t ®

1,)e 11:/ ‘¢ /64n)_.. Then by (e4.16) and (e4.17), we have the following (i)-(iii).

(1) Ox /3, (ep — ell:/zqo(t ® 1n)e}1,/2)x Rae/30m X(ep — /ch(L ® 1n)el/2) (e4.19)

d ‘¥ 'TTOT ‘0SLLE9FT

:sdiyy) SUORIpUO,) pue suLd I oy 995 “[£702/90/S7] U0 A1eIqr] SUIUQ AO[1AL “SOLBIQIT UOSOIQ) JO ANSIOAIUN Aq HSOTI*SWI/ZI | [°01/10p/WOdKo[1Ar”

-Rojim

25U91] SUOWIIOY) 9AER1)) d]qear[dde ayy £q PAWIGAOS I8 SOPILIE () 195N JO SO 10} AIBIQIT QUIUQ A[1A UO



TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE | 3023

R /30n X0 for all x e F. (e4.20)
(i) (1= 6)x ~ /a0 (1= (ep — e 0t ® 1,)ey/ ) (e4.21)
Re/ian (€9 ® L)e )x ~ye joan 9L ® 1,)x (e4.22)
n n
= Z Pt ®e;;)x = Z ¢’(ll/2 ® ei,1)§0(ll/2 ® e ;)X (e4.23)
i=1 i=1
n
Ry D P @ e xp(l 2 ®e, ) €D @1, (e4.24)
i=1
(i) 6 S e. O

Now we can unify different variations of tracial approximate divisibility for separable simple
C*-algebras in the following theorem.

Theorem 4.11. Let A be a non-elementary separable simple C*-algebra. Then the following are
equivalent.

(1) Ais tracially approximately divisible,
(2) A has the property (TAD),

(3) A has the property (TAD-2), and,

(4) A has the property (TAD-3).

Proof. The implications (1) = (4) and (4) = (3) follow from Lemma 4.9. That (3)= (2)
follows from Proposition 4.10. Finally, we note that (2) = (1) is shown earlier right after
Definition 4.3. ]

Remark 4.12.

(1) Letus point out that [16, Definition 5.2] and Definition 4.3 are equivalent for non-elementary
separable simple C*-algebras. Suppose that A is a non-elementary separable simple C*-
algebra. As we mentioned earlier, if A is tracially approximate divisible in the the sense of
Definition 4.3, then A is tracially approximate divisible in the the sense of [16, Definition 5.2].
Now assume that A is tracially approximately divisible in the sense of [16, Definition 5.2]. By
the first paragraph of the proof of (1) of Lemma 4.9, we see that A has property (TAD-3). Then,
by Theorem 4.11, A is tracially approximately divisible in the sense of Definition 4.3.

(2) Let A be anon-elementary separable simple C*-algebra which satisfies one of four conditions
in Theorem 4.11 and B C A be anon-zero hereditary C*-subalgebra. Then, by [16, Theorem 5.5]
and Theorem 4.11 above, B satisfies all conditions in Theorem 4.11. We note that the element
er plays important role in [16, Theorem 5.5]. One might notice that neither property (TAD)
nor property (TAD-3) are straightforward to pass to hereditary C*-subalgebras. However, one
of the purposes of this section is to simplify Definition 4.3. In fact, we have the next remark.

d ' TTOT ‘0SLL69YT

:sdiyy) SUORIpUO,) pue suLd I oy 995 “[£702/90/S7] U0 A1eIqr] SUIUQ AO[1AL “SOLBIQIT UOSOIQ) JO ANSIOAIUN Aq HSOTI*SWI/ZI | [°01/10p/WOdKo[1Ar”

-Rojim

25U91] SUOWIIOY) 9AER1)) d]qear[dde ayy £q PAWIGAOS I8 SOPILIE () 195N JO SO 10} AIBIQIT QUIUQ A[1A UO



3024 | FUET AL.

(3) Suppose that A is a non-elementary separable simple C*-algebra which is tracially approx-
imate divisible (in the sense of Definition 4.3). Then, for any € > 0, any finite subset F C A,
any s € A, \ {0}, and any integer N > 1, thereare 0 € A}r, aC*-subalgebra D ® My C A and
ac.p.c.mapf : A - Asuch that

(i) x =, x; + B(x) for all x € F, where ||x;]| < ||x]|, x; € Her(6),
(i) B(x) e, D@1y forall x € F, and
(iii) 6 $s.

Conversely, suppose that a non-elementary separable simple C*-algebra A satisfies conditions
above. Choose F,, and ¢, as in the proof of Lemma 4.9 (1). Then (i’) (ii’) and (iii) in the proof of
Lemma 4.9 (1) hold. As in the proof of Lemma 4.9 (1), these imply that A has (TAD-3). In other
words, by Theorem 4.11, one may drop the reference to e in Definition 4.3.

We would like to include the following statement. Note that, by Theorem 5.2 in the next section,
if A has (TAD-2), A automatically has strict comparison.

Proposition 4.13. Let A be a non-elementary separable simple exact C*-algebra which has strict
comparison and at least one nonzero densely defined trace. Then A is uniformly McDuffin the sense
of [9, Definition 1.3] if and only if A has the property (TAD-2) (or (TAD-3)).

Proof. Suppose that A is uniformly McDuff and has strict comparison. Let a € Ped(A), \ {0} with
0 < a < 1. We will show that B = Her(a) has property (TAD-2). Let F C B be a finite subset and
ep € B} such thatepx =,y X /4 xer forall x € F. Fixe > 0and s € B, \ {0}.

We will retain notions used in [9, Section 1] regarding the notion of uniform McDuff. Fix a free
ultrafilter w € B(N) \ N. Let n € N. Since A is uniformly McDuff, choose a sequence of order zero
c.p.c. maps {§;} : M,, — no—ol(A’) (see (e3.1) for the notation) such that IT,o{tp;} =9 : M,, > F,
is an order zero map, where I, : 7 (A") - F,, = (1 (A")/c,(A))/(A*/c,(A)) is the quotient
map. Moreover, 7,,((1 —%(1,))b) = 0 for 7, € T} (A) for any b € B,.

Let {e; } € Her(a) be an approximate identity of B and {5, } C (0,1/2) be a given sequence such

that §,, \\ 0. Since {¢; } maps M,, to ﬂ;l(A’), for each k € N, there is n;, such that ||ei/2qom(b) -
qom(b)ei/zn < g forallb e Mrll (recall that M}l is compact) if m > n;,. We may assume that n; <
Ni4q- Definec; = e if j < ny, ¢; = ey, if ny < j < nyyq, k > 2. Then{c;} is an approximate identity
for B and [|c,/*,,,(b) — @, (b)c)*|l < & if m > k for all b € M.

Denote by T, = {r € T*(A) : t(ep) = 1}. We claim that

%im sup{t((1 — ¥, (1,))ep) : TE TeF} =0. (ed.25)

Otherwise, there exists d > 0 satisfying the following: for each P € w, there exists m, € P and
Tp € T, such that

Tp((A = Y, (L))er) 2 d. (e4.26)

Fixonet, €T, .LetS={s=mp : P € w}. Then SNP # §J for any P € w. Fix s € S. Let oy =
{P € w : s = m(P)}. For each s € S, choose one P € w,. Find a sequence 7, € T, such that, if
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TRACIAL APPROXIMATE DIVISIBILITY AND STABLE RANK ONE 3025

s € 8,7y = 1p (if s = m(Py)),and 7, = 7, if k € S. Then, if s € S,

Ts((l - ¢s(1n))eF) >d. (64.27)

Since SNP # @ for any P € w, this contradicts the fact that 7,((1 —%(1,))er) =0 for all 7 €
T} (A). This proves the claim.

Define {p}: M, — n}(B") by ¢|(b)=c.*p(b)c,* for all b€ M,. Then ¢ : M, —
Her(ellc/z) isac.p.c. mapandIT,ofp,} : M, —» F/ = B, nB'/B, n B is an order zero c.p.c. map.
By choosing §,, sufficiently small at the beginning, using the projectivity of C,((0,1]) ® M,,, we
obtain a sequence of order zero c.p.c. maps ¢ : M,, — Her(cllc/ 2) C B such that

Jlim 1y, - @ll =0, (e4.28)

(see [44, Lemma 1.2.5]). Since {c;/ 2} is an approximate identity of B, we have that

limy _, o, ||(e;/2(c,1(/21,bk(c)c;/2 - z/)k(c))e;,/zu =0 for each c € M,, Hence, by the claim (and
(e4.28)),

. 1/2 1/2\ . _
lll_r)l‘clu sup {T<eF —e "or(1,)ey ) ITE TeF} =0. (e4.29)

Define @) : Co((0,1) ® M), = B by ¢.,(t®y) = ¢, (y) for all y € M,,. Thus we obtain a
subsequence {n(k)} such that

I}Lrg 1Pe ) (2)Y = YPe nayWIl = 0 for all y € A and y € Cy((0,1]) ® M,, and

kh_}nolo sup{r(er — ell:/zgoc,n(k)(t ® ln)e;/z) I TE TeF} =0. (e4.30)

It follows that {e; — e;/ Z(pc’n(k)(t ® ln)ell:/ e I . Since A has strict comparison, by Proposi-

tion 3.8, {ep — e;/zgoc,n(k)(z ® 1,[)6;/2} € N, (A). Hence, for a fixed finite subset G C C,((0,1]) ®
M, by choosing ¢ = ¢, ) for some large k, we obtain

le(z)y —yp(2)|| <e for all ye F and z € ¢ and (e4.31)
(ep — e;/zqo(L ® 1,,)6;/2 —€), 5= (e4.32)

Hence B has property (TAD-2). By Theorem 4.11, B has property (TAD). It follows (3) of Remark 4.2
and Brown’s stable isomorphism [6] that A ® K has property (TAD) and hence has property
(TAD-2), by Theorem 4.11 again. By (2) of Remark 4.12, A has (TAD-2).

Conversely, let A have strict comparison and property (TAD-3). Let ¢ : M, — A/ /Aciu be
a unital homomorphism. By [44, Proposition 1.2.4] and the central surjectivity (see 3.10),
there exists a sequence of order zero c.p.c. maps {{;} : M, — no‘ol(A’ ) such that ITo{y)} =
@, where IT : [*(A)n A" — Al /Aclu is the quotient map. Since c,(A) is an ideal of cy(A),
the map ¥ =1I1,0{);} : M,, > F,, is also an order zero c.p.c. map. The fact that ¢ is unital
implies that {(1 — ¥, (1,))b}ien € N, (A) for any b € A,. We choose b € Ped(A), \ {0}. Then
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3026 | FUET AL.

{b1/2(1 — 9,.(1,))b"/%}cn, € N.,(bAb). Since bAb is algebraically simple, by Proposition 3.8,
Jim sup{z((1 = $(1,)b) : T € Ty} = lim sup{(b'/?(1 =, (1,))b"/?) : T € T;} = 0.

It follows that, for any {7, } € T},lim;_,,, 7, (1 — ¥, (1,,))b) = 0. Thus A has uniform McDuff in
the sense of [9]. O

Remark 4.14. We note that the implication from (TAD-2) to the uniform McDuff property is also
proved in [9, Proposition 4.6].

In view of Proposition 4.13, one may make the following definition: Let A be a separable sim-
ple (exact) C*-algebra with at least one nontrivial densely defined trace. Let I be the closed
ideal defined in Proposition 3.8 and let 7r;  : 1°°(A) — [*(A)/I be the quotient map. We say that
A has the uniform McDuff property, if for each n € N, there is a unital embedding ¢ : M,, —
m, (A [, (AL

When A is exact and also has strict comparison, A is uniformly McDuff if and only if A has
property (TAD-3) (see Proposition 4.13 and Proposition 3.8).

5 | STRICT COMPARISON AND CUNTZ SEMIGROUP

In this section, we show that the Cuntz semigroups of simple C*-algebras which are tracially
approximately divisible behave nicely as those of simple Z-stable C*-algebras. The main result of
this section is stated in Theorem 5.7 which will also be used in the proof of Corollary 6.5 in next
section.

Proposition 5.1. Let A be a simple C*-algebra with the property (TAD). Then, for any integern > 1,
any € > 0, any finite subset F C A, andanys € A, \ {0}, thereare € Ai and C*-subalgebra D ®
M, C Asuch that

(i) 6x =, x0forallx € F,
(i) 1-6)xe,D®1, forallx € F,
(iii) 6 <5,
(iv) 1-6)/2x(1-6)"2 €, D®1, forallx € F,
(V) x =, 6/2x6'2 + (1 —0)/2x(1 — 6)'/2 forall x € F,
(vi) for any finite subset G C Cy((0,1]), thereisd € D}r\{O} such that, forall x € F,

1 -6)"x(1 - 6)'/? m oy (d ® 1,)"/*x(d ®11,)"/* and (e5.1)

x(f(d)® ei’j) ~, (fd)® ei’j)x forall feg 1<i,j<k, (e5.2)

(vii) ifx € F and x > 0, we may choose d such that

x —x%(d ® 1,)x'/? Re/a x126x1/2, (e5.3)
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Proof. Fix a € A, \{0},c € (0,1), and a finite subset 7, C A. Without loss of generality, we
may assume that for all x € F,||x|| < 1. By a standard perturbation, we may assume that
there is ep, e, € Al satisfying xep = epx = x forall x € F and e4ep = epe, = ep. Put ¥ = 7, U
{er, e;/z’ ey}

Let m € N such that for any c € A}L,c Ry cl/m Let 7 € (0, €) be such that, for any element
z € Al,any c € Al ||zc — cz|| < 207 implies [|zc!/™ — cM/™Mz|| < g/4.

By definition of (TAD), there are 6 € A}r and C*-subalgebra D ® M,, C A such that

(1) 6x ~, xOforallx € F,
2 1-9)x €,D®1, forall x € F, and
(3) 6 <a.

This implies that (i), (ii), and (iii) in the proposition hold (even for 7). By Remark 4.2, we may
further assume that (iv) and (v) also hold (even for 7).
By (2), for each x € F, there exists y ® 1,, € D ® 1,, such that

QA-0)x—-y®1L,ll <7. (e5.4)

Since e, € F and (iv) holds (for ), we can choose d € D}r\{O} such that

(1-0)ey m, (1-6)2e,(1-6)*~, d®1,. (e5.5)
It follows that

O®1,)[d®1,) ~s, (1 -0)x(1—0)ey (e5.6)
~, (1—0)xe (1—06)=(1—06)eyx(1—-06) (e5.7)
Ay (1—60)es(1—0)x 3, (dQ1,)(y @ 1) (e5.8)
Thus |yd — dy|| < 8. Note that, by (e5.5), (1), (e5.4) and the choice of ey, for all x € F; U

ferr e/},
x(d®1,) Aoy x(1—0)ey Ry (1-09)xe, =1 —-09)x R,y ®1,. (e5.9)

Similarly,
d®1,)x Ry (1-09)esx=0-0)x A3y x(d®1,). (e5.10)

We compute that (recall e, x = xey = xif x € Fy), forall x € Fy,

X(d®e )~y X(d®1,)dV" ®e; ) 7 1—O)x(d/" ®e; ;)
Ry, 0 ®1,)dV " ®e; )= (vd/" ®e;))
Ne/a (dl/m ® ei,j)(y ®1,)

R, d’" €, )(d®1,)x ~ s (d®e; j)x.
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Thus, by choosing smaller 7 (and ¢) if necessary, we conclude that the second part ((e5.2)) of (vi)
holds. The first part of (vi) follows from (e5.5) and a choice of small #.

To see (vii), combing (e5.9) and (e5.10), with sufficiently small 5, we have, if x € F U {e, e
and x > 0,

1/2
F 3

x2(d ®1,)x"/? R /4 x2(1-6)x'%, or x — x'2(d ®1,)x'/? Re/s x1/26x1/2, m
The following statement is already mentioned in [16, Remark 5.8].

Theorem 5.2 (c.f. [18, Theorem 3.3]). Let A be a simple C*-algebra which has property (TAD).
Then A has the strict comparison for positive elements (or A is purely infinite).

Proof. Following the original idea of Rerdam, we will modify the argument in the proof of Lemma
3.2 of [18]. Let us assume that A is not elementary. Let a,b € M (A), . Let us first assume that
0 is not an isolated point of sp(b) U {0}, and k{a) < k(b) for some integer k > 1, we wish to show
that a < b. Without loss of generality, we may assume that a, b € M (A), for some large N. Since
My (A) also has the property (TAD), we may assume a,b € A,. We may further assume ||a|| =
bl = 1.

Fix § > 0. By [38, Proposition 2.4 (iv)], we can choose ¢ = (c;, j Dixk € My (A)ande € (0,5), such
that

c((b-98),®1 )" =(a—¢), ® 1. (e5.11)

Since 0 is not an isolated point of sp(b) U {0}, there is a f,, € Cy((0,1]) such that f,(¢t) = 0 for
allt € (8/2,1] and d := f(b) # 0. Sod L (b — §),. By replacing ¢; ; with ¢; ;q(b) for some q €
C((0,1]) which vanishes in (0,5 /2] and q(¢t) = 1 for all ¢t € [J, 1], we may assume that

Ci,jd = 0, l,] = 1, 2, veey k (6512)

By (e5.11), we compute

< (a—¢), ifi=j;
¢ ((b=08),)ci, = M (e5.13)
IZ} l Mk 0 ifi+#j.
Now let € (0,¢) be arbitrary. Put F, ={(a —¢),,(b—6),}U {ci’j,c;"j 1<i,j<k} Let g €
Co((0,1])} such that g(t) = 1fort € [1,1]. Let M := 1+ max{||x|| : x € Fp}.
By Proposition 5.1, there are 6 € A}L and C*-subalgebra D ® M, C A such that

(i) 6x ~, x0 forall x € F,

(i) 1-6)x€,D®1, forallx € Fy,
(iii) 6 < d,
(iv) (1-6)2x(1-6)"/? €, D1, forallx € F,

(V) x m, 01/2x6'% + (1 - 0)1/2x(1 — 6)/? for all x € F,
(vi) thereise € D! such that, for all x € F,,

(1-6)"2x1-6)"/? », (e ®1;)"*x(e ® 1;)"/?, and (e5.14)
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lx(ge) ®e; ;) — (9(e) @ e; x|l <n/(kM)* (1 <1i,j<k). (e5.15)
Puta; = (1-6)"*(a —¢),(1 — 6)/? and a, = 6'/%(a — €),0'/%. Then by (v),
lta — &), —(a; + a)ll < 7. (€5.16)
Denote ¢ := Zﬁjzl(el/z ® 1,)(g(e) ® e; j)c; ;. We compute that (using (e5.15) and (e5.13))

c((b—98),)c* (e5.17)

k
= ('’ ® 1k>< Y (9@ @ e e (b —5>+>c;jm(g(e)®em,l)><el/2 ®1)  (e518)

i,j,l,m
k
~ay €2 ® 1k)< > (9(e) ® e, )(9(e) @ ey ey (b — 5)+)czm>(el/z ®1) (e5.19)
i,j,l.m
k
=E"® 1k)(2(g(e)2 ®e;)c; (b —8),)c] j>(e1/ *®1)) (e5.20)
i,j,l
k k
=('*® 1k)< D (ge)* ® ei,z)(z ¢;,j(b = 8),)c) j>)(e1/ Q1) (e5.21)
i,l=1 j=1
k
=’ 1k><2(g<e)2 ®e;)a - s)+)(e1/ ‘®1)) (e5.22)
i=1

= (2@ 1))’ @1 )(a—¢), (> ® 1)

~ (e/?* ® 1;)(a — £)+(e1/2 ® lk) Ry 4.

In other words, ||¢(b — §),¢* — a,|| < 57.
Since a, < 6 < d, there exists ¢, € A such that ||cydc; — a,]| <. Since d L (b —6),, we may
assume that c,((b — 6),.) = 0. Now put z = € + ¢,,. Recall (e5.12), we have

lz((b — 8), + d)z* — a|| = ||(e(b — 8),.C* — a;) + (cydcy — ay) +(a; + a, —a)|| <6 +e.

Since ¢ and 7 can be arbitrary small, it follows that a < b.

The case that 0 is an isolated point of sp(b) U {0} can be reduced to the case above by applying,
for example, [18, Lemma 3.1].

To show that W(A) is almost unperforated, suppose that k(a) < (k — 1){b). Then k{a) < k(b).
From what has been proved, (a) < (b).

By [39, Corollary 5.1] (see also Proposition 4.9 of [16] as well as the end of Definition 2.6 and
Definition 2.8 of the current paper), A has strict comparison (or A is purely infinite). O
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Remark 5.3. It is worth noting that Theorem 5.2 has also been independently proved in [9] with a
different point of view. More precisely, [9, Theorem 3.2] shows that (non-unital) o-unital simple
C*-algebras with (TAD-2) have strict comparison.

Corollary 5.4. Let A be a unital stably finite simple C*-algebra with the property (TAD). Then A
has strict comparison and has stable rank one.

Proof. This is a corollary of Theorem 5.2 and [16, Theorem 5.7]. O

In Section 6, we will show that the condition that A is unital in Corollary 5.4 can be removed,
if we additionally assume that A is separable.

Recall that, for x,y € Cu(A), we write x <y, if for any increasing sequence {y,} with y <
sup{y,}, there exists n, such that x < Vny-

The following property is introduced by L. Robert [35]. It may be viewed as a tracial version of
almost divisibility which is closely related to Winter’s tracial 0-almost divisibility [45, Definition
3.5].

Definition 5.5 [35, Proposition 6.2.1]. Let A be a C*-algebra. We say that Cu(A) has property (D),
if for any x € Cu(A), x’ < x, and any integer n € N, there exists y € Cu(A) such that ny < X and
x’ < (n + 1)y (see Definition 2.9 for Z,z € Cu(A)).

From [13, Corollary 5.8] as observed by L. Robert, he shows the following (in the proof of
Proposition 6.2.1 of [35]).

Lemma5.6. Let A be a finite simple C*-algebra with strict comparison. Suppose that A has property
(D). Then the canonical map from Cu(A) to LAff  (QT(A)) is surjective.

Proof. The proof is contained in the second paragraph of the proof of Proposition 6.2.1 of [35]. []

The following is an analogue of [13, Theorem 6.6]. Recall ([13, Proposition 6.4 (iv)]) that, in a
simple C*-algebra A, every element of Cu(A) is purely non-compact except for the elements [p],
where p is a non-zero finite projection. In particular, if A has no infinite projections, then the set of
purely non-compact elements of Cu(A) is precisely those elements which cannot be represented
by a projection.

Theorem 5.7. Let A be a non-elementary separable simple C*-algebra which is tracially approxi-
mately divisible. Then the map (a) — (a) is an isomorphism between ordered semigroups of purely
non-compact elements of Cu(A) and LAff +(5T(A)).

Proof. If A is purely infinite, then, QT(A) = {0}, and every element in A is purely non-compact,
and, all non-zero elements are Cuntz-equivalent. So, in this case, the conclusion uninterestingly
holds. Now we assume that A is not purely infinite. Recall, from Theorem 5.2, W(A) is almost
unperforated. By [39, Corollary 5.1] (see also [16, Proposition 4.9]), A is stably finite. Consequently,
A has no infinite projections.

Thus, from now on in this proof, we assume that purely non-compact elements are precisely
those which cannot be represented by projections.
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Leta,b € (A ® K),. such that (a) and (b) are two purely non-compact elements and d (a) =
d.(b) for all T € QT(A). Then, since A is simple and 0 is not an isolated point of sp(a) U {0}, for
any € > 0,

d.((a —¢),) < d.(a) = d.(b) for all 7€ QT(A)\ {0}. (e5.23)
Hence, by Theorem 5.2 and Theorem 4.11, we have (a — €), < b for any € > 0. It follows that
ash. (e5.24)

Symmetrically, b < a. So a ~ b. This proves the map (a) — @\) is injective.

To prove the surjectivity, by the first paragraph of the proof of Lemma 6.5 of [13], it suffices to
show that the canonical map (a) + @ is surjective from Cu(A) to LAff +(Q\T (A)). Therefore, by
Lemma 5.6, it suffices to show that A has property (D).

To see A has property (D), let x,x’ € Cu(A) such that x’ < x. Let a,b€(A® IC)}r such
that (a) = x’ and (b) = x. By Remark 4.2 and [16, Proposition 5.3], A ® K is tracially approxi-
mately divisible.

Then, for some 1/16 > ¢ > 0,

a s f(b). (e5.25)

In particular, we assume that (b —€),. # 0. Note that f/;,5(b) < b.

Choose 0 < 7 < ¢ such that (b —7), #0. Since A is a non-elementary simple C*-algebra,
there are n + 1 mutually orthogonal and mutually Cuntz-equivalent elements s;,5,,...,5,,; €
Her((b —7),) \ {0}. Since A ® K has property (TAD), there are dj;,d; €(A® IC)}L and a
C*-subalgebra D ® M,, C A ® K such that

(D) b=y eq do +dy,
() d, €,/ D®1,,and
() dy S5

Choose d € D, such that

n

dy ®y /64 2 d®e;;. (e5.26)

i=1
Then
n n
(d; —n/64); ~y 0 D d®e; and (dy —71/32), my 16 D, —7/64), ®e;;.  (e527)
i=1 i=1
By applying [38, Proposition 2.2], we have
n

D(d-1/32), ®e;; S (dy —n/64), and (d; —3n/16), S D'(d —n/64), ®e;;. (€5.28)

i=1 i=1
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3032 | FU ET AL.

From (1) above and by [33, Lemma 1.7],
(d; —7/64), 5 ((dy +dy)—n/64), S b. (e5.29)
Puty :=(d —7/32), ®e;;. Then, forallt € QT(A), by the first inequality in (5.28),
nd.(y) < d.((d; —n/64),) < d.(((dy + dy) —1/64),) < dr(b). (e5.30)

On the other hand, by (1) and (e5.26), we have

n n
b~y do+ Z(d Qe ) Rz do + Z (d—-1n/32), Qe;;. (e5.31)
i=1 i=1
It follows that
n n
(b—n/16), Sdoy+ ) ®d—1/32), ®e;; S5, Y. (d—n/32), ®ey;. (5.32)
i i=1

Recall that (b —%/16), € Ped(A). Sod.((b —1/16),) < o for all QT(A). 1t follows from (5.32),
(3), and the choice of s, that

d.((b —n/16),)

nd.(y) 2 d.((b —7/16),) — d.(s;) > d.((b —7/16),) — 1 (e5.33)
> (n J”r - )d,((b —1/16),) for all T € QT(A). (e5.34)
In other words,
((b=n/16)) < (n+1)y. (e5.35)
By (e5.25), a S f1:(b) S (b —¢€/16),. It follows that (recall < €)
X' = (@) <((b=n/16),) < (n +1)3.
Combining this with (e5.30), we conclude that A has property (D) as desired. O

Remark 5.8. In Theorem 5.7, we may write
Cu(A) = (V(A) \ {0}) U LAff_ (QT(A)).
Note that, here, 0 € LAff +(6T (A)) is the zero element, and, if [p]€V(A) and z €

LAff+(§7"(A)) \ {0}, then [p]+z=p+z € LAff+(§7"(A)). Moreover, for x = (a) and y = (b),
then x < y ifand only if {(a) < (b) (see also [41, Corollary 8.12] for the unital case).
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6 | STABLE RANK ONE

This section is devoted to prove that a separable simple tracially approximately divisible C*-
algebra is either purely infinite, or has stable rank one (see Corollary 6.5). As a consequence,
we show that (non-unital) simple Z-stable C*-algebras have stable rank one which answers a
question of L. Robert.

Lemma6.1. Let A bea C*-algebra, a,b,c € A. Assumec” = 0forsomen > 1,andab = ac =ca =
¢b = b%? = 0. Then sp((a + b + ¢)**1)\{0} = sp(a**1)\{0}.

Proof. We first claim that (a + b + ¢)"! = a™*! + ba™.

To see this, let x be a non-zero term in the expansion of (a + b + ¢)"*!. Note that x is a product
of factors a, b, and c.

Case 1: x = a - y, where y is a product of n elements in {a, b, c}. If y has a factor b or c, then x
must have a factor ab or ac. Then, by the assumption ac = ab = 0,x would be zero. Therefore y
has no factor b or c. Consequently, x = a"*1.

Case2:x=b-y.

Case2.1:Ify = a - z, where z is still a product of elements in {a, b, c}. Since, again, ac = ab = 0,
z could not have a factor b or c. Therefore the only possible non-zero x, in this case, must be ba”.
Case 2.2: y = b - z. This actually is impossible, since b?> = 0.
Case 2.3: y = ¢ - z. Then, by the assumption, ca = cb = 0,z could not have a factor a or b.
Thus x = bc". However, by the assumption ¢ = 0, Case 2.3 will not occur.

Case 3: x = c-y. If y contains factor a or b, then x contains factor ca or cb. Then, by the
assumption ca = cb = 0, we have x = 0. Hence y could not contain factor a or b. Hence the only
possible non-zero x, in this case, must be c"*t1. However, by the assumption c"*tl = 0, this case
could not occur.

Thus, it leaves two terms: x = a”*! and x = ba”. In other words, (a + b + ¢)"*! = a"**! 4 ba".
This proves the claim.

As a"b = 0, we see that

sp((a + b + )™\ {0} = sp((a + b)a")\{0} = sp(a”(a + b)\{0} = sp(a" H\{0}.  (e6.1)
([

Corollary 6.2. Let a,b,c be as in Lemma 6.1. If, in addition, a is positive, then a + b + ¢ can be
approximated by invertible elements in A.

Proof. By Lemma 6.1 and the fact that a € A, we have sp((a + b + ¢)"*1)\{0} = sp(a"*1)\{0} C
R, . By the spectral mapping theorem, sp(a + b + ¢)\{0} lies in the union of n + 1 rays, which is

felt2kn/n+]) « e R k=1,..,n+ 1} (e6.2)

Hence 0 is not an interior point of sp(a + b + ¢) U {0}. Therefore a + b + ¢ can be approximated
by invertible elements. O

Recall the the definition of continuous scale from [23].
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Definition 6.3. [23, Definition 2.5] Let A be a g-unital, non-unital and non-elementary simple
C*-algebra. A is said to have continuous scale, if there is an approximate identity {e,} such that,
for any a € A, \{0}, thereis N € N, such thatforanyn >m > N,e, —e,, S a.

Note that, by [23, Theorem 2.8] and [27, Theorem 2.4], A has continuous scale if and only if the
corona algebra M(A)/A is simple. It also follows from [27, Theorem 2.4] that if A has continuous
scale, then any approximate identity {e,, } with e, e, = e,e, ., = e, for all n € N has the property
that, for any a € A, \ {0}, there exists N > 1 such that, forallm >n > N,e,, —e, S a.

Moreover, for a g-unital non-elementary simple exact C*-algebra A with T(A) # @, if A has
strict comparison, then A has continuous scale if and only if T(A) is compact (see [12, Proposition
5.4], see also the proof of Theorem 5.3 of [12], and, an early version, [27, Proposition 2.2]). See also
the third paragraph of the proof of Corollary 6.5 bellow.

Theorem 6.4. Let A be a o-unital projectionless simple C*-algebra with continuous scale. Sup-
pose that, for any o-unital hereditary C*-subalgebra B C A, any non-invertible element in B can be
approximated (in norm) by products of two nilpotent elements in B. Then A has stable rank one.

Proof. Let {e®®)} be an approximate identity of A such that e(k*Dek) = ¢(Klelk+1) = (k) By passing
to a subsequence, without loss of generality, we may assume ek2) — eX1) £ 0 for all k, > k; € N.
Let A be the unitization of A and y + 1 € A, wherey € Aand 1 € C.

Fix § € (0,1). To show A has stable rank one, it is suffices to show the following:

Goal: there is z € GL(A) such that

Iy +4)—z|l <é. (e6.3)

To achieve the goal, we first choose k, € N such that e®0)ye*o)x5 ,y. Put B := Her ,(e*)) and
y, = e%o)yetko) € B. Then

1o+ ) =+ DIl <8/4 (e6.4)

Note, since A has no non-zero projection, B is non-unital. Put A; :=C- 13+ B = B.letv e A
be such that v*v = 1. Then 1 — vv* € A is a projection. Since A has no non-zero projections,
v*v —vv* = 0. In other words, A, is finite and hence every one-sided invertible element in A,
is invertible. If y, + A € GL(A;) C GL(A), then, by (e6.4), our goal is achieved. So we assume that
Yo +4 & GL(A,;). By [37, Proposition 3.2], there is a two-sided zero divisor y; + 1; € A; such that
ly + 12—, + 1)l < 6/4,for some y, € Band 4, € C. Therefore, to achieve the goal above, it is
suffices to show that y; + 1, € GL(A).

By [37, Lemma 3.5], working in A; = B, we can find a; € A4;, \ {0} and a unitary u € A; such
that

au(y; +4,) = u(y; +4)a; =0. (e6.5)

Since B is an essential ideal of A,, there is b € B, such that a,ba; # 0. Put a = a,ba; € B, and
we may assume ||a|| = 1. We write u(y, + 4,) = x; + n, where x; € B and || = |4,]. Since u is

invertible, to show y; + 4, € GL(A), it suffices to show that X, +ne GL(A).
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If » =0, then 4, =0, and then y;, + 4, = y; € B C A. By our assumption, y; can be approx-
imated by products of two nilpotent elements in A, which can be approximated by invertible
elements in A. Thus we may assume that 7 # 0.

Put x = );—1 € Her,(e®o). If x +1 = ’;—1 +1 € GL(A), then x, + 1 € GL(A).

Hence, it is suffices to show that x + 1 € GL(A).

To do that, let us fix € > 0. As A has continuous scale, we may choose e, ¢;, € Ai of the form
e(® with k > ky, such that eje; = e; = e;e,,e, — e; S a. Note, since x € Her ,(e0)), and e, is of
the form e with k > k, we also have

e;x = x = xe; and, hence e;(x + 1) = (x + 1)e;. (e6.6)
Note, by (e6.5) and the choice of a and x + 1, we have a(x + 1) = (x + 1)a = 0. We also have
x+1=01-e¢y)+(ey—e;)+e(x+1). (e6.7)
Since ¢, — ¢; S a ~ a?, there is r € A such that
(ep—e,—€), = rra’r. (e6.8)
Note that, since (e, — e;)e0) = e0)(e, — e;) = 0, and a € Her 4 (%)), we have
(ar)* =o0. (e6.9)
Let C={z € A : za=az =0} Then C is a hereditary C*-subalgebra of A. Since e; com-
mutes with x + 1 and a(x + 1) = (x + 1)a = 0, we have ae;(x + 1) = a(x + 1)e; =0, and e;(x +
1)a = 0. Thus e;(x + 1) € C. Let D = Hery(e;(x + 1)) € C, which is a o-unital hereditary C*-
subalgebra. Note that, since D is projectionless, e; (x + 1) is not invertible in D. By the assumption
of the theorem, there are two nilpotent elements s;, s, € D such that
518, & e;(x + 1). (e6.10)
Since eye; = e;, and D C Her 4(e;), we have
Also note that (recall, s,,s, € D C C = {a}})

(1-ea=0=a(l—ey), as;=sa=0, as,=sa=0. (e6.12)

Then by (€6.7), (e6.8), (¢6.10), (6.11), and (e6.12),

x+1 = (1—e¢y))+(eg—e)+e(x+1) (e6.13)
= (1—ey) +r*a’r +s;s, (e6.15)

= (1- eo)l/2 +rfa+s)((1 - eo)l/2 + ar +s,). (6.16)
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Leta = (1—ey)/2,8 =ar,y =s,. Then (1 —ey)'/? + ar +s, = a + § + 7. Note that « is a pos-
itive element, y is a nilpotent element, and by (e6.12), aff = ¥ = 0, by (e6.11), ay = ya = 0, by
(€6.9), B2 = 0. Then by Lemma 6.1 and Corollary 6.2, « + 8+ = (1 —e,)'/> + ar + s, can be
approximated by invertible elements in A.

The same argument also holds for (1 — 60)1/2 +ar+sy=(1- eo)l/2 +r*a+s;)" Thus (1 —
eo)l/ 2 4+ r*a + s, also can be approximated by invertible elements in A. Then by (e6.16), we obtain
z' € GL(A) such that ||(x + 1) — 2’| < 2e. Since ¢ is arbitrary, this implies that

x +1 € GL(A) (e6.17)
as desired. Therefore A has stable rank one. O

We have the following dichotomy for separable simple tracially approximately divisible C*-
algebras.

Corollary 6.5. Let A be a separable simple C*-algebra which is tracially approximately divisible.
Then either A is purely infinite or A has stable rank one.

Proof. We assume that A is not purely infinite. By Theorem 5.2 and Corollary 5.1 of [39] (see also
Proposition 4.9 of [16]), A is stably finite. So from now on we will assume that A is stably finite.

We will use the fact that every hereditary C*-subalgebra of A is tracially approximately divisible
(by [16, Theorem 5.5]). Suppose that A contains a non-zero projection p. Then the unital hereditary
C*-subalgebra pAp has stable rank one, by Corollary 5.4. It follows that A also has stable rank one.

We now assume that A is projectionless.

By Theorem 5.7, we can choose e € Ped(A4), \ {0} such that (?) is continuous on QT(A). Let
’ig = eAe and let QT Ay ={re QT(A) : d.(e) = 1}. Recall that (/e\)(= d.(e)) is continuous on
QT(A). It follows that QT(A,) is compact (see also the last paragraph of Definition 2.8). We
claim that A, has continuous scale (see the proof of Proposition 5.4 of [12]). Indeed, let {e,} be
an approximate identity with property thate,,,e,= e,e,,; = e,. Then (e/n\) converges uniformly
on QT(A,). Therefore, by strict comparison, for any a € A, \ {0}, there exists N > 1 such that, for
allm>n >N,

Sa. (e6.18)

This proves the claim.

Next we claim that, by the proof of [16, Theorem 5.7], every element in a projectionless simple
C*-algebra which is tracially approximately divisible can be approximated by the products of two
nilpotent elements. To see this, let X’ € A. Since A is a non-unital separable C*-algebra, for any
€ > 0, there are a € A, \ {0} and x € A such that x &, x" and ax = xa = 0. It then sulffices to
show that x can be approximated by products of two nilpotents. Then the proof of [16, Theorem
5.7] from the second paragraph can be applied. Note that in the last estimate (e 5.29) at the end of
that proof, v and w are nilpotents. This proves the claim.

Aswe pointed out at the beginning of the proof, every hereditary C*-subalgebra of A is tracially
approximately divisible. So Theorem 6.4 implies that A, has stable rank one. By [34, Theorem 3.6],
Ay ® K has stable rank one, so does A ® K (by [6]). It follows from Corollary 3.6 of [7], A itself
has stable rank one. O
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Definition 6.6 [16, Definition 3.1]. A simple C*-algebra A is essentially tracially in the class
of Z-stable C*-algebras, if for any finite subset ¥ C A, any ¢ > 0, any s € A, \ {0}, there exist an
elemente € Ai and a non-zero C*-subalgebra B of A which is Z-stable, such that

(1) |lex — xe|| <€ for all x € F,
(2) 1 —e)x €, Band ||(1—e)x| > ||x|]| —eforall x € F, and
(3) e<s.

Theorem 6.7. Let A be a separable simple C*-algebra which is essentially tracially in the class
of Z-stable C*-algebras. Then A is purely infinite, or A has stable rank one and Cu(A) = (V(A) \
{0}) U LAff_ (QT(A)).

Proof. It follows from [16, Theorem 5.9] that A is tracially approximately divisible. Then, by Theo-
rem 5.7 and Corollary 6.5, A is purely infinite, or has stable rank one, and Cu(A) = (V(A4) \ {0} u
LAff , (QT(A)). O

Rordam showed that every unital simple Z-stable C*-algebra is either purely infinite, or has
stable rank one (see [39]). In [36], L. Robert showed that every stably projectionless simple Z-
stable C*-algebra has almost stable rank one and left open whether it actually has stable rank
one. The following corollary answers his question affirmatively.

Corollary 6.8. Let A be a simple Z-stable C*-algebra. Then A is either purely infinite or has stable
rank one.

Proof. If A contains a non-zero projection p, then by [39, Theorem 6.7], pAp is either purely
infinite, or has stable rank one. So the corollary follows by [6] and [34]. Therefore we may assume
that A is projectionless. Let x + 1 € A, where x € A and A € C. Let ¢ > 0. Since Z = R, Z
(see [20, Corollary 8.8]) and A is Z-stable, there is an isomorphism « : A ® Z — A such that
ax®@1;) ~, 12X (see [39, Lemma 4.4]). Note that a extends to an isomorphism @ : (A ® Z) —
A.

By the fact that A is simple and by [3, Proposition 2.2], we obtain a separable simple C*-
algebra B C A containing C*(x). Then B ® Z is separable, simple, Z-stable and projectionless. By
Theorem 6.7, there is an invertible element z € GL((B® Z)) C GL((A ® Z)) such that z =/,
X ® 17+ A. Then a(z) € GL(A) and &(z) Re/2 ax®1z;+4) Repp X+ A It follows that A has
stable rank one. O

Proposition 6.9. Let A be a unital infinite-dimensional separable simple C*-algebra with tracial
rank zero. Then A is essentially tracially in the class of Z-stable C*-algebras.

Proof. Let e >0, let F C A be a finite subset of A and let a € A \ {0}. Since A has tracial rank
zero, there is a non-zero projection p € A and a finite-dimensional C*-subalgebra D C A with
1p = p such that

(1) xp =), pxforallx € F,
(2) pxp €, F,and
3 1-pga.
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. k . .
Write D = M,y @ M,5) @ - @ M,,,. Let {eg,j)}lsi, j<r(k) be a system of matrix units for M, ),
1 < k < m. By [32, Corollary 4.4], for each k, there is a unital simple AF-algebra B; and unital

embedding ¢, : By — ei’fl)Aeilfl) such that V(p) : V(By) — V(eglfl)Aeilfl)) = V(A) is surjective.

We claim that V(A) is not finitely generated. To see this, suppose that V(A) is generated by
[p1],[p2])s - 5 [Py ]- We may assume that p; € M;(A) (for some [ > 1) is a non-zero projection, 1 <
i < m.Note that M;(A) is also a unital infinite-dimensional simple C*-algebra ofreal rank zero. By
repeatedly applying [47, Lemma 1.1], for example, we obtain a sequence of non-zero projections
{q,} € M;(A) such that lim,_,  sup{r(g,) : T € T(A)} = 0. Then, for any non-negative integers
ki,ky, ...k, (not all zero), there is an integer N > 1 such that 7(qy) < X1, k;7(p;) for all 7 €
T(A). Hence [gy] is not in V(A). This proves the claim.

Since V(A) can not be finitely generated, we deduce that each V(B,) is not finitely gen-
erated either, and in particular each By is infinite-dimensional. Define Cy := {¢;(b) ® eg;.) :

1< l,] < r(k),b S Bk} = Bk ®Mr(k) (1 <k« m) and C := @anzl Ck' Then, D C C. By (2),
pxp €, C. (e6.19)

Since each C is a unital simple infinite-dimensional AF-algebra, C, is Z-stable, 1 < k < m (see
[20, Corollary 6.3]). Therefore C is Z-stable. By (1), (e6.19) and (3), A is essentially tracially in the
class of Z-stable C*-algebras. O

Example 6.10. In [31], Niu and Wang constructed a class of separable simple exact non-
nuclear C*-algebras which have tracial rank zero but not Z-stable. Then, by Proposition 6.9, Niu
and Wang’s examples are unital separable simple exact C*-algebras which are essentially tra-
cially Z-stable but not Z-stable. By [16, Theorem 5.9], these C*-algebras are particularly tracially
approximately divisible.

7 | EXAMPLES

Example 7.1. It is shown in [16, Theorem 5.9] that a simple C*-algebra A which is essentially
tracially in C; (see [16, Notation 4.1]), then A is tracially approximately divisible. Any simple
C*-algebras AZC constructed in Theorem 8.4 of [16] and any hereditary C*-subalgebra of Ag (by
[16, Proposition 3.5]) are tracially approximately divisible. Therefore all (non-unital hereditary
C*-subalgebras) of C*-algebras in [16, Theorem 8.6] are tracially approximately divisible and non-
nuclear C*-algebras. By Corollary 6.5, all these C*-algebras have stable rank one.

Recall that a IT; factor (N, 7) is said to have property T, if there is a sequence of unitaries {u,} C
N satistying lim,,_, , |lu,,x — xu,||, = 0forall x € N, and t(u,) = 0foralln € N.
The following is well-known to experts.

Proposition 7.2. Let A be a unital infinite-dimensional separable simple C*-algebra with a unique
tracial state T which is also tracially approximately divisible. Let 7t be the GNS representation with
respect to T, and N := 7m_(A)" the weak closure of w.(A). Then (N, 7) is a 11, factor with property T.

Proof. Since 7 is an extreme point of T(A) = {r},N is a II; factor ([10, Theorem 6.7.3]). From
Theorem 4.11 we know that if A is tracially approximately divisible then A has property
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(TAD-3). Thus there is a unital embedding ¥ : M, — 7,,(A). By Proposition 3.10 and pro-
jectivity of C,((0,1]) ® M,, there is a homomorphism % : C,((0,1]) ® M, — 7 (A) such that
ﬂoooz[»(t ® ei’j) = zﬁ(ei,j),l <1, j € 1. Again, using projectivity of C,((0, 1]) ® M,, there is a homo-
morphism ¥ : Cy((0,1]) ® M, — [®(A) C I®°(N) that lifts 1. We may represent 3 by a sequence
of homomorphisms ¢, : Cy((0,1]) ® M, — A C N. Then {),,} satisfies the following:

@ lim,_, o l$,(x)a — ap,(x)|| = 0 forall x € Cy((0,1]) ® M, and all a € A, and
@) {14 = $,( ® 1)} € Ny (A).

By Proposition 3.8, (2) implies lim,,_, ., 7(¥,,(1 Mz)) =1, hence
nh_)ngo (P, (t®e 1)) = r}I—»nc}o (P, (1 ®e,,)) =1/2. (e7.1)

Let y € N and ¢ > 0. Let ||x||, = t(x*x)'/? for all x € N. Since A is dense in N in the strong
operator topology, there is z € A such that ||y — z||, < /4. By (1), there is K € N such that
1V, (t®e; )z —2z,(t®e; )l <e/2foralln > K andi € {1,2}. Then

1P, ®e )y —yp,®e ), < 1P, ®e )z -2z, ®e DI, + lly—zll, <e. (e7.2)

It follows (e7.1) and (e7.2) that {1, (t ® e;;)} and {¥,(t ® e,,)} are two mutually orthogonal
nontrivial central sequences of N. Therefore N has property T (see, for example [40, Lemma

A.7.3)]). O

We now present an example of unital non-elementary separable simple exact (but non-nuclear)
C*-algebra that has stable rank one, a unique tracial state, strict comparison, and 0-almost divis-
ible Cuntz semigroup, and contains a unital embedded copy of the Jiang-Su algebra Z, but is not
tracially approximately divisible.

Example 7.3. Let C/(F,,) be the reduced group C*-algebra of the free group on countably
infinitely many generators. It is well known that C;(F,) is a unital infinite-dimensional sepa-
rable simple C*-algebra with a unique tracial state 7. It is also well known that C;(F,) is exact.
Moreover, C(F,,) has stable rank one ([11]) and has strict comparison for positive elements
(see [35, Proposition 6.3.2]). Hence, the Cuntz semigroup of C;(F,) is almost divisible by [41,
Corollary 8.12]. By [35, Proposition 6.3.1], The Jiang-Su algebra Z can be unitally embedded into
C}(F)- On the other hand, the group von Neumann algebra L(F,) does not have property T
(see, e.g., [40, Theorem A.7.2]). It follows from Proposition 7.2 that C(F,) can not be tracially
approximately divisible.

From a recent result of Ma and Wu in [29] on groupoid C*-algebras, let us restate the following.

Theorem 7.4 (c.f.[29, Theorem 9.7]). Let G be a locally compact, second countable and Haus-
dorff étale minimal groupoid on a compact metrizable space without isolated points. Suppose G
is almost elementary. Then C;‘(G) is unital, separable, simple, tracially Z-absorbing, and, is either
purely infinite, or has stable rank one.
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Proof. By [29, Theorem 9.7], C;(G) is unital, separable, simple and is tracially Z-absorbing in
the sense of [18]. It follows from Theorem 4.11 ((3) = (2)) and Corollary 6.5 that C;’(G) either has
stable rank one or is purely infinite. O

We end this section by the following dichotomy result on flow actions (see [35, Section 7] for
examples of both cases).

Theorem 7.5. Let A be a separable C*-algebra with finite nuclear dimension, and let ¢ : R —
Aut(A) be a flow with no a-invariant ideals and with finite Rokhlin dimension. Then A X, R is
either purely infinite or has stable rank one.

Proof. By [19, Theorem 4.5], A X, R has finite nuclear dimension. Since A is separable and has
no a-invariant ideals, and a has finite Rokhlin dimension, we deduce that A X, R is separable
and simple (see [19, Corollary 3.12]). Then by [42, Corollary 8.7], A X, R is Z-stable. Then by
Corollary 6.8, A X, R is either purely infinite or has stable rank one. O
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