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Adversarial Attacks for Black-box Recommender
Systems via Copying Transferable Cross-domain
User Profiles

Wengi Fan, Xiangyu Zhao, Qing Li, Tyler Derr, Yao Ma, Hui Liu, Jianping Wang, and Jiliang Tang

Abstract—As widely used in data-driven decision-making, recommender systems have been recognized for their capabilities to
provide users with personalized services in many user-oriented online services, such as E-commerce (e.g., Amazon, Taobao, etc.) and
Social Media sites (e.g., Facebook and Twitter). Recent works have shown that deep neural networks-based recommender systems
are highly vulnerable to adversarial attacks, where adversaries can inject carefully crafted fake user profiles (i.e., a set of items that
fake users have interacted with) into a target recommender system to promote or demote a set of target items. Instead of generating
users with fake profiles from scratch, in this paper, we introduce a novel strategy to obtain “fake” user profiles via copying cross-domain
user profiles, where a reinforcement learning based black-box attacking framework (CopyAttack+) is developed to effectively and
efficiently select cross-domain user profiles from the source domain to attack the target system. Moreover, we propose to train a local
surrogate system for mimicking adversarial black-box attacks in the source domain, so as to provide transferable signals with the
purpose of enhancing the attacking strategy in the target black-box recommender system. Comprehensive experiments on three
real-world datasets are conducted to demonstrate the effectiveness of the proposed attacking framework.

Index Terms—Recommender Systems, Adversarial Attacks, Black-box Attacks, Data Poisoning Attacks, Cross-Domain.

1 INTRODUCTION

The goal of recommender systems is to suggest users with
a personalized list of items that are likely to be clicked
or purchased [14], [23], [44], which can help alleviate the
information overload issue, facilitate users seeking desired
information, and increase the traffic and revenue of service
providers in many user-oriented online services [8], [55].
Due to the powerful representation learning capabilities in
various fields, Deep Neural Networks (DNNs) techniques
have been successfully utilized to advance recommender
systems [16], [18], [47].

While DNNs-based recommender systems
have achieved promising performance in various
recommendation scenarios, recent works have shown that
DNNs are highly vulnerable to adversarial attacks [5], [10],
[26], [31], [50], where adversaries tend to manipulate the
data for making wrong predictions. And not surprisingly,
modern studies have demonstrated that DNNs based
recommender systems are also highly fragile to such
adversarial attacks [9], [51], in which personalized
recommendation results can be manipulated by adversaries
with malicious desires. In general, these methods mainly
perform data poisoning attacks (also called shilling
attacks) by generating users with well-designed profiles
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to promote/demote (i.e., attack) a carefully chosen subset
of items in recommender systems [6], [9], [17], [25], [34],
[35], [41]. A general attacking procedure for recommender
systems is illustrated in Figure 1 (a), where an attacker tries
to carefully craft fake user profile u»,, and then injects
them into the target system, so as to manipulate the victim
model to recommend a target item v; to as many users as
possible for promotion attack.

Methods to attack recommender systems can be gener-
ally divided into three categories based on attacker’s knowl-
edge [5], [15], [30], [41], where how much information an
attacker is able to know about target recommender systems,
including white-box attack, gray-box attack, and black-box
attack. The majority of existing attacking methods focus
on either white-box or gray-box settings [9], [9], [24], [25],
[35], [43], [45], in which the attacker requires to have full or
partial knowledge of the target recommender systems such
as model architecture and parameters, user-item historical
interactions, and prediction. However, with privacy and
security-critical concerns, expecting these kinds of complete
access (e.g., model architecture/parameters, training data,
prediction, etc.) is not realistic nor available in real-world
scenarios. Compared to white-box and gray-box attacks, the
black-box attack is more practical in real-world applications
but more challenging, since model designers usually do not
open source their model architecture/parameters, training
data, and predicted probability for proprietary reasons. The
typical strategy for adversaries to attack such black-box
systems is to feed the input data and query the outputs of
the victim recommender systems [15], [41]. More recently,
only a few works have been proposed to perform attacking
recommender systems under black-box setting [15], [41].
For example, PoisonRec [41] proposed the very first rein-
forcement learning method to generate fake user profiles
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Figure 1: (a) The general data poisoning attacks in
recommender systems. (b) Two domains share some movies
for recommendations. The profile of user uZ (i.e., {vj_1,v;})
in the source domain B is copied into the target domain A

for attacking the target item v;.

to attack black-box recommender systems. However, recent
defense studies [2], [6], [49], [53], [54] have shown generative
fake profiles can be easily detected since they present
very different patterns from real profiles, which limits their
ability to attack black-box recommender systems.

On the other hand, some real-world recommendation
platforms share similar functionalities, which can contribute
to having a lot of information in common. For example,
movie recommendation platforms IMDB and Netflix share
a lot of movies, and e-commerce sites (e.g., Amazon and
eBay, Taobao and JD.com, etc.) have millions of products
in common. More importantly, users from these platforms
with similar functionalities also share similar behavior
patterns/preferences towards items. For example, for movie
recommendations, fans of Marvel are likely to watch Marvel
Cinematic Universe films like “Captain America”, “Iron
Man”, and “Doctor Strange” in IMDB, and the users who
like the movie “Iron Man” in Netflix are highly likely
recommended to watch the movies like “Doctor Strange” or
others Marvel films (e.g., “Captain America”, “Spider-Man”,
“Black Panther”). Based on such observations, some efforts
have been made to leverage information from one platform
(source domain) to help recommendations in other plat-
forms (target domain), which is well known as cross-domain
recommendations [3], [28], [32]. Recall that the key obstacle
to succeed in attacking black-box recommender systems
is to generate users with profiles as close as possible to

the real profiles in target recommender systems. To tackle
this challenge, in this work, we change the perspective —
instead of generating users with fake profiles from scratch,
we propose to harness real users’ behaviors from the source
domain by copying their profiles into target recommender
systems with the goal of promoting a subset of items. One
illustrative example is shown in Figure 1 (b), where we
have a target domain A and a source domain B for movie
recommendations. These two domains share a set of movies.
To attack (i.e., promote) the targeted item v; in target
domain A4, user uZ’s profile {v;_1,v;} in the source domain
B can be copied into the target domain A as a new user
ul 11, such that the movie v; is attacked (i.e., promoted) as
adversary’s desires. Moreover, it could be the case that there
exist two e-commerce platforms in competition with each
other, and one platform could exploit users’ behaviors on its
own platform to capture similar patterns, so as to carefully
craft fake user profiles for attacking the recommendation
performance of its competitors, such as Taobao vs. |D.com, or
Amazon vs. eBay. Therefore, it is desirable to take advantage
of cross-domain information to advance adversarial attacks
for black-box recommender systems.

Instead of generating users with fake profiles from
scratch, in this paper, we aim to attack recommender sys-
tems under the black-box setting via copying cross-domain
user profiles, since the copied user profiles from the source
domain are naturally real user behaviors. Specifically, we
propose a reinforcement learning (RL) based attacking
method that learns to choose user profiles in the source
domain B, since RL techniques can provide a natural way to
interact with a black-box recommender system and receive
the reward to optimize the attacking strategy [11], [15], [41].

Nevertheless, learning the attacking strategy of user
profiles selection in the source domain based on RL tech-
niques faces tremendous challenges. A huge number of
user profiles (i.e.,, a large-scale discrete action space in
RL) in source domain B might lead to inefficiency and
ineffectiveness in selecting user profiles at the same time.
Thus, the first challenge is how to handle such a large
discrete action space in reinforcement learning under the
limited number of queries in the target recommender sys-
tem, so as to maximize long-run rewards. Moreover, directly
injecting the selected raw user profiles into the target
recommender system may result in increasing the attacking
budgets as well as including some noise. Therefore, the
second challenge is how to craft and refine the selected
cross-domain user profiles before the injection attack. In
addition, users from source domain with similar function-
alities share similar behavior patterns/preferences [3], [28],
[32], which are better to obtain transferablely adversarial
examples (i.e., user profiles) against the black-box sys-
tems [39], [40], [59]. In particular, adversarial user profiles
crafted for successfully attacking local surrogate systems in
the source domain are likely to remain adversarial as well
as fool different systems in the target domain due to the
property of “transferability” [38], [39], [40], [59]. Hence,
the third challenge is how to take advantage of source
domain information to provide transferable signals, with the
purpose of enhancing attacking strategy learning in target
black-box recommender systems.

To tackle these challenges simultaneously, in this paper,
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we propose a reinforcement learning (RL) based attacking
method (CopyAttack+) that learns to choose user profiles in
the source domain B with only query feedback from both
target recommender system and local surrogate system in
the source domain, which is an improved model of our
existing CopyAttack [15]. The major contributions of this
paper are summarized as follows:

o We introduce a novel strategy to obtain real user profiles
by copying cross-domain user profiles to attack a target
recommender system, instead of generating users with
fake profiles.

« We introduce a principle way to adopt the adversarial
transferability of cross-domain user profiles by training
a local surrogate system to mimic adversarial black-box
attacks in the source domain, so as to enhance attacking
strategy learning for the target black-box recommender
system.

o We propose a novel framework (CopyAttack+) to attack
recommendations under the black-box setting via rein-
forcement learning, which can effectively and efficiently
select transferable cross-domain user profiles from the
source domain to attack the target system.

e We conduct comprehensive experiments on three
real-world datasets to demonstrate the effectiveness of
the proposed attacking black-box framework.

2 RELATED WORK
2.1 Adversarial Attacks for Deep Neural Networks

Due to the powerful capabilities in representation learning,
DNNs have achieved great success in various safety and
security-critical applications [37], [50] pertaining to ethics,
justice, and safety, such as drug discovery and auto-driving.
Despite the great success, recent studies have shown that
DNNSs can expose their vulnerability to humans [26], [30].
Most DNNs are highly vulnerable to adversarial attacks,
where adversaries can craftily manipulate legitimate inputs,
which may be imperceptible to the human eye, but can
force a trained model to produce incorrect outputs [50]. For
example, an attacker might put stickers on a road sign to
confuse an autonomous vehicle’s image recognition system
from any viewpoint [13]. With the extension of DNNs to
graph-structured data, attackers can generate graph adver-
sarial perturbations by manipulating the graph structure or
node features to deceive the GNNs into making incorrect
predictions [22], [30], [31]. Therefore, the security-critical
issues of DNNs have become an important area of research.

2.2 Adversarial Attacks for Recommender Systems

As widely used in data-driven decision-making, recom-
mender systems have been recognized for their ability
to provide personalized services for users, playing an
increasingly important role in many user-oriented online
services [20], [21], [55], such as E-commerce (e.g., eBay,
JD.com), and Social Media sites (e.g., Facebook, Weibo).
With malicious purposes (e.g., financial incentives, mali-
cious competitors), adversaries might inject fake data to
attack recommender systems, such that recommendation
results can be manipulated, and users’ beliefs/decisions
towards items can be influenced as much as possible [6], [9],
[15], [34], [41]. The majority of existing attacking methods
focus on either white-box or gray-box settings [9], [9], [24],

[25], [35], [36], [43], [45], where adversaries can fully or par-
tially access the knowledge of target recommender systems
such as model architecture and parameters, user-item histor-
ical interactions, and prediction. Typically, these white-box
or gray-box approaches can compute the gradient to op-
timize data poisoning attack model with full or partial
knowledge of target recommender systems [9], [24], [25],
[35], [36], [43], so as to generate effective user profiles
for performing adversarial attacks. For example, Projected
Gradient Method and Stochastic Gradient Langevin Dy-
namics (SGLD) [45] is adopted to optimize data poisoning
attack model with full knowledge of factorization-based
collaborative filtering [35]. A two-step adversarial frame-
work [9] is introduced to attack recommender systems, in
which they first generate fake users through a Generative
Adversarial Network (GAN), and then apply Projected
Gradient Method for further crafting fake user profiles with
a suitable adversarial intent. Similarly, AUSH [36] designs
a minimax game (GANs) to generate fake user profiles
with a reconstruction loss and a shilling loss. The work of
[24] formulates the data poisoning attack in recommender
systems as a non-convex integer optimization problem and
develops a gradient-based method to optimize the rating
scores for fake users one by one.

In fact, with privacy and security concerns in recom-
mender systems, it is impossible and unrealistic to expect
these kinds of complete access on the knowledge of target
environments. Therefore, it is desired to study black-box
attacks in recommender systems, where the attackers do
not have full knowledge of the target model and dataset.
More recently, only a few works have been proposed to
perform attacking recommender systems under black-box
setting [15], [41]. For instance, PoisonRec [41] proposes a
reinforcement learning method to generate fake user profiles
to attack black-box recommender systems. CopyAttack [15]
introduces copy user profiles from the source domain to
perform adversarial black-box attacks. As the extension of
our previous work CopyAttack [15], in this paper, we adopt
the adversarial transferability of cross-domain user profiles
by training a local surrogate system to mimic adversarial
black-box attacks with source domain data, so as to enhance
attacking strategy learning in CopyAttack for the target
black-box recommender system.

3 PROBLEM STATEMENT

Let a target recommender system A be defined as having
a set of users U4 = {u{‘,u‘z“,...,uﬁAA} and a set of
items V4 = {vy,v2,...,v,,4}, where n? is the number
of users and m* is the number of items in A. In addi-
tion, user-item interactions are represented as the matrix
Y4 € R"AxmA, where an interaction yg‘} indicates that
user u{‘ interacted with item v; (e.g., clicked /bought), and
0 otherwise. Furthermore, we define the set of items a
user uf‘ interacts within Y4 (ie., their user profile) as:
PA ={vi = ... =5v; = .. > ul,

where — denotes the sequential order of the [ items u* has
interacted with (and the length [ can vary between users).
We then denote the set of all user profiles in the target
domain A as P} = {Rﬁ, o PA PR

We define a source recommender gystern B similarly,
having the set of n” users UP, set of m® items V7,
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Table 1: Notation

Symbols | Definitions and Descriptions
UA, VA | user and item sets in target domain A
UB, VB | user and item sets in target domain B
YA YB | user-item interactions in domain A and B, respectively
n?,m? | the number of users and items in target domain A
nP,mP | the number of users and items in source domain B
v a set of overlapping items V4 N VP between the
target domain A and the source domain B
P,ﬁ a user u; profile in source domain B
Py the set of user profiles in source domain B
Vs a target item to be attacked
a} an action for selecting a raw user profile P2 at state ¢
! an action for crafting a raw user profile P,ﬁ
at as PP atstate t
pB a crafted user profile before injecting
Wi into the target system
pB a augmented user profile before injecting
Wi into the source system
pP a user’s representation in source domain B
ar an item’s representation in source domain B
A the budget given to the attacker (in terms of the
number of cross-domain user profiles to copy)
yB—A a set of cross- domalgl users copleBd into domain A
i from domain B: {u] }l L =1{P; }Z 1
us the polluted users set in domain A: Y4 UYB—4
PN-* a Poliey network in the hierarchical clustering tree
with its parameters 6.
T the number of non-leaf nodes of
the hierarchical clustering tree
the depth of the hierarchical clustering tree
c the number of child node in the hierarchical clustering

interaction matrix Y2 € R"”*™” and set of user profiles
Pf. Note that the source domain B is selected such that
there are overlapping items between the target domain A
and the source domain B. In other words, there exists
a set of items V = V4 N VB, where |V| ¢ and
the overlap (i.e., size of V) is assumed to be sufficiently
large. Thus, we then define an item profile Plj‘]‘_ for v; €
V, which is the set of users from A who have inter-
acted (e.g., clicked/purchased) with v; in Y4 as follows:

Ph={ul = ... = u — .. = ul},
where 0 is the number of users in the 1tem s profile (that can
differ from item to item). Let Pv = {Pj}, e Rj‘}, e qu‘:nA }

denote the set of item profiles in target domain A.

Now, given the notations of the target and source
recommender systems A and B, respectively, we formally
define the goal of the target recommender system A.
Overall, the objective of A (which we denote here at
Rec(+, ) is to predict whether user u* likes (i.e., will interact
with) an item v, as yﬁ = Rec(P,ﬁ,ng). Thus, without
loss of generality, the target recommender system task is to
predict a list of Top-k ranked potential items for each user.
More formally, this recommendation is defined as follows:

yi Sk = {vp, ;v b = Rec(P2, Py,
where yf}>k = {U[”,U[Q], ...,v[k]} denotes the Top-k candi-
date items for user uf. For completeness, we note that these
candidate items in yf}> . are ranked by Rec(-, -), where user
uiA is more likely to click/purchase item v};; than vj; | 1.

Finally, we define the problem of a black-box injection
attack to promote a target item v, € V by copymg a set
of users (profiles) UP~4 = {uP}2, = {PP}2, from
the source domain to the target domain, where A is the
budget given to the attacker (in terms of the number of

cross-domain user profiles to copy). Note that the attacking
results in the target domain having the set of polluted users
UA = UA UUP4 and thus also polluting the interaction
matrix Y#. More precisely, the pollution of Y4 is due
to the fact that introducing the copied cross-domain user
profiles brings their interactions with the set of items V and
hence disrupts the relations between users and items in A.
Furthermore, to be more specific, we define the promotion
of a target item v, as having this item appear in the
Top-k recommendation list for users in U that previously
(before injecting the copied cross-domain users 24 and
their associated interactions) did not have v, in their Top-k
recommendation list. The mathematical and notations used
in this work are summarized in Table 1.

4 THE PROPOSED FRAMEWORK
4.1 An Overview of the Proposed Framework

To perform attacking in recommender systems under
black-box setting, traditional gradient-based techniques [9],
[35] are not applicable nor realistic, since they ideally
assume that the target recommender system and dataset
can be accessed. Thus, we propose a reinforcement learning
(RL) based attacking framework, CopyAttack+, to learn the
strategy of copying transferable cross-domain user profiles.
This is because reinforcement learning can provide a natural
way to interact with a black-box recommender system and
receive the reward to optimize the framework [1], [4],
[42], [46], [56]. What's more, inspired by the property
of "transferability” [38], [39], [40], we propose to train
a local surrogate system to mimic adversarial black-box
attacks in source domain B, with the purpose of enhancing
strategy learning for attacking the target black-box
recommender system. The overall architecture of the
proposed CopyAttack+ is shown in Figure 2, which consists
of three major components: user profile selection, user
profile crafting, and injection attack and queries.

The first component is to perform user profile selection
for specific target item attack, which is proposed to select
user profiles from PJ (i.e., user profiles from the source
domain B), as shown in the left part of Figure 2. However,
modeling this process of selection with reinforcement learn-
ing technique is rather challenging under limited resources
(i.e., number of queries (or interactions) allowed to the
target recommender system), since a huge number of user
profiles (i.e., a large-scale discrete action space) in source
domain B might lead to inefficiency and ineffectiveness at
the same time. Moreover, not all user profiles are useful
to help attack the specific target item in the target recom-
mender system. To address these challenges, we propose to
adopt hierarchical-structure policy gradient networks with
a masking mechanism to efficiently and effectively learn the
strategy of selecting cross-domain user profiles in large-scale
discrete action space, so as to maximize long-run rewards.

Second, once having selected a cross-domain user profile
from the first component, the second component is used
for user profile crafting. Here user profile crafting aims
to further modify/refine the user profile by considering
the reduction of attack cost and noise, and can be seen
in the center part of Figure 2. We note that users can
have user profiles consisting of varying lengths (i.e., the
number of items they have interacted with). Thus, it could
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Figure 2: An overview of the proposed framework CopyAttack+. It contains three major components: user profile selection
in source domain B, user profile crafting in source domain B, and injection attack and queries in surrogate and target

recommender systems (RecSys).

be the case that not all the interactions that the users
have given towards items in their user profiles are helpful.
Furthermore, too long of a user profile might include some
noise as well as increase the attack cost (i.e., the number
of interactions the copied user would need to perform in
the target domain). Therefore, it is desirable to carefully
craft the selected cross-domain user profile before attacking.
However, crafting the user profiles is not trivial, since the
crafted user profiles should contain useful signals regarding
the target items, as well as preserve their reality (i.e., being
undetectable as fake to the target recommender system).
To address these challenges, we introduce a second-step
policy gradient network to craft/refine the user profiles by
considering this attacking cost issue.

Lastly, the third component’s first objective is to attack
the target recommender system by copying the crafted
cross-domain user profiles (i.e., those coming from the
source domain). After having copied crafted cross-domain
user profiles, queries on the target recommender system are
performed to obtain some feedback in the form of Top-k
recommendations. This feedback is then used to form a
reward for optimizing the whole framework (i.e., updat-
ing the policy gradient networks of the first and second
components). Moreover, the “transferability” property of
the surrogate system in source domain B is introduced to
further enhance the black-box attacking strategy learning
in attacking the target recommender system with surrogate
reward, achieved by various training paradigms. Note that
we propose to perform user profile augmentation before
attacking the local surrogate model, which is trained on data
from the source domain. This component can be seen in the
right part of Figure 2.

4.2 Attacking Environment Overview

The attacking black-box framework can be modeled as
a Markov Decision Process (MDP) [4], [57], [58]. The

definition of MDP contains the state space .S, action set A,
transition probability P, reward R, and discount factor
(i.e., (S, A, P, R,~)) that are defined as follows:

« State S. A state s; consists of all the intermediate injected
user profiles and target item at state ?.

Action A. The action has two components and is defined
as A = {a; = (a}',a})}. More specifically, the attacker
is allowed to first select a user af uP from the
cross-domain (i.e., source domain) system B at state t.
Then, the attacker can modify the original profile sz of
uf to craft a profile of perhaps shorter length resulting
in a} = PZ. Note that this crafted user profile would be
the one ultimately injected into the target recommender
system.

Transition Probability P. Transition probability
p(St+1lst,ar) defines the probability of state transition
from the current s, to the next state s;;; when the
attacker takes action a;.

Reward R. The goal of the attacker is to attack a target
item v, in target recommender system Rec(:,-) with
their desires (such as promotion of that target item). In
this work, we focus on the promotion attack, where the
attacker seeks to have the target items recommended
to as many users as possible. A natural way to define
the reward for the RL-based method is on the basis
of ranking evaluation measures [15], [27]. Thus, for the
reward function based on ranking, we assign a positive
reward for action a; when the target item v, belongs
to the Top-k recommended list for a set of spy users
uft € U2 C UA. These spy users can be easily established
in the target domain before the injection attacks due to
the property of openness in various online services (as
seen in Figure 2). We note that these spy users solely exist
in the target recommender system, so that the attacker
can use them as a proxy for determining how effective
their copied user profiles are at promoting the target items
to all users in U“*. We use the Hit Ratio (HR@K) as the
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ranking evaluation in our reward function 7 (s, a;) for a
given state s, and action a;:
[t

|Z/{A ZHR uz*7v*7 )7 (1)

r(s¢, at)

A _ 17 Vs € yu* >k
HR(U”’ v k) {Oa Ux ¢ y;?*,>k7
where HR (u}, v., k) returns the hit ratlo for a targeted item
vy in the Top -k listing of spy users ufl (i.e., whether v, is in
the set y2 ..,>k or not) and the reward is averaged over the hit
ratio of all the spy users in U2, Note that demotion attacks
can be achieved by designing dlfferent reward functions (i.e.,
observable number of Page View (PV) on target items [41].).

« Discount factor 7. v € [0,1] is used to determine the im-
portance between the long-term rewards and the immediate
rewards. When v = 0, the agent will focus on immediate
rewards only, while the agent will focus on all future rewards
when v = 1.

« Terminal. The attacking process has two stopping conditions.
First, it will stop if reaching the maximum budget A (i.e., the
number of copied cross-domain user profiles). Additionally,
it can stop before the budget is reached if less copied user
profiles are able to successfully satisfy the promotion task.

4.3 User Profile Selection via Hierarchical-structure
Policy Gradient

User profile selection aims to learn the strategy of selecting
cross-domain user profiles. More specifically, it seeks to
discover the set of users P74 C UP that we can then
inject their user profiles into the targeted recommender
system’s set of users U to achieve the goal of promoting
a set of items. Here, the main challenges are how to
handle a large-scale discrete action space (i.e., set of all
user profiles) as well as achieve satisfactory results under
limited resources to interact with the target (black-box)
recommender system A. Most existing RL techniques cannot
handle such a large discrete action space problem [1], [12],
[42], [56], [58], since the time complexity of making a
decision is linear to the size of action space. To address these
challenges, we introduce a hierarchical-structure policy
gradient network with a masking mechanism to model the
process of selecting a user profile (as shown in the left part
in Figure 2).

4.3.1 Hierarchical Clustering Tree over Cross-domain User
Profiles

In the hierarchical clustering tree, each leaf node is repre-
sented as a cross-domain user profile, while each non-leaf
node is a policy network. However, the question remains on
how to construct the clustering tree. Hence, we propose to
employ a top-down divisive approach that will repeatedly
divide each cluster into small sub-clusters where leaf nodes
under the same non-leaf node in the clustering tree should
be more similar to each other than leaf nodes coming from
another non-leaf node. We note that this process starts with
the entire set of nodes at the root of the clustering tree.
When constructing our hierarchical clustering tree, we
further add the constraint that it should be balanced to
ensure the proper speedup, since an unbalanced clustering
tree in the worst case could result in a linked list of
policy networks on the order of the number of users. To
achieve this, at each non-leaf node when constructing the
tree (top-down), we first apply the traditional K-means

clustering on that current set of users to obtain the set
of ¢ centroids. Note that the number of cluster centers
(i-e., centroids) is set to the number of child nodes in the
hierarchical clustering tree. Then, we reassign the users to
these c centroids one at a time based on their Euclidean
distance to ensure we have a balanced set of clusters (in
terms of their size).

When constructing the clustering tree, one major con-
sideration is how to balance the number of children per
node against the height of the tree. To better understand
this relationship between the depth of hierarchical clus-
tering tree d, the number of leaf node [UZ|, and the
number of child node ¢, we can observe the following;:

cd—1 < |Z/IB| =nB < Cd,
and the number of non-leaf nodes of the tree is 7 = Ccd:ll.

To perform hierarchical clustering, we note that users’
numerous features could be used for their representations,
such as user attributes, review comments, social relations,
and user-item interactions. In this work, we adopt the
user-item interactions Y7 to represent the users because
auxiliary information such as the user’s attributes and
review comments are not available. We use the user rep-
resentations p® € R® learned via matrix factorization
(MF) [33] to measure similarity between users.

4.3.2 Masking Mechanism

While cross-domain user profiles contain informative sig-
nals of items, due to the limited number of queries in
the target recommender system, not all cross-domain user
profiles are useful for attacking a specific target item.
Actually, only user profiles related to the specific target
items would be useful. Therefore, we need to tune the
hierarchical clustering tree with a masking mechanism to
locate some percentage of related cross-domain user profiles
for the target items. More specifically, for each target item,
we take the approach of masking the cross-domain user
profiles that do not include the target item. As shown in
the left part in Figure 2, the path from non-leaf node 3 to
node 7 is masked, since the cross-domain profiles of user
u? and uf do not include the target item (with plnk color)
As such, these cross-domain user profiles (i.e., u¥ and uf)
can not be explored by the RL agent, which might further
help reduce the action space. Then, this reduction in the
action space is efficient in locating useful cross-domain user
profiles to perform an effective attack. We again note that
the target item v, comes from the set V = VA N V5.

4.3.3 Hierarchical-structure Policy Gradient

With the (masked) hierarchical clustering tree, the purpose
of user profile selection is to learn the policy p(ay|s})
for seeking a path aj from the root to a certain leaf of
a tree (i.e., user in UP) at state t. Each non-leaf node
in the tree is a policy gradient network, which can be
modeled as a Multi-Layer Perceptron (MLP). As such, there
are Z policy gradient networks (i.e., non-leaf nodes) with
0 = {61,065, ..., 07} in the hierarchical clustering tree.

In particular, the policy network at node; (having
MLP parameters denoted as ;) first takes the current
state as input and outputs a probability distribution
over all child nodes of node;. Then, one of the children
(action) is selected to move based on the probabilities.
The selection process then keeps moving down the
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clustering tree of policy networks until reaching a leaf
node (i.e, a user profile)) which can form the path
of length d from the root to the leaf node as follows:

ay = {aﬁ71],aﬁ72}, "'7“@@]} .
This selection process can be decomposed into multiple
steps according to the selected path ai* as follows:

d
p(aflst) = T pitat- ). @

We represent the state s; with the target item wv,
and previous selected users U4 = {uf, P, .  uP}.
We combine them together with a Multi-Layer Perceptron
(MLP). To decide which path we will move to, by estimating
the probability distribution over the children at node;
(i.e., the policy network parameterized by 6;), as follows:

pi'(|sit) = softmax(MLP([q; & x,,]/6}')),

X,, = RNN(UF~4),
where q7 € R° is the pre-trained item representation via
Matrix Factorization (MF) coming from the source domain
B. Meanwhile, we introduce to utilize a Recurrent Neural
Network (RNN) model to encode the selected cross-domain
users L{tB —4 at state s; as low-dimensional representations,
such that the historical interactions between attacker and
target recommender systems can be extracted. Here we use
@ to denote the concatenation operation. Also, here we seed
the process by selecting action ag (i.e., the first user to inject
in the target recommender system) at random, since at that
time UP~4 is empty and would not provide any insights
from the RNN.

An example illustration of the process of selecting
cross-domain user profiles is shown in the left part in
Figure 2. We have 8 user profiles, and build a balanced
hierarchical clustering tree with depth 3 over user profiles
in the source domain B. For a given state s;, the status
point is initially located at the root (node;), and moves
to one of its child nodes to (nodes) according to the
probability distribution given by the policy network PN-1
corresponding to the root (node;). The process of selecting
can stop when the state point arrives at a leaf node in the
tree; in this case, user u?’? ’s profile. Note that at the state
point nodes, the path from nodes to leaf node u¥ is masked
since the profile of source domain user uf does not include
the currently attacking target item. The example path for
this selection is a}' = {nodei, nodes, nodes, uf }, as the path
with green color in the figure.

Although we now have an efficient mechanism for
selecting the set of source domain users that the attacker
will copy into the target domain, we again note here that
there could be some problems with directly copying these
cross-domain user profiles into the target recommender
system. More specifically, it could be the case that not all
items in a user’s profile are useful in the promotion attack
and could just inject noise and/or increase the attack cost.

4.4 User Profile Crafting

The selected cross-domain user profiles contain informative
signals regarding the target item. However, it is not nec-
essary that all the interactions the cross-domain user has
in their profile are helpful. In fact, just naively injecting
the entire raw user profiles into the target recommender
system may not only increase the attacking budget, but

could include some noise as well. Therefore, it is desirable
to craft and refine the selected cross-domain user profiles
before the injection attack.

We note that when considering how to craft the user
profiles there are perhaps a few options that could be
taken on how to reduce the length of the user profile. For
example, intuitively randomly selecting a subset to keep
would not make sense due to the fact it would lose the
temporal/sequential relations of items that were interacted
with by the given user around the same time as the target
item. Furthermore, if we were to select perhaps based on
the most similar nodes to the target node from the user’s
profile, then this might result in a less realistic user profile,
which could potentially be more easily detected. Hence, our
selection of clipping the cross-domain user profile with a
window size w around the target item appears to indeed be
a logical mechanism for clipping. The reasons are as follows:
1) User behaviors towards items contain sequential patterns,
and forward and backward interacted items around the
target item are not independent and are more related to the
target item than others, and 2) Sequentially-ordered user
interactions are close to real user behaviors and are more
likely to evade the detection from the target system. For
example, fans of “Game of Thrones” sequentially watch
television season by season and episode by episode, and
it typically does not make sense to only watch the “Game
of Thrones: Season 8” if the user has not seen the previous
seasons. Therefore, we introduce to discretize the length of
user profile into 10 different levels (window size) as: W =
{10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}.

Then, we propose to perform a clipping operation to
craft the raw cross-domain user profiles around the target
item with a window size w via a policy gradient network,
as shown in the middle of Figure 2. More specifically, this
policy gradient network is introduced to choose the action
al = w from the set W to decide the length we keep (i.e.,
number of interactions for that selected user profile). As the
raw selected cross-domain user profile includes the target
item v,, the raw user profile is clipped around the target
item with the window size w. As such, we can consider the
forward and backward related items, as well as preserve the
natural sequential behavior of the real user profiles.

The state s\ for model clipping operation can be
decided by the selected user wu; and target item wv..
We estimate the probability of choosing action al
over the entire set W with the state si, as follows,

p(]s}) = softmax(MLP([p? @ g ]|6")),
where pP € R and g2, € R® are the pre-trained user and
item representations via MF in source domain, respectively.
4.5 Injection Attack and Queries
The component is used to perform injection attack and
queries in both target and source domains. To perform at-
tacking under black-box setting, we only have query access
to the target/surrogate model and can get query feedback
consisting of Top-k recommended items for specific users
(e.g., spy users), so as to update the policy networks for
both the profile selection and profile crafting components.
4.5.1 Injection Attack and Queries on Target
Recommender System in Target Domain

Injection Attack. In the last stage, the main goal is to
inject/copy the crafted version of the selected user profiles
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PB from the source domain to the target domain. Then, once
m]ected the attacker can utilize their set of spy users U
they have already established in the target domain to gauge
the effectiveness of the injected user profiles and define a
corresponding reward.

Queries. To evaluate the feedback from the attacked target
recommender system, here we use the reward function
r4(s¢,a;) defined in Eq. (1) where the effectiveness is
defined based on the Hit Ratio (HR@K) of the targeted item
v, aggregated over the set of spy users’ (i.e., those in the
set U) Top-k recommendations. We note that these Top-k
recommendations are the result/feedback upon performing
queries on the target system A. Once obtaining the reward,
it is then used to update the policy networks for both the
profile selection and profile crafting components.

4.5.2 Injection Attack and Queries on Surrogate Recom-
mender System in Source Domain

Inspired by the property of “transferability” [38], [39], [40],
[59], if adversarial user profiles can successfully attack the
surrogate system developed in source domain B, they are
also likely to remain adversarial to attack the black-box sys-
tem in the target domain. That is because users from cross
domains with similar functionalities share similar behavior
patterns/preferences [3], [32]. Therefore, we introduce to
train a local surrogate model to mimic adversarial black-box
attacks with data from the source domain, so as to further
learn transferablely adversarial knowledge to enhance the
proposed RL-based strategy for attacking the black-box
target system. Note that a local surrogate recommender
system can be developed by an attacker with a totally
different architecture from the target recommender system.
In addition, to imitate the black-box attack in the target
recommender system, we also treat this surrogate system
as a black-box, perform injection attacks and query outputs
of the surrogate system.

User Profile Augmentation. Different from the injection
attack in the target domain, just naively injecting the crafted
version of the selected user profiles PB back into the surro-
gate system might fail to provide useful feedback to update
the policy networks. This is due to the fact that the selected
user profile Pf or PP has already existed in the source
domain. Thus, we introduce a user profile augmentation to
modify the crafted user profile (]5,5) before injecting it into
the surrogate system, hoping that a new user u‘li{ 541 (e,
]35 ) can contribute to manipulating the recommendation
results of the surrogate system. More specifically, we employ
two general data augmentations [29], [48]: items adding and
items dropping, which randomly adds or drops a certain
number of items based on the length of PB Here, we
empirically set the number of adding/ droppmg items as
1% length of PB

Queries. Then, once augmented PB 1r1]ected the surrogate
system can form a corresponding reward r B(s,a;) based
on the Hit Ratio (HR@K) in Eq. (1), which is similar
to attack the target recommender system. One potential
benefit of attacking the surrogate system is that we don't
need to establish a set of spy users, while all users U”
in the surrogate system can be used to gauge the ef-
fectiveness of the new augmented user profiles }31{3 and
generate a surrogate reward. Therefore, the reward in the
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Figure 3: Training paradigms for attacking target and
surrogate systems.

surrogate recommender system can be defined as follows:
u?|

TB(St7at) |7 Z HR( z*>v*ak)'

4.6 Training Strategy

In the last subsection, we discussed the injection attack
and queries on black-box recommender systems (i.e., sur-
rogate and target systems). In this section, we present two
training strategies to merge adversarial transferability into
optimizing the policy networks for adversarial black-box
attacks in the target recommender system. These training
strategies can be divided into two categories: Two-stage
Training (Pre-training & Fine-tuning) and Joint Training,
with their detailed workflow shown in Figure 3. Thus,
we have corresponding variants of our proposed method
CopyAttack+: CopyAttack+(Two) and CopyAttack+(Joint).

4.6.1 Two-stage Training (Pre-training & Fine-tuning)

In this training paradigm, it usually performs in a two-stage
training: Pre-training & Fine-tuning. In particular, it first
obtains the RL agent’s (attacker) parameters by performing
a black-box attack on the local surrogate recommender sys-
tem in the source domain (pre-training). These pre-training
parameters are then used to initialize the RL agent, and
fine-tune them via attacking the target recommender system
based on the corresponding reward. We term this variant as
CopyAttack+(Two). An overview of the two-stage training
method CopyAttack+(Two) is illustrated in Figure 3 (a).

4.6.2 Joint Training

To exploit the adversarial transferability into attacking the
target black-box recommender system, a natural idea is to
jointly train RL agent (attacker) with reward from both the
surrogate and target recommender system (as a multi-task
training strategy), as shown in Figure 3 (b). We term this
variant as CopyAttack+(Joint). Therefore, the overall re-
ward function in this training paradigm CopyAttack+(Joint)
can be formulated with two rewards as follows:

R(s¢,ar) :TA(St,at) —&-)\rB(st,at) 3)
| L
_ A B
= |Z/{;;4‘ ;HR(UHHU*,]?)JF)\W;HR(U,L-*7’[}*,]{:),

where ) is a trade-off hyperparameter to control the contri-
bution of rewards between target and surrogate systems via
injection attack and queries.
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4.7 Model Analysis

In this subsection, we will discuss our proposed method from
time and feasibility aspects.

4.7.1 Time Complexity Analysis

The time complexity of making a decision in most existing
reinforcement learning techniques is linear to the size of
discrete action space. Specifically, all Deep Q-Network (DQN)
based methods [12], [57] make a decision a via maximization
operation taken over the entire action space, which becomes
intractable for tasks where the size of the action space is large.
For example, recommender systems usually have millions of
items to recommend, i.e., |V|, where V denotes the set of
available items in the system. Thus, in our specific setting, the
size of the action space is the number of users in the source
domain (i.e, | B |), which can also be in the millions.

Instead of picking the one user profile over all actions (|U/Z )
for user profile selection in source domain B, we propose to use
hierarchical-structure policy gradient networks to seek a path
from the root to a certain leaf of the hierarchical clustering tree.
Particularly, our proposed method makes d choices based on
policy networks with at most ¢ output units, where d denotes
the depth of the hierarchical clustering tree and c¢ denotes the
number of child nodes in the tree (c ~ |U/”| 1/dy, Through such a
method can significantly reduce the time complexity of making
a decision/action from O([U”]) to O(d x [UZ|'/?) in user profile
selection component. Note that the policy gradient networks in
our user profile crafting component do not suffer from the large
discrete action space issue since only 10 actions are available.
Apart from training the proposed RL-based black-box attacks,
we also need the overhead of the construction of the clustering
tree, where time complexity is O(JU{Z|?). Note that once the
clustering tree is well built, it can be saved for training RL based
black-box attacks method (pre-processing step). Thus, we do
not need to retrain the clustering tree, and it doesn’t increase
the time complexity for training our RL-based black-box attacks
method. Therefore, the total time complexity is acceptable in
practice.

4.7.2 The Feasibility of Our Proposed Method

Rather than considering cross-domain information to conduct
adversarial attacks on the competitors’” recommendation per-
formance with malicious desires, our proposed methods have
great potential to understand and assess the recommendations’
vulnerability for our own systems and data [23], [37]. For
example, as a multinational e-commerce platform, Amazon has
different server centers or recommender systems for different
countries or sub-markets (e.g., Amazon-US, Amazon-Canada,
Amazon-UK, etc.), so as to store country-specific users’ online
behaviors and provide excellent recommendation services.
These country-specific Amazon recommendation platforms
are likely to share a lot of items. More importantly, with
similar functionalities, users from these country-specific Ama-
zon recommendation platforms also share similar behavior
patterns/preferences towards items, e.g., Users who purchased
Apple iPhone are highly likely to interact (click/purchase) with
Apple AirPods in the future. In addition, it is also possible
to conduct our proposed CopyAttack+ by using the historical
user-item interactions data in different periods to evaluate the
vulnerability of current recommender systems in some recom-
mendation scenarios (e.g., video or music recommendations).
Adpversarial attacks can usually happen in two phases [15],
[30] (i.e., the model test and model training), namely Evasion
Attack and Poisoning Attack. More specifically, evasion attack
happens after the target model is well trained or in the
test phase, while poisoning attack happens before the target
recommender system model is trained. As for well-trained
(i.e., static) systems, evasion attack is easily conducted in
practice for user injection and reward query operations. For

Table 2: Statistics of Three Datasets
Datasets (Target-Source) || ML1IOM-FX [[ ML20M-NF || BC-Amazon

Target # of Users 19,267 38,087 6,136
Domain # of Ttems 6,984 8,325 5,446
A # of Interactions 437,746 838,491 33,661
# of Users 93,702 478,471 44,002
Source # of Overlapping 5,815 5193 2,434
Domain Items
B # of Interactions 4,680,700 62,937,958 145,702

example, inductive Graph Neural Networks (GNNSs) based
recommender systems [19], [52] (i.e., PinSage) as the target
model can provide immediate updates after injecting fake user
profiles, where user and item representations can be learned
via aggregating their local neighbors (items/users). Fake user
profiles connecting various items are injected into the targeted
systems for promoting specific items, and rewards can be easily
obtained by querying spy users. For instance, this attacking
setting is more suitable for time-sensitive recommendations,
such as news recommendations which require real-time users’
online behaviors to learn immediate user preferences for
recommendations. On the other hand, poisoning attack needs
to retrain the target systems after fake user injections, and
further conduct reward queries on the system, which are
time-consuming. Note that this attacking setting is infeasible
in practice, since we need to know the update cycle or the
exact update time on the target recommendation system under
the black-box setting. Hence, poisoning attack is more suitable
for evaluating the vulnerability of our own systems. For
example, Amazon can take advantage of different submarkets
(e.g., country-specific Amazon platforms) in the system or the
historical data from different periods to test the robustness
of their own recommender systems. Here, pre-training and
fine-tuning techniques can be used to speed up the target
systems’ retraining process.

5 EXPERIMENT
5.1 Experimental Settings

5.1.1 Datasets

We use three cross-domain real-world datasets in our experi-
ments to validate the performance of CopyAttack+.

« MovieLen10M&Flixster (ML10M-FX) [15]. Both datasets
are popular online platforms for movie recommendation
services, in which they have millions of movies. Users
on these two platforms can watch them and give their
personal comments (e.g., rating). Here, we take Movielen10M
(ML10M) dataset as the target domain that we try to attack.
Flixster (FX) dataset is treated as the source domain to be
used to copy some user profiles to attack the Movielen10M
(ML10M) target domain. In these two datasets, they have a lot
of items in common, where overlapping items can be aligned
by the movie names. We only keep the interactions that have
a rating score of 5 and convert them to implicit feedback.
After filtering, this cross-domain dataset (ML10M-FX) has
5,815 overlapping items.

o MovieLen20M&Netflix (ML20M-NF) [15]. These two
datasets are also online platforms for movie recommendation
services. We take the Movielen20M (ML20M) dataset as the
target domain, and Netflix (NF) is the source domain. We
identify movies with the same name and the published
year. We then perform filtering operations similar to the
ML10M-EX dataset. In this cross-domain dataset, we have
5,193 overlapping items.

« Book-Crossing'&Amazon-Book*(BC-Amazon). These two
datasets are collected from online platforms for book
recommendation services. These books can be identified
through the same ISBN and the published year. We take
the Book-Crossing (BC) dataset as the target domain to

1. http://www2.informatik.uni-freiburg.de/~cziegler/BX/

2. https://cseweb.ucsd.edu/~jmcauley/datasets.html
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be attacked, while Amazon-Book (Amazon) is the source
domain. After a filtering operation similar to the ML10M-FX
dataset, we obtain 2,434 overlapping items as a cross-domain
dataset.
The statistics of these datasets are presented in Table 2. Note
that we only keep the overlapping items in the source domain.

5.1.2 Evaluation Metrics

In order to evaluate the quality of the attacking task in the
recommender systems, we use two popular accuracy metrics
for Top-k recommendation [27], [44]: Hit Rate (HR@K) and
Normalized Discounted Cumulative Gain (NDCG@K). We set
K as 20, 10, and 5. Higher values of the HR@K and NDCG@K
indicate a better attacking performance [15].

5.1.3 Attacking Environment - Target Recommender Sys-
tems
We consider the following two attacking environment:

« Evasion Attack. We adopt inductive Graph Neural Networks
(GNN’s) based recommender systems [19], [52] (i.e., PinSage)
as our target model in this setting. After completing training,
the final performance on the test set w.r.t HR@10 is 0.5490,
0.5474, and 0.2296 for the ML10M, ML20M, and BC datasets,
respectively.

« Poisoning Attack. In this setting, we adopt NeuMF [27] as
the target recommender system in our experiments.

We randomly sample 50 target items with less than 10 inter-
actions to perform attacks on the target domain. Without being
specifically mentioned, the main budget for the promotion task
is the number of user profiles we inject into the target system,
where we set the maximum budget as 30. The number of spy
users in Uz is set to 50 for both datasets. To get the feedback
(reward) from the target system (cf., Equation 1), we query spy
users on the target system every three injections. Note that the
target recommender system is agnostic to attackers, including the
detailed model architecture, parameters, and dataset.

5.1.4 Parameter Settings

To train the target recommender systems, we randomly split
the target domain datasets, where we have 80% as a training
set for learning the parameters, 10% as a validation set to
tune hyper-parameters, and 10% as the test set. The early
stopping strategy was performed for training the target rec-
ommender system, where we stopped training if the HR@10
on the validation set decreased for five successive epochs. For
all neural network methods, we randomly initialized model
parameters with a Gaussian distribution, where the mean and
standard deviation are 0 and 0.1, respectively. The learning
rate and embedding size are set to 0.001 and 8. For all the
recommendation algorithms and the compared attack methods,
without additional mention, we use the default parameters
given in their papers.

We implemented the proposed method on the basis of
Tensorflow. The learning rate, embedding size, and discount
factor are set to 0.001, 8, and 0.6, respectively. The hierarchical
clustering tree is set to 3 layers for the Flixster dataset and
six layers for the Netflix dataset. The pre-trained user and
item representations in the source domain are obtained with
Matrix Factorization (MF) method, where we use the same
hyper-parameters to train (e.g., learning rate, embedding size,
etc.). For simplicity, we also employ the most representative
method MF to train the local surrogate system in the source
domain, and other recommender systems can be explored in
the future.

5.1.5 Baselines

Since most of the attacking methods in recommender systems

are under the white-box setting, which is inappropriate for our

task, we build some baselines to evaluate the performance of

attacking under the black-box setting as follows:

o RL-Generative: Inspired by PoisonRec [41], we adopt rein-
forcement learning (RL) techniques to learn the strategy of

generating fake user profiles by selecting items in the target
domain without considering the information from the source
domain.

« RandomAttack: This baseline is proposed to randomly sam-
ple cross-domain user profiles to attack the target recom-
mender systems.

o TargetAttack40/70/100: Rather than randomly sampling user
profiles from the source domain, this baseline is to randomly
sample the user profiles with the target item from the
source domain. Moreover, we apply the user profile crafting
operations as our proposed model to reserve 40%/70%/100%
of user profiles.

In addition, we also build some baselines based on our
proposed methods (CopyAttack) [15] to learn the strategy of
copying user profiles from the source domain via reinforcement
learning techniques as follows:

« PolicyNetwork [42]: This method directly utilizes the normal
policy gradient network to select the user profiles in source
domain B without considering the hierarchical clustering tree
over the large discrete action space.

« CopyAttack-Masking: This method is used to evaluate the
effectiveness of the masking mechanism by removing it in
our proposed framework. In other words, the attack can
select any user profile in the source domain. Note that
the user profile crafting operation in this baseline is also
removed, since the attack has a larger probability of selecting
the user profile without the target item.

« CopyAttack-Length: This method is used to evaluate the
effectiveness of user profile crafting operation in our pro-
posed framework, where we remove the user profile crafting
operation on the selected cross-domain user profiles and di-
rectly inject the raw user profiles into the target recommender
system.

At last, we have proposed two improved models of our

proposed CopyAttack based on two different training strate-

gies, where one is CopyAttack+(Two) via two-stage training

(Pre-training & Fine-tuning), and another one is CopyAt-

tack+(Joint) via joint training.

5.2 Attacking Performance
Recommender Systems

We first compare the attacking performance of all methods on
GNNs-based recommender system. Table 3 shows the over-
all attacking performance on different methods w.r.t HR@K
and NDCG@K on ML10M-FX, ML20M-NF, and BC-Amazon
datasets. We have the following main findings.

o The performance of RandomAttack is close to the perfor-
mance without attack, which implies that randomly sampling
cross-domain user profiles without any strategies can not
help promote the target items due to the large number of
user profiles. When sampling user profiles with the sampling
strategy where the user profiles should include the target
items (i.e., TargetAttack-40/70/100), the performance can be
improved significantly. In addition, when we constrain the
sampling cross-domain user profile scope into the users who
include the target items, this kind of method can obtain much

Comparison of

Bh
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- o
oSS S PolicyNetwork
“ ack-Mas]

- [ Without Attack

(a) ML1OM-FX: HR@20  (b) ML10M-EX: NDCG@20
Figure 4: Performance comparison of different attacking
methods for NeuMF recommender system on ML10M-FX
dataset.
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Table 3: Performance comparison of different attacking methods for GNNs-based recommender systems.

Datasets Algorithms HR@20 | HR@10 | HR@5 | NDCG@20 | NDCG@10 | NDCGas | * Averase ltems
per User Profile
Without Attack 0.0378 | 0.0228 | 0.0220 0.0231 0.0195 0.0192 0
RL-Generative 0.0487 | 0.0324 | 0.0233 0.0264 0.0222 0.0194 100
RandomAttack 0.0391 | 0.0230 | 0.0222 0.0233 0.0195 0.0192 46
TargetAttack40 0.1203 | 0.0583 | 0.0094 0.0353 0.0195 0.0041 495
fr; TargetAttack70 0.1772 | 0.0854 | 0.0354 0.0569 0.0341 0.0181 818
p= TargetAttack100 0.1166 | 0.0520 | 0.0226 0.0369 0.0209 0.0114 1350
E PolicyNetwork 0.1936 | 0.0665 | 0.0250 0.0570 0.0258 0.0126 705
= CopyAttack-Masking | 0.0376 | 0.0227 | 0.0220 0.0230 0.0195 0.0192 49
CopyAttack-Length | 0.0857 | 0.0434 | 0.0198 0.0282 0.0177 0.0101 1280
CopyAttack 0.2596 | 0.1103 | 0.0415 0.0799 0.0425 0.0205 695
CopyAttack+(Two) 0.2671 | 0.1123 | 0.0413 0.0831 0.0402 0.0209 675
CopyAttack+(Joint) | 0.2917 | 0.1313 | 0.0506 0.0928 0.0516 0.0258 683
Without Attack 0.0461 | 0.0043 | 0.0000 0.0115 0.0013 0.0000 0
RL-Generative 0.1166 | 0.0390 | 0.0207 0.0421 0.0226 0.0170 100
RandomAttack 0.0468 | 0.0050 | 0.0000 0.0118 0.0015 0.0000 124
“ TargetAttack40 0.1016 | 0.0405 | 0.0056 0.0288 0.0133 0.0024 203
z TargetAttack70 0.1006 | 0.0402 | 0.0054 0.0285 0.0132 0.0023 321
= TargetAttack100 0.0581 0.0006 | 0.0000 0.0139 0.0002 0.000 593
5 PolicyNetwork - - - - - - -
S CopyAttack-Masking | 0.0500 | 0.0045 | 0.0000 0.0125 0.0001 0.0000 133
CopyAttack-Length | 0.0655 | 0.0018 | 0.0000 0.0158 0.0005 0.0000 496
CopyAttack 0.2704 0.124 | 0.0797 0.0969 0.0609 0.0467 255
CopyAttack+(Two) 0.2737 | 0.1273 | 0.0791 0.0972 0.0627 0.0465 247
CopyAttack+(Joint) | 0.2844 | 0.1332 | 0.0832 0.103 0.0656 0.0493 249
Without Attack 0.1780 | 0.1288 | 0.0979 0.1042 0.0918 0.0819 0
RL-Generative 0.1901 0.1339 | 0.0993 0.1089 0.0947 0.0836 10
RandomAttack 0.1857 | 0.1330 | 0.0993 0.1068 0.0936 0.0828 3.4
o TargetAttack40 0.1997 | 0.1395 | 0.1110 0.1244 0.1093 0.1003 4.8
S TargetAttack70 0.2240 | 0.1539 | 0.1261 0.1429 0.1254 0.1165 6.4
g TargetAttack100 0.237 0.1764 | 0.1501 0.1632 0.1480 0.1397 11.0
< PolicyNetwork 0.2441 | 0.1880 | 0.1612 0.1728 0.1587 0.1502 10.9
g CopyAttack-Masking | 0.2275 | 0.1576 | 0.1274 0.1431 0.1258 0.1161 5.2
CopyAttack-Length | 0.2741 | 0.1861 | 0.1383 0.1570 0.1350 0.1198 111
CopyAttack 0.2926 | 0.2105 | 0.1766 0.196 0.1754 0.1647 10.9
CopyAttack+(Two) 0.3021 | 0.2160 | 0.1817 0.2014 0.1799 0.1690 10.5
CopyAttack+(Joint) 0.3289 | 0.2431 | 0.2135 0.2328 0.2116 0.2021 11.3
0.30
s | 1 tree for selecting cross-domain user profiles in large-scale
g II II L @ 7 g H discrete action space. We also further study the impact of the
@020 H ii II II II ﬂ II E il | hierarchical clustering tree in the model analysis section.
Foasi B Meanwhile, when we remove the user profile crafting com-
oo :‘I:l II II II II ﬂ II E B “ E ponent, the promotion performance decreases, and the item

budget is huge, since the selected user profiles might intro-
duce too much noise and degrade the performance. More-
over, when the masking mechanism is removed upon the
CopyAttack-Length, CopyAttack-Masking performs much

o
~
®

3
D

Depth of Tree

(a) ML10M-FX: HR@20

epth of Tree

(b) ML10M-FX: NDCG@20

Figure 5: Effect of Depth on Hierarchical Clustering Tree.

better performance. This indicates the user profiles with the
target item are informative to help perform attacking.

When considering the length of cross-domain user profiles,
the methods without target item constraints have a very
low item budget (less than 50). When harnessing this con-
straint on different TargetAttack-40/70/100, we found that
the methods on user profile without crafting perform the
worse, demonstrated by the fact that both TargetAttack40
and TargetAttack70 perform better than TargetAttack100. It
implies that introducing the user profile crafting is important
to reduce the attack cost and noise. We will further analyze
the budget from the number of cross-domain user profiles
perspective in the next section.

To better understand the proposed method, we compare
it with  PolicyNetwork, CopyAttack-Masking, and
CopyAttack-Length. We can see that, for PolicyNetwork
method, the performance of our method degrades when
eliminating the effect of the hierarchical clustering tree.
Note that PolicyNetwork method on ML20M-NF does not
work, since we can not obtain its results in 48 hours, while
we can obtain the results of others in a few hours. These
observations suggest the power of the hierarchical clustering

worse (and almost as poorly as RandomAttack). These results
support that the masking mechanism and user profile craft-
ing component are beneficial to select strong user profiles,
and reduce the attack cost and noise for each user profile.
Compared with the method of generative fake user profiles
(i.e., RL-Generative), in most cases, copying user profiles
strategies (e.g., TargetAttack-40/70/100, PolicyNetwork,
CopyAttack-Masking, and CopyAttack-Length) can perform
better on MLI1OM-FX and BC-Amazon datasets, while
the performance of RL-Generative outperforms other
methods on the ML20M-NF dataset. Note that our proposed
methods CopyAttack and CopyAttack+ can outperform
RL-Generative.

As the extension of CopyAttack, CopyAttack+(Two/Joint)
can achieve the best attacking performance in most cases,
indicating the effectiveness of transferring adversarial at-
tacking knowledge from the local surrogate system in the
source domain to the target black-box system. Moreover,
the performance of CopyAttack+(Joint) is better than that of
CopyAttack+(Two) in two datasets, which is consistent with
the observation in recent works [7], [48]. This observation
might be attributed to mutually enhancing between target
and surrogate systems in the joint training paradigm.
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Figure 7: Effect of Item Popularity on ML10M-FX dataset.
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In addition, we also evaluate the attacking performance
on the widely-used representative recommender system -
NeuMEF [27]. Due to space limitation, we only show the results
on the ML10M-FX dataset, which have a similar observation
to that on the ML20M-NF dataset. The results are shown
in Figure 4. We can observe that our method consistently
outperforms other methods under HR@20 and NDCG@20.
For instance, our CopyAttack+(Two/Joint) methods improve
the attacking performance of CopyAttack and consistently
outperform all baselines. This again verifies the rationality and
effectiveness of incorporating the adversarial transferability of
user profiles by training a local surrogate system to mimic
adversarial black-box attacks in the source domain.

5.3 Model Analysis

5.3.1 Effect of Depth on Hierarchical Clustering Tree

The hierarchical clustering tree, as discussed in Section 4.3.1, is
investigated here, where we have shown the performance on
CopyAttack+(Joint) when varying the depth of the tree (i.e., the
value of d). We can observe in Figure 5 that d = 3 performs the
best in terms of HR@20 and NDCG@20 in ML10M-FX dataset.
The reason for this is believed to be the trade-off in terms of
how detailed the clusters can be and the number of policy
networks in the hierarchical clustering tree. This is because the
deeper the tree, we have more policy networks that need to
be learned. In comparison, shallower trees have fewer policy
networks, but can harness the efficiency in terms of run-time
and the ability to have a few large clusters to guide the source
user profile selection.

5.3.2 Effect of Budget (The Number of User Profiles)

In this subsection, we investigate how the budget affects
the performance of different attacking methods. Due to the
limited space, we only report the results with the varied
budget on the ML10M-FX dataset in Figures 6, while having
similar observations in ML20M-NF. We first note, Rando-
mAttack remains stable no matter how many user profiles.
When the value of the budget increases, the performance
of methods injecting user profiles with target items tends
to increase first. And then TargetAttack40, TargetAttack70,
TargetAttack100, and RL-Generative can not keep increasing
when the budget becomes too large, while CopyAttack and
CopyAttack+(Two/Joint) keeps increasing, since these methods
perform queries and get more and more reward to train the
attacker. In addition, we can observe that the fake user profiles
generated via RL-Generative method are useless or even hurt

Table 4: Effect of User Profile Augmentation.
HR HR NDCG | NDCG
Datasets Methods @20 @10 @20 @10

CopyAttack+ (Joint)

ML10M without User 0.2767 | 0.1109 | 0.0861 | 0.0449
-FX Profile Augmentation

CopyAttack+ (Joint) 0.2917 | 0.1313 0.0928 0.0516
CopyAttack+ (Joint)

ML20M without User 0.2542 | 0.1255 0.0791 0.0528
-NF Profile Augmentation

CopyAttack+(Joint) 0.2844 | 0.1332 | 0.103 0.0656

the promotion attacks at the early stage of attacks. In most
cases, CopyAttack+(Joint) outperforms CopyAttack, indicating
the superiority of the developed surrogate recommender sys-
tem to provide transferablely adversarial signals via the joint
training paradigm.

5.3.3 Effect of Item Popularity

In this subsection, we study what kinds of items are vulnerable
to adversarial attacks in the proposed CopyAttack+(Joint). To
achieve it, we group the items in the target domain based
on their popularity. Specifically, we have 10 different groups,
where each group accounts for 10% of items in the target
domain. We then sample 50 target items from these 10 different
groups, respectively. For instance, the first few groups (i.e.,
popularity level 10% — 30%) can be treated as cold-start items.
At last, we evaluate their performance on them. The results are
given in Figure 7. The fluctuations in the results for the first few
groups might be attributed to the instability caused by some
hard target items in the “cold-start” group. Overall, we have the
following observations: the target items with high popularity
are more vulnerable to being attacked than cold-start items on
two datasets, where our CopyAttack+(Joint) can achieve better
attacking performance in the top 30% of items. We believe this
is because most of the relatively popular items are already
reasonably “hot” and attractive, thus CopyAttack+(Joint) can
more easily push them further to the top with a limited budget
as compared to less popular (“cold-start”) items.

5.3.4 Effect of User Profile Augmentation

Different from injection attack in the target domain which
directly injects the crafted version of the selected user profiles
Pf; into the target system, user profiles augmentation is used to
further modify the crafted user profile (P2) via items adding and
items dropping before injecting into the surrogate system. The
results of CopyAttack+(Joint) on two datasets are summarized
in Table 4. It can be observed that removing user profile
augmentation (i.e., CopyAttack+(Joint) without user profile
augmentation) reduces the performance of CopyAttack+(Joint).
This verifies that the proposed user profile augmentation is
important in assisting the RL agent (i.e., attacker) to obtain
transferable signals from the local surrogate system.

6 CONCLUSION

In this work, we have proposed an attacking framework
(CopyAttack+) to copy transferable cross-domain user profiles
to perform adversarial attacks for black-box recommender
systems. In particular, we have introduced a reinforcement
learning-based black-box approach that makes use of pol-
icy gradient networks to first select users to copy, then re-
fines/ crafts their profiles, and finally injects them into the target
domain. Moreover, inspired by the property of adversarial
transferability, we propose to train a local surrogate system to
simulate adversarial black-box attacks in the source domain,
so as to grasp transferable signals to enhance attacking strat-
egy learning in target black-box recommender systems. Our
thorough experiments on three real-world datasets show the
superiority of the proposed framework over a set of competitive
baselines. Then, we furthermore performed model analysis to
better understand the behavior of CopyAttack+. Our future
work will be towards effective strategies for targeted attacks
on items that need not be in the source domain and also for
demotion and furthermore include more rich side information.
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