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Abstract— The Gulf Stream, which comes within 100 km
of the United States coastline in both the Florida Straits and
the vicinity of Cape Hatteras, is estimated to possess over 160
TWh/year of technical energy capacity. To better understand
the behavior of the Gulf Stream, whose flow resource varies
in both space and time, a relatively sparse network of fixed
acoustic Doppler current profilers (ADCPs) and shore-mounted
high-frequency radar units have been supplemented by more
granular but infrequent boat transect runs and undersea glider
deployments. Collectively, these measurements provide highly
granular data with respect to either time or space, but not both.
This work represents part of a comprehensive effort to evaluate
use of a solar-powered autonomous surface vehicle (ASV) fleet
to supplement existing observational capabilities. The proposed
solar-powered ASV can provide data with high spatial and

temporal granularity, but comes with the challenge of optimally
planning its mission in an adaptive manner. To address this
challenge in this work, we propose a multilevel controller that
fuses the A* search algorithm with an upper level waypoint
selector and lower level heading control. Focusing on a critically
important mission domain adjacent to Cape Hatteras, and
relying on a Mid-Atlantic Bight, South Atlantic Bight Regional
Ocean Model (MAB-SAB-ROM), we compare the performance
of our proposed algorithm against several competing strategies.
We demonstrate a significant performance improvement in
terms of a dynamic coverage metric, both in comparison to
competing strategies and to the existing observational network.

I. INTRODUCTION

The Gulf Stream possesses over 160 TWh/year of techni-

cal energy capacity in the region between Florida and North

Carolina [1]. This has led to millions of dollars in research

aimed at characterizing the spatial and temporal variations

in the Gulf Stream profile, including the North Carolina Re-

newable Ocean Energy Program, PEACH Project, Southeast

National Marine Renewable Energy Center, and other efforts.

To facilitate the process of characterizing spatiotemporal

variations in the Gulf Stream profile adjacent to Cape Hat-

teras, several observational tools have been employed. These

include moored acoustic Doppler current profilers (ADCPs),

boat-mounted ADCPs, a high-frequency radar network, and

undersea gliders. Specifically, the numerous (10+ in the

vicinity of Cape Hatteras, although not all concurrently)

moored ADCPs provide measurements of current velocity

vs. depth at 4-meter intervals, averaged over each hour

[2]. These provide excellent temporal and depth-wise spatial

resolution; however, they provide little capacity for spatial
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extrapolation to latitudes and longitudes where the stationary

ADCPs are not deployed. Boat transect runs, where research

vessels are equipped with their own ADCPs [3], provide

a spatially granular picture of the current profile over the

approximately 24-hour period of the transect run. However,

cost and personnel restrictions result in practical limitations

on how often these runs can be made; in practice, they are

typically made no more frequently than annually, leading

to very limited temporal resolution. To provide a more

granular spatiotemporal surface characterization of the Gulf

Stream, a high-frequency radar network has been deployed

[4], providing spatial data every 6 km and temporal data

every hour. However, these data are limited to surface

measurements and are not nearly as accurate as on-site

ADCP measurements. Finally, several undersea gliders have

been deployed for the purpose of providing longer-duration

spatiotemporal characterizations of the Gulf Stream at depth

[5], [6]. However, their limited velocities (usually less than

1 km/hour of velocity made good) limit the gliders to

downstream paths, and generally no more than approximately

one month in duration.

Despite the extensiveness of the Gulf Stream observa-

tional network, coverage remains spatiotemporally sparse.

Temporally granular measurements like moored ADCPs are

restricted to a fixed spatial location, and spatially granular

measurements like boat transects provide limited temporal

resolution. Persistent Autonomous Surface Vehicles (ASVs)

with downward-looking ADCPs, such as sailing drones [7],

wave gliders [8], and solar-powered ASVs [9], can help

to close the aforementioned gaps by providing continuous

operations over months at a time and a large spatial domain.

In this work, we will consider the SeaTrac SP-48 ASV shown

in Fig. 1. This system addresses the major concerns with the

variety of other solutions:

• The ASV is a mobile system allowing for measurements

across the entire domain.

• As an autonomous system, the ASV is significantly

cheaper to operate than a full research vessel.

• Unlike an undersea glider, the ASV’s solar panels enable

persistent missions, i.e. missions whose length is not

capped by physical constraints.

• The ASV’s approximately 4.5 knot peak velocity allows

it to make upstream progress outside of the center (“jet”)

of the Gulf Stream.

Although autonomous mobile systems address the main

shortcomings of other approaches, they introduce a control

challenge of their own: optimal real-time exploration of



Fig. 1: SeaTrac ASV considered in this work [9] – Image

used with permission.

TABLE I: SeaTrac ASV Parameters

Variable Name Value Units

Length 4.8 meters
Beam 1.39 meters
Draft 0.42 meters

Weight 300 kilograms

Solar Panel Area 4.17 meters2

Brushless Motor 500 Watts
Battery Capacity 6.75 kWh

Top Speed 4.5 kts
Cruise Speed 3 kts

the mission domain in light of uncertain mobility arising

from the solar resource and spatiotemporally varying current.

The standard mechanism for controlling such systems is a

so-called line transect strategy, wherein the ASV executes

pre-planned “lawn mower”-type patterns in order to cover

the domain. While such strategies indeed traverse the full

mission domain, they do so without consideration of the

propulsive resource and other disturbances, leading typi-

cally to sub-optimal paths. Adaptive sampling literature has

examined more sophisticated information-driven planning

approaches for general oceanographic and atmospheric ob-

servation research, which have included dynamic coverage-

based strategies [10], [11], [12], exploration/exploitation

strategies [13], [14], [15], [16], [17], and other information-

driven approaches [18], [19], [20], [21] to account for the

spatiotemporally varying propulsion resource and distur-

bances in performing real-time planning.

It is the goal of the present research to apply information-

driven planning to the control of the SeaTrac SP-48 ASV

over a critical Gulf Stream mission domain. We propose a

hierarchical approach where an upper-level mission planner

computes a coverage-optimal target waypoint within the

global mission domain, and a lower-level planner computes

the path to that waypoint. Specifically, two implementations

of the lower-level planner are investigated here: (i) a direct-

to-point strategy and (ii) an A* algorithm [22]. We choose the

A* algorithm due to its use of heuristic parameters, enabling

us to tune the algorithm to prioritize the desired heuristics.

We compare the results of the proposed optimal hierarchical

strategy to a line transect approach, which is a commonly

used standard approach for observational studies.

II. MODELING

A. Dynamic Models

In this work, we consider the SeaTrac SP-48, which is

an autonomous, propeller-driven autonomous surface vessel

(ASV) with an on-board battery and solar panels for recharg-

ing. Given that the time scales of the environment greatly

exceed those of the boat dynamics, we assume direct control

of the boat’s velocity and heading according to the following

dynamic model:

ẋ = vb cosθb + v f (x,y, t)cosθ f (x,y, t)

ẏ = vb sinθb + v f (x,y, t)sinθ f (x,y, t)
(1)

where x and y are the two spatial states of the system, vb

and θb are the boat speed and boat heading (which serve as

control variables), respectively, and v f (x,y, t) and θ f (x,y, t)
are the spatiotemporally varying flow speed and direction

at the x,y location of the boat. We also model the state of

charge of the on-board battery, denoted by b, according to:

ḃ = ηsAsI(t)−ηmFD||~vb||2 −Pe

FD =
1

2
ρAwCD||~v||

2
2

(2)

where ηs is the solar panel efficiency, As is the solar panel

area, I(t) is the solar shortwave radiation (in units of W/m2),

ηm is the motor efficiency, FD is the drag force on the boat,

and Pe is the electrical power consumption of the on-board

electronic systems. The drag force, FD, is modeled as a

function of the wetted area, Aw, the drag coefficient, CD,

and the apparent current speed, ~v. In order to simulate a

system with these dynamics, it is necessary to characterize

the environmental variables I(t) and ~v f (x,y, t), in addition

to defining a control architecture for determining ~vb (which

characterizes both the heading and speed of the boat). The

former requires the selection of a meaningful mission domain

and the acquisition of appropriate solar and current data over

that domain. The latter requires the definition of a control

architecture. We discuss the approaches to each task in the

following sections.

B. Site Selection

For our mission domain, we selected the region shown in

Fig. 2 off the coast of North Carolina frequently occupied by

the Gulf Stream. This site was selected for two main reasons:

1) This section of the Gulf Stream has been shown to be

nearest to the shore, making it a promising location for

the future installation of marine hydrokinetic energy-

harvesting devices [2].

2) This section of the Gulf Stream has also been estimated

to possess the smallest level of spatial variability due

to so-called meanders. Nevertheless, existing observa-

tional data is insufficient to precisely pin down the

exact resource potential and variability in this area.



Fig. 2: Mission domain and flow resource (at the surface, based on the MAB-SAB-ROM model) at 10 day intervals

C. Flow Data

To characterize the surface currents for the purpose of

driving our dynamic simulations, we have elected to use the

Mid-Atlantic Bight, South Atlantic Bight Regional Ocean

Model (MAB-SAB-ROM) [23]. This model outputs the flow

speed vector as a function of the 3-dimensional x,y,z location

and time (t). Because the SP-48 is an ASV, we only rely on

the surface elements of the data (i.e., those corresponding to

z = 0) to drive the dynamics of the ASV.

D. Solar Data

Solar data from the ERA-Interim model [24], available as

a function of x,y location and time (t), was used to drive the

ASV dynamics. Because the length scales of the solar data

are significantly longer than the dimensions of the mission

domain, we assume in this work that the solar resource is

temporally but not spatially varying.

E. Dynamic Coverage

The scientific objective of ASV-based Gulf Stream obser-

vations lies in the persistent coverage of a mission domain

whose characteristics (e.g., current velocity as a function

of depth and x,y location) are known to change over time.

Thus, for the development and subsequent validation of our

proposed control strategies, it is essential that we rely on a

metric that captures the quality with which the algorithms

achieve persistent coverage over the domain. To formulate

this metric, we turn to the concept of dynamic coverage,

discussed in [10], [12], and [25], which characterizes the

quality with which a mobile agent characterizes a domain.

This characterization typically depends on the definition

of a sensing function, which characterizes the quality of

information available at each point within the domain as a

function of the mobile agent(s)’s location(s) – points far away

from or unobservable by an agent will be associated with low

sensing function values.

In our work, we rely on a mathematical coverage model

with two key features that are representative of the problem

at hand:

• In the absence of available measurements near a partic-

ular x,y location, the coverage at that location gradually

declines.

• Coverage at a particular x,y location immediately in-

creases when the ASV passes sufficiently close to that

location, where the level of increase depends on the

proximity of the ASV to that x,y location.

These key characteristics are captured in our work through

the following discrete-time coverage model:

q(x,y, t +δ t) = max{q(x,y, t)−qlossδ t,S(d(t))} , (3)

where q is dynamic coverage, qloss is a flat coverage loss

rate, d(t) is the distance at time t between the ASV and the

point (x,y) about which coverage is being calculated, and

S(d(t)) is the sensing function, given by:

S(d(t)) = e
−

d(t)2

2l2 . (4)

Here, l is a sensing length scale, which can roughly be

thought of as a radius within which the ASV is able to

accumulate coverage. Examining equation (3), one can see

that if the ASV is far from the (x,y) point under consid-

eration, coverage at that location will continue to decrease.

However, when the ASV gets sufficiently close to an (x,y)
point, coverage will once again increase in accordance with

the sensing function. Note that the left term in equation (3)

is always decreasing and the right term is bounded above by

1, so coverage at a point will also be bounded above by 1.

In this work, we are interested in maximizing a spa-

tially averaged measure of coverage over the entire mission

domain. To characterize this, we focus on the following

average coverage measure in both the control formulations

and subsequent analysis of the results:

J(t) =
1

nm

n

∑
i=1

m

∑
j=1

q(x(i),y( j), t), (5)

where n is the number of discrete points in the x dimension,

and m is the number in the y dimension. The quantity J(t)
represents the average coverage at time t, which is bounded

above by 1 and below by 0, with higher values representing

more coverage, i.e., more knowledge of the environment.

III. CONTROL FRAMEWORK

In this work, we propose a multi-level control strategy,

which can be depicted according to the block diagram in

Fig. 3. We compare two versions of the strategy: one in

which only an upper-level coverage-based waypoint selector

and path-following controller is implemented, and another

where the upper-level waypoint is fed into a coverage-based

A* controller that generates waypoints for the path-following



Fig. 3: Block diagram of the control approach.

controller. Furthermore, each of these algorithms is compared

against a baseline line transect strategy (which executes pre-

scribed “lawn mower” patterns within the mission domain).

Descriptions of the individual blocks within the hierarchical

control structure are given in the following subsections.

A. Upper-Level Waypoint Selection

The upper level waypoint selector selects waypoints for

the vehicle according to the following optimization:

[xgoal ,ygoal ] = arg max
(xi,y j)∈D

(

∆q(xi,y j)

∆t(xi,y j)

)

(6)

where xi and y j are the decision variables belonging to the

mission domain D,

∆t(xi,y j) =

√

(xi − x0)2 +(y j − y0)2

vb

represents the estimated time for the boat to travel from

its current position (x0,y0) to (xi,y j), and ∆q(xi,y j) is an

estimate of the coverage that will be gained in traversing a

straight line path from (x0,y0) to (xi,y j) that is defined as

follows:

∆q(xi,y j) =
N

∑
k=1

(1−qk −Lk) (7)

where k is an index of each discrete point along the line

between the current position (x0,y0) and (xi,y j), N is the

total number of points on that line, qk is the current coverage

at the point with index k, and

Lk = d
qloss

vb

(

1−
k

N

)

,

where qloss = 0.01 represents the coverage loss rate, d =
√

(xi − x0)2 +(y j − y0)2 is the distance to the next potential

waypoint, and Lk represents the amount of coverage that will

be lost between the time the ASV reaches point k and the

time it reaches the next potential waypoint (xi,y j).

B. Local Coverage Maximization

The local coverage maximization controller utilizes the

A* search algorithm to minimize the cost associated with

traversal to the next waypoint. The A* cost associated with

traveling from point p1 = (x1,y1, t) to p2 = (x2,y2, t +δ t) is

defined as:

C(p1, p2) = k1

(

∆dgoal(p1, p2)
)

+ k2 (q(p2)+F) (8)

where ∆dgoal(p1, p2) represents the progress towards the final

waypoint, which represents the goal location for A*. It is

calculated as:

∆dgoal(p1, p2) = dgoal(p1)−dgoal(p2) (9)

dgoal(pi) =
√

(xgoal − xi)2 +(ygoal − yi)2. (10)

Returning back to equation (8), q(p2) represents the cov-

erage at point p2 and

F = v f ·
1− cos

(∣

∣θ f −θtrue

∣

∣

)

2

represents the “usefulness” of the flow, where a flow di-

rection aligned with the direction towards the goal results

in a lower cost, and flow directions opposing the direction

towards the goal resulting in a higher cost. This is augmented

by the velocity of the flow, with high flow speeds in the

direction towards the goal being most desirable, and thus

resulting in a lower cost. The cost function is weighted

according to k1 and k2, where k1 = 0.05 represents the weight

on the term incentivizing progress towards final waypoint and

k2 = 0.95 represents a weight on the combined coverage and

flow cost metric.

C. Path-Following Control

The path-following control block in each of the candidate

control strategies is identical. The purpose of the block is to

take a waypoint from an upper-level waypoint selector and

speed from the upper-level speed controller as inputs and

control the boat heading in order to reach the next waypoint.

This controller selects the heading such that the true velocity

points directly at the next waypoint. In equation form:

θb = θtrue + sin−1

(

v f

vb

sin(θ f −θtrue)

)

(11)

where θb is the calculated boat heading, θtrue is the heading

towards the selected waypoint, θ f is the direction in which

the flow acts, and v f ,vb are the flow velocity and boat

velocity respectively. Note that this method would require

modification if the boat velocity was slower than the max-

imum flow velocity since there would be no heading angle

that would result in net progress towards a waypoint directly

upstream.

D. Speed Control

Each of the candidate control systems uses the same global

speed controller. The speed selected is in order to achieve

zero net charging or discharging of the battery over a period

corresponding to the traversal from one upper-level waypoint

to the next. This is calculated as:

vb = ||~v||2 = 3

√

(ηsAsIavg −Pe)ηmp

1
2
ρAwCD

(12)



where each of the parameters is listed in Table II. This

equation was derived from the battery dynamics (2). Future

work will examine the incorporation of speed optimization

strategies that strategically charge or discharge the battery

according to the spatiotemporal forecast of the current and

temporal characteristics of the solar resource. Properly im-

plemented, this level of additional optimization is expected

to further improve coverage.

TABLE II: Speed Control Parameters

Variable Name Symbol Value Units

Solar Panel Area As 4.17 m2

Average Solar Shortwave Radiation Iavg 175 W/m2

On-board Electronics Pe 100 W

Wetted Area Aw 5.82 m2

Solar Panel Efficiency ηs 0.18 -
Motor + Propeller Efficiency ηmp 0.25 -

Drag Coefficient CD 0.0030 -

IV. RESULTS AND DISCUSSION

In this section, we compare the results of the hierarchical

coverage-based planning strategy of Section IV against two

comparison strategies, both of which can be represented as

simplified special cases of the block diagram of Fig. 3.

A. Comparison Strategy: Direct-to-Point Coverage-Based

Control

The direct-to-point coverage-based strategy represents a

simplified version of the control strategy of Fig. 3 for com-

parison purposes. Specifically, this variant of the controller

retains the global waypoint selection but does not include the

A*-based refinement. Instead, this strategy travels directly

between waypoints selected by the upper-level waypoint

selector. Thus, in this strategy, xi = xgoal and yi = ygoal .

B. Comparison Strategy: Line Transect Strategy

The transect strategy represents our baseline control strat-

egy. In the context of Fig. 3, the global waypoint selection

and A*-based refinement are replaced with pre-selected

waypoints (corresponding to xi and yi). These waypoints

are selected in order to traverse the mission domain in

an orderly manner, without regard for the spatiotemporally

varying current or temporally varying solar resource (much

like a lawnmower - see Fig. 8).

C. Simulation Results and Discussion

Spatially averaged coverage results from simulations of

each strategy operating a 2-month long mission are dis-

played in 4. The simulation was conducted with the boat

and environment model updated on 1-minute time-steps.

The coverage-based hierarchical and direct-to-point strate-

gies both outperformed the traditional line transect strategy

due to their ability to directly account for flow conditions.

Because each simulation starts with a coverage value of zero

at all points within the mission domain, the first several days

of each simulation are spent converging to a relatively steady

level of coverage. Beyond this point, fluctuations in the

Fig. 4: Comparison of spatially averaged coverage vs. time

under the three candidate control approaches.

Fig. 5: Comparison of spatially averaged coverage vs. time

under the three candidate control approaches with slower

boat velocity.

available solar resource and ocean current, along with periods

in which the ASV traverses a recently visited point, result in

persistent fluctuations. We examine the performance of the

three algorithms in terms of both the transient period and

(more importantly for persistent missions) the post-transient

period.

It can first be seen from Fig. 4 that the rate at which

coverage initially increases during the transient period is

higher with more sophisticated algorithms. Specifically, the

direct-to-point coverage-based strategy outperforms the line

transect baseline, and the hierarchical coverage-based strat-

egy outperforms both comparison strategies in terms of

convergence speed. After the transient period, both coverage-

based strategies continue to outperform the line transect

baseline. While the hierarchical coverage-based strategy con-

tinues to show overall superior performance when averaged

over the post-transient period, it is noteworthy that as cov-



Fig. 6: Path taken by Hierarchical Coverage-Based Controller alongside map of coverage in mission domain at days 15 and

60.

Fig. 7: Path taken by Direct to Point Coverage-Based Controller alongside map of coverage in mission domain at days 15

and 60.

Fig. 8: Path taken by Line Transect Baseline alongside map of coverage in mission domain at days 15 and 60.

erage approaches 45%, the direct-to-point strategy is more

competitive with the hierarchical strategy during this phase.

It is hypothesized that the ability of the simpler direct-to-

point strategy to achieve similar performance over much of

the post-transient period suggests that the “regularity” of the

straight-line paths can lead to performance improvements in

the long term. Considering this long-term behavior is a topic

of ongoing research, either through model predictive control

or an added term to the A* algorithm corresponding to a

measure of path regularity.

To gain further insight into the relative performances of

the candidate control strategies, it is instructive to consider

(i) the actual paths traversed under each strategy, (ii) the

available solar and flow resources as a function of time

(noting that the 2D current velocity profiles at selected

“snapshots” in time are given in Fig. 2), and (iii) 2D coverage

profiles at selected “snapshots” in time under each strategy.

The paths traversed by the ASV are shown in Figs. 6,

7, and 8. As expected, the direct-to-point strategy engages

in sweeping straight-line motions between highly disparate

points in the domain, whereas the hierarchical strategy

engages in excursions when those excursions are deemed

beneficial for coverage. Temporal variation of the solar

resource, in conjunction with spatiotemporal variation in the

surface current velocity (available in discrete “snapshots”

in Fig. 2) helps to explain some of the dips in coverage

experienced during the post-transient period. Because of the

spatial variability in the current, along with the fact that

coverage improvement can only be attained when traversing

a “new” area (or one not recently traversed), the timing and



extent of average coverage fluctuations will also depend on

the location of the ASV. Finally, Figs. 6, 7, and 8 show

a coverage map over the full 2D mission domain under

all three candidate control approaches, at two “snapshots”

in time. It can be seen here, at both snapshots in time,

that in addition to maintaining higher average coverage, the

hierarchical strategy does the best job of reducing the level

of coverage variability across the domain. Furthermore, areas

of extremely minimal coverage are small at each snapshot

in time. In contrast, the line transect strategy results in large

swaths of the mission domain having near-zero coverage at

both time instances.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we performed a data-driven characterization

of a hierarchical, coverage-based algorithm for persistent

Gulf Stream exploration using a solar-powered ASV. The

proposed algorithm was compared against a simplified direct-

to-point coverage-based approach and a standard line transect

approach. Simulation results, which were based on a MAB-

SAB-ROM model for the ocean current and an ERA-Interim

solar resource model, show that the hierarchical coverage-

based algorithm outperforms the comparison algorithms in

terms of (i) the attained average coverage level, (ii) the

convergence time to a “steady” coverage level, and (iii)

the consistency of coverage over the mission domain. Fur-

thermore, the direct-to-point coverage-based algorithm was

found to significantly outperform the line transect algorithm

and approach the performance of the hierarchical algorithm

over portions of the simulation. Future work will focus

on augmenting the proposed coverage-based approach with

an intelligent velocity planner that strategically charges

and discharges the battery in order to attain faster or

slower velocities than those achievable through the net-zero

charge/discharge approach employed in this work.
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