
SIAM J. COMPUT. © 2023 Society for Industrial and Applied Mathematics
Vol. 52, No. 1, pp. 196-237

RAPID MIXING OF GLAUBER DYNAMICS UP TO UNIQUENESS

VIA CONTRACTION
*

ZONGCHEN CHEN†, KUIKUI LIU†, AND ERIC VIGODA‡

Abstract. For general antiferromagnetic 2-spin systems, including the hardcore model on
weighted independent sets and the antiferromagnetic Ising model, there is an FPTAS for the parti-
tion function on graphs of maximum degree � when the infinite regular tree lies in the unique-
ness region by Li, Lu, and Yin [Correlation Decay up to Uniqueness in Spin Systems, pre-
print, https://arxiv.org/abs/1111.7064, 2021]. Moreover, in the tree nonuniqueness region, Sly in
[Computational transition at the uniqueness threshold , in Proceedings of the 51st Annual IEEE Sym-
posium on Foundations of Computer Science, 2010, pp. 287–296] showed that there is no FPRAS to
estimate the partition function unless NP= RP. The algorithmic results follow from the correlation
decay approach due to Weitz [Counting independent sets up to the tree threshold , in Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, 2006, pp. 140–149] or the poly-
nomial interpolation approach developed by Barvinok [Combinatorics and Complexity of Partition
Functions, Springer, 2016]. However, the running time is only polynomial for constant �. For
the hardcore model, recent work of Anari, Liu, and Oveis Gharan [Spectral independence in high-
dimensional expanders and applications to the hardcore model , in Proceedings of the 61st Annual
IEEE Symposium on Foundations of Computer Science, 2020, pp. 1319–1330] establishes rapid mix-
ing of the simple single-site Markov chain, known as the Glauber dynamics, in the tree uniqueness
region. Our work simplifies their analysis of the Glauber dynamics by considering the total pairwise
influence of a fixed vertex v on other vertices, as opposed to the total influence of other vertices on v,
thereby extending their work to all 2-spin models and improving the mixing time. More important,
our proof ties together the three disparate algorithmic approaches: we show that contraction of the
so-called tree recursions with a suitable potential function, which is the primary technique for es-
tablishing e�ciency of Weitz’s correlation decay approach and Barvinok’s polynomial interpolation
approach, also establishes rapid mixing of the Glauber dynamics. We emphasize that this connection
holds for all 2-spin models (both antiferromagnetic and ferromagnetic), and existing proofs for the
correlation decay and polynomial interpolation approaches immediately imply rapid mixing of the
Glauber dynamics. Our proof utilizes the fact that the graph partition function is a divisor of the
partition function for Weitz’s self-avoiding walk tree. This fact leads to new tools for the analysis of
the influence of vertices and may be of independent interest for the study of complex zeros.
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1. Introduction. A remarkable connection has been established between the
computational complexity of approximate counting problems in general graphs of
maximum degree � and the statistical physics phase transition on infinite, regular
trees of degree � (or up to � in the more general case). This connection holds for

*

Received by the editors September 14, 2020; accepted for publication (in revised form) September
23, 2022; published electronically February 28, 2023. A preliminary short version of these results
appeared in Proceedings of the 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS) [11].

https://doi.org/10.1137/20M136685X
Funding: The first and third authors are supported by NSF grant CCF-2007022. The second

author is supported by NSF grant CCF-1907845 and ONR-YIP grant N00014-17-1-2429.
†
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-

nology, Cambridge, MA 01239 USA (zongchen@mit.edu,liukui@csail.mit.edu).
‡
University of California Santa Barbara, Santa Barbara, CA 93106 USA (vigoda@ucsb.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

196

D
ow

nl
oa

de
d 

06
/2

6/
23

 to
 6

1.
79

.7
0.

15
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/20M136685X
mailto:zongchen@mit.edu
mailto:liukui@csail.mit.edu
mailto:vigoda@ucsb.edu


RAPID MIXING OF GLAUBER DYNAMICS 197

2-state antiferromagnetic spin systems: the hardcore model on independent sets and
the Ising model are the most interesting examples of such systems.

Given an n-vertex graph G = (V,E), configurations of the 2-spin model are the
2n assignments of spins 0,1 to the vertices. A 2-spin system is defined by three
parameters: two edge weights � � 0,� > 0 and one vertex weight � > 0. Edge
parameter � controls the (relative) strength of interaction between neighboring 1-
spins, � corresponds to neighboring 0-spins, and � is the external field applied to
vertices with 1-spins.

Every spin configuration � 2 {0,1}V is assigned a weight

wG(�) = �m1(�)�m0(�)�n1(�),

where, for spin s 2 {0,1}, ms(�) = #{uv 2 E : �u = �v = s} is the number of
monochromatic edges with spin s, and n1(�) = #{v 2 V : �v = 1} is the number
of vertices with spin 1 (as is standard, the parameters are normalized, so we can
avoid two additional parameters). The Gibbs distribution over spin configurations is
given by µG(�) =

wG(�)
ZG(�,�,�) , where ZG(�,�,�) =

P
�2{0,1}V �m1(�)�m0(�)�n1(�) is the

partition function.
There are two examples of particular interest: the hardcore model and the Ising

model. When � = 0 and � = 1, the only configurations with nonzero weight are inde-
pendent sets of G, and the weight of an independent set � is w(�) = �|�|; this example
is known as the hardcore model, where the parameter � corresponds to the fugacity.

In the case when � = �, the important quantity is the total number of monochro-
matic edges m(�) = m0(�) +m1(�), and the weight of a configuration � is w(�) =
�m(�)�n1(�); this is the classical Ising model, where the parameter � corresponds to
the inverse temperature, and � is the external field (� = 1 means no external field).
Note that when � > 1, the model is ferromagnetic as neighboring vertices prefer to
have the same spin, and � < 1 is the antiferromagnetic Ising model. In the general
2-spin system, the model is ferromagnetic when �� > 1 and antiferromagnetic when
�� < 1. (When �� = 1 we get a trivial product distribution.)

The fundamental algorithmic tasks are to sample from the Gibbs distribution
and to estimate the partition function. For the approximate sampling problem,
we are given a graph G and an ✏ > 0, and our goal is to generate a sample from
a distribution ⇡ which is within total variation distance  ✏ of the Gibbs distri-
bution µG in time poly(n, log(1/✏)). An e�cient approximate sampling algorithm
implies an FPRAS (fully polynomial randomized approximation scheme) for the ap-
proximate counting problem [17, 33]. Recall that, given an n-vertex graph G and
✏, �> 0, an FPRAS outputs a (1± ✏)-approximation of ZG with probability � 1� � in
time poly(n,1/✏, log(1/�)), whereas an fully polynomial-time approximation scheme
(FPTAS) is the deterministic analogue (i.e., �= 0).

A standard approach to the approximate sampling problem is the Markov Chain
Monte Carlo (MCMC) method; in fact, there is a simple Markov chain known as
the Glauber dynamics. The Glauber dynamics works as follows: from a config-
uration Xt at time t, choose a random vertex v; we then set Xt+1(w) = Xt(w)
for all w 6= v, and finally we choose Xt+1(v) from the conditional distribution of
µ(�v|�w =Xt+1(w) for all w 6= v). For the case of the hardcore model, Xt+1(v) is set
to “occupied” (i.e., spin 1) with probability �/(1 + �) if no neighbors are currently
occupied; otherwise, it is set to “unoccupied.”

It is straightforward to verify that the Glauber dynamics is ergodic, with the
Gibbs distribution as the unique stationary distribution. The mixing time is the
minimum number of steps needed to guarantee, from the worst initial state X0, that
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198 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

the distribution ofXt is within total variation distance 1/4 of the Gibbs distribution.
The goal is to prove that the mixing time is polynomial in n, where n = |V | is the
number of vertices, in which case the chain is said to be rapidly mixing .

For the case of the ferromagnetic Ising model (with or without an external field),
a classical result of Jerrum and Sinclair [16] gives an FPRAS for all graphs via the
MCMC method. This is the only case with an e�cient algorithm for general graphs.
For antiferromagnetic 2-spin models, the picture is closely tied to statistical physics
phase transitions on the regular tree.

The uniqueness/nonuniqueness phase transition is nicely illustrated for the case
of the hardcore model. Consider the infinite �-regular tree T rooted at r, and let Th

denote the tree truncated at the first h levels. This phase transition captures whether
the configuration at the leaves of Th “influences” the root in the limit h ! 1. For
the hardcore model we can consider even height trees (corresponding to the all even
boundary condition) versus odd height trees. Let ph denote the marginal probability
that the root is occupied in the Gibbs distribution µTh . Let peven = limh!1 p2h and
podd = limh!1 p2h+1. We say that tree uniqueness holds if peven = podd and that
tree nonuniqueness holds if they are not equal. For all � � 3 there exists a critical
fugacity �c(�) = (�� 1)��1/(�� 2)� [18], where tree uniqueness holds if and only
if � �c(�).

The remarkable connection is that an algorithmic phase transition for general
graphs of maximum degree � occurs at this same tree critical point. For all constant
�, all �> 0, all �< (1��)�c(�), and all graphs of maximum degree �, [34] presented
an FPTAS for approximating the partition function. On the other hand, for all � > 0
and all �> (1+ �)�c(�), [31, 32, 12] proved that, unless NP= RP, there is no FPRAS
for estimating the partition function.

One important caveat is that the running time of Weitz’s algorithm is (n/✏)C log�,
where the approximation factor is (1± ✏), and the constant C depends polynomially
on the gap � (recall that � < (1 � �)�c). Weitz’s correlation decay algorithm was
extended to the antiferromagnetic Ising model in the tree uniqueness region by Sin-
clair, Srivastava, and Thurley [30], and to all antiferromagnetic 2-spin systems in the
corresponding tree uniqueness region (as we detail below) by Li, Lu, and Yin [21].

An intriguing new algorithmic approach was presented by Barvinok [4], and re-
fined by Patel and Regts [26], utilizing the absence of zeros of the partition function
in the complex plane to e�ciently approximate a suitable transformation of the loga-
rithm of the partition function using Taylor approximation. This polynomial interpo-
lation approach was shown to be e�cient in the same tree uniqueness region as that
for Weitz’s result by Peters and Regts [27], although the exponent in the running time
depends exponentially on �.

It was long conjectured that the simple Glauber dynamics is rapidly mixing in the
tree uniqueness region. This was recently proved by Anari, Liu, and Oveis Gharan
[3]; they proved that, for all � > 0, the mixing time is nO(exp(1/�)) whenever �< (1�
�)�c(�). We improve this result. First, we improve the mixing time from nO(exp(1/�))

to nO(1/�) as detailed in the following theorem.

Theorem 1.1 (hardcore model). Let �� 3 be an integer, and let � 2 (0,1). For

every n-vertex graph G of maximum degree � and every 0 < �  (1 � �)�c(�), the
mixing time of the Glauber dynamics for the hardcore model on G with fugacity � is

O(n2+32/�).

This bound is optimal barring further improvements in the local-to-global argu-
ments from [1]. Our improved result follows from a simpler, cleaner proof approach,
which enables us to extend our result to a wide variety of 2-spin models, matching the
key results for the correlation decay algorithm with vastly improved running times.
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RAPID MIXING OF GLAUBER DYNAMICS 199

Our proof approach unifies the three major algorithmic tools for approximate
counting: correlation decay, polynomial interpolation, and MCMC. Most known
results for both the correlation decay and polynomial interpolation approaches are
proved by showing contraction of a suitably defined potential function on the so-called
tree recursions; the tree recursions arise as a result of Weitz’s self-avoiding walk tree
that we will describe in more detail later in this paper. Recent works of Liu [23]
and Shao and Sun [29] unify these two approaches by showing that the contraction
which is normally used to prove e�ciency of the correlation decay algorithm also
implies (under some additional analytic conditions) that the polynomial interpolation
approach is e�cient.

Here we prove that this same contraction of a potential function also implies rapid
mixing of the Glauber dynamics, with our improved running time that is independent
of �; see Definition 1.4 and Theorem 1.5 for detailed statements. Our proof utilizes
several new tools concerning Weitz’s self-avoiding walk tree, which are detailed in
section 3. In particular, we show that the partition function of a graph G divides the
partition function of Weitz’s self-avoiding walk tree; see Lemma 3.3. This result is
potentially of independent interest for establishing absence of zeros for the partition
function with complex parameters, as it enables one to consider the self-avoiding walk
tree. This result also yields a new, useful equivalence for bounding the influence in
a graph in terms of the self-avoiding tree, which strengthens the previously known
connection by Weitz [34]; see Lemma 3.3 for details.

As an easy consequence we obtain rapid mixing for the Glauber dynamics for
the antiferromagnetic Ising model in the tree uniqueness region. In terms of the
edge activity, the two critical points for the Ising model on the �-regular tree are
at �c(�) = ��2

� and �c(�) = 1
�c(�) = �

��2 ; the first lies in the antiferromagnetic

regime, while the second lies in the ferromagnetic regime. If �c(�)< � < �c(�), then
uniqueness holds for all external field � on the �-regular tree.

As mentioned earlier, for the ferromagnetic Ising model, an FPRAS was known
for general graphs [16]. Furthermore, Mossel and Sly [25] proved O(n logn) mixing
time of the Glauber dynamics for the ferromagnetic Ising model when 1 � < �c(�).
However, rapid mixing for the antiferromagnetic Ising model in the tree uniqueness
region was not known.

We provide the following mixing result for the case � > �c(�). Note that when
�  �c there is an additional uniqueness region for certain values of the external field
�; this region is covered by Theorem 1.3.

Theorem 1.2 (antiferromagnetic Ising model). Let �� 3 be an integer, and let

� 2 (0,1). Assume that 1 > � � �c(�) + �(1 � �c(�)) and � > 0. Then for every

n-vertex graph G of maximum degree �, the mixing time of the Glauber dynamics for

the Ising model on G with edge weight � and external field � is O(n2+1.5/�).

Our results for the hardcore and Ising models fit within a larger framework of
general antiferromagnetic 2-spin systems. Recall that we have the antiferromagnetic
case when �� < 1.

For general 2-spin systems the appropriate tree phase transition is more com-
plicated, as there are models where the tree uniqueness threshold is not monotone
in �. Hence the appropriate notion is “up-to-� uniqueness” as considered by [21].
Roughly speaking, we say uniqueness with gap � 2 (0,1) holds on the d-regular tree if
for every integer `� 1, all vertices at distance ` from the root have total “influence”
. (1� �)` on the marginal of the root. We say up-to-� uniqueness with gap � holds
if uniqueness with gap � holds on the d-regular tree for all 1  d  �; see section 2
for the precise definition.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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200 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

Both Theorems 1.1 and 1.2 are corollaries of the following general rapid mixing
result which holds for general antiferromagnetic 2-spin systems in the entire tree
uniqueness region.

Theorem 1.3 (general antiferromagnetic 2-spin system). Let �� 3 be an inte-

ger, and let � 2 (0,1). Let �,�,� be reals such that 0 �  �, � > 0, �� < 1, and �> 0.
Assume that the parameters (�,�,�) are up-to-� unique with gap �. Then for every

n-vertex graph G of maximum degree �, the mixing time of the Glauber dynamics for

the antiferromagnetic 2-spin system on G with parameters (�,�,�) is O(n2+72/�).

We also match existing correlation decay results [15, 29] for ferromagnetic 2-spin
models; see section 8 for results and Appendix F for proofs.

1.1. Mixing by the potential method. The tree recursion is very useful in
the study of approximating counting. Consider a tree rooted at r. Suppose that r
has d children, denoted by v1, . . . , vd. For 1 i�i we define Tvi to be the subtree
of T rooted at vi that contains all descendants of vi. Let Rr = µT (�r = 1)/µT (�r = 0)
denote the marginal ratio of the root, and let Rvi = µTvi

(�vi = 1)/µTvi
(�vi = 0) for

each subtree. The tree recursion is a formula that computes Rr given Rv1
, . . . ,Rvd , due

to the independence of Tvi ’s. More specifically, we can write Rr = Fd(Rv1
, . . . ,Rvd),

where Fd : [0,+1]d ! [0,+1] is a multivariate function such that for (x1, . . . , xd) 2
[0,+1]d,

Fd(x1, . . . , xd) = �
dY

i=1

�xi + 1

xi + �
.

In this paper, however, we pay particular attention to the log of marginal ra-
tios because we will carefully study the pairwise influence matrix IG of the Gibbs
distribution µG, introduced in [3] and defined, for every r, v 2 V,as

IG(r! v) = µG(�v = 1 | �r = 1)� µG(�v = 1 | �r = 0).

In [3], the authors show that if the maximum eigenvalue of IG is bounded appropri-
ately, then the Glauber dynamics is rapid mixing. One crucial observation we make
in this paper is that the influence IG(r! v) of r on v can be viewed as the derivative
of logRr with respect to the log external field at v (see Lemma 4.3). Thus, it is
more convenient for us to work with the log ratios. To this end, we rewrite the tree
recursion as logRv =Hd(logRv1

, . . . , logRvd), where Hd : [�1,+1]d ! [�1,+1] is
a function such that for (y1, . . . , yd)2 [�1,+1]d,

Hd(y1, . . . , yd) = log�+
dX

i=1

log

✓
�eyi + 1

eyi + �

◆
.

Observe that H = log �F � exp. Moreover, we define

h(y) =� (1� ��)ey

(�ey + 1)(ey + �)

for y 2 [�1,+1], so that @

@yi
Hd(y1, . . . , yd) = h(yi) for each i.

To prove our main results, we use the potential method, which has been widely
used to establish the decay of correlation. By choosing a suitable potential func-
tion for the log ratios, we show that the total influence from a given vertex decays
exponentially with the distance, and thus we establish rapid mixing of the Glauber

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RAPID MIXING OF GLAUBER DYNAMICS 201

dynamics. Let us first specify our requirements on the potential. For every inte-
ger d � 0, we define a bounded interval Jd which contains all log ratios at a vertex
of degree d. More specifically, we let Jd = [log(��d), log(�/�d)] when �� < 1, and
Jd = [log(�/�d), log(��d)] when �� > 1. Furthermore, define J =

S��1
d=0 Jd to be the

interval containing all log ratios with degree less than �.

Definition 1.4 ((↵, c)-potential function). Let � � 3 be an integer. Let �,�,�
be reals such that 0  �  �, � > 0, and � > 0. Let  : [�1,+1] ! (�1,+1)
be a strictly increasing function with image S =  [�1,+1], which is di↵erentiable

on (�1,+1) with derivative  =  0
. For any ↵ 2 (0,1) and c > 0, we say  is

an (↵, c)-potential function with respect to � and (�,�,�) if it satisfies the following

conditions:

1. (Contraction) For every integer d such that 1  d < �, and every tuple

(ỹ1, . . . , ỹd)2 Sd
, we have

��rH 
d
(ỹ1, . . . , ỹd)

��
1
=

dX

i=1

 (y)

 (yi)
· |h(yi)| 1� ↵,

where H 
d
= �Hd � �1

, yi = �1(ỹi) for 1 i d, and y=Hd(y1, . . . , yd).
2. (Boundedness) For every y1, y2 2 J , we have

 (y2)

 (y1)
· |h(y1)|

c

�
.

In the definition of (↵, c)-potential, one should think of y as the log marginal ratio
at a vertex, and the potential function is of logR. The following theorem establishes
rapid mixing of the Glauber dynamics given an (↵, c)-potential function.

Theorem 1.5. Let �� 3 be an integer. Let �,�,� be reals such that 0 �  �,
� > 0, and � > 0. Suppose that there is an (↵, c)-potential with respect to � and

(�,�,�) for some ↵2 (0,1) and c > 0. Then for every n-vertex graph G of maximum

degree �, the mixing time of the Glauber dynamics for the 2-spin system on G with

parameters (�,�,�) is O(n2+c/↵).

We outline our proofs in section 3. Note that in both Definition 1.4 and Theorem
1.5, the constant c is allowed to depend on the maximum degree � and parameters
(�,�,�) in general. For example, a straightforward black-box application of the po-
tential in [21] would give c=⇥(�) for the boundedness condition, resulting in n⇥(�)

mixing. However, this is undesirable for graphs with potentially unbounded degrees.
One of our contributions is showing that the boundedness condition holds for a uni-
versal constant c independent of � and (�,�,�). Thus, our mixing time is O(n2+c/�)
with no parameters in the exponent except for 1/�.

In section 7, we give a slightly more general definition of (↵, c)-potentials, which
relaxes the boundedness condition, and is necessary for our analysis of antiferromag-
netic 2-spin systems with 0 � < 1< �. Theorem 1.5 still holds for this larger class
of potentials.

We remark that in all previous works on the potential method, results and proofs
are always presented in terms of Fd, the tree recursion of R, and �, a potential
function of R. In fact, our results can also be translated into the language of (Fd,�).
To see this, note that since Hd = log �Fd � exp, it is straightforward to check that
H 

d
=  � Hd �  �1 = � � Fd � ��1 = F�

d
if we pick � =  � log, and thereby

rH 
d
=rF�

d
. This implies that the contraction condition in Definition 1.4 holds for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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202 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

(Hd, ) if and only if the corresponding contraction condition holds for (Fd,�). The
boundedness condition can also be stated equivalently for (Fd,�). Nevertheless, in
this paper we choose to work with (Hd, ) for the following two reasons. First, as
mentioned earlier, the fact that IG(r ! v) is a derivative of logRr makes it natural
to consider the tree recursion for the log ratios. Indeed, it is easier and cleaner to
present our results and proofs using (Hd, ) directly rather than by switching to
(Fd,�). Second, the potential function  we will use is obtained from the exact
potential � in [21] by the transformation  =� � exp.1 It is intriguing to notice that
the derivative of this potential is simply  =

p
|h|. Then the contraction condition

has the nice form
P

d

i=1

p
h(y)h(yi)  1 � ↵, and the boundedness condition only

involves an upper bound on h(y). This seems to shed some light on the mysterious
potential function � from [21], and it also indicates that Hd is a meaningful variant
of the tree recursion to consider. To add one more piece of evidence, we note that for
a lot of cases (e.g., ��2

� <
p
�� < �

��2 ) where the potential �= log is picked, we can
take  to be the identity function, in which case Hd itself is contracting without any
nontrivial potential (see, e.g.. [35, 29]).

Revision in July 2021. After the publication of this paper in FOCS 2020 [10],
a small error was found in [21] regarding descriptions of the uniqueness region for
antiferromagnetic 2-spin systems. The error was fixed in the latest, preprint version
[22]. In the current revision, we update corresponding results and proofs in section
7 and Appendix E that are a↵ected by the changes in [22]; in particular, Lemma
E.2 is adjusted in accordance with the current description of uniqueness regions. We
remark that these changes are purely technical and do not a↵ect the validity of our
main results, such as Theorem 1.5.

2. Preliminaries.

Mixing time and spectral gap. Let P be the transition matrix of an ergodic
(i.e., irreducible and aperiodic) Markov chain on a finite state space ⌦ with stationary
distribution µ. Let P t(x0, ·) denote the distribution of the chain after t steps starting
from x0 2⌦. The mixing time of P is defined as

Tmix(P ) = max
x02⌦

min

⇢
t� 0 :

��P t(x0, ·)� µ(·)
��
TV

 1

4

�
,

where k⇡(·)� µ(·)kTV = 1
2

P
x2⌦ |⇡(x)� µ(x)| is the total variation distance between

two probability distributions ⇡, µ on a common state space ⌦.
We say P is reversible if µ(x)P (x, y) = µ(y)P (y,x) for all x, y 2 ⌦. If P is

reversible, then P has only real eigenvalues which can be denoted by 1 = �1 � · · · �
�|⌦| � �1. The spectral gap of P is defined to be 1 � �2, and the absolute spectral

gap of P is defined as �⇤(P ) = 1�max{|�2|, |�|⌦||}. If P is also positive semidefinite
with respect to the inner product h·, ·iµ, then all eigenvalues of P are nonnegative,
and thus �⇤(P ) = 1� �2. Finally, the mixing time and the absolute spectral gap are
related by

(2.1) Tmix(P ) 1

�⇤(P )
log

✓
4

minx2⌦ µ(x)

◆
.

See [19] for more background on Markov chains and mixing times.

1To be more precise, we also multiply a constant factor, which only simplifies our calculation and
does not matter much; also notice that [21] denotes the potential function by ' and its derivative by
�='0.
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RAPID MIXING OF GLAUBER DYNAMICS 203

Uniqueness. Let � � 3 be an integer or � =1. Let �,�,� be reals such that
0 �  �, � > 0, �� < 1, and �> 0. For 1 d<�, define

fd(R) = �

✓
�R+ 1

R+ �

◆d

,

and denote the unique fixed point of fd by R⇤
d
. For � 2 (0,1), we say the parameters

(�,�,�) are up-to-� unique with gap � if |f 0
d(R⇤

d
)|< 1� � for all 1 d<�.

Ratio and influence. Consider the 2-spin system on a graph G = (V,E). Let
⇤✓ V and �⇤ 2 {0,1}⇤. For all v 2 V \⇤, we define the marginal ratio at v to be

R�⇤

G
(v) =

µG(�v = 1 | �⇤)
µG(�v = 0 | �⇤)

.

For all u, v 2 V \⇤, we define the (pairwise) influence of u on v by

I�⇤

G
(u! v) = µG(�v = 1 | �u = 1, �⇤)� µG(�v = 1 | �u = 0, �⇤).

Write I�⇤

G
for the (pairwise) influence matrix whose entries are given by I�⇤

G
(u! v).

Note that unlike in [3], our influence matrix has 1 on the diagonal as opposed to 0.

Weitz’s self-avoiding walk tree. Let G = (V,E) be a connected graph, and
let r 2 V be a vertex of G. The self-avoiding walk (SAW) tree is defined as follows.
Suppose that there is a total ordering of the vertex set V . A self-avoiding walk from
r is a path r= v0 � v1 � · · ·� v` such that vi 6= vj for all 0 i < j  `. The SAW tree
TSAW(G,r) is a tree rooted at r, consisting of all self-avoiding walks r= v0�v1�· · ·�v`
with deg(v`) = 1, and those appended with one more vertex that closes the cycle (i.e.,
r = v0 � v1 � · · ·� v` � vi for some 0 i `� 2 such that {v`, vi} 2 E). Note that a
vertex of G might have many copies in the SAW tree, and the degrees of vertices are
preserved except for leaves. See Figure 1 for an example.

We can define a 2-spin system on TSAW(G,r) with the same parameters (�,�,�),
in which some of the leaves are fixed to a particular spin. More specifically, for a self-
avoiding walk r= v0�v1� · · ·�v` appended with vi, we fix vi to be spin 1 if vi+1 < v`,

r

u v

w

r

u v

v

w

w

r
r

Fig. 1. A graph G and the self-avoiding walk tree TSAW(G,r) rooted at r. Vertices with the
same label in TSAW(G,r) are copies of the same vertex from G. (•/�: fixed to spin 1/0.)
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204 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

with respect to the total ordering on V , and spin 0 if vi+1 > v`. For each v 2 V, we
denote the set of all free (unfixed) copies of v in TSAW(G,r) by Cv. For ⇤ ✓ V and
a partial configuration �⇤ 2 {0,1}⇤, we define the SAW tree with conditioning �⇤ by
assigning the spin �v to every copy v̂ of v from Cv and removing all descendants of
v̂, for each v 2 ⇤. Finally, in the case when every vertex v has a distinct field �v, all
copies of v from Cv will have the same field �v in the SAW tree.

3. Proof outline for main results.

Step 1 [3]: Spectral Independence implies rapid mixing. Our proof builds
on the work of Anari, Liu, and Oveis Gharan [3] who showed that the Glauber dy-
namics for sampling from the hardcore distribution on graphs of maximum degree at
most � mixes in O(nexp(O(1/�))) steps whenever �  (1 � �)�c(�). One of the key
ingredients of their proof is a notion they call spectral independence. The authors
of [3] show that the spectral independence property implies rapid mixing. Note that
the �1 in the definition of spectral independence below is due to I�⇤

G
having diagonal

entries equal to 1, as opposed to 0 in [3].

Definition 3.1 (spectral Independence [3]). We say the Gibbs distribution µG

on an n-vertex graph G is (⌘0, . . . ,⌘n�2)-spectrally independent if for every 0  k 
n� 2, ⇤✓ V of size k, and �⇤ 2 {0,1}⇤, one has �max(I�⇤

G
)� 1 ⌘k.

Theorem 3.2 ([3]). If µ is an (⌘0, . . . ,⌘n�2)-spectrally independent distribution,

then the Glauber dynamics for sampling from µ has spectral gap at least

1

n

n�2Y

i=0

✓
1� ⌘i

n� i� 1

◆
.

Our primary goal now is to bound the maximum eigenvalue of I�⇤

G
.

Step 2: Self-avoiding walk trees preserve influences. From standard linear
algebra, we know that the maximum eigenvalue of I�⇤

G
is upper bounded by both the 1-

norm kI�⇤

G
k1 =maxr2V \⇤

P
v2V \⇤ |I

�⇤

G
(v! r)|, which corresponds to total influences

on a vertex r, and the infinity-norm kI�⇤

G
k1 = maxr2V \⇤

P
v2V \⇤ |I

�⇤

G
(r ! v)|,

corresponding to total influences of r. In [3] the authors use kI�⇤

G
k1 as an upper bound

on �max(I�⇤

G
). Roughly speaking, they show that the sum of absolute influences on

a fixed vertex r is upper bounded by the maximum absolute influences on r in the
self-avoiding walk tree rooted at r, over all boundary conditions. In this paper, we
will use kI�⇤

G
k1 to upper bound �max(I�⇤

G
) instead. In fact, we see that much more is

true when we look at the influences from r in the self-avoiding tree. We show that for
every vertex v 2 V \⇤, the influence I�⇤

G
(r! v) in G is preserved in the self-avoiding

walk tree T = TSAW(G,r) rooted at r in the form of sum of influences I�⇤

T
(r ! v̂)

over all copies v̂ of v.
The way we establish this fact is by viewing the partition function as a polynomial

in �. In fact, it will be useful to consider the more general case with an arbitrary
external field �v for every v 2 V . Let � = {�v : v 2 V } denote the fields. For ⇤ ✓ V
and �⇤ 2 {0,1}⇤, the weight of � 2 {0,1}V \⇤ conditional on �⇤ is defined to be wG(� |
�⇤) = �m1(�|�⇤)�m0(�|�⇤)

Q
v2V \⇤ �

�v
v
, where mi(· | �⇤) is the number of i-i edges with

at least one endpoint in V \⇤ for i= 0,1. Furthermore, Z�⇤

G
=
P

�2{0,1}V \⇤ wG(� | �⇤)
is the partition function conditioned on �⇤. We may assume �,�> 0 (since otherwise,
the model is vacuous) and hence Z�⇤

G
> 0.

We shall view � and � as some fixed constants and think of � as n= |V | variables.
In this sense, we regard the weights wG(� | �⇤) as monomials in � and the partition
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RAPID MIXING OF GLAUBER DYNAMICS 205

function Z�⇤

G
as a polynomial in �. Moreover, the marginal ratios R�⇤

G
(v) and the

influences I�⇤

G
(r ! v) for r, v 2 V are all functions in �. Our main result is that the

partition function of G divides that of TSAW(G,r) for each r 2 V . From that, we
show that the SAW tree preserves influences of the root, as well as re-establishing
Weitz’s celebrated result [34]; see Lemma 4.4.

Lemma 3.3. Let G = (V,E) be a connected graph, r 2 V be a vertex, and ⇤ ✓
V \{r} be such that G\⇤ is connected. Let T = TSAW(G,r) be the self-avoiding walk

tree of G rooted at r. Then for every �⇤ 2 {0,1}⇤, Z�⇤

G
divides Z�⇤

T
. More precisely,

there exists a polynomial P�⇤

G,r
= P�⇤

G,r
(�) independent of �r such that

Z�⇤

T
=Z�⇤

G
· P�⇤

G,r
.(3.1)

As a corollary, for each vertex v 2 V \⇤, we have

I�⇤

G
(r! v) =

X

v̂2Cv

I�⇤

T
(r! v̂),(3.2)

where Cv is the set of all free (unfixed) copies of v in T .

Remark 3.4. We emphasize that for the purposes of bounding the total influence
of a vertex in G, only (3.2) of Lemma 3.3 is needed, which can be proved in a purely
combinatorial fashion. However, we believe the divisibility property (3.1) of the mul-
tivariate partition function of G and its self-avoiding walk tree may be of independent
interest.

We note that a univariate version of the divisibility statement (3.1) has already
appeared in [13] for the monomer-dimer model (matchings), in [5] for the hard-
core model (independent sets), and in [24] for the zero-field Ising model in the
study of complex roots of the partition function. From Lemma 3.3, we can getP

v2V \⇤ |I
�⇤

G
(r ! v)| 

P
v2VT

|I�⇤

T
(r ! v)| for any fixed r. That means we only

need to upper bound the sum of all influences for trees in order to get an upper
bound on �max(I�⇤

G
).

Step 3: Decay of influences given a good potential. The tree recursion
provides a great tool for computing the (log) ratios of vertices recursively for trees. As
we show in Lemma 4.3, the influence I�⇤

G
(r! v) is, in fact, a version of the derivative

of the log marginal ratio at r. Thus, the tree recursion can be used naturally to
relate these influences. We then apply the potential method, which has been widely
used in the literature to establish the decay of correlations (strong spatial mixing).
The following lemma shows that the sum of absolute influences to distance k has
exponential decay with k, which can be thought of as the decay of pairwise influences.

Lemma 3.5. If there exists an (↵, c)-potential function  with respect to � and

(�,�,�) where ↵ 2 (0,1) and c > 0, then for every ⇤✓ VT \ {r}, �⇤ 2 {0,1}⇤, and all

integers k� 1,

X

v2Lr(k)

|I�⇤

T
(r! v)| c · (1� ↵)k�1,

where Lr(k) denote the set of all free vertices at distance k away from r.

Theorem 1.5 is then proved by combining Theorem 3.2 and Lemmas 3.3 and 3.5.
We defer its proof to Appendix A.
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206 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

Step 4: Find a good potential. As our final step, we need to find an (↵, c)-
potential function as defined in Definition 1.4. The potential  we choose is exactly
the one from [21], adapted to the log marginal ratios and the tree recursion H (see
section 6 for more details). We show that if the parameters (�,�,�) are up-to-� unique
with gap � 2 (0,1) and either

p
�� > ��2

� or �  1, then  is an (↵, c)-potential.

Lemma 3.6. Let � � 3 be an integer. Let �,�,� be reals such that 0  �  �,
� > 0, �� < 1, and �> 0. Assume that (�,�,�) is up-to-� unique with gap � 2 (0,1).
Define the function  implicitly by

(3.3)  0(y) =  (y) =

s
(1� ��)ey

(�ey + 1)(ey + �)
=
p

|h(y)|,  (0) = 0.

If
p
�� > ��2

� , then  is an (↵, c)-potential function with ↵ � �/2 and c  1.5. Ifp
��  ��2

� and �  1, then  is an (↵, c)-potential with ↵� �/2 and c 18; we can

further take c 4 if � = 0.

We deduce Theorem 1.3 from the case when
p
�� > ��2

� or the case when � 
1 from Theorem 1.5 and Lemma 3.6. The proof of Theorem 1.3 can be found in
Appendix A. The case when

p
��  ��2

� and � > 1 is trickier. As discussed in section
5 of [21], when

p
��  ��2

� and � > 1, for some � > 0 the spin system lies in the
uniqueness region for arbitrary graphs, even with unbounded degrees (i.e., up-to-1
unique). Thus, in this case the total influences of a vertex can be as large as ⇥(�/�),
resulting in n⇥(�/�) mixing time. To deal with this, we consider a suitably weighted
sum of absolute influences of a fixed vertex, which also upper bounds the maximum
eigenvalue of the influence matrix. Definition 1.4 and Theorem 1.5 are then modified
to a slightly stronger version. The statements and proofs for this case are presented
in section 7 and Appendix D.

The rest of the paper is organized as follows. In section 4 we prove Lemma 3.3
about properties of the SAW tree. In section 5 we establish Lemma 3.5 regarding
the decay of influences by the potential method. We verify the contraction condition
in section 6 for our choice of potential. In section 7, we focus on the case

p
�� 

��2
� and � > 1, where more general versions of Definition 1.4 and Theorem 1.5 are

required; missing proofs can be found in Appendix D. In Appendix E we verify the
boundedness condition and its generalization for our potential in all cases. We consider
ferromagnetic spin systems in section 8, and the proofs are deferred to Appendix F.
We prove all of our main results in Appendix A.

4. Preservation of influences for self-avoiding walk trees. In this section
we show that the self-avoiding walk (SAW) tree, introduced in [34] (see also [28]),
maintains all the influence of the root and thus establishes Lemma 3.3. To do this,
we show that the partition function of G, viewed as a polynomial of the external
fields �, divides that of the SAW tree. From there we prove that the influence of the
root vertex r on another vertex v in G is exactly equal to that on all copies of v in
the SAW tree. Using our proof approach, we show that the marginal of the root is
maintained in the SAW tree, re-establishing Weitz’s celebrated result [34]; also, all
pairwise covariances concerned with v are preserved.

Theorem 4.1. Let G = (V,E) be a connected graph, r 2 V be a vertex, and

⇤✓ V \ {r} be such that G \⇤ is connected. Let T = TSAW(G,r) be the self-avoiding

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

6/
23

 to
 6

1.
79

.7
0.

15
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



RAPID MIXING OF GLAUBER DYNAMICS 207

walk tree of G rooted at r. Then for every �⇤ 2 {0,1}⇤, Z�⇤

G
divides Z�⇤

T
. More

precisely, there exists a polynomial P�⇤

G,r
= P�⇤

G,r
(�) such that

Z�⇤

T
=Z�⇤

G
· P�⇤

G,r
.

Moreover, the polynomial P�⇤

G,r
is independent of �r.

Remark 4.2. The proof of Theorem 4.1 can be adapted to give a purely combi-
natorial proof of (3.2) in Lemma 3.3. Like in the proof of [34, Theorem 3.1], one can
proceed via vertex splitting and telescoping, where instead of telescoping a product
of marginal ratios, one telescopes a sum of single-vertex influences.

We remark that [5] proved a univariate version of Theorem 4.1 for the hardcore
model, and [24] showed a similar result for the zero-field Ising model with a uniform
edge weight. Our result holds for all 2-spin systems and arbitrary fields for each vertex.
We can also generalize it to arbitrary edge weights for each edge in a straightforward
fashion. It is crucial that the quotient polynomial P�⇤

G,r
is independent of the field �r

at the root, from which we can immediately deduce the preservation of the marginal
and the influences of the root.

Before proving Theorem 4.1, we first give a few consequences of it. For all u, v 2
V \⇤, we define the marginal at v as M�⇤

G
(v) = µG(v = 1 | �⇤) (henceforth we write

v= i for the event �v = i for convenience) and define the covariance of u and v as

K�⇤

G
(u, v) = µG(u= v= 1 | �⇤)� µG(u= 1 | �⇤)µG(v= 1 | �⇤).

The following lemma relates the quantities we are interested in with appropriate
derivatives of the (log) partition function. Parts 1 and 2 of the lemma are folklore.

Lemma 4.3. For every graph G= (V,E), ⇤✓ V, and �⇤ 2 {0,1}⇤, the following

hold:

1. For all v 2 V ,

✓
�v

@

@�v

◆
logZ�⇤

G
=M�⇤

G
(v).

2. For all u, v 2 V ,

✓
�v

@

@�v

◆✓
�u

@

@�u

◆
logZ�⇤

G
=

✓
�v

@

@�v

◆
M�⇤

G
(u) =K�⇤

G
(u, v).

3. For all u, v 2 V ,

✓
�v

@

@�v

◆
logR�⇤

G
(u) = I�⇤

G
(u! v).

Proof. Parts 1 and 2 are standard. We include the proofs of these two facts in
Appendix B for completeness. For part 3, we deduce from part 1 that

✓
�v

@

@�v

◆
logR�⇤

G
(u) =

✓
�v

@

@�v

◆
log

 
Z�

0
⇤

G

Z�
00

⇤

G

!

=M�
0
⇤

G
(v)�M�

00
⇤

G
(v)

= I�⇤

G
(u! v),
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208 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

where �0
⇤ (resp., �00

⇤) denotes the pinning which is the union of �⇤ and u=+ (resp.,
u=�).

We deduce Lemma 3.3 from Theorem 4.1 and the second item of the following
lemma. The proof of Theorem 4.1 is presented in subsection 4.1.

Lemma 4.4. Let G = (V,E) be a connected graph, r 2 V be a vertex, and ⇤ ✓
V \{r} be such that G\⇤ is connected. Let T = TSAW(G,r) be the self-avoiding walk

tree of G rooted at r. Then for every �⇤ 2 {0,1}⇤ we have the following:

1. (See [34, Theorem 3.1].) Preservation of marginal of the root r:

M�⇤

G
(r) =M�⇤

T
(r) and R�⇤

G
(r) =R�⇤

T
(r).

2. Preservation of covariances and influences of r: for every v 2 V ,

K�⇤

G
(r, v) =

X

v̂2Cv

K�⇤

T
(r, v̂) and I�⇤

G
(r! v) =

X

v̂2Cv

I�⇤

T
(r! v̂),

where Cv is the set of all free (unfixed) copies of v in T .

Proof. By Theorem 4.1, there exists a polynomial P�⇤

G,r
= P�⇤

G,r
(�) such that

Z�⇤

T
= Z�⇤

G
· P�⇤

G,r
, and P�⇤

G,r
is independent of �r. Then it follows from Lemma 4.3

that

M�⇤

T
(r) =

✓
�r

@

@�r

◆
logZ�⇤

T
=

✓
�r

@

@�r

◆⇣
logZ�⇤

G
+ logP�⇤

G,r

⌘

=

✓
�r

@

@�r

◆
logZ�⇤

G
=M�⇤

G
(r),

and therefore R�⇤

T
(r) =R�⇤

G
(r). For the second item, again from Lemma 4.3 we get

K�⇤

G
(r, v) =

✓
�v

@

@�v

◆
M�⇤

G
(r) =

✓
�v

@

@�v

◆
M�⇤

T
(r).

Recall that for the spin system on the SAW tree T , every free copy v̂ of v from Cv has
the same external field �v̂ = �v. Then, by the chain rule of derivatives and Lemma
4.3, we deduce that

K�⇤

G
(r, v) =

X

v̂2Cv

✓
�v̂

@

@�v̂

◆
M�⇤

T
(r) · @�v̂

@�v
· �v
�v̂

=
X

v̂2Cv

K�⇤

T
(r, v̂).

Finally, we have

I�⇤

G
(r! v) =

✓
�v

@

@�v

◆
logR�⇤

G
(r) =

✓
�v

@

@�v

◆
logR�⇤

T
(r) =

X

v̂2Cv

I�⇤

T
(r! v̂),

where the last equality follows as above.

4.1. Proof of Theorem 4.1. Before presenting our proof, let us first review the
notation and definitions introduced earlier. Denote the set of fields at all vertices by
�= {�v : v 2 V }. For ⇤✓ V and �⇤ 2 {0,1}⇤, the weight of � 2 {0,1}V \⇤ conditional
on �⇤ is given by

wG(� | �⇤) = �m1(�|�⇤)�m0(�|�⇤)
Y

v2V \⇤

��v
v
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

6/
23

 to
 6

1.
79

.7
0.

15
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



RAPID MIXING OF GLAUBER DYNAMICS 209

where for i = 0,1, mi(· | �⇤) denotes the number of edges such that both endpoints
receive the spin i and at least one of them is in V \⇤. The partition function conditional
on �⇤ is defined as Z�⇤

G
=
P

�2{0,1}V \⇤ wG(� | �⇤). For the SAW tree, we define the
conditional weights and partition function in the same way. In particular, recall that
when we fix a conditioning �⇤ on the SAW tree, we also remove all descendants of
v̂ 2 Cv for each v 2⇤.

For every v 2 V \ ⇤ and i 2 {0,1}, we shall write v = i to represent the set of
configurations such that �v = i (i.e., {� 2 {0,1}V \⇤ : �v = i}) and let Z�⇤

G
(v = i) be

the sum of weights of all configurations with v = i. We further extend this notation
and write Z�⇤

G
(U = �U ) for every U ✓ V \⇤ and �U 2 {0,1}U . For the SAW tree we

adopt the same notation as well.

Proof of Theorem 4.1. We show that there exists a polynomial P�⇤

G,r
= P�⇤

G,r
(�),

independent of �r, such that

(4.1) Z�⇤

T
(r= 1) =Z�⇤

G
(r= 1) · P�⇤

G,r
and Z�⇤

T
(r= 0) =Z�⇤

G
(r= 0) · P�⇤

G,r
.

The high-level proof idea of (4.1) is similar to the corresponding result in [34, Theorem
3.1]. Let m be the number of edges with at least one endpoint in V \ ⇤. We use
induction on m. When m= 0 the statement is trivial since T =G. Assume that (4.1)
holds for all graphs and all conditioning with less than m edges. Suppose that the
root r has d neighbors v1, . . . , vd. Define G0 to be the graph obtained by replacing the
vertex r with d vertices r1, . . . , rd and then connecting {ri, vi} for 1 i d.

Consider first the case where (G \ {r}) \ ⇤ is still connected. For each i, let
Gi = G0 � ri. Define the 2-spin system on Gi with the same parameters (�,�,�)
plus the additional conditioning that the vertices r1, . . . , ri�1 are fixed to spin 0
while ri+1, . . . , rd are fixed to spin 1; we denote this conditioning by �Ui with
Ui = {r1, . . . , rd} \ {ri}. Then, T = TSAW(G,r) can be generated by the following
recursive procedure. Also see Figure 2 for an illustration.

G

r

v1 v2 v3
G2

v1 v2 v3

r1 r3

G3

r2

v1 v2 v3

r1

G1

r2

v1 v2 v3

r3 v1

T1

v2

T2

v3

T3

v1

T1

v2

T2

v3

T3

r

TSAW(G, r)

Fig. 2. A recursive construction of the self-avoiding walk (SAW) tree. Here Ti is the SAW tree
of Gi rooted at vi for i= 1,2,3. (•/�: fixed to spin 1/0.)
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210 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

Algorithm. TSAW(G,r).

1. For each i, let Ti = TSAW(Gi, vi) with the conditioning �Ui ;
2. Let T = TSAW(G,r) be the union of r and T1, . . . , Td by connecting {r, vi} for

1 i d; output T .
For the purposes of the proof, we also consider the 2-spin system on G0 with the

same parameters (�,�,�), with the exception that we let the vertices r1, . . . , rd have
no fields (i.e., setting �ri = 1 for 1 i d instead of �r). We then observe that

Z�⇤

G
(r= 1) = �r ·Z�⇤

G
0 (r1 = 1, . . . , rd = 1),

and the same holds with spin 1 replaced by 0. For 1 i d, let �⇤i denote the union
of the conditioning �⇤ and �Ui , where ⇤i =⇤[Ui. Then for every 1 i d we have

Z�⇤

G
0 (r1 = 0, . . . , ri�1 = 0, ri = 1, . . . , rd = 1) = � ·Z�⇤i

Gi
(vi = 1) +Z

�⇤i
Gi

(vi = 0).

Notice that both sides are independent of the field �r: for the left side, all ri’s do not
have a field for the spin system on G0; for the right side, recall that we do not count
the weight of fixed vertices for the conditional partition function for each Gi. Now
define Q�⇤

G,r
=Q�⇤

G,r
(�) by

Q�⇤

G,r
=

dY

i=2

Z�⇤

G
0 (r1 = 0, . . . , ri�1 = 0, ri = 1, . . . , rd = 1),

which is independent of �r. Then we get

Z�⇤

G
(r= 1) ·Q�⇤

G,r
= �r ·

dY

i=1

Z�⇤

G
0 (r1 = 0, . . . , ri�1 = 0, ri = 1, . . . , rd = 1)

= �r ·
dY

i=1

�
� ·Z�⇤i

Gi
(vi = 1) +Z

�⇤i
Gi

(vi = 0)
�
.

Using a similar argument, we also have

Z�⇤

G
(r= 0) ·Q�⇤

G,r
=

dY

i=1

Z�⇤

G
0 (r1 = 0, . . . , ri = 0, ri+1 = 1, . . . , rd = 1)

=
dY

i=1

�
Z

�⇤i
Gi

(vi = 1) + � ·Z�⇤i
Gi

(vi = 0)
�
.

Since we assume that (G \ {r}) \ ⇤ is connected, the graph Gi \ ⇤ is also connected
for each i. Then, by the induction hypothesis, for each i there exists a polynomial
P

�⇤i
Gi,vi

= P
�⇤i
Gi,vi

(�) such that

Z
�⇤i
Ti

(r= 1) =Z
�⇤i
Gi

(r= 1) · P�⇤i
Gi,vi

and Z
�⇤i
Ti

(r= 0) =Z
�⇤i
Gi

(r= 0) · P�⇤i
Gi,vi

;

these polynomials are independent of �r since the conditional partition functions for
the Gi’s do not involve �r. Now if we let

P�⇤

G,r
=Q�⇤

G,r
·

dY

i=1

P
�⇤i
Gi,vi

,
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RAPID MIXING OF GLAUBER DYNAMICS 211

then it follows from the tree recursion that

Z�⇤

T
(r= 1) = �r ·

dY

i=1

�
� ·Z�⇤i

Ti
(vi = 1) +Z

�⇤i
Ti

(vi = 0)
�

= �r ·
dY

i=1

⇣
� ·Z�⇤i

Gi
(vi = 1) · P�⇤i

Gi,vi
+Z

�⇤i
Gi

(vi = 0) · P�⇤i
Gi,vi

⌘

=Z�⇤

G
(r= 1) ·Q�⇤

G,r
·

dY

i=1

P
�⇤i
Gi,vi

=Z�⇤

G
(r= 1) · P�⇤

G,r
.

The other equality Z�⇤

T
(r = 0) = Z�⇤

G
(r = 0) · P�⇤

G,r
is established in the same way.

This completes the proof for the case when (G \ {r}) \⇤ is connected.
If (G \ {r}) \ ⇤ has two or more connected components, then we can construct

TSAW(G,r) by the SAW tree of each component. Recall that G0 is defined by splitting
the vertex r into d copies in the graph G. Suppose that G0 \ ⇤ has k connected
components for an integer k � 2. Let G0

(1), . . . ,G
0
(k) be the subgraphs induced by

each component, together with vertices from ⇤ that are adjacent to it. For each
j, let G(j) be the graph obtained from G0

(j) by contracting all copies of r into one
vertex r(j), and let T(j) = TSAW(G0

(j), r(j)). Observe that once we contract the roots
r(1), . . . , r(k) of T(1), . . . , T(k), the resulting tree is TSAW(G,r).

We define the 2-spin system on each G(j) with the same parameters (�,�,�),
except that the vertex r(j) does not have a field (i.e., �r(j) = 1 instead of �r). For 1
j  k, let ⇤(j) =⇤\V (G(j)), and let �⇤(j)

be the configuration �⇤ restricted on ⇤(j).
Then G(j) \⇤(j) is connected for every j, and since k� 2, each G(j) with conditioning
�⇤(j)

has fewer than m edges. Thus, we can apply the induction hypothesis; namely,

for 1 j  k there exists a polynomial P
�⇤

(j)

G(i),r(i)
= P

�⇤
(j)

G(i),r(i)
(�), which is independent

of �r, such that

Z
�⇤

(j)

T(j)
(r(j) = 1) =Z

�⇤
(j)

G(j)
(r(j) = 1) · P

�⇤
(j)

G(j),r(j)

and Z
�⇤

(j)

T(j)
(r(j) = 0) =Z

�⇤
(j)

G(j)
(r(j) = 0) · P

�⇤
(j)

G(j),r(j)
.

We define the polynomial P�⇤

G,r
= P�⇤

G,r
(�) to be

P�⇤

G,r
=

kY

j=1

P
�⇤

(j)

G(j),r(j)
.

It is then easy to check that

Z�⇤

T
(r= 1) = �r ·

kY

j=1

Z
�⇤

(j)

T(j)
(r(j) = 1) = �r ·

kY

j=1

⇣
Z

�⇤
(j)

G(j)
(r(j) = 1) · P

�⇤
(j)

G(j),r(j)

⌘

=Z�⇤

G
(r= 1) ·

kY

j=1

P
�⇤

(j)

G(j),r(j)
=Z�⇤

G
(r= 1) · P�⇤

G,r
,

and similarly, Z�⇤

T
(r= 0) =Z�⇤

G
(r= 0) · P�⇤

G,r
. The theorem then follows.

5. Influence bound for trees. In this section, we study the influences of the
root on other vertices in a tree. We give an upper bound on the total influences of
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212 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

the root on all vertices at a fixed distance away. To do this, we apply the potential
method, which has been used to establish the correlation decay property (see, e.g.,
[20, 21, 15]). Given an arbitrary potential function  , our upper bound is in terms of
properties of  , involving bounds on krH 

d
k1 and | | where  = 0. We then deduce

Lemma 3.5 in the case where  is an (↵, c)-potential.
Assume that T = (VT ,ET ) is a tree rooted at r of maximum degree at most �.

Let ⇤✓ VT \ {r} and �⇤ 2 {0,1}⇤ be arbitrary and fixed. Consider the 2-spin system
on T, with parameters (�,�,�), conditioned on �⇤. We need to bound the influence
I�⇤

T
(r! v) from the root r to another vertex v 2 VT . Notice that if v is disconnected

from r when ⇤ is removed, then I�⇤

T
(r ! v) = 0 by the Markov property of spin

systems. Therefore, we may assume that, by removing all such vertices, ⇤ contains
only leaves of T .

For a vertex v 2 VT , let Tv = (VTv ,ETv ) be the subtree of T rooted at v that
contains all descendants of v; note that Tr = T . We will write Lv(k)✓ VT \⇤ for the
set of all free vertices at distance k away from v in Tv. We pay particular attention to
the marginal ratio at v in the subtree Tv and write Rv = R�⇤

Tv
(v) for simplicity. The

logRv’s are related by the tree recursion H. If a vertex v has d children, denoted by
u1, . . . , ud, then the tree recursion is given by

logRv =Hd(logRu1
, . . . , logRud),

where for 1 d� and (y1, . . . , yd)2 [�1,+1]d,

Hd(y1, . . . , yd) = log�+
dX

i=1

log

✓
�eyi + 1

eyi + �

◆
.

Also recall that for y 2 [�1,+1], we define

h(y) =� (1� ��)ey

(�ey + 1)(ey + �)

and @

@yi
Hd(y1, . . . , yd) = h(yi) for all 1 i d�.

The following lemma allows us to bound the sum of all influences from the root
to distance k using an arbitrary potential function.

Lemma 5.1. Let  : [�1,+1] ! (�1,+1) be a di↵erentiable and increasing

(potential) function with image S =  [�1,+1] and derivative  =  0
. Denote the

degree of the root r by �r. Then for every integer k� 1,

X

v2Lr(k)

|I�⇤

T
(r! v)|�rA B 

 
max

1d<�
sup
ỹ2Sd

��rH 
d
(ỹ)
��
1

!k�1

,

where

A = max
u2Lr(1)

⇢
|h(logRu)|
 (logRu)

�
and B = max

v2Lr(k)
{ (logRv)} .

Before proving Lemma 5.1, we first present two useful properties of the influences
on trees. First, it was shown in [3] that the influences satisfy the following form of
chain rule on trees.
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RAPID MIXING OF GLAUBER DYNAMICS 213

Lemma 5.2 ([3, Lemma B.2]). Suppose that u, v,w 2 VT are three distinct vertices

such that u is on the unique path from v to w. Then

I�⇤

T
(v!w) = I�⇤

T
(v! u) · I�⇤

T
(u!w).

Second, for two adjacent vertices on a tree, the influence from one to the other is
given by the function h.

Lemma 5.3. Let v 2 VT , and let u be a child of v in the subtree Tv. Then

I�⇤

T
(v! u) = h(logRu).

Proof. The lemma can be proved through an explicit computation of the influence.
Here we present a more delicate proof utilizing Lemma 4.3, which gives some insight
into the relation between the influence and the function h. We assume that v has d
children in the subtree Tv, denoted by u1 = u and u2, . . . , ud, respectively. We also
assume, as a more general setting than uniform fields, that each vertex w is attached
to a field �w of its own. Then Lemma 4.3 and the tree recursion imply that

I�⇤

T
(v! u) = I�⇤

Tv
(v! u) =

✓
�u

@

@�u

◆
logRv

=

✓
�u

@

@�u

◆
Hd(logRu1

, . . . , logRud)

=
dX

i=1

@

@ logRui

Hd(logRu1
, . . . , logRud) ·

✓
�u

@

@�u

◆
logRui

=
dX

i=1

h(logRui) · I
�⇤

Tui
(ui ! u) = h(logRu),

where the last equality is due to I�⇤

Tui
(ui ! u) = 0 for ui 6= u since u /2 Tui , and

I�⇤

Tu
(u ! u) = 1. Note that the argument still holds even if some children ui’s are

fixed to certain spins.

We are now ready to prove Lemma 5.1.

Proof of Lemma 5.1. For a vertex v 2 VT , denote the number of its children by
dv; note that dr =�r. Let u1, . . . , u�r be the children of the root r. We may assume
that all these children of r are free, since if ui is fixed, then I�⇤

T
(r ! ui) = 0 by

definition. Then by Lemmas 5.2 and 5.3, we get

X

v2Lr(k)

|I�⇤

T
(r! v)|=

�rX

i=1

|I�⇤

T
(r! ui)| ·

0

@
X

v2Lui (k�1)

|I�⇤

T
(ui ! v)|

1

A

=
�rX

i=1

|h(logRui)| ·

0

@
X

v2Lui (k�1)

|I�⇤

T
(ui ! v)|

1

A

=
�rX

i=1

|h(logRui)|
 (logRui)

·

0

@
X

v2Lui (k�1)

 (logRui) |I
�⇤

T
(ui ! v)|

1

A .
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214 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

Hence, we obtain that
X

v2Lr(k)

|I�⇤

T
(r! v)|�r · max

1i�r

⇢
|h(logRui)|
 (logRui)

�
(5.1)

· max
1i�r

8
<

:
X

v2Lui (k�1)

 (logRui) |I
�⇤

T
(ui ! v)|

9
=

; .

Next, we show by induction that for every vertex u 2 VT \ {r} and every integer
k� 0 we have X

v2Lu(k)

 (logRu) |I�⇤

T
(u! v)|(5.2)

 max
v2Lu(k)

{ (logRv)} ·
 

max
w2VTu

sup
ỹ2Sdw

��rH 
dw

(ỹ)
��
1

!k

.

Observe that once we establish (5.2), the lemma follows immediately by plugging (5.2)
into (5.1). We will use induction on k to prove (5.2). When k = 0, if u 2 ⇤ is fixed,
then Lu(0) = ; and there is nothing to show; otherwise, (5.2) becomes

 (logRu) |I�⇤

T
(u! u)|  (logRu),

which holds with equality since I�⇤

T
(u ! u) = 1. Now suppose that (5.2) holds for

some integer k � 1 � 0 (and for every vertex u 2 VT \ {r}). Let u 2 VT \ {r} be
arbitrary, and denote the children of u by w1, . . . ,wd, where 1 d<� (if d= 0, then
Lu(k) = ; and (5.2) holds trivially). Again by Lemmas 5.2 and 5.3 we haveX

v2Lu(k)

 (logRu) |I�⇤

T
(u! v)|

=
dX

i=1

 (logRu) |I�⇤

T
(u!wi)|

X

v2Lwi (k�1)

|I�⇤

T
(wi ! v)|

=
dX

i=1

 (logRu)

 (logRwi)
|h(logRwi)|

X

v2Lwi (k�1)

 (logRwi) |I
�⇤

T
(wi ! v)| .

Using the induction hypothesis, we getX

v2Lu(k)

 (logRu) |I�⇤

T
(u! v)|


dX

i=1

 (logRu)

 (logRwi)
|h(logRwi)|

· max
v2Lwi (k�1)

{ (logRv)} ·
 

max
w2VTwi

sup
ỹ2Sdw

��rH 
dw

(ỹ)
��
1

!k�1

 max
v2Lu(k)

{ (logRv)}

·
 

max
w2VTu\{u}

sup
ỹ2Sdw

��rH 
dw

(ỹ)
��
1

!k�1

·
dX

i=1

 (logRu)

 (logRwi)
|h(logRwi)|

 max
v2Lu(k)

{ (logRv)} ·
 

max
w2VTu

sup
ỹ2Sdw

��rH 
dw

(ỹ)
��
1

!k

,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

6/
23

 to
 6

1.
79

.7
0.

15
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



RAPID MIXING OF GLAUBER DYNAMICS 215

where the last inequality follows from the following calculation:

dX

i=1

 (logRu)

 (logRwi)
|h(logRwi)|=

dX

i=1

����
@

@ (logRwi)
H 

d
( (logRw1

), . . . , (logRwd))

����

=
��rH 

d
( (logRw1

), . . . , (logRwd))
��
1
.

This establishes (5.2) and thus completes the proof of the lemma.

We then derive Lemma 3.5 as a corollary.

Proof of Lemma 3.5. Since  is an (↵, c)-potential, the contraction condition
implies that

max
1d<�

sup
ỹ2Sd

��rH 
d
(ỹ)
��
1
 1� ↵.

Meanwhile, since the degree of a vertex v 2 VT \ {r} in the subtree Tv is less than �,
we have logRv 2 J . Then the boundedness condition implies that for all u 2 Lr(1)
and v 2Lr(k),

 (logRv)

 (logRu)
· |h(logRu)|

c

�
.

Therefore, we get

�rA B =�r · max
u2Lr(1)

⇢
|h(logRu)|
 (logRu)

�
· max
v2Lr(k)

{ (logRv)} c.

The lemma then follows immediately from Lemma 5.1.

6. Verifying a good potential: Contraction. In this section, we make a first
step for proving Lemma 3.6. Let � � 3 be an integer. Let �,�,� be reals such that
0  �  �, � > 0, �� < 1, and � > 0. Recall that we define our potential function
 : [�1,+1]! (�1,+1) through its derivative by

 0(y) =  (y) =

s
(1� ��)ey

(�ey + 1)(ey + �)
,  (0) = 0.

We include a short proof in Appendix C to show that  is well-defined. If (�,�,�)
is up-to-� unique with gap � 2 (0,1), then we show that  satisfies the contraction
condition for ↵= �/2. This holds for all parameters (�,�,�) in the uniqueness region,
without requiring that �  1. Later, in Appendix E we establish the boundedness
condition for  when �  1, completing the proof of Lemma 3.6. The case of � > 1
is more complicated and is deferred to section 7. We refer the reader to [21] for a
heuristic justification of this potential function.

Before giving our proof, we first point out that the potential function  is es-
sentially the same potential function � used in [21] (notice that [21] uses ' as the
notation of the potential function and �= '0 for its derivative). Recall that the tree
recursion for the marginal ratios is given by the function Fd : [0,+1]d ! [0,+1]
where 1 d� such that for all (x1, . . . , xd)2 [0,+1]d,

Fd(x1, . . . , xd) = �
dY

i=1

�xi + 1

xi + �
.
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216 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

The potential function � : [0,+1]! (�1,+1) from [21] is defined implicitly via its
derivative as

�0(x) ='(x) =
1p

x(�x+ 1)(x+ �)
, �(1) = 0.

The following lemma explains how we obtain our potential  from �.

Lemma 6.1. We have  =
p
1� �� · (� � exp); namely,  (y) =

p
1� �� ·�(ey)

for all y 2 [�1,+1].

Proof. It is straightforward to check that

 (y) =

s
(1� ��)ey

(�ey + 1)(ey + �)

=
p
1� �� · ey ·

s
1

ey(�ey + 1)(ey + �)
=
p

1� �� · ey'(ey).

Therefore,

 (y) =

Z
y

0
 (t)dt=

p
1� �� ·

Z
y

0
et'(et)dt

=
p
1� �� ·

Z
e
y

1
'(s)ds=

p
1� �� ·�(ey).

Combining the results of Lemmas 12, 13, and 14 from [21], we get that the poten-
tial function � satisfies the following gradient bound when the parameters (�,�,�) are
in the uniqueness region. Note that this can be regarded as the contraction condition
but rather for � and Fd.

Theorem 6.2 ([21]). Let S� = �[0,+1] be the image of �. If the parameters

(�,�,�) are up-to-� unique with gap � 2 (0,1), then for every integer d such that

1 d<� and every (x̃1, . . . , x̃d)2 Sd

�,

��rF�
d
(x̃1, . . . , x̃d)

��
1

p
1� �,

where F�
d
=� � Fd ���1

.

Recall our definition from subsection 1.1. The tree recursion, in terms of the log
marginal ratios, is described by the function Hd : [�1,+1]d ! [�1,+1] where
1 d� such that for every (y1, . . . , yd)2 [�1,+1]d,

Hd(y1, . . . , yd) = log�+
dX

i=1

log

✓
�eyi + 1

eyi + �

◆
.

Observe that Hd = log �Fd � exp, since we move from ratios to log ratios. We are now
ready to establish the contraction condition for  .

Lemma 6.3. Let S = [�1,+1] be the image of  . If the parameters (�,�,�)
are up-to-� unique with gap � 2 (0,1), then for every integer d such that 1  d < �
and every (ỹ1, . . . , ỹd)2 Sd

 ,

��rH 
d
(ỹ1, . . . , ỹd)

��
1

p
1� �,

where H 
d
= �Hd � �1

.
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RAPID MIXING OF GLAUBER DYNAMICS 217

Proof. Define the linear function a : R ! R to be a(x) =
p
1� �� · x for x 2 R.

Then Lemma 6.1 gives  = a �� � exp, and thereby  � log = a ��. It follows that for
every 1 d<�,

H 
d
= �Hd � �1 = � log �Fd � exp� �1 = a �� � Fd ���1 � a�1 = a � F�

d
� a�1.

That means for every (ỹ1, . . . , ỹd)2 Sd

 we have

H 
d
(ỹ1, . . . , ỹd) =

p
1� �� · F�

d
(x̃1, . . . , x̃d),

where x̃i = ỹi/
p
1� �� for 1 i d. Then, for each i,

@

@ỹi
H 

d
(ỹ1, . . . , ỹd) =

p
1� �� · @

@x̃i

F�
d
(x̃1, . . . , x̃d) ·

dx̃i

dỹi
=

@

@x̃i

F�
d
(x̃1, . . . , x̃d).

This implies that rH 
d
(ỹ1, . . . , ỹd) = rF�

d
(x̃1, . . . , x̃d) for all (ỹ1, . . . , ỹd) 2 Sd

 , and
the lemma then follows from Theorem 6.2.

7. Remaining antiferromagnetic cases:
p
��  ��2

�
and � > 1. In this

section, we discuss the case where
p
��  ��2

� and � > 1. As studied in [21], in
this case the uniqueness region is more complicated. For example, there exists a
critical �⇤

c
> 0 such that the 2-spin system with �< �⇤

c
is in the uniqueness region for

arbitrary graphs; namely, (�,�,�) is up-to-1 unique. To deal with large degrees, we
need to relax the boundedness condition in Definition 1.4 and define a more general
version of (↵, c)-potentials. We shall see that Theorem 1.5 still holds for this general
(↵, c)-potential. The reason behind this is that in order to bound the maximum
eigenvalue of the influence matrix, it su�ces to consider a vertex-weighted sum of
absolute influences of a vertex with large degree.

Remark 7.1. We give more background on the uniqueness region in Appendix
E.1. Note that in a recent revision of [21], the authors updated the descriptions of
the uniqueness region for the case where

p
��  ��2

� and � > 1, fixing a small error
in the previous version. Statements and proofs in this section and Appendix E of this
paper are also adjusted accordingly based on the updated preprint [22].

Recall that our goal is to bound the maximum eigenvalue of the matrix I�⇤

G
.

We can do this by upper bounding the absolute row sum
P

v2V \⇤ |I
�⇤

G
(r ! v)| for

fixed r, thereby giving a valid upper bound on �max(I�⇤

G
). However, this approach

does not work when
p
��  ��2

� and � > 1. In this case, the potential  fails
to be an (↵, c)-potential for a universal constant c independent of �. In fact, no
such (↵, c)-potentials exist, as the absolute row sum

P
v2V \⇤ |I

�⇤

G
(r ! v)| can be

as large as ⇥(�). Especially, if the parameters (�,�,�) are up-to-1 unique, which
means the spin system has uniqueness for arbitrary graphs, then the absolute row
sum

P
v2V \⇤ |I

�⇤

G
(r ! v)| can be ⇥(n) where n = |V |. We give a specific example

where this is the case.

Example 7.2. Consider the antiferromagnetic 2-spin system specified by parame-
ters � = 0, � > 1, and � > 0 on the star graph centered at r with � < 1 leaves. A
simple calculation reveals that |IG(r! v)| = �

�+�
for any leaf vertex v 6= r. Hence,P

v 6=r
|IG(r! v)|=� · �

�+�
. Now, since � > 1, we have

�c = �c(�,�) = min
1<d<�

�d+1dd

(d� 1)d+1
=⇥�(1),
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218 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

forcing
P

v 6=r
|IG(r! v)| = ⇥�(�) even when � < �c lies in the uniqueness region.

However, we still have �max(IG) =O(1) since
P

v 6=r
|IG(v! r)|=O(1).

To solve this issue, one might want to consider the absolute column sum, involving
the sum of absolute influences on a fixed vertex. However, this will not allow us to
use the beautiful connection between graphs and SAW trees as shown in Lemma 3.3.
Instead, we consider here a vertex-weighted version of the absolute row sum of I�⇤

G
,

which also upper bounds the maximum eigenvalue.

Lemma 7.3. Let ⇢ : V !R+
be a positive weight function of vertices. If there is

a constant ⇠ > 0 such that for every r 2 V we have

(7.1)
X

v2V \⇤

⇢v · |I�⇤

G
(r! v)| ⇠ · ⇢r,

then �max(I�⇤

G
) ⇠.

Proof. Let P = diag{⇢v : v 2 V \ ⇤}. Then the assumption is equivalent to
kP�1I�⇤

G
Pk1  ⇠. It follows that �max(I�⇤

G
) = �max(P�1I�⇤

G
P) ⇠.

We then modify our definition of (↵, c)-potentials from Definition 1.4 which allows
a weaker boundedness condition. We remark that the only two di↵erences between
Definitions 1.4 and 7.4 is that we allow �=1 and that the boundedness condition is
relaxed to what we call General Boundedness. Recall that for every 0 d<�, we let
Jd = [log(��d), log(�/�d)] when �� < 1, and Jd = [log(�/�d), log(��d)] when �� > 1.

Definition 7.4 (general (↵, c)-potential function). Let � � 3 be an integer,

or let � = 1. Let �,�,� be reals such that 0  �  �, � > 0, and � > 0. Let

 : [�1,+1] ! (�1,+1) be a di↵erentiable and increasing function with image

S =  [�1,+1] and derivative  =  0
. For any ↵ 2 (0,1) and c > 0, we say  

is a general (↵, c)-potential function with respect to � and (�,�,�) if it satisfies the

following conditions:

1. (Contraction) For every integer d such that 1  d < �, and every tuple

(ỹ1, . . . , ỹd)2 Sd
, we have

��rH 
d
(ỹ1, . . . , ỹd)

��
1
=

dX

i=1

 (y)

 (yi)
· |h(yi)| 1� ↵,

where H 
d
= �Hd � �1

, yi = �1(ỹi) for 1 i d, and y=Hd(y1, . . . , yd).
2. (General Boundedness) For all integers d1, d2 such that 0  d1, d2 < �, and

all reals y1 2 Jd1
, y2 2 Jd2

, we have

 (y2)

 (y1)
· |h(y1)|

2c

d1 + d2 + 2
.

Notice that General Boundedness is a weaker condition than Boundedness. To
see this, if a potential function  satisfies Boundedness with parameter c, then for
every 0 di <� and every yi 2 Jdi where i= 1,2 we have

 (y2)

 (y1)
· |h(y1)|

c

�
 2c

d1 + d2 + 2
.

The following theorem generalizes Theorem 1.5 and shows that a general (↵, c)-
potential function is su�cient to establish rapid mixing of the Glauber dynamics.
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RAPID MIXING OF GLAUBER DYNAMICS 219

Theorem 7.5. Let �� 3 be an integer, or let �=+1. Let �,�,� be reals such

that 0 �  �, � > 0, and �> 0. Suppose that there is a general (↵, c)-potential with
respect to � and (�,�,�) for some ↵2 (0,1) and c > 0. Then for every n-vertex graph

G of maximum degree �, the mixing time of the Glauber dynamics for the 2-spin
system on G with parameters (�,�,�) is O(n2+2c/↵).

We then give a counterpart of Lemma 3.6, showing that  is a general (↵, c)-
potential when

p
��  ��2

� and � > 1. Theorem 1.3 for this case is then obtained
from Theorem 7.5 and Lemma 7.6.

Lemma 7.6. Let �� 3 be an integer. Let �,�,� be reals such that 0 � < 1< �
and

p
��  ��2

� . Assume that (�,�,�) is up-to-� unique with gap � 2 (0,1). Then

the function  defined implicitly by (3.3) is a general (↵, c)-potential function with

↵� �/2 and c 18; we can further take c 4 if � = 0.

The proof of Theorem 7.5 can be found in Appendix D. For Lemma 7.6, the
contraction condition of  follows from Lemma 6.3, and General Boundedness is
proved in Appendix E together with all other cases.

8. Ferromagnetic cases. In the ferromagnetic case, the best known correlation
decay results are given in [15, 29]. Using the potential functions in [15] and [16, 30],
we show the following two results, which match the known correlation decay results.
See [15, 14] for further discussion on the tightness of these results.

To establish our next result, we use the potential function from [29], which turns
out to be an (↵, c)-potential function for constants ↵=⇥(�) and c=O(1).

Theorem 8.1. Fix an integer � � 3, real numbers �,�,� > 0, and 0 < � < 1,
and assume (�,�,�) satisfies one of the following three conditions:

1. ��2+�

���

p
��  ���

��2+�
, and �> 0 is arbitrary;

2.
p
�� � �

��2 and 0< � (1� �) �

max{1,���1}·((��2)����) ;

3.
p
�� � �

��2 and �� 1
1��

· (��2)����
�·min{1,1/���1} .

Then the identity function  (y) = y (based on the potential given in [29]) is an

(↵, c)-potential function for ↵=⇥(�) and cO(1). Furthermore, for every n-vertex
graph G of maximum degree at most �, the mixing time of the Glauber dynamics for

the 2-spin system on G with parameters (�,�,�) is O(n2+c/�) for a universal constant

c > 0.

Remark 8.2. Condition 1 includes both the ferromagnetic case 1<
p
��  ���

��2+�

and the antiferromagnetic case ��2+�

���


p
�� < 1. Note that in both cases (�,�,�)

is up-to-� unique with gap �. For the antiferromagnetic case, the identity function
 is an (↵, c)-potential with c  1.5 and a better contraction rate ↵ � �, compared
with the bound ↵ � �/2 of the potential  given by (3.3) in Lemma 3.6. For the
ferromagnetic case with � = � > 1 (Ising model), a stronger result by [25] was known,
which gives O(n logn) mixing.

The potential function from [15] is indeed an (↵, c)-potential, but c must, un-
fortunately, depend on �. We have the following result, which is weaker than the
correlation decay algorithm in [15] for unbounded degree graphs.

Theorem 8.3. Fix an integer � � 3 and nonnegative real numbers �,�,� sat-

isfying �  1  �,
p
�� � �

��2 , and � <
⇣

�

�

⌘ p
��p

���1

. Then for every n-vertex graph

G with maximum degree at most �, the mixing time of the Glauber dynamics for the

ferromagnetic 2-spin system on G with parameters (�,�,�) is O(nC) for a constant

C depending only on �,�,�,� but not n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

6/
23

 to
 6

1.
79

.7
0.

15
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



220 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

Proofs of these theorems are provided in Appendix F.

9. Further remarks. In this work, we essentially showed that if the tree recur-
sion for a 2-spin system contracts under a suitable potential function with rate 1� �,
then nO(1/�) mixing holds. However, we believe the following folklore conjecture holds.

Conjecture 9.1. Fix � � 3 and nonnegative real numbers �,�,� satisfying

�� < 1 and 0< � < 1, and assume (�,�,�) is up-to-� unique with gap �. Then there

exists a C = C(�,�,�, �) such that the Glauber dynamics mixes in at most Cn logn
steps for all n-vertex graphs of maximum degree at most �.

Since the preliminary proceedings version of this paper [11], great progress has
been made towards the conjecture and it has been proved for most cases including
both the Ising and the hardcore model; see [11, 8, 7, 3, 10, 9].

Appendix A. Proof of main results. In this section we give the proofs of
Theorems 1.1–1.3 and 1.5.

Proof of Theorem 1.5. Note that since the transition matrix P for the Glauber
dynamics has all nonnegative eigenvalues, we have that �⇤(P ) = 1� �2(P ), and so in
order to deduce the mixing time, it su�ces to lower bound 1� �2(P ). We do this by
employing Theorem 3.2. It su�ces to show (⌘0, . . . ,⌘n�2)-spectral independence for
su�ciently small ⌘i.

To bound ⌘i, it su�ces to bound
P

v2V \{r} |I
�⇤

G
(r! v)| for all graphs G= (V,E)

with n= |V | vertices and all boundary conditions �⇤ on a subset ⇤ of i vertices. We
claim the following:

(A.1)
X

v2V \{r}

|I�⇤

G
(r! v)|min

n c

↵
,C(n� i� 1)

o
,

where C 2 (0,1) is a constant depending only on �,�,�,�. The first upper bound c

�

is deduced by

(Lemma 3.3; T = TSAW(G,r))
P

v2V \{r} |I
�⇤

G
(r! v)|

X

v2VT \{r}

|I�⇤

T
(r! v)|

(split the sum by levels) =
1X

k=1

X

v2Lr(k)

��I�⇤⇤

T
(r! v)

��

(Lemma 3.5)  c
1X

k=1

(1� ↵)k�1

=
c

↵
.

The second upper bound C(n � i � 1) is more trivial. Intuitively, it means each
absolute pairwise influence |I�⇤

G
(r! v)| is at most some constant C, and hence the

sum of absolute influences is upper bounded by C(n�i�1). The following two claims,
whose proofs are provided in Appendix A.2, give a more precise statement.

Claim A.1 (antiferromagnetic case). Fix an integer � � 3 and real numbers

�,�,�, and assume 0  �  �, � > 0, �� < 1, and � > 0. Then for every n-vertex
graph G of maximum degree at most �, the antiferromagnetic 2-spin system on G with

parameters (�,�,�) is Cn-spectrally independent for a constant 0<C < 1 depending

only on �,�,�,�. Furthermore, if (�,�,�) is up-to-� unique, then we can drop the

dependence on �.

Claim A.2 (ferromagnetic case). Fix an integer �� 3 and positive real numbers

�,�,�, and assume �  � and �� > 1. Then for every n-vertex graph G of maximum
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RAPID MIXING OF GLAUBER DYNAMICS 221

degree at most �, the ferromagnetic 2-spin system on G with parameters (�,�,�) is

Cn-spectrally independent for a constant 0<C < 1 depending only on �,�,�,�.

With (A.1) in hand, we immediately see that by Theorem 3.2,

1� �2(P )� 1

n

n�2Y

i=0

✓
1� ⌘i

n� i� 1

◆

� 1

n
· (1�C)2dc/↵e�1 ·

n�2dc/↵e�1Y

i=0

✓
1� c

↵
· 1

n� i� 1

◆
.

Using the fact that 1 � x � exp(�x � x2) for all 0  x  1
2 (which can be proved

straightforwardly by calculus), we get

n�2dc/↵e�1Y

i=0

✓
1� c

↵
· 1

n� i� 1

◆
=

n�1Y

j=2dc/↵e

✓
1� c

↵
· 1
j

◆

� exp

0

@� c

↵

n�1X

j=2dc/↵e

1

j
� c2

↵2

n�1X

j=2dc/↵e

1

j2

1

A .

Now since

n�1X

j=2dc/↵e

1

j


nX

j=2

1

j

Z

n

1

dx

x
= logn

and

n�1X

j=2dc/↵e

1

j2


1X

j=2

1

j(j � 1)
= 1,

we deduce that

1� �2(P )� (1�C)2dc/↵e�1 · e�(c/↵)2 · n�(1+c/↵).

The theorem then follows from (2.1).

Proof of Theorem 1.3. We leverage Theorems 1.5 and 7.5, which show O(n2+ c
↵ )

mixing as long as there is an (↵, c)-potential, or O(n2+ 2c
↵ ) mixing if there is a general

(↵, c)-potential. We use the potential given by (3.3), which is an adaptation of the
potential function in [21] to the log marginal ratios. When (�,�,�) is up-to-� unique
with gap � 2 (0,1), it is an (↵, c)-potential or a general (↵, c)-potential by Lemmas 3.6
and 7.6, with ↵� �/2 and c a universal constant specified by the range of parameters.
The theorem then follows.

Proof of Theorem 1.1. By Claim A.3 later in Appendix A.1, �  (1 � �)�c(�)
implies up-to-� uniqueness with gap � �/4. Since �  1, we can again appeal to
Lemma 3.6 to obtain an (↵, c)-potential with ↵ � �/8 and c  4. Theorem 1.1 then
follows by Theorem 1.5 with O(n2+32/�) mixing.

Proof of Theorem 1.2. By Claim A.4 later in Appendix A.1, � � �c(�) + �(1�
�c(�)) implies up-to-� uniqueness with gap �. Again, appealing to Lemma 3.6, we
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222 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

obtain an (↵, c)-potential with ↵ � �/2 and c  1.5. Theorem 1.2 then follows by
Theorem 1.5 with O(n2+3/�) mixing.

Though we technically get O(n2+3/�) by using the potential function in [21], we
can improve it to O(n2+1.5/�) mixing by using the trivial identity function as the
potential. See the first case of Theorem 8.1 (proved in Appendix F.1) and Remark
8.2.

A.1. Uniqueness gaps in terms of parameter gaps. In this subsection we
state and prove Claims A.3 and A.4, which relate the parameter gaps with the unique-
ness gaps.

Claim A.3 (hardcore model; Lemma C.1 from [3]). Fix an integer � � 3,
0 < � < 1, and � = 0,� > 0. If �  (1 � �)�c(�,�), then (�,�,�) is up-to-�
unique with gap �/4.

Claim A.4 (large
p
��). Fix an integer � � 3 and 0 < � < 1. If

p
�� �

��2
� +�

�
1� ��2

�

�
= ��2(1��)

� , then (�,�,�) is up-to-� unique with gap 0< � < 1 for

all �. Note that if � = �, this is precisely the condition � � �c(�) + �(1� �c(�)).

Proof. Consider the univariate recursion for the marginal ratios with d <� chil-

dren fd(R) = �
⇣

�R+1
R+�

⌘d
. Di↵erentiating, we have

fd0(R) = d�

✓
�R+ 1

R+ �

◆d�1

·
✓

�

R+ �
� �R+ 1

(R+ �)2

◆

=�d(1� ��)�

✓
�R+ 1

R+ �

◆d

· 1

(�R+ 1)(R+ �)

=�d(1� ��) · fd(R)

(�R+ 1)(R+ �)
.

At the unique fixed point R⇤
d
, we have fd(R⇤

d
) =R⇤

d
, so

|fd0(R⇤
d
)|= d(1� ��)

R⇤
d

(�R⇤
d
+ 1)(R⇤

d
+ �)

.

By Lemma E.3, we have the upper bound

|fd0(R⇤
d
)| d · 1� ��

(1 +
p
��)2

= d · 1�
p
��

1 +
p
��

.

Since we assumed
p
�� � ��2(1��)

� , we obtain

d · 1�
p
��

1 +
p
��

 d · �� (�� 2(1� �))

�+ (�� 2(1� �))
= d · 1� �

�� 1 + �
 (1� �)

d

�� 1
.

As this is at most 1� � for all d<�, we have up-to-� uniqueness with gap �.

A.2. Spectral independence bounds for constant-size graphs In this sub-
section, we prove spectral independence bounds for graphs with fewer than O(c/↵)-
many vertices, since for graphs with such few vertices, our bounds based on contraction
of the tree recursions become trivial.

Proof of Claim A.1. If Rv denotes the marginal ratio of a vertex v 2 G, then
Rv � ���. In the case �  1, we have Rv  �/��; however, if � > 1, we have
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RAPID MIXING OF GLAUBER DYNAMICS 223

Rv  � where the equality holds for v isolated. It follows that we immediately have
the bounds

|IG(u! v)|

8
<

:

��� �

�+�� � ��
�

1+���

���= �(1��
�
�
�)

(�+��)(1+���) if �  1��� �

1+�
� ��

�

1+���

���= �(1��
�)

(�+1)(1+���) o.w.

for all u, v 2 G. Note that these constants are less than 1, and only depend on
�,�,�,�, yielding the first claim.

Now, we proceed to remove the dependence on � when up-to-� uniqueness holds.
We have the following cases:

1. If � > 1, we immediately obtain a bound of �

1+�
which is independent of �.

2. If � = 0 and �  1, then �(1��
�
�
�)

(�+��)(1+���) =
�

�+��  �

�� . Since (�,�,�) is up-to-

� unique, we must have �  �c(�,�) = min1<d<�
�
d+1

d
d

(d�1)d+1  �
�(��1)��1

(��2)� 
�� ·O(1/�). It follows that �

�� O(1/�).

3. If
p
�� > ��2

� and �  1, then

�(1� ����)

(�+ ��)(1 + ���)
 1� ���� ⇡ 1� e�2.

4. If
p
��  ��2

� , then let �0 be the maximal 1< d<� such that
p
�� > d�2

d
.

If � �c(�,�,�), then by Lemma E.1, we have

�(1� ����)

(�+ ��)(1 + ���)
 �

��
O(�0/�).

If �� �c(�,�,�), then again by Lemma E.1, we have

�(1� ����)

(�+ ��)(1 + ���)
 1

���
O(�0/�).

Proof of Claim A.2. The proof is identical to the antiferromagnetic case and is
omitted here.

Appendix B. Proof of Lemma 4.3 (parts 1 and 2).

Proof of Lemma 4.3 (parts 1 and 2). To see the first equality, we compute directly
and get

✓
�v

@

@�v

◆
logZ�⇤

G
=

1

Z�⇤

G

·
✓
�v

@

@�v

◆
Z�⇤

G

=
1

Z�⇤

G

X

�2{0,1}V \⇤

✓
�v

@

@�v

◆ 
�m1(�)�m0(�)

Y

w2V

��w
w

!

=
1

Z�⇤

G

X

�2{0,1}V \⇤

�v

 
�m1(�)�m0(�)

Y

w2V

��w
w

!

=
X

�2{0,1}V \⇤

�v · µG(� | �⇤) =M�⇤

G
(v).
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224 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

For part 2, using the result above, we can also get
✓
�v

@

@�v

◆✓
�u

@

@�u

◆
logZ�⇤

G

=

✓
�v

@

@�v

◆✓
1

Z�⇤

G

·
✓
�u

@

@�u

◆
Z�⇤

G

◆

=
1

Z�⇤

G

·
✓
�v

@

@�v

◆✓
�u

@

@�u

◆
Z�⇤

G
� 1

(Z�⇤

G
)2

·
✓
�v

@

@�v

◆
Z�⇤

G
·
✓
�u

@

@�u

◆
Z�⇤

G

=
1

Z�⇤

G

·
✓
�v

@

@�v

◆0

@
X

�2{0,1}V \⇤

�u

 
�m1(�)�m0(�)

Y

w2V

��w
w

!1

A�M�⇤

G
(u) ·M�⇤

G
(v)

=
1

Z�⇤

G

X

�2{0,1}V \⇤

�u ·
✓
�v

@

@�v

◆ 
�m1(�)�m0(�)

Y

w2V

��w
w

!
�M�⇤

G
(u) ·M�⇤

G
(v)

=
1

Z�⇤

G

X

�2{0,1}V \⇤

�u · �v

 
�m1(�)�m0(�)

Y

w2V

��w
w

!
�M�⇤

G
(u) ·M�⇤

G
(v)

=
X

�2{0,1}V \⇤

�u · �v · µG(� | �⇤)�M�⇤

G
(u) ·M�⇤

G
(v)

=K�⇤

G
(u, v).

Appendix C. A technical lemma for  . The following lemma implies that
the potential  given by (3.3) is well-defined.

Lemma C.1. For all �,� > 0 such that �� < 1, we have

Z +1

�1

s
(1� ��)ey

(�ey + 1)(ey + �)
dy <+1.

Proof. For the +1 side we have

Z +1

0

s
(1� ��)ey

(�ey + 1)(ey + �)
dy=

Z +1

0

s
1� ��

�ey + �e�y + �� + 1
dy

<

Z +1

0

1p
�ey

dy <+1.

Similarly, for the �1 side we have

Z 0

�1

s
(1� ��)ey

(�ey + 1)(ey + �)
dy <

Z 0

�1

1p
�e�y

dy <+1.

Appendix D. Mixing by the potential method: Proof of Theorem 7.5.

In this section, we prove Theorem 7.5 in the same way as for Theorem 1.5, as outlined
in section 3. The major di↵erence here is that we consider a weighted sum of absolute
influences

P
v2V \⇤ ⇢v · |I�⇤

G
(r ! v)| where ⇢ : V ! R+ is a weight function. This

is su�cient for us to bound the eigenvalue of the influence matrix, as indicated by
Lemma 7.3. We will choose the weight of a vertex v to be ⇢v =�v, the degree of v.
The following lemma provides us an upper bound on the weighted sum of absolute
influences to distance k, given a general (↵, c)-potential. In particular, it generalizes
Lemma 3.5.
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RAPID MIXING OF GLAUBER DYNAMICS 225

Lemma D.1. If there exists a general (↵, c)-potential function  with respect to

� and (�,�,�) where ↵ 2 (0,1) and c > 0, then for every ⇤✓ VT \ {r}, �⇤ 2 {0,1}⇤
and all integers k� 1,

X

v2Lr(k)

�v · |I�⇤

T
(r! v)| 2c · (1� ↵)k�1 ·�r,

where Lr(k) denote the set of all free vertices at distance k away from r.

To prove Lemma D.1, we first state the following generalization of Lemma 5.1
for any weight function ⇢. The proof of Lemma D.2 is identical to Lemma 5.1 and is
omitted here.

Lemma D.2. Let  : [�1,+1]! (�1,+1) be a di↵erentiable and increasing

(potential) function with image S =  [�1,+1] and derivative  =  0
. Denote the

degree of the root r by �r. Then for every integer k� 1,

X

v2Lr(k)

⇢v · |I�⇤

T
(r! v)|�rA B

⇢

 

 
max

1d<�
sup
ỹ2Sd

��rH 
d
(ỹ)
��
1

!k�1

,

where

A = max
u2Lr(1)

⇢
|h(logRu)|
 (logRu)

�
and B⇢

 = max
v2Lr(k)

{⇢v · (logRv)} .

We then prove Lemma D.1 and Theorem 7.5.

Proof of Lemma D.1. Denote the degree of a vertex v 2 VT \ {r} by �v. Pick the
weights of vertices to be ⇢v =�v for all v 2 VT . Since  is a general (↵, c)-potential,
the contraction condition implies that

max
1d<�

sup
ỹ2Sd

��rH 
d
(ỹ)
��
1
 1� ↵.

Since logRv 2 J�v�1 by the definition of Jd (notice the degree of v in the subtree
Tv is �v � 1), the General Boundedness condition implies that for all u 2 Lr(1) and
v 2Lr(k),

 (logRv)

 (logRu)
· |h(logRu)|

2c

�u +�v

.

Therefore, we get

�rA B
⇢

 =�r · max
u2Lr(1)

⇢
|h(logRu)|
 (logRu)

�
· max
v2Lr(k)

{�v · (logRv)} 2c ·�r.

The lemma then follows immediately from Lemma D.2.

Proof of Theorem 7.5. The proof of Theorem 7.5 is almost identical to that of
Theorem 1.5. We point out that the only di↵erence here is that we consider the
weighted sum of absolute influences of a given vertex. Since the SAW tree preserves
degrees of vertices, we can still apply Lemma 3.3 for the sum of absolute influences
weighted by the degrees. Then, combining Theorem 3.2 and Lemmas 3.3, 7.3, and
D.1, we complete the proof of the theorem.
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226 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

Appendix E. Verifying a good potential: Boundedness. In this section,
we show the Boundedness or General Boundedness condition for our potential function
 defined by (3.3) in di↵erent ranges of parameters. Combining these and Lemma
6.3, we complete the proofs of Lemmas 3.6 and 7.6.

In Appendix E.1 we give background on the uniqueness region of the parame-
ters (�,�,�), based on the work of [21]. We then show Boundedness and General
Boundedness in Appendix E.2. Proofs of technical lemmas are deferred to Appendix
E.3.

E.1. Preliminaries of the uniqueness region. In this subsection we give a
brief description of the uniqueness region of parameters (�,�,�). All the results here,
and also their proofs, can be found in Lemma 21 of [21].

Let � � 3 be an integer and �,�,� be reals. We assume that 0  �  �, � > 0,
�� < 1, and �> 0. For 1 d� define

fd(R) = �

✓
�R+ 1

R+ �

◆d

,

and denote the unique fixed point of fd by R⇤
d
. Recall that the parameters (�,�,�)

are up-to-� unique with gap � 2 (0,1) if |f 0
d(R⇤

d
)|< 1� � for all 1 d<�.

When � = 0 the spin system is called a hard-constraint model . In this case, there
exists a critical threshold for the external field, defined as

�c = �c(�,�) = min
1<d<�

�d+1dd

(d� 1)d+1
,

such that the parameters (0,�,�) are up-to-� unique if and only if � < �c. In
particular, when �  1 the critical field is given by

�c = �c(�,�) =
��(�� 1)��1

(�� 2)�
.

When � > 0 the spin system is called a soft-constraint model . If
p
�� > ��2

� ,
then (�,�,�) is up-to-� unique for all � > 0; in this case we define the uniqueness
region for � to be the interval A = (0,1). If

p
��  ��2

� , the uniqueness region is
more complicated, which we now describe. Let

�=
1+

p
��

1�
p
��

,

so that for every 1  d < � we have d · 1�
p
��

1+
p
��

< 1, and for every d � � we have

d · 1�
p
��

1+
p
��

� 1. For every �  d < �, we define x1(d)  x2(d) to be the two positive
roots of the quadratic equation

d(1� ��)x

(�x+ 1)(x+ �)
= 1.

More specifically, x1(d) and x2(d) are given by

x1(d) =
✓(d)�

p
✓(d)2 � 4��

2�
and x2(d) =

✓(d) +
p
✓(d)2 � 4��

2�
,

where

✓(d) = d(1� ��)� (1 + ��).
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Notice that ✓(d)� 2
p
�� for all d��. For i= 1,2 we let

�i(d) = xi(d)

✓
xi(d) + �

�xi(d) + 1

◆d

.

Then, the parameters (�,�,�) are up-to-� unique if and only if � belongs to the
following region:

(E.1) A=
\

�d<�

h
(0,�1(d))[ (�2(d),1)

i
.

In particular, when �  1 there are two critical thresholds 0 < �c < �c such that
the parameters (�,�,�) are up-to-� unique if and only if � < �c or � > �c (i.e.,
A= (0,�c)[ (�c,1)), where

�c = �c(�,�,�) = min
�d<�

�1(d)

and �c = �c(�,�,�) = max
�d<�

�2(d) = �2(�� 1).

The following bounds on the critical fields are helpful for our proofs later.

Lemma E.1.

1. If � = 0, then for every integer d such that 1< d<� we have

�c 
4�d+1

d� 1
.

2. If � > 0 and
p
��  ��2

� , then for every integer d such that �  d < � we

have

�1(d)
18�d+1

✓(d)
and �2(d)�

✓(d)

18�d+1
,

where ✓(d) = d(1� ��)� (1 + ��).

The proof of Lemma E.1 is postponed to Appendix E.3.

E.2. Proofs of boundedness. In this subsection we complete the proofs of
Lemmas 3.6 and 7.6 by establishing Boundedness and General Boundedness in the
corresponding range of parameters.

Let �� 3 be an integer. Let �,�,� be reals such that 0 �  �, � > 0, �� < 1,
and �> 0. Recall that the potential function  is defined by

 0(y) =  (y) =

s
(1� ��)ey

(�ey + 1)(ey + �)
=
p

|h(y)|,  (0) = 0.

It is surprising to find that  =
p
|h|, as the potential  is exactly the one from [21]

as indicated by Lemma 6.1. This seems not to be a coincidence, and it provides some
intuition into why the potential from [21] works. More importantly, the fact that
 =

p
|h| is helpful in our proof of Boundedness and General Boundedness. Recall

that for 0  d < � and �� < 1 we let Jd = [log(��d), log(�/�d)] be the range of log
marginal ratios of a vertex with d children. Then for every 0  di < � and yi 2 Jdi

where i= 1,2, we have

(E.2)
 (y2)

 (y1)
· |h(y1)|=

p
|h(y1)| · |h(y2)|.
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228 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

The following lemma gives upper bounds on
p

|h(y1)| · |h(y2)|, from this and (E.2)
we deduce Boundedness and General Boundedness immediately. The brackets in the
lemma indicate which lemma the bound is applied to.

Lemma E.2. Let � � 3 be an integer. Let �,�,� be reals such that 0  �  �,
� > 0, �� < 1, and � > 0. Assume that the parameters (�,�,�) are up-to-� unique

with gap � 2 (0,1). Then for all integers d1, d2 such that 0 d1, d2 <�, and all reals

yi 2 Jdi where i= 1,2, the following hold:

H. Hard-constraint models: � = 0 and �< �c.

H.1. (Lemma 3.6) If �  1, then

|h(y1)|
4

�
.

H.2. (Lemma 7.6) If � > 1, then

p
|h(y1)| · |h(y2)|

8

d1 + d2 + 2
.

S. Soft-constraint models: � > 0 and �2A.

S.1. (Lemma 3.6) If
p
�� > ��2

� , then

|h(y1)|
1.5

�
.

S.2. (Lemma 3.6) If
p
��  ��2

� and �  1, then

|h(y1)|
18

�
.

S.3. (Lemma 7.6) If
p
��  ��2

� and � > 1, then

p
|h(y1)| · |h(y2)|

36

d1 + d2 + 2
.

The following lemma, proved in Appendix E.3, is helpful.

Lemma E.3. The function

|h(y)|= |1� ��|ey

(�ey + 1)(ey + �)

is increasing on [�1, log
p
�/�] and decreasing on [log

p
�/�,+1]. In particular,

|h(y)| is maximized at y⇤ = log
p
�/�, and we have the following inequality for all

y 2 [�1,+1]:

|h(y)| |h(y⇤)|= |1�
p
��|

1 +
p
��

.

We present here the proof of Lemma E.2.

Proof of Lemma E.2. We use notation and results from Appendix E.1.
H. Hard-constraint models: � = 0 and �< �c.
H.1. �  1.
For every y1 2 Jd1

we deduce from Lemma E.1 that

ey1  �

�d1

 �c
���1

 4�

�� 2
.
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RAPID MIXING OF GLAUBER DYNAMICS 229

Hence,

|h(y1)|=
ey1

ey1 + �


4�
��2

4�
��2 + �

=
4

�+ 2
 4

�
.

H.2. � > 1.

Let ȳ= y1+y2

2 and d̄= d1+d2

2 . Then we get

p
|h(y1)| · |h(y2)|=

r
ey1

ey1 + �
·
r

ey2

ey2 + �
=

1p
(1 + �e�y1)(1 + �e�y2)

 1

1 + �e�ȳ
,

where the last inequality follows from the AM-GM inequality by

(1+�e�y1)(1+�e�y2) = 1+�(e�y1+e�y2)+�2e�2ȳ � 1+2�e�ȳ+�2e�2ȳ = (1+�e�ȳ)2.

Since yi 2 Jdi for i= 1,2, we have

eȳ =
p
ey1 · ey2 

s
�

�d1

· �

�d2

=
�

�d̄
.

If d̄� 2, then we deduce from Lemma E.1 and � > 1 that

eȳ  �c
�bd̄c

 4�

bd̄c � 1
.

It follows that

p
|h(y1)| · |h(y2)|

1

1 + �e�ȳ
 1

1 + bd̄c�1
4

=
4

bd̄c+ 3
 8

d1 + d2 + 2
.

If d̄ < 2, then it is easy to see that

p
|h(y1)| · |h(y2)| 1 8

d1 + d2 + 2
.

S. Soft-constraint models: � > 0 and �2A.

S.1.
p
�� > ��2

� .

For every y1 2 J we deduce from Lemma E.3 that

|h(y1)|
1�

p
��

1 +
p
��

 1

�� 1
 1.5

�
.

S.2.
p
��  ��2

� and �  1.

In this case, we have either � < �c or � > �c where �c,�c are the two critical
fields. Consider first �> �c. For every y1 2 Jd1

we deduce from Lemma E.1 and � < 1
that

ey1 � ��d1 � �c�
��1 � ✓(�� 1)

18�
,
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230 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

where ✓(d) = d(1� ��)� (1 + ��). Hence,

|h(y1)|=
(1� ��)ey1

(�ey1 + 1)(ey1 + �)
=

1� ��

�ey1 + �e�y1 + (1+ ��)

 1� ��
✓(��1)

18 + (1+ ��)
=

18(1� ��)

(�� 1)(1� ��) + 17(1 + ��)
 18

�
.

Next we consider � < �c. For every y1 2 Jd1
we deduce from Lemma E.1 and

�  1 that

ey1  �

�d1

 �c
���1

 18�

✓(�� 1)
.

Hence,

|h(y1)|=
1� ��

�ey1 + �e�y1 + (1+ ��)
 1� ��

✓(��1)
18 + (1+ ��)

 18

�
.

S.3.
p
��  ��2

� and � > 1.

Let ȳ = y1+y2

2 , d̄= d1+d2

2 , dL = bd̄c, and dR = dd̄e. We first consider some trivial
cases. If d̄ 2, then it is easy to see that

p
|h(y1)| · |h(y2)| 1 6

d1 + d2 + 2
.

If d̄ > 2 and dL �, then we deduce from Lemma E.3 that

p
|h(y1)| · |h(y2)|

1�
p
��

1 +
p
��

=
1

�
 2

d1 + d2 � 2
 6

d1 + d2 + 2
.

Hence, in the following we may assume that d̄ > 2 and dL >�.
Since the parameters (�,�,�) are up-to-� unique, we have �2A where the regime

A is given by (E.1). Observe that

A✓ (0,�1(dL))[ (�2(dR),1)[ (�2(dL),�1(dR)),

where the last interval is nonempty only when �2(dL)< �1(dR). This means that � is
contained in at least one of the three intervals. We establish the bound by considering
these three cases separately.

Case 1: �< �1(dL). By the Cauchy–Schwarz inequality, we have

p
|h(y1)| · |h(y2)|=

s
1� ��

�ey1 + �e�y1 + (1+ ��)
·

s
1� ��

�ey2 + �e�y2 + (1+ ��)

 1� ��p
(�ey1 + �e�y1)(�ey2 + �e�y2) + (1 + ��)

.(E.3)

Therefore, we get

p
|h(y1)| · |h(y2)|

1� ��

�e�ȳ + (1+ ��)
.

Since yi 2 Jdi for i= 1,2 and � > 1, we deduce from Lemma E.1 that

eȳ  �

�d̄
 �1(dL)

�dL
 18�

✓(dL)
,
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RAPID MIXING OF GLAUBER DYNAMICS 231

where ✓(dL) = dL(1� ��)� (1 + ��). It follows that

p
|h(y1)| · |h(y2)|

1� ��

�e�ȳ + (1+ ��)
 1� ��

✓(dL)
18 + (1+ ��)

 36

d1 + d2 + 2
.

Case 2: �> �2(dR). Similarly, we obtain from (E.3) that

p
|h(y1)| · |h(y2)|

1� ��

�eȳ + (1+ ��)
.

Since yi 2 Jdi for i= 1,2 and � < 1, we deduce from Lemma E.1 that

eȳ � ��d̄ � �2(dR)�
dR � ✓(dR)

18�
,

where ✓(dR) = dR(1� ��)� (1 + ��). It follows that

p
|h(y1)| · |h(y2)|

1� ��

�eȳ + (1+ ��)
 1� ��

✓(dR)
18 + (1+ ��)

 36

d1 + d2 + 2
.

Case 3: �2(dL)< �< �1(dR). We may assume that d1 � d2. By (E.3), we obtain

p
|h(y1)| · |h(y2)|

1� ��
p
��e

y2�y1
2 + (1+ ��)

.

Since yi 2 Jdi for i= 1,2 and � < 1< �, we have

ey2�y1 � �d2�d1 � �dL�dR .

Meanwhile, we deduce from Lemma E.1 that

✓(dL)

18�dL+1
 �2(dL)< �< �1(dR)

18�dR+1

✓(dR)
,

which implies

p
��e

y2�y1
2 �

p
�dL+1�dR+1 �

p
✓(dL)✓(dR)

18
� ✓(dL)

18
.

It follows that

p
|h(y1)| · |h(y2)|

1� ��
p
��e

y2�y1
2 + (1+ ��)

 1� ��
✓(dL)
18 + (1+ ��)

 36

d1 + d2 + 2
.

E.3. Proofs of technical lemmas.

Proof of Lemma E.1. 1. For every 1< d<� we have

�c 
�d+1dd

(d� 1)d+1
=
�d+1

d� 1

✓
d

d� 1

◆d

 4�d+1

d� 1
,

where the last inequality follows from that ( d

d�1 )
d  4 for all integers d> 1.

2. For every � d<� we have

x1(d) =
2�

✓(d) +
p
✓(d)2 � 4��

 2�

✓(d)
.
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232 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

Observe that the function x+�

�x+1 is monotone increasing in x when �� < 1, and thus
we deduce that

x1(d) + �

�x1(d) + 1


2�
✓(d) + �
2��
✓(d) + 1

= � · 2 + d(1� ��)� (1 + ��)

2�� + d(1� ��)� (1 + ��)
= � · d+ 1

d� 1
.

Therefore,

�1(d) = x1(d)

✓
x1(d) + �

�x1(d) + 1

◆d

 2�

✓(d)
· �d ·

✓
d+ 1

d� 1

◆d

 18�d+1

✓(d)
,

where the last inequality follows from the fact that ( d+1
d�1 )

d  9 for all integers d> 1.
The second part can be proved similarly. For every � d<� we have

x2(d) =
✓(d) +

p
✓(d)2 � 4��

2�
� ✓(d)

2�
,

and hence,

x2(d) + �

�x2(d) + 1
�

✓(d)
2� + �
✓(d)
2 + 1

=
1

�
· d(1� ��)� (1 + ��) + 2��

d(1� ��)� (1 + ��) + 2
=

1

�
· d� 1

d+ 1
.

We then conclude that

�2(d) = x2(d)

✓
x2(d) + �

�x2(d) + 1

◆d

� ✓(d)

2�
· 1

�d
·
✓
d� 1

d+ 1

◆d

� ✓(d)

18�d+1
,

where the last inequality again follows from the fact that ( d+1
d�1 )

d  9 for all integers
d> 1.

Proof of Lemma E.3. For convenience, define f : [0,+1] ! [0,+1] by f(x) =
|1���|·x

(�x+1)(x+�) ; note that f(ey) = |h(ey)|. Since ey is monotone increasing, it su�ces to

show that f is increasing on [0,
p
�/�] and decreasing on [

p
�/�,+1]. To this end,

we compute the derivative of f as

f 0(x) = |1� ��| ·
✓

1

(�x+ 1)(x+ �)
� x(�(x+ �) + (�x+ 1))

(�x+ 1)2(x+ �)2

◆

=
|1� ��|

(�x+ 1)2(x+ �)2
((�x+ 1)(x+ �)� x(�(x+ �) + (�x+ 1)))

=
|1� ��|

(�x+ 1)2(x+ �)2
· (� � �x2).

Note that this is nonnegative on [0,
p
�/�] and nonpositive on [

p
�/�,+1], so we are

done.

Appendix F. Proofs for ferromagnetic cases.

F.1. Proof of Theorem 8.1. Throughout the proof, we use the trivial potential
function  (y) = y. Note that then,  (y) = 1 is a constant function.

Now, we prove Contraction and Boundedness. We split our proof into three cases.

1. Case 1: ��2+�

���


p
��  ���

��2+�
, and � > 0 is arbitrary. We first prove the

contraction part. By Lemma E.3, for all y 2 [�1,+1] we have

|h(y)| |1�
p
��|

1 +
p
��

 1� �

�� 1
.
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RAPID MIXING OF GLAUBER DYNAMICS 233

Now let us prove the boundedness condition. From the above inequality we
have

|h(y)| 1

�� 1
 1.5

�

for �� 3.
2. Case 2:

p
�� � �

��2 and 0 < �  (1 � �) �

max{1,���1}·((��2)����) . For the

contraction part, since log(�min{1,1/���1}) yi  log(�max{1,���1}), we
have

����
@Hd(y)

@yi

����= |h(yi)|=
�� � 1

1 + �� + �e�yi + �eyi
 �� � 1

1 + �� + �e�yi

 �� � 1

1 + �� + �

�max{1,���1}
.

Since we assumed � (1� �) �

max{1,���1}·((��2)����) , it follows that we have
the upper bound

�� � 1

1 + �� + (��2)����
1��

= (1� �)
�� � 1

(�� 1� �)�� � (�� 1 + �)

= (1� �)
�� � 1

(�� 1� �)(�� � 1) + 2�

 1� �

�� 1� �
 (1�⇥(�)) 1

�� 1
.

Now, we prove the boundedness condition. Note that since

� �

max{1,���1} · ((�� 2)�� ��)
,

it follows that y  log(�max{1,���1}) log
⇣

�

(��2)����

⌘
. A simple calcu-

lation reveals that �

(��2)���� 
q

�

�
, and so by Lemma E.3 we have

|h(y)|
����h
✓
log

✓
�

(�� 2)�� ��

◆◆����
(�� � 1)elog(

�
(��2)����

)

elog(
�

(��2)���� ) + �

= (�� � 1)
1

1 + (�� 2)�� �� =
�� � 1

(�� 2)(�� � 1)� 1
O(1/�).

3. Case 3:
p
�� � �

��2 and �� 1
1��

· (��2)����
�·min{1,1/���1} . For the contraction part,

since log(�min{1,1/���1}) yi  log(�max{1,���1}), we have
����
@Hd(y)

@yi

����= |h(yi)|=
�� � 1

1 + �� + �e�yi + �eyi
 �� � 1

1 + �� + �eyi

 �� � 1

1 + �� + ��min{1,1/���1} .

Since we assumed �� 1
1��

· (��2)����
�·min{1,1/���1} , it follows that we have the upper

bound

�� � 1

1 + �� + (��2)����
1��
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234 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

which is again upper bounded by (1�⇥(�)) 1
��1 as we calculated in Case 2

above. Now, we prove the boundedness condition. Note that since

�� (�� 2)�� ��
�min{1,1/���1} ,

it follows that y � log(�min{1,1/���1}) � log
⇣

(��2)����
�

⌘
. A simple cal-

culation reveals that (��2)����
�

�
q

�

�
, and so by Lemma E.3 we have

|h(y)|
����h
✓
log

✓
(�� 2)�� ��

�

◆◆���� (�� � 1)
1

� · (��2)����
�

+ 1

=
�� � 1

(�� 2)(�� � 1)� 1
O(1/�).

F.2. Proof of Theorem 8.3 In this subsection, we use results from [15] to prove
Theorem 8.3. Their potential function is implicitly defined by its derivative for the
marginal ratios as

�0(R) = �(R) =min

(
�� � 1

↵� log �+�

��+1

,
1

R log �

R

)

for a constant 0  ↵  1 depending only on �,�,� (see [15] for a precise definition).
In our context, the corresponding potential for the log ratios is

 0(y) =  (y) = ey�(ey) =min

(
�� � 1

↵� log �+�

��+1

ey,
1

log �

ey

)

and is bounded by constants depending on �,�,�,� for log(�/���1) y log�.
One of the main technical results in [15] is that the tree recursion is contracting

with the potential function �, and the derivative � is bounded in the sense that there
exist positive constants C1,C2 depending only on �,�,� such that C1  �(R)  C2

for all 0  R  �. Reference [15] refers to such a function as a universal potential

function.
In our context, we get that  is an (↵, c)-potential function, which satisfies Defi-

nition 1.4, but with a constant c that depends on �,�. Indeed, worst case, we have

max
y1,y2

 (y2)

 (y1)
�  (log�)

 (log(�/���1))
=

� ���1
↵� log �+�

��+1

���1
↵ log �+�

��+1

· �

��

= ���1.

More precisely, we have the following result from [15], stated in terms of the log
marginal ratios.

Theorem F.1. Assume �,�,� are nonnegative real numbers satisfying �  1 �,
p
�� � 1, and �<

⇣
�

�

⌘ p
��p

���1

. Then the function  is an (↵, c)-potential function for

a constant 0< ↵< 1 depending on �,�,� and a constant c > 0 depending on �,�,�,�.

Combined with Theorem 1.5, this gives O(nC) mixing with a constant C depend-
ing only on �,�,�,�. We note that this is weaker than the correlation decay result in
[15], since there, C does not depend on �, and hence is e�cient for arbitrary graphs.
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Appendix G. Slightly faster mixing. In this appendix, we slightly optimize
our mixing time results for certain antiferromagnetic 2-spin systems by more care-
fully taking into account the trade-o↵ between the (nontrivial) spectral independence
bound we prove based on contraction, and the (trivial) spectral independence bound
we obtained in Appendix A.2 for handling constant-sized graphs.

Proposition G.1. Suppose a distribution µ on subsets of [n] is (⌘0, . . . ,⌘n�2)-
spectrally independent for ⌘i  min{a, (n � i � 1)b}, for some a � 0 and 0  b  1.
Then the Glauber dynamics for sampling from µ has spectral gap at least

1
n
·⌦
�

a

bn

�a
.

Proof. The bound ⌘i  (n� i� 1)b is better when i � n� 1� ba/bc, while the
bound ⌘i  a is better when i  n� 1� ba/bc. It follows that the final spectral gap
lower bound is

1

n
· (1� b)ba/bc ·

n�1�ba/bcY

k=0

✓
1� a

n� k� 1

◆

Note that (1� b)ba/bc & e�a, while

n�1�ba/bcY

k=0

✓
1� a

n� k� 1

◆
& exp

0

@�a

n�1�ba/bcX

k=0

1

n� k� 1

1

A

& exp

0

BBBBB@
�a

0

BBBBB@

n�2X

k=0

1

n� k� 1
| {z }

⇡logn

�
n�2X

k=n�ba/bc

1

n� k� 1
| {z }

⇡logba/bc

1

CCCCCA

1

CCCCCA

& exp

✓
�a log

bn

a

◆

&
⇣ a

bn

⌘a
.

Putting these together, we obtain the desired lower bound.

With this result, we can apply this result to the antiferromagnetic models withp
��  ��2

� ,�  1, and � = 0,�  1, since by the proof of Claim A.1, we have such
that systems are Cn-spectrally independent roughly with C O(1/�).

Corollary G.2 (soft constraints). Fix integers � � 3 and 1 < � < �. Let

�,�,� � 0 be nonnegative real numbers satisfying
��2
�


p
��  ��1

�+1
and �  1.

Assume further that (�,�,�) is up-to-� unique with gap 0 < � < 1. Then for ev-

ery n-vertex graph G with maximum degree at most �, the Glauber dynamics for

sampling from the antiferromagnetic 2-spin system with parameters (�,�,�) mixes in

O
⇣
�·n
�

⌘O(1/�)
steps.

Corollary G.3 (hard constraints). Fix an integer � � 3, fix � = 0, and let

0 �  1,�� 0 be up-to-� unique with gap 0< � < 1. Then for every n-vertex graph

G with maximum degree at most �, the Glauber dynamics for sampling from the

antiferromagnetic 2-spin system with parameters (�,�,�)mixes in O
�
n

�

�O(1/�)
steps.

Acknowledgments. We would like to thank Shayan Oveis Gharan and Nima
Anari for stimulating discussions. We also thank the anonymous referees for helpful

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

6/
23

 to
 6

1.
79

.7
0.

15
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



236 ZONGCHEN CHEN, KUIKUI LIU, AND ERIC VIGODA

comments and suggestions. We are grateful to Yitong Yin for communicating with us
about the updated preprint [22] and for providing helpful instructions on modifying
statements and proofs of results in Appendix E, particularly Lemma E.2.

REFERENCES

[1] V. L. Alev and L. C. Lau, Improved analysis of higher order random walks and applications,
in Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
(STOC), 2020, pp. 1198–1211.

[2] N. Anari, V. Jain, F. Koehler, H. T. Pham, and T.-D. Vuong, Entropic independence: Op-
timal mixing of down-up random walks, in Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), 2022, pp. 1418–1430.

[3] N. Anari, K. Liu, and S. Oveis Gharan, Spectral independence in high-dimensional expanders
and applications to the hardcore model , in Proceedings of the 61st Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2020, pp. 1319–1330.

[4] A. Barvinok, Combinatorics and Complexity of Partition Functions, vol. 30, Springer Algo-
rithms and Combinatorics, 2016.

[5] F. Bencs, On trees with real-rooted independence polynomial , Discrete Math., 341 (2018),
pp. 3321–3330.

[6] X. Chen, W. Feng, Y. Yin, and X. Zhang, Optimal Mixing Time for the Ising Model in the
Uniqueness Regime, arXiv preprint arXiv:2111.03034, 2021.

[7] X. Chen, W. Feng, Y. Yin, and X. Zhang, Rapid mixing of Glauber dynamics via spectral
independence for all degrees, in Proceedings of the 62nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2021, pp. 137–148.

[8] X. Chen, W. Feng, Y. Yin, and X. Zhang, Optimal mixing for two-state anti-ferromagnetic
spin systems, in Proceedings of the 63rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2022

[9] Y. Chen and R. Eldan, Localization schemes: A framework for proving mixing bounds for
Markov chains, in Proceedings of the 63rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2022

[10] Z. Chen, K. Liu, and E. Vigoda, Rapid mixing of Glauber dynamics up to uniqueness
via contraction, in Proceedings of the 2020 IEEE 61st Annual Symposium on Foun-
dations of Computer Science (FOCS), 2020, pp. 1307–1318, https://doi.org/10.1109/
FOCS46700.2020.00124.

[11] Z. Chen, K. Liu, and E. Vigoda, Optimal mixing of Glauber dynamics: Entropy factoriza-
tion via high-dimensional expansion, in Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC), 2021, pp. 1537–1550.
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