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Sampling is a technique to help identify a representative data subset that captures the
characteristics of the whole dataset. Most existing sampling algorithms require distribu-
tion assumptions of the multivariate data, which may not be available beforehand. This
study proposes a new metric called Eigen-Entropy (EE), which is based on information
entropy for the multivariate dataset. EE is a model-free metric because it is derived based
on eigenvalues extracted from the correlation coefficient matrix without any assumptions
on data distributions. We prove that EE measures the composition of the dataset, such as
its heterogeneity or homogeneity. As a result, EE can be used to support sampling deci-
sions, such as which samples and how many samples to consider with respect to the appli-
cation of interest. To demonstrate the utility of the EE metric, two sets of use cases are
considered. The first use case focuses on classification problems with an imbalanced data-
set, and EE is used to guide the rendering of homogeneous samples from minority classes.
Using 10 public datasets, it is demonstrated that two oversampling techniques using the
proposed EE method outperform reported methods from the literature in terms of preci-
sion, recall, F-measure, and G-mean. In the second experiment, building fault detection
is investigated where EE is used to sample heterogeneous data to support fault detection.
Historical normal datasets collected from real building systems are used to construct the
baselines by EE for 14 test cases, and experimental results indicate that the EE method out-
performs benchmark methods in terms of recall. We conclude that EE is a viable metric to
support sampling decisions.

� 2022 Published by Elsevier Inc.
1. Introduction

Sampling is a statistical procedure concerning the selection of a subset of individual observations to capture the charac-
teristics of the whole population for different applications [19]. If conducted properly, sampling can save time and cost while
supporting statistical inferences [19]. There are, in general, two categories of sampling approaches: probability and non-
probability sampling [19]. (a) In probability sampling, each observation from the population is assigned a certain probability
of selection and is chosen by incorporating a randommechanism. Some common probability sampling methods include sim-
ple random sampling, stratified sampling, cluster sampling, and systematic sampling [6,19]. Simple random sampling assigns
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each observation with an equal probability of being sampled. Stratified sampling divides the whole population into several
subgroups termed strata; then, each observation within a stratum is selected randomly, and selected observations across
the strata become samples. Cluster sampling aggregates observations from the population into larger units called clusters.
Samples are then randomly selected from the clusters. Systematic sampling selects members from a list of population mem-
bers according to a random starting point and at fixed periodic intervals (b) In non-probability sampling, samples are selected
subjectively and deliberately. This includes availability sampling, purposive sampling, quota sampling, and respondent-
assisted sampling [6]. Availability sampling is a procedure in which samples are selected from a target population based
on availability, self-selection, and/or discretion of the researchers, while purposive sampling selects samples that fit and meet
the purpose of the study and specific criteria for inclusion/exclusion. Quota sampling realizes sample collection by combining
availability sampling and purposive sampling to target specific numbers of observations with characteristics of interest,
while respondent-assisted sampling, or snowball sampling, selects samples regarding previously selected observations in
the population. It is noted that, unlike probability sampling, this set of sampling methods does not involve an explicit
stochastic process and mostly relies on subjective judgment.

Sampling methods provide a guideline on which and howmany samples must be selected as representatives to guarantee
the generalization of study conclusions. Multiple sampling strategy factors include research objective, methodology, defini-
tion, and nature of the population, as well as the availability of resources and degree of confidence in generalized conclusions
[19]. When comparing probability vs non-probability sampling [6], it is noted that probability sampling is generally pre-
ferred in studies requiring confirmatory purposes, quantitative design with a heterogeneous population, representative
and unbiased samples capturing essential characteristics of the population, and statistical inferences from the samples.
Non-probability sampling is favored when studies are exploratory or descriptive, a qualitative research design is required
without the need for statistical inferences or representative samples, or a sampling frame is not available. The focus of this
research is on probability sampling, which has been widely used in different fields of study, including machinery safety [23],
geology [8], railroads [12], and building engineering [11].

Existing probability sampling research is mostly model-based. That is, they either assume a known distribution a priori or
rely on a specific model to extract probability parameters. One example is active learning, which is a machine learning
methodology that selects samples to be annotated for training to reduce the labor-intensive efforts of manual annotations
[40]. Hajar et al. [23] presented two discrete random sampling strategies, additive random sampling (ARS) and jittered ran-
dom sampling (JRS), for machine monitoring. Both ARS and JRS sampling show potential for simplified implementation in a
remote application having a low-frequency rate while maintaining easy real-time operation management [23].

As the name implies, model-based probability sampling requires probabilistic models or data distribution given a priori to
guide data sampling. However, for some real-world applications, there is often no sufficient historical data available to draw
a meaningful statistical distribution. In addition, for high-dimensional datasets, it is challenging to determine an appropriate
model to extract probability parameters. Model-free probability sampling takes a different approach and divides the dataset
into subgroups to guide data sampling decisions. For example, Brus and van den Akker [8] utilized a stratified sampling sur-
vey to analyze the seriousness of subsoil compaction problems in the Netherlands. In their study, stratification is accom-
plished by a map showing five levels of subsoil compaction risks, and stratified sample data are used to estimate areal
fraction, an indicator of over-compactness in the subsoil. Chen and Liu [12] proposed a high-dimensional clustering-
based stratified sampling (HDCSS) method for roadway asset condition inspection, which yields a relatively small number
of samples, potentially leading to inspection cost savings. Chen [11] incorporated the cluster sampling method with a sym-
bolic aggregate approximation-based weather pattern matching (SAX-WPM) model to select samples from historical normal
datasets to construct a baseline, serving as ground truth, to detect building anomalies. While promising, it is noted that
cluster-based sampling may suffer from increased sampling errors when the base cluster selected already has biases [6].
Stratified sampling may also be challenging when there exist no stratifiable structures in the dataset [6]. In addition, both
stratified and cluster sampling require subgroups to be identified first before the sampling.

As reviewed above, both model-based and model-free sampling approaches require pre-processing to either derive the
distribution, estimate the probability parameters, or identify the subgroups. In this research, we investigate the use of
entropy as a sampling decision metric without extensive pre-processing. Entropy is an information-theoretic measurement
to quantify information richness [41] and has been used as a decision criterion for different applications. For example, Wang
and Yao [47] proposed the concept of nonlinear correlation information entropy (NCIE) based on Pearson’s correlation coef-
ficient to remove redundant objectives in many-objective optimization problems (MaOP). Xia and Liu [49] extended NCIE to
a supervised learning algorithm to determine features for synthetic aperture radar (SAR) image recognition. Wang et al. [48]
proposed differential correlation information entropy (DCIE) for feature selection in classification problems. In addition,
information entropy can also be used as a characteristic measurement, especially in the field of physical optics [45]. For
example, Volyar et al. [43] conducted research on Laguerre-Gaussian (LG) beams and found that they produce a fine struc-
ture of the Hermite–Gaussian (HG) mode spectrum, and information entropy is used as one of the special integral charac-
teristics. In another study, Volyar et al. [44] used information entropy to monitor the uncertainty in digital sorting
perturbed LG beams. However, to the best of our knowledge, research on using entropy for sampling decisions is limited.
Although researchers in [40] explore the use of entropy in active learning, as mentioned earlier, active learning requires
the distribution of information to be drawn a priori. Some examples include studies by Rossini et al. [37] who used entropy
for a locally robust decision on time series smoothing, Li et al. [32] who used entropy-based oversampling (EOS) methods in
imbalance learning, Salehi et al. [39] who used relative entropy for semi-supervised section measurement and Xu et al. [50]
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who used cross-entropy based noise correction for data and model quality improvement in crowdsourcing; However, these
entropy-based approaches under specific distributions may not be suitable for high-dimensional problems [21].

To address the use of entropy for high-dimensional sampling issues, in this research, we propose a new entropy-based
sampling metric called Eigen-Entropy (EE), which is based on eigenvalues derived from a correlation coefficient matrix.
The proposed approach has three contributions: (1) EE is a model-free decision metric since it relies on data to extract infor-
mation regarding sample sufficiency without any assumptions on data distributions; (2) Our theoretical analysis demon-
strates that EE is able to well characterize the heterogeneity of a dataset; (3) The use of EE can assist sampling decisions
specifically on how many samples and which samples should be selected from a massive amount of data. This paper is orga-
nized as follows. The design of EE and corresponding mathematical proofs are presented in Section 2. Two types of EE-based
samplings, along with case studies and results, are detailed in Sections 3 and 4. Finally, the conclusions are presented in
Section 5.

2. Methodology

In this section, we present a detailed description of the proposed Eigen-Entropy (EE) method and how EE can be used to
support sampling decision-making. The key idea of EE is to obtain the entropy derived from the eigenvalues of a correlation
magnitude matrix from multivariate data. The correlation magnitude matrix is based on the correlation coefficient matrix
and takes the absolute values from the correlation coefficients, which measure the strength of the correlations (positive
or negative).

2.1. Eigenvalues and positive semi-definite matrices

Let A 2 Rm�m be a matrix with non-negative entries:
A ¼

a11 a21
a21 a22

..

.

am1

..

.

am2

� � � am1

� � � am2

. .
.

� � �
..
.

amm

0
BBBB@

1
CCCCA; ð1Þ
where ajk � 0; j; k ¼ 1; � � � ;m.
The eigenvalue k is defined as a scaler such that
Av ¼ kv ; ð2Þ

where v is the corresponding eigenvector satisfying the equation v–0.

There exist m eigenvalues for A [42]:
k1 þ k2 þ � � � þ km ¼ tr Að Þ ¼ a11 þ a22 þ � � � þ amm; ð3Þ

where tr Að Þ is the trace of A and ki, i ¼ 1; � � � ;m are the corresponding eigenvalues of A. For a symmetric matrix, the eigen-
values are real, and the eigenvectors are orthogonal [42]. A symmetric real matrix A is positive semi-definite (PSD), denoted
by A<0, if uTAu<0 for every non-zero vector u 2 Rm. For a symmetric matrix A, it is PSD if and only if all its eigenvalues are
non-negative [20].

2.2. Information entropy

Entropy is a term from physics that measures the degree of chaotic states in a (heat) system [14]. Shannon [41] extended
this concept in information theory to describe the expected volume of information a message contains. Shannon’s entropy
(H) is defined as
H ¼ �
XN

i¼1
pi logpi; ð4Þ
where N is the number of values a random variable can have, and pi is the probability of the random variable having the
value of i (

PN
i¼1pi ¼ 1). It is worth noting that entropy reaches a maximumwhen pi ¼ 1

N for all i’s (uniformly distributed) [41].

2.3. Eigen-Entropy

Let X 2 Rn�m denote a dataset with n samples, where each sample has m features. We can represent X as a matrix:
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X ¼ x1; � � � ;xn½ �T ¼

x11 x12
x21 x22

..

.
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..

.

xn2
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� � � x2m

. .
.
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..
.
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0
BBBB@

1
CCCCA ð5Þ
where xi ¼ xi1; � � � ; xim½ �; i ¼ 1; � � � ;n:
Given this, the correlation coefficient matrix on the feature space of X is defined as
C ¼ 1
n
XT

SXS ¼

1 c12
c21 1

..

.
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0
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where
XS ¼

x11�l1
r1
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..
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0
BBBBBB@

1
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: ð7Þ
In Eq. (7), lj denotes the mean and rj denotes the standard deviation of feature j. cjk denotes the correlation between

features j and k. That is, lj ¼ 1
n

Pn
i¼1xij, rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 xij � lj

� �2
r

, cjk ¼
Pn

i¼1
xij�ljð Þ xik�lkð Þ
rjrk

ðj–k; j; k ¼ 1; � � � ;mÞ, cjj ¼ 1.

Let
X�
S ¼
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jx22�l2 j
r2

..

.

jxn1�l1 j
r1

..

.

jxn2�l2 j
r2

� � � jx1m�lm j
rn

� � � jx2m�lm j
rm

. .
.

� � �
..
.

jxnm�lm j
rm

0
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We derive the correlation magnitude matrix C� as
C� ¼ 1
n
X�T

S X�
S ¼

1 c�12
c�21 1

..

.

c�m1

..

.

c�m2

� � � c�1m
� � � c�2m

. .
.

� � �
..
.

1

0
BBBB@

1
CCCCA; ð9Þ
where c�jk � 0; j; k ¼ 1; � � � ;m.
We next show that C� is positive semi-definite (PSD).
For any a 2 Rm and a–0,
E ð 1ffiffiffi
n

p X�
SÞa

� �2

� 0: ð10Þ
We have that
E 1ffiffi
n

p X�
S

� �
a

� �2
¼ E aT 1ffiffi

n
p X�

S

� �T
1ffiffi
n

p X�
S

� �
a

� �

¼ E aT 1
nX

�
S
TX

�
S

� �
a

� �
¼ E aTC�a

� �
¼ aTC�a

ð11Þ
Since aTC�a � 0, C� is positive semi-definite (PSD). According to [20], for symmetric matrix C�, which is PSD, its eigenval-
ues are real and nonnegative; that is, ki � 0; i ¼ 1; � � � ;m. This nonnegative property of an eigenvalue is important to support
the definition of Eigen-Entropy (EE).

Definition 1. Following the form of Shannon’s entropy, Eigen-Entropy (EE) is defined as
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EE ¼ �
Xm

i¼1

ki
m

log
ki
m

; ð12Þ
where ki is the ith the eigenvalue of the correlation magnitude matrix C�, ki � 0; i ¼ 1; � � � ;m.
We next establish the relationship between the degree of correlation captured by the correlation magnitude matrix and

its eigenvalues.

Proposition 1. Without loss of generality, let us consider C�, where all the non-diagonal entries c�ij ¼ c. k is one of the

corresponding eigenvalues. As the value of c increases, eigenvalue k increases when k 2 1; 1½ Þ and decreases when k 2 0; 1½ Þ.
Proof. Let us construct a new correlation magnitude matrix C0 from C� by replacing c with ac, a > 1:
C0 ¼

1 ac
ac 1

� � � ac

� � � ..
.

..

. ..
.

ac ac

. .
.

ac
� � � 1

0
BBBBB@

1
CCCCCA
: ð13Þ
In [13], it is shown that if C� has eigenvalue k, then 1
aC

� has eigenvalue 1
a k. Thus, k0 is an eigenvalue of C0, and 1

a k0 is an
eigenvalue of 1

aC0.
Note that we can reconstruct C� using 1

aC
0 and the identity matrix as follows:
1
a
C 0 þ 1� 1

a

� �
I ¼

1 c

c 1

� � � c

� � � ..
.

..

. ..
.

c c

. .
.

c
� � � 1

0
BBBBB@

1
CCCCCA

¼ C�: ð14Þ
In [13], it is also shown that if C� has eigenvalue k; then C� þ aI has eigenvalue kþ a. Given this, the left-hand side of the
above equation has an eigenvalue 1

a k0 þ 1� 1
a, while the right-hand side is C� with eigenvalue k. Thus, we have
k ¼ k0
a
þ 1� 1

a
; ð15Þ
or equivalently,
k0 � k ¼ a� 1ð Þ k� 1ð Þ: ð16Þ

Given the above, we can conclude that as c increases, the eigenvalue k0 increases when k 2 1;1½ Þ or decreases when

k 2 0;1½ Þ.
We next establish the relationship between the correlation magnitude matrix C� and eigen-entropy EE.

Proposition 2. Let the correlation magnitude matrix C� be such that all the non-diagonal entries c�ij ¼ c. As c increases,

Eigen-Entropy (EE) decreases.

Proof. C� is PSD and its eigenvalues ki � 0; i ¼ 1; � � � ;m,
tr C�ð Þ ¼ k1 þ k2 þ � � � km ¼ m ð17Þ

Thus, we have

Pm
i¼1

ki
m ¼ 1.

Let pi ¼ ki
m, when we replace the ki

m term in the EE definition with pi, we set
EE ¼ �
Xm
i¼1

pi log pi ð18Þ
As with Shannon’s entropy, EE reaches its maximum pi ¼ 1
m, or equivalently, when ki ¼ 1.

Now, we connect c with EE. There are two scenarios:

� ki 2 1;1½ Þ, that is, pi ¼ ki
m � 1

m.

As c increases, ki increases. Thus, pi will move further away from the maximum entropy point (1mÞ, and EE will decrease.

� ki 2 0;1½ Þ, that is, pi ¼ ki
m < 1

m.

As c increases, ki decreases. Thus, pi will move further away from the maximum entropy point (1mÞ, and EE will decrease.
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We conclude that as c increases, EE decreases.
In summary, C� records the absolute magnitude of the correlations among the variables that define the feature space, and

the relationship between C� and EE makes EE a potential metric to guide sampling decisions. Taking a dataset X 2 Rn�m with n
samples andm features as an example, we can calculate EE for the first k samples from the dataset X, EE(k). When the ðkþ 1Þ
sample is to be added to the dataset if the new sample increases the variance (r2) of the dataset, in other words, the dataset
is more diversified (heterogenous), the magnitude of the correlation (c) decreases and EE (kþ 1) increases, and vice versa.
We conclude that the proposed EE can be considered as a single metric to determine which and how many samples to be
included.

2.4. Eigen-Entropy based sampling

Given a dataset X 2 Rn�m; Algorithm 1 presents the EE-based sampling method to select the subset S from X. We first nor-
malize the dataset X on each feature (line 1) and fill S with some initial samples to calculate the EE. Next, for each of the
remaining data samples, we calculate a new EE on the updated S (with the added sample) to observe the change in EE (in-
creasing or decreasing) and evaluate the rate of change for the EE (line 6). The addition is finalized if the rate of change is
above a pre-defined threshold e, which is a small number. Depending on the applications, in the case where data leading
to a more homogeneous dataset is desired (see Section 3), the EE is expected to decrease; in the case where data leading
to a more heterogeneous dataset is desired (see Section 4), the EE is expected to increase.
Algorithm 1: EE-based Sampling

Input: X 2 Rn�m, n samples, m features
Output: The subset S from X determined by EE
Initialization:

1:
 Normalize X on each feature to obtain X0
2:
 Initialize S with a few samples from X0
3:
 Calculate EE using S (see Definition 1)

Sampling Decision:

4:
 For each of the remaining samples

5:
 Temporarily add the data element into S and calculate EE for the updated S

6:
 Calculate the rate of EE change as: EE

#ofsamplesinS
7:
 For applications where we seek homogeneous samples

8:
 If EE decreases, we keep the element in S

9:
 Otherwise, remove the data element from S

10:
 If the rate of EE change is greater than a small number e, the sampling process continues

11:
 Otherwise, stop

12:
 For applications where we seek heterogeneous samples

13:
 If EE increases, keep the element in S

14:
 Otherwise, remove the data sample from S

15:
 If the rate of EE change is greater than a small number e, the sampling process continues

16.
 Otherwise, stop

17.
 Return S
Remark: Algorithm 1 adopts a greedy search strategy to identify the samples to be included or excluded in the sampling pro-
cess. It is noted that the greedy search may be trapped at a local optimum if the EE curve is not monotonously increasing or
decreasing. Fortunately, the objective here is to continuously update the EE curve with added samples to maintain the mono-
tonous property of the EE curve. For illustration, two example samplings, a homogeneous sampling case study (see Section 3)
and a heterogeneous sampling case study (see Section 4), are shown in Fig. 1.

3. Eigen-Entropy for homogeneous sampling

Here, we first focus on the imbalanced learning problem to demonstrate the use of Eigen-Entropy to assist sampling deci-
sions where homogeneous data are to be sampled. Data imbalance is a common problem of machine learning in various
domains, e.g., cardiovascular disease studies [17] or credit card fraudulent transactions [9]. As a result, accurate predictions
regarding minority classes are of great importance. Extensive research has proposed solutions to address the challenges of an
imbalanced dataset by balancing distributions of majority and minority classes [46]. Oversampling techniques are frequently
used [25]. Common oversampling techniques include the synthetic minority over-sampling technique (SMOTE) [9], the
majority weighted minority over-sampling technique (MWMOTE) [3], SMOTE + Tomek links (SMTL) [5], SMOTE + Edited
nearest neighbors (SMENN) [4], EasyEnsemble (EASY) [33], and Balance-Cascade (BC) [33]. The basic idea behind most of
89



Fig. 1. Monotonous property of the EE curve is maintained while being updated with added samples for (A) a homogeneous sampling case and (B) a
heterogeneous sampling case.
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these oversampling techniques is to generate synthetic samples based on the distribution of information from the minority
class to balance the datasets. However, these approaches may generate noisy or wrong minority samples leading to misclas-
sification [32].

Instead of using distribution information, we argue that if the minority data samples are carefully selected (e.g., homo-
geneous samples being selected) as the basis for generating synthetic samples, the synthetic dataset may be less noisy,
resulting in better classification performance. We propose the use of EE as a metric to guide oversampling decisions. Specif-
ically, given a multi-class imbalanced dataset, for each of the minority classes, we apply Algorithm 1 to identify the homo-
geneous samples to generate the synthetic samples to obtain a balanced dataset. In this case, the smaller the EE is, the less
diverse (more homogeneous) the dataset is. In the next section, where we compare EE against oversampling techniques, we
use cosine similarity as a correlation coefficient measurement. This is because cosine similarity overcomes the issues of the
nonexistence of correlations (e.g., in Pearson’s correlations) [15].

3.1. Datasets

Ten publicly available real-world datasets from KEEL [2] and UCI repositories [18] are used in the comparison experi-
ments (see Table 1). The first 7 datasets, vehicle1, segment0, page_block0, penbased, thyroid, shuttle, and ecoli-0-1-4-
7_vs_2-3-5-6 (ecoli) are from KEEL, while the remaining, letter, waveform database generator version 1 (wavefm3), and
landsat are from UCI. Among these 10 datasets, 4 (vehicle1, segment0, page_block0, and ecoli) are with binary classes,
and the other 6 are multiclass datasets. Features in these datasets are numerical.

3.2. Benchmark algorithms

For comparison purposes, four SMOTE-based oversampling techniques, SMOTE [10], MWMOTE [3], SMTL [5], and SMENN
[4], are included because SMOTE has been widely adopted as an oversampling technique [25]. In addition, an entropy-based
imbalance degree sampling method, called the entropy-based oversampling approach (EOS), is included owing to its superior
performance in imbalance learning [32]. As a result, there are a total of five methods that are compared against our proposed
method. It is worth noting that all these techniques are to generate more samples from the non-majority classes to obtain
Table 1
Statistics of 10 experimental datasets (IR: imbalanced ratio).

Datasets #Instances #Features #Classes IR

vehicle1 846 18 2 2.9
segment0 2308 19 2 6.02
page_block0 5472 10 2 8.79
penbased 1100 16 10 1.95
thyroid 720 21 3 36.94
shuttle 2175 9 7 853
ecoli 336 7 2 10.59
letter 5000 16 26 0.96
wavefm3 5000 21 3 2.04
landsat 2000 36 6 1.98
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the same number of samples as that from the majority class. With the same goal, instead of randomly selecting samples as
the seed to generate new samples such as in SMOTE, our proposed method is to identify homogeneous samples from the
non-majority classes by EE as the seed for new sample generations via SMOTE. Thus, our proposed method is termed EE-
SMOTE.

3.3. Evaluation metrics

To investigate the information richness of the sampled data to support imbalanced learning, two commonly used base
classifiers, multilayer perceptrons (MLP) [7] and AdaBoost [24] are implemented (Table 2). For each dataset, 5-fold cross-
validation is performed. Each classifier is trained 10 times and the output is the average performance over the 10 runs.
The One-vs-Rest strategy [36] is applied to multi-class datasets.

Precision [35], recall [35], F-measure [26], and G-mean [22] are used for classifier performance evaluations:
Precision ¼ TP
TPþ FP

; ð19Þ

Recall ¼ TP
TPþ FN

; ð20Þ

F-measure ¼ 2� Recall � Precision
Recall þ Precision

; ð21Þ

G-mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Recall� TP

TN þ FP

r
; ð22Þ
where TP denotes the number of minority samples correctly identified; FP denotes the number of non-minority samples
incorrectly identified as the minority class; TN denotes the number of non-minority samples correctly identified; FN denotes
the number of minority samples incorrectly identified as the non-minority classes.

3.4. Experimental results

We conduct experiments varying e from 0.01 to 0.09 with 0.01 increments and observe that e as 0.08 offers the most sat-
isfactory classification results in terms of performance average and standard deviation (see Fig. 2). Thus, the results reported
below are with e set to 0.08. With the synthetic samples generated from the five benchmark methods and our proposed EE-
SMOTE, we implement both the multilayer perceptrons (MLP) and AdaBoost. Fig. 3 illustrates the average performance of the
two classifiers in terms of precision, recall, F1-score, and G-mean. The reason we take the average performance is for a fair
comparison as in [32]. It is observed that EE-SMOTE outperforms the comparison methods on precision (Fig. 3(A)), recall
(Fig. 3(B)), F-measure (Fig. 3(C)), and G-mean (Fig. 3(D)). It is also observed that EE-SMOTE has the smallest standard devi-
ations on all four metrics, indicating the robustness of the algorithm.

In summary, the above results demonstrate that the EE-based sampling method is able to make sampling decisions such
aswhich samples and how many samples should be included where homogeneous data must be sampled as the basis for syn-
thetic data rendering to support imbalanced classification.

4. Eigen-Entropy for heterogeneous sampling

In this section, we focus on a fault detection problem to demonstrate the use of EE to assist sampling decisions where
heterogeneous data must be sampled. Buildings are complex and integrated systems consisting of multiple sensors and sub-
systems, among which the heating, ventilation, and air conditioning (HVAC) systems are critical for building energy con-
sumption and indoor environment quality. HVAC systems have been reported to be responsible for 20 % of a building’s
energy consumption [34], and such consumption accounts for 36 % of the global final energy use and 39 % of energy-
related carbon dioxide emissions [28]. However, among this primary energy use, approximately 30 % is wasted because
of operation faults and malfunctions in the HVAC systems [31]. Studies have shown that automatic fault detection and diag-
nosis (AFDD) on HVAC systems provide great potential for energy savings [38]. AFDD is a process that includes fault detec-
tion, identification, and isolation. Here, faults are typically defined as deviations from normal operating conditions in a
Table 2
Summary of two base classifiers and corresponding parameters.

Base Classifier Parameters

AdaBoost 100 boosting iterations
MLP 100 epochs, 0.1 learning rate, 10 hidden layer neurons
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Fig. 2. Average performances under different e are from 0.01 to 0.09 using MLP and AdaBoost on 10 public datasets in terms of precision, recall, F-measure,
and G-mean. The most satisfactory results occur at e = 0.08 (in grey).
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building system [31]. Numerous AFDD methods have been developed over the past decades [31]. Regardless of the AFDD
method, a baseline, representing the normal building operation conditions, is needed to enable fault detection. Because
building systems are dynamic (e.g., temperature sensor readings vary from the morning to the afternoon) [11], a robust base-
line is likely to include completely heterogeneous samples that cover diverse operation conditions [27].

In this paper, we propose the use of EE as a metric to sample heterogeneous data to be included in the building baseline.
Specifically, given a building historical dataset (collected under normal operating conditions), we apply Algorithm 1 to iden-
tify the heterogeneous samples to be included in the baseline. As previously mentioned, cosine similarity is used for the cor-
relation coefficient measurement on the feature space.

4.1. Datasets

The datasets used for fault detection are real building data collected from Nesbitt Hall at Drexel University [11], among
which 14 are fault cases. For each fault case, there is a corresponding baseline candidate set, determined by building domain
knowledge, obtained from existing historical normal datasets [11]. Data in each dataset are collected for a one-day period
under a 5-min observation rate, and because building systems are complex with different functional components, the num-
ber of features in each fault test case varies. Details regarding these fault test cases can be referred to in Table 3.

4.2. Benchmark algorithms

For comparison purposes, our proposed EE-based sampling is compared against the multivariate pointwise mutual infor-
mation (MPMI) method [16] and symbolic aggregate approximation using weather and schedule-based pattern matching
(SAX-WPM) [11]. We choose these two benchmark methods because MPMI is a recently reported entropy-based method
(which is of interest in this study) for multivariate Spatio-temporal data sampling, and SAX-WPM is a method developed
specifically for building fault detection baseline constructions.

MPMI is a general method to assess the information richness of a multivariate dataset. For a sample xi ¼ ½f i1; f i2; � � � ; f im�,
MPMI is defined as
MPMI xið Þ ¼ log
p f i1; f i2; � � � ; f imð Þ

p f i1ð Þpðf i2Þ � � �pðf imÞ
ð23Þ
where p f i1; f i2; � � � ; f imð Þ and p f ij
� �

is the joint probability of m features and the probability of feature j in xi, respectively. For
each xi 2 X, both joint probability and individual feature probability are estimated by histograms under a specific bin num-
ber. The MPMI of each sample is then normalized to obtain normalized MPMI (NMPMI). A rejection sampling algorithm [16]
is applied for sampling decisions. That is, let si be picked from a uniform distribution Uð0;1Þ: (1) if NMPMI xið Þ > si, xi is
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Fig. 3. Average performances using MLP and AdaBoost on 10 public datasets in terms of (A) precision, (B) recall, (C) F-measure, and (D) G-mean. Each
subplot represents the results for a specific dataset under six different methods. Solid line segments indicate the standard deviation of performances. In
each subplot, the x-axis indicates the methods (SMOTE (SM), MWMOTE (MW), SMTL (SL), SMENN (SN), EOS (EO), and EE-SMOTE (EE) under e = 0.08, in this
order). The results of EE-SMOTE are highlighted in grey.

J. Huang, H. Yoon, T. Wu et al. Information Sciences 619 (2023) 84–97

93



Table 3
Summary of 14 fault test cases.

Fault test case name Fault description # of candidate samples # of features

20160706 The system stopped from 4:00 PM to 23:30 PM 60,480 100
20160907 AHU-2 supply air temperature sensor negative bias 4�F 60,480 100
20160911 Operator fault, chiller off 60,480 182
20161201 AHU-2 outdoor air damper stuck at 90 % open 60,480 167
20170103 AHU-2 outdoor air damper stuck at 80 % open 60,480 167
20170114 Occupied from 1:30 AM to 7:00 AM 60,480 167
20170811 AHU-2 cooling coil valve position software override at 100 % open 56,448 182
20170915 Chiller chilled water differential pressure sensor positive bias 0.1 psi 56,448 182
20180709 AHU-2 supply air temperature sensor bias fault negative 3.5�F 60,480 182
20180710 AHU-2 OA damper stuck at 30 % open 60,480 182
20180711 AHU-2 cooling coil valve stuck at 80 % 60,480 182
20180718 AHU-2 OA damper stuck at 60 % open 60,480 182
20180722 Change weekend occupied schedule to end at 8:20 PM 60,480 100
20180723 CHWS temperature sensor negative bias 3.0 �F 60,480 182
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selected; (2) otherwise, xi is discarded. There is one parameter in implementing MPMI: the bin number. Here, we set the bin
number to 128 as in [16].

In SAX-WPM, the symbolic aggregate approximation method is first employed to find similar patterns within a time ser-
ies dataset, and these patterns are used to dynamically select qualified samples to generate a baseline. The SAX-WPM
method has shown satisfactory performance over conventional data-driven baseline construction methods for high-
dimensional building data [11]. There are two parameters in implementing SAX-WPM [11]: (1) the snapshot window size,
which, as the name implies, divides a day (24 h) into snapshots (e.g., 1 h) for use in building control and building fault detec-
tion; (2) the number of symbolic letters, which is used to categorize weather conditions. As in [11], we set the snapshot win-
dow size to 30 min and the number of symbolic letters is set to 10. Following the literature on anomaly detection
[1,11,29,30], we adopt Hotelling’s T-Square (T2), incorporating the principal component analysis (PCA) to identify whether
a systematic abnormality exists in the building operations with respect to the baseline constructed. Specifically, T2

i , Hotell-
ing’s T-Square for a sample i, is defined as
T2
i ¼ xT

i P
X

aPTxi ð24Þ

where xi is the sample i, P is a loading matrix obtained from PCA, and

P
a is a set of nonnegative eigenvalues corresponding

to a principal components. Because T2 follows the F distribution, its upper bound can be obtained as
T2
threshold ¼

aðn� 1Þ
n� a

Fa;n�a;a ð25Þ
where n is the number of samples and a is the level of significance. Here, a is set to 0.05, and an abnormal sample i is flagged
when T2

i � T2
threshold.

4.3. Evaluation metrics

As in [46], we use recall (see Eq. (20)) to evaluate the performance of the baseline for fault detection, and here, TP and FN
denote the number of abnormal samples correctly identified and the number of abnormal samples incorrectly identified as
normal, respectively. A fault test case is said to be detected if its recall � 0.5, following building domain knowledge [11].

4.4. Experimental results

Similar to the experiments on homogeneous sampling, we tested 9 different thresholds e from 0.01 to 0.09 with 0.01
increments. The results of the fault detection test for 14 fault test cases using EE-constructed baselines are shown in
Fig. 4. It can be observed that baselines constructed by our proposed method are able to detect all fault test cases under
e = 0.07 (see Fig. 4(A)). It is worth noting that an average number of baseline samples per case decreases as expected when
e increases (see Fig. 4(B)), mainly because a higher value of e indicates that additional samples lead to a larger entropy
change rate, and thus a smaller number of only qualified samples can be included. Hence, e = 0.07 is considered as the stop-
ping criterion in our proposed method to generate the final baseline, given that the number of baseline samples is relatively
small while all fault test cases are detected under this value.

Table 4 presents the comparison of the fault detection results for the MPMI baselines, SAX-WPM baselines, and those by
our proposed EE method under e = 0.07. As previously mentioned, a fault test case is detected when its recall is greater than
or equal to 0.5; therefore, we can observe that among the 14 fault test cases, baselines by MPMI failed to detect 2 cases, cases
20,160,911 and 20,170,114, (see marked rows in Table 4), while those by SAX-WPM and EE are able to detect all cases. For
case 20160911, the number of samples in the baseline constructed by EE is 1788, 89.3 % less than that of MPMI, which is
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Fig. 4. Detection results for 14 artificial fault injection cases using baselines constructed by EE under different e’s: (A) fraction of detected fault test cases;
(B) average number of baseline samples per case. e = 0.07 is highlighted in grey.

Table 4
Comparison of detection results for 14 fault test cases using MPMI, SAX-WPM, and EE (e = 0.07) baselines in terms of sensitivity and the average number of
constructed baseline samples. The two cases (20160911 and 20170114) were not detected by the MPMI baselines but were detected by the EE baselines
(MPMI*: bin = 128; SAX-WPM**: snapshot window size = 30-min, number of symbolic letters = 10).

Fault test case name Recall Number of samples

MPMI* SAX-WPM** EE (e = 0.07) MPMI* SAX-WPM** EE (e = 0.07)

20160706 1.00 1.00 1.00 17,232 10,416 2083
20160907 0.90 1.00 1.00 15,216 7344 1905
20160911 0.12 0.92 0.52 22,896 5904 1788
20161201 0.88 1.00 0.88 18,480 8880 2051
20170103 0.99 0.99 0.99 18,672 6432 2142
20170114 0.16 0.78 0.52 16,656 9840 2273
20170811 0.89 0.90 0.94 17,856 7200 1990
20170915 1.00 1.00 1.00 17,952 8016 2024
20180709 1.00 1.00 1.00 22,800 7296 1846
20180710 1.00 1.00 0.98 22,800 10,608 2054
20180711 1.00 1.00 1.00 22,896 10,320 2095
20180718 1.00 1.00 1.00 22,752 8304 2012
20180722 1.00 1.00 1.00 17,376 8352 2053
20180723 0.98 1.00 0.99 22,848 4224 1679
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22896, and 69.7 % less than that of SAX-WPM, which is 5904; for case 20170144, the number of samples in the baseline con-
structed by EE is 2273, 86.4 % less than that of MPMI, which is 16656, and 76.9 % less than that of SAX-WPM, which is 9840.
For all 14 cases, the average number of baseline samples per case using MPMI and SAX-WPM are 15,574 and 8099 respec-
Fig. 5. Comparison of the results using the MPMI, SAX-WPM, and EE (e = 0.07) methods in terms of the average number of constructed baseline samples
across 14 fault test cases.
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tively, while that using EE is 2000 (87.2 % and 75.3 % less than those of MPMI and SAX-WPM, respectively, see Fig. 5). There-
fore, baselines constructed by the EE method require a significantly smaller number of samples than those by the MPMI
method, which also indicates that our proposed method is promising.

In summary, this case study demonstrates that the sampling outputs (baselines) by our proposed EE method (EE-based
heterogeneous sampling) outperform the literature-reported method (MPMI) for fault detections. Additionally, baselines
constructed by the EE method require significantly fewer samples than those by the MPMI method. We conclude that the
EE-based sampling method is able to make sampling decisions such as which samples and how many samples should be
included in the heterogeneous sampling scenario.

5. Conclusion and future work

This study proposes and validates an information entropy-based sampling method. The proposed method uses Eigen-
Entropy (EE), defined through eigenvalues from a correlation magnitude matrix using multivariate datasets as a decision-
making criterion. Our proposed approach is able to automatically determine which samples and how many samples should
be collected to construct a subset to support specific applications. Theoretical analyses show the relationship between EE
and data heterogeneity through two sets of experiments that were conducted using homogeneous and heterogeneous sam-
plings. The imbalance learning case studies show that our proposed homogeneous sampling method outperforms five other
methods reported in the literature. The building engineering case studies demonstrate that the sampling results by our pro-
posed heterogeneous sampling method perform better than those of the MPMI and SAX-WPMmethods in detecting building
operation faults.

Our future work lies in the following directions. In our current work, the stopping criterion e is determined by empirical
experiments. We plan to develop optimization techniques to determine the e value as our next immediate step. Considering
imbalanced learning applications, in the current work, we focused on SMOTE as an oversampling strategy. In the future, we
plan to explore other oversampling strategies, such as BC. In addition, because EE as a general metric evaluates the informa-
tion richness of data, it can be adopted in both supervised, semi-supervised, and unsupervised learning. For future work, we
plan to explore the applicability of EE in active learning, identifying the samples to be annotated as a future effort.
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