CONTINUOUS DEPENDENCE ON THE INITIAL DATA IN THE

DANIEL SPIEGEL!2:3, JUAN MORENO!, MARVIN QI?:3, MICHAEL HERMELE?:3,

KADISON TRANSITIVITY THEOREM AND GNS
CONSTRUCTION

AGNES BEAUDRY!, AND MARKUS J. PFLAUM:3

ABSTRACT. We consider how the outputs of the Kadison transitivity theorem
and Gelfand-Naimark-Segal construction may be obtained in families when
the initial data are varied. More precisely, for the Kadison transitivity the-
orem, we prove that for any nonzero irreducible representation (#,7) of a
C*-algebra 21 and n € N, there exists a continuous function A : X — 2 such
that 7w(A(x,y))z; = y; for all ¢ € {1,...,n}, where X is the set of pairs
of n-tuples (x,y) € H™ x H"™ such that the components of x are linearly
independent. Versions of this result where A maps into the self-adjoint or
unitary elements of 2 are also presented. Regarding the Gelfand-Naimark-
Segal construction, we prove that given a topological C*-algebra fiber bundle
p: A — Y, one may construct a topological fiber bundle Z(2) — Y whose
fiber over y € Y is the space of pure states of 2, (with the norm topology),
as well as bundles /# — Z(2) and A4 — Z(2A) whose fibers %, and A,
over w € Z(2) are the GNS Hilbert space and closed left ideal, respectively,
corresponding to w. When p : 2 — Y is a smooth fiber bundle, we show
that Z(A) —» Y and 5 — Z(2) are also smooth fiber bundles; this involves
proving that the group of *-automorphisms of a C*-algebra is a Banach-Lie
group. In service of these results, we review the topology and geometry of the
pure state space. A simple non-interacting quantum spin system is provided
as an example illustrating the physical meaning of some of these results.
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INTRODUCTION

The primary goal of this paper is to detail how one can do classical maneuvers
in the theory of C*-algebras, namely the Kadison transitivity theorem and the
Gelfand-Naimark-Segal (GNS) construction, in a way that depends continuously or
smoothly on the input data. In the Kadison transitivity theorem, the initial data is
a set, of vectors in the Hilbert space of an irreducible representation of a C*-algebra
2A; these may be taken to represent pure states on 2. In the GNS construction
the initial data is a state on 21 which, again, we will usually take to be pure. We
therefore find it necessary and appropriate to hold a second goal in service of the
first: to review and elaborate on the topology and geometry of the pure state space
of 2.

We are inspired by the connection of C*-algebras to quantum many-body physics.
In quantum systems with infinitely many degrees of freedom, one represents observ-
able quantities as self-adjoint elements of a C*-algebra and quantum states as states
on the C*-algebra, i.e., normalized positive linear functionals. These C*-algebras
typically have a quasi-local structure. Intuitively, if one continuously deforms such
a quantum system in a local region, the state of the system is expected to change
continuously with respect to the norm topology, while a global deformation of the
system yields merely weak™ continuity of the state. This intuition is developed in
§5.2 where a trivial example of a parametrized quantum system is investigated from
the point of view of topology. In this paper we focus on the case of norm-continuity
since it is more tractable mathematically, but comparisons are made to the weak*
topology in §1.4 and §5.2.

This paper begins with a review of classical results on the topology of the state
space in §1, unraveling the relationship between the theory of superselection sectors
and topological properties of the pure state space. In §2, we turn to the geometry of
the pure state space. We do not present any new theorems in §1 or §2, but rather
provide a self-contained and complete presentation of results that are otherwise
scattered in the literature. In §2.1 we detail the complex manifold structure of
projective Hilbert space and show how to pass from the pure state space to a
projective Hilbert space using an irreducible representation. In §2, we prove that
the pure state space carries the structure of a Kéhler manifold, a result which goes
back to [ACLMS&4]:

Theorem. The pure state space Z(A) of a C*-algebra A carries in a natural way
the structure of a (possibly infinite-dimensional) Kdihler manifold. The underlying
topology is given by the norm topology. Fach connected component is open and
given by the set P.(A) of vector states of some irreducible representation (H, )
of A. The set P.(A) carries a unique complex manifold structure such that the
canonical map v : PH — P (A) given by r(CU)(A) = (U, 7(A)¥) for ¥ € SH
and A € A is biholomorphic. The hermitian metric h is uniquely determined by
the requirement that, for every irreducible representation (H,m) of 2, the canonical
projection psy : SH — Z(A), U — r(C¥) is a riemannian submersion.

A review of infinite dimensional manifolds and fiber bundles is provided in the
appendix.

The materials of §1 and §2 give us the control we need to address our pri-
mary goal. In §3, we establish a generalization of the Kadison transitivity theorem
[Mur90, Thm. 5.2.2] that admits selections of operators that depend continuously
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on the initial data. This is a new result which we call the continuous Kadison
transitivity theorem.

Theorem (Continuous Kadison Transitivity). Let 2 be a C*-algebra and let (H, )
be an irreducible representation. Let n be a positive integer and let

X = {(x7y) € H?" : xq,...,x, are linearly independent},

equipped with the subspace topology inherited from H*", where x = (x1,...,T,) and
v = (y1,-..,Yn). There exists a continuous map A: X — A such that

T(AX,y))z: = yi
forall (x,y) € X andi=1,...,n.

On the subspace Xs, C X of pairs (x,y) such that there is a self-adjoint T €
B(H) with Ta; = y; fori = 1,...,n, there is a continuous map A: Xsn — sy
satisfying the same property. If A is unital, then on the subspace X, of pairs
(x,¥) such that there is a unitary T € U(H) with Tx; = y; fori=1,...,n, every
point (Xo,¥o) has a neighborhood O C X, for which there exists a continuous map
A: O — U(R) which agains satisfies the same property.

This theorem states the existence of a continuous selection for the function X —
p(2) mapping a point (x,y) € X to the set of all A € A satistying 7(A)z; = y;
for all # = 1,...,n. Thus, the key ingredient in the proof is the Michael selection
theorem [Mic56, Thm. 3.2"], as it provides conditions under which such a selection
may be found. A consequence of the continuous Kadison transitivity theorem is
that local trivializations may be found for the action of the unitary group of 2 on
a fixed pure state. This is studied in §3.2.

Corollary. Let 2 be a unital C*-algebra and let w € P(A) be a pure state. The map
pue) : UL — P, () defined by py)(U)(A) = w(U*AU) then is a locally trivial
principal Uy, (A)-bundle, where 2, () is the set of states of the form py)(U) and
Uu, (1) is the isotropy group {U € U(Q) : pya(U) = w}.

By showing that 71 (U(2()) 2 71 (Uu(2A) x £, (2A)), we show that this bundle is
nontrivial in a few examples. The most interesting example considered is when
2 is a UHF algebra. While the homotopy groups of the unitary group of a UHF
algebra are known [Sch86], we present a new method for computing these groups,
relying on a theorem of Glockner [G1610, Thm. 1.13]. This method also allows for
the calculation of the homotopy groups of U, (2l) in Theorem 3.16, which to our
knowledge have not been previously computed.

In §4 we turn our attention to the GNS construction. There, “continuous de-
pendence” of the GNS construction on its initial data is construed as the ability
to create topological fiber bundles out of the Hilbert spaces and left ideals asso-
ciated to a norm-continuous family of pure states. Precisely, given a topological
C*-algebra bundle py : % — X, we construct the fiber bundle of pure state spaces
P+ () — X and show that the sets

I = |_| H, and A = |_| N,
weP(A) weZ ()
have natural structures as fiber bundles over Z(2l), where 9, is the left ideal

associated to a pure state w and H,, = 2, /N, the corresponding Hilbert space.
We call this the fiberwise GNS construction. If one is given a preferred family of
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pure states, i.e. a section w : X — (), then 5 and .4/ may be pulled back
to obtain bundles w*7 and w*.4# over X. The construction of .4 relies on the
continuous Kadison transitivity theorem, while the construction of J# relies on
Proposition 4.3, reproduced in a simplified form below.

Proposition. Let B be a C*-algebra with irreducible representation (H,n). For
each unit vector ) denote by & the projection B — H, B — w(B)Q and by wq
the state B — (Q,n(B)Q). Let O C Aut(B) x SH be the set of all pairs (a, ) for
which there exists a unique vector ® = ®(a, Q) € SH such that wgoa™! = we and
(Q,®) > 0. Then the map U : O — U(H) which associates to each pair (o, €Y) the
unique unitary Uy o making the diagram

commute is continuous with respect to the norm topologies on Aut(B) and U(H).

In §4.4 we show that when pg : A — X is a smooth C*-algebra bundle, the
bundles pgypy @ () — X and J are smooth as well. The transition func-
tions of the bundle pg : A — X map into the automorphism group of the model
fiber, thus our definition of a smooth C*-algebra bundle relies on the fact that the
automorphism group of a C*-algebra carries the structure of a Banach-Lie group.
We provide this structure in Proposition 4.11. In Proposition 4.14 we prove that
the map U : O — U(H) in the proposition displayed above is in fact smooth, and
this leads to a smooth structure on 7. We do not have a smooth analog of the
continuous Kadison transitivity theorem, so we do not endow .4  with a smooth
structure.

We conclude in §5 with a few simple examples of parametrized quantum systems.
In section §5.1 we consider a finite-dimensional C*-algebra and a family of states
over S? representing the ground states of a single spin—% particle in a rotatable
magnetic field. We show that the first Chern class of the line bundle of ground
states of this system, corresponding to the Berry curvature 2-form on S? [Ber84],
may be recovered from the first Chern class of the Hilbert bundle obtained in the
fiberwise GNS construction. In section §5.2 we consider a non-interacting quantum
system in one spatial dimension obtained by copying the above system at each point
of Z. In this case the C*-algebra is infinite-dimensional, hence the weak* and norm
topology on Z(2l) are distinct, and we find it interesting to study which types of
continuity arise in the family of ground states and under what conditions even in
this physically trivial system. We find that it is possible to obtain norm-continuity
of the ground states if one enlarges the natural parameter space and uses a finer
topology there.

Acknowledgements. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. DMS 2055501 awarded to A. Beaudry,
M. Hermele and M.J. Pflaum. The research of M. Qi is supported by the NDSEG
program. A. Beaudry, M. Hermele and M.J. Pflaum also acknowledge support by
a University of Colorado seed grant.
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1. TOPOLOGICAL STRUCTURES ON SPACES OF STATES AND REPRESENTATIONS

1.1. Notational preliminaries. The following notational conventions will be used
throughout this paper. The complex conjugate of a number z € C will be denoted
both by z* or Z. Hilbert spaces are always understood over the field of complex
numbers with inner product being linear in the second variable. Representations
of a C*-algebra 2 will be denoted as pairs (H,n) where H is the Hilbert space
on which 2 acts and 7 : A — B(H) is the representing C*-homomorphism. A
cyclic representation with a distinguished cyclic vector Q2 will be written as a triple
(H,m, Q). The unitary groups of a Hilbert space H and a C*-algebra 2 will be
denoted U(#H) and U(2l), respectively.

1.2. Folia. Let 2 be a C*-algebra. We denote by . (2) C A* the space of states
on 2, that is, the space of normalized positive linear functionals 2 — C. It is well
known that #(2l) is nonempty and convex when 2 is nonzero. When 2 is unital,
() is weakly* closed, hence weakly* compact by the Banach—Alaoglu theorem.
The norm on 2A* endows () in a natural way with a metric dj.;| given by

dj. (¥, w) = || — wl|

for ¢¥,w € #(A). We will refer to this metric as the canonical metric. The state
space . (2l) also carries two natural uniform structures: the metric or norm defined
uniformity induced by the canonical metric and the weak™ uniformity. A basis of
the latter is given by the entourages

Ue ar,ar = {(0,w) € L) (¥ —w)(A1)| <&, [(Y —w)(Ag)| < e},

where € > 0 and A;,..., A € 2A. The metric uniformity is finer than the weak*
uniformity. We will denote . () endowed with the norm defined or the weak*
uniformity by .7 (), and .7 (A)~, respectively. Later we will give a more detailed
account of these uniform spaces.

Recall that by the GNS construction every state w gives rise to a nontrivial cyclic
representation (H,, 7, Qw ), called the GNS representation of w. The Hilbert space
H,, is the completion of the quotient 2/, by the left ideal

N, ={AecA|wA*A) =0}
with respect to the inner product
(A+N,,B+N,) =w(A*B)

for all A, B € . Following Haag [Haa96], we call 91, the Gelfand ideal associated
to w. The representation m, : A — B(H,) is the x-homomorphism defined by
Tw(A)(B+MN,) = AB +MN,,. If A is unital and I denotes the identity, the cyclic
unit vector €2, coincides by definition with I + 91,,. In the non-unital case, €2, is
the limit of the net (E) 4+ 91,)rca for any approximate identity (E))aea in 2 (all
such limits exist and coincide).

Given a non-degenerate representation (#, 7), the m-normal states of 2 are those
of the form w(A) = Tr(om(A)), where o € B(H) is a density matriz, that is, a
positive trace class operator of trace 1. We denote the m-normal states of 2 by
Z»(20). In particular, the vector states of m are those states of the form w(A) =
(Q,7(A)Q), where Q € H is a unit vector; these form a subset of .7 ().
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Lemma 1.1. Let (H, ) be a non-degenerate representation of a C*-algebra . If
U, Q € H are unit vectors representing the vector states ¥, w € F (), then

) (¥,w) = [lv — wl| < 2T - Q.

Thus, the map SH — (), which assigns to a unit vector the corresponding
vector state is uniformly continuous.

Proof. This follows from the triangle inequality and the Cauchy-Schwarz inequality:
[ —wll = sup [(¥,7m(A)¥) —(Q,7(A)Q)|

lAll<1
< sup [(W,m(A) (¥ - Q)+ sup [(¥—Q,7w(A)Q)]
A<t llAll<1
< 2[¥ - Qf,
where, in the last line, we have used that ||7|| < 1. O

As mentioned in the proof above, a representation 7w of a C*-algebra always
satisfies ||7r|| < 1. Furthermore, 7 is an isometry if and only if it is faithful. When
this is not the case, the following lemma may be of service. The proof of this lemma
is explained as part of the proof of Lemma 4.4 in [RRG9].

Lemma 1.2. Let 2 and B be C*-algebras and let w: A — B be x-homomorphism.
Given A € A and € > 0, there exists B € 2 such that m(A) = 7(B) and

1Bl < [lm(A)]l +e.

A strengthened version for unital C*-algebras in which ||B]|| < ||7(A)| may be
found in [KR97c, Cor. 10.1.8], but Lemma 1.2 in the form stated above suffices for
our purposes.

Proof. Since ker 7 is a closed two-sided ideal in 2, the quotient 21/ ker 7 is a C*-
algebra, which satisfies the commutative diagram

A —— 7(2A)

| A

A/ ker

where ¢ is the quotient map and 7 : 2/ ker 7 — w(2l) is a *-isomorphism, hence an
isometry. By definition of the norm on 2(/ker 7, we then have

I7(A)ll = I7(a(AD]| = la(A)l = inf [l A= Cll = inf {IB]: n(4) = n(B)}.

and the result follows. O

The next result shows that this lemma entails that the space of normal states
with respect to a representation 7 can be identified with the space of normal states
of the induced von Neumann algebra even if 7 is not faithful.

Proposition 1.3 (¢f. [RR69, Lem. 4.4]). Let (H,n) be a non-degenerate repre-
sentation and R = w(A)" C B(H) the induced von Neumann algebra. Denote by
Z(R) the space of normal states on R. Then the pullback map 7 : F(R)n —
In()n, w = wo T is an isomelric isomorphism with respect to the canonical
metrics, so in particular an isomorphism of the corresponding uniform spaces.
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Proof. By definition, 7* is surjective. So it suffices to show that 7* is an isometry.
Clearly, for all w € R*

[T*wll = sup |w(n(A)[<  sup  |w(B)| = [lwll,
Aet, A <1 Bem, || B|<1

hence 7* is contraction. It remains to show that for all ¢, w € .7 (R)
(¢, w) = ¢ — wl| < 779 — 7w . (1.1)

To prove this recall that the state 1 is induced by a density matrix which means
that there exists a collection of vectors (z;)ie; such that > . _; |z5]]> = 1 and
Y(B) = ) ;c; (i, Br;) for all B € R. Hereby, each of the sums is the limit of the
net of finite partial sums. Likewise, there exists for w a family (y;);er C H such

that >, ; lyill*> = 1 and w(B) = > icr (Wi, Bys) for all B € R. Now let ¢ > 0 and
choose B € R with ||B|| < 1 such that

[ = wll < [¥(B) —w(B)| +¢ . (1.2)
Next choose a finite subset J C I so that } ;.\ ; ;]| < & and dieny lyll? < e.
By the Kaplansky density theorem there exists A’ € 2 with ||7(A4")|| < 1 such that
Y Ny, (B=m(A))ay)| <e and Y |{y;, (B —m(A))y;)| <e .
jed jeJd
Hence
|Y(B) —(m(A")] <3e and |w(B) —w(m(4"))] < 3e. (1.3)
By Lemma 1.2, there exists A € 2 such that m(A) = 7(A’) and
Al < I7(A")|+e<1+€.
Together with the estimates (1.2) and (1.3) this finally entails
1% — wl| < [¥(B) —w(B)| +& < [(r(4")) — w(m(A))| + Te =
= |(n(A)) —w(r(A)|+7e < (1 +¢e)||n*p — m¥w]| + Te .
By passing to the limit € N\ 0, the estimate (1.1) follows. d

The C*-algebra 2 acts in a natural way on the dual 2A* by associating to a pair
(B,w) € A x 2A* the continuous linear functional B-w : A — C, A — w(B*AB).
Note that if w is a state and B fulfills w(B*B) = 1, then B-w is again a state called
a quasi-local perturbation of w. This motivates the notion of a folium, introduced
by Haag—Kadison—Kastler in [HKK?70] as a tool for the classification of states in
local quantum physics; see also [Lanl7, Sec. 8.6].

Definition 1.4. By a folium in the state space .#(2() one understands a non-empty

subspace # C % (2() which is

(F1) norm closed,

(F2) convex, and

(F3) invariant under the action of 2 in the sense that if w € .# and B € 2 with
w(B*B) =1, then the quasi-local perturbation B - w lies again in .%#.

An important observation of Haag-Kadison—Kastler in [HKK70, §1], summarized
below, is that the m-normal states of a non-degenerate representation form a folium.
The proof is omitted in [HKK70], so we provide it; cf. also [St¢68, Lemma 5.6].
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Theorem 1.5. For every nonzero non-degenerate representation (H, ) of a C*-
algebra A, the space of w-normal states 7 () is the smallest folium containing
the vector states of w. Furthermore, any folium coincides with the space () for
some non-degenerate representation m of 2.

Proof. We first show that for every nonzero non-degenerate representation 7 the
space % () is a folium. Denote by & = w()” C B(H) the von Neumann algebra
induced by the representation w. According to [KR97d, 7.1.13], the space % (R)
of normal states on R is norm closed in R*. In particular .7, (R) is then complete
in the metric uniformity. Since the pullback 7* : .7 (R) — /() is an isometric
isomorphism by Proposition 1.3, its image has to be complete as well. Hence .7 ()
is closed, proving (F1).

The set of density matrices on B(#) is convex, hence .7 (2l) is so, too, and
(F2) holds. Now let w € (™) and ¢ € B(H) a density matrix such that
w(A) = Tr(en(A)) for A € 2. Let B € A such that w(B*B) = 1. Then the op-
erator m(B)omr(B)* is self-adjoint, has trace 1 by the equality Tr(m(B)om(B)*) =
w(B*B) = 1 and is positive since (v, 7(B)om(B)*v) = (n(B)*v, or(B)*v) > 0 for
all v € H. Moreover,

B w(A) =w(B*AB) = Tr((r(B)on(B)*) m(A)) for AecA,

which shows that B - w is a m-normal state and (F3) is fulfilled. Hence .7 (2l) is a
folium.

Now let % be a folium containing the vector states of the representation 7.
Consider a positive trace class operator g € B(H) of trace 1, and let w € S (A)
be the corresponding m-normal state. There exists an orthonormal set (€;);c; in
‘H such that p = Ziel A P;, where P; is the projection onto C£2; and A\; > 0 with
> icr Ai = 1. In particular, for any A € 2,

w(A) = Tr(om(A)) =Y i (i, m(A)Q)
iel
Given € > 0, choose a finite subset J C [ such that for any finite subset K C I

with J N K = @ the estimate ZkeK Ak < € holds true. If w; is the vector state
corresponding to €2;, then

Z )\kwk

keK

< Z )\k||wk|| <é€

keK

since ||wg|| = 1. Denoting by @¢(I) the set of all finite subsets of I we see that the

net (Y jed Ajw; converges in norm to w. Moreover, the net

Jep:(I)
(ZjeJ Ajwj) (1.4)
Zje] /\j Jepe(I)

converges to w since the denominators converge to one. Since w; € .% for all i and
each element of the net (1.4) is a convex combination of w;, we conclude from (F2)
and (F1) that w € .#. This proves that . (2) C .#, proving the claim that % ()
is the smallest folium containing the vector states of 7.

Finally let .# be a folium and let H = @, .5 Ho and T = P, » T, Where
(Hy, Tw, ) denotes the GNS representation of w. Clearly, every w € % is the
m-normal vector state corresponding to Q,, € H,, C H, so . C (). It remains
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to be shown that 7, (2) C #. To this end it suffices to prove that every vector
state is in .#, since .7 () is the minimal folium containing the vector states of .

If we # and B € 2 with w(B*B) = 1, then the m-normal vector state corre-
sponding to 7(B){,, is B - w, which is in .# by (F3). Given a unit vector ¥ € H,,
and ¢ > 0, cyclicity of m,, yields C' € 2 such that

¥ — 7(C)Qy]|| < min(e/4,1). (1.5)

Then ||7(C)QW]]* = w(C*C) > 0, so we may define B = C/+/w(C*C), for which
|7(B)QW||> = w(B*B) = 1. Note that by (1.5) and the reverse triangle inequality

I7(B)Q — 7(C)l| = 1 =Vl C*C)| < . (1.6)

If ¢ € () is the m-normal vector state corresponding to ¥, then Lemma 1.1
entails

[ = B - wl| < 2[|¥ - 7(B)S||. (1.7)

Thus, (1.5), (1.6), and (1.7) together imply that ||¢) — B - w| < . Since .# is norm
closed and B - w € %, one concludes that ¢ € %.

Next consider a unit vector of the form ¥ = Z?:l Ai¥;, where \; € C and
¥, € H,, are unit vectors with distinct w; € #. If ¢ is the m-normal vector state
corresponding to ¥, then

P(A) = Z Al (g, w(A) L)

Since || ¥|* = Dy IAi|? = 1, we see that 1) is a convex combination of elements of
F,s01 € F by (F2). Since any unit vector in A is the limit of a net of such finite
linear combinations, .% contains all vector states of 7 by Lemma 1.1 and (F1). This
proves that .7, () C #. O

1.3. Pure states and superselection sectors. The extreme points of .7 (2) are
called pure states, the set of which we denote by £2(2(). It is well-known that ()
is nonempty when 2 is nonzero and that () coincides with the weakly* closed
convex hull of &(2) when 2 is unital (both being consequences of the Krein—
Milman theorem). The GNS representation (H,,n,) of a state w is irreducible
if and only if w is pure. In this case, the quotient /91, is already complete,
hence H,, = A/N,; this follows from the Kadison transitivity theorem [Mur90,
Thm. 5.2.4].

Given a non-degenerate representation m, we denote the set of pure m-normal
states on A by Z,(A) = L2(A) N .7 ().

Proposition 1.6. Let 2 be a C*-algebra with a non-degenerate representation
(H,m).
(i) Ifwe P,(A), then w is a vector state.
(ii) If 7 is irreducible and w is a vector state, then w € P, ().
(iil) If 7 is irreducible and U,Q € H are unit vectors defining the same vector
state, then W and Q) are linearly dependent.

Proof. (i) Suppose w € () and let o € B(H) be a density matrix such that
w(A) = Tr(on(A)). There exists an orthonormal set {€2;},.; in H such that ¢ =
> icr AiPi, where P; is the projection onto C§; and A; > 0 with » ;. A; = 1. Fix
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j € I and let ¢ be the vector state corresponding to ;. Then for all positive
Ae

Aj(A) = A; (Q, m(A)Qy) < Z Ai (i, m(A) Q) = w(A).
iel

Since w is pure, there exists A € [0, 1] such that A;i = Aw. Since ||¢] = ||lw|| =1,
we see that A\; = A, which implies that w = 1), a vector state.

(ii) This is given by [Mur90, Thm. 5.1.7].

(iii) If ¥ and Q are linearly independent, then the Kadison transitivity theo-
rem yields B € 2 such that 7(B)¥ = ¥ and 7(B)Q = 0. This contradicts the
assumption that (U, 7(A)¥) = (Q, 7(A4)Q) for all A € 2. O

Definition 1.7. Given a C*-algebra 2, call two pure states ¥, w € P () equivalent
if their GNS representations my, and 7, are unitarily equivalent. Let ~ denote the
corresponding equivalence relation on & (2l). By a superselection sector of 2 we
understand an equivalence class of pure states with respect to ~.

Given w € Z(2), we denote its superselection sector by £, (). Conveniently,
it follows from Proposition 1.6 that &2 (A) = P, (). Indeed, if ) € P (2,
then 1) is a vector state of m,,, hence 7y is unitarily equivalent to 7., by uniqueness
of the GNS representation up to unitary equivalence, so ¢ € &, (). Conversely, if
¥ € P, (), then unitary equivalence of 7y and 7, implies that ¢ is a vector state
of m,, hence ¢ € &, ().

Remark 1.8. Every nonzero irreducible representation is unitarily equivalent to
the GNS representation of some pure state, by uniqueness of the GNS representation
(up to unitary equivalence). Accordingly, the collection A of unitary equivalence
classes of nonzero irreducible representations of 2 is a set (rather than a class),
called the (representation) spectrum of 2(. We provide a brief description of 2 below
and refer the reader to Chapter 3 of Dixmier [Dix77] for a complete exposition.

Usually 2 is endowed with the Jacobson or hull-kernel topology, which is the
unique topology having the hull-kernel operation

~ ~

o) = p(2A), Ew— E :=hull(ker(E)) = {[ﬂ eA: ﬂ[g]GE ker o C ker ﬂ'}

as its closure operation, cf. [Dix77, Sec. 3.1]. Note that the hull-kernel operation sat-
isfies Kuratowski’s axioms for a closure operation and that, for 2 unital, the space
2 with the Jacobson topology is quasi-compact by [Dix77, 3.1.8. Prop.]. In general,
the representation spectrum is locally quasi-compact, see [Dix77, 3.3.8. Cor.].

Letting & ()~ denote & () endowed with the weak* topology, the map « :
P(A) e — 20 which associates to each pure state the unitary equivalence class of
its GNS representation is surjective, continuous and open by [Dix77, Thm. 3.4.11.].
Hence, the induced map on quotients

Bt P W)/~ —= A, Py(A) = 1]

is a homeomorphism.

Note that when considering & (2l), instead (i.e., Z(2) endowed with the norm
topology), the quotient space & (2),/~ is a discrete topological space. This will
follow from Corollary 1.12 below, where it is shown that superselection sectors are
open in Z(A)y,.
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In the remainder of this section we will give various characterizations of super-
selection sectors and show that our definition coincides with the interpretation of
superselection sectors in physics as maximal regions in the pure state space where
any two states have coherent superpositions. Most of the mathematical results
below can be found in Roberts—Roepstorff [RR69], Glimm-Kadison [GK60], and
Pedersen [PEO18].

Before we start with the mathematical definition of coherent superpositions let
us note that given two states w and v there always exists a non-degenerate repre-
sentation (#H,7) such that both w and 1 become vector states with respect to that
representation. For example, one can take (H,w) as the direct sum of the GNS
representations of w and .

Definition 1.9. Two distinct pure states ¥ and w of a C*-algebra 2 are said to
fulfill the superposition principle or to be coherently superposable if there exists a
non-degenerate representation (H, ) in which ¢ and w are represented by the unit
vectors ¥ and {2, respectively, and for all «, 8 € C the vector state ¢ corresponding

to the unit vector
aV¥ + 50

la® + 59|
is a pure state. If this is the case, one calls each of the states ¢ obtained in that
way a coherent superposition of w and 1.

The following proposition is a rephrasal and clarification of the “sufficient” impli-
cation of [Ara99, Thm. 6.1]. We restrict our attention here to pure states, although
[Ara99, Thm. 6.1] is stated for general states.

Proposition 1.10. Let A be a nonzero C*-algebra and let v and w be pure states
in different superselection sectors. If (H,m) is a non-degenerate representation
with unit vectors V,Q € H representing ¥ and w, respectively, then (¥,Q) = 0.
Furthermore, if @ is the vector state corresponding to ® = aW+ B2 for any nonzero
a, B € C with |oz|2 + |ﬁ\2 =1, then

o= laf*d + |5 "w.
In particular, ¢ ¢ P () and ¢ and w are not coherently superposable.

Proof. Define Hy = ()T and note that Hy is a closed invariant subspace. Let
Py : H — Hyg be the orthogonal projection and ¢ty : Hy — H the inclusion. Lastly,
define my : A — B(Hw) by

™y (A) = P\p’/T(A)L\p

for all A € . Since Hy is an invariant subspace, we see that tgmy(A) = 7(A)Lw
for all A € 2. The orthogonal complement of an invariant subspace is invariant,
so it further follows that my(A)Py = Pygm(A) for all A € 2A. Note also that
Pyug = idy,. Thus, for all A, B € 2,

7y (AB) = Pym(A)n(B)ig Pyty = Pym(A) gy (B)Pyiy
= Py7(A)ty Pym(B)ry = my(A)my (B).
Furthermore, since ¢y is an isometry, for any =,y € Hyg we have
(mo(A%)z, y) = (reme(A")z, vay) = (T(A")rww, Loy)
= (tox, m(A)ey) = (Lo, temy(A)y) = (z, Ty (A)y) .
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Therefore my(A*) = 7y (A)*, and (Hy,7y) is a representation of 2. Identical
arguments and the corresponding notation apply with W replaced by ().

The non-degeneracy of 7 implies that ¥ € Hy, so ¥ is a cyclic vector for my.
Furthermore,

¢(A) = <\I/,7T(A)\If> = <L\p\I’,7T(A)L\p\I/> = <Lq;\I/,L\p7T\p(A)\I/> = <\I/,7T\p(A)\I/> .

It follows that my is unitarily equivalent to the GNS representation of ¢». Thus, mg
is not unitarily equivalent to mq. Since 1) and w are pure, their GNS representations
are irreducible, and so are my and 7q.

Finally, observe that

PQL\I;TF\I;(A) = PQTF(A)L\I/ = WQ(A)PQL\I; forall Ae .

Since my and 7 are not unitarily equivalent, Schur’s lemma implies that Poirg =
0; see [Dix77, 2.2.2]. It follows that Hy and Hg are mutually orthogonal. In
particular, (¥, Q) =0 and

P(A) = (¥ + SO, m(A) (¥ + BY) = |af*$(A) + 5] w(A)
as desired. Since ¢ is a nontrivial convex combination of pure states, ¢ ¢ Z(A). O

The following lemma is a rephrasal of Proposition 3.13.4 in [PEO18]. It was
originally stated for unital C*-algebras in [GK60].

Lemma 1.11. Let 2 be a C*-algebra and let Y,w € P(A). If ¢ and w are in
different superselection sectors, then || — w|| = 2.

Proof. Let H = Hyp ® Ho and m = 7y @ 7, be the direct sum of the two GNS
representations. Note that 7 is non-degenerate since 7y, and 7, are non-degenerate.
Let Py : H — Hy and vy : Hy — H be the usual projections and inclusions, and
define P,, and ¢, similarly. Observe that

7T¢(A)Pw = Pwﬂ'(A) and Lw’/Tw(A) = W(A)Lw

for all A € 2, and similarly with 1 replaced by w.
Define U € B(H) by U(z,y) = (z,—y) for all (x,y) € H. Our goal is to show
that U € n(A)”. Suppose T € n(A)’. For i,j € {¢,w}, we compute

WZ(A)PZTLJ = PﬂT(A)TLj = P,LTTF(A)L] = PiTLjﬂ'j (A)

For ¢ = j, this implies that P, T¢; € m; (). Since m; is irreducible, we know
P;Ti; = M\ for some \; € C. For ¢ # j, Schur’s lemma and the assumption that
7y and m,, are not unitarily equivalent imply, as in [Dix77, 2.2.2], that P,T¢; = 0.
Thus, T(z,y) = (Apx, Ayy) for all (z,y) € H, so

UT(z,y) = (Apz, —Aoy) =TU(z,y).

This implies that U € w(2()", as desired. Note that clearly U € w(2)" as well.

Fix € > 0. By the von Neumann bicommutant theorem, we know the closure of
7(2) in the strong operator topology on B(H) is equal to 7(A)”. Since U € w(A)”
and ||U|| = 1, the Kaplansky density theorem implies that there exists A € 2 with
I7(4)] < 1 and

[m(A)(L, Q) = U, Q) <e,
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where W and €) are the cyclic unit vectors corresponding to ¥ and w in the GNS
construction. By Lemma 1.2, there exists B € 2 such that 7(A) = x(B) and
|B|| <1+ e. Thus,

(¢ = w)(B)| = [{(¥, 74 (B)¥) — (2, 7,(B))|

K
= |<U(\I’,Q)77T(B)(\I/7Q)>|
> (U(P,Q),U(¥, Q)] — (U(¥,9Q),(r(4) - U)(¥,Q))]

Thus,
B 2 — /2
— > — > .
o -l > |w-w)(125 )| 2 2
Since € was arbitrary, this implies that [|¢) —w|| > 2. Since [|¢) —w]|| < 2 by the
triangle inequality, the result is proven. O

Corollary 1.12. Let A be a C*-algebra. Then the superselection sectors of A are
open in PNy, i.e., in P(A) endowed with the norm topology.

The following theorem is a rephrasal of Proposition 4.6 in [RR69]. However, we
give a new proof for the case when v and w are in the same superselection sector.

Theorem 1.13. Let A be a C*-algebra, let p,w € P(A), and let (H,m) be a
non-degenerate representation with unit vectors ¥,Q) € H representing ¥ and w,
respectively. If ¥ and w are in different superselection sectors, or if they are in the
same superselection sector and (H,w) is irreducible, then

1
(T, =1 1llY —wl®

Proof. If 7 and w are in different superselection sectors, then || —w| = 2 by
Lemma 1.11, so the right hand side is zero, and (¥, ) = 0 by Proposition 1.10.

We now consider the case where ¢ and w are in the same superselection sector
and (H,n) is irreducible. If ¥ and Q are linearly dependent, then ¥ = w and
(T, Q>|2 =1, so the identity holds. To prove the case where ¥ and Q are linearly
independent, we will show inequality in both directions.

Let A = 1 — [(¥,Q)]> (which is strictly positive since U and Q are linearly
independent unit vectors) and define

eg = A V2Q— (B, Q) T) and eq = A"V —(Q,0)Q).

Then {¥,eg} and {Q, eq} are both orthonormal systems for span{¥, Q}. We may
construct a unitary U € B(H) such that UV = eq and Uey = —Q by extend-
ing U linearly on span{¥,Q} and having it act as the identity on the orthogonal
complement. Of course, ||[U|| = 1 since U is unitary. Since 7 is irreducible, we
know U € w(2)" = B(H). Therefore, given € > 0, the von Neumann bicommutant
theorem and the Kaplansky density theorem yields A € 2 such that ||7(A)| < 1,

|l7(A)T —U¥|| <e and |7n(A)Q-UQ| <e.
By Lemma 1.2 we may assume ||A|| < 1+ e. Note that

UQ = U()\l/Qe\p + (W, Q) \1:) = A2 4 (T, Q) eq.
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Then we can compute
(¢ —w)(A)] = (¥, m(A)¥) — (2, 7(A)Q)]
> (U, UT) — (QUQ)| — (U, 7n(A)¥ —UT)| — (Q,7(A)Q —UQ)|
> 212 2.
Thus,

A 2A1/2 — 2¢
— > — > .
o -l > |- o)1) |2 P

Since £ > 0 was arbitrary, this implies that |[1) — w|| > 2A'/2, which rearranges to
2 1 2
(LD 21— 2l =l

For the reverse inequality, let A € 2 with ||A| < 1. Given «a,f,7 € C with
la| = 8] = |v] =1, define A’ = a4, ¥ = ST, and ' = 7, we note that ¥’ and
define the same states as ¥ and €, respectively, and |(v) — w)(4)| = |(¢ — w)(A')].
We choose « so that () —w)(A’) > 0 and we choose 8 and/or v such that (¥’ Q')
is real. We compute

(W' £ 9, m(A) (¥ F Q) = (¢ — w)(A) £ [(, 7(A)T) — (¥, 7(A)Q)].

For one of the sign choices, the term in square brackets will have nonnegative
real part, and therefore the magnitude of the left hand side will be greater than
|(¥ —w)(A)|. For either sign choice, the Cauchy-Schwarz inequality gives

(' £ Q' m(A) (¥ F Q)| <[+ Q¥ -
—9y/1— (Re (v, 0))°

=2\/1— (T, Q).
(% — w)(A)] = (¢ — w)(A)] < 2¢/1 = [(T, Q).

Since A was arbitrary, we have [|¢p —w| < 24/1 — (¥, Q)|?, which rearranges to

the desired inequality. O

Theorem 1.14. Let A be a C*-algebra and let p,w € P () be pure states. The
following are equivalent:

Thus, we have

(i) ¢ and w are in the same superselection sector,

(i) there exists a nonzero irreducible representation (H, ) such that ¥, w € P, (),

(iii) there exists B € 2 such that »(B*B) =1 and w = B - v,

(iv) for any non-degenerate representation (H,n), we have p € P () if and only
ifwe Z.(A),

(v) ¥ and w are in the same path component of (),

(vi) ¥ and w are coherently superposable.

If A is unital, then the element B € 2 in (iii) may be chosen to be unitary.
The equivalence (i) < (ii) < (iii) < (v) was stated by Roberts—Roepstorff in the
case where 2 is unital and the element B € 2 in (iii) is unitary [RR69, Prop. 4.2

& Thm. 4.5]. The equivalence (i) < (vi) is implied by [Ara99, Thm. 6.1], which
gives a more general equivalence for states which are not necessarily pure. The



16 SPIEGEL, MORENO, QI, HERMELE, BEAUDRY, AND PFLAUM

equivalence of (iv) with the others is easily proved. We clarify that the result holds
for non-unital C*-algebras as well.

Proof. Denote by (Hy, my, Qy) and (He, 7, () the GNS representations of ¢ and
w, respectively. Now verify the following.

(i) = (ii). Let U : Hy — H. be a unitary intertwining the representations
(Hy,my) and (Hy, ). Then

(UQy, o (A)UQy) = (U, Uty (A)Q2y) = (Qy, mp(A) L) = ¥(A)

for all A € 2, which implies that ¢ € &, (2) and, of course, w € P (A) as well.
(ii) = (iii). Let ¥, € H be unit vectors representing ¢ and w. By the Kadison
transitivity theorem, there exists B € 2 such that 7(B)¥ = Q. Then

Y(B*B) = (U, 7n(B*B)¥) = (Q,Q) =1
and
(B-¢)(A) = ¢(B"AB) = (Q,7(A)Q) = w(A),
as desired. Note that if 2 is unital, then Kadison’s transitivity theorem allows B
to be chosen unitary.
(iii) = (i). In the GNS representation of ¢ one has

OJ(A) = <W¢(B)Qw,ﬂ¢(A)7T¢(B)Q¢> forall A e .

Since 7y (B)Qy is a cyclic unit vector, uniqueness of the GNS representation up to
unitary equivalence implies that w and v are in the same superselection sector.

(iii) = (iv). Given any non-degenerate representation (H, ), ¢ € &, (2() implies
we Z-(A) by (F3). Since (iii) = (i) and (i) is symmetric in 1 and w, we also have
(iii) with ¢ and w switched, hence w € 22, () implies 1 € Z. ().

(iv) = (v). Let (Hy,my, ¥) be the GNS representation of ¢. By (iv), there
exists a unit vector {2 € H, representing w. Since the unit sphere of H, is path
connected, there exists a continuous path in the unit sphere from ¥ to €2, hence
there exists a continuous path in (), from ¥ to w by Lemma 1.1.

(v) = (i). By Corollary 1.12, the superselection sector containing ¢ is open in
() with respect to the norm topology. If (H,my) is the GNS representation
of ¢, then (ii) = (i) and (i) = (iv) implies that Z; () is the superselection
sector containing . But Z; () = .7, (A) N Z(2) is norm closed in & (A) since
S, () is norm closed in .#(2A). Thus, the superselection sector containing v is
both an open and closed subset of Z(2() in the norm topology, so it contains the
path component of Z(2l), containing 1.

(i) = (vi). Assume that ¢ and w are in the same superselection sector. Let (H, )
be an irreducible representation which is unitarily equivalent to m, and hence to
my as well. Then there exist unit vectors ¥ € ‘H and €2 € H which induce the states
¥ and w, respectively. Let a, 8 € C* and put ® = (¥ + 8Q)". The vector state
¢ corresponding to the unit vector ® is pure by Proposition 1.6 (ii), hence ¢ and
w are coherently superposable.

(vi) = (i). This is contained in Proposition 1.10. O

Remark 1.15. The equivalence (i) = (vi) ties together the mathematical notion
of superselection sector defined in Definition 1.7 and the physical concept of super-
position. However, when 2 is the algebra of observables of a quantum mechanical
system or a quantum field theory, it may not be the case that all the superselection
sectors in the sense of Definition 1.7 above are physically relevant. In their ground
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breaking work [DHR71, DHR74], Doplicher-Haag—Roberts (DHR) introduced a
general theory of superselection sectors for algebraic quantum field theory. More
precisely, they defined superselection sectors for a local net of C*-algebras over
Minkowski space fullfilling the axioms by Haag—Kastler [HK64, Haa92]. Adapted
to more general situations in algebraic quantum mechanics and algebraic quantum
field theory, their approach can be described as follows. Assume to be given a quasi-
local algebra 2. This means that 2 coincides with the the colimit of a causal net
of algebras (Ap)ae.s which is a particular kind of inductive system of C*-algebras
indexed over a so-called causal index set . Let us explain in more detail what
one understands by these notions. Assume to be given a topological space M. In
most applications M is either a lorentzian manifold which models the underlying
spacetime or a discrete lattice like Z%. A causal complement then is an operation
L 0(M) — O(M) on the topology of M such that the following conditions hold
true, cf. [Wol90, Key96, BvBS]:

(i) O c Ot for all open O C M.
(ii) ON O+ =0 for all open O C M.

(ili) (O1UO0,)" = O NOF for all open Oy,05 C M.

Sets O € O(M) with the property that O = (O*)* are called causally complete. In
addition to axioms (i) to (iii) it is assumed that there are enough causally complete
subsets which means that we require:

(iv) There exists a countable family .# of causally complete non-empty open sub-
sets A C M which is a basis of the topology, upward directed by inclusion and
such that A+ # () for all A € .7,

The last property in particular guarantees that M = (J ., A. A family .# which
satisfies the condition in axiom (iv) is called a causal index set. By a causal net
of algebras one now understands a strict inductive system of C*-algebras (2x)ac.»
where the index set .# is a causal index set and where the commutation relation
[2,Aa] = 0 holds for all causally disjoint A, {2 € .# that is for all A,Q in .# such
Q C At or, equivalently, A C QL. Note that the strictness condition implies that
A and g are subalgebras of 2r where I' € .# has been chosen so that QUA C I
Therefore, the commutation relation for 2, and 2y makes sense, indeed.

Since a causal index set comprises a basis for the topology, one can define for
every open O C M the C*-algebra 2o as the C*-algebra colimit of the inductive
system (Ap)ae.s,aco. The quasi-local algebra 2 coincides by definition with the
C*-algebra 2Ay;.

In physically interesting examples, .# might be the set of finite subsets of a
countable discrete lattice such as Z? with the set-theoretic complement as causal
complement or the set of open double cones in Minkowski space together with the
relativistic causal complement as in the work of DHR. Usually, the system comes
equipped with a symmetry group G which acts simultaneously on the space M and
on the inductive system (2Ap)ac.s in a compatible fashion and so that the causal
complement is preserved. This means that (gO)+ = gO+ for open O C M and
gAx C ™Uga for A € . In the original DHR setup the symmetry group is the
Poincaré group with its natural action on Minkowski space. In addition to the
causal index set .# one sometimes assumes to be given a second family . C &(M)
of localizable regions. The elements of . and their causal complements are assumed
to be non-empty, and the union of all A € . is assumed to coincide with the
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space M. The set of localizable regions may coincide with the causal index set
# as for example in the original work by DHR. The final ingredient in the DHR,
analysis is a distinguished reference state w on 2. That state is assumed to be
pure and invariant under the action of the symmetry group if there is one. Usually,
the reference state is a vacuum state or a ground state of some Hamiltonian of
the system. The physically allowable sectors are now defined as those equivalence
classes of pure states g on 2 which are invariant under the G-action and satisfy the
following condition:

(DHR) There exists a A € ¢ such that over the causal complement A1 the re-
stricted GNS representations ww’ﬂ _ and o] o, are unitarily equivalent.
A A

In the situation where the quasi-local algebra is defined by a net of algebras over
Minkowski space fulfilling the Haag—Kastler axioms and the localizable regions are
the double cones in Minkowski space, the superselection sectors which satisfy the
DHR condition are called the DHR sectors. In the C*-algebraic formulation of quan-
tum spin systems the described approach to superselection sectors has been advo-
cated in the work by Naaijkens, Cha, and Nachtergaele, see [Naall, Naal5, CNN20].
In a quantum spin system over a countably infinite lattice, the localizable regions
are infinite cones which in general are not finite subsets of the lattice anymore.
This means that in this case the space of localizable regions differs from the causal
index set defining the quasi-local algebra. A similar phenomenon appears also in
the approach by Buchholz—Fredenhagen [BF82] to superselection sectors describ-
ing relativistic massive particles. There, the localizable regions are given by infinite
cones as well and the elements of the causal index sets are relatively compact double
cones in Minkowski space.

The last result in this subsection is of a more categorical nature about the nat-
urality of the GNS construction and the functoriality of the sector space.

Proposition 1.16. Let o : B — € be a *-isomorphism between C*-algebras B and
&. Then the following holds true.

(i) The GNS construction is natural in the sense that for every pure state w
on B with corresponding GNS representation (Hy, Tw, Q) and Gelfand ideal
N, = {B € B : w(B*B) = 0} the state Y := a.w is a pure state on €
with Gelfand ideal given by My = a(Ny). Moreover, if (Ky, py, Qyp) is a
cyclic representation of € so that )y, represents the state 1), then there is a
commutative diagram

where &, B — Hy, and &y : € — Ky are the maps B — 7,(B)Q, and
C — 0yp(C)Qy, respectively. The bottom arrow U, : Hy, — Ky is unitary
and uniquely determined by the equality Uy () = Q. Finally, the maps
&o and &y are both surjective, and their kernels coincide with N, and Ny,
respectively.

(ii) There is a homeomorphism @ : Sec(B) — Sec(€) between spaces of superse-
lection sectors endowed with the quotient weak™ topologies which is uniquely
determined by the requirement that for every pure state w on ‘B its sector S,
is mapped under @ to the sector Sy of € containing ¥ = a.(w).
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Proof. First we show (i). Since « is a %-isomorphism, it is clear that the state
1 = o,w is pure whenever w is and that its Gelfand ideal 9, coincides with
a(MNy,). Now observe that the triple (ICy, py 0 @, Q) is a cyclic representation of B
such that for all B € B

(Qy, py 0 a(B)2y) = ¥((B)) = w(B) .
By uniqueness of GNS-representations there exists a unique unitary operator U, :
H., — Ky making the above diagram commute and such that U, (Qy) = Q.

As already observed before, the Hilbert space H,, of the GNS representation of
w coincides with 20/91,,, hence the map &, : A — H,, A— 1,(4)Q, = A+ N, is
surjective and has kernel 0N,,. By unitarity of U,, the map &, has to be surjective
as well and its kernel is given by a(M,) = MNy.

To verify (ii), observe first that the x-isomorphism « induces a homeomorphism
o, 0 P(B) - HP(€) between pure state spaces endowed both with either the
norm or the weak™ topologies. In particular a, therefore maps path components of
P(B), to those of Z(€), and vice versa. The claim now follows. O

1.4. Connectedness properties.

Proposition 1.17. Given a non-zero C*-algebra 2, the space P (), of pure states
endowed with the norm topology is locally path connected. The superselection sectors
are the path components of Z(A)n and coincide with its connected components.

Proof. We show every open ball B.(w) C Z(2), with r < 2 is path connected.
If v € B,(w), then Lemma 1.11 implies ¢ and w are in the same superselection
sector, so by the equivalence of (i) and (ii) in Theorem 1.14, there exists a nonzero
irreducible representation of (H,7) such that ¢¥,w € Z.(A). Let U, Q € SH
represent ¢ and w. There exists a path v : [0,1] — SH such that v(0) = ¥ and
(1) = Q, and we can compose this with the continuous map from Lemma 1.1 to
get a continuous path in & (), between ¢ and w. Thus, B, (w) is path-connected,
and this implies that Z2(2(), is locally path-connected.

The equivalence of (i) and (v) in Theorem 1.14 implies that the superselection
sectors are just the path components of & (2),. The connected components coin-
cide with the path components since this is always true in a locally path-connected
space. U

For infinite-dimensional C*-algebras of interest in the study of quantum lattice
spin systems, & (), has uncountably many components (we give an example in
Section 5). In contrast, there is often only one component of &2(2)y,, i.e. the pure
state space with the weak® topology. This can be seen as a consequence of the
theorem below. Following [Kad65] (in the version of [Aar70]), we call a set .# of
states full if for all A € A the relation A > 0 is equivalent to w(A) > 0 for all
w € Z. The theorem below gives a crucial characterization of when a set of states
is full.

Theorem 1.18 ([Kad65, Thm. 2.2] & [Aar70, Thm. 1 & 2]). For a set F of states
on a unital C*-algebra A, the following are equivalent:
(i) F is full,
(ii) the weak* closure of the convex hull of F contains .7 (),
(iii) the weak* closure of F contains (),
(iv) ||A]| = sup o(A) for every positive element A € 2.
eEF
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If A is non-unital and nonzero, then (i) < (iii) & (iv) = (i).

A nice proof of (i) = (ii) and (i) = (iii) can be found in [Mur90, Thm. 5.1.14].
We caution that [BR87, Prop. 3.2.10] falsely states (i) = (ii) without requiring 2
to be unital; a counterexample is provided in [Aar70].

Corollary 1.19. If2 is a nonzero C*-algebra with a faithful irreducible represen-
tation, then P (W)~ is connected.

Proof. Let (H, ) be a faithful irreducible representation. Then for every A € 20,

[A] = l[x(A)]} = sup (¥, 7(A)¥) = sup H(A),
=Y $E P ()
so Z,(2) is weak* dense in & (2) by Theorem 1.18. Since &, () is connected in
the norm topology, it is connected in the weak* topology, and density of 2, ()
now implies that Z2(2) is connected. O

Following [Eil99, Defs. 1.8 & 5.7], we call a C*-algebra 2 connected, respectively
locally connected, whenever the corresponding pure state space &(2)y+ has that
property. Using this terminology, Cor. 1.19 then says that a C*-algebra with a
faithful irreducible representation is connected. So in particular every simple C*-
algebra is connected. In fact, every simple C*-algebra is locally connected, as
implied by Theorem 5.6 in [Eil99].

Finally, in this section we will provide a few criteria which entail that the pure
state space is path-connected or locally path-connected in the weak™ topology. The
essential tool is the following.

Theorem 1.20 ([Eil99, Prop. 5.9]). If 2 is separable, connected, and locally con-
nected, then P (A)w+ is path-connected and locally path-connected.

This theorem is a trivial synthesis of the facts that &?(2)y+ is a Polish space
when 2 is separable [PEO18, Prop. 4.3.2], and that a locally connected complete
metric space is locally path-connected. It is unfortunately difficult to find a correct
proof of the latter fact in the literature. One may find a roadmap of common
errors along with corrections in [Bal84], where several references to both correct
and incorrect proofs are provided. Nonetheless, Theorem 1.20 applies in many
cases of interest in physics.

Theorem 1.21. Let A be a C*-algebra.

(i) IfA is simple and separable, then 2 is path-connected and locally path-connected.
(i) If A = @fj:l A, N € NU {oo} is the direct sum of separable, simple C*-
algebras A, then A s locally path-connected.
(iii) If A is the colimit of an injective direct system of countably many separable,
simple C*-algebras, then A is path-connected and locally path-connected.

By the direct sum @, ; ,,, we mean the set of sequences (A, )nen € [[7e; An
such that ||A,| — 0, equipped with the max norm and componentwise algebraic
operations.

Proof. If 2 is simple and separable, then ()~ is connected, locally connected,
and completely metrizable, hence path-connected and locally path-connected by
the preceding remarks. The type of C*-algebra described in (iii) is itself simple and
separable, and therefore path-connected and locally path-connected by (i).
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It is stated without proof in [Eil99] that the pure state space of @ -, 2, is
homeomorphic to the disjoint union | |2, £ (2l,), from which it follows that (ii)
holds since each Z2(2l,,) is locally path-connected. We give a proof of this fact. For
each n € N let 7, : A — 2, be the canonical projection and let ¢,, : /,, — 2 be the
canonical inclusion ¢, (A) = (B )men where By, =0 if m # n and B,, = A. Given
w € P(AU,), the fact that , is a surjective *-homomorphism implies wor,, € L ().
Thus, we have a map | |72, 2(2,) = P(A). If Y € P(A,,,) and w € P(2,,) such
that 1 o m,, = w o m,, then m = n must hold, hence surjectivity of the projections
implies ) = w, so this map is injective. For surjectivity, suppose w € Z (). It
cannot happen that w o, = 0 for all n € N because the span of | J,, ¢y tn(2y) is
dense in 2, therefore there exists n € N such that w o ¢, # 0. By definition of the
algebraic operations on 2, we see that (¢, o m,)(A) < A for all A € . Therefore
W O Ly, O T, is a positive linear functional on 2 dominated by w. Since w is pure,
there exists ¢t € [0, 1] such that w o ¢, o 7, = tw. Composing with ¢, on the right
and using the fact that wot, # 0 implies t = 1. Purity of w o, follows easily from
purity of w.

We have established a bijective correspondence | |77 ; Z(Ap)ws — P (W)
Continuity of this map follows from the universal property of the disjoint union
and the fact that each map f, : U, )w = P (A)w=, fn(w) = wo m, is weak*
continuous. We show that each f, is open, from which it follows from the defi-
nition of the disjoint union topology that the map ||~ ; Z(Up)w+ — P(A)w= is
open, and therefore a homeomorphism. Given w € Z(2,,), choose A € 2, such
that |w(A4)] > 1/2. Then U = {¢p € Z(A) : |¢(1n(4)) —w(A)| < 1/2} is a neigh-
borhood of w o 7, contained in f,(Z?(2,,)) since ¢ € U implies ¥ o ¢, # 0. Thus,
fu(Z(,)) is open. For any basis neighborhood Us 4, 4,..... 4, C & (U )w+ around
w € P(Ap)w+, we have

fn(Ue,w,Al ..... Ak) = fn(@(ﬁln)) N U57W077n7Ln(Al)a-“an(Ak)'
This exhibits f,,(Uew 4,,...,4,) as an open set in F?(A)y+, so f, is open. O

.....

Given that there may be unphysical superselection sectors for a particular phys-
ical system, it is reasonable to ask whether &?(2)~ remains path-connected after
some superselection sectors are removed. For unital, separable, simple C*-algebras,
the answer is yes. In fact, one may find a path between arbitrary pure states
PY,w € P(A) that remains in &, (2) until the path reaches w at the endpoint.
This is a trivial consequence of Theorem 1.14 and the following remarkable theo-
rem of Kishimoto, Ozawa, and Sakai.

Theorem 1.22 ([KOS03, Thm. 1.1]). Let 2 be a separable C*-algebra. If ¢, w €
P () and kermy, = kerm,,, then there exists an automorphism o € Aut(2) and
a continuous family of unitaries U : [0,00) — U(A), t — Uy such that Uy = I,
PYoa=uw, and

alA) = tlggo U AU,
for all A € A.

2. GEOMETRY OF THE PURE STATE SPACE

In §2.2 below, we will prove that the pure state space £ (2() has the structure of
a Kahler manifold. However, we start by giving some background on the topology
and geometry of infinite dimensional projective Hilbert spaces.
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2.1. Background on projective Hilbert spaces. Quantum mechanical states
are traditionally described as rays in a Hilbert space H or in other words as elements
of the projective Hilbert space

PH = {CU: ¥ e H\ {0}}

consisting of one-dimensional subspaces. The topology and differential geometry of
projective Hilbert space will play an important role in the fiberwise GNS construc-
tion of Section 4.2. We review some fundamental concepts and constructions here.
See [CLM83, CL84, ACLM84, AS99, Frel2, CJS20] for related results.

We endow PH with the quotient topology with respect to the canonical projection
p:H\ {0} = PH, p(¥) = CT; this is the same as the quotient topology obtained
from the restricted projection p : SH — PH, where SH denotes the unit sphere of
‘H. Given two rays C¥,CQ € PH, we define the ray product by

(¥, )]
(E0E0 = Tar
which is clearly independent of the representatives ¥,Q € H \ {0}. The square of
the ray product is called the transition probability between C¥ and C2. We now
define three metrics on PH and relate them to each other and to the ray product.
The first one is the chordial distance or chordial metric which for two rays CW¥, CQ)
with representing vectors ¥, Q) of norm 1 is given by

dena(CV,CO) = inf |V = 0|

The second metric is the Fubini—Study distance. 1t is defined by
dps(C¥, CQ) = arccos [([CT,CO) .
Finally, we define the gap metric
dgap(C¥, CQ) = ||[P(CY) — P(CQ)]|
where P(CU) € B(H) is the orthogonal projection onto C¥.

Proposition 2.1. Let H be a nonzero complex Hilbert space. Then the following
holds true for the metric structures on PH.

(i) The chordial metric deng is complete and induces the quotient topology on PH
with respect to the canonical projection p : SH — PH. Moreover, the chordial
metric satisfies the formula

dena(C¥,CQ)% = 2(1 — [(CT,CQ)|)  for all ¥, Q2 € H\ {0} . (2.1)
(ii) The Fubini-Study distance is equivalent to the chordial metric. More precisely,

dchd(é,f) S dFs(ﬁ,f) § @dchd(é,f) fO?” all ﬁ,f cPH . (22)

(ili) The map P : PH — B(H) which associates to every ray ¢ the orthogonal
projection onto it is a bi-Lipschitz embedding when PH is endowed with the
chordial metric and the image is endowed with the metric induced by the op-
erator norm on B(H). In other words, the chordial metric and the gap metric
dgap on PH are equivalent. More precisely, the following estimate and equality
holds for all £,¢ € PH.:

1

Jgtenal,0) < deup(£,6) = VTR < daalo0) . (23
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Proof. (i) By definition, denq is non-negative and symmetric. To show positive
definiteness assume that dcpq(C¥,CQ) = 0 with ¥, Q € SH. By compactness of
U(1), there exists A € U(1) such that ||[¥ — Q|| = 0. Hence C¥ = CQ. To verify
the triangle inequality let 2,7, 7/ € PH and choose a representative & € 7 N SH.
Then

dena (£, £) = inf {|[ W — Q[ : W € £NSH, Q € £ NSH)
<inf | —B|: W e ANSHY +inf{|& -0 : QeNSH)
=dena(#,7) +dema(7,7) .

Hence denq is a metric. Next we prove formula (2.1). Given ¥,Q € SH, observe
that for all A € U(1) the estimate

|9 = AQI? = 2(1 — Re (A(W, ) > 2(1 - |(¥,)))
holds true. Putting

Qv
o — teal for (U,9) #£0,
1 for (¥,Q) =0,
then minimizes the functional ||¥ — AQ||, hence

dena (CV,CQ) = W — AQI = 2(1 — (¥, 9)]) = 2(1 - [C¥,CRY) .

Given ¥ € SH, the function depq(C¥, —) : PH — [0, \/5] is continuous because
by (2.1) composition with p : SH — PH is continuous. Hence the metric topology
is coarser than the quotient topology. Conversely, it follows from the definition of
deng that

BE,Chd ((C\I/) = p(BE(\I/) N SH)

for any U € SH and € > 0, where B, (,q(C¥) is the ball of radius € centered on
C¥ with respect to the chordial metric and similarly B.(®) is the ball of radius e
centered on W. This proves that the quotient topology is coarser than the metric
topology, and also that p is an open map.

To verify completeness observe first that for a given element ¥ € SH and ray
¢ € PH with |(C¥, ) # 0 there exists a unique representative Qg , € SH N ¢ such
that (¥, Qg ) = (C¥, ). Now assume that (£,),en is a Cauchy sequence in PH.
Then there exists a strictly increasing sequence of natural numbers (ng)gen such
that

dend(€ny bm) < for all n,m > ny .

2k+1
Pick a representative Qo € £,, NSH and define the sequence (€ )ren of unit vectors
recursively by

Q1 = Qay ey, -

Then, for all £ € N,

||Ql~c+1 - Qk” = \/2(1 - Re<Qk+179k>) = \/2(1 - |<fnk+1)fnk>|) =
1

= dchd(l’ﬂnkﬂ’l’ﬂ”k) < W :

So (2 )ken is a Cauchy sequence in SH, hence convergent to a vector 2 € SH. Let
¢ = CQ. Since dend (n,,,€) < || — ©J], the subsequence (£, )ken converges to £,
hence (Z,,)nen does so too. Therefore (PH, dena) is a complete metric space.
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(i) Consider the function

F0,1] =R, fla) = =BT ire0,1) and f(1)=1.
2(1 — )

This function is continuous on [0, 1] and differentiable on (0, 1), with

R Ry arccosz 1 —x
fa) =21 >“< ’ \/1+x>'

Given x € (0,1), put § = arccosz. Using trigonometric power reducing identities

yields
() = % (1— )32 (g — tan (Z)) <0.

Therefore f is monotonically decreasing, so 1 = f(1) < f(z) < f(0) = @ for all
x € ]0,1]. Since

F(cw, coy) = jsg ?C%

provided [(C¥,CQ)| < 1, this proves (2.2).
(iii) The operator norm distance of P(#) and P(¢) is given by

|P(#) — P(¢)|| = sup ||[(P(%)— P(£))®] . (2.4)

PeSH
Pick normalized representatives ¥ € £ and Q2 € #. After possibly multiplying 2
by a complex number of modulus 1 one can assume that (U, Q) = [(#,£) > 0. If ¥

and Q are linearly dependent then £ and £ coincide and (2.3) is trivial. So assume
that ¥ and €2 are linearly independent. First we want to show that

|(P(#) — P(£))®|* <1— (¥,2)* forall € SH . (2.5)

To this end expand ® = &l + &L where ®/ lies in the plane spanned by ¥ and Q
and ® is perpendicular to that plane. Then

(P(£)—P(£))® = (¥, 0) U—(Q,0) Q = (¥, 2 v —(Q, 2l = (P(%) - P(¢)) 2!l .
Hence it suffices to verify (2.5) for ® € SH Nspan{¥, }. Observe that there exist

unique elements 6 € [0,%] and p € S' such that (¥, ®) = ficosf. One can then
find a normalized vector Q1 € span{¥, Q} perpendicular to ¥ such that
pu® = cos W+ sin 6 Q- .
Note that
Q= (U, Q)0+ (25, 0)0" and [(Q4, Q) =1 (¥,0)? .
Now compute
[(P(£) — P()®|* = ||(P(#) — P(£)) u||* = [(¥, u®) ¥ — (2, u®) O =
= (W, u®)|* = 2(¥, Q) Re (¥, u®) (u®, Q) + {2, u®)|* =
= cos®0 — 2cos 6 (U, Q) (cosf (¥, Q) +sinf Re (0, Q))
+ 00?0 (U, Q) 4+ 2cosf (T, Q) sinf Re (2, Q) +sin [(2F, Q)[” =
=1—(0,Q)* .
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This proves (2.5), but also implies by (2.4) that
IP(A) — P)I? =1~ (0,007 =1~ (£, )
The claim (2.3) now follows by (2.1) and the inequality
l—2<1-2?<2(1-2) forallzc[0,1]. O

Corollary 2.2. Let 2 be a nonzero C*-algebra and (H, ™) be a nonzero irreducible
representation. Given ¥ € SH denote by ¢ the vector state represented by W.
Then the map r : PH — P (A)n, C¥ — o is a bi-Lipschitz bijection, hence an
isomorphism of uniform spaces, where PH and Z.() are endowed with the gap
metric and the canonical metric, respectively.

For later purposes, we call r : PH — £, (), the uniform isomorphism associated
to the irreducible representation (H, 7).

Proof. Note that the map CV — 9 is well-defined, since multiplying ¥ € SH by a
unimodular complex number does not change the corresponding vector state. By
Proposition 1.6, the map is a bijection. By Theorem 1.13 and Proposition 2.1, we
have

1
dgop(CT, CO)? = 1 - (CT, COY* = [ — wl?, (2.6)

where w is the vector state corresponding to €2 € SH. This implies that the map r
is bi-Lipschitz. ([

Corollary 2.3. Let 2l be a nonzero C*-algebra. The union of an arbitrary collection
of superselection sectors of A is norm-closed in A*.

Proof. By Theorem 1.14, each superselection sector coincides with &, (1) for some
nonzero irreducible representation (H, 7). It then follows from Proposition 2.1 and
Corollary 2.2 that each superselection sector is complete, hence closed, in 2* in the
norm topology. By Lemma 1.11, each Cauchy sequence in &2(2) is eventually in a
single superselection sector. It follows that the union of an arbitrary collection of
superselection sectors is complete, hence norm-closed. (I

Corollary 2.3 is equivalent to [Kad82, Cor. 4.8]. Kadison takes a different ap-
proach to the proof, but remarks that it may be proven with Theorem 1.13 as we
have done in the proof of Corollary 2.2.

We now begin to consider the differential geometry of projective Hilbert space.
We refer the reader to Appendix A.1 or [Lan02a] for details on infinite dimensional
manifolds used henceforth.

Lemma 2.4. Let H be a Hilbert space of dimension > 2 and fit WV € SH. Let
Cy = (CO)L and let B1(C¥) be the open unit ball around CY with respect to the
gap metric. The maps og : SH\ (SHNCy) = Cy x U(1) and 7¢ : B1(C¥) = Cy
given by

Q (U, Q) Q

ou () = <<m> -0 <\m>|) and (€)= gy ~ ¥

for Q e SH\ (SH N Cy) are well-defined homeomorphisms.
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Proof. It O € SH\ (SH N Cyg), then (¥,Q) # 0 and

<x1/,<\I}’QQ>—\1/>=1—<xp,\1/>=o.

So % — VU € Cy and oy is well-defined. Continuity of oy is manifest. We now
define a continuous map o' : Cy x U(1) — SH \ (SH N Cy) by
AP+ T)

o (@, )) = = .
1+ [[@]

It is straightforward to check that oy !is indeed a two-sided inverse for oy.
Next we consider 7y. We have already shown that ﬁ — WU is perpendicular
to U, so Ty is well defined. Since composition of 7¢ with the canonical projection

p:SH\ (SHNCy) — By (CT) is continuous, 7y is continuous as well. Now put
75 (@) =C(®+ V) for d €Oy . (2.7)
It is clear that W 4+ ® # 0 for such @, so C(¥ + ®) € PH and the ray product
(75 1(®),CW) = ||¥ 4 ®| " is positive. Hence 75 (®) € By (C¥). Continuity of
the map 75" : Oy — B;(C¥) is immediate, likewise that it is a two-sided inverse
for Ty. O

Theorem 2.5. Let H be a Hilbert space of dimension > 2 and let PH be its
projective Hilbert space. The set of all maps 74 : B1(C¥) — Cy with ¥ € SH
is a holomorphic atlas for PH. Hereby, B;(CV), Cy and Tg¢ are as in Lemma 2./.

Proof. Suppose to be given ¥, Q € SH such that B; (C¥)NB; (CN) # &. Note that
then (Q,® + ¥) #£ 0 for ¢ € 7¢(B;(CP) N B, (CN)) since C(P + ¥) € B;(CN) by
Eq. (2.7) and assumption. Lemma 2.4 then entails that for all such @

1 o+ VU
(TQOT\I/ )(@)—m—97

hence the transition map 7q o7y ' : 7y (B (C¥) NB; (CN)) — 7o (B (CY) NB;(CN))
is holomorphic. O

By the theorem, PH becomes a complex manifold modeled on Hilbert spaces.
Note that the sphere SH carries in a natural way the structure of a real analytic
manifold by the Regular Value Theorem for Banach manifolds [Gl616, Theorem D]
and since the map H \ {0} — Ry, Q — (,Q) is a real analytic submersion. A
real analytic atlas for SH is given by the set of all oy with ¥ € SH since the maps

9]
(O'\p, H . ||2> :H \ C\y — C\p X U(l) X R>0, Q— (0'\1; <||Q||> N Q||2>

are real analytic diffeomorphisms.

Theorem 2.6. Let H be a Hilbert space of dimension > 2. Then the canonical
projection psy : SH — PH is real analytic and for each W € SH the map

pu: SH\ (SHN Cy) — By (CT) x U(1), &+ (Cq” ﬁ’ii)

is a real analytic local trivialization for p with typical fiber U(1). Moreover, the set
of pairs (B1(CW), py) with U € SH forms a bundle atlas, and psy : SH — PH
becomes a real analytic U(1)-bundle.
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Proof. We first note that pg = (74 xidy(1y)ooy. Indeed, observe that psy (B1(CY))
coincides with SH \ (SH N Cy) and that the diagram

(T\;,l xidy(1))oow

SH \ (SH N Cy) By (CW) x U(1)

P /

B, (CV)

commutes, as can be seen from the definition of g and the formula for 7¢. Thus,

(o) o ra(®) = (€0, 10T ) = pu (@)

Commutativity of the diagram also shows that p is real analytic since oy and 7y !
are so. Next we want to show that for given ¥, Q) € SH the transition map
(B1(CP¥)NB1(CN)) x U(1) = U(1) : (CP,A) — (pqo pgl)((C@, A)
is real analytic. To this end check that
- (©@,@) [(¥,9)
(popw)CON =2 1655 ey

The right hand side is obviously real analytic as a function of ® € SH \ (Cy U Cg)
since the inner product on a Hilbert space is real analytic because it is a real bilinear
map. This entails the claim. ([l

Corollary 2.7. Let H be a Hilbert space of dimension > 2 and fit WV € SH. The
function By (C®) — SH which maps a ray ¢ € By1(CV) to the unique ® € £ NSH
such that (®,¥) > 0 then is real analytic.

Proof. The stated map is the composition £ J,ljl(ﬂp(f), 1) which is real analytic
since 7¢ and J\;l are. O

Corollary 2.8. Let 2 be a C*-algebra, w € P(A)y,, and let Bo(w) C P (A)y be
the open ball of radius 2 centered on w. If (H,m, Q) is the GNS representation
of w, Ba(w) is contained in the space of pure w-normal states P (A), and the
map s : Bo(w) — SH, ¢ — &, where ® is the unique unit vector representing
and having (®,Q) > 0, is a norm continuous section of the canonical projection
Py SH = P (). When P (), is endowed with the unique complex manifold
structure so that the canonical isomorphism of uniform spaces v : PH — P, ()
associated to the representation (H, ) as in Corollary 2.2 is biholomorphic, the thus
defined section s is real analytic. Moreover, the canonical injection P (A)y — A*
then is real analytic and its tangent map is injective.

Proof. We know By(w) is contained in &,(2) by Lemma 1.11, so by Corollary
2.2 the restriction of =1 provides a norm continuous map By (w) — PH. Equation
(2.6) shows that the image is contained in the open unit ball about CQ with respect
to the gap metric. Composing with the norm continuous map from Corollary 2.7
yields the norm continuous section s. By construction, s is real analytic when r—!
is. To verify the last claim consider for ¥ € SH the chart 7y : B;(CV) — Cy from
Theorem 2.5. The composition

F:Cyp P PH T 2, (A)y s A
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then maps v € Cy to the linear functional

F):A—-C, A (¥ 4+ v, 7(A) (T +0)) .

1
W+ vl|?
This is clearly a real analytic function in v. Let us determine its derivative. For
v € Cy consider the path v : R — Cy, t — tv and compute

TFW) = | FO) = @) + 070

Assume that v # 0. Then ¥ and v are orthogonal to each and linearly independent.
Hence by the Kadison transitivity theorem there exists an operator A € A such
that m(A)v = ¥ and 7(A)¥ = v. Hence ToF(v)(A) = ||¥|? + ||lv]|? > 1 and ToF
has a trivial kernel. Therefore, the tangent map T2, (), — TRU* is injective as
claimed. (]

Remark 2.9. In the case where 2* is finite dimensional, the preceding corollary
entails that ¢ : 2, (A), — 2A* is a real analytic embedding and that &, (), is
a submanifold of A*. The corresponding argument can not be extended to the
infinite dimensional case since for a smooth topological embedding N — M of
infinite dimensional manifolds injectivity of the tangent map TN — T'M in general
neither entails that N < M is an immersion nor that N is a submanifold of M.

2.2. The Kahler manifold structure on the pure state space. By Propo-
sition 1.17, the superselection sectors form the path connected components of the
pure state space &(2) endowed with the norm topology. Moreover, every su-
perselection sector is open in & (), by Corollary 1.12. To define a holomorphic
structure on & (), it therefore suffices to define one on each superselection sec-
tor separately. So let w be a pure state on 2 and S, the superselection sector
it defines. Then S, coincides with the space Z, (), of pure m,-normal states
where as usual (H,,,7,,€2,) denotes the GNS representation of w. According to
Corollary 2.8, the uniform isomorphism r,, : PH, — %, (), associated to the
representation 7, endows S, with a holomorphic structure. It remains to show
that the holomorphic structure is independent of the particular representative of
the superselection sector. It suffices to verify that for every other state ¢p € S,
the “transition” map 7, 4 := r;! ory : PH, — PH,, is holomorphic, where 7y, is
the uniform isomorphism associated to the GNS representation (H, ). Since the
GNS representations for w and ¢ are unitarily equivalent, there exists a unique uni-
tary intertwiner U : ‘Hy — H,, between my and m,, so that UQ, = 2. Hence the
transition map 7, is given by C® — C(U®). Next choose Q € SH,, and U € SH,.
Let 7o and 7y be the corresponding charts of PH,, and PH,, respectively. In these
charts, the transition map 7, has the form
TQ O Ty qp O 7'\171 DTy (Bl((C\I/) N Bl((C(U_lQ))) — Cq, ® — m -Q,

which obviously is holomorphic in ®. Thus the pure state space & (2) carries a
unique structure of a complex manifold such that for every irreducible representa-
tion (#H, ) the associated canonical embedding r : PH — £2(2) is a biholomorphic
map onto its image. We call this complex structure on Z(2l) canonical.

Next, we equip £ (21) with a canonical Kahler structure. More precisely, we have
to construct a smooth hermitian form on &?(2() whose imaginary part is symplectic.
To this end recall that a hermitian metric on a complex Hilbert manifold M is a
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smooth section h of the tensor bundle TY M ® C of complexified 2-fold covariant
tensors on M such that h is fiberwise conjugate linear in the first argument, fiberwise
complex linear in the second argument and positive definite; see [K1i95, Sec. 1.2]
and Example A.2 for definitions and details on tensor bundles.

Now let w be a pure state on 2 as before and consider the smooth section
Sw & Ba(w) = SHy, C He \ {0} from Corollary 2.8 which associates to every state
¢ € By(w) the unique vector ® € SH,, such that (®,,,) > 0. Define h,, : Ba(w) —
T92(A) @ C as the pullback of the constant hermitian metric (—, —) on H \ {0}
via the section s, that means put

he () (X,Y) = (Tp50(X), Typs,(Y)) forall p € Bo(w), X, Y € T,Z() .

Then h,, is a smooth hermitian metric on Bo(w) since s is an immersion. Moreover,
the imaginary part of hy, is closed, since the imaginary part of (—, —) is a symplectic
bilinear form on H,,. Hence h,, endows Bs(w) with a Kéhler manifold structure.
It remains to show that for another pure state ¢) the hermitian metrics hy and A,
coincide on the overlap of their domains. So assume that Ba(w) N B2(¢)) is non-
empty. This can only be the case when w and 1 are in the same superselection
sector, or in other words if their exists a unitary intertwiner U : H,, — H,, between
the GNS representations m,, and m,, as above. Then s, = U o s, by definition of
the sections s, and sy, hence

ho () (X, Y) = (T80 (X), T (Y)) = (UTpsy (X), UT,s4(Y))
= (Typsy(X), Typsy (Y)) = hy(0)(X,Y)
for all ¢ € Ba(w) N Ba(y) and X, Y € T,2(2A). The local hermitian metrics
therefore glue together to a global one which we denote by h. Since each of the
above local sections s,, is a riemannian immersion, the canonical projection psy :
SH — Z(A), then becomes a riemannian submersion. This uniquely determines

the riemannian structure on 42(2), hence also h since a hermitian metric is uniquely
determined by its real part. We now obtain the following result.

Theorem 2.10. Endowed with its canonical complex structure, the pure state space
L) of a C*-algebra A carries a natural hermitian metric h turning it into a
possibly infinite dimensional Kahler manifold. The hermitian metric h is uniquely
determined by the requirement that for every irreducible representation (H,n) of
2 the canonical projection psy @ SH — Pz ()n, ¥ — r(CV) is a riemannian
submersion.

Following common language in Ké&hler geometry we call the real part of h the
Fubini—Study metric on & (). Let us finally show that on each superselection
sector (), - with (H, ) an irreducible representation as before - the geodesic
distance dgg of the Fubini-Study metric coincides with the Fubini-Study distance
dps transferred from PH to £, (), via the associated uniform isomorphism r. Let
w and ¢ be two distinct states in (), and choose 2, ® € SH which project
to w and ¢, respectively. After possibly multiplying ® with a complex number of
modulus 1 we can assume that (Q, ®) = [(Q, ®)|. By assumption,  and ¢ then
span a real plane E in ‘H whose intersection with the sphere SH is totally geodesic
since it is the fixed point manifold of reflection at E which is a linear isometric
isomorphism; see [K1i95, 1.10.15 Theorem]. Let aw = arccos(€2, @) and ¥ € P be the
normal vector perpendicular to 2 such that ® = cosa - Q2+ sina-¥. Now note that
the intersection of P with SH is a great circle C. The unique shortest geodesic from
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Q to ® in C is given by the path v : [0,1] = PNSH, t — cos(ta) - Q + sin(ta) - V.
Since the great circle C' is totally geodesic, v is also a shortest geodesic in SH
connecting €2 and ®. Its length is obviously a. Hence the claimed equality

dps(CQ, CP) = arccos ([CT, CO)| = drs(w, ) (2.8)

holds true if we can yet show that the path v is horizontal; see [K1i95, 1.11.11
Corollary]. To this end fix ¢ty € [0,1] and consider the path 7 : [-7, 7] — SH,
s+ e~y(ty). The derivative 7(0) = i~y(ty) then spans the kernel of the tangent
map TP ¢ Tyo)SH — Tryty). We need to show Re(7(0),5(tg)) = 0. Since
lv@®)]|> = 1 for all t € [0,1], we already know that Re(y(to),¥(to)) = 0. Since
the inner product (Q, @) is real, the inner product of @ and ¥ is so too, hence

(7(t0),¥(to)) = Re(y(to),¥(to)) = 0. Therefore,
Re(#(0),9(to)) = —Im(y(to),¥(t0)) = 0

and the claim is proved.

Remark 2.11. Originally, Cirelli, Lanzavecchia and coauthors showed in their
work from the 80ies that the pure state space of a C*-algebra carries in a natural way
the structure of a Kahler manifold, albeit the proof is scattered over several papers
[CL84, CLM83, ACLM84]. Their work is related to and builds upon the geometric
characterization of C*-algebraic state spaces by Alfsen, Hanche-Olsen and Shultz
[AHOSS80]. In a certain sense, unravelling the K&hler manifold structure of the pure
state space of a C*-algebra can be understood as a step forward in Connes’ program
of noncommutative geometry [Con94] which has the goal to describe C*-algebras by
geometric means and to use C*-algebras for the geometric description of spaces as
they appear for example in quantum mechanics where a direct geometric intuition
is lacking.

3. CONTINUOUS KADISON TRANSITIVITY THEOREMS

The Kadison transitivity theorem states that whenever a C'*-algebra 2 acts ir-
reducibly on a Hilbert space H there exists for every pair of n-tuples of vectors
T1,...,Zn and y1,...,Yn in H such that z1,...,x, are linearly independent an
element A € 2 such that Az = y for &k = 1,...,n; see [KR97a, Thm. 5.4.3].
However, the solution to this problem is in general not unique. The question
arises, then, whether it is possible to choose the solutions A € 2 so as to de-
pend continuously on the initial data x1,...,z, and yi,...,y,. This is a problem
amenable to the theory of selections developed by Ernest Michael in the 1950s,
and indeed we use the Michael selection theorem to provide an affirmative answer
to our question. In section 3.1, we recall the necessary terminology and results
from Michael’s original work on selections [Mic56], then we prove our main re-
sults in Theorems 3.5 and 3.11. In section 3.2 we use Theorem 3.11 to prove that
puca) : UL — Z, (), pyey(U) = U - w has the structure of a principal U, (%)-
bundle, where U, () = {U € U®) : U - w = w}, for any unital C*-algebra 2 and
pure state w € (). We provide a few examples where this bundle is nontrivial.

3.1. Main results. The key ingredient in proving our continuous Kadison transi-
tivity theorems is the Michael selection theorem. We provide this result and the
necessary definitions below.
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Definition 3.1 ([Mic56]). Let X and Y be topological spaces. A carrier is a
function ¢ : X — o4 (Y), where p (Y) is the set of all nonempty subsets of Y. A
selection for ¢ is a continuous function S : X — Y such that S(z) € ¢(z) for all
x € X. The carrier ¢ is lower semicontinuous if for every open set V' C Y, the set

{reX:9(x)NV £ 2}

is open in X. Equivalently, ¢ is lower semicontinuous if for every zg € X, yo €
¢(xp), and neighborhood V of yo, there exists a neighborhood U of zg such that
dpx)NV £ forall z € U.

We will use the latter description of lower semicontinuity in our proofs. If Y is
metrizable, as it will be for our applications, the neighborhood V' may be taken to
be a ball of radius € > 0 centered on yy. The space X will always be metrizable in
our applications as well. We now state the Michael selection theorem for reference.

Theorem 3.2 ([Mic56, Thm. 3.2”]). Let X be a paracompact Hausdorff space
and let Y be a real or complex Banach space. If ¢ : X — o (Y) is a lower
semicontinuous carrier such that ¢(z) is closed and convex for all x € X, then
there exists a selection for ¢.

To apply the Michael selection theorem to the representation theory of C*-
algebras, we will use the following two results. The first is a lemma used in proving
the Kadison transitivity theorem.

Lemma 3.3 ([KR97b, Lem. 5.4.2]). Let H be a Hilbert space and let ey, ...,e, € H
be an orthonormal system. For any vectors z1,...,z, € H such that ||z;|| < r for
all i, there exists T € B(H) such that |T|| < (2n)Y/?r and Te; = z; for all i. If
there exists a self-adjoint operator S € B(H) such that Se; = z; for all i, then T
may be chosen to be self-adjoint.

The following theorem provides norm bounds on the elements of the C*-algebra
produced by the Kadison transitivity theorem. It will be instrumental in proving
lower semicontinuity of the carriers that we consider. The essence of the statement
and proof are contained in Theorem 2.7.5 in [PEO18], however we consider a C*-
algebra with a representation rather than a C*-subalgebra of B(H). Therefore we
provide a full proof.

Theorem 3.4. Let A be a C*-algebra and let (H, ) be a nonzero irreducible rep-
resentation. If x1,...,x, € H are linearly independent and T € B(H), then there
exists A € A such that ||A|| < ||T|| and w(A)x; = Tx; for alli. If T is self-adjoint,
then A may be chosen to be self-adjoint.

Proof. First suppose T is self-adjoint. Let P € B(#H) be the projection onto
span{xy,...,Tn, Tx1,...,Tx,} and define S = PT P, which is self-adjoint, satisfies
IS]| < IT||, and has Sz; = Tx; for all i. Extend z1,...,z, to a basis x1, ..., T, of
the above span. By the Kadison transitivity theorem, there exists A € 2, such that
m(A)z; = PTxz; for all i = 1,...,m, hence 7(A)P = S. Assuming 7(A)*P = S*
for some k € N, we have

T(A)MIP = n(A)*S = (A PS = SFH
so m(A)kP = S* for all k € N by induction.



32 SPIEGEL, MORENO, QI, HERMELE, BEAUDRY, AND PFLAUM

Define a continuous function f: R — R by

IS =t =[S
ft)=qt e < S
=Sl =t < =[IS]]

Note that f(A) is well-defined by continuous functional calculus and lies in 2 regard-
less of whether 2/ is unital or not since f(0) = 0. Furthermore, f(A) is self-adjoint,
LA < 18] < I7]), and 7(F(4)) = F(x(A)). We also have £(S) = S since f
restricts to the identity on o(S).

We show that 7(f(A))x; = Sx; for all . Given i < n and € > 0, we choose a
real polynomial g such that |f(t) — g(¢)| < £/2||z;|| whenever |t| < max(|| A, ||S]])-
Note that g(m(A))x; = g(S)z; since m(A)*P = S* for all k € N. Then

lm(f(A)zi = Sail| < ||f(x(A))zi = g(m(A))zil| + lg(S)zi — Sz
< I(f = g)(m(ADllll + I(g = HSlzill < e

Since € > 0 was arbitrary, this implies 7(f(A))z; = Sx; = Tx;, as desired.

For the general case, we again consider S = PT P, where P is defined as before,
but T is not necessarily self-adjoint. We still have ||S|| < ||T'|| and Sz; = Ta; for
all i. The map |S|(H) — S(H), |S|z — Sz is a well-defined bijective isometry, and
may therefore be extended to a unitary H — H. By the self-adjoint case above,
there exists A € Ay, such that ||A]] < [[|S|]] = [IS|| < |T| and n(A)z; = |S|z;
for all 5. By the Kadison transitivity theorem, there exists a unitary U in the
unitization of A such that U|S|z; = Sz; for all i. Then UA € &, |[UA| < ||T|, and

m(UA)x; = Sx; = Tx; for all i.

We are now ready to prove the “continuous Kadison transitivity theorem” in the
general and self-adjoint cases. For notation, when H is a Hilbert space we denote
elements of the Hilbert space H™ by bold letters x = (z1,...,2,) and elements of
H?" by pairs of bold letters (x,y). Given an element T € B(H) and n € N, we
denote T®" =T @ --- & T € B(H").

Theorem 3.5. Let A be a C*-algebra, let (H, ) be a nonzero irreducible represen-
tation, and let n be a positive integer. Let

X = {(x7y) € H?" : xq,...,x, are linearly independent},

equipped with the subspace topology inherited from H?". There exists a continuous
map A : X — A such that

m(A(x,y))z; =y, foralli=1,...,n (3.1)
for all (x,y) € X. Similarly, defining
Xeo ={(x,y) € X : 3T € B(H)sa s.t. Tx; =y; foralli =1,...,n},
there exists a continuous map A : Xga — s satisfying (3.1) for all (x,y) € Xsa.

Proof. Since X and Xg, are subspaces of H?", they are metrizable, hence para-
compact Hausdorff. We will use the Michael selection theorem for the carrier
¢: X — p4(A) defined by

o(x,y)={AcA:m(A)x; =y, forali=1,...,n}.
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For the self-adjoint case, we note that 2, is a real Banach space with the topology
inherited from 2, and we define ¢g, : Xsa — 9+ (Asa) by

¢sa(xa Y) = Asa N ¢(X, Y)'
By the Kadison transitivity theorem, ¢(x,y) and ¢s,(x,y) are nonempty for all
(x,y) € X and (x,y) € Xga, respectively. Given (x,y) € X, t € [0,1], and
A, B € ¢(x,y), we have

W(tA + (1 — t)B)l‘Z = tﬂ'(A)l‘i + (1 — 1f)7'r(.B).’L‘z = tyi + (1 — t)yi =Y

for all 7, so ¢(x,y) is convex. An identical argument shows that ¢s,(x,y) is convex
for all (x,y) € Xga. Furthermore, if &; : B(H) — H denotes the evaluation map
#;(T) = Tz;, then we see that
d(x,y) = [ (@iom) " ({vi}),
i=1

so ¢(x,y) is closed since &; o 7 is continuous for each i. For the self-adjoint case,
we note that ¢, (X,y) = Asa N @O(X,y) is closed in AU, since A, has the subspace
topology.

All that remains to show is that ¢ is lower semicontinuous, then the result
will follow immediately from the Michael selection theorem. Fix (x¢,yq) € X,
Ag € ¢(x0,¥0), and let € > 0; replace X and ¢ by X, and ¢s, for the self-adjoint
case. Given (x,y) € X, let e1(x), ..., en(x) € H be the orthonormal basis obtained
by applying the Gram-Schmidt method to z1,...,2,, and let A;;(x) € C be such
that e;(x) = >7_; Aij(x)z;. Note that each \;;(x) is a continuous function X — C.
Moreover, the matrix Ax = (A;;j(x)) defines an invertible element A, € B(H").
Observe that the map X — B(H"), (x,y) — Ax is continuous, Axx = e(x),
and [Ax,T%"] = 0 for all T € B(H). Let O; be the preimage of the open ball
of radius |[Ax,|| centered on Ay, under the map (x,y) — Ax. Let O be the
preimage of the open ball of radius €/(4n||Ax,||) centered at zero under the map
X = H", (x,y) =y — 7(Ap)®"x, which is also continuous. Then O = O1 N 05 is
a neighborhood of (x0,y0) in X and (x,y) € O implies

on €
IAx|| < 2]|Ax,|| and ||y m(Ap) XH < TR
For the self-adjoint case, we set Og, = Xga N O.

Given (x,y) € O, set z(x,y) = Axy and observe that A € ¢(x,y) if and only if
A € ¢(e(x),z(x,y)) since Ay is invertible and commutes with 7(A)®" for all A € 2.
For ease of notation we now suppress the arguments of e and z. We estimate

l|zi — m(Aog)ei]| < ||Z — W(Ao)@"eH
< 2l [}y = 7(40)*"x]| < -

By Lemma 3.3, there exists T € B(H) such that Te; = z; — m(Ap)e; for all i and
IT| < e/v2n < e. In the self adjoint case, we observe that we may choose T to be
self-adjoint since (e, z) € Xs, and m(Ayp) is self-adjoint, so there exists a self-adjoint
operator mapping e; to z; — w(Ag)e; for all i. By Theorem 3.4, there exists 4; € A
such that ||A1]] < ||T|| < € and 7(A1)e; = z; — m(Ap)e;. In the self-adjoint case, we
may choose A to be self-adjoint. Defining A = Ag+ A;, we see that [|[A — Ag|| < ¢
and
W(A)ei = ’/T(Ao)ei —+ ’/T(Al)ei = Z;
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for all 4, which implies A € ¢(e,z) = ¢(x,y). In the self-adjoint case, we have
A € 2, by choice of Aj, so A € ¢s(x,y). This proves lower semicontinuity,
completing the proof. O

Remark 3.6. Suppose (H,m, Q) is the GNS representation of w € (). If we
set n = 1 in the previous theorem and fix x = €2, then we get a continuous map
A:H — A such that 7(A(y))Q =y = q(A(y)) for all y € H, where ¢ : 2 — H is the
quotient map. We see that A is a right inverse for ¢. Since ¢ is a surjective bounded
linear map between Banach spaces, the existence of a continuous right inverse is
guaranteed by the Bartle-Graves theorem [BG52, Mic56]. However, the existence of
a continuous linear right inverse is equivalent to kerg =91 = {4 € A : w(A*A) = 0}
having a closed complement in 2. It is easy to see that this holds in certain special
cases, such as when 2l is commutative or finite-dimensional, or 2 = B(K) for some
Hilbert space I and w is a state corresponding to a unit vector in K. However,
broader conditions under which M is complemented (or whether this is true in
general) are unknown to the authors.

We now move towards a unitary version of Theorem 3.5. We do so through a
series of lemmata.

Lemma 3.7. Let H be a Hilbert space, let x1,...,z, € H be an orthonormal
system. Given € > 0, there exists & > 0 such that for any orthonormal system
Yise-osYn € H with ||z — yil| < 9 for all i, there exists a unitary U € U(H) such
that

(i) Ky, =span{z1,...,Zn,Y1,--.,Yn} is invariant under U,

(ii) U acts as the identity on KC;-,
(iii) [I-U| <e,
(iv) and Uz; = y; for all i.
Proof. We prove the lemma by induction on n. Consider the case when n = 1.

Given z,y € SH, we define U, , € U(H) by having U, , act as the identity on the
orthogonal complement of X = span{z,y} and defining U, , on K by

Upyz =y, ) 2 — (y,2) T + (2, 2) y. (3.2)
One can check that this is indeed unitary and satisfies U, yo = y. When dim K = 1,

we have y = (z,y)x, so we see that U, ,|x is multiplication by (x,y). When
dim K = 2, the eigenvalues of U, ,|x are

)\f’y = Re(z,y) £ iy/1 — (Re(xz,y))2.

Thus, 0(Uy,y) C {AS,. Az

ayr Aoy 1}. Since I — U, , is normal, its norm is given by its
spectral radius, so

= Unyll = XEy — 1] = sy~ 1| = V2 2Re(og) = [~y (33)
Therefore setting 0 = ¢ and U = U, , works for the base case.

Suppose the lemma is true for some n and let z1,...,2,+1 be an orthonormal

system. Choose ¢’ > 0 such that for any orthonormal system wi,...,y, with

lz; — yil| < & for all i < n, there exists a unitary V € U(H) satisfying (i), (ii),
I - V] <e/3, and Va; = y; for i <n. Let § = min(¢’,e/3) and let yi,...,ynt+1
be an orthonormal system with ||z; — y;|| < d for all i. Since V' leaves KC,, invariant
and acts as the identity on /C;-, we see that

Vi1 =VPxpi + (I — P)xn+1 € Kna1,
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where P is the projection onto IC,,. Likewise Vy,41 € K11, so V leaves K, 11
invariant. Since ;- 11 C IC:, we also know that V' acts as the identity on K;- -

Set z = Va,4+1 and note that yi,...,y,, 2z is an orthonormal system since it is
the image of x1, ..., z,41 under the unitary V. Furthermore,
€ 2¢
2 = Yns1ll SNV = DEpsall + [[Tn+1 — Ynsall < 3 +0 < 3

Consider the unitary W = U, 4, ., V. Since z € K, 1, we see that W leaves K, 11
invariant and acts as the identity on ;- 1. Since z and y,41 are orthogonal to all
y; with ¢ < n, it follows that Wz; = y; for all « < n + 1. Finally,

”I - WH < HI - Uz,yn+1|| + HUz,yn+1 - UZ»yn+1VH
<llz =yl + 1=V <&,
completing the proof. O

Remark 3.8. We note that the n = 1 case of Lemma 3.7 can also be accomplished
by polar decomposition. Assuming x,y € SH and (x,y) # 0, consider the operator

(z,y)
Apy = P,P, 1-P)(1-P
T,y ‘<$7y>‘ Y ﬂc+( y)( r)a
where P, and P, are the projections onto Cx and Cy, respectively. The uni-
tary Vg, obtained from the polar decomposition A, , = V,,|A | satisfies (i),

(ii), and (iv). For fixed z, the map y — V,, is norm-continuous on the domain
{y € SH : (x,y) # 0} and fulfills V, , = I. Therefore, V, , satisfies (iii) for small
enough 4.

The following lemma contains the heart of the unitary version of the continuous
Kadison transitivity theorem.

Lemma 3.9. Let A be a unital C*-algebra, let (H,m) be a nonzero irreducible
representation, and let n be a non-negative integer. Define

Y, = {(x, y) € MM SH : X1y...,Tpe1 are orthonormal, (z,y1,y) > 0, }7

and (z;,y) =0foralli<n

equipped with the subspace topology. There exists a continuous map U : Yy — U(2A)
such that

T(U(x,y))xnt1 =y and w(UX,y))z; =z; (3.4)
for all (x,y) € X and i <n. Here, U®RL) denotes the group of unitary elements of
2.

Proof. The function 6 : Y, — [0,7/2) defined as

9(X7 y) = COS_l <$n+1, y>
is continuous on Y. If we set Y| = {(x,y) € Yy : (zn41,9) < 1}, then we have
another continuous map w : Y| — H given by

Y — (@Tnt1,Y) Tnir

[y — (Znt1, ) Tt |

and {2, 11, w(x,y)} is a basis for span{x,1,y}. In this basis, the unitary U,
defined in Equation (3.2) is represented by the matrix

<cose<x, y) —sinf(x, y>>

sinf(x,y) cosf(x,y)

w(x,y) = |

n+1,Y
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when restricted to span{z,41,y}. Given (x,y) € Y/, we also define an opera-

tor Tx 4 € B(H)sa which acts as the zero operator on span{z,41,y}" and, when
restricted to span{x,+1,y}, is represented by the matrix

(w(ox, ) e y))

with respect to the basis {x,41,w(x,y)}. Observe that ||Tx,|| = 6(x,y) and
U"L'n+17y = esz,y.
Note that Y7 is metrizable, hence paracompact Hausdorff. Given (x,y) € Y,

define K(x,y) = span{w1,...,,,y} and define a carrier ¢ : Y| — p4 (Usa) by

d(x,y) = {A € s - T(A) |k (xy) = Txylic(x,y) and [|A]] < 0(x, y)}

By Theorem 3.4, ¢(x,y) is nonempty for all (x,y) € Y|. We see that ¢(x,y)
is closed and convex by the same arguments used in the proof of Theorem 3.5,
along with the fact that the closed ball of radius 6(x,y) is closed and convex. For
lower semicontinuity, fix (x,y) € Y|, Ay € ¢(x,y), and € > 0. Use continuity
and positivity of § on Y] to choose a neighborhood O of (x,y) such that for all
(u,v) € O, we have

‘1 ~ 0(u,v) L&
0(x,y)|  2[|Aoll
Apply Lemma 3.7 to the orthonormal system 1, ..., Zp4+1, w(X,y) and the number

€
¢/ = min (2, )
4| Aol

to find a § > 0 with the properties described in Lemma 3.7. By continuity of w
on Y}, we may shrink O such that for all (u,v) € O, we have |lz; — u;|| < 0 and
lw(x,y) — w(u,v)] < o,

Now, given (u,v) € O, there exists a unitary V € U(H) such that Vz; = u; for
all 4, Vw(x,y) = w(u,v), and || — V|| < &’. The fact that ||I — V|| < 2 implies that
—1 ¢ o(V), so we can use the continuous functional calculus to apply the principal
branch of the logarithm and obtain a self-adjoint operator S = —i Log V with ||.S]| <
7. Note that S leaves G = span{a1,...,Tn41, Wa, oy y UL, - - -5 Ung 1, Wapyy o ) iD-
variant since V' leaves G invariant. By Theorem 3.4, we can obtain a self-adjoint
operator B € 2l such that 7(B)|g = S|g and || B|| < ||S||. Hence W = €8 acts as
V = €' on this subspace and by continuous functional calculus,

1E=W[ = sup x—1]= 17l -1
AEa (W)
eillsl 1‘ sup [A—=1|=[I-V].
A€o (V)

It is easy to check that

_ 0(u,v) _
= iy WAW ™! € ¢(u,v)



CONTINUITY OF KADISON TRANSITIVITY AND OF THE GNS CONSTRUCTION 37

using the values of V and Tk, on @1, ..., Ty+1, w(X,y), and the values of V=1 and
Tup O U, ..., Upt1, w(u,v). Finally, observe that
_ O(u,v
o — All < [[ o — W AW 1|+ [1 = L2204
0(x,y)
O(u,v)
<|(20fl-W 1-— . A
< (2= Wi+ [1- 520 ol <

as desired. This proves lower semicontinuity of ¢.

The Michael selection theorem now gives a continuous selection A : Y{ — 2, of
¢. We extend A to Y, by defining A(x,y) = 0 whenever (x,41,y) = 1, equivalently,
when z,11 = y. Then A : Y, — g, is continuous on Yj_ since Y_{_ is open in
Y, and A is continuous on Yy \ Y by continuity of § on Y, and the fact that
|A(x,y)|| < 6(x,y) for all (x,y) € Y;. Exponentiating A yields a continuous
map U : Yy — U(R), U(x,y) = 40 that acts as Uy, ., , on K(x,y), thereby
satisfying (3.4). O

The purpose of our final lemma is to remove the condition that (z,4+1,y) > 0
and replace it with the condition that (z,4+1,y) ¢ R<o.

Lemma 3.10. Let 2 be a unital C*-algebra, let (H,m) be a nonzero irreducible
representation, and let n be a non-negative integer. Define

. ntl _ Z1,...,ZTnp41 arve orthonormal, (z,41,y) ¢ R<o,
Y{(X’y)EH X SH : and (x;,y) =0foralli<n ’

equipped with the subspace topology. There exists a continuous map U : Y — U(2A)
such that

7(U(X,y))Znt1 =y and w(U(X,y))x; =x; (3.5)
for all (x,y) €Y and i < n.

Proof. The angle « : Y — (—m, ) defined by taking the principal branch of the
logarithm:

a(x,y) = ImLog (x,11,Yy)
is continuous on Y. The map ¥V — X, (x,y) — (x,0,...,0,a(X,y)zpt1) is
continuous, where X, is as in Theorem 3.5. We may therefore compose with the

map A : Xg, — RUsa from Theorem 3.5 and exponentiate to obtain a continuous
map V : Y — U(2) such that

(Tni1,y)

RV 06 y)nas = 0Dy =
n+1;

and m(V(x,y))z; = z; for all i < n.

Note that ( >

Tn+1,Y

T Tt 1, Y ) = [(Tnt1,y)| > 0.
< |<In+1, y>‘ >

Thus, we have a continuous map Y — Y, (x,y) — (7(V(x,y))®""!x,y) and we
compose this with the continuous map from Lemma 3.9 to obtain a continuous map
WY — U(). Defining U : Y — U(A) by U(x,y) = W(x,y)V(x,y), we see that
U is continuous and satisfies (3.5). O

We are finally ready to prove the unitary version of the continuous Kadison
transitivity theorem.
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Theorem 3.11. Let 2 be a unital C*-algebra, let (H, ) be a nonzero irreducible
representation, and let n be a positive integer. Let

Xo={(x,y) € X:3T € UH) st. Ta; =y; foralli =1,...,n},

equipped with the subspace topology, where X is as in Theorem 3.5. For every
(x0,y0) € Xu, there exists a neighborhood (x0,y0) € O C X, and a continuous
map U : O — U(A) such that

m(U(x,y))x; =y; foralli=1,...,n (3.6)
for all (x,y) € O.

Proof. As in the proof of Theorem 3.5, let A : X, — B(H™)* be the continuous
map obtained by applying the Gram-Schmidt method to z1, ..., z,. Recall that for
T € B(H), we have TP"x =y if and only if T%"e(x) = z(x,y), where e(x) = Axx
and z(x,y) = Axy. Since (x,y) — (e(x),z(x,y)) is continuous, it suffices to prove
the theorem with X, replaced by

Xt ={(x,y) € Xy :z1,...,x, are orthonormal}.

Therefore, suppose (xg,yo) € X5".

Suppose the theorem is true when xg = yo. Then for arbitrary (xo,yo0) € X3",
we can find a neighborhood (xg,%¢) € O C X2" and a continuous function U :
O — U(2) for which (3.6) holds. By the Kadison transitivity theorem, there exists
V € U(A) such that 7(V)®"yy = x9. Then O’ = (Iyn ® w(V)®")~1O) C X" is
a neighborhood of (xg,yo) and O’ 3 (x,y) — VU (x,7(V)®"y) is a continuous
map satisfying (3.6). Thus it suffices to prove the theorem for (xo,xo) € X2".

Let Z, = {x € H": x1,...,x, are orthonormal} with the subspace topology.
Now suppose that for every x € Z,,, we have a neighborhood x € O C Z,, and a
continuous map U : O — U(2) such that

m(U(y)*"x =y (3.7)

for ally € O. Given (x0,%0) € XJ" and such a neighborhood x¢ € O C Z,,, we see
that O’ = O x O C X" is a neighborhood of (x¢,x) and the map O’ 3 (x,y) —
U(y)U(x)~! satisfies (3.6).

We prove the hypothesis about Z, by induction on n. The n = 1 case follows
from the n = 0 case of Lemma 3.10: one takes O = {y € SH : (z,y) ¢ R<o} and
the map O > y — (x,y) — U(z,y) does the trick, where U : Y — U(2l) is as in
Lemma 3.10. Assume the hypothesis is true for some n > 1 and let x € Z,, ;.
Let P : Z,y1 — Z, be the projection onto the first n components. We have a
neighborhood Px € O C Z,, and a continuous map V : O — U(2A) such that (3.7)
holds for Px and y € O. Define V : O — U() by V(y) = V(y)V(Px)~! so that
V is continuous, satisfies (3.7) for Px and y € O, and has V(Px) = 1. Define

O'={y € PHO) : (yn41,7(V(Py))xns1) ¢ Ro}

Thenx € O' C Zyy1and O' = Y,y — (y,7(V(Py))Zn+1) is continuous. Compos-
ing this with the map from Lemma 3.10 yields a continuous map W : O’ — U(2l),
and one can easily check that U : O' — U(2), U(y) = W(y) 'V (Py) satisfies
(3.7). This completes the proof. O
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Corollary 3.12. Let 2 be a unital C*-algebra and let w € P (A). There exists a
continuous map U : By(w) — U(A) such that

U¢-W=’(/J

for all € Ba(w). If A is non-unital and w € P (A), then there exists a continuous
map a : Ba(w) — Aut(A), such that

woay =Y
for all ¢ € Ba(w).

Proof. Let (H,m, Q) be the GNS representation of w. Corollary 2.8 states continuity
of the map Ba(w) — SH, ¢ — ¥ where ¥ represents ¢ and (¥,Q) > 0. Hence
By(w) = Y, ¢ — (2, V) is well-defined, where Y is as in Lemma 3.10 with n = 0.
Composing with the map from Lemma 3.10 yields a continuous map U : Ba(w) —
U(Rl), ¥ — Uy such that

W(Uw)Q =V
for all ) € Bo(w). This implies that Uy - w = v, as desired.

In the non-unital case, we consider the unitization 2 and the isometry 2 ) —
@(ﬁl), P 1[) where 1[) is the unique extension of ¥ to a pure state on 2. This
gives a continuous map By(w) — Ba(w), and we may apply the unital case to get
a continuous map U : By(@) — U(2) such that Up-w = ¢ for all ¢ € By(w).
Since 2 is a two-sided ideal in 2, we have a continuous function U(2l) — Aut(2).,
U+ (A~ U*AU) and composing with this function yields the desired map
Bo(w) — Aut(A),. O

3.2. Construction of principal fiber bundles. In this section, given a unital
C*-algebra 2 and a pure state w € Z(2), we construct a principal fiber bundle
puca) : UL = Z,(A), where

[Puy (U)J(A) = (U - w)(A) = w(U"AU).

Crucially, Corollary 3.12 is used to construct local trivializations. Note that U(2() x
Py = P )y, (U,w) — U -w is a continuous group action. We then discuss a
strategy for showing this bundle is nontrivial and provide a few examples.

Corollary 3.13. Let 2 be a unital C*-algebra, assume that w € P () is a pure
state, and let pyey @ URL) — P, () be the continuous surjection which maps
UeU®A) top(U) =U -w. Furthermore, let the isotropy group

Uo(@) = {U e UR) : U - w = w}

act on U(RA) and on itself by right multiplication. The fibers of pyw) then are
exactly the orbits of U, () and pyey : URA) — P, () is a locally trivial principal
Uy (20)-bundle.

Proof. Suppose U,V € UR) and U-w =V -w. Then V*U -w = w, so V*U € U, ()
and U = V(V*U) is in the same orbit as V. Conversely, if U and V are in the same
orbit, then there exists W € U, () such that U = VW, hence U-w = VW -w = V-w,
so U and V are in the same fiber.

We now construct local trivializations for py(g) which for the rest of the proof
we abbreviate by p. Fix ¢y € £, (). By Corollary 3.12, we know there exists a
continuous map U : Ba(1hg) — U(R() such that Uy - o = ¢ for all ¢ € Ba(¢hg). Fix
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a unitary V' € U(21) such that Vw = 1)y. Define ¢ : p~1(Ba(10)) — Ba(1hg) x U, (2A)
by

(W) = (p(W), VU W).

Observe that
so ¢ is indeed well-defined. Furthermore, ¢ is manifestly continuous, equivariant

on fibers, and commutes with the projections onto By (t)g). The function Ba () x
Uu(RA) = p~!(B2(¢h)) defined by

(W, W) = Uy,VW
is well-defined since
p(UwVW) = UwVWw = UwVw = de)o =y € Bg(wo).
Furthermore, it is continuous and it is a two-sided inverse for ¢ since
Uy VW) = (4, VI ULU,VIV) = (1, W)
and
(W) = (p(W), V* Uy, W) = Upu) VV* Uy W = W.

This proves that ¢ is a homeomorphism. This provides a trivializing cover for p
with local trivializations that are equivariant on fibers, completing the proof. [

By looking at the fundamental groups of Z2,(2), U(2), and U, (), one may
be able to determine that the bundle pyeg) : U(RA) — P, () is nontrivial for a
particular unital C*-algebra 2 and state w € (). We exhibit some examples
below. If the bundle is trivial, then U(2() is homeomorphic to U, () x £, (), and
in each example we show that this leads to a contradiction.

If 2 = M,,(C) for some integer n > 2 and w is any pure state, then 22, () =
CP" 1, so 2,() is simply connected. The unitary group U(2) = U(n) is path-
connected and has fundamental group m(U(n)) = Z. The stabilizer is U, () =
U(1) x U(n — 1) which has fundamental group 71 (U, (2)) = Z x Z. Therefore the
bundle is not trivial because

mUR) 2 Z 27 x Z 2= (U () x 2, ().

If A = B(H) for a separable, infinite-dimensional Hilbert space H and w is
a pure normal state, then Z,(2A) = PH is an Eilenberg-MacLane space of type
K(z,2), U(R) = U(H) is contractible by Kuiper’s theorem [Kui65], and U, () =
U(1) x U(H). Therefore the bundle is not trivial because

m(U(RA) = {0} # Z = m (U () x P ().

We can also show that the bundle is nontrivial for any UHF algebra. If 2 is a
UHF algebra and w € (), then £, (A) = PH,, and H,, is a separable, infinite
dimensional Hilbert space [Gli60], so PH,, is again a K(Z,2). In the following
we will determine the homotopy groups of U(2) and U, (2() which will then entail
nontriviality of the bundle py(g) : U(2) — £, (). The computation relies on two
major results, namely on Glimm’s observation that the isomorphism class of an
UHF algebra can be encoded by its associated supernatural number [Gli60] and on
a theorem of Glockner [G1610, Thm. 1.13]. Before we come to the computation of
the homotopy groups 7 (U(2)) and 71 (U, (A)) we therefore first state these results
in the form needed here and provide a few preliminaries.



CONTINUITY OF KADISON TRANSITIVITY AND OF THE GNS CONSTRUCTION 41

Recall from e.g. [RLL00, Sec. 7.4] that by a supernatural number one understands
a sequence n = (n;);en of elements n; € {0,1,...,00} = NU {oc}. By slight abuse
of language one sometimes writes

n=][r".

i€EN

where {po,p1,...} is the set of primes listed in increasing order, and regards the
right hand side of this formula as a formal prime factorization of the supernatural
number n. The product of two supernatural numbers n, m is given by

nm = szm-‘rmi ,
€N
but their sum is general not defined. Associated to a supernatural number n =
(ni)ien is the additive subgroup Q(n) C Q consisting of all fractions 27 where p, q

are integers and ¢ has the prime decomposition

q=]]»*

1€EN

such that ¢; < n; for all 7 € N and only finitely many of the ¢; are nonzero. By
construction, Q(n) contains 1, and each additive supgroup A C Q containing 1
equals Q(n) for some supernatural number n. Furthermore, two groups Q(n) and
Q(m) are isomorphic if and only there are positive natural numbers n’,m’ such
that nn’ = mm/; see [RLLOO, Sec. 7.4] for details.

To further clarify language let us remind the reader that by a UHF algebra
one understands a C*-algebra 2 which can be identified with the colimit of a
countable strict inductive system of type I factors of finite dimension and unital
*-homomorphisms

Lo,1 L1,2 Li—1,i Liit1
910‘ 911 S 7912"“

Recall that strictness of the inductive system means that each of the unital *-
homomorphisms ¢; is injective and that by a type I factor of finite dimension one
understands a von Neumann algebra which is *-isomorphic to the matrix algebra
M, (C) for some n € N. Therefore, each of the C*-algebras 2; is *-isomorphic
to a matrix algebra M, (C) such that the sequence of ranks (n;);en is increasing
and n; is a divisor of n; for all ¢ < j. Following Glimm [Gli60], we say that 2
is generated by the inductive system (2;);en of type (n;);en. We always assume
that the type is unbounded meaning that lim;_, n; = co. As in [Gli60], a UHF
algebra 2f therefore has to be infinite dimensional. Glimm further associates to an
UHF algebra 2 a supernatural number dy as follows. Write n; = [] jeN pgi’j , where
the 6; ; € N are unique by prime decomposition, and put §; = sup{d; ; : ¢ € N}.
By construction, dg = (J;);en then is a supernatural number which according to
[Gli60] uniquely determines the isomorphism class of the UHF algebra 2; see also
[RLLOO, Thm. 7.4.5].

Lemma 3.14. Assume to be given a strict inductive system (;),jen of unbounded
type (n;)jen such that A; C A; for all i < j and such that the morphisms of the
inductive system are given by inclusion. Let 2 be the UHF algebra generated by
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() jen that is let A= ;e Ay Ifw € P(A) and wly; € P(A;) for all j, then

U, () = [ J U() N U, (). (3.8)
JEN
and
U(A;) N UL () = Uy, (%) = U(1) x U(n; — 1) . (3.9)

Proof. Suppose U € U,, (), fix e > 0, and let (H, 7, 2) be the GNS representation
of w. Lemma 3.1 in [Gli60] states that U(A) = (J,;cy U(2;), so there exists j € N
and V € U(2;) such that ||[U — V|| < €/2. The fact that U € U, () implies that
()2 = AQ for some A € U(1), hence

9
[ (V)2 =20 = [l=(V = 0)Q < 5.

Now, H; := 7(2;)Q is a finite-dimensional subspace of H and = restricts to a cyclic
representation m; : A; — B(H;) with cyclic unit vector 2 representing wlg,. Since
wla; is pure by hypothesis, m; is an irreducible representation. In particular, since
; = M,,(C), we know 7; is a *-isomorphism. There exists a unitary W € U(2l;)
such that 7;(W) = Urnv)yo.aq, Wwhere Urv)oaq is as defined in Lemma 3.7. By
(3.3) of Lemma 3.7, [ —W| = ||[7(V)Q = AQ|| < £/2 and #(W)7(V)Q = AQ.
Then WV € U(2;) NU,(A) and

[U-WV[<|U=V[+[V-WV| <&,

as desired.

Note that Uy € Uyjy, (2,) if and only if Uy € U(2;) and w(UjAUy) = w(A) for
all A € ;. Therefore it is clear that U(2;) N U, (A) C Usfa, (2(;). Conversely,
it Uy € lemj (2), then 7;(Up)Q = w(Up)Q2 = A2 for some Ay € U(1), which
implies that Uy € Uy, (), i.e., w(UsAUg) = w(A) for all A € 2. That U, (;) =
U(1) x U(n; — 1) is immediate from the fact that 2l; is *-isomorphic to M, (7(C) O
Lemma 3.15. Let A be a unital C*-algebra generated by the strict inductive system
(2)en of type (nj)jen. Let O ={U € UR) : |[I —=U| <2} andlet ¢ : O — g, be
defined by (U) = i(I-U)(I+U)~t. Then ¢ is a homeomorphism and ¢(ONU,,(A))
is a closed subspace of Uss for allw € P (A).

Proof. If U € O, then —1 ¢ o(U) since this would contradict ||I — U|| < 2. There-
fore ¢ is well-defined. Note that ¢ is just multiplication by —1 composed with
the inverse Cayley transform. In particular, ¢ is a homeomorphism with inverse
¢~ 1(A) = (il — A)(il + A)~! by continuous functional calculus.

Let w € Z(2A). Then ¢(O N U, (A)) is closed since U, (2A) is closed in U(2A)
and ¢ is a homeomorphism. Let (H,m, ) be the GNS representation of w. If
UeOonU,®), then w(U)Q = XQ for some A € U(1). Furthermore, there exists a
sequence of polynomials (p,,) such that p,, () converges to ¢(A) = i(1—A)(1+\)~*
uniformly on o(U), hence

r(G(U)Q = lim w(pu(U)Q = lim p,(MQ = H(A)

Now, let U,V € ONU,®), let o« € R, and set A = ¢(U) + a¢p(V). Then the
argument above implies that 7(A)Q = uQ for some p € R, hence 7(¢~1(A))Q =
¢~ (1) by the same argument. Thus, ¢~1(A) € ONU,(A), so A € p(ONU,(A)).
Therefore, ¢(O N U, (2A)) is a subspace of Us,. O
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The last tool we need for the computation of the homotopy groups is a theorem
by Glockner [Gl610, Thm. 1.13], which says that under the existence of so-called
well-filled charts, the homotopy groups of a space X are the direct colimits of the
homotopy groups of an ascending sequence of subspaces X7 C Xo C --- whose
union |J X, is dense in X. The notion of a well-filled chart is given by Definition
1.7 in the same article. The definition provided there is more general than we
need; in fact, our well-filled charts are of a very simple form and the following more
restrictive framework will suffice. Let X be a Hausdorff topological group with a
sequence of subgroups (Xj);en such that X; C X;4 for all j € Nand X = J; X;.
Equip each X; with its subspace topology. Let E be a Hausdorff locally convex
topological vector space. If O is an open subset of X containing the identity of X
and ¢ : O — E is a homeomorphism such that ¢(ONXj) is a closed linear subspace
of E for all j € N, then ¢ is a well-filled chart and

ﬂk(X,x):colélmwk(Xj,x) forallk e Nand z € | | X,
JEN,
JEN

where N, = {j € N: 2z € X;} and where the colimit is with respect to the homo-
morphisms induced by the inclusions X; = X and X; — X for ¢ < j. Likewise,

X) = coli X;) .
70(X) = colim mo(X,)

This distills what we need from Definition 1.7, Theorem 1.13, Corollary 1.14 and
Lemma 8.1 in [Gl610], although the full definition of a well-filled chart is more
general.

Theorem 3.16. Let A be a UHF algebra generated by the strict inductive system
(2;)jen of type (nj)jen. Denote by oo the supernatural number associated to 2A.
Then
Qo) = | Jn;'z (3.10)
JEN
and

174

mr(U(R1))

{0 for k even, (3.11)

Q(0%) for k odd.

Furthermore, for every w € P () the homotopy groups of the isotropy group U, ()
are given by

0 for k even,
Tr(Uu(A) = Z x Q(6a) for k=1, (3.12)
Q) for k> 1 and k odd.

Proof. By possibly passing to isomorphic C*-algebras we can assume without loss
of generality that the inductive system defining 2 is of the form

(CICQ[()CQHC'“,

where I is the unit of 2. Then A = (J;cy2; and U(A) = U;cy U(2;), where the
latter equality has been shown by [Gli60, Lem. 3.1].

We want to prove a similar formula for the isotropy group U, (). To this
end observe that by [Pow67, Cor. 3.8] there exists for every pair of pure states
P,w € () an automorphism a € Aut(2) such that 1) = wo a . Then « restricts
to an isomorphism of topological groups Uy (2() — U, (). Therefore, without loss
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of generality, we may choose w to be any pure state we like; in particular, we may
choose w such that w|g[j is pure for all 5 € N. Then Lemma 3.14 implies that
Uo (2) = UjeN U(mj) N U, ().

Formula (3.10) is an arithmetic result relating an abelian group obtained directly
from the sequence (n;);en with the abelian group constructed from the associated
supernatural number dg. The formula is proved in [RLLO00, Lem. 7.4.4 (i)].

Next we will define a well-filled chart of U(2(), which restricts to a well-filled chart
of U, (), whose domain contains the identity I € 2. Then the remarks preceding
the theorem will yield

mi(U(A)) = colim 7, (U(2;)) (3.13)
and
7(Uw(2A)) = C;)éién me(U(2A;) NU, (). (3.14)

In particular, U(2;) = U(n,) and U(2,;) N U,(A) = U(1) x U(n; — 1) by Lemma
3.14. These spaces are path-connected, so the homotopy groups are independent of
the base point. We will define our well-filled chart, then analyze the colimit.

As in Lemma 3.15, let O = {U € U : [T — UJ| < 2} and define ¢ : O — A,
by ¢(U) = i(I —U)(I +U)~". Then ¢ is a homeomorphism and @|ony,) is a
homeomorphism onto (2;)s, for all j € N, so ¢ is a well-filled chart for U(2) and
I € O, as desired.

Since ¢ is a homeomorphism, the restriction

Plonu, @) 1 O NU(RL) — ¢(0 N U, (A))

is also a homeomorphism when ¢(ONU,(2()) is given the subspace topology inher-
ited from As,. Lemma 3.15 entails that ¢(O N U, (A)) is a closed linear subspace
of Asa. For each j € N, Lemma 3.14 states that U(2;) N U, (A) = Uw\mj(mj)v so
Lemma 3.15 implies that ¢(ONU,,(2A)NU(2;)) is a closed linear subspace of (24;)sa,
hence also a closed linear subspace of ¢(O NU,(A)). We see that ¢[ony, ) is a
well-filled chart with I € O N U, (2), as desired.

We now analyze the colimits. Denote by ¢;; : 2; — %{; the canonical inclusions
for i < j. Then there exist *-isomorphisms o; : 2; = M, (C) such that

A

A
0ij(A) = N for all A € M,,(C) , (3.15)

A

where 0;; = 001y oai_l : My, (C) = M, (C) and where there are n;; = n;/n; € N
copies of A on the diagonal. Choose w to be the unique pure state determined
by setting w(A) to be the top left entry of the matrix o;(A) for all A € 2;. The
colimit (3.13) is isomorphic to the colimit of the homomorphisms on homotopy
groups 7, (U(n;)) that are induced by the inclusions (3.15) restricted to the unitary

groups U(n;). Furthermore,

(. n ) = {

Therefore, the colimit (3.14) is isomorphic to the colimit of the homorphisms on
homotopy groups 7, (U(1) x U(n; — 1)) that are induced by the continuous maps

z

U) :2€UQ1), U € U(n; — 1)} =~ U(1) x U(n; — 1).
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gij : U(l) X U(n, — 1) — U(l) X U(n] — 1) defined by
(prq 09i)(2,U) = 2 (3.16)

and
U

(pI‘2 Ogij)(zv U) = z ’ (3'17)

where pr; and pry are the projections.
We consider the former colimit. Recall that the map

fij : U(Tll) — U(n]-), Uw— dlag(U, I)

induces isomorphisms on homotopy groups 7 for k < 2n;. By the Bott periodicity
theorem [Bot57], the homotopy groups of the unitary groups U(n) are given for
k < 2n by

0 if kis even
U = ’
me(U(n) {Z if k is odd.

Thus, when k is even, the colimit is zero. Fix k£ odd and let iy € N be the smallest
natural number such that n;, > k/2. Choosing a generator x € m,(U(n,,)) we
obtain generators (f;,:)«x € m,(U(n;)) for all ¢ > i5. Then for all j > i > ig,

(03)5 (figi) s = 1ij(figj )+,

where we have restricted o;; to the unitary groups. The homomorphisms (o;;). are
thus multiplication by n;;. Now define homomorphisms

o;:me(U(ns) = Q(0a) = | nj 'z
JEN

as follows. If i > iy, let o; by the unique group homomorphism mapping the
generator (fi:)«z to 1/n;. If i < iy, put o; = 04,(04i,)«. By construction, the
relation o; = 0;(0;;). then is fulfilled for all j > i. Since the union of the images
of the homomorphisms o; coincides with Q(dg) and since o; is injective for ¢ > iq,
Q(0%) together with the family (o0;),en is the directed colimit we are looking for
and formula (3.11) is proven.

We now consider the direct system g;; : U(1) x U(n; —1) = U(1) x U(n; —1).
For the homotopy groups 7, with k& > 1, the analysis proceeds in an analogous
way using the fact that the embedding U(n; —1) — U(1) x U(n; — 1), U — (1,U)
induces an isomorphism 7 (U(n; — 1)) — m(U(1) x U(n; — 1)). Choose iy such
that n;, > k/2+ 1. If k is even, then m(U(1) x U(n; — 1)) = m(U(n; — 1)) =0
for all j > o, hence the colimit c%iﬁr{n mr(U(1) x U(n; — 1)) is trivial. If k is odd

and j > ¢ > ig, the homomorphism (g;;)« maps a generator of 7 (U(1) x U(n; —1))
to n;; times a generator of m,(U(1) x U(n; — 1)), hence the colimit coincides with
Q(d%) as before. In case k = 1 we have m1(U(1) x U(n; — 1)) = Z x Z for all
i > ig. Denote by f; : U(1) — U(1) x U(n; — 1) the map z — (1, diag(z,I)) and
by h; : U(1) = U(1) x U(n; — 1) the map z — (z,I). After choice of a generator
z € m(U(1)) the elements z; = (h;).x and y; = (fj)«x then are generators of
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m1(U(1) x U(n; —1)). Inspection of equations (3.16) and (3.17) then shows that for
Jj=i

(9i)smi = x5 + (n4j — 1)y;

(9i) i = nizy; -

In other words, (g;;)« is given by the matrix

1 0
nij -1 nij ’

Now let the homomorphisms g; : m(U(1) x U(n; — 1)) — Z x Q be given by
multiplication by the matrix
1 0
1+n;t njt)-

Then one checks easily that g;(gi;)« = g; for all j > 4. The union of the images of
the maps g; covers Z x ). Moreover, each of the maps g; is injective, hence Z x Q)
together with the family of maps (g;)jen provides the colimit of the inductive
system of abelian groups (m1(U(1) x U(n; — 1)), (gij)«);<;- This finishes the proof
of (3.12). - O

Remark 3.17. The proof of the theorem applies to more general situations. Namely,
if 2 is the colimit of a strict inductive system of C*-algebras (%) .7, not necessarily
countable, then the same argument as above using [G1610, Thm. 1.13] yields

m(U(),U) = colimm,(U(2), U) for all k € N and U € | J UL,),

&ty jeJ
where Jy = {j € J: U € U(;)}. This result was shown by Handelman in [Han78,
Prop. 4.4] through a different method of proof. Schroder computed in [Sch86]
the homotopy groups of the regular group of a UHF algebra which is homotopy
equivalent to its unitary group. Schroder’s result therefore entails ours. However,
to our knowledge, the homotopy groups (U, (2)) for a UHF algebra 2( and pure
state w have not been computed before.

We now can show the claimed nontriviality of the bundle U(() — Z2,,(21).

Corollary 3.18. For every infinite dimensional UHF algebra 2 and pure state w
on it the bundle pyey : U(A) = P, () is nontrivial.

Proof. As a consequence of the preceding theorem, the rationalized fundamental
groups of U(2A)
T (UR) ®z Q= Q) ®2Q = Q
and of the trivial bundle U, () x £, ()
m1 (U () x Z,(A) @2 Q = (Z x A(d2)) @2 Q = Q?
are not isomorphic, hence pyqy : U(2) — Z,,(2) can not be trivial. O
The theorem also allows to compute the topological K-theory of a UHF algebra.

Corollary 3.19. Under the assumptions of the theorem, the K-theory of the UHF
algebra A is given by
Q(09) fork =0,

0 for k=1. (3:18)

K () :{
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Proof. Denote by GL,,(2() and U, () the groups of invertible respectively unitary
n X n-matrices with entries in 2. Note that both are topological groups in a
natural way and that U, (2) is a deformation retract of GL, () [Bla98, Sec. 8.1].
Let GLoo () and Uy () denote the colimits within the category of topological
groups of the inductive systems (GL,,())nen and (U, (2))nen, respectively. The
topological K-theory of 2 can now be defined as the homotopy groups
K1) = {m(GLOO(Ql)) for k=0, (3.19)
To( Gloo (A)) for k=1
Using as before Glockner’s results [G1610] on the homotopy groups of colimits of
direct systems of Banach Lie groups possessing well-filled charts or the sightly
stronger direct limit charts one concludes that

ﬂ'k(GLoo(Ql)) = cgleiénﬂk(GLn(Ql)) .

Since GL,(2) and U, (2() are homotopy equivalent, one obtains
7 (Gloo (1)) = cggNmﬂk(Un(Ql)) . (3.20)

Note that this equality also holds true when 2/ is replaced by any of the C*-algebras
; = My, (C) defining 2. Now observe that when ig is chosen such that n;, > 2k
there is for all m > n and j > ¢ > iy a commutative diagram

Tk ( Un(ﬂ,)) E— 7Tk( Um(mi))

ﬂ'k(Un(Q[j)) E— Wk(Um(Q[j)) .

The horizontal morphisms in this diagram are induced by embeddings of the form
A — diag(A, I) and are isomorphisms. The vertical morphisms are multiplication
by n;;, using notation from the proof of the theorem. For all m > n the induced
maps

cg)éién T (Un(2)) — c?éién T (U (25))
are therefore isomorphisms, hence for all n > 1

e (Un(20) = m (U(20) = {(?(590 o & cven,

By (3.19) and (3.20) this entails the claim. O

Remark 3.20. The topological K-theory of a UHF algebra is well known; see
e.g. [Sch86], or [RLLOO, Sec. 7.4]. The virtue of the approach presented here
is that it avoids the claim occasionally made in the K-theoretic literature that
the colimit topology on GL () is compatible with the underlying group struc-
ture. For 2 infinite dimensional, this is in general not true as has been shown in
[TSH98, Yam98]. The appropriate way is to define GL(2) as the colimit of the
direct system (GL, (21))nen within the category of topological groups. Under this
concept, GLoo () is the union of the groups GL,, () endowed with the natural group
structure. The correct topology turning it into a topological group is the bamboo
shoot topology [TSH98] which in general does not coincide with the colimit topol-
ogy. Glockner’s approach [G1610] to determine the homotopy groups of colimits of
Lie groups or manifolds addresses this fact.
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4. THE FIBERWISE GNS CONSTRUCTION

In this section we consider a norm-defined C*-algebra fiber bundle p : 2 — X
and construct some naturally associated fiber bundles. For the convenience of the
reader we collected in Appendices A.2 and A.3 several fundamental notions from
infinite dimensional bundle theory which are used in the following.

4.1. The setup. Throughout this section we assume to be given a norm-defined
C*-algebra bundle p : 2l — X over a locally path connected Hausdorff topological
space X. This means in particular that p : 2l — X is a continuous surjection such
that 21, = p~!(x) carries the structure of a C*-algebra for each z € X, that the
typical fiber is a C*-algebra § and finally that the structure group is the group
Aut(F), of all automorphisms of §F endowed with the norm topology.

Given the C*-algebra bundle p : 2l — X we may construct the dual bundle, a
Banach bundle whose fibers are the dual spaces 2% with the norm topology. More

precisely, we set
=] 2
rzeX

as a disjoint union of sets and let p,. : A* — X be the natural projection. For
every local trivialization (¢, O) of 2, we define ¢, : ‘*O = (pas)"HO) = O x F*
by pu(x,w) = (z,wo ;1) for each z € X. Since ¢, ! is a x-isomorphism, the map
Pup Ay — §* is a bijective linear isometry. Furthermore, given local trivializations
(i, 0;), 1 = 1,2, of 2, the transition map

ge12: 01N 02 = AUL(F)n, T P1a0 0951, = (9100 o0

is continuous by norm continuity of the map Aut(g) — GL(F*), a — a, = (a~1)*.
As for the underlying topology, 2* will be endowed with the coarsest topology such
that for each local trivialization (¢, O) of 2 the set i’lro is open and the map o,
is continuous. Since all transition functions are continuous with values in Aut(F)n,
each local trivialization ¢, then is a homeomorphism, and py. : A* — X becomes
a norm defined Banach vector bundle with typical fiber the dual §*.

Next we construct the subbundle pg, 5, : Z(A) = X of py. : A* — X consisting
of fiberwise pure states on 2. As a set, let

2@ - [[ 2@)

reX
and endow Z(2A) with the subspace topology from 2*. The restriction of py. to
Z () will be denoted by pgn). By construction, ps ., : Z(R) — X then is a
continuous surjection. Given a local trivialization (p,O) of 2, the restriction of
¢« to Z(A)jo = Z(A) NA[, then maps each fiber F(As) onto F(F) since o, is
a x-isomorphism. So ¢.|z), : Z(&A)jo = O x P () is a local trivialization of
Z(2). By the following lemma the automorphism group Aut(§), acts effectively on
P (5F), so the family of such restrictions forms a trivializing atlas of & (2() with norm
continuous transition maps. Hence (Z(A), X, pg oy Z(F), Aut(F)n) is a subbundle
of the dual bundle py. : A" — X. We call p, ) : P () = X the pure state bundle
of 2.

Lemma 4.1. For any C*-algebra B, the automorphism group Aut(B), acts effec-
tively and continuously on the pure state space P(B) by

Aut(B), x Z(B)y = P(B)n, (,w)—>woa™t.
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Proof. We only need to show that Aut(B) acts effectively on the pure state space.
Continuity is obvious. To this end suppose that the automorphism « € Aut(*B)
leaves every pure state invariant. Then for every irreducible representation (4, )
of B, every U € 5, and every A € B, we have (U, m(a(A))¥) = (¥, 7(A)¥), which
implies that w(a(A)) = w(A) for all A € 9B. This entails that poa = p for a reduced
atomic representation p in the sense of [KR97d, Sec. 10.3]. If B is unital, a reduced
atomic representation is faithful by [KR97d, Prop. 10.3.10], so it follows that «
coincides with the identity automorphism and Aut(B) acts effectively on Z2(B).
If B is non-unital, then the unique extension of « to a unital *-automorphism on
the unitization of B leaves every pure state on the unitization invariant, hence the
non-unital case follows from the unital case. O

4.2. The GNS Hilbert bundle. In this section, we construct Hilbert bundles over
pure state spaces whose fibers correspond to the Hilbert spaces of the associated
GNS representations. The most general case, which is the last one presented in
this section, is the construction of a Hilbert bundle # — £ () associated to a
C*-algebra bundle 2l — X which we call the GNS Hilbert bundle. We begin with
some preliminary constructions.

We start with a Hilbert space H and construct a Hilbert bundle p , : 5 — §
over the space S := Z,(B(H)), of pure normal states of the C*-algebra of bounded
linear operators on . Note that S is assumed to carry the metric uniformity
induced by the norm on the dual B(H)*.

As a set, let

x =] ",
0€S
be the disjoint union of the GNS Hilbert spaces H,. Denote by p,.: 5 — S the
projection which associates to every vector ¥ € H, the “footpoint” state g.

Recall from Cor. 2.2 that the map r : PH{ — S which associates to each ray
CW the pure state v it represents is a bi-Lipschitz isomorphism of uniform spaces.
For v € SH let O, C S be the open ball of radius 2 around the state r(Cv).
Let s, : O, — SH be the norm-continuous section of the canonical projection
SH — S from Cor. 2.8 such that (s,(g),v) > 0 for all p € O,. Given a pure
normal state ¢ € O,, denote by R, , the cyclic representation (#,idwy ), Puv,e)
where P, , = $,(0)-

By construction, the state associated to the unit vector P, , coincides with p.
Hence by Prop. 1.16 (ii) the cyclic representation R, , is unitarily equivalent to the
GNS representation (H,, m,,2,) via a unique unitary map U, , : H, — H which
maps €2, to P, ,. The unitary U, , can actually be written down explicitly. It is
given by

Upo(A+N,) = A(P,,) forall Aec B(H). (4.1)

From these data we can now define a local trivialization of ¢ over O, by the

following formula:

Xv 5p;f1(O’U) =)o, = Oy xH, ¥ (0,U,,¥) where o =p,, (V) .

Now endow J# with the coarsest topology so that for every v € SH the set 2|0,
is open and the local trivialization Y, is continuous.

Before we determine the transition functions let us take a step back and consider
the tautological line bundle p_, : £ — S = PH whose fiber over p € S consists of
all vectors in the complex line 7~ (g). Then .# is a smooth line bundle over S with
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structure group given by U(1). By construction .# coincides with the pullback by
r~1 of the tautological line bundle over PH. A local smooth frame of % over O, is
given by the section s, : O, — SH, o — P, ,, hence

Ty - Z 0, — Ov X (Ca U= (pgf (\I/)’ <P'u,pip(\ll),\:[/>)

is a local trivialization. Now let w be another unit vector in H and consider the
map

hyw : Oy MOy — U(L), 0 (Py o, Puy o) -
Then
Pyo=hpw(@) Puy, forallpeO,N0, , (4.2)

hence one obtains for all z € C
T 0Ty (0,2) = (0, hww(0) - 2) -

Therefore, the family (hy.)y,wesy forms a Cech cocycle of transition functions
defining the tautological line bundle over S.
For the bundle p,, : 5# — S, Eq. (4.2) implies that the map

Xv © X;l 1Oy NOw) x H = (OyNOw) X H, (0, A(Pu,o)) = (0, A(Pu,0))
is given by the fiberwise action of h, ,, meaning that
Xo © X (0, 0) = hyw(0) - ¥ forall (o, ¥) € (0, NOy) x H . (4.3)
On the one hand this implies that each transition function
Oy N0y = U(H), 0 Xv,0© X;}Q

is a continuous map and therefore every local trivialization y, a homeomorphism.
Hence, p,, : ## — S is a Hilbert bundle as claimed. On the other hand, Eq. (4.3)
entails that the structure group of the fiber bundle p,, : 5 — S can be reduced
to U(1) and that a defining Cech cocycle is given by the Cech cocycle (Ty 1) v.wesn
defining the dual tautological line bundle .Z* — S.

Remark 4.2. The argument above shows that p, : J# — S can be identified
with the associated bundle Fr(.£*) xy1) H, where Fr(£*) — S denotes the bundle
of unitary frames of the dual tautological bundle. Note that Fr(Z*) — S is a
U(1)-principal bundle by construction.

We continue with a C*-algebra § and construct a locally trivial Hilbert bundle
Dyt H — P(F)n over the pure state space of §F which we assume to be endowed
with the metric induced by the norm on §*. As a set, the Hilbert bundle .77 we
construct is the disjoint union of the GNS Hilbert spaces H,, ¢ € Z(F). The
projection p,, : S — Z(§) maps each element of H, to p. Since the pure state
space Z(F) is the disjoint union of sectors, we obtain the decomposition

A= 11 He= I TIHe- (4.4)

0EZ(J) SeSec(§) 0€S

where Sec(§) denotes the space of superselection sectors of §.

Now fix for every sector S € Sec(F) a pure state pg € S and a cyclic repre-
sentation (Hg, s, Qg) such Qg is a unit vector representing the state og, e.g. the
GNS representation of pg. We then apply over each sector S the construction of
a Hilbert bundle pz, : 5 — S described above. Since each sector is an open
connected component of Z(F), and by the decomposition (4.4), the projection
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D+ H — P(F)n carries a unique structure of a Hilbert bundle such that each
subspace (s = 5 is open and such that the canonical injection 5 — 7 is an
embedding of Hilbert bundles. Note that for different sectors S, 5" € Sec(F), the
associated Hilbert spaces Hg and Hgs/ might not be (canonically) isomorphic, so
the typical fiber might change from component to component.

A Cech cocyle of transition functions for the Hilbert bundle p,, : 5 — 2(F)a
is given as follows. Given a sector S and a vector v € SHg let Og, C S be the
open ball of radius 2 around the state rg(Cv), where rg : PHg — S = Z;o(F)n
denotes the bi-Lipschitz isomorphism from Cor. 2.2. Let s, : Og, — SHg be the
unique section according to Cor. 2.8 such that (s,(g),v) > 0 for all ¢ € Og,,. The
family of transition functions

hsww:O0s0N0sw — U(1), 0 = (su(0), sw(0)) ,

where S runs through the superselection sectors of § and v, w through the unit vec-
tors of g then is a Cech cocycle whose dual Cech cocycle (ES,v,w)SESec(S’), v wESH
characterizes the Hilbert bundle p , : 7 — Z(F) with typical fiber Hg over the
sector S up to isomorphism.

Before we tackle the final and general case we need an auxiliary result show-
ing that the unitary associated to an automorphism of a C*-algebra according to
Prop. 1.16 (i) depends continuously in the norm topology on the argument. This
result will be used to show that out of a system of transition functions for a C*-
algebra bundle 2 we get a system of U(#)-valued transition maps for the Hilbert
bundle to be constructed.

For the following proposition, let Iso(B, €),, be the set of *-isomorphisms between
C*-algebras B and €, with the subspace topology inherited from the norm topology
on the bounded linear operators 8 — €. Likewise, U(H, ’r':[)n is the set of unitary
operators H — #H with the norm topology.

Proposition 4.3. Let B be a C*-algebra, (H, ) a nonzero irreducible representa-
tion, and v : PH — P:(B), the uniform isomorphism associated to (H, ). For
every Q € SH, let sq : Bo(r(CQ)) — SH be the unique section of the canonical pro-
jection 1o psy such that (Q, sq(w)) > 0 for allw € By(r(CQ)), and let £ : B — H
be the map Eq(B) = w(B)Q. Let € be another C*-algebra with nonzero irreducible
representation (7:{, 7) and associated maps 7, Sy, and £y for U e SH. Define

0= {(a, Q,1) € Iso(B, ©), x SH x SH : a.r(CQ) € IB%g(f((C\I/))}

Then the following hold true:
Q) If B = € and (H,n) = (H,7), then for each Q, U € SH there exists a €
Aut(B) such that (o, Q,¥) € O.
(ii) The set O is open in Iso(B, ), x SH x SH.
(iit) The map ® : O — SH, (o, Q, ¥) = 5ya,r(CQ) is continuous.
(iv) The unique map U : O — U(H,H)n making the diagram

commute for all (o, Q,¥) € O is continuous.
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Proof. (i) This follows from Theorem 1.14 when B is unital. When B3 is non-unital,
we may extend r(CQ) and 7(CV) to pure states on the unitization B in the same
superselection sector. We may then use Theorem 1.14 to find a unitary in B that
generates an inner automorphism that relates the two extended states. Since B is
a two-sided ideal in %, this automorphism restricts to an automorphism « on ‘B
such that (o, Q, ) € O.

(ii) Observe that O is the preimage of [0,2) under the continuous map

I50(B, €)n x SH x SH = [0,2],  (, Q, ) 5 [Ja,r(CQ) — F(CT)]| .

(ili) Fix (o, Q,¥) € O and € > 0, and choose § > 0. Let (/,Q',¥’) € O such
that |la — /|| < 6, || —Q'|| <4, and ||[¥ — ¥'|| < §. Choose § small enough so
that this implies (o/, ', ¥) € O, which we can do since O is open. We can choose
d small enough so that |®(a, 2, ¥) — &(a/, Y, V)| < £/2 by continuity of Sy and
continuity of (a, Q) — ,r(CQ). We must show that § can be chosen small enough
so that ||®(c/,Q, ) — O(o/, ', V)| < /2. Since ®(/, ', ¥) and P(a/, ', V")
both represent the state o/, r(CQ’) in the representation 7, there exists A € U(1)
such that ®(o/, Y, ¥) = A®(a/, ', ¥’). Then

V1L bazr(eer) - e = (v, 0o’ 2, 9)
(T — 0, B, Y, V) + AT, B(a, Y, T'))
(U -0 &, Q,0)

A
A

+ )\\/1 - iHa;r(CQ’) —7(Cw)|%.

We may shrink § to make A (¥ — U/, ®(a/, ', T)) arbitrarily small and the two
square roots above arbitrarily close to each other. It follows that we can make
|1 — )| < g/2, yielding ||®(a/, Y, ¥) — ®(a/, ', )| < /2, as desired.

(iv) Recall that the map U as described above exists because (#H,w, ) and
(7-277? oa,®(a,Q,V)) are both cyclic representations representing the pure state
r(CR). In particular, we have

U(e, 2, 9)Q = D(c, 2, ¥) and U(a,Q,V)n(B) = 7(a(B))U(a, 2, ). (4.5)

for all (o, Q,¥) € O and B € ‘B.

Fix (a,2,¥) € O and € > 0, and choose § > 0. Let (¢/,Q,¥’') € O such
that [ — /| < 0, |- < §, and |¥ — ¥'|| < 6. Choose § small enough
so that this implies (o, Q, ¥), (o/, ', ¥) € O, which we can do since O is open.
Let v € SH be arbitrary and choose B, B’ € B such that |B]|,||B’|] < 1 and
v =m(B)Q =7n(B")Q, which we can do by Theorem 3.4. Observe the following:

U (e, 2, W)0 — U, Q, )| = ||7(a(B))(a, QW) — 7(c/(B)) (o, 2, 0|
<lo =o' + [|®(e, 2, ¥) — &/, 0, V)|

U (", 2, W)v = U(a, &, W)o|| = [|7(a'(B))®(a', 2, ¥) — &(a(B))U(/, Y, W)Q
<[[o(a, Q, W) — @(a’, @, V)| + (|2 — |

U (e, ', U)o = U(a’, &, Wol| = [|7(e’(B )) (a Q) — 7 (B)) (o, 2, V)|

< [[o(a’, QW) — d(a’, @, ).
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By continuity of @, all of the quantities on the right can be made less than £/6 by
shrinking ¢, independently of v. Thus, by the triangle inequality, we may choose
d such that [|U(e,Q, ) —U(a/,Q, ¥ )v|| < 5e/6 for all v € SH, which implies
|U(ar, 2, 0) = U/, Y, 9| < g, proving continuity of U. O

Finally we consider the general case of a norm defined C*-algebra bundle p :
2 — X with typical fiber § and construct a locally trivial Hilbert bundle p,, :
H — P (). As before, we put as a set

A= 1] H,-
0EZ ()

Let (¢;)ier be an atlas of local trivializations ¢; : p~1(0;) — O; x §, where each
trivializing domain O; is an open subset of X. The intersections O; N O; will be
denoted by O;; and the transition functions by g;; : O;; — Aut(F)n.

As explained above, the trivializing atlas (¢;);e; induces an atlas of local triv-
ializations @; .« : Z(A)|o, = O; x P(F), i € I, of the pure state bundle pg g :
P () — X. Now choose for every sector S € Sec(§) a pure state pg € S and
a cyclic representation (Hg,ms,{2s) such that the unit vector Qg represents the
state gg. Prop. 1.16 (i) shows that given two sectors R,S € Sec(§) for which
there exists an automorphism « € Aut(F) such that «.ps = or, the representation
(Hr, 7R, Qr) is unitarily equivalent to a cyclic representation in Hg. This defines
an equivalence relation on sectors. Therefore, after possibly switching to unitarily
equivalent representations, we can assume that all sectors which are equivalent with
respect to this relation are represented on the same Hilbert space. In particular,

we can assume that for 4, j € I with O;; # 0, the Hilbert spaces Hg and Hm(s)

coincide for all x € O;;, where g;;(x) : Sec(§F) — Sec(§) denotes the permutation of
the sectors induced by the automorphism g;;(z) of § according to Prop. 1.16 (ii).
Given i € I, a sector S € Sec(F) and a unit vector v € SHg we define

Oi,S,U = @;:(Oz X OS,U) C gz(m)v (46)

where as before Og,, C S denotes the open ball of radius 2 around the state rs(Cv).
Here, rg : PHg — Prg(F)n is the uniform isomorphism associated to the represen-
tation (Hg, s, s). Recall that we have a canonical section s, : Og,, — SHg. For
every o € O; s, define Q; 5.,(0) = sy(i «(0)) € Hg, where here and in what follows
we often identify ¢; .(9) with its projection to Z(F). Then (Hs,7s, % s5.0(0)) is a
cyclic representation of §. According to Prop. 1.16 (i) there exists a unique unitary
Ui, : Ho — Hs such that the diagram

A ¥Pi,p(e) 3,

p(0)
2 fw,*m (4.7)

Hg Usi,v,o HS

commutes and U;, .2, = Q;5.,(0). Here, we have abbreviated the projection
Po@) - y(ﬁ) — X by D.

Theorem 4.4. Define local trivializations over the open sets O; s, C P(2A) of
(4.6) by

Xi,S0 I

Oiso = OisoxXHs, Wi (0,Uiw,V), where o=prp(V). (4.8)
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Endow 5 with the coarsest topology such that each of the subsets 7o, s, is open
and all maps x;.s., are continuous. Then py : H — P () is a Hilbert bundle.

Proof. We will show that the transition functions

— —1
hi,S,v;j,R,w : Oi,S,v;j,R,w = Oi,S,v N Oj,R,w - U(HS)IU 0> Uiy,po Uj,wyg (49)

are continuous for all 4,5 € I, sectors S, R € Sec(F), and unit vectors v,w € SHg
such that O; 5.5, rw # 0, so that py : H# — P () is a Hilbert bundle as claimed.
To prove this, note that O; g 4., r.w 7# 0 implies O;; # 0 and Hp = Hg since for

any ¢ € Oi s.v:;j,Rw, We have gi;(p(0))«(j«(0)) = @i« (), hence S = gi;(p(0))(R).
Consider the following diagram.

3 gi5(p(0)) 3

2Ap(o)
€oju(o) l&g 1IN

Ho

UJ}V Uiw,e
S
0)

Hs

H

hi 5,055, R,w(

The diagram commutes by definition of the g;; and h; 5,45, r,«w and by construction
of the unitaries U, , and U; . ,. Moreover,

9ij (P(0))«7R(CQ R,w(0)) = 9ij(P(0))«(#j,+(0)) = wix(0) = r5(CQ s5(0))-
Thus, (gi;(p(0)), Qj,r,w(0), Yi,s0(0) € O and
Qi,s5.0(0) = 50(9i5(p(0))+7R(CQy rw(0) = P(g:5(P(0)) . rw(0), Qis,0(0)),

where O and ® are as in Prop. 4.3 for the case where 8 = € = § and the represen-
tations (#,m) and (H,7) are given by (Hg,ns) and (Hg, 7r), respectively. Since
hi,s.vij R (€, R0 (0)) = Qis0(0), we know that

hi,s,09,R,0(0) = U(9i5(p(0)): j,r0(0), Qi s,0(0)) (4.10)
where U is as in Prop. 4.3. Since g;;(p(0)), Qj,rw(0), and Q; g.,(0) all depend
continuously on g and U is continuous, the map h; 5.5, r,w iS continuous. 0

Definition 4.5. We call the Hilbert bundle py : 5 — Z(U) the GNS Hilbert
bundle associated to the C*-algebra bundle p : 2 — X.

Remark 4.6. By Kuiper’s theorem [Kui65], the unitary group of a separable infi-
nite dimensional Hilbert space is contractible, hence any Hilbert bundle whose fibers
are separable infinite-dimensional Hilbert spaces is a trivial bundle [Sch18]. Note
that in a footnote to [Kui65, Theorem (3)], Kuiper indicates that the contractibility
of the unitary group holds also for non-separable Hilbert spaces, therefore Hilbert
bundles with such fibers have to be trivial as well. Let us remind the reader at this
point that if 2 is a separable C*-algebra and w € (1), then the Hilbert space
¢, of its GNS representation is separable.
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Remark 4.7. Given a norm-defined C*-algebra bundle p : 2l — X as before and a
continuous section w : X — () of the associated pure state bundle, the pullback
bundle w*5 — X of the GNS Hilbert bundle along the section w is a Hilbert
bundle over X.

4.3. The subbundle of Gelfand ideals. We now construct a locally trivial fiber
bundle p_y : A — Z(A) out of the Gelfand ideals of elements in the pure state
bundle & (2), retaining the notation of Section §4.2 throughout. As a set, we define

A= |] M.

0EZ ()

For each sector S € Sec(F), let 91g denote the Gelfand ideal of ps. Given a sector
S € Sec(F) and a unit vector v € SHg, Corollary 3.12 yields a continuous map
syt Ogp — Aut(F)y, such that

as,w(¥)«y =rs(Cv)
for all ¥ € Og,. We may also find a fixed automorphism s, € Aut(F) such that

Bs,v,+7s(Cv) = os.

We will prove the following result:

Theorem 4.8. For eachi € I, S € Sec(F), and unit vector v € SHg, define a local
trivialization

N
Xi, S + W‘Oi,s,u — 0,50 X Ng,

by
A (0, 8s0(as (@i (0)(pi(4),  e=pw(A).
Give A the unique topology such that each A |o, 5, is open and each local trivializa-

tion ng’v 2 NN0,.5.. = Oisw X Ng is a homeomorphism. Then py : N — P(A)
is a fiber bundle.

Proof. One can check that Xi,Jg.u is well-defined from the definitions of aus 4 (i . (0))
and fs,. Let Hg be the subspace of Aut(F), that leaves Mg invariant. Given
i,j € I, SR € Sec(F), and v,w € SHg = SHpr such that O; 5..,j,rw # 0, the
transition function

h%/,g,v;j,R,w : Oi,S,v;j,R,w — Hg,
0 Bs.was (i (0))9i;(P(0)) R (05.4(0) ™ Briw

is continuous since each term in the composition is a continuous function of ¢. The
following proposition shows that Hg is a closed subgroup of Aut(§), which acts
effectively on 9g. In particular, this implies that .4 is a fiber bundle. (I

Proposition 4.9. Let B be a C*-algebra, let w € P (B), and let N be the Gelfand
ideal of w. Given « € Aut(B), the following are equivalent:

(i) a(M) N,

(i) aww = w,

(iii) «(91) =MN.
If H = {« € Aut(B) : a(M) C N}, then H is a closed subgroup of Aut(B) and H
acts effectively on N by evaluation.
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Proof. To see (i) = (ii), observe that a(M) is the Gelfand ideal of ai,w. Maximality
of Gelfand ideals [Mur90, Thm. 5.3.5] implies a,w = w. That (ii) = (iii) and (iii)
= (i) are trivial. From these equivalences we see that H is a subgroup of Aut(‘5).
If (an)nen is a sequence in H and «,, — a € Aut(B), then for any A € 91 we have
an(A) = a(A), hence a(A) € M since a,(A) € 9 and N is closed. If a« € H and
a(A) = A for all A € M, then a(A) = A for all A € kerw since kerw = 91+ N*
[Mur90, Thm. 5.3.4]. Finally, let B € 2 such that w(B) = 1. Since 2 = kerw S CB,
it remains to show that «(B) = B. There exists C' € kerw and A € C such that
a(B) = C + AB. Applying w to both sides yields A = 1. Since o(C) = C, we see
that o (B) = nC + B for all n > 1. But then

1Bl = lla™(B)l| = [[nC + B|| = n[|C|| - [|B],

which is true for all n if and only if C' = 0. Therefore o(B) = B, so a = idegs. This
proves that H acts effectively. O

Remark 4.10. It is easy to check that the topology on .4 in Theorem 4.8 is the
subspace topology inherited from £ (2l) x 2(. In particular, .4 is a subspace of the
pullback bundle (pgg))*A since (p o)) A is a subspace of Z(A) x A as well. The
local trivializations X;/,g,v extend to local trivializations

(o) W)los., = Oiso X T,
so A" is a subbundle of (pg(a))*A, for subbundles as defined in Appendix A.2.

4.4. The smooth case. It is not immediately clear whether the notion of a topo-
logical C*-algebra bundle can be generalized to the smooth case. Let us explain
the problem in more detail and assume that p : 2l — X is a topological C*-algebra
bundle. Assume further that the total space 2l and the base space X both carry
the structure of Banach manifolds and that the projection p is smooth. To en-
dow p : A — X with a smooth fiber bundle structure one needs to select an
atlas of local trivializations (p;, O;);cr such that the corresponding transition func-
tions g;; : O;; — Aut(F) to the automorphism group Aut(F) of the typical fiber
C*-algebra § are smooth. The main question now is whether Aut(§) carries the
structure of a Lie group, so that smoothness of the transition functions g;; makes
sense. This problem seems not to have been studied in the literature before. We
therefore provide an answer and show the following.

Proposition 4.11. The automorphism group Aut(F) of a C*-algebra § carries
the structure of a real Banach-Lie group with Lie algebra given by the space 9 of
symmetric bounded derivations on §, i.e., the space of all derivations § € B(F)
such that (6(A))* = 6(A*) for all A € F.

Proof. The group GL(F) of invertible linear endomorphisms of § is a topological
group in the norm topology, and Aut(§) is a closed subgroup, hence a topological
group as well. Denote by Auto(§) the connected component of the unit element
¢ = idg in the automorphism group. According to [KR67, Thm. 7], Auty(F) is an
open subgroup of Aut(F) hence it suffices to show that the connected component
Autg () carries the structure of a Banach Lie group.

Denote by Bs(¢) the ball of radius 2 in the automorphism group around the unit.
By [KR67, Thm. 7], Bo(¢) is contained in Auto(F), and each element « € Bo (1) lies
on a norm continuous one-parameter subgroup of automorphisms oy, ¢ € R such
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that @1 = a. By norm continuity of the one-parameter group, the one-parameter
group can be represented in the form

ap = exp(td) := Z
k=0

| —

H(t0)" (4.11)

=

where § : § — § is a bounded operator given as the limit § = lim; ,o *4— ; see
e.g. [HP74, Th. 9.6.1]. Since a; consists of automorphisms of 2 one readily checks
that 6 is a symmetric bounded derivation. The space 2 of symmetric bounded
derivations on § clearly forms a closed real Lie subalgebra of the Banach algebra
B(F) endowed with the commutator as Lie bracket. Hence, Z is a Banach-Lie
algebra.

We observed that every element of By(1) can be written in the form exp(d) for
some ¢ in the Lie algebra 2. Conversely, exp(d) € Auto(F) for every § € 2 since
t — exp(td) is a one-parameter group of automorphisms. This indicates that the
exponential map restricted to & can serve as a differentiable chart for Auty(§). To
verify this recall that restricted to a sufficently small ball B,.(0) C B(F) around the
origin the exponential function exp : B(F) — GL(F) is a diffeomorphism onto its
image by the inverse function theorem. After possibly shrinking r we can achieve
that O := exp(B,(0)) is an open neighborhood of ¢ in GL(F) contained in the unit
ball around the identity. The inverse of exp : B,.(0) — O is then given by the
logarithm series

_ o 1
) k=1t
Log : O — B,(0), nH,;:l( DA UROR

The restriction x, := exp|gng, (o) : Z N B.(0) — Autg(F) therefore is a homeo-
morphism onto O := Auty(F) N O. For each a € Auty(F) let xq : Oa — W with
W := 2 NB,.(0) denote the homeomorphism which maps v € Oa to Log(ya™1).
We interpret x, as a chart of Autg(F) defined over Oa. For a, 8 € Auty(F) such
that Ou5 := OaN OB # B the transition map

Xa © X5 X8(Oap) = Xa(Oap), & = Log(exp(d)Ba)

now is smooth, hence the family of charts (Xa)aeAuto(g) is a smooth atlas which

defines a manifold structure on Autg(F). Multiplication and inversion are smooth
with respect to this manifold structure since they are on the ambient Lie group
GL(F) whose manifold structure is also defined by the exponential function. Hence
Autg(F) carries a canonical Banach Lie group structure modeled on the Banach Lie
algebra . By translation, the Banach Lie group structure can be extended in a
unique way to the whole group Aut(§) and the claim is proved. O

The observation that Aut(F) is a Banach Lie group now allows us to provide the
following definition.

Definition 4.12. By a smooth C*-algebra bundle one understands a topological
C*-algebra bundle p : 2 = X which in addition is endowed with
(i) Banach manifold structures on the total space 2 and the base space X such
that the projection p is smooth, and
(ii) a trivializing atlas (@;, O;)ier such that the charts o; : p~1(O0;) — O; x § and
corresponding transition functions g;; : O;; — Aut(F), ¢ — @; 4 © <p;i are
smooth.
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Given a smooth C*-algebra bundle structure on p : % — X, the corresponding
dual fiber bundle py. : A" — X is a smooth Banach fiber bundle as well since the
map 7 : Aut(§) — GL(F*), o — a, is of class . More precisely, if (¢;, O;)ier
is a smooth trivializing atlas in the sense of Def. 4.12 (ii), then (@, O;)icr is a
trivializing atlas of py.: A* — X with smooth transition functions

Gxij =T OGij: Oij =0;N Oj — GL(S*) .
By smoothness of the transition functions, the compositions
Pei0 @, 05 X F = 0y x F*, (2,0) = (2, guij(2) (w))

are smooth, hence the family (¢. ;);er induces a smooth structure on A* and be-
comes a smooth trivializing atlas. Therefore, py. : A* — X inherits the structure
of a smooth fiber bundle from the smooth C*-algebra bundle p: 2 — X.

Next let us show that also the pure state bundle can be equipped with a smooth
fiber bundle structure whenever the fiber bundle p : 20 — X is smooth. As explained
before, ¢, ; restricts to a homeomorphism from the restricted pure state bundle
P ()0, to the product O; x Z(F). The latter space carries a canonical structure
of a Banach manifold. Recall that the Banach Lie group Aut(F) leaves (%)
invariant and acts effectively on & (§) by Lemma 4.1. By the above argument it is
clear that Aut(§) acts smoothly on F*, but this does not immediately entail that
the action on Z(§) is smooth as well; cf. Remark 2.9. The following result resolves
this problem.

Lemma 4.13. The action
T : Aut(F) x 2(F) = Z2(F), (a,w) = T(o,w) = a,w
is smooth.

Proof. For fixed «, consider a sector S of § and choose an irreducible represen-
tation (H,m) of § such that S coincides with the space Z2,(F) of pure m-normal
states. Note that the representation (H,7a) then is ireducible as well and that
S =2:4(F). Let r : PH — Z.(F) be the uniform isomorphism from Cor. 2.2 and
U € SH. Consider the smooth chart 7¢ : B;(C¥) — Cy of the projective Hilbert
space PH around the ray C¥ as defined in Theorem 2.5. For every v € Cy, the
map 7, : R = 2(F), t = 75" (tv) then is a smooth path in 22, (F), and #,(0) is a
tangent vector of Z(§F) at o = r(C¥). Let § be an element of the Lie algebra 2 of
Aut(F). Now compute

d

TadX (5,400 = 5| T(aexp(si). o) + 5| T(o7(t) =
5=0 t=0
_4d ooexp(—sd)oa™t + a (rg L (tv), ma~ (- )rg H(tv)) = (4.12)
ds s=0 dt =0

= —a.(0"0) + (¥, ma( - vy + (v, -)T) .

The right hand side is obvously jointly continuous in «, ¥, § and v, so Y is of class
%*. Since the right hand side of (4.12) is in addition linear in ¥, § and v and
continuously differentiable in o by the argument just provided, one concludes that
T is even of class ¥°° and the claim is proved. O

Note that the restricted maps ¢, ; o2 1= @*7i|9(gl)oi : 2o, = O x 2(F)
with 4 € I form a trivializing atlas of the pure state bundle p 5, : Z(2A) = X.



CONTINUITY OF KADISON TRANSITIVITY AND OF THE GNS CONSTRUCTION 59

Since each of the spaces O; x Z(F) carries the natural product manifold structure,
Lemma 4.13 entails that the compositions

Pui, P (A) © Sﬁ;;g(g() 1045 x P(F) = 045 x P(F), (z,w) = (z, Y(g:5(x),w))

are smooth. Arguing as before, the pure state bundle p, .y, : Z(2) — X therefore
inherits a smooth fiber bundle structure from the one on the bundle p : 2 — X.

Finally we consider the GNS Hilbert bundle p,, : 5 — Z2(2) in the smooth
case. Given an atlas (¢;, 0;)icr of smooth trivializations of p : 2 — X consider
the local trivializations x; s, : |0, s, — Ois X Hs defined by (4.8), where
S € Sec(F) is a sector and v € SHg. The sets O; g, are open in the pure state
bundle () and inherit a manifold structure from the ambient &2 (2(). Therefore,
each of the cartesian products O; s, x Hg carries the product manifold structure.
The Hilbert bundle p,, : # — Z(2) can now be endowed with a compatible
smooth structure if we can yet show that the transition functions h; g .5 rw :
0,50 NOjrw — U(Hsg) given by Eq. (4.9) are smooth. By equation (4.10), the
transition function h; g .. rw is smooth whenever the maps Q; s, : O;.5.0 = Hs,
0 — Sy(pix(p)) and U : O — U(Hg) from Prop. 4.3 applied to the case where
B=0C=37F (Hn) = (Hs,7s) and (H,7) = (Hr,7r) are smooth. Smoothness
of ; s, is clear since by Corollary 2.8 the section s, is smooth and since ¢; . is a
smooth local trivialization of the pure state bundle. Smoothness of U is shown in
the following, where we silently use notation from Prop. 4.3.

Proposition 4.14. Let B be a C*-algebra, (H,n) and (H,7) two irreducible rep-
resentations, and let O be the open and non-empty set

0= {(a, Q,7) € Aut(B), x SH x SH : a,r(CQ) € Bg(f((C\Il))}.

Then the following holds true:
(i) The map ® : O — SH, (o, Q,¥) = ga,r(CRQ) is smooth.
(ii) The unique map U : O — U(H) making the diagram
B ——— B

EQJ{ J{é@(a,ﬂ,‘lf}

7t U(a,Q, %) H

commute for all (o, Q,¥) € O is smooth.

Proof. (i) First observe that the map

[ Aut(B), x SH — SH, (a, Q) = 7 La,r(CQ)
is smooth by Lemma 4.13 and since r and 7 are holomorphic. Next recall from
Section 2.1 that for a given unit vector ¥ € SH and the corresponding pure state

¥ = 7(CW¥) the section Sy : Bi(¢¥) — SH maps every pure state of the form
w = 7(CQ) with Q@ € SH \ SH N Cy to the unit vector

§\p(w) = 0‘171(7'\1;(@9),1) = Q = <Q7 \Ij> Q .

2 [(Q, 1)
0
(0,9) - \/1+ | — ¥
The right hand side is obviously a smooth map on the open set

W ={(I,Q) € SHxSH: Q¢ Cq}.
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Since the projection p : SH — PH is a surjective submersion, this implies that the
map

g: W — SH, (¥,9) = 54(7(CQ))
is smooth, where W C SH x PH is the open set
W = (idsy xp)(W) = {(V,£) € SH x PH : £ € B;(CV)} .

Now observe that the image of an element (o, 2, ¥) € O under the map ® can be
rewritten as

(e, 2, V) = 5y0,7(CQ) = oy (1o (F e (CQ)), 1) = g(T, f(a,Q)) .

By smoothness of f and g, ® then has to be smooth as well.
(ii) Fix a vector v € H. Given 2 € SH choose B € B such that v = 7(B)Q and
put Oq = {(a, ¥) € Aut(B), X SH : (a,Q,¥) € O}. The map

UG, )0 :0q = H, (a,9) — U(a, 2, ¥)v
then is smooth by (i) and since by Eq. (4.5)
U(a, 2, ¥)v =U(a, Q,0)7(B)Q = 7(a(B))U(a, 2, ¥)Q = 7(a(B))P(cr, 2, P) .

Next fix (o, U) € Aut(B), x SH such that (a,Q,¥) € O and let v : R — SH be a
smooth path such that v(0) = Q and (o, (t), ¥) € O for all t € R. Then compute
using Eq. (4.5) again:

d o Ulayy(t), W)y —U(e, Q,%)u
% t:OU(a7 ’Y(t)a \Ij)v = }E}% : —
iy FUB)U (@, 4(1), 1)Q — 7 (a(B))U (e, 2, W) _
t—0 t
— Jiny #(a(B) Ula,v(t), V) (2 — (1)) + (;I)(a,y(t), W) - B(0, 0, W)

—i(a(m) (PG - v 0m)) 0

The right hand side is continuous in (o, 2, ¥) € O, hence the map U(—)v: O — H
is continuously differentiable for all v € H. Therefore U is 4. By induction one
concludes that U is €. O

In summary, we obtain the following result.

Theorem 4.15. Let p : A — X be a smooth C*-algebra bundle. Then the associ-
ated dual bundle py. : A* — X, the pure state bundle ps o, 0 P (A) = X and the
GNS Hilbert bundle p,, : A — X all carry natural smooth structures compatible
with their underlying fiber bundle structures. In particular this means for the GNS
Hilbert bundle that there exists an atlas of smooth local trivializations whose tran-
sition functions have values in the unitary group of the (local) typical fiber Hilbert
space.
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5. EXAMPLES OF QUANTUM SYSTEMS

We give two simple physical examples to illustrate how the fiberwise GNS con-
struction may be used and how one might obtain a norm-continuous family of pure
states. The first is a finite-dimensional example coming from a spin—% particle in a
magnetic field. The second is an infinite-dimensional example of a non-interacting
system obtained by copying the finite-dimensional example at each point of a count-
able lattice.

5.1. Particle in a magnetic field. In this section, we consider the trivial C*-
algebra bundle

M,(C) := S? x M,(C) — S*.
The continuous family of states will be the ground states of a family of self-adjoint
operators over S2. To this end, we define a smooth section H: S? — M, (C) by the

Hamiltonians
O z T — 1y
H.=r-o <1:+iy _. >,

where r = (2,9, z) € S? and o = (0, 0y, 0) are the Pauli matrices. Physically, the

Hamiltonian H, corresponds to the energy of a spin—% particle in a magnetic field

pointing in the direction r. It is easily verified that the spectrum of this matrix is
o(H,) ={-1,1} and that

1 . .

gives the ground state unit vector of Hy. The map ¥ : §? — C? is continuous
everywhere except when r = (0,0,—1). It is helpful to note that we can also

redefine the ground state unit vector ¥ to be continuous everywhere except when
r =(0,0,1):

1 z—1 0

In either case, the state ¢, (A) = (¥, A¥,) may be expressed as

1/)1» =T0—IrT,
where 79, 7, 7y, 7, is the dual basis of I,0,,0,,0, and T = (74,7, 7,). The state
Yy is pure since M>(C) acts irreducibly on C2. Thus, ¢ : S2 — My(C)* defines
a manifestly smooth section of pure states of the dual bundle, for which we can
perform the fiberwise GNS construction of §4. In this case, since our C*-algebra
bundle is finite dimensional, the Hilbert bundle H that we obtain is simply the
quotient of M4(C) by M ={M | ¢p(M*M) = 0}.

In Remark 4.6, we noted that, in the infinite dimensional case, the Hilbert bundle
obtained via the fiberwise GNS construction is necessarily trivial. We show that
in this finite dimensional example H is nontrivial. First, consider the subbundle
E C 52 x C? := C? defined as the kernel of the bundle map I + H. The fiber above
r € S? is the 1-dimensional subspace of ground states of H,. The map

2 —r+1iy
S =&, re ( S+l >
is a section of £. This section has a unique zero at z = —1, and one can check that
this intersection with the zero section is transverse. It follows that the first Chern
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class ¢1(€) is Poincaré dual to a point in S?, hence [g, ¢1(£) = 1. Therefore, ¢;(£)
is non-trivial.

Now let F be the orthonognal complement of £ in the trivial bundle C? so that
the fiber F, consists of vectors orthogonal to ¥,. We then have

MO =C0 () =2Ca (" oF)=(C o) e (CaF)
Since
N = {M | (M, M¥,) = 0} = {M | M& =0},
it follows that 9 = C* ® F*. Thus,
H=M,(C)/M=C* e,
implying that ¢;(H) = 2¢1(E*) =2 —2¢1(€) is a nontrivial cohomology class.

Remark 5.1. More generally, for any n-dimensional Hilbert bundle C over X,
we obtain a C*-algebra bundle as the endomorphism bundle B(C) of C. Given a
continuous section H: X — 9B(C) such that H, is a self-adjoint operator whose
smallest eigenvalue has a one-dimensional eigenspace &, (i.e., H, is gapped), the
&, assemble into a line bundle £ over X. As above, the assignment A € B(C,) —
(1, A1),y for any unit vector 1, € &, gives a continuous section of ground states
Y: X — B(C)*. The fiberwise GNS construction for ¢ gives a Hilbert bundle H
whose first Chern class satisfies ¢1(H) = ¢1(C) — nc1(€). This is shown as in our
example above by establishing that H =2 C ® £*.

5.2. Non-interacting lattice system. Perhaps the simplest way of obtaining a
norm-continuous family of pure states of an infinite-dimensional C*-algebra 2 is
to start with a nonzero irreducible representation (#,7) and a continuous map
Q: X — SH and to lift 2 to L () using Lemma 1.1. Below we give an example
of a different flavor.

We copy the finite-dimensional model above to each vertex of a lattice Z? for
some positive d € N. The C*-algebra of this system is the quasi-local algebra

A= |J A for ANA) = (X)M(C),

Aeps(Z4) veA

where p(Z%) is the set of all finite subsets of Z?. We also define the local algebra
as the dense *-algebra Ajoc = (Jxc 07 (Z4) 2A(A). For more on quasi-local algebras

obtained from lattices see, for example, [Naal7, Ch. 3].

Our parameter space is X =[], czq S2. We will consider both the product and
box topologies on X. For each r = (r,),cze € X, we will construct the ground
state wy € 2(2) of the interaction' @, : p(Z?) — A, defined as

Bo(A) = H,, A= {v} for some v € Z4,
0 otherwise.
Consider the map r — &, into the space of bounded, finite-range interactions with

the norm
@] = sup >Rl
VELS yenepy (2

1Although it is standard terminology, “interaction” is a bit of a misnomer in this case since
the lattice sites are non-interacting.
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Given r,r’ € X, we have
| @ — @y || = sup ||Hy, — Hy,
veZD

= sup [|(r, —1,) - o = sup [r, — 1,
vezd vezZd

This implies that r — @, is continuous when X is given the box topology, but
discontinuous when X is given the product topology. Interestingly, it also shows
that composing with the diagonal map S? — X yields a continuous function into the
space of interactions, even though the diagonal map is discontinuous with respect
to the box topology.

We construct the ground state of ®, by an application of the following theorem.
The analogous statement for not necessarily pure states is a rephrasal of Theorem
2 in [Takb5]. The proof of Proposition 5 in the same paper shows that the result
holds for pure states.

Theorem 5.2. Let (2;);er be an inductive system of C*-algebras indexed by the
directed set I and let A be the inductive limit. If w; € P(U;) for all i € I and
w; = wjla, whenever i < j, then there exists a unique pure state w € FP(A) such
that w; = wly, for alli € I.

Thus, it suffices to define a compatible system of pure states we o € Z(A(A)).
Given A € p f(Zd) we define wy o to be the vector state represented by

Gp= 8 ¥, € QT
vEA
that is, we A (A) = (O a, AQp p) for all A € A(A). The state wy a is pure since
2A(A) acts irreducibly on @), ., C*. Observe that

wr,A< ® Av) = I ¢-.(40) (5.3)
veA vEA
for all simple tensors ®,caA,. In particular, if A; C As, then the above formula
implies that we A, = Wr A, la(a,) since ¥, (I) = 1. Theorem 5.2 now yields a unique
pure state w, € () that restricts to w, o on A(A). We consider the continuity
properties of w: X — Z(A).

We show that w is norm-continuous when X is given the box topology. Observe
that for any r,r’ € X and A € 2A(A),

[lwe(A) = wer (A)]| = [lwr,a(A) = wer A (A < [[A][[lwe,a = wer all

< 2 AN[Qra — Quall < 20A D || W, — Ty
vEA

(5.4)

)

where in the last step we have used multilinearity of the tensor product, the triangle
inequality, and the definition of the norm on the tensor product of Hilbert spaces.
Given r € X and € > 0, we may define ¥, by (5.1) or (5.2) depending on whether
r, is the north pole or the south pole, or neither, in which case the choice does not
matter. Then we may choose a neighborhood U of r such that

>, -y

veZd

<€
5

for all v’ € U. Again, we see that it is crucial to use the box topology on X. With
the above inequality, (5.4) implies that ||(wy — we)(A)]| < || A]| for all A € Ao,
80 ||jwy —wyr|| < € by the density of Ao in A. This proves norm-continuity of
w:X = 2.



64 SPIEGEL, MORENO, QI, HERMELE, BEAUDRY, AND PFLAUM

When X is given the product topology, we can show that r — w, is weakly*
continuous. It follows from equation (5.3) and continuity of ¢ : S? — 2 (My(C))
that r — w,(A) is continuous with respect to the product topology for all simple
tensors A = ®,ea A, € A(A). Since any element of 2y, can be written as a linear
combination of such simple tensors, we see that r — wy(A) is continuous for all
A € Ujpe. Continuity of r — wy.(A4) for all A € 2 can then be checked using density
of Ajpe in 2A.

Norm-continuity fails, however, when X is given the product topology. This will
follow from the theorem below. This result appears in a much more general form
as Corollary 2.6.11 in [BR87]. We supply a different proof of the specific part we
need under milder assumptions.

Theorem 5.3. Let 2 be a C*-algebra and let (Uy)acr be a family of C*-subalgebras
of A such that A = UaeIQl . Suppose there exists a symmetric relation L on I
such that o L B implies
(2o, 2As] = {0}

If wi,ws € P(A) are in the same superselection sector, then for any e > 0 there
exists o € I such that

w1 (A) — w2 (A)] < el A
forany B L o and A € g.

Typically, I is a causal index set and the relation 1 is defined by o 1 g if and
only if a C B+ (see Remark 1.15).

Proof. Since wi,wqy € () are in the same superselection sector, they extend to
pure states wy, Wo on the unitization 2, that are in the same superselection sector.
Theorem 1.14 yields a unitary U € 2y such that @y = U - @;. We may write
U =X+ B where A € C and B € 2. There exists a € I and C € 2, such that
|IB—C| <¢e/2. Set V.=X+C. Given 8 € I such that § L o and A € Ag, we
have

|wi(A) — w2 (A)] = |@1(A) — @1 (UAU))|
< (U T A) = 61U AV)| + [on (U AV) — Gy (U* AU)|

<@ (UHU = V) A)| + [ (UTA(V = U))

<2[|B = Cl|A[l < e[| A]l,

as desired. Note that we used the fact that [V, A] = [A+C,A] =0since v L 8. O

In our case, the index set is I = pf(Zd) and Ay L Ay ifand only if AyNAy =2
Intuitively, the theorem states that if two pure states on a quasi-local C*-algebra
are in the same superselection sector, then they are equal to each other “at infinity.”
To prove that our map w is not norm-continuous when X has the product topology,
we prove that the composition of w with the diagonal map A : S? — X is not norm-
continuous. In fact, for distinct r,s € S2, we prove that wWA(r) and wa(s) are in
different superselection sectors. Since S? is path connected, the diagonal map is
continuous for the product topology, and the superselection sectors are the path
components of & () with the norm topology by Theorem 1.14, this implies that
w is not norm-continuous when X has the product topology.

Given any A € p(Z?), choose v € Z4\ A and consider H, € A({v}). Then

|wa@) (Hr) = was) (Hr)| = [¢x(Hy) = ¢s(Hy)| = [1 —r 5| > 0.
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If 0 < e < |1 —r-s|, then the above line shows that for no A € p;(Z?) can we
achieve

|WA(!‘)(A) - wA(s)(A)| < €||A||

for all A’ € p;(Z?) such that ANA’ = @ and A € A(A’). Therefore Theorem 5.3
implies that wa(yy and wa (s are in different superselection sectors.

Remark 5.4. Note that this is in contrast to the case of the interaction ®, where
® failed to be continuous with the product topology on X, but continuity was
restored when we composed with the diagonal map.

Remark 5.5. It is perhaps worth observing that the box topology has a certain
“quasi-local” character to it. The intuition behind the topologies used here is that
the box topology is fine enough to allow only local deformations to be continuous,
which correspond to norm-continuous deformations of states. Indeed, the connected
component of r € X is the set of all ¢’ for which r, # r} for only finitely many
v € Z% If we had used the product topology on X, then we would be allowing
continuous non-local deformations and w would only be weakly* continuous.

More generally, if X1,...,X,,... is a countably infinite collection of Hausdorff,
regular, path-connected spaces and X = ]_[Zo:l X,, with the box topology, then for
any © = (z,) € X, the set

C(z) ={y € X : x5, # yp for only finitely many n}

is the path component of X containing x. If we define

k=1

k=n+1

then C(z) = J,—, Cn(x) as sets. If, in addition, each space X,, is compact, then
the subspace topology on C(x) coincides with the union topology induced by the
Chn(x).

Finally, we show that w, is indeed a ground state for the interaction ®,.. The
interaction defines local Hamiltonians Hy A = Zve A Hy,, where H, is now short-
hand for the simple tensor in 2A(A) with H, in the v-component and the iden-
tity in every other component. The local Hamiltonians define a derivation on

Q[loc = UAEpf(Zd) Q[(A) by

0p(A) = i[Hypp, A]  for A € A(A).
The state w, is a ground state for the one-parameter family of automorphisms
generated by this derivation, i.e. the time evolution, if and only if the inequality

—iwy(A*0,(A)) > 0 is satisfied for all A € A, [Naal7, Theorem 3.4.3]. Thus, we
take A € A(A) for some A € p(Z?) and compute

—iwe (A"0r(A)) = D wr A (A" [Hr,, A])
vEA
= D (A, (e, A= AH,, )0 )

vEA

= > (AQa, (He, + 1)AQe 4) > 0.
vEA
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We have used the fact that H, Qr o = —$, a by definition of Q. o and the fact
that H,, + I is a positive operator to conclude that the above it nonnegative. This
verifies that w, is a ground state for @,.

In fact, we can show that w, is the unique ground state for the interaction
®,. First note that for any A € p;(Z), the derivation 4, restricts to a bounded
derivation dy 5 : A(A) — A(A). If & : A — C is any ground state for ®,, then
for any A € pf(Z9), we have —i@y 5 (A*6pa(A)) > 0 for all A € A(A), where
Wr,A = Wrloa). Thus, @p 4 is a ground state for 6, o. By [BR97, Thm. 5.3.37], the
set of ground states for 0, 5 is a convex, weakly* compact, face of .7 (A(A)), and is
therefore the closed convex hull of the pure ground states. Any pure state of 2(A)
can be represented by a unit vector in @), 5 C2. It is therefore a finite-dimensional
linear algebra problem to show that there exists a unique pure ground state dy a,
and this is indeed the case because the lowest eigenvalue of Hy 5, which is —|A[, has
a one-dimensional eigenspace. It follows from the aforementioned result in [BR97]
that there is a unique (not necessarily pure) ground state for §, ». We conclude
that wy and @, are equal for all local operators, hence equal everywhere by density
of Qlloc'
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APPENDIX A. INFINITE DIMENSIONAL MANIFOLDS

For the convenience of the reader we will briefly recapitulate here some notions
from infinite dimensional manifold theory. For more details see [Mil84, KM97,
Lan02b, Nee06].

A.1. Banach and Hilbert manifolds. Assume that M is a Hausdorff topological
space. By a €>°-chart or just a chart of M modeled on a Banach space E (over
the field K of real or complex numbers) one understands a pair (U, ) consisting of
an open subset U C M and a homeomorphism z : U — z(U) C E onto an open
subset of E. Two charts (U, z) and (V,y) modeled on Banach spaces Ey and Ey,
respectively, are called compatible if either U and V are disjoint or if By = Ey and
the transition map

zoylphy 1 y(UNV) = 2(UNV)

is a ¥°-diffeomorphism. A collection &« of pairwise compatible charts of M is
called a ¥*°-atlas or just an atlas of M if the domains of the charts contained in
f cover M. An atlas & of M is said to be mazimal if every chart compatible with
all charts in @ is an element of /. A Banach manifold or just a manifold is then a
Hausdorff topological space endowed with a maximal ¢ *°-atlas of charts modeled
in Banach spaces. In case the charts of the maximal atlas of the manifold M are
modeled all in Hilbert spaces, one calls M a Hilbert manifold.

In a similar fashion one defines real analytic and complex or holomorphic Banach
manifolds. These are Hausdorff topological spaces endowed with a maximal atlas of
charts so that all transition maps (and their inverses) are real or complex analytic,
respectively. An atlas of charts with biholomorphic transition maps is referred to
as a holomorphic atlas.

Given a Banach manifold M and an open subset O C M the space ¥°°(O) of
smooth functions on O consists of all maps g : O — R such that for each chart
(U,x) with ONU # 0 the composition g o 2|5}, : (O NU) — R is smooth. A
map f: N — M between two manifolds is called of class €°° or smooth if for each
open O C M and each element g € ¢°°(O) the pullback f*g = go f[;-1(p) is an
element of €>°(f~1(0)). The spaces €>°(0) give rise to a sheaf on M called the
sheaf of smooth functions on M. Likewise, one defines the sheaf €“ of real analytic
functions and the sheaf O of holomorphic functions on a real analytic respectively
a holomorphic Banach manifold.

Remark A.1. The notion of infinite dimensional manifolds as defined above can
be extended in a natural way to Fréchet spaces or even convenient vector spaces;
see [KM97] for details. The virtue of using convenient vector spaces for defining
manifolds lies in the fact that for any pair of convenient vector spaces F, F the
space €°°(E, F) of smooth functions between them is again convenient [KM91,
1.7. Lemmal] and that an exponential law holds for smooth mappings [KM97, 3.12.
Thm. & 3.13. Cor.]. The latter means in particular that for G a third convenient
vector space the natural map

Vig¥(Ex F,G) > €% (B,¢°(F,G)), [ f'=@w flv,-) (A1)

is a linear diffeomorphism meaning it is invertible, linear, smooth and has a smooth
inverse. Note that Banach and Fréchet spaces are convenient vector spaces, so the
smooth exponential law applies to them.



68 SPIEGEL, MORENO, QI, HERMELE, BEAUDRY, AND PFLAUM

A group G equipped with a manifold structure so that both multiplication and
inversion are smooth maps will be called a Lie group. In case the Lie group G is
modeled on Banach or Hilbert spaces, one calls it a Banach or a Hilbert Lie group
respectively.

A.2. Topological fiber bundles. We define topological fiber bundles as in [Ste99,
§. 2] and denote them as quintuples (E, B, m, F,G) where F is the total space, B
the base space, w: E — B the projection, F' the typical fiber, and G the structure
group. The latter is assumed to be a topological group acting continuously and
effectively on F'. In case the typical fiber F’ and the structure group G are clear from
context, we usually denote a fiber bundle just by its projection 7 : E — B. Attached
to a fiber bundle (E, B, 7, F,G) is a maximal trivializing atlas. Such a trivializing
atlas consists of pairwise compatible local trivializations which are homeomorphisms
¢ : 7 1(0) - O x F with O C B open such that pryop = 7|,-1(0) and whose
domains are assumed to cover the base B. Two local trivializations ¢; : W‘l(Oi) —
O; x F and ¢, : 771(0;) — O; x F are hereby called compatible if the map

Pinogie: 0;N0; = FC(F,F), prpiop;(p,—)

factors through a continuous map g;; : O; N O; — G called transition function. In
other words this means that the diagram

0,n0; — 5 @G

%,.ow;i\) l

% (F,F)

commutes, where G — % (F, F') is the canonical continuous injection and €(F, F')
carries the topology of pointwise convergence. Note that g;; is uniquely determined
since G acts effectively on E.

For convenience, we sometimes write (p, O) for a local trivialization of the form
@7 H0) = Ox F. Alocal trivialization (¢, Q) defined over some open neighbor-
hood O of a point p € B gives rise to a homeomorphism ¢, : F, — F' by putting
vp(e) = ¢(p,e) for all e € E,, where as usual E, denotes the fiber 771(p) over p.
If the fiber bundle has a global trivialization, that is, a trivialization of the form
¢ : E — B x F, the fiber bundle is called trivial. Instead of fiber bundle we there-
fore sometimes say locally trivial bundle. Note that if the group G is contractible,
then a fiber bundle with structure group G is necessarily trivial, see [Ste99]. More
generally, the family of transition functions (g;;)i jer associated to a trivializing
atlas (¢;, O;)icr of the fiber bundle defines a topological invariant called the Cech
cohomology of the bundle since by construction the family (g;;)i jer satisfies the
Cech cocycle conditions

Gij - 9jk = Gij Over Oijk =0;N Oj N Oy, for all i,j,k el.

The associated Cech cohomology class in H'(B,G) = colimy H' (U, G), where U
runs through the open covers of B, does not depend on the chosen trivializing atlas,
hence is a topological invariant indeed. If the underlying bundle is a G-principal
bundle, its Cech cohomology determines the bundle up to isomorphism. For more
details on the Cech cohomology of (principal) fiber bundles see [Bry08, Chpt. 4]
and [HJJS08, Sec. 25.8].
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In case H — G is a continuous injective homomorphism between topological
groups one says that the structure group of a fiber bundle (E, B,n, F,G) can be
reduced to H if there exists a trivializing atlas such that for any pair of local
trivializations (¢;, 0;) and (¢;,0;) in this atlas the transition function g;; : O; N
O; — G factors through a continuous map h;; : O, NO; — H.

Under the assumption that the typical fiber F' is a Banach space, and that G
coincides with the group Aut(F)s of isometric automorphism of F' endowed with
the strong topology, a fiber bundle of the form (F, B, r, F,G) just corresponds to
what is usually called a Banach vector bundle or locally trivial Banach bundle with
typical fiber F. Note that Aut(F)s is a topological group, cf. [Sch18]. The fiberwise
homeomorphisms ¢, : £, — F' then endow each E,, with the structure of a Banach
space which is independent of the chosen local trivialization ¢ around p. Following
[Sch18], a Banach fiber bundle is called norm defined if its structure group can
be reduced to the group Aut(F’), of isometric automorphisms endowed with the
norm topology. Still under the assumption that F' is a Banach space, a vector
bundle (E, B, w, F,G) is called banachable whenever the structure group G is the
topological group GL(F'), of topological linear isomorphisms of the Banach space
F. Note that when endowed with the norm topology, GL(F') becomes a topological
group, but in general not when endowed with the strong topology and F' is infinite
dimensional. Therefore, a banachable vector bundle is always norm defined by
definition.

In case the typical fiber is a Hilbert space H, the natural structure group G is
the unitary group U(H)s with the strong topology. A corresponding fiber bundle
will then be referred to as a Hilbert vector bundle. We also say that a locally trivial
Hilbert bundle is norm defined if the structure group can be reduced to the unitary
group U(H), with the norm topology. By Kuiper’s theorem, the unitary group of an
infinite dimensional separable Hilbert space is contractible, both in the strong and
norm topologies, so a Hilbert fiber bundle with an infinite dimensional separable
typical fiber has to be trivial, even when norm defined [Sch18, Sec. 4].

In case the typical fiber F' carries some additional structure like the structure
of a Banach algebra or a C*-algebra and the group G is the topological group of
automorphisms F' endowed with the strong topology, a fiber bundle of the form
(E,B,n, F,G) is called a Banach algebra fiber bundle or a C*-algebra fiber bundle,
respectively. It is called norm defined whenever the structure group G can be
chosen to be the automorphism group endowed with the norm topology. In other
words, this means that there exists a trivializing atlas such that all transition maps
are norm continuous. Note that the fibers of a Banach or C*-algebra fiber bundle
carry in a canonical way the structure of a Banach or C*-algebra, respectively.

By a subbundle of a fiber bundle (E, B, 7, F,G) we mean a fiber bundle of the
form (E,B,ﬂE,S, H) endowed with a trivializing atlas & so that S C F is a

subspace, E is a subspace of E, the restriction 7|z : E — Bis surjective, the
group H of all elements of G leaving S invariant is a closed subgroup, and for
each element (¢,0) € 7 there is a local trivialization (¢,0) of (E,B,n, F,Q)
such that @ coincides with the restriction of ¢ to Eo = 7~ 1(O) N E. As a slight
generalization one sometimes allows H to be a topological group for which there
exists a distinguished injective morphism of topological groups H — G. Note that
we have not required in our definition that S is complementable in F'. This differs
from some definitions, for example, that of [Lan02b, Ch. 3, §3]. The exception are
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Hilbert bundles, where our definition coincides with the one of [Lan02b] since every
closed subspace of a Hilbert space has a closed complement.

A.3. Smooth fiber bundles. Next, we consider the smooth case. Assume that
E, B and F are smooth manifolds and that G is a subgroup of the diffeomorphism
group of F. Assume further that G is endowed with a Lie group structure so
that the canonical map G — €°°(F, F) is smooth. By the smooth exponential
law from Remark A.1 this is equivalent to the map G x F — F, (g,v) — gv
being smooth. By a smooth structure on the fiber bundle (E,B,n, F,G) with
smooth projection 7 : E — B we understand a maximal collection of smooth local
trivializations ¢ : 771(0) — O x F so that their domains O cover B and so that
the transition function g;; = ;e © <p;} : 0;N0O; — G is smooth for any pair of
smooth local trivializations (y;, 0;) and (¢;,0;). A fiber bundle endowed with a
smooth structure is called a smooth fiber bundle.

Next assume that F' is a Banach space and that G is the group Aut(F), of
isometric automorphisms endowed with the norm topology. This group inherits
a canonical Lie group structure as a closed subgroup of the general linear group
GL(®B(F)) which is a Banach Lie group since GL(B(F’)) is an open subset of the
Banach space B(F) of bounded linear endomorphisms of F'. A smooth Banach fiber
bundle now is a smooth fiber bundle with structure group Aut(F),.

If a Banach or C*-algebra fiber bundle (E, B, 7, F, G) carries a smooth structure
so that its transition maps are smooth into the structure group G = Aut(F),
endowed with the canonical Lie group structure, we call (E, B, 7, F,G) a smooth
Banach or C*-algebra fiber bundle, respectively.

In case all data are smooth, S is a submanifold of F', if H is a Lie subgroup of G
or more generally if there is a distinguished injective smooth group homomorphism
H < G, and finally if the subbundle atlas 7 has smooth transition maps, one calls
(E,B, |z, S, H) a smooth subbundle of (E,B,n, F,G).

As an example we briefly discuss the construction of tangent, cotangent and
tensor bundles in the described setting.

Example A.2. Let E be a Banach space. Denote by

TE=¢8(F,... E E,... ER)
ti ti

the space of continuous real valued functionals r-times multilinear in the topological
dual E' = £(E;R) and s-times multilinear in E and call it the space of r-fold
contravariant and s-fold covariant tensors on E. The space T, FE then becomes a
Banach space with norm induced by the norm on E.

Now assume to be given a Banach manifold M modeled on E. Let & be an
atlas of M and consider the disjoint unions

TM= || UxE= |J UxEx{as},

(z,U)eol (z,U)eot
T"M= || UxE= |J UxEx{z},
(z,U)esl (z,U)esl

TM= || Ux%iE= |J UxTEx{z}.
(z,U)eot (z,U)esl



CONTINUITY OF KADISON TRANSITIVITY AND OF THE GNS CONSTRUCTION 71

Given charts (z,U), (y,V) € & call elements (p,v), € U x E and (¢, w), € XV xE
equivalent, in signs (p,v),; ~ (g, w)y, if p = ¢ and v = D(z o y~1)(y(¢))(w). Note
that hereby we have written (p,v), instead of (p,v) - and likewise for (¢, w), - to
denote that the pair (p,v), is actually regarded as lying in U x E x {z}. The
quotient space with respect to the equivalence relation ~ will be denoted T'M and
endowed with the unique topology such that for each chart (z,U) € & the subspace
TU =U x E x {x}/ ~ is open and such that the canonical mapping U x E — T M,
(p,v) — [(p,v)s] is a homeomorphism onto TU. Denote by (T'z,TU) : TU —
U x E the chart which maps the equivalence class [(p,v),] to the pair (p,v). By
construction, Tz then is a homeomorphism, and for each other chart (y,V) € &
the transition map

Tz o Tyl rimry : Ty(TUNTV) = Tz(TUNTV),
(y(@),w) = (2(a), D(z oy~ )(y(q))(w))

is smooth. This endows T'M with the structure of a smooth vector bundle modeled
on ' x E.

In a somewhat more technical but analogous way one constructs the tensor
bundle TT M. Given again charts (z,U), (y,V) € & one calls elements (p, \), €
UxZTLE and (q, 1)y € XV x TLE equivalent, in signs (p, A)z ~ (¢, 1)y, if p = ¢ and

A=po [Tyxoy™ ) x...xTy(xoy )V xTp(yox ') x...x T(yox™ )| ,

r-times s-times

where T, (y o 27 !) stands for the linear map D(y o z71)(z(p)) and T,(z o y~1)*
is the pullback by D(x o y=1)(y(q)). Analogously as before 77 M is now defined
as the quotient space TE M/ ~ and given the unique topology such that all for
(x,U) € o theset TTU = U xTLE x{x}/ ~is open and the map UxXLE — Tr M,
(p, A) = [(p, A)z] is a homeomorphism. The maps

Tiz:TIU = U X TLE, [(p,N)o] = (p, A)

then form an atlas of 7, M turning it into a smooth vector bundle modeled on
E xTLE. 1t is called the tensor bundle of r-fold contravariant and s-fold covariant
tensors on M. In case the modeling Banach space is even a Hilbert space, one can
express the typical fiber of the tensor bundle 77 M as the completed tensor product

E®T®E’®S, which explains the term tensor bundle.
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