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AGNÈS BEAUDRY1, AND MARKUS J. PFLAUM1,3

Abstract. We consider how the outputs of the Kadison transitivity theorem
and Gelfand-Naimark-Segal construction may be obtained in families when
the initial data are varied. More precisely, for the Kadison transitivity the-
orem, we prove that for any nonzero irreducible representation (H, π) of a

C∗-algebra A and n ∈ N, there exists a continuous function A : X → A such
that π(A(x,y))xi = yi for all i ∈ {1, . . . , n}, where X is the set of pairs

of n-tuples (x,y) ∈ Hn × Hn such that the components of x are linearly
independent. Versions of this result where A maps into the self-adjoint or
unitary elements of A are also presented. Regarding the Gelfand-Naimark-
Segal construction, we prove that given a topological C∗-algebra fiber bundle
p : A → Y , one may construct a topological fiber bundle P(A) → Y whose
fiber over y ∈ Y is the space of pure states of Ay (with the norm topology),
as well as bundles H → P(A) and N → P(A) whose fibers Hω and Nω

over ω ∈ P(A) are the GNS Hilbert space and closed left ideal, respectively,
corresponding to ω. When p : A → Y is a smooth fiber bundle, we show

that P(A) → Y and H → P(A) are also smooth fiber bundles; this involves
proving that the group of ∗-automorphisms of a C∗-algebra is a Banach-Lie
group. In service of these results, we review the topology and geometry of the
pure state space. A simple non-interacting quantum spin system is provided
as an example illustrating the physical meaning of some of these results.
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Introduction

The primary goal of this paper is to detail how one can do classical maneuvers
in the theory of C∗-algebras, namely the Kadison transitivity theorem and the
Gelfand-Naimark-Segal (GNS) construction, in a way that depends continuously or
smoothly on the input data. In the Kadison transitivity theorem, the initial data is
a set of vectors in the Hilbert space of an irreducible representation of a C∗-algebra
A; these may be taken to represent pure states on A. In the GNS construction
the initial data is a state on A which, again, we will usually take to be pure. We
therefore find it necessary and appropriate to hold a second goal in service of the
first: to review and elaborate on the topology and geometry of the pure state space
of A.

We are inspired by the connection of C∗-algebras to quantummany-body physics.
In quantum systems with infinitely many degrees of freedom, one represents observ-
able quantities as self-adjoint elements of a C∗-algebra and quantum states as states
on the C∗-algebra, i.e., normalized positive linear functionals. These C∗-algebras
typically have a quasi-local structure. Intuitively, if one continuously deforms such
a quantum system in a local region, the state of the system is expected to change
continuously with respect to the norm topology, while a global deformation of the
system yields merely weak∗ continuity of the state. This intuition is developed in
§5.2 where a trivial example of a parametrized quantum system is investigated from
the point of view of topology. In this paper we focus on the case of norm-continuity
since it is more tractable mathematically, but comparisons are made to the weak∗

topology in §1.4 and §5.2.
This paper begins with a review of classical results on the topology of the state

space in §1, unraveling the relationship between the theory of superselection sectors
and topological properties of the pure state space. In §2, we turn to the geometry of
the pure state space. We do not present any new theorems in §1 or §2, but rather
provide a self-contained and complete presentation of results that are otherwise
scattered in the literature. In §2.1 we detail the complex manifold structure of
projective Hilbert space and show how to pass from the pure state space to a
projective Hilbert space using an irreducible representation. In §2, we prove that
the pure state space carries the structure of a Kähler manifold, a result which goes
back to [ACLM84]:

Theorem. The pure state space P(A) of a C∗-algebra A carries in a natural way
the structure of a (possibly infinite-dimensional) Kähler manifold. The underlying
topology is given by the norm topology. Each connected component is open and
given by the set Pπ(A) of vector states of some irreducible representation (H, π)
of A. The set Pπ(A) carries a unique complex manifold structure such that the
canonical map r : PH → Pπ(A) given by r(CΨ)(A) = 〈Ψ, π(A)Ψ〉 for Ψ ∈ SH
and A ∈ A is biholomorphic. The hermitian metric h is uniquely determined by
the requirement that, for every irreducible representation (H, π) of A, the canonical
projection pSH : SH → Pπ(A), Ψ 7→ r(CΨ) is a riemannian submersion.

A review of infinite dimensional manifolds and fiber bundles is provided in the
appendix.

The materials of §1 and §2 give us the control we need to address our pri-
mary goal. In §3, we establish a generalization of the Kadison transitivity theorem
[Mur90, Thm. 5.2.2] that admits selections of operators that depend continuously
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on the initial data. This is a new result which we call the continuous Kadison
transitivity theorem.

Theorem (Continuous Kadison Transitivity). Let A be a C∗-algebra and let (H, π)
be an irreducible representation. Let n be a positive integer and let

X =
{
(x,y) ∈ H2n : x1, . . . , xn are linearly independent

}
,

equipped with the subspace topology inherited from H2n, where x = (x1, . . . , xn) and
y = (y1, . . . , yn). There exists a continuous map A : X → A such that

π(A(x,y))xi = yi

for all (x,y) ∈ X and i = 1, . . . , n.
On the subspace Xsa ⊂ X of pairs (x,y) such that there is a self-adjoint T ∈

B(H) with Txi = yi for i = 1, . . . , n, there is a continuous map A : Xsa → Asa

satisfying the same property. If A is unital, then on the subspace Xu of pairs
(x,y) such that there is a unitary T ∈ U(H) with Txi = yi for i = 1, . . . , n, every
point (x0,y0) has a neighborhood O ⊂ Xu for which there exists a continuous map
A : O → U(A) which agains satisfies the same property.

This theorem states the existence of a continuous selection for the function X →
℘(A) mapping a point (x,y) ∈ X to the set of all A ∈ A satisfying π(A)xi = yi
for all i = 1, . . . , n. Thus, the key ingredient in the proof is the Michael selection
theorem [Mic56, Thm. 3.2′′], as it provides conditions under which such a selection
may be found. A consequence of the continuous Kadison transitivity theorem is
that local trivializations may be found for the action of the unitary group of A on
a fixed pure state. This is studied in §3.2.

Corollary. Let A be a unital C∗-algebra and let ω ∈ P(A) be a pure state. The map
pU(A) : U(A) → Pω(A) defined by pU(A)(U)(A) = ω(U∗AU) then is a locally trivial
principal Uω(A)-bundle, where Pω(A) is the set of states of the form pU(A)(U) and

Uω(A) is the isotropy group
{
U ∈ U(A) : pU(A)(U) = ω

}
.

By showing that π1(U(A)) 6∼= π1(Uω(A) × Pω(A)), we show that this bundle is
nontrivial in a few examples. The most interesting example considered is when
A is a UHF algebra. While the homotopy groups of the unitary group of a UHF
algebra are known [Sch86], we present a new method for computing these groups,
relying on a theorem of Glöckner [Glö10, Thm. 1.13]. This method also allows for
the calculation of the homotopy groups of Uω(A) in Theorem 3.16, which to our
knowledge have not been previously computed.

In §4 we turn our attention to the GNS construction. There, “continuous de-
pendence” of the GNS construction on its initial data is construed as the ability
to create topological fiber bundles out of the Hilbert spaces and left ideals asso-
ciated to a norm-continuous family of pure states. Precisely, given a topological
C∗-algebra bundle pA : A → X, we construct the fiber bundle of pure state spaces
pP(A) : P(A) → X and show that the sets

H =
⊔

ω∈P(A)

Hω and N =
⊔

ω∈P(A)

Nω

have natural structures as fiber bundles over P(A), where Nω is the left ideal
associated to a pure state ω and Hω = Aω/Nω the corresponding Hilbert space.
We call this the fiberwise GNS construction. If one is given a preferred family of
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pure states, i.e. a section ω : X → P(A), then H and N may be pulled back
to obtain bundles ω∗H and ω∗N over X. The construction of N relies on the
continuous Kadison transitivity theorem, while the construction of H relies on
Proposition 4.3, reproduced in a simplified form below.

Proposition. Let B be a C∗-algebra with irreducible representation (H, π). For
each unit vector Ω denote by ξΩ the projection B → H, B 7→ π(B)Ω and by ωΩ

the state B 7→ 〈Ω, π(B)Ω〉. Let O ⊂ Aut(B)× SH be the set of all pairs (α,Ω) for
which there exists a unique vector Φ = Φ(α,Ω) ∈ SH such that ωΩ ◦ α−1 = ωΦ and
〈Ω,Φ〉 > 0. Then the map U : O → U(H) which associates to each pair (α,Ω) the
unique unitary Uα,Ω making the diagram

B B

H H

α

ξΩ ξΦ(α,Ω)

Uα,Ω

commute is continuous with respect to the norm topologies on Aut(B) and U(H).

In §4.4 we show that when pA : A → X is a smooth C∗-algebra bundle, the
bundles pP(A) : P(A) → X and H are smooth as well. The transition func-
tions of the bundle pA : A → X map into the automorphism group of the model
fiber, thus our definition of a smooth C∗-algebra bundle relies on the fact that the
automorphism group of a C∗-algebra carries the structure of a Banach-Lie group.
We provide this structure in Proposition 4.11. In Proposition 4.14 we prove that
the map U : O → U(H) in the proposition displayed above is in fact smooth, and
this leads to a smooth structure on H . We do not have a smooth analog of the
continuous Kadison transitivity theorem, so we do not endow N with a smooth
structure.

We conclude in §5 with a few simple examples of parametrized quantum systems.
In section §5.1 we consider a finite-dimensional C∗-algebra and a family of states
over S2 representing the ground states of a single spin- 12 particle in a rotatable
magnetic field. We show that the first Chern class of the line bundle of ground
states of this system, corresponding to the Berry curvature 2-form on S2 [Ber84],
may be recovered from the first Chern class of the Hilbert bundle obtained in the
fiberwise GNS construction. In section §5.2 we consider a non-interacting quantum
system in one spatial dimension obtained by copying the above system at each point
of Z. In this case the C∗-algebra is infinite-dimensional, hence the weak∗ and norm
topology on P(A) are distinct, and we find it interesting to study which types of
continuity arise in the family of ground states and under what conditions even in
this physically trivial system. We find that it is possible to obtain norm-continuity
of the ground states if one enlarges the natural parameter space and uses a finer
topology there.

Acknowledgements. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. DMS 2055501 awarded to A. Beaudry,
M. Hermele and M.J. Pflaum. The research of M. Qi is supported by the NDSEG
program. A. Beaudry, M. Hermele and M.J. Pflaum also acknowledge support by
a University of Colorado seed grant.
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1. Topological structures on spaces of states and representations

1.1. Notational preliminaries. The following notational conventions will be used
throughout this paper. The complex conjugate of a number z ∈ C will be denoted
both by z∗ or z. Hilbert spaces are always understood over the field of complex
numbers with inner product being linear in the second variable. Representations
of a C∗-algebra A will be denoted as pairs (H, π) where H is the Hilbert space
on which A acts and π : A → B(H) is the representing C∗-homomorphism. A
cyclic representation with a distinguished cyclic vector Ω will be written as a triple
(H, π,Ω). The unitary groups of a Hilbert space H and a C∗-algebra A will be
denoted U(H) and U(A), respectively.

1.2. Folia. Let A be a C∗-algebra. We denote by S (A) ⊂ A∗ the space of states
on A, that is, the space of normalized positive linear functionals A → C. It is well
known that S (A) is nonempty and convex when A is nonzero. When A is unital,
S (A) is weakly∗ closed, hence weakly∗ compact by the Banach–Alaoglu theorem.
The norm on A∗ endows S (A) in a natural way with a metric d‖·‖ given by

d‖·‖(ψ, ω) = ‖ψ − ω‖

for ψ, ω ∈ S (A). We will refer to this metric as the canonical metric. The state
space S (A) also carries two natural uniform structures: the metric or norm defined
uniformity induced by the canonical metric and the weak∗ uniformity. A basis of
the latter is given by the entourages

Uε,A1,...,Ak =
{
(ψ, ω) ∈ S (A)2

∣∣ |(ψ − ω)(A1)| < ε, . . . , |(ψ − ω)(Ak)| < ε
}
,

where ε > 0 and A1, . . . , Ak ∈ A. The metric uniformity is finer than the weak∗

uniformity. We will denote S (A) endowed with the norm defined or the weak∗

uniformity by S (A)n and S (A)w∗ , respectively. Later we will give a more detailed
account of these uniform spaces.

Recall that by the GNS construction every state ω gives rise to a nontrivial cyclic
representation (Hω, πω,Ωω), called the GNS representation of ω. The Hilbert space
Hω is the completion of the quotient A/Nω by the left ideal

Nω = {A ∈ A | ω(A∗A) = 0}

with respect to the inner product

〈A+Nω, B +Nω〉 = ω(A∗B)

for all A,B ∈ A. Following Haag [Haa96], we call Nω the Gelfand ideal associated
to ω. The representation πω : A → B(Hω) is the ∗-homomorphism defined by
πω(A)(B +Nω) = AB +Nω. If A is unital and I denotes the identity, the cyclic
unit vector Ωω coincides by definition with I +Nω. In the non-unital case, Ωω is
the limit of the net (Eλ +Nω)λ∈Λ for any approximate identity (Eλ)λ∈Λ in A (all
such limits exist and coincide).

Given a non-degenerate representation (H, π), the π-normal states of A are those
of the form ω(A) = Tr(̺π(A)), where ̺ ∈ B(H) is a density matrix, that is, a
positive trace class operator of trace 1. We denote the π-normal states of A by
Sπ(A). In particular, the vector states of π are those states of the form ω(A) =
〈Ω, π(A)Ω〉, where Ω ∈ H is a unit vector; these form a subset of Sπ(A).
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Lemma 1.1. Let (H, π) be a non-degenerate representation of a C∗-algebra A. If
Ψ,Ω ∈ H are unit vectors representing the vector states ψ, ω ∈ Sπ(A), then

d‖·‖(ψ, ω) = ‖ψ − ω‖ ≤ 2‖Ψ− Ω‖.
Thus, the map SH → Sπ(A)n which assigns to a unit vector the corresponding
vector state is uniformly continuous.

Proof. This follows from the triangle inequality and the Cauchy-Schwarz inequality:

‖ψ − ω‖ = sup
‖A‖≤1

|〈Ψ, π(A)Ψ〉 − 〈Ω, π(A)Ω〉|

≤ sup
‖A‖≤1

|〈Ψ, π(A)(Ψ− Ω)〉|+ sup
‖A‖≤1

|〈Ψ− Ω, π(A)Ω〉|

≤ 2‖Ψ− Ω‖,
where, in the last line, we have used that ‖π‖ ≤ 1. �

As mentioned in the proof above, a representation π of a C∗-algebra always
satisfies ‖π‖ ≤ 1. Furthermore, π is an isometry if and only if it is faithful. When
this is not the case, the following lemma may be of service. The proof of this lemma
is explained as part of the proof of Lemma 4.4 in [RR69].

Lemma 1.2. Let A and B be C∗-algebras and let π : A → B be ∗-homomorphism.
Given A ∈ A and ε > 0, there exists B ∈ A such that π(A) = π(B) and

‖B‖ < ‖π(A)‖+ ε.

A strengthened version for unital C∗-algebras in which ‖B‖ ≤ ‖π(A)‖ may be
found in [KR97c, Cor. 10.1.8], but Lemma 1.2 in the form stated above suffices for
our purposes.

Proof. Since kerπ is a closed two-sided ideal in A, the quotient A/ kerπ is a C∗-
algebra, which satisfies the commutative diagram

A π(A)

A/ kerπ

π

q
π

where q is the quotient map and π : A/ kerπ → π(A) is a ∗-isomorphism, hence an
isometry. By definition of the norm on A/ kerπ, we then have

‖π(A)‖ = ‖π(q(A))‖ = ‖q(A)‖ = inf
C∈kerπ

‖A− C‖ = inf
B∈A

{‖B‖ : π(A) = π(B)},

and the result follows. �

The next result shows that this lemma entails that the space of normal states
with respect to a representation π can be identified with the space of normal states
of the induced von Neumann algebra even if π is not faithful.

Proposition 1.3 (cf. [RR69, Lem. 4.4]). Let (H, π) be a non-degenerate repre-
sentation and R = π(A)′′ ⊂ B(H) the induced von Neumann algebra. Denote by
S∗(R) the space of normal states on R. Then the pullback map π∗ : S∗(R)n →
Sπ(A)n, ω 7→ ω ◦ π is an isometric isomorphism with respect to the canonical
metrics, so in particular an isomorphism of the corresponding uniform spaces.



8 SPIEGEL, MORENO, QI, HERMELE, BEAUDRY, AND PFLAUM

Proof. By definition, π∗ is surjective. So it suffices to show that π∗ is an isometry.
Clearly, for all ω ∈ R∗

‖π∗ω‖ = sup
A∈A, ‖A‖≤1

|ω(π(A))| ≤ sup
B∈R, ‖B‖≤1

|ω(B)| = ‖ω‖,

hence π∗ is contraction. It remains to show that for all ψ, ω ∈ S∗(R)

d‖·‖(ψ, ω) = ‖ψ − ω‖ ≤ ‖π∗ψ − π∗ω‖ . (1.1)

To prove this recall that the state ψ is induced by a density matrix which means
that there exists a collection of vectors (xi)i∈I such that

∑
i∈I ‖xi‖

2
= 1 and

ψ(B) =
∑
i∈I 〈xi, Bxi〉 for all B ∈ R. Hereby, each of the sums is the limit of the

net of finite partial sums. Likewise, there exists for ω a family (yi)i∈I ⊂ H such

that
∑
i∈I ‖yi‖

2
= 1 and ω(B) =

∑
i∈I 〈yi, Byi〉 for all B ∈ R. Now let ε > 0 and

choose B ∈ R with ‖B‖ ≤ 1 such that

‖ψ − ω‖ ≤ |ψ(B)− ω(B)|+ ε . (1.2)

Next choose a finite subset J ⊂ I so that
∑
i∈I\J ‖xi‖

2
< ε and

∑
i∈I\J ‖yi‖

2
< ε.

By the Kaplansky density theorem there exists A′ ∈ A with ‖π(A′)‖ ≤ 1 such that
∑

j∈J
|〈xj , (B − π(A′))xj〉| < ε and

∑

j∈J
|〈yj , (B − π(A′))yj〉| < ε .

Hence

|ψ(B)− ψ(π(A′))| < 3ε and |ω(B)− ω(π(A′))| < 3ε . (1.3)

By Lemma 1.2, there exists A ∈ A such that π(A) = π(A′) and

‖A‖ < ‖π(A′)‖+ ε ≤ 1 + ε .

Together with the estimates (1.2) and (1.3) this finally entails

‖ψ − ω‖ ≤ |ψ(B)− ω(B)|+ ε < |ψ(π(A′))− ω(π(A′))|+ 7ε =

= |ψ(π(A))− ω(π(A))|+ 7ε < (1 + ε)‖π∗ψ − π∗ω‖+ 7ε .

By passing to the limit εց 0, the estimate (1.1) follows. �

The C∗-algebra A acts in a natural way on the dual A∗ by associating to a pair
(B,ω) ∈ A × A∗ the continuous linear functional B · ω : A → C, A 7→ ω(B∗AB).
Note that if ω is a state and B fulfills ω(B∗B) = 1, then B ·ω is again a state called
a quasi-local perturbation of ω. This motivates the notion of a folium, introduced
by Haag–Kadison–Kastler in [HKK70] as a tool for the classification of states in
local quantum physics; see also [Lan17, Sec. 8.6].

Definition 1.4. By a folium in the state space S (A) one understands a non-empty
subspace F ⊂ S (A) which is

(F1) norm closed,
(F2) convex, and
(F3) invariant under the action of A in the sense that if ω ∈ F and B ∈ A with

ω(B∗B) = 1, then the quasi-local perturbation B · ω lies again in F .

An important observation of Haag–Kadison–Kastler in [HKK70, §1], summarized
below, is that the π-normal states of a non-degenerate representation form a folium.
The proof is omitted in [HKK70], so we provide it; cf. also [Stø68, Lemma 5.6].
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Theorem 1.5. For every nonzero non-degenerate representation (H, π) of a C∗-
algebra A, the space of π-normal states Sπ(A) is the smallest folium containing
the vector states of π. Furthermore, any folium coincides with the space Sπ(A) for
some non-degenerate representation π of A.

Proof. We first show that for every nonzero non-degenerate representation π the
space Sπ(A) is a folium. Denote by R = π(A)′′ ⊂ B(H) the von Neumann algebra
induced by the representation π. According to [KR97d, 7.1.13], the space S∗(R)
of normal states on R is norm closed in R∗. In particular S∗(R) is then complete
in the metric uniformity. Since the pullback π∗ : S∗(R) → Sπ(A) is an isometric
isomorphism by Proposition 1.3, its image has to be complete as well. Hence Sπ(A)
is closed, proving (F1).

The set of density matrices on B(H) is convex, hence Sπ(A) is so, too, and
(F2) holds. Now let ω ∈ Sπ(A) and ̺ ∈ B(H) a density matrix such that
ω(A) = Tr(̺π(A)) for A ∈ A. Let B ∈ A such that ω(B∗B) = 1. Then the op-
erator π(B)̺π(B)∗ is self-adjoint, has trace 1 by the equality Tr

(
π(B)̺π(B)∗

)
=

ω(B∗B) = 1 and is positive since 〈v, π(B)̺π(B)∗v〉 = 〈π(B)∗v, ̺π(B)∗v〉 ≥ 0 for
all v ∈ H. Moreover,

B · ω(A) = ω(B∗AB) = Tr
(
(π(B)̺π(B)∗)π(A)

)
for A ∈ A ,

which shows that B · ω is a π-normal state and (F3) is fulfilled. Hence Sπ(A) is a
folium.

Now let F be a folium containing the vector states of the representation π.
Consider a positive trace class operator ̺ ∈ B(H) of trace 1, and let ω ∈ Sπ(A)
be the corresponding π-normal state. There exists an orthonormal set (Ωi)i∈I in
H such that ̺ =

∑
i∈I λiPi, where Pi is the projection onto CΩi and λi > 0 with∑

i∈I λi = 1. In particular, for any A ∈ A,

ω(A) = Tr(̺π(A)) =
∑

i∈I
λi 〈Ωi, π(A)Ωi〉 .

Given ε > 0, choose a finite subset J ⊂ I such that for any finite subset K ⊂ I
with J ∩ K = ∅ the estimate

∑
k∈K λk < ε holds true. If ωi is the vector state

corresponding to Ωi, then∥∥∥∥∥
∑

k∈K
λkωk

∥∥∥∥∥ ≤
∑

k∈K
λk‖ωk‖ < ε

since ‖ωk‖ = 1. Denoting by ℘f(I) the set of all finite subsets of I we see that the

net
(∑

j∈J λjωj
)
J∈℘f(I)

converges in norm to ω. Moreover, the net

(∑
j∈J λjωj∑
j∈J λj

)

J∈℘f(I)

(1.4)

converges to ω since the denominators converge to one. Since ωi ∈ F for all i and
each element of the net (1.4) is a convex combination of ωi, we conclude from (F2)
and (F1) that ω ∈ F . This proves that Sπ(A) ⊂ F , proving the claim that Sπ(A)
is the smallest folium containing the vector states of π.

Finally let F be a folium and let H =
⊕

ω∈F
Hω and π =

⊕
ω∈F

πω, where
(Hω, πω,Ωω) denotes the GNS representation of ω. Clearly, every ω ∈ F is the
π-normal vector state corresponding to Ωω ∈ Hω ⊂ H, so F ⊂ Sπ(A). It remains
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to be shown that Sπ(A) ⊂ F . To this end it suffices to prove that every vector
state is in F , since Sπ(A) is the minimal folium containing the vector states of π.

If ω ∈ F and B ∈ A with ω(B∗B) = 1, then the π-normal vector state corre-
sponding to π(B)Ωω is B · ω, which is in F by (F3). Given a unit vector Ψ ∈ Hω

and ε > 0, cyclicity of πω yields C ∈ A such that

‖Ψ− π(C)Ωω‖ < min(ε/4, 1). (1.5)

Then ‖π(C)Ωω‖2 = ω(C∗C) > 0, so we may define B = C/
√
ω(C∗C), for which

‖π(B)Ωω‖2 = ω(B∗B) = 1. Note that by (1.5) and the reverse triangle inequality

‖π(B)Ωω − π(C)Ωω‖ =
∣∣∣1−

√
ω(C∗C)

∣∣∣ < ε

4
. (1.6)

If ψ ∈ S (A) is the π-normal vector state corresponding to Ψ, then Lemma 1.1
entails

‖ψ −B · ω‖ ≤ 2‖Ψ− π(B)Ωω‖. (1.7)

Thus, (1.5), (1.6), and (1.7) together imply that ‖ψ −B · ω‖ < ε. Since F is norm
closed and B · ω ∈ F , one concludes that ψ ∈ F .

Next consider a unit vector of the form Ψ =
∑n
i=1 λiΨi, where λi ∈ C and

Ψi ∈ Hωi are unit vectors with distinct ωi ∈ F . If ψ is the π-normal vector state
corresponding to Ψ, then

ψ(A) =
n∑

i=1

|λi|2 〈Ψi, π(A)Ψi〉 .

Since ‖Ψ‖2 =
∑n
i=1 |λi|

2
= 1, we see that ψ is a convex combination of elements of

F , so ψ ∈ F by (F2). Since any unit vector in H is the limit of a net of such finite
linear combinations, F contains all vector states of π by Lemma 1.1 and (F1). This
proves that Sπ(A) ⊂ F . �

1.3. Pure states and superselection sectors. The extreme points of S (A) are
called pure states, the set of which we denote by P(A). It is well-known that P(A)
is nonempty when A is nonzero and that S (A) coincides with the weakly∗ closed
convex hull of P(A) when A is unital (both being consequences of the Krein–
Milman theorem). The GNS representation (Hω, πω) of a state ω is irreducible
if and only if ω is pure. In this case, the quotient A/Nω is already complete,
hence Hω = A/Nω; this follows from the Kadison transitivity theorem [Mur90,
Thm. 5.2.4].

Given a non-degenerate representation π, we denote the set of pure π-normal
states on A by Pπ(A) = P(A) ∩ Sπ(A).

Proposition 1.6. Let A be a C∗-algebra with a non-degenerate representation
(H, π).
(i) If ω ∈ Pπ(A), then ω is a vector state.
(ii) If π is irreducible and ω is a vector state, then ω ∈ Pπ(A).
(iii) If π is irreducible and Ψ,Ω ∈ H are unit vectors defining the same vector

state, then Ψ and Ω are linearly dependent.

Proof. (i) Suppose ω ∈ Pπ(A) and let ̺ ∈ B(H) be a density matrix such that
ω(A) = Tr(̺π(A)). There exists an orthonormal set {Ωi}i∈I in H such that ̺ =∑
i∈I λiPi, where Pi is the projection onto CΩi and λi > 0 with

∑
i∈I λi = 1. Fix
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j ∈ I and let ψ be the vector state corresponding to Ωj . Then for all positive
A ∈ A,

λjψ(A) = λj 〈Ωj , π(A)Ωj〉 ≤
∑

i∈I
λi 〈Ωi, π(A)Ωi〉 = ω(A).

Since ω is pure, there exists λ ∈ [0, 1] such that λjψ = λω. Since ‖ψ‖ = ‖ω‖ = 1,
we see that λj = λ, which implies that ω = ψ, a vector state.

(ii) This is given by [Mur90, Thm. 5.1.7].
(iii) If Ψ and Ω are linearly independent, then the Kadison transitivity theo-

rem yields B ∈ A such that π(B)Ψ = Ψ and π(B)Ω = 0. This contradicts the
assumption that 〈Ψ, π(A)Ψ〉 = 〈Ω, π(A)Ω〉 for all A ∈ A. �

Definition 1.7. Given a C∗-algebra A, call two pure states ψ, ω ∈ P(A) equivalent
if their GNS representations πψ and πω are unitarily equivalent. Let ∼ denote the
corresponding equivalence relation on P(A). By a superselection sector of A we
understand an equivalence class of pure states with respect to ∼.

Given ω ∈ P(A), we denote its superselection sector by Pω(A). Conveniently,
it follows from Proposition 1.6 that Pπω (A) = Pω(A). Indeed, if ψ ∈ Pπω(A),
then ψ is a vector state of πω, hence πψ is unitarily equivalent to πω by uniqueness
of the GNS representation up to unitary equivalence, so ψ ∈ Pω(A). Conversely, if
ψ ∈ Pω(A), then unitary equivalence of πψ and πω implies that ψ is a vector state
of πω, hence ψ ∈ Pπω (A).

Remark 1.8. Every nonzero irreducible representation is unitarily equivalent to
the GNS representation of some pure state, by uniqueness of the GNS representation

(up to unitary equivalence). Accordingly, the collection Â of unitary equivalence
classes of nonzero irreducible representations of A is a set (rather than a class),

called the (representation) spectrum of A. We provide a brief description of Â below
and refer the reader to Chapter 3 of Dixmier [Dix77] for a complete exposition.

Usually Â is endowed with the Jacobson or hull-kernel topology, which is the
unique topology having the hull-kernel operation

℘(Â) → ℘(Â), E 7→ E := hull(ker(E)) =
{
[π] ∈ Â :

⋂
[̺]∈E

ker ̺ ⊂ kerπ
}

as its closure operation, cf. [Dix77, Sec. 3.1]. Note that the hull-kernel operation sat-
isfies Kuratowski’s axioms for a closure operation and that, for A unital, the space

Â with the Jacobson topology is quasi-compact by [Dix77, 3.1.8. Prop.]. In general,
the representation spectrum is locally quasi-compact, see [Dix77, 3.3.8. Cor.].

Letting P(A)w∗ denote P(A) endowed with the weak∗ topology, the map κ :

P(A)w∗ → Â which associates to each pure state the unitary equivalence class of
its GNS representation is surjective, continuous and open by [Dix77, Thm. 3.4.11.].
Hence, the induced map on quotients

κ : P(A)w∗/∼ → Â, Pω(A) 7→ [πω]

is a homeomorphism.
Note that when considering P(A)n instead (i.e., P(A) endowed with the norm

topology), the quotient space P(A)n/∼ is a discrete topological space. This will
follow from Corollary 1.12 below, where it is shown that superselection sectors are
open in P(A)n.
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In the remainder of this section we will give various characterizations of super-
selection sectors and show that our definition coincides with the interpretation of
superselection sectors in physics as maximal regions in the pure state space where
any two states have coherent superpositions. Most of the mathematical results
below can be found in Roberts–Roepstorff [RR69], Glimm–Kadison [GK60], and
Pedersen [PEO18].

Before we start with the mathematical definition of coherent superpositions let
us note that given two states ω and ψ there always exists a non-degenerate repre-
sentation (H, π) such that both ω and ψ become vector states with respect to that
representation. For example, one can take (H, π) as the direct sum of the GNS
representations of ω and ψ.

Definition 1.9. Two distinct pure states ψ and ω of a C∗-algebra A are said to
fulfill the superposition principle or to be coherently superposable if there exists a
non-degenerate representation (H, π) in which ψ and ω are represented by the unit
vectors Ψ and Ω, respectively, and for all α, β ∈ C the vector state ϕ corresponding
to the unit vector

Φ =
αΨ+ βΩ

‖αΨ+ βΩ‖
is a pure state. If this is the case, one calls each of the states ϕ obtained in that
way a coherent superposition of ω and ψ.

The following proposition is a rephrasal and clarification of the “sufficient” impli-
cation of [Ara99, Thm. 6.1]. We restrict our attention here to pure states, although
[Ara99, Thm. 6.1] is stated for general states.

Proposition 1.10. Let A be a nonzero C∗-algebra and let ψ and ω be pure states
in different superselection sectors. If (H, π) is a non-degenerate representation
with unit vectors Ψ,Ω ∈ H representing ψ and ω, respectively, then 〈Ψ,Ω〉 = 0.
Furthermore, if ϕ is the vector state corresponding to Φ = αΨ+βΩ for any nonzero
α, β ∈ C with |α|2 + |β|2 = 1, then

ϕ = |α|2ψ + |β|2ω.
In particular, ϕ /∈ P(A) and ψ and ω are not coherently superposable.

Proof. Define HΨ = π(A)Ψ and note that HΨ is a closed invariant subspace. Let
PΨ : H → HΨ be the orthogonal projection and ιΨ : HΨ → H the inclusion. Lastly,
define πΨ : A → B(HΨ) by

πΨ(A) = PΨπ(A)ιΨ

for all A ∈ A. Since HΨ is an invariant subspace, we see that ιΨπΨ(A) = π(A)ιΨ
for all A ∈ A. The orthogonal complement of an invariant subspace is invariant,
so it further follows that πΨ(A)PΨ = PΨπ(A) for all A ∈ A. Note also that
PΨιΨ = idHΨ . Thus, for all A,B ∈ A,

πΨ(AB) = PΨπ(A)π(B)ιΨPΨιΨ = PΨπ(A)ιΨπΨ(B)PΨιΨ

= PΨπ(A)ιΨPΨπ(B)ιΨ = πΨ(A)πΨ(B).

Furthermore, since ιΨ is an isometry, for any x, y ∈ HΨ we have

〈πΨ(A∗)x, y〉 = 〈ιΨπΨ(A∗)x, ιΨy〉 = 〈π(A∗)ιΨx, ιΨy〉
= 〈ιΨx, π(A)ιΨy〉 = 〈ιΨx, ιΨπΨ(A)y〉 = 〈x, πΨ(A)y〉 .
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Therefore πΨ(A
∗) = πΨ(A)

∗, and (HΨ, πΨ) is a representation of A. Identical
arguments and the corresponding notation apply with Ψ replaced by Ω.

The non-degeneracy of π implies that Ψ ∈ HΨ, so Ψ is a cyclic vector for πΨ.
Furthermore,

ψ(A) = 〈Ψ, π(A)Ψ〉 = 〈ιΨΨ, π(A)ιΨΨ〉 = 〈ιΨΨ, ιΨπΨ(A)Ψ〉 = 〈Ψ, πΨ(A)Ψ〉 .
It follows that πΨ is unitarily equivalent to the GNS representation of ψ. Thus, πΨ
is not unitarily equivalent to πΩ. Since ψ and ω are pure, their GNS representations
are irreducible, and so are πΨ and πΩ.

Finally, observe that

PΩιΨπΨ(A) = PΩπ(A)ιΨ = πΩ(A)PΩιΨ for all A ∈ A .

Since πΨ and πΩ are not unitarily equivalent, Schur’s lemma implies that PΩιΨ =
0; see [Dix77, 2.2.2]. It follows that HΨ and HΩ are mutually orthogonal. In
particular, 〈Ψ,Ω〉 = 0 and

ϕ(A) = 〈αΨ+ βΩ, π(A)(αΨ+ βΩ)〉 = |α|2ψ(A) + |β|2ω(A)

as desired. Since ϕ is a nontrivial convex combination of pure states, ϕ /∈ P(A). �

The following lemma is a rephrasal of Proposition 3.13.4 in [PEO18]. It was
originally stated for unital C∗-algebras in [GK60].

Lemma 1.11. Let A be a C∗-algebra and let ψ, ω ∈ P(A). If ψ and ω are in
different superselection sectors, then ‖ψ − ω‖ = 2.

Proof. Let H = Hψ ⊕ Hω and π = πψ ⊕ πω be the direct sum of the two GNS
representations. Note that π is non-degenerate since πψ and πω are non-degenerate.
Let Pψ : H → Hψ and ιψ : Hψ → H be the usual projections and inclusions, and
define Pω and ιω similarly. Observe that

πψ(A)Pψ = Pψπ(A) and ιψπψ(A) = π(A)ιψ

for all A ∈ A, and similarly with ψ replaced by ω.
Define U ∈ B(H) by U(x, y) = (x,−y) for all (x, y) ∈ H. Our goal is to show

that U ∈ π(A)′′. Suppose T ∈ π(A)′. For i, j ∈ {ψ, ω}, we compute

πi(A)PiTιj = Piπ(A)Tιj = PiTπ(A)ιj = PiTιjπj(A).

For i = j, this implies that PiTιi ∈ πi(A)
′. Since πi is irreducible, we know

PiTιi = λiI for some λi ∈ C. For i 6= j, Schur’s lemma and the assumption that
πψ and πω are not unitarily equivalent imply, as in [Dix77, 2.2.2], that PiTιj = 0.
Thus, T (x, y) = (λψx, λωy) for all (x, y) ∈ H, so

UT (x, y) = (λψx,−λωy) = TU(x, y).

This implies that U ∈ π(A)′′, as desired. Note that clearly U ∈ π(A)′ as well.
Fix ε > 0. By the von Neumann bicommutant theorem, we know the closure of

π(A) in the strong operator topology on B(H) is equal to π(A)′′. Since U ∈ π(A)′′

and ‖U‖ = 1, the Kaplansky density theorem implies that there exists A ∈ A with
‖π(A)‖ ≤ 1 and

‖π(A)(Ψ,Ω)− U(Ψ,Ω)‖ < ε,
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where Ψ and Ω are the cyclic unit vectors corresponding to ψ and ω in the GNS
construction. By Lemma 1.2, there exists B ∈ A such that π(A) = π(B) and
‖B‖ < 1 + ε. Thus,

|(ψ − ω)(B)| = |〈Ψ, πψ(B)Ψ〉 − 〈Ω, πω(B)Ω〉|
= |〈U(Ψ,Ω), π(B)(Ψ,Ω)〉|
≥ |〈U(Ψ,Ω), U(Ψ,Ω)〉| − |〈U(Ψ,Ω), (π(A)− U)(Ψ,Ω)〉|
≥ 2−

√
2ε.

Thus,

‖ψ − ω‖ ≥
∣∣∣∣(ψ − ω)

(
B

1 + ε

)∣∣∣∣ ≥
2−

√
2ε

1 + ε
.

Since ε was arbitrary, this implies that ‖ψ − ω‖ ≥ 2. Since ‖ψ − ω‖ ≤ 2 by the
triangle inequality, the result is proven. �

Corollary 1.12. Let A be a C∗-algebra. Then the superselection sectors of A are
open in P(A)n, i.e., in P(A) endowed with the norm topology.

The following theorem is a rephrasal of Proposition 4.6 in [RR69]. However, we
give a new proof for the case when ψ and ω are in the same superselection sector.

Theorem 1.13. Let A be a C∗-algebra, let ψ, ω ∈ P(A), and let (H, π) be a
non-degenerate representation with unit vectors Ψ,Ω ∈ H representing ψ and ω,
respectively. If ψ and ω are in different superselection sectors, or if they are in the
same superselection sector and (H, π) is irreducible, then

|〈Ψ,Ω〉|2 = 1− 1

4
‖ψ − ω‖2.

Proof. If ψ and ω are in different superselection sectors, then ‖ψ − ω‖ = 2 by
Lemma 1.11, so the right hand side is zero, and 〈Ψ,Ω〉 = 0 by Proposition 1.10.

We now consider the case where ψ and ω are in the same superselection sector
and (H, π) is irreducible. If Ψ and Ω are linearly dependent, then ψ = ω and

|〈Ψ,Ω〉|2 = 1, so the identity holds. To prove the case where Ψ and Ω are linearly
independent, we will show inequality in both directions.

Let λ = 1 − |〈Ψ,Ω〉|2 (which is strictly positive since Ψ and Ω are linearly
independent unit vectors) and define

eΨ = λ−1/2(Ω− 〈Ψ,Ω〉Ψ) and eΩ = λ−1/2(Ψ− 〈Ω,Ψ〉Ω).
Then {Ψ, eΨ} and {Ω, eΩ} are both orthonormal systems for span{Ψ,Ω}. We may
construct a unitary U ∈ B(H) such that UΨ = eΩ and UeΨ = −Ω by extend-
ing U linearly on span{Ψ,Ω} and having it act as the identity on the orthogonal
complement. Of course, ‖U‖ = 1 since U is unitary. Since π is irreducible, we
know U ∈ π(A)′′ = B(H). Therefore, given ε > 0, the von Neumann bicommutant
theorem and the Kaplansky density theorem yields A ∈ A such that ‖π(A)‖ ≤ 1,

‖π(A)Ψ− UΨ‖ < ε and ‖π(A)Ω− UΩ‖ < ε.

By Lemma 1.2 we may assume ‖A‖ < 1 + ε. Note that

UΩ = U
(
λ1/2eΨ + 〈Ψ,Ω〉Ψ

)
= −λ1/2Ω+ 〈Ψ,Ω〉 eΩ.
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Then we can compute

|(ψ − ω)(A)| = |〈Ψ, π(A)Ψ〉 − 〈Ω, π(A)Ω〉|
≥ |〈Ψ, UΨ〉 − 〈Ω, UΩ〉| − |〈Ψ, π(A)Ψ− UΨ〉| − |〈Ω, π(A)Ω− UΩ〉|
≥ 2λ1/2 − 2ε.

Thus,

‖ψ − ω‖ ≥
∣∣∣∣(ψ − ω)

(
A

1 + ε

)∣∣∣∣ ≥
2λ1/2 − 2ε

1 + ε
.

Since ε > 0 was arbitrary, this implies that ‖ψ − ω‖ ≥ 2λ1/2, which rearranges to

|〈Ψ,Ω〉|2 ≥ 1− 1

4
‖ψ − ω‖2.

For the reverse inequality, let A ∈ A with ‖A‖ ≤ 1. Given α, β, γ ∈ C with
|α| = |β| = |γ| = 1, define A′ = αA, Ψ′ = βΨ, and Ω′ = γΩ, we note that Ψ′ and Ω′

define the same states as Ψ and Ω, respectively, and |(ψ − ω)(A)| = |(ψ − ω)(A′)|.
We choose α so that (ψ − ω)(A′) ≥ 0 and we choose β and/or γ such that 〈Ψ′,Ω′〉
is real. We compute

〈Ψ′ ± Ω′, π(A′)(Ψ′ ∓ Ω′)〉 = (ψ − ω)(A′)± [〈Ω′, π(A′)Ψ′〉 − 〈Ψ′, π(A′)Ω′〉].
For one of the sign choices, the term in square brackets will have nonnegative
real part, and therefore the magnitude of the left hand side will be greater than
|(ψ − ω)(A)|. For either sign choice, the Cauchy-Schwarz inequality gives

|〈Ψ′ ± Ω′, π(A′)(Ψ′ ∓ Ω′)〉| ≤ ‖Ψ′ +Ω′‖‖Ψ′ − Ω′‖

= 2

√
1− (Re 〈Ψ′,Ω′〉)2

= 2

√
1− |〈Ψ,Ω〉|2.

Thus, we have

|(ψ − ω)(A′)| = |(ψ − ω)(A)| ≤ 2

√
1− |〈Ψ,Ω〉|2.

Since A was arbitrary, we have ‖ψ − ω‖ ≤ 2

√
1− |〈Ψ,Ω〉|2, which rearranges to

the desired inequality. �

Theorem 1.14. Let A be a C∗-algebra and let ψ, ω ∈ P(A) be pure states. The
following are equivalent:

(i) ψ and ω are in the same superselection sector,
(ii) there exists a nonzero irreducible representation (H, π) such that ψ, ω ∈ Pπ(A),
(iii) there exists B ∈ A such that ψ(B∗B) = 1 and ω = B · ψ,
(iv) for any non-degenerate representation (H, π), we have ψ ∈ Pπ(A) if and only

if ω ∈ Pπ(A),
(v) ψ and ω are in the same path component of P(A)n,
(vi) ψ and ω are coherently superposable.

If A is unital, then the element B ∈ A in (iii) may be chosen to be unitary.

The equivalence (i) ⇔ (ii) ⇔ (iii) ⇔ (v) was stated by Roberts–Roepstorff in the
case where A is unital and the element B ∈ A in (iii) is unitary [RR69, Prop. 4.2
& Thm. 4.5]. The equivalence (i) ⇔ (vi) is implied by [Ara99, Thm. 6.1], which
gives a more general equivalence for states which are not necessarily pure. The



16 SPIEGEL, MORENO, QI, HERMELE, BEAUDRY, AND PFLAUM

equivalence of (iv) with the others is easily proved. We clarify that the result holds
for non-unital C∗-algebras as well.

Proof. Denote by (Hψ, πψ,Ωψ) and (Hω, πω,Ωω) the GNS representations of ψ and
ω, respectively. Now verify the following.

(i) ⇒ (ii). Let U : Hψ → Hω be a unitary intertwining the representations
(Hψ, πψ) and (Hω, πω). Then

〈UΩψ, πω(A)UΩψ〉 = 〈UΩψ, Uπψ(A)Ωψ〉 = 〈Ωψ, πψ(A)Ωψ〉 = ψ(A)

for all A ∈ A, which implies that ψ ∈ Pπω (A) and, of course, ω ∈ Pπω (A) as well.
(ii) ⇒ (iii). Let Ψ,Ω ∈ H be unit vectors representing ψ and ω. By the Kadison

transitivity theorem, there exists B ∈ A such that π(B)Ψ = Ω. Then

ψ(B∗B) = 〈Ψ, π(B∗B)Ψ〉 = 〈Ω,Ω〉 = 1

and

(B · ψ)(A) = ψ(B∗AB) = 〈Ω, π(A)Ω〉 = ω(A),

as desired. Note that if A is unital, then Kadison’s transitivity theorem allows B
to be chosen unitary.

(iii) ⇒ (i). In the GNS representation of ψ one has

ω(A) = 〈πψ(B)Ωψ, πψ(A)πψ(B)Ωψ〉 for all A ∈ A .

Since πψ(B)Ωψ is a cyclic unit vector, uniqueness of the GNS representation up to
unitary equivalence implies that ω and ψ are in the same superselection sector.

(iii)⇒ (iv). Given any non-degenerate representation (H, π), ψ ∈ Pπ(A) implies
ω ∈ Pπ(A) by (F3). Since (iii) ⇒ (i) and (i) is symmetric in ψ and ω, we also have
(iii) with ψ and ω switched, hence ω ∈ Pπ(A) implies ψ ∈ Pπ(A).

(iv) ⇒ (v). Let (Hψ, πψ,Ψ) be the GNS representation of ψ. By (iv), there
exists a unit vector Ω ∈ Hψ representing ω. Since the unit sphere of Hψ is path
connected, there exists a continuous path in the unit sphere from Ψ to Ω, hence
there exists a continuous path in P(A)n from ψ to ω by Lemma 1.1.

(v) ⇒ (i). By Corollary 1.12, the superselection sector containing ψ is open in
P(A) with respect to the norm topology. If (Hψ, πψ) is the GNS representation
of ψ, then (ii) ⇒ (i) and (i) ⇒ (iv) implies that Pπψ (A) is the superselection
sector containing ψ. But Pπψ (A) = Sπψ (A)∩P(A) is norm closed in P(A) since
Sπψ (A) is norm closed in S (A). Thus, the superselection sector containing ψ is
both an open and closed subset of P(A) in the norm topology, so it contains the
path component of P(A)n containing ψ.

(i)⇒ (vi). Assume that ψ and ω are in the same superselection sector. Let (H, π)
be an irreducible representation which is unitarily equivalent to πω and hence to
πψ as well. Then there exist unit vectors Ψ ∈ H and Ω ∈ H which induce the states
ψ and ω, respectively. Let α, β ∈ C∗ and put Φ = (αΨ + βΩ)̂. The vector state
ϕ corresponding to the unit vector Φ is pure by Proposition 1.6 (ii), hence ψ and
ω are coherently superposable.

(vi) ⇒ (i). This is contained in Proposition 1.10. �

Remark 1.15. The equivalence (i) ⇒ (vi) ties together the mathematical notion
of superselection sector defined in Definition 1.7 and the physical concept of super-
position. However, when A is the algebra of observables of a quantum mechanical
system or a quantum field theory, it may not be the case that all the superselection
sectors in the sense of Definition 1.7 above are physically relevant. In their ground



CONTINUITY OF KADISON TRANSITIVITY AND OF THE GNS CONSTRUCTION 17

breaking work [DHR71, DHR74], Doplicher–Haag–Roberts (DHR) introduced a
general theory of superselection sectors for algebraic quantum field theory. More
precisely, they defined superselection sectors for a local net of C∗-algebras over
Minkowski space fullfilling the axioms by Haag–Kastler [HK64, Haa92]. Adapted
to more general situations in algebraic quantum mechanics and algebraic quantum
field theory, their approach can be described as follows. Assume to be given a quasi-
local algebra A. This means that A coincides with the the colimit of a causal net
of algebras (AΛ)Λ∈I which is a particular kind of inductive system of C∗-algebras
indexed over a so-called causal index set I . Let us explain in more detail what
one understands by these notions. Assume to be given a topological space M . In
most applications M is either a lorentzian manifold which models the underlying
spacetime or a discrete lattice like Zd. A causal complement then is an operation
⊥ : O(M) → O(M) on the topology of M such that the following conditions hold
true, cf. [Wol90, Key96, BvBS]:

(i) O ⊂ O⊥⊥ for all open O ⊂M .
(ii) O ∩O⊥ = ∅ for all open O ⊂M .

(iii)
(
O1 ∪O2

)⊥
= O⊥

1 ∩O⊥
2 for all open O1, O2 ⊂M .

Sets O ∈ O(M) with the property that O = (O⊥)⊥ are called causally complete. In
addition to axioms (i) to (iii) it is assumed that there are enough causally complete
subsets which means that we require:

(iv) There exists a countable family I of causally complete non-empty open sub-
sets Λ ⊂M which is a basis of the topology, upward directed by inclusion and
such that Λ⊥ 6= ∅ for all Λ ∈ I .

The last property in particular guarantees that M =
⋃

Λ∈I
Λ. A family I which

satisfies the condition in axiom (iv) is called a causal index set. By a causal net
of algebras one now understands a strict inductive system of C∗-algebras (AΛ)Λ∈I

where the index set I is a causal index set and where the commutation relation
[AΛ,AΩ] = 0 holds for all causally disjoint Λ,Ω ∈ I that is for all Λ,Ω in I such
Ω ⊂ Λ⊥ or, equivalently, Λ ⊂ Ω⊥. Note that the strictness condition implies that
AΛ and AΩ are subalgebras of AΓ where Γ ∈ I has been chosen so that Ω∪Λ ⊂ Γ.
Therefore, the commutation relation for AΛ and AΩ makes sense, indeed.

Since a causal index set comprises a basis for the topology, one can define for
every open O ⊂ M the C∗-algebra AO as the C∗-algebra colimit of the inductive
system (AΛ)Λ∈I ,Λ⊂O. The quasi-local algebra A coincides by definition with the
C∗-algebra AM .

In physically interesting examples, I might be the set of finite subsets of a
countable discrete lattice such as Zd with the set-theoretic complement as causal
complement or the set of open double cones in Minkowski space together with the
relativistic causal complement as in the work of DHR. Usually, the system comes
equipped with a symmetry group G which acts simultaneously on the space M and
on the inductive system (AΛ)Λ∈I in a compatible fashion and so that the causal
complement is preserved. This means that (gO)⊥ = gO⊥ for open O ⊂ M and
gAΛ ⊂ AgΛ for Λ ∈ I . In the original DHR setup the symmetry group is the
Poincaré group with its natural action on Minkowski space. In addition to the
causal index set I one sometimes assumes to be given a second family L ⊂ O(M)
of localizable regions. The elements of L and their causal complements are assumed
to be non-empty, and the union of all Λ ∈ L is assumed to coincide with the
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space M . The set of localizable regions may coincide with the causal index set
I as for example in the original work by DHR. The final ingredient in the DHR
analysis is a distinguished reference state ω on A. That state is assumed to be
pure and invariant under the action of the symmetry group if there is one. Usually,
the reference state is a vacuum state or a ground state of some Hamiltonian of
the system. The physically allowable sectors are now defined as those equivalence
classes of pure states ̺ on A which are invariant under the G-action and satisfy the
following condition:

(DHR) There exists a Λ ∈ L such that over the causal complement Λ⊥ the re-
stricted GNS representations πω

∣∣
A

Λ⊥
and π̺

∣∣
A

Λ⊥
are unitarily equivalent.

In the situation where the quasi-local algebra is defined by a net of algebras over
Minkowski space fulfilling the Haag–Kastler axioms and the localizable regions are
the double cones in Minkowski space, the superselection sectors which satisfy the
DHR condition are called the DHR sectors. In the C∗-algebraic formulation of quan-
tum spin systems the described approach to superselection sectors has been advo-
cated in the work by Naaijkens, Cha, and Nachtergaele, see [Naa11, Naa15, CNN20].
In a quantum spin system over a countably infinite lattice, the localizable regions
are infinite cones which in general are not finite subsets of the lattice anymore.
This means that in this case the space of localizable regions differs from the causal
index set defining the quasi-local algebra. A similar phenomenon appears also in
the approach by Buchholz–Fredenhagen [BF82] to superselection sectors describ-
ing relativistic massive particles. There, the localizable regions are given by infinite
cones as well and the elements of the causal index sets are relatively compact double
cones in Minkowski space.

The last result in this subsection is of a more categorical nature about the nat-
urality of the GNS construction and the functoriality of the sector space.

Proposition 1.16. Let α : B → C be a ∗-isomorphism between C∗-algebras B and
C. Then the following holds true.

(i) The GNS construction is natural in the sense that for every pure state ω
on B with corresponding GNS representation (Hω, πω,Ωω) and Gelfand ideal
Nω = {B ∈ B : ω(B∗B) = 0} the state ψ := α∗ω is a pure state on C

with Gelfand ideal given by Nψ = α(Nω). Moreover, if (Kψ, ρψ,Ωψ) is a
cyclic representation of C so that Ωψ represents the state ψ, then there is a
commutative diagram

B C

Hω Kψ

α

ξω ξψ

Uα

where ξω : B → Hω and ξψ : C → Kψ are the maps B 7→ πω(B)Ωω and
C 7→ ̺ψ(C)Ωψ, respectively. The bottom arrow Uα : Hω → Kψ is unitary
and uniquely determined by the equality Uα(Ωω) = Ωψ. Finally, the maps
ξω and ξψ are both surjective, and their kernels coincide with Nω and Nψ,
respectively.

(ii) There is a homeomorphism α : Sec(B) → Sec(C) between spaces of superse-
lection sectors endowed with the quotient weak∗ topologies which is uniquely
determined by the requirement that for every pure state ω on B its sector Sω
is mapped under α to the sector Sψ of C containing ψ = α∗(ω).
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Proof. First we show (i). Since α is a ∗-isomorphism, it is clear that the state
ψ = α∗ω is pure whenever ω is and that its Gelfand ideal Nψ coincides with
α(Nω). Now observe that the triple (Kψ, ρψ ◦α,Ωψ) is a cyclic representation of B
such that for all B ∈ B

〈Ωψ, ρψ ◦ α(B)Ωψ〉 = ψ(α(B)) = ω(B) .

By uniqueness of GNS-representations there exists a unique unitary operator Uα :
Hω → Kψ making the above diagram commute and such that Uα(Ωω) = Ωψ.

As already observed before, the Hilbert space Hω of the GNS representation of
ω coincides with A/Nω, hence the map ξω : A → Hω, A 7→ πω(A)Ωω = A+Nω is
surjective and has kernel Nω. By unitarity of Uα, the map ξψ has to be surjective
as well and its kernel is given by α(Nω) = Nψ.

To verify (ii), observe first that the ∗-isomorphism α induces a homeomorphism
α∗ : P(B) → P(C) between pure state spaces endowed both with either the
norm or the weak∗ topologies. In particular α∗ therefore maps path components of
P(B)n to those of P(C)n and vice versa. The claim now follows. �

1.4. Connectedness properties.

Proposition 1.17. Given a non-zero C∗-algebra A, the space P(A)n of pure states
endowed with the norm topology is locally path connected. The superselection sectors
are the path components of P(A)n and coincide with its connected components.

Proof. We show every open ball Br(ω) ⊂ P(A)n with r ≤ 2 is path connected.
If ψ ∈ Br(ω), then Lemma 1.11 implies ψ and ω are in the same superselection
sector, so by the equivalence of (i) and (ii) in Theorem 1.14, there exists a nonzero
irreducible representation of (H, π) such that ψ, ω ∈ Pπ(A). Let Ψ,Ω ∈ SH
represent ψ and ω. There exists a path γ : [0, 1] → SH such that γ(0) = Ψ and
γ(1) = Ω, and we can compose this with the continuous map from Lemma 1.1 to
get a continuous path in P(A)n between ψ and ω. Thus, Br(ω) is path-connected,
and this implies that P(A)n is locally path-connected.

The equivalence of (i) and (v) in Theorem 1.14 implies that the superselection
sectors are just the path components of P(A)n. The connected components coin-
cide with the path components since this is always true in a locally path-connected
space. �

For infinite-dimensional C∗-algebras of interest in the study of quantum lattice
spin systems, P(A)n has uncountably many components (we give an example in
Section 5). In contrast, there is often only one component of P(A)w∗ , i.e. the pure
state space with the weak∗ topology. This can be seen as a consequence of the
theorem below. Following [Kad65] (in the version of [Aar70]), we call a set F of
states full if for all A ∈ A the relation A ≥ 0 is equivalent to ω(A) ≥ 0 for all
ω ∈ F . The theorem below gives a crucial characterization of when a set of states
is full.

Theorem 1.18 ([Kad65, Thm. 2.2] & [Aar70, Thm. 1 & 2]). For a set F of states
on a unital C∗-algebra A, the following are equivalent:

(i) F is full,
(ii) the weak∗ closure of the convex hull of F contains S (A),
(iii) the weak∗ closure of F contains P(A),
(iv) ‖A‖ = sup

̺∈F

̺(A) for every positive element A ∈ A.
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If A is non-unital and nonzero, then (ii) ⇔ (iii) ⇔ (iv) ⇒ (i).

A nice proof of (i) ⇒ (ii) and (i) ⇒ (iii) can be found in [Mur90, Thm. 5.1.14].
We caution that [BR87, Prop. 3.2.10] falsely states (i) ⇒ (ii) without requiring A

to be unital; a counterexample is provided in [Aar70].

Corollary 1.19. If A is a nonzero C∗-algebra with a faithful irreducible represen-
tation, then P(A)w∗ is connected.

Proof. Let (H, π) be a faithful irreducible representation. Then for every A ∈ A+,

‖A‖ = ‖π(A)‖ = sup
Ψ∈H

〈Ψ, π(A)Ψ〉 = sup
ψ∈Pπ(A)

ψ(A),

so Pπ(A) is weak
∗ dense in P(A) by Theorem 1.18. Since Pπ(A) is connected in

the norm topology, it is connected in the weak∗ topology, and density of Pπ(A)
now implies that P(A) is connected. �

Following [Eil99, Defs. 1.8 & 5.7], we call a C∗-algebra A connected, respectively
locally connected, whenever the corresponding pure state space P(A)w∗ has that
property. Using this terminology, Cor. 1.19 then says that a C∗-algebra with a
faithful irreducible representation is connected. So in particular every simple C∗-
algebra is connected. In fact, every simple C∗-algebra is locally connected, as
implied by Theorem 5.6 in [Eil99].

Finally, in this section we will provide a few criteria which entail that the pure
state space is path-connected or locally path-connected in the weak∗ topology. The
essential tool is the following.

Theorem 1.20 ([Eil99, Prop. 5.9]). If A is separable, connected, and locally con-
nected, then P(A)w∗ is path-connected and locally path-connected.

This theorem is a trivial synthesis of the facts that P(A)w∗ is a Polish space
when A is separable [PEO18, Prop. 4.3.2], and that a locally connected complete
metric space is locally path-connected. It is unfortunately difficult to find a correct
proof of the latter fact in the literature. One may find a roadmap of common
errors along with corrections in [Bal84], where several references to both correct
and incorrect proofs are provided. Nonetheless, Theorem 1.20 applies in many
cases of interest in physics.

Theorem 1.21. Let A be a C∗-algebra.

(i) If A is simple and separable, then A is path-connected and locally path-connected.

(ii) If A =
⊕N

n=1 An, N ∈ N ∪ {∞} is the direct sum of separable, simple C∗-
algebras An, then A is locally path-connected.

(iii) If A is the colimit of an injective direct system of countably many separable,
simple C∗-algebras, then A is path-connected and locally path-connected.

By the direct sum
⊕∞

n=1 An, we mean the set of sequences (An)n∈N ∈∏∞
n=1 An

such that ‖An‖ → 0, equipped with the max norm and componentwise algebraic
operations.

Proof. If A is simple and separable, then P(A)w∗ is connected, locally connected,
and completely metrizable, hence path-connected and locally path-connected by
the preceding remarks. The type of C∗-algebra described in (iii) is itself simple and
separable, and therefore path-connected and locally path-connected by (i).
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It is stated without proof in [Eil99] that the pure state space of
⊕∞

n=1 An is
homeomorphic to the disjoint union

⊔∞
n=1 P(An), from which it follows that (ii)

holds since each P(An) is locally path-connected. We give a proof of this fact. For
each n ∈ N let πn : A → An be the canonical projection and let ιn : An → A be the
canonical inclusion ιn(A) = (Bm)m∈N where Bm = 0 if m 6= n and Bn = A. Given
ω ∈ P(An), the fact that πn is a surjective ∗-homomorphism implies ω◦πn ∈ P(A).
Thus, we have a map

⊔∞
n=1 P(An) → P(A). If ψ ∈ P(Am) and ω ∈ P(An) such

that ψ ◦ πm = ω ◦ πn, then m = n must hold, hence surjectivity of the projections
implies ψ = ω, so this map is injective. For surjectivity, suppose ω ∈ P(A). It
cannot happen that ω ◦ ιn = 0 for all n ∈ N because the span of

⋃
n∈N

ιn(An) is
dense in A, therefore there exists n ∈ N such that ω ◦ ιn 6= 0. By definition of the
algebraic operations on A, we see that (ιn ◦ πn)(A) ≤ A for all A ∈ A+. Therefore
ω ◦ ιn ◦ πn is a positive linear functional on A dominated by ω. Since ω is pure,
there exists t ∈ [0, 1] such that ω ◦ ιn ◦ πn = tω. Composing with ιn on the right
and using the fact that ω ◦ ιn 6= 0 implies t = 1. Purity of ω ◦ ιn follows easily from
purity of ω.

We have established a bijective correspondence
⊔∞
n=1 P(An)w∗ → P(A)w∗ .

Continuity of this map follows from the universal property of the disjoint union
and the fact that each map fn : P(An)w∗ → P(A)w∗ , fn(ω) = ω ◦ πn is weak∗

continuous. We show that each fn is open, from which it follows from the defi-
nition of the disjoint union topology that the map

⊔∞
n=1 P(An)w∗ → P(A)w∗ is

open, and therefore a homeomorphism. Given ω ∈ P(An), choose A ∈ An such
that |ω(A)| > 1/2. Then U = {ψ ∈ P(A) : |ψ(ιn(A))− ω(A)| < 1/2} is a neigh-
borhood of ω ◦ πn contained in fn(P(An)) since ψ ∈ U implies ψ ◦ ιn 6= 0. Thus,
fn(P(An)) is open. For any basis neighborhood Uε,ω,A1,...,Ak ⊂ P(An)w∗ around
ω ∈ P(An)w∗ , we have

fn(Uε,ω,A1,...,Ak) = fn(P(An)) ∩ Uε,ω◦πn,ιn(A1),...,ιn(Ak).

This exhibits fn(Uε,ω,A1,...,Ak) as an open set in P(A)w∗ , so fn is open. �

Given that there may be unphysical superselection sectors for a particular phys-
ical system, it is reasonable to ask whether P(A)w∗ remains path-connected after
some superselection sectors are removed. For unital, separable, simple C∗-algebras,
the answer is yes. In fact, one may find a path between arbitrary pure states
ψ, ω ∈ P(A) that remains in Pψ(A) until the path reaches ω at the endpoint.
This is a trivial consequence of Theorem 1.14 and the following remarkable theo-
rem of Kishimoto, Ozawa, and Sakai.

Theorem 1.22 ([KOS03, Thm. 1.1]). Let A be a separable C∗-algebra. If ψ, ω ∈
P(A) and kerπψ = kerπω, then there exists an automorphism α ∈ Aut(A) and
a continuous family of unitaries U : [0,∞) → U(A), t 7→ Ut such that U0 = I,
ψ ◦ α = ω, and

α(A) = lim
t→∞

U∗
t AUt

for all A ∈ A.

2. Geometry of the pure state space

In §2.2 below, we will prove that the pure state space P(A) has the structure of
a Kähler manifold. However, we start by giving some background on the topology
and geometry of infinite dimensional projective Hilbert spaces.
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2.1. Background on projective Hilbert spaces. Quantum mechanical states
are traditionally described as rays in a Hilbert spaceH or in other words as elements
of the projective Hilbert space

PH = {CΨ : Ψ ∈ H \ {0}}
consisting of one-dimensional subspaces. The topology and differential geometry of
projective Hilbert space will play an important role in the fiberwise GNS construc-
tion of Section 4.2. We review some fundamental concepts and constructions here.
See [CLM83, CL84, ACLM84, AS99, Fre12, CJS20] for related results.

We endow PH with the quotient topology with respect to the canonical projection
p : H \ {0} → PH, p(Ψ) = CΨ; this is the same as the quotient topology obtained
from the restricted projection p : SH → PH, where SH denotes the unit sphere of
H. Given two rays CΨ,CΩ ∈ PH, we define the ray product by

|〈CΨ,CΩ〉| = |〈Ψ,Ω〉|
‖Ψ‖‖Ω‖ ,

which is clearly independent of the representatives Ψ,Ω ∈ H \ {0}. The square of
the ray product is called the transition probability between CΨ and CΩ. We now
define three metrics on PH and relate them to each other and to the ray product.
The first one is the chordial distance or chordial metric which for two rays CΨ,CΩ
with representing vectors Ψ,Ω of norm 1 is given by

dchd(CΨ,CΩ) = inf
λ∈U(1)

‖Ψ− λΩ‖ .

The second metric is the Fubini–Study distance. It is defined by

dFS(CΨ,CΩ) = arccos |〈CΨ,CΩ〉| .
Finally, we define the gap metric

dgap(CΨ,CΩ) = ‖P (CΨ)− P (CΩ)‖
where P (CΨ) ∈ B(H) is the orthogonal projection onto CΨ.

Proposition 2.1. Let H be a nonzero complex Hilbert space. Then the following
holds true for the metric structures on PH.

(i) The chordial metric dchd is complete and induces the quotient topology on PH
with respect to the canonical projection p : SH → PH. Moreover, the chordial
metric satisfies the formula

dchd(CΨ,CΩ)
2 = 2

(
1− |〈CΨ,CΩ〉|

)
for all Ψ,Ω ∈ H \ {0} . (2.1)

(ii) The Fubini–Study distance is equivalent to the chordial metric. More precisely,

dchd(k,l) ≤ dFS(k,l) ≤
√
2π

4
dchd(k,l) for all k,l ∈ PH . (2.2)

(iii) The map P : PH → B(H) which associates to every ray l the orthogonal
projection onto it is a bi-Lipschitz embedding when PH is endowed with the
chordial metric and the image is endowed with the metric induced by the op-
erator norm on B(H). In other words, the chordial metric and the gap metric
dgap on PH are equivalent. More precisely, the following estimate and equality
holds for all k,l ∈ PH:

1√
2
dchd(k,l) ≤ dgap(k,l) =

√
1− |〈k,l〉|2 ≤ dchd(k,l) . (2.3)
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Proof. (i) By definition, dchd is non-negative and symmetric. To show positive
definiteness assume that dchd(CΨ,CΩ) = 0 with Ψ,Ω ∈ SH. By compactness of
U(1), there exists λ ∈ U(1) such that ‖Ψ − λΩ‖ = 0. Hence CΨ = CΩ. To verify
the triangle inequality let k,l,j ∈ PH and choose a representative Φ ∈ j ∩ SH.
Then

dchd(k,l) = inf {‖Ψ− Ω‖ : Ψ ∈ k ∩ SH, Ω ∈ l ∩ SH}
≤ inf {‖Ψ− Φ‖ : Ψ ∈ k ∩ SH}+ inf {‖Φ− Ω‖ : Ω ∈ l ∩ SH}
= dchd(k,j) + dchd(j,l) .

Hence dchd is a metric. Next we prove formula (2.1). Given Ψ,Ω ∈ SH, observe
that for all λ ∈ U(1) the estimate

‖Ψ− λΩ‖2 = 2 (1− Re (λ〈Ψ,Ω〉)) ≥ 2 (1− |〈Ψ,Ω〉|)
holds true. Putting

λ0 =

{ 〈Ω,Ψ〉
|〈Ψ,Ω〉| for 〈Ψ,Ω〉 6= 0 ,

1 for 〈Ψ,Ω〉 = 0 ,

then minimizes the functional ‖Ψ− λΩ‖, hence
dchd(CΨ,CΩ)

2 = ‖Ψ− λ0Ω‖2 = 2 (1− |〈Ψ,Ω〉|) = 2
(
1− |〈CΨ,CΩ〉|

)
.

Given Ψ ∈ SH, the function dchd(CΨ,−) : PH →
[
0,
√
2
]
is continuous because

by (2.1) composition with p : SH → PH is continuous. Hence the metric topology
is coarser than the quotient topology. Conversely, it follows from the definition of
dchd that

Bε,chd(CΨ) = p(Bε(Ψ) ∩ SH)

for any Ψ ∈ SH and ε > 0, where Bε,chd(CΨ) is the ball of radius ε centered on
CΨ with respect to the chordial metric and similarly Bε(Ψ) is the ball of radius ε
centered on Ψ. This proves that the quotient topology is coarser than the metric
topology, and also that p is an open map.

To verify completeness observe first that for a given element Ψ ∈ SH and ray
l ∈ PH with |〈CΨ,l〉| 6= 0 there exists a unique representative ΩΨ,l ∈ SH∩ l such
that 〈Ψ,ΩΨ,l〉 = |〈CΨ,l〉|. Now assume that (ln)n∈N is a Cauchy sequence in PH.
Then there exists a strictly increasing sequence of natural numbers (nk)k∈N such
that

dchd(ln,lm) <
1

2k+1
for all n,m ≥ nk .

Pick a representative Ω0 ∈ ln0
∩SH and define the sequence (Ωk)k∈N of unit vectors

recursively by

Ωk+1 = ΩΩk,lnk+1
.

Then, for all k ∈ N,

‖Ωk+1 − Ωk‖ =
√
2(1− Re〈Ωk+1,Ωk〉) =

√
2(1− |〈lnk+1

,lnk〉|) =

= dchd(lnk+1
,lnk) <

1

2k+1
.

So (Ωk)k∈N is a Cauchy sequence in SH, hence convergent to a vector Ω ∈ SH. Let
l = CΩ. Since dchd(lnk ,l) ≤ ‖Ωk −Ω‖, the subsequence (lnk)k∈N converges to l,
hence (ln)n∈N does so too. Therefore (PH, dchd) is a complete metric space.
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(ii) Consider the function

f : [0, 1] → R, f(x) =
arccosx√
2(1− x)

if x ∈ [0, 1) and f(1) = 1 .

This function is continuous on [0, 1] and differentiable on (0, 1), with

f ′(x) =
1√
2
(1− x)−3/2

(
arccosx

2
−
√

1− x

1 + x

)
.

Given x ∈ (0, 1), put θ = arccosx. Using trigonometric power reducing identities
yields

f ′(x) =
1√
2
(1− x)−3/2

(
θ

2
− tan

(
θ

2

))
< 0 .

Therefore f is monotonically decreasing, so 1 = f(1) ≤ f(x) ≤ f(0) =
√
2π
4 for all

x ∈ [0, 1]. Since

f(|〈CΨ,CΩ〉|) = dFS(CΨ,CΩ)

dchd(CΨ,CΩ)

provided |〈CΨ,CΩ〉| < 1, this proves (2.2).
(iii) The operator norm distance of P (k) and P (l) is given by

‖P (k)− P (l)‖ = sup
Φ∈SH

∥∥(P (k)− P (l)
)
Φ
∥∥ . (2.4)

Pick normalized representatives Ψ ∈ k and Ω ∈ l. After possibly multiplying Ω
by a complex number of modulus 1 one can assume that 〈Ψ,Ω〉 = |〈k,l〉| ≥ 0. If Ψ
and Ω are linearly dependent then k and l coincide and (2.3) is trivial. So assume
that Ψ and Ω are linearly independent. First we want to show that

∥∥(P (k)− P (l)
)
Φ
∥∥2 ≤ 1− 〈Ψ,Ω〉2 for all Φ ∈ SH . (2.5)

To this end expand Φ = Φ‖ +Φ⊥, where Φ‖ lies in the plane spanned by Ψ and Ω
and Φ⊥ is perpendicular to that plane. Then
(
P (k)−P (l)

)
Φ = 〈Ψ,Φ〉Ψ−〈Ω,Φ〉Ω = 〈Ψ,Φ‖〉Ψ−〈Ω,Φ‖〉Ω =

(
P (k)−P (l)

)
Φ‖ .

Hence it suffices to verify (2.5) for Φ ∈ SH∩ span{Ψ,Ω}. Observe that there exist
unique elements θ ∈ [0, π2 ] and µ ∈ S1 such that 〈Ψ,Φ〉 = µ cos θ. One can then

find a normalized vector Ω⊥ ∈ span{Ψ,Ω} perpendicular to Ψ such that

µΦ = cos θΨ+ sin θΩ⊥ .

Note that

Ω = 〈Ψ,Ω〉Ψ+
〈
Ω⊥,Ω

〉
Ω⊥ and

∣∣〈Ω⊥,Ω
〉∣∣2 = 1− 〈Ψ,Ω〉2 .

Now compute
∥∥(P (k)− P (l)

)
Φ
∥∥2 =

∥∥(P (k)− P (l)
)
µΦ
∥∥2 = |〈Ψ, µΦ〉Ψ− 〈Ω, µΦ〉Ω|2 =

= |〈Ψ, µΦ〉|2 − 2 〈Ψ,Ω〉 Re (〈Ψ, µΦ〉 〈µΦ,Ω〉) + |〈Ω, µΦ〉|2 =

= cos2θ − 2 cos θ 〈Ψ,Ω〉
(
cos θ 〈Ψ,Ω〉+ sin θ Re

〈
Ω⊥,Ω

〉)

+ cos2θ 〈Ψ,Ω〉2 + 2 cos θ 〈Ψ,Ω〉 sin θ Re
〈
Ω⊥,Ω

〉
+ sin2θ

∣∣〈Ω⊥,Ω
〉∣∣2 =

=1− 〈Ψ,Ω〉2 .



CONTINUITY OF KADISON TRANSITIVITY AND OF THE GNS CONSTRUCTION 25

This proves (2.5), but also implies by (2.4) that

‖P (k)− P (l)‖2 = 1− 〈Ψ,Ω〉2 = 1− |〈k,l〉|2 .

The claim (2.3) now follows by (2.1) and the inequality

1− x ≤ 1− x2 ≤ 2(1− x) for all x ∈ [0, 1] . �

Corollary 2.2. Let A be a nonzero C∗-algebra and (H, π) be a nonzero irreducible
representation. Given Ψ ∈ SH denote by ψ the vector state represented by Ψ.
Then the map r : PH → Pπ(A)n, CΨ 7→ ψ is a bi-Lipschitz bijection, hence an
isomorphism of uniform spaces, where PH and Pπ(A) are endowed with the gap
metric and the canonical metric, respectively.

For later purposes, we call r : PH → Pπ(A)n the uniform isomorphism associated
to the irreducible representation (H, π).

Proof. Note that the map CΨ 7→ ψ is well-defined, since multiplying Ψ ∈ SH by a
unimodular complex number does not change the corresponding vector state. By
Proposition 1.6, the map is a bijection. By Theorem 1.13 and Proposition 2.1, we
have

dgap(CΨ,CΩ)
2 = 1− |〈CΨ,CΩ〉|2 =

1

4
‖ψ − ω‖2, (2.6)

where ω is the vector state corresponding to Ω ∈ SH. This implies that the map r
is bi-Lipschitz. �

Corollary 2.3. Let A be a nonzero C∗-algebra. The union of an arbitrary collection
of superselection sectors of A is norm-closed in A∗.

Proof. By Theorem 1.14, each superselection sector coincides with Pπ(A) for some
nonzero irreducible representation (H, π). It then follows from Proposition 2.1 and
Corollary 2.2 that each superselection sector is complete, hence closed, in A∗ in the
norm topology. By Lemma 1.11, each Cauchy sequence in P(A) is eventually in a
single superselection sector. It follows that the union of an arbitrary collection of
superselection sectors is complete, hence norm-closed. �

Corollary 2.3 is equivalent to [Kad82, Cor. 4.8]. Kadison takes a different ap-
proach to the proof, but remarks that it may be proven with Theorem 1.13 as we
have done in the proof of Corollary 2.2.

We now begin to consider the differential geometry of projective Hilbert space.
We refer the reader to Appendix A.1 or [Lan02a] for details on infinite dimensional
manifolds used henceforth.

Lemma 2.4. Let H be a Hilbert space of dimension ≥ 2 and fix Ψ ∈ SH. Let
CΨ = (CΨ)⊥ and let B1(CΨ) be the open unit ball around CΨ with respect to the
gap metric. The maps σΨ : SH \ (SH ∩ CΨ) → CΨ × U(1) and τΨ : B1(CΨ) → CΨ

given by

σΨ(Ω) =

(
Ω

〈Ψ,Ω〉 −Ψ,
〈Ψ,Ω〉
|〈Ψ,Ω〉|

)
and τΨ(CΩ) =

Ω

〈Ψ,Ω〉 −Ψ

for Ω ∈ SH \ (SH ∩ CΨ) are well-defined homeomorphisms.
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Proof. If Ω ∈ SH \ (SH ∩ CΨ), then 〈Ψ,Ω〉 6= 0 and
〈
Ψ,

Ω

〈Ψ,Ω〉 −Ψ

〉
= 1− 〈Ψ,Ψ〉 = 0 .

So Ω
〈Ψ,Ω〉 − Ψ ∈ CΨ and σΨ is well-defined. Continuity of σΨ is manifest. We now

define a continuous map σ−1
Ψ : CΨ × U(1) → SH \ (SH ∩ CΨ) by

σ−1
Ψ (Φ, λ) =

λ(Φ + Ψ)√
1 + ‖Φ‖2

.

It is straightforward to check that σ−1
Ψ is indeed a two-sided inverse for σΨ.

Next we consider τΨ. We have already shown that Ω
〈Ψ,Ω〉 − Ψ is perpendicular

to Ψ, so τΨ is well defined. Since composition of τΨ with the canonical projection
p : SH \ (SH ∩ CΨ) → B1(CΨ) is continuous, τΨ is continuous as well. Now put

τ−1
Ψ (Φ) = C(Φ + Ψ) for Φ ∈ CΨ . (2.7)

It is clear that Ψ + Φ 6= 0 for such Φ, so C(Ψ + Φ) ∈ PH and the ray product

|〈τ−1
Ψ (Φ),CΨ〉| = ‖Ψ+Φ‖−1

is positive. Hence τ−1
Ψ (Φ) ∈ B1(CΨ). Continuity of

the map τ−1
Ψ : CΨ → B1(CΨ) is immediate, likewise that it is a two-sided inverse

for τΨ. �

Theorem 2.5. Let H be a Hilbert space of dimension ≥ 2 and let PH be its
projective Hilbert space. The set of all maps τΨ : B1(CΨ) → CΨ with Ψ ∈ SH
is a holomorphic atlas for PH. Hereby, B1(CΨ), CΨ and τΨ are as in Lemma 2.4.

Proof. Suppose to be given Ψ,Ω ∈ SH such that B1(CΨ)∩B1(CΩ) 6= ∅. Note that
then 〈Ω,Φ+Ψ〉 6= 0 for Φ ∈ τΨ(B1(CΨ) ∩ B1(CΩ)) since C(Φ + Ψ) ∈ B1(CΩ) by
Eq. (2.7) and assumption. Lemma 2.4 then entails that for all such Φ

(τΩ ◦ τ−1
Ψ )(Φ) =

Φ +Ψ

〈Ω,Φ+Ψ〉 − Ω ,

hence the transition map τΩ ◦ τ−1
Ψ : τΨ(B1(CΨ)∩B1(CΩ)) → τΩ(B1(CΨ)∩B1(CΩ))

is holomorphic. �

By the theorem, PH becomes a complex manifold modeled on Hilbert spaces.
Note that the sphere SH carries in a natural way the structure of a real analytic
manifold by the Regular Value Theorem for Banach manifolds [Glö16, Theorem D]
and since the map H \ {0} → R>0, Ω 7→ 〈Ω,Ω〉 is a real analytic submersion. A
real analytic atlas for SH is given by the set of all σΨ with Ψ ∈ SH since the maps

(σΨ, ‖ · ‖2) : H \ CΨ → CΨ × U(1)× R>0, Ω 7→
(
σΨ

(
Ω

‖Ω‖

)
, ‖Ω‖2

)

are real analytic diffeomorphisms.

Theorem 2.6. Let H be a Hilbert space of dimension ≥ 2. Then the canonical
projection pSH : SH → PH is real analytic and for each Ψ ∈ SH the map

ρΨ : SH \ (SH ∩ CΨ) → B1(CΨ)× U(1), Φ 7→
(
CΦ,

〈Ψ,Φ〉
|〈Ψ,Φ〉|

)

is a real analytic local trivialization for p with typical fiber U(1). Moreover, the set
of pairs (B1(CΨ), ρΨ) with Ψ ∈ SH forms a bundle atlas, and pSH : SH → PH
becomes a real analytic U(1)-bundle.
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Proof. We first note that ρΨ = (τ−1
Ψ ×idU(1))◦σΨ. Indeed, observe that p−1

SH(B1(CΨ))
coincides with SH \ (SH ∩ CΨ) and that the diagram

SH \ (SH ∩ CΨ) B1(CΨ)× U(1)

B1(CΨ)

(τ−1
Ψ ×idU(1))◦σΨ

pSH

commutes, as can be seen from the definition of σΨ and the formula for τΨ. Thus,

(τ−1
Ψ × idU(1)) ◦ σΨ(Φ) =

(
CΦ,

〈Ψ,Φ〉
|〈Ψ,Φ〉|

)
= ρΨ(Φ).

Commutativity of the diagram also shows that p is real analytic since σΨ and τ−1
Ψ

are so. Next we want to show that for given Ψ,Ω ∈ SH the transition map

(B1(CΨ) ∩ B1(CΩ))× U(1) → U(1) : (CΦ, λ) 7→ (ρΩ ◦ ρ−1
Ψ )(CΦ, λ)

is real analytic. To this end check that

(
ρΩ ◦ ρ−1

Ψ

)
(CΦ, λ) = λ · 〈Ω,Φ〉

|〈Ω,Φ〉| ·
|〈Ψ,Φ〉|
〈Ψ,Φ〉 .

The right hand side is obviously real analytic as a function of Φ ∈ SH \ (CΨ ∪CΩ)
since the inner product on a Hilbert space is real analytic because it is a real bilinear
map. This entails the claim. �

Corollary 2.7. Let H be a Hilbert space of dimension ≥ 2 and fix Ψ ∈ SH. The
function B1(CΨ) → SH which maps a ray l ∈ B1(CΨ) to the unique Φ ∈ l ∩ SH
such that 〈Φ,Ψ〉 > 0 then is real analytic.

Proof. The stated map is the composition l 7→ σ−1
Ψ (τΨ(l), 1) which is real analytic

since τΨ and σ−1
Ψ are. �

Corollary 2.8. Let A be a C∗-algebra, ω ∈ P(A)n, and let B2(ω) ⊂ P(A)n be
the open ball of radius 2 centered on ω. If (H, π,Ω) is the GNS representation
of ω, B2(ω) is contained in the space of pure π-normal states Pπ(A)n and the
map s : B2(ω) → SH, ϕ 7→ Φ, where Φ is the unique unit vector representing ϕ
and having 〈Φ,Ω〉 > 0, is a norm continuous section of the canonical projection
pSH : SH → Pπ(A)n. When Pπ(A)n is endowed with the unique complex manifold
structure so that the canonical isomorphism of uniform spaces r : PH → Pπ(A)n
associated to the representation (H, π) as in Corollary 2.2 is biholomorphic, the thus
defined section s is real analytic. Moreover, the canonical injection Pπ(A)n →֒ A∗

then is real analytic and its tangent map is injective.

Proof. We know B2(ω) is contained in Pπ(A) by Lemma 1.11, so by Corollary
2.2 the restriction of r−1 provides a norm continuous map B2(ω) → PH. Equation
(2.6) shows that the image is contained in the open unit ball about CΩ with respect
to the gap metric. Composing with the norm continuous map from Corollary 2.7
yields the norm continuous section s. By construction, s is real analytic when r−1

is. To verify the last claim consider for Ψ ∈ SH the chart τΨ : B1(CΨ) → CΨ from
Theorem 2.5. The composition

F : CΨ
τ−1
Ψ−→ PH r−→ Pπ(A)n →֒ A∗



28 SPIEGEL, MORENO, QI, HERMELE, BEAUDRY, AND PFLAUM

then maps v ∈ CΨ to the linear functional

F (v) : A → C, A 7→ 1

‖Ψ+ v‖2 〈Ψ+ v, π(A)(Ψ + v)〉 .

This is clearly a real analytic function in v. Let us determine its derivative. For
v ∈ CΨ consider the path γ : R → CΨ, t 7→ tv and compute

T0F (v) =
d

dt

∣∣∣∣
t=0

F (γ(t)) = 〈Ψ, π( · )v〉+ 〈v, π( · )Ψ〉 .

Assume that v 6= 0. Then Ψ and v are orthogonal to each and linearly independent.
Hence by the Kadison transitivity theorem there exists an operator A ∈ A such
that π(A)v = Ψ and π(A)Ψ = v. Hence T0F (v)(A) = ‖Ψ‖2 + ‖v‖2 > 1 and T0F
has a trivial kernel. Therefore, the tangent map TPπ(A)n → TA∗ is injective as
claimed. �

Remark 2.9. In the case where A∗ is finite dimensional, the preceding corollary
entails that ι : Pπ(A)n →֒ A∗ is a real analytic embedding and that Pπ(A)n is
a submanifold of A∗. The corresponding argument can not be extended to the
infinite dimensional case since for a smooth topological embedding N →֒ M of
infinite dimensional manifolds injectivity of the tangent map TN → TM in general
neither entails that N →֒M is an immersion nor that N is a submanifold of M .

2.2. The Kähler manifold structure on the pure state space. By Propo-
sition 1.17, the superselection sectors form the path connected components of the
pure state space P(A) endowed with the norm topology. Moreover, every su-
perselection sector is open in P(A)n by Corollary 1.12. To define a holomorphic
structure on P(A)n it therefore suffices to define one on each superselection sec-
tor separately. So let ω be a pure state on A and Sω the superselection sector
it defines. Then Sω coincides with the space Pπω (A)n of pure πω-normal states
where as usual (Hω, πω,Ωω) denotes the GNS representation of ω. According to
Corollary 2.8, the uniform isomorphism rω : PHω → Pπω (A)n associated to the
representation πω endows Sω with a holomorphic structure. It remains to show
that the holomorphic structure is independent of the particular representative of
the superselection sector. It suffices to verify that for every other state ψ ∈ Sω
the “transition” map rω,ψ := r−1

ω ◦ rψ : PHψ → PHω is holomorphic, where rψ is
the uniform isomorphism associated to the GNS representation (Hψ, πψ). Since the
GNS representations for ω and ψ are unitarily equivalent, there exists a unique uni-
tary intertwiner U : Hψ → Hω between πψ and πω so that UΩψ = Ωω. Hence the
transition map rω,ψ is given by CΦ 7→ C(UΦ). Next choose Ω ∈ SHω and Ψ ∈ SHψ.
Let τΩ and τΨ be the corresponding charts of PHω and PHψ, respectively. In these
charts, the transition map rω,ψ has the form

τΩ ◦ rω,ψ ◦ τ−1
Ψ : τΨ

(
B1(CΨ) ∩ B1(C(U

−1Ω))
)
→ CΩ, Φ 7→ U(Φ + Ψ)

〈Ω, U(Φ + Ψ)〉 − Ω ,

which obviously is holomorphic in Φ. Thus the pure state space P(A) carries a
unique structure of a complex manifold such that for every irreducible representa-
tion (H, π) the associated canonical embedding r : PH → P(A) is a biholomorphic
map onto its image. We call this complex structure on P(A) canonical.

Next, we equip P(A) with a canonical Kähler structure. More precisely, we have
to construct a smooth hermitian form on P(A) whose imaginary part is symplectic.
To this end recall that a hermitian metric on a complex Hilbert manifold M is a
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smooth section h of the tensor bundle T 0
2M ⊗ C of complexified 2-fold covariant

tensors onM such that h is fiberwise conjugate linear in the first argument, fiberwise
complex linear in the second argument and positive definite; see [Kli95, Sec. 1.2]
and Example A.2 for definitions and details on tensor bundles.

Now let ω be a pure state on A as before and consider the smooth section
sω : B2(ω) → SHω ⊂ Hω \ {0} from Corollary 2.8 which associates to every state
ϕ ∈ B2(ω) the unique vector Φ ∈ SHω such that 〈Φ,Ωω〉 > 0. Define hω : B2(ω) →
T 0
2 P(A) ⊗ C as the pullback of the constant hermitian metric 〈−,−〉 on H \ {0}

via the section sω that means put

hω(ϕ)(X,Y ) = 〈Tϕsω(X), Tϕsω(Y )〉 for all ϕ ∈ B2(ω), X, Y ∈ TϕP(A) .

Then hω is a smooth hermitian metric on B2(ω) since s is an immersion. Moreover,
the imaginary part of hω is closed, since the imaginary part of 〈−,−〉 is a symplectic
bilinear form on Hω. Hence hω endows B2(ω) with a Kähler manifold structure.
It remains to show that for another pure state ψ the hermitian metrics hψ and hω
coincide on the overlap of their domains. So assume that B2(ω) ∩ B2(ψ) is non-
empty. This can only be the case when ω and ψ are in the same superselection
sector, or in other words if their exists a unitary intertwiner U : Hψ → Hω between
the GNS representations πψ and πω as above. Then sω = U ◦ sψ by definition of
the sections sω and sψ, hence

hω(ϕ)(X,Y ) = 〈Tϕsω(X), Tϕsω(Y )〉 = 〈UTϕsψ(X), UTϕsψ(Y )〉
= 〈Tϕsψ(X), Tϕsψ(Y )〉 = hψ(ϕ)(X,Y )

for all ϕ ∈ B2(ω) ∩ B2(ψ) and X,Y ∈ TϕP(A). The local hermitian metrics
therefore glue together to a global one which we denote by h. Since each of the
above local sections sω is a riemannian immersion, the canonical projection pSH :
SH → Pπ(A)n then becomes a riemannian submersion. This uniquely determines
the riemannian structure on P(A), hence also h since a hermitian metric is uniquely
determined by its real part. We now obtain the following result.

Theorem 2.10. Endowed with its canonical complex structure, the pure state space
P(A) of a C∗-algebra A carries a natural hermitian metric h turning it into a
possibly infinite dimensional Kähler manifold. The hermitian metric h is uniquely
determined by the requirement that for every irreducible representation (H, π) of
A the canonical projection pSH : SH → Pπ(A)n, Ψ 7→ r(CΨ) is a riemannian
submersion.

Following common language in Kähler geometry we call the real part of h the
Fubini–Study metric on P(A). Let us finally show that on each superselection
sector Pπ(A)n - with (H, π) an irreducible representation as before - the geodesic
distance δFS of the Fubini-Study metric coincides with the Fubini–Study distance
dFS transferred from PH to Pπ(A)n via the associated uniform isomorphism r. Let
ω and ϕ be two distinct states in Pπ(A)n and choose Ω,Φ ∈ SH which project
to ω and ϕ, respectively. After possibly multiplying Φ with a complex number of
modulus 1 we can assume that 〈Ω,Φ〉 = |〈Ω,Φ〉|. By assumption, Ω and Φ then
span a real plane E in H whose intersection with the sphere SH is totally geodesic
since it is the fixed point manifold of reflection at E which is a linear isometric
isomorphism; see [Kli95, 1.10.15 Theorem]. Let α = arccos〈Ω,Φ〉 and Ψ ∈ P be the
normal vector perpendicular to Ω such that Φ = cosα ·Ω+sinα ·Ψ. Now note that
the intersection of P with SH is a great circle C. The unique shortest geodesic from
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Ω to Φ in C is given by the path γ : [0, 1] → P ∩ SH, t 7→ cos(tα) · Ω+ sin(tα) ·Ψ.
Since the great circle C is totally geodesic, γ is also a shortest geodesic in SH
connecting Ω and Φ. Its length is obviously α. Hence the claimed equality

dFS(CΩ,CΦ) = arccos |〈CΨ,CΩ〉| = δFS(ω, ϕ) (2.8)

holds true if we can yet show that the path γ is horizontal; see [Kli95, 1.11.11
Corollary]. To this end fix t0 ∈ [0, 1] and consider the path τ : [−π, π] → SH,
s 7→ eisγ(t0). The derivative τ̇(0) = i γ(t0) then spans the kernel of the tangent
map Tγ(t0)p : Tγ(t0)SH → Trγ(t0). We need to show Re〈τ̇(0), γ̇(t0)〉 = 0. Since

‖γ(t)‖2 = 1 for all t ∈ [0, 1], we already know that Re〈γ(t0), γ̇(t0)〉 = 0. Since
the inner product 〈Ω,Φ〉 is real, the inner product of Ω and Ψ is so too, hence
〈γ(t0), γ̇(t0)〉 = Re〈γ(t0), γ̇(t0)〉 = 0. Therefore,

Re〈τ̇(0), γ̇(t0)〉 = − Im〈γ(t0), γ̇(t0)〉 = 0

and the claim is proved.

Remark 2.11. Originally, Cirelli, Lanzavecchia and coauthors showed in their
work from the 80ies that the pure state space of a C∗-algebra carries in a natural way
the structure of a Kähler manifold, albeit the proof is scattered over several papers
[CL84, CLM83, ACLM84]. Their work is related to and builds upon the geometric
characterization of C∗-algebraic state spaces by Alfsen, Hanche-Olsen and Shultz
[AHOS80]. In a certain sense, unravelling the Kähler manifold structure of the pure
state space of a C∗-algebra can be understood as a step forward in Connes’ program
of noncommutative geometry [Con94] which has the goal to describe C∗-algebras by
geometric means and to use C∗-algebras for the geometric description of spaces as
they appear for example in quantum mechanics where a direct geometric intuition
is lacking.

3. Continuous Kadison transitivity theorems

The Kadison transitivity theorem states that whenever a C∗-algebra A acts ir-
reducibly on a Hilbert space H there exists for every pair of n-tuples of vectors
x1, . . . , xn and y1, . . . , yn in H such that x1, . . . , xn are linearly independent an
element A ∈ A such that Axk = yk for k = 1, . . . , n; see [KR97a, Thm. 5.4.3].
However, the solution to this problem is in general not unique. The question
arises, then, whether it is possible to choose the solutions A ∈ A so as to de-
pend continuously on the initial data x1, . . . , xn and y1, . . . , yn. This is a problem
amenable to the theory of selections developed by Ernest Michael in the 1950s,
and indeed we use the Michael selection theorem to provide an affirmative answer
to our question. In section 3.1, we recall the necessary terminology and results
from Michael’s original work on selections [Mic56], then we prove our main re-
sults in Theorems 3.5 and 3.11. In section 3.2 we use Theorem 3.11 to prove that
pU(A) : U(A) → Pω(A), pU(A)(U) = U · ω has the structure of a principal Uω(A)-
bundle, where Uω(A) = {U ∈ U(A) : U · ω = ω}, for any unital C∗-algebra A and
pure state ω ∈ P(A). We provide a few examples where this bundle is nontrivial.

3.1. Main results. The key ingredient in proving our continuous Kadison transi-
tivity theorems is the Michael selection theorem. We provide this result and the
necessary definitions below.



CONTINUITY OF KADISON TRANSITIVITY AND OF THE GNS CONSTRUCTION 31

Definition 3.1 ([Mic56]). Let X and Y be topological spaces. A carrier is a
function φ : X → ℘+(Y ), where ℘+(Y ) is the set of all nonempty subsets of Y . A
selection for φ is a continuous function S : X → Y such that S(x) ∈ φ(x) for all
x ∈ X. The carrier φ is lower semicontinuous if for every open set V ⊂ Y , the set

{x ∈ X : φ(x) ∩ V 6= ∅}
is open in X. Equivalently, φ is lower semicontinuous if for every x0 ∈ X, y0 ∈
φ(x0), and neighborhood V of y0, there exists a neighborhood U of x0 such that
φ(x) ∩ V 6= ∅ for all x ∈ U .

We will use the latter description of lower semicontinuity in our proofs. If Y is
metrizable, as it will be for our applications, the neighborhood V may be taken to
be a ball of radius ε > 0 centered on y0. The space X will always be metrizable in
our applications as well. We now state the Michael selection theorem for reference.

Theorem 3.2 ([Mic56, Thm. 3.2′′]). Let X be a paracompact Hausdorff space
and let Y be a real or complex Banach space. If φ : X → ℘+(Y ) is a lower
semicontinuous carrier such that φ(x) is closed and convex for all x ∈ X, then
there exists a selection for φ.

To apply the Michael selection theorem to the representation theory of C∗-
algebras, we will use the following two results. The first is a lemma used in proving
the Kadison transitivity theorem.

Lemma 3.3 ([KR97b, Lem. 5.4.2]). Let H be a Hilbert space and let e1, . . . , en ∈ H
be an orthonormal system. For any vectors z1, . . . , zn ∈ H such that ‖zi‖ ≤ r for
all i, there exists T ∈ B(H) such that ‖T‖ ≤ (2n)1/2r and Tei = zi for all i. If
there exists a self-adjoint operator S ∈ B(H) such that Sei = zi for all i, then T
may be chosen to be self-adjoint.

The following theorem provides norm bounds on the elements of the C∗-algebra
produced by the Kadison transitivity theorem. It will be instrumental in proving
lower semicontinuity of the carriers that we consider. The essence of the statement
and proof are contained in Theorem 2.7.5 in [PEO18], however we consider a C∗-
algebra with a representation rather than a C∗-subalgebra of B(H). Therefore we
provide a full proof.

Theorem 3.4. Let A be a C∗-algebra and let (H, π) be a nonzero irreducible rep-
resentation. If x1, . . . , xn ∈ H are linearly independent and T ∈ B(H), then there
exists A ∈ A such that ‖A‖ ≤ ‖T‖ and π(A)xi = Txi for all i. If T is self-adjoint,
then A may be chosen to be self-adjoint.

Proof. First suppose T is self-adjoint. Let P ∈ B(H) be the projection onto
span{x1, . . . , xn, Tx1, . . . , Txn} and define S = PTP , which is self-adjoint, satisfies
‖S‖ ≤ ‖T‖, and has Sxi = Txi for all i. Extend x1, . . . , xn to a basis x1, . . . , xm of
the above span. By the Kadison transitivity theorem, there exists A ∈ Asa such that
π(A)xi = PTxi for all i = 1, . . . ,m, hence π(A)P = S. Assuming π(A)kP = Sk

for some k ∈ N, we have

π(A)k+1P = π(A)kS = π(A)kPS = Sk+1,

so π(A)kP = Sk for all k ∈ N by induction.
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Define a continuous function f : R → R by

f(t) =





‖S‖ : t ≥ ‖S‖
t : |t| ≤ ‖S‖
−‖S‖ : t ≤ −‖S‖

Note that f(A) is well-defined by continuous functional calculus and lies in A regard-
less of whether A is unital or not since f(0) = 0. Furthermore, f(A) is self-adjoint,
‖f(A)‖ ≤ ‖S‖ ≤ ‖T‖, and π(f(A)) = f(π(A)). We also have f(S) = S since f
restricts to the identity on σ(S).

We show that π(f(A))xi = Sxi for all i. Given i ≤ n and ε > 0, we choose a
real polynomial g such that |f(t)− g(t)| < ε/2‖xi‖ whenever |t| ≤ max(‖A‖, ‖S‖).
Note that g(π(A))xi = g(S)xi since π(A)

kP = Sk for all k ∈ N. Then

‖π(f(A))xi − Sxi‖ ≤ ‖f(π(A))xi − g(π(A))xi‖+ ‖g(S)xi − Sxi‖
≤ ‖(f − g)(π(A))‖‖xi‖+ ‖(g − f)(S)‖‖xi‖ < ε.

Since ε > 0 was arbitrary, this implies π(f(A))xi = Sxi = Txi, as desired.
For the general case, we again consider S = PTP , where P is defined as before,

but T is not necessarily self-adjoint. We still have ‖S‖ ≤ ‖T‖ and Sxi = Txi for
all i. The map |S|(H) → S(H), |S|x 7→ Sx is a well-defined bijective isometry, and
may therefore be extended to a unitary H → H. By the self-adjoint case above,
there exists A ∈ Asa such that ‖A‖ ≤ ‖|S|‖ = ‖S‖ ≤ ‖T‖ and π(A)xi = |S|xi
for all i. By the Kadison transitivity theorem, there exists a unitary U in the
unitization of A such that U |S|xi = Sxi for all i. Then UA ∈ A, ‖UA‖ ≤ ‖T‖, and
π(UA)xi = Sxi = Txi for all i. �

We are now ready to prove the “continuous Kadison transitivity theorem” in the
general and self-adjoint cases. For notation, when H is a Hilbert space we denote
elements of the Hilbert space Hn by bold letters x = (x1, . . . , xn) and elements of
H2n by pairs of bold letters (x,y). Given an element T ∈ B(H) and n ∈ N, we
denote T⊕n = T ⊕ · · · ⊕ T ∈ B(Hn).

Theorem 3.5. Let A be a C∗-algebra, let (H, π) be a nonzero irreducible represen-
tation, and let n be a positive integer. Let

X =
{
(x,y) ∈ H2n : x1, . . . , xn are linearly independent

}
,

equipped with the subspace topology inherited from H2n. There exists a continuous
map A : X → A such that

π(A(x,y))xi = yi for all i = 1, . . . , n (3.1)

for all (x,y) ∈ X. Similarly, defining

Xsa = {(x,y) ∈ X : ∃T ∈ B(H)sa s.t. Txi = yi for all i = 1, . . . , n},
there exists a continuous map A : Xsa → Asa satisfying (3.1) for all (x,y) ∈ Xsa.

Proof. Since X and Xsa are subspaces of H2n, they are metrizable, hence para-
compact Hausdorff. We will use the Michael selection theorem for the carrier
φ : X → ℘+(A) defined by

φ(x,y) = {A ∈ A : π(A)xi = yi for all i = 1, . . . , n}.
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For the self-adjoint case, we note that Asa is a real Banach space with the topology
inherited from A, and we define φsa : Xsa → ℘+(Asa) by

φsa(x,y) = Asa ∩ φ(x,y).
By the Kadison transitivity theorem, φ(x,y) and φsa(x,y) are nonempty for all
(x,y) ∈ X and (x,y) ∈ Xsa, respectively. Given (x,y) ∈ X, t ∈ [0, 1], and
A,B ∈ φ(x,y), we have

π(tA+ (1− t)B)xi = tπ(A)xi + (1− t)π(B)xi = tyi + (1− t)yi = yi

for all i, so φ(x,y) is convex. An identical argument shows that φsa(x,y) is convex
for all (x,y) ∈ Xsa. Furthermore, if x̂i : B(H) → H denotes the evaluation map
x̂i(T ) = Txi, then we see that

φ(x,y) =

n⋂

i=1

(x̂i ◦ π)−1({yi}),

so φ(x,y) is closed since x̂i ◦ π is continuous for each i. For the self-adjoint case,
we note that φsa(x,y) = Asa ∩ φ(x,y) is closed in Asa since Asa has the subspace
topology.

All that remains to show is that φ is lower semicontinuous, then the result
will follow immediately from the Michael selection theorem. Fix (x0,y0) ∈ X,
A0 ∈ φ(x0,y0), and let ε > 0; replace X and φ by Xsa and φsa for the self-adjoint
case. Given (x,y) ∈ X, let e1(x), . . . , en(x) ∈ H be the orthonormal basis obtained
by applying the Gram-Schmidt method to x1, . . . , xn, and let λij(x) ∈ C be such
that ei(x) =

∑n
j=1 λij(x)xj . Note that each λij(x) is a continuous function X → C.

Moreover, the matrix Λx = (λij(x)) defines an invertible element Λx ∈ B(Hn).
Observe that the map X → B(Hn), (x,y) 7→ Λx is continuous, Λxx = e(x),
and [Λx, T

⊕n] = 0 for all T ∈ B(H). Let O1 be the preimage of the open ball
of radius ‖Λx0‖ centered on Λx0 under the map (x,y) 7→ Λx. Let O2 be the
preimage of the open ball of radius ε/(4n‖Λx0‖) centered at zero under the map
X → Hn, (x,y) 7→ y − π(A0)

⊕nx, which is also continuous. Then O = O1 ∩O2 is
a neighborhood of (x0,y0) in X and (x,y) ∈ O implies

‖Λx‖ < 2‖Λx0‖ and
∥∥y − π(A0)

⊕nx
∥∥ < ε

4n‖Λx0
‖ .

For the self-adjoint case, we set Osa = Xsa ∩O.
Given (x,y) ∈ O, set z(x,y) = Λxy and observe that A ∈ φ(x,y) if and only if

A ∈ φ(e(x), z(x,y)) since Λx is invertible and commutes with π(A)⊕n for all A ∈ A.
For ease of notation we now suppress the arguments of e and z. We estimate

‖zi − π(A0)ei‖ ≤
∥∥z− π(A0)

⊕ne
∥∥

< 2‖Λx0
‖
∥∥y − π(A0)

⊕nx
∥∥ < ε

2n
.

By Lemma 3.3, there exists T ∈ B(H) such that Tei = zi − π(A0)ei for all i and

‖T‖ ≤ ε/
√
2n < ε. In the self adjoint case, we observe that we may choose T to be

self-adjoint since (e, z) ∈ Xsa and π(A0) is self-adjoint, so there exists a self-adjoint
operator mapping ei to zi− π(A0)ei for all i. By Theorem 3.4, there exists A1 ∈ A

such that ‖A1‖ ≤ ‖T‖ < ε and π(A1)ei = zi− π(A0)ei. In the self-adjoint case, we
may choose A1 to be self-adjoint. Defining A = A0+A1, we see that ‖A−A0‖ < ε
and

π(A)ei = π(A0)ei + π(A1)ei = zi
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for all i, which implies A ∈ φ(e, z) = φ(x,y). In the self-adjoint case, we have
A ∈ Asa by choice of A1, so A ∈ φsa(x,y). This proves lower semicontinuity,
completing the proof. �

Remark 3.6. Suppose (H, π,Ω) is the GNS representation of ω ∈ P(A). If we
set n = 1 in the previous theorem and fix x = Ω, then we get a continuous map
A : H → A such that π(A(y))Ω = y = q(A(y)) for all y ∈ H, where q : A → H is the
quotient map. We see that A is a right inverse for q. Since q is a surjective bounded
linear map between Banach spaces, the existence of a continuous right inverse is
guaranteed by the Bartle-Graves theorem [BG52, Mic56]. However, the existence of
a continuous linear right inverse is equivalent to ker q = N = {A ∈ A : ω(A∗A) = 0}
having a closed complement in A. It is easy to see that this holds in certain special
cases, such as when A is commutative or finite-dimensional, or A = B(K) for some
Hilbert space K and ω is a state corresponding to a unit vector in K. However,
broader conditions under which N is complemented (or whether this is true in
general) are unknown to the authors.

We now move towards a unitary version of Theorem 3.5. We do so through a
series of lemmata.

Lemma 3.7. Let H be a Hilbert space, let x1, . . . , xn ∈ H be an orthonormal
system. Given ε > 0, there exists δ > 0 such that for any orthonormal system
y1, . . . , yn ∈ H with ‖xi − yi‖ < δ for all i, there exists a unitary U ∈ U(H) such
that

(i) Kn = span{x1, . . . , xn, y1, . . . , yn} is invariant under U ,
(ii) U acts as the identity on K⊥

n ,
(iii) ‖I − U‖ < ε,
(iv) and Uxi = yi for all i.

Proof. We prove the lemma by induction on n. Consider the case when n = 1.
Given x, y ∈ SH, we define Ux,y ∈ U(H) by having Ux,y act as the identity on the
orthogonal complement of K = span{x, y} and defining Ux,y on K by

Ux,yz = 〈y, x〉 z − 〈y, z〉x+ 〈x, z〉 y. (3.2)

One can check that this is indeed unitary and satisfies Ux,yx = y. When dimK = 1,
we have y = 〈x, y〉x, so we see that Ux,y|K is multiplication by 〈x, y〉. When
dimK = 2, the eigenvalues of Ux,y|K are

λ±x,y = Re 〈x, y〉 ± i
√

1− (Re 〈x, y〉)2.
Thus, σ(Ux,y) ⊂

{
λ+x,y, λ

−
x,y, 1

}
. Since I − Ux,y is normal, its norm is given by its

spectral radius, so

‖I − Ux,y‖ =
∣∣λ+x,y − 1

∣∣ =
∣∣λ−x,y − 1

∣∣ =
√
2− 2Re 〈x, y〉 = ‖x− y‖. (3.3)

Therefore setting δ = ε and U = Ux,y works for the base case.
Suppose the lemma is true for some n and let x1, . . . , xn+1 be an orthonormal

system. Choose δ′ > 0 such that for any orthonormal system y1, . . . , yn with
‖xi − yi‖ < δ′ for all i ≤ n, there exists a unitary V ∈ U(H) satisfying (i), (ii),
‖I − V ‖ < ε/3, and V xi = yi for i ≤ n. Let δ = min(δ′, ε/3) and let y1, . . . , yn+1

be an orthonormal system with ‖xi − yi‖ < δ for all i. Since V leaves Kn invariant
and acts as the identity on K⊥

n , we see that

V xn+1 = V Pxn+1 + (I − P )xn+1 ∈ Kn+1,
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where P is the projection onto Kn. Likewise V yn+1 ∈ Kn+1, so V leaves Kn+1

invariant. Since K⊥
n+1 ⊂ K⊥

n , we also know that V acts as the identity on K⊥
n+1.

Set z = V xn+1 and note that y1, . . . , yn, z is an orthonormal system since it is
the image of x1, . . . , xn+1 under the unitary V . Furthermore,

‖z − yn+1‖ ≤ ‖(V − I)xn+1‖+ ‖xn+1 − yn+1‖ <
ε

3
+ δ ≤ 2ε

3
Consider the unitary W = Uz,yn+1

V . Since z ∈ Kn+1, we see that W leaves Kn+1

invariant and acts as the identity on K⊥
n+1. Since z and yn+1 are orthogonal to all

yi with i ≤ n, it follows that Wxi = yi for all i ≤ n+ 1. Finally,

‖I −W‖ ≤
∥∥I − Uz,yn+1

∥∥+
∥∥Uz,yn+1

− Uz,yn+1
V
∥∥

≤ ‖z − yn+1‖+ ‖I − V ‖ < ε,

completing the proof. �

Remark 3.8. We note that the n = 1 case of Lemma 3.7 can also be accomplished
by polar decomposition. Assuming x, y ∈ SH and 〈x, y〉 6= 0, consider the operator

Ax,y =
〈x, y〉
|〈x, y〉|PyPx + (1− Py)(1− Px),

where Px and Py are the projections onto Cx and Cy, respectively. The uni-
tary Vx,y obtained from the polar decomposition Ax,y = Vx,y|Ax,y| satisfies (i),
(ii), and (iv). For fixed x, the map y 7→ Vx,y is norm-continuous on the domain
{y ∈ SH : 〈x, y〉 6= 0} and fulfills Vx,x = I. Therefore, Vx,y satisfies (iii) for small
enough δ.

The following lemma contains the heart of the unitary version of the continuous
Kadison transitivity theorem.

Lemma 3.9. Let A be a unital C∗-algebra, let (H, π) be a nonzero irreducible
representation, and let n be a non-negative integer. Define

Y+ =

{
(x, y) ∈ Hn+1 × SH :

x1, . . . , xn+1 are orthonormal, 〈xn+1, y〉 > 0,
and 〈xi, y〉 = 0 for all i ≤ n

}
,

equipped with the subspace topology. There exists a continuous map U : Y+ → U(A)
such that

π(U(x, y))xn+1 = y and π(U(x, y))xi = xi (3.4)

for all (x, y) ∈ X and i ≤ n. Here, U(A) denotes the group of unitary elements of
A.

Proof. The function θ : Y+ → [0, π/2) defined as

θ(x, y) = cos−1 〈xn+1, y〉
is continuous on Y+. If we set Y ′

+ = {(x, y) ∈ Y+ : 〈xn+1, y〉 < 1}, then we have
another continuous map w : Y ′

+ → H given by

w(x, y) =
y − 〈xn+1, y〉xn+1

‖y − 〈xn+1, y〉xn+1‖
and {xn+1, w(x, y)} is a basis for span{xn+1, y}. In this basis, the unitary Uxn+1,y

defined in Equation (3.2) is represented by the matrix
(
cos θ(x, y) − sin θ(x, y)
sin θ(x, y) cos θ(x, y)

)
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when restricted to span{xn+1, y}. Given (x, y) ∈ Y ′
+, we also define an opera-

tor Tx,y ∈ B(H)sa which acts as the zero operator on span{xn+1, y}⊥ and, when
restricted to span{xn+1, y}, is represented by the matrix

(
0 iθ(x, y)

−iθ(x, y) 0

)

with respect to the basis {xn+1, w(x, y)}. Observe that ‖Tx,y‖ = θ(x, y) and
Uxn+1,y = eiTx,y .

Note that Y ′
+ is metrizable, hence paracompact Hausdorff. Given (x, y) ∈ Y+,

define K(x, y) = span{x1, . . . , xn, y} and define a carrier φ : Y ′
+ → ℘+(Asa) by

φ(x, y) =
{
A ∈ Asa : π(A)|K(x,y) = Tx,y|K(x,y) and ‖A‖ ≤ θ(x, y)

}

By Theorem 3.4, φ(x, y) is nonempty for all (x, y) ∈ Y ′
+. We see that φ(x, y)

is closed and convex by the same arguments used in the proof of Theorem 3.5,
along with the fact that the closed ball of radius θ(x, y) is closed and convex. For
lower semicontinuity, fix (x, y) ∈ Y ′

+, A0 ∈ φ(x, y), and ε > 0. Use continuity
and positivity of θ on Y ′

+ to choose a neighborhood O of (x, y) such that for all
(u, v) ∈ O, we have

∣∣∣∣1−
θ(u, v)

θ(x, y)

∣∣∣∣ <
ε

2‖A0‖
.

Apply Lemma 3.7 to the orthonormal system x1, . . . , xn+1, w(x, y) and the number

ε′ = min

(
2,

ε

4‖A0‖

)

to find a δ > 0 with the properties described in Lemma 3.7. By continuity of w
on Y ′

+, we may shrink O such that for all (u, v) ∈ O, we have ‖xi − ui‖ < δ and
‖w(x, y)− w(u, v)‖ < δ.

Now, given (u, v) ∈ O, there exists a unitary V ∈ U(H) such that V xi = ui for
all i, V w(x, y) = w(u, v), and ‖I − V ‖ < ε′. The fact that ‖I − V ‖ < 2 implies that
−1 /∈ σ(V ), so we can use the continuous functional calculus to apply the principal
branch of the logarithm and obtain a self-adjoint operator S = −iLog V with ‖S‖ ≤
π. Note that S leaves G = span

{
x1, . . . , xn+1, wxn+1,y, u1, . . . , un+1, wun+1,v

}
in-

variant since V leaves G invariant. By Theorem 3.4, we can obtain a self-adjoint
operator B ∈ A such that π(B)|G = S|G and ‖B‖ ≤ ‖S‖. Hence W = eiB acts as
V = eiS on this subspace and by continuous functional calculus,

‖I −W‖ = sup
λ∈σ(W )

|λ− 1| =
∣∣∣ei‖B‖ − 1

∣∣∣

≤
∣∣∣ei‖S‖ − 1

∣∣∣ = sup
λ∈σ(V )

|λ− 1| = ‖I − V ‖.

It is easy to check that

A =
θ(u, v)

θ(x, y)
WA0W

−1 ∈ φ(u, v)
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using the values of V and Tx,y on x1, . . . , xn+1, w(x, y), and the values of V −1 and
Tu,v on u1, . . . , un+1, w(u, v). Finally, observe that

‖A0 −A‖ ≤
∥∥A0 −WA0W

−1
∥∥+

∣∣∣∣1−
θ(u, v)

θ(x, y)

∣∣∣∣‖A0‖

≤
(
2‖I −W‖+

∣∣∣∣1−
θ(u, v)

θ(x, y)

∣∣∣∣
)
‖A0‖ < ε,

as desired. This proves lower semicontinuity of φ.
The Michael selection theorem now gives a continuous selection A : Y ′

+ → Asa of
φ. We extend A to Y+ by defining A(x, y) = 0 whenever 〈xn+1, y〉 = 1, equivalently,
when xn+1 = y. Then A : Y+ → Asa is continuous on Y ′

+ since Y ′
+ is open in

Y+ and A is continuous on Y+ \ Y ′
+ by continuity of θ on Y+ and the fact that

‖A(x, y)‖ ≤ θ(x, y) for all (x, y) ∈ Y+. Exponentiating A yields a continuous
map U : Y+ → U(A), U(x, y) = eiA(x,y) that acts as Uxn+1,y on K(x, y), thereby
satisfying (3.4). �

The purpose of our final lemma is to remove the condition that 〈xn+1, y〉 > 0
and replace it with the condition that 〈xn+1, y〉 /∈ R≤0.

Lemma 3.10. Let A be a unital C∗-algebra, let (H, π) be a nonzero irreducible
representation, and let n be a non-negative integer. Define

Y =

{
(x, y) ∈ Hn+1 × SH :

x1, . . . , xn+1 are orthonormal, 〈xn+1, y〉 /∈ R≤0,
and 〈xi, y〉 = 0 for all i ≤ n

}
,

equipped with the subspace topology. There exists a continuous map U : Y → U(A)
such that

π(U(x, y))xn+1 = y and π(U(x, y))xi = xi (3.5)

for all (x, y) ∈ Y and i ≤ n.

Proof. The angle α : Y → (−π, π) defined by taking the principal branch of the
logarithm:

α(x, y) = ImLog 〈xn+1, y〉
is continuous on Y . The map Y → Xsa, (x, y) 7→ (x, 0, . . . , 0, α(x, y)xn+1) is
continuous, where Xsa is as in Theorem 3.5. We may therefore compose with the
map A : Xsa → Asa from Theorem 3.5 and exponentiate to obtain a continuous
map V : Y → U(A) such that

π(V (x, y))xn+1 = eiα(x,y)xn+1 =
〈xn+1, y〉
|〈xn+1, y〉|

xn+1

and π(V (x, y))xi = xi for all i ≤ n.
Note that 〈 〈xn+1, y〉

|〈xn+1, y〉|
xn+1, y

〉
= |〈xn+1, y〉| > 0.

Thus, we have a continuous map Y → Y+, (x, y) 7→ (π(V (x, y))⊕n+1x, y) and we
compose this with the continuous map from Lemma 3.9 to obtain a continuous map
W : Y → U(A). Defining U : Y → U(A) by U(x, y) = W (x, y)V (x, y), we see that
U is continuous and satisfies (3.5). �

We are finally ready to prove the unitary version of the continuous Kadison
transitivity theorem.
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Theorem 3.11. Let A be a unital C∗-algebra, let (H, π) be a nonzero irreducible
representation, and let n be a positive integer. Let

Xu = {(x,y) ∈ X : ∃T ∈ U(H) s.t. Txi = yi for all i = 1, . . . , n},
equipped with the subspace topology, where X is as in Theorem 3.5. For every
(x0,y0) ∈ Xu, there exists a neighborhood (x0,y0) ∈ O ⊂ Xu and a continuous
map U : O → U(A) such that

π(U(x,y))xi = yi for all i = 1, . . . , n (3.6)

for all (x,y) ∈ O.

Proof. As in the proof of Theorem 3.5, let Λ : Xu → B(Hn)× be the continuous
map obtained by applying the Gram-Schmidt method to x1, . . . , xn. Recall that for
T ∈ B(H), we have T⊕nx = y if and only if T⊕ne(x) = z(x,y), where e(x) = Λxx

and z(x,y) = Λxy. Since (x,y) 7→ (e(x), z(x,y)) is continuous, it suffices to prove
the theorem with Xu replaced by

Xon
u = {(x,y) ∈ Xu : x1, . . . , xn are orthonormal}.

Therefore, suppose (x0,y0) ∈ Xon
u .

Suppose the theorem is true when x0 = y0. Then for arbitrary (x0,y0) ∈ Xon
u ,

we can find a neighborhood (x0,x0) ∈ O ⊂ Xon
u and a continuous function U :

O → U(A) for which (3.6) holds. By the Kadison transitivity theorem, there exists
V ∈ U(A) such that π(V )⊕ny0 = x0. Then O′ = (IHn ⊕ π(V )⊕n)−1(O) ⊂ Xon

u is
a neighborhood of (x0,y0) and O′ ∋ (x,y) 7→ V −1U(x, π(V )⊕ny) is a continuous
map satisfying (3.6). Thus it suffices to prove the theorem for (x0,x0) ∈ Xon

u .
Let Zn = {x ∈ Hn : x1, . . . , xn are orthonormal} with the subspace topology.

Now suppose that for every x ∈ Zn, we have a neighborhood x ∈ O ⊂ Zn and a
continuous map U : O → U(A) such that

π(U(y))⊕nx = y (3.7)

for all y ∈ O. Given (x0,x0) ∈ Xon
u and such a neighborhood x0 ∈ O ⊂ Zn, we see

that O′ = O × O ⊂ Xon
u is a neighborhood of (x0,x0) and the map O′ ∋ (x,y) 7→

U(y)U(x)−1 satisfies (3.6).
We prove the hypothesis about Zn by induction on n. The n = 1 case follows

from the n = 0 case of Lemma 3.10: one takes O = {y ∈ SH : 〈x, y〉 /∈ R≤0} and
the map O ∋ y 7→ (x, y) 7→ U(x, y) does the trick, where U : Y → U(A) is as in
Lemma 3.10. Assume the hypothesis is true for some n ≥ 1 and let x ∈ Zn+1.
Let P : Zn+1 → Zn be the projection onto the first n components. We have a

neighborhood Px ∈ O ⊂ Zn and a continuous map Ṽ : O → U(A) such that (3.7)

holds for Px and y ∈ O. Define V : O → U(A) by V (y) = Ṽ (y)Ṽ (Px)−1 so that
V is continuous, satisfies (3.7) for Px and y ∈ O, and has V (Px) = 1. Define

O′ =
{
y ∈ P−1(O) : 〈yn+1, π(V (Py))xn+1〉 /∈ R≤0

}

Then x ∈ O′ ⊂ Zn+1 and O
′ → Y , y 7→ (y, π(V (Py))xn+1) is continuous. Compos-

ing this with the map from Lemma 3.10 yields a continuous map W : O′ → U(A),
and one can easily check that U : O′ → U(A), U(y) = W (y)−1V (Py) satisfies
(3.7). This completes the proof. �
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Corollary 3.12. Let A be a unital C∗-algebra and let ω ∈ P(A). There exists a
continuous map U : B2(ω) → U(A) such that

Uψ · ω = ψ

for all ψ ∈ B2(ω). If A is non-unital and ω ∈ P(A), then there exists a continuous
map α : B2(ω) → Aut(A)n such that

ω ◦ αψ = ψ

for all ψ ∈ B2(ω).

Proof. Let (H, π,Ω) be the GNS representation of ω. Corollary 2.8 states continuity
of the map B2(ω) → SH, ψ 7→ Ψ where Ψ represents ψ and 〈Ψ,Ω〉 > 0. Hence
B2(ω) → Y , ψ 7→ (Ω,Ψ) is well-defined, where Y is as in Lemma 3.10 with n = 0.
Composing with the map from Lemma 3.10 yields a continuous map U : B2(ω) →
U(A), ψ 7→ Uψ such that

π(Uψ)Ω = Ψ

for all ψ ∈ B2(ω). This implies that Uψ · ω = ψ, as desired.

In the non-unital case, we consider the unitization Ã and the isometry P(A) →
P(Ã), ψ 7→ ψ̃ where ψ̃ is the unique extension of ψ to a pure state on Ã. This
gives a continuous map B2(ω) → B2(ω̃), and we may apply the unital case to get

a continuous map U : B2(ω̃) → U(Ã) such that Uψ̃ · ω̃ = ψ̃ for all ψ ∈ B2(ω).

Since A is a two-sided ideal in Ã, we have a continuous function U(Ã) → Aut(A)n,
U 7→ (A 7→ U∗AU) and composing with this function yields the desired map
B2(ω) → Aut(A)n. �

3.2. Construction of principal fiber bundles. In this section, given a unital
C∗-algebra A and a pure state ω ∈ P(A), we construct a principal fiber bundle
pU(A) : U(A) → Pω(A), where

[pU(A)(U)](A) = (U · ω)(A) = ω(U∗AU).

Crucially, Corollary 3.12 is used to construct local trivializations. Note that U(A)×
P(A)n → P(A)n, (U, ω) 7→ U · ω is a continuous group action. We then discuss a
strategy for showing this bundle is nontrivial and provide a few examples.

Corollary 3.13. Let A be a unital C∗-algebra, assume that ω ∈ P(A) is a pure
state, and let pU(A) : U(A) → Pω(A) be the continuous surjection which maps
U ∈ U(A) to p(U) = U · ω. Furthermore, let the isotropy group

Uω(A) = {U ∈ U(A) : U · ω = ω}
act on U(A) and on itself by right multiplication. The fibers of pU(A) then are
exactly the orbits of Uω(A) and pU(A) : U(A) → Pω(A) is a locally trivial principal
Uω(A)-bundle.

Proof. Suppose U, V ∈ U(A) and U ·ω = V ·ω. Then V ∗U ·ω = ω, so V ∗U ∈ Uω(A)
and U = V (V ∗U) is in the same orbit as V . Conversely, if U and V are in the same
orbit, then there existsW ∈ Uω(A) such that U = VW , hence U ·ω = VW ·ω = V ·ω,
so U and V are in the same fiber.

We now construct local trivializations for pU(A) which for the rest of the proof
we abbreviate by p. Fix ψ0 ∈ Pω(A). By Corollary 3.12, we know there exists a
continuous map U : B2(ψ0) → U(A) such that Uψ · ψ0 = ψ for all ψ ∈ B2(ψ0). Fix
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a unitary V ∈ U(A) such that V ω = ψ0. Define ϕ : p−1(B2(ψ0)) → B2(ψ0)×Uω(A)
by

ϕ(W ) = (p(W ), V ∗U∗
p(W )W ).

Observe that
V ∗U∗

p(W )Wω = V ∗U∗
p(W )p(W ) = V ∗ψ0 = ω,

so ϕ is indeed well-defined. Furthermore, ϕ is manifestly continuous, equivariant
on fibers, and commutes with the projections onto B2(ψ0). The function B2(ψ0)×
Uω(A) → p−1(B2(ψ0)) defined by

(ψ,W ) 7→ UψVW

is well-defined since

p(UψVW ) = UψVWω = UψV ω = Uψψ0 = ψ ∈ B2(ψ0).

Furthermore, it is continuous and it is a two-sided inverse for ϕ since

ϕ(UψVW ) = (ψ, V ∗U∗
ψUψVW ) = (ψ,W )

and
ϕ(W ) = (p(W ), V ∗U∗

p(W )W ) 7→ Up(W )V V
∗U∗

p(W )W =W.

This proves that ϕ is a homeomorphism. This provides a trivializing cover for p
with local trivializations that are equivariant on fibers, completing the proof. �

By looking at the fundamental groups of Pω(A), U(A), and Uω(A), one may
be able to determine that the bundle pU(A) : U(A) → Pω(A) is nontrivial for a
particular unital C∗-algebra A and state ω ∈ P(A). We exhibit some examples
below. If the bundle is trivial, then U(A) is homeomorphic to Uω(A)×Pω(A), and
in each example we show that this leads to a contradiction.

If A = Mn(C) for some integer n ≥ 2 and ω is any pure state, then Pω(A) ∼=
CPn−1, so Pω(A) is simply connected. The unitary group U(A) = U(n) is path-
connected and has fundamental group π1(U(n)) ∼= Z. The stabilizer is Uω(A) ∼=
U(1) × U(n − 1) which has fundamental group π1(Uω(A)) ∼= Z × Z. Therefore the
bundle is not trivial because

π1(U(A)) ∼= Z 6∼= Z× Z ∼= π1(Uω(A)× Pω(A)).

If A = B(H) for a separable, infinite-dimensional Hilbert space H and ω is
a pure normal state, then Pω(A) ∼= PH is an Eilenberg-MacLane space of type
K(Z, 2), U(A) = U(H) is contractible by Kuiper’s theorem [Kui65], and Uω(A) ∼=
U(1)× U(H). Therefore the bundle is not trivial because

π1(U(A)) ∼= {0} 6∼= Z ∼= π1(Uω(A)× Pω(A)).

We can also show that the bundle is nontrivial for any UHF algebra. If A is a
UHF algebra and ω ∈ P(A), then Pω(A) ∼= PHω and Hω is a separable, infinite
dimensional Hilbert space [Gli60], so PHω is again a K(Z, 2). In the following
we will determine the homotopy groups of U(A) and Uω(A) which will then entail
nontriviality of the bundle pU(A) : U(A) → Pω(A). The computation relies on two
major results, namely on Glimm’s observation that the isomorphism class of an
UHF algebra can be encoded by its associated supernatural number [Gli60] and on
a theorem of Glöckner [Glö10, Thm. 1.13]. Before we come to the computation of
the homotopy groups πk(U(A)) and πk(Uω(A)) we therefore first state these results
in the form needed here and provide a few preliminaries.
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Recall from e.g. [RLL00, Sec. 7.4] that by a supernatural number one understands
a sequence n = (ni)i∈N of elements ni ∈ {0, 1, . . . ,∞} = N ∪ {∞}. By slight abuse
of language one sometimes writes

n =
∏

i∈N

pnii ,

where {p0, p1, . . .} is the set of primes listed in increasing order, and regards the
right hand side of this formula as a formal prime factorization of the supernatural
number n. The product of two supernatural numbers n,m is given by

nm =
∏

i∈N

pni+mii ,

but their sum is general not defined. Associated to a supernatural number n =
(ni)i∈N is the additive subgroup Q(n) ⊂ Q consisting of all fractions p

q , where p, q

are integers and q has the prime decomposition

q =
∏

i∈N

pqii

such that qi ≤ ni for all i ∈ N and only finitely many of the qi are nonzero. By
construction, Q(n) contains 1, and each additive supgroup A ⊂ Q containing 1
equals Q(n) for some supernatural number n. Furthermore, two groups Q(n) and
Q(m) are isomorphic if and only there are positive natural numbers n′,m′ such
that nn′ = mm′; see [RLL00, Sec. 7.4] for details.

To further clarify language let us remind the reader that by a UHF algebra
one understands a C∗-algebra A which can be identified with the colimit of a
countable strict inductive system of type I factors of finite dimension and unital
∗-homomorphisms

A0 ֒
ι0,1−−−→ A1 ֒

ι1,2−−−→ . . . ֒
ιi−1,i−−−→ Ai ֒

ιi,i+1−−−→ . . . .

Recall that strictness of the inductive system means that each of the unital ∗-
homomorphisms ιi is injective and that by a type I factor of finite dimension one
understands a von Neumann algebra which is ∗-isomorphic to the matrix algebra
Mn(C) for some n ∈ N. Therefore, each of the C∗-algebras Ai is ∗-isomorphic
to a matrix algebra Mni(C) such that the sequence of ranks (ni)i∈N is increasing
and ni is a divisor of nj for all i ≤ j. Following Glimm [Gli60], we say that A

is generated by the inductive system (Ai)i∈N of type (ni)i∈N. We always assume
that the type is unbounded meaning that limj→∞ nj = ∞. As in [Gli60], a UHF
algebra A therefore has to be infinite dimensional. Glimm further associates to an

UHF algebra A a supernatural number δA as follows. Write ni =
∏
j∈N

p
δi,j
j , where

the δi,j ∈ N are unique by prime decomposition, and put δj = sup{δi,j : i ∈ N}.
By construction, δA = (δj)j∈N then is a supernatural number which according to
[Gli60] uniquely determines the isomorphism class of the UHF algebra A; see also
[RLL00, Thm. 7.4.5].

Lemma 3.14. Assume to be given a strict inductive system (Aj)j∈N of unbounded
type (nj)j∈N such that Ai ⊂ Aj for all i ≤ j and such that the morphisms of the
inductive system are given by inclusion. Let A be the UHF algebra generated by
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(Aj)j∈N that is let A =
⋃
j∈N

Aj. If ω ∈ P(A) and ω|Aj ∈ P(Aj) for all j, then

Uω(A) =
⋃

j∈N

U(Aj) ∩ Uω(A). (3.8)

and
U(Aj) ∩ Uω(A) = Uω|Aj (Aj)

∼= U(1)× U(nj − 1) . (3.9)

Proof. Suppose U ∈ Uω(A), fix ε > 0, and let (H, π,Ω) be the GNS representation

of ω. Lemma 3.1 in [Gli60] states that U(A) =
⋃
j∈N

U(Aj), so there exists j ∈ N

and V ∈ U(Aj) such that ‖U − V ‖ < ε/2. The fact that U ∈ Uω(A) implies that
π(U)Ω = λΩ for some λ ∈ U(1), hence

‖π(V )Ω− λΩ‖ = ‖π(V − U)Ω‖ < ε

2
.

Now, Hj := π(Aj)Ω is a finite-dimensional subspace of H and π restricts to a cyclic
representation πj : Aj → B(Hj) with cyclic unit vector Ω representing ω|Aj . Since
ω|Aj is pure by hypothesis, πj is an irreducible representation. In particular, since
Aj ∼= Mnj (C), we know πj is a ∗-isomorphism. There exists a unitary W ∈ U(Aj)
such that πj(W ) = Uπ(V )Ω,λΩ, where Uπ(V )Ω,λΩ is as defined in Lemma 3.7. By
(3.3) of Lemma 3.7, ‖I −W‖ = ‖π(V )Ω− λΩ‖ < ε/2 and π(W )π(V )Ω = λΩ.
Then WV ∈ U(Aj) ∩ Uω(A) and

‖U −WV ‖ ≤ ‖U − V ‖+ ‖V −WV ‖ < ε,

as desired.
Note that U0 ∈ Uω|Aj (Aj) if and only if U0 ∈ U(Aj) and ω(U

∗
0AU0) = ω(A) for

all A ∈ Aj . Therefore it is clear that U(Aj) ∩ Uω(A) ⊂ Uω|Aj (Aj). Conversely,

if U0 ∈ Uω|Aj (Aj), then πj(U0)Ω = π(U0)Ω = λ0Ω for some λ0 ∈ U(1), which

implies that U0 ∈ Uω(A), i.e., ω(U
∗
0AU0) = ω(A) for all A ∈ A. That Uω|Aj (Aj)

∼=
U(1)×U(nj−1) is immediate from the fact that Aj is ∗-isomorphic toMnj (C). �

Lemma 3.15. Let A be a unital C∗-algebra generated by the strict inductive system
(Aj)j∈N of type (nj)j∈N. Let O = {U ∈ U(A) : ‖I − U‖ < 2} and let φ : O → Asa be
defined by φ(U) = i(I−U)(I+U)−1. Then φ is a homeomorphism and φ(O∩Uω(A))
is a closed subspace of Asa for all ω ∈ P(A).

Proof. If U ∈ O, then −1 /∈ σ(U) since this would contradict ‖I − U‖ < 2. There-
fore φ is well-defined. Note that φ is just multiplication by −1 composed with
the inverse Cayley transform. In particular, φ is a homeomorphism with inverse
φ−1(A) = (iI −A)(iI +A)−1 by continuous functional calculus.

Let ω ∈ P(A). Then φ(O ∩ Uω(A)) is closed since Uω(A) is closed in U(A)
and φ is a homeomorphism. Let (H, π,Ω) be the GNS representation of ω. If
U ∈ O ∩ Uω(A), then π(U)Ω = λΩ for some λ ∈ U(1). Furthermore, there exists a
sequence of polynomials (pn) such that pn(λ) converges to φ(λ) = i(1−λ)(1+λ)−1

uniformly on σ(U), hence

π(φ(U))Ω = lim
n→∞

π(pn(U))Ω = lim
n→∞

pn(λ)Ω = φ(λ)Ω.

Now, let U, V ∈ O ∩ Uω(A), let α ∈ R, and set A = φ(U) + αφ(V ). Then the
argument above implies that π(A)Ω = µΩ for some µ ∈ R, hence π(φ−1(A))Ω =
φ−1(µ)Ω by the same argument. Thus, φ−1(A) ∈ O∩Uω(A), so A ∈ φ(O∩Uω(A)).
Therefore, φ(O ∩ Uω(A)) is a subspace of Asa. �
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The last tool we need for the computation of the homotopy groups is a theorem
by Glöckner [Glö10, Thm. 1.13], which says that under the existence of so-called
well-filled charts, the homotopy groups of a space X are the direct colimits of the
homotopy groups of an ascending sequence of subspaces X1 ⊂ X2 ⊂ · · · whose
union

⋃
Xj is dense in X. The notion of a well-filled chart is given by Definition

1.7 in the same article. The definition provided there is more general than we
need; in fact, our well-filled charts are of a very simple form and the following more
restrictive framework will suffice. Let X be a Hausdorff topological group with a
sequence of subgroups (Xj)j∈N such that Xj ⊂ Xj+1 for all j ∈ N and X =

⋃
j Xj .

Equip each Xj with its subspace topology. Let E be a Hausdorff locally convex
topological vector space. If O is an open subset of X containing the identity of X
and φ : O → E is a homeomorphism such that φ(O∩Xj) is a closed linear subspace
of E for all j ∈ N, then φ is a well-filled chart and

πk(X,x) = colim
j∈Nx

πk(Xj , x) for all k ∈ N and x ∈
⋃

j∈N

Xj ,

where Nx = {j ∈ N : x ∈ Xj} and where the colimit is with respect to the homo-
morphisms induced by the inclusions Xj → X and Xi → Xj for i ≤ j. Likewise,

π0(X) = colim
j∈N

π0(Xj) .

This distills what we need from Definition 1.7, Theorem 1.13, Corollary 1.14 and
Lemma 8.1 in [Glö10], although the full definition of a well-filled chart is more
general.

Theorem 3.16. Let A be a UHF algebra generated by the strict inductive system
(Aj)j∈N of type (nj)j∈N. Denote by δA the supernatural number associated to A.
Then

Q(δA) =
⋃

j∈N

n−1
j Z (3.10)

and

πk(U(A)) ∼=
{
0 for k even,

Q(δA) for k odd.
(3.11)

Furthermore, for every ω ∈ P(A) the homotopy groups of the isotropy group Uω(A)
are given by

πk(Uω(A)) ∼=





0 for k even,

Z×Q(δA) for k = 1,

Q(δA) for k > 1 and k odd.

(3.12)

Proof. By possibly passing to isomorphic C∗-algebras we can assume without loss
of generality that the inductive system defining A is of the form

CI ⊂ A0 ⊂ A1 ⊂ · · · ,
where I is the unit of A. Then A =

⋃
j∈N

Aj and U(A) =
⋃
j∈N

U(Aj), where the

latter equality has been shown by [Gli60, Lem. 3.1].
We want to prove a similar formula for the isotropy group Uω(A). To this

end observe that by [Pow67, Cor. 3.8] there exists for every pair of pure states
ψ, ω ∈ P(A) an automorphism α ∈ Aut(A) such that ψ = ω ◦ α . Then α restricts
to an isomorphism of topological groups Uψ(A) → Uω(A). Therefore, without loss
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of generality, we may choose ω to be any pure state we like; in particular, we may
choose ω such that ω|Aj is pure for all j ∈ N. Then Lemma 3.14 implies that

Uω(A) =
⋃
j∈N

U(Aj) ∩ Uω(A).

Formula (3.10) is an arithmetic result relating an abelian group obtained directly
from the sequence (nj)j∈N with the abelian group constructed from the associated
supernatural number δA. The formula is proved in [RLL00, Lem. 7.4.4 (i)].

Next we will define a well-filled chart of U(A), which restricts to a well-filled chart
of Uω(A), whose domain contains the identity I ∈ A. Then the remarks preceding
the theorem will yield

πk(U(A)) = colim
j∈N

πk(U(Aj)) (3.13)

and

πk(Uω(A)) = colim
j∈N

πk(U(Aj) ∩ Uω(A)). (3.14)

In particular, U(Aj) ∼= U(nj) and U(Aj) ∩ Uω(A) ∼= U(1) × U(nj − 1) by Lemma
3.14. These spaces are path-connected, so the homotopy groups are independent of
the base point. We will define our well-filled chart, then analyze the colimit.

As in Lemma 3.15, let O = {U ∈ U(A) : ‖I − U‖ < 2} and define φ : O → Asa

by φ(U) = i(I − U)(I + U)−1. Then φ is a homeomorphism and φ|O∩U(Aj) is a
homeomorphism onto (Aj)sa for all j ∈ N, so φ is a well-filled chart for U(A) and
I ∈ O, as desired.

Since φ is a homeomorphism, the restriction

φ|O∩Uω(A) : O ∩ Uω(A) → φ(O ∩ Uω(A))

is also a homeomorphism when φ(O∩Uω(A)) is given the subspace topology inher-
ited from Asa. Lemma 3.15 entails that φ(O ∩ Uω(A)) is a closed linear subspace
of Asa. For each j ∈ N, Lemma 3.14 states that U(Aj) ∩ Uω(A) = Uω|Aj (Aj), so

Lemma 3.15 implies that φ(O∩Uω(A)∩U(Aj)) is a closed linear subspace of (Aj)sa,
hence also a closed linear subspace of φ(O ∩ Uω(A)). We see that φ|O∩Uω(A) is a
well-filled chart with I ∈ O ∩ Uω(A), as desired.

We now analyze the colimits. Denote by ιij : Ai → Aj the canonical inclusions
for i ≤ j. Then there exist ∗-isomorphisms σi : Ai →Mni(C) such that

σij(A) =




A
A

. . .

A


 for all A ∈Mni(C) , (3.15)

where σij = σj ◦ ιij ◦σ−1
i :Mni(C) →Mnj (C) and where there are nij = nj/ni ∈ N

copies of A on the diagonal. Choose ω to be the unique pure state determined
by setting ω(A) to be the top left entry of the matrix σi(A) for all A ∈ Ai. The
colimit (3.13) is isomorphic to the colimit of the homomorphisms on homotopy
groups πk(U(ni)) that are induced by the inclusions (3.15) restricted to the unitary
groups U(ni). Furthermore,

σi(Uω(A) ∩ U(Ai)) =

{(
z

U

)
: z ∈ U(1), U ∈ U(ni − 1)

}
∼= U(1)× U(ni − 1).

Therefore, the colimit (3.14) is isomorphic to the colimit of the homorphisms on
homotopy groups πk(U(1) × U(ni − 1)) that are induced by the continuous maps



CONTINUITY OF KADISON TRANSITIVITY AND OF THE GNS CONSTRUCTION 45

gij : U(1)× U(ni − 1) → U(1)× U(nj − 1) defined by

(pr1 ◦gij)(z, U) = z (3.16)

and

(pr2 ◦gij)(z, U) =




U
z

U
z

. . .

U




, (3.17)

where pr1 and pr2 are the projections.
We consider the former colimit. Recall that the map

fij : U(ni) → U(nj), U 7→ diag(U, I)

induces isomorphisms on homotopy groups πk for k < 2ni. By the Bott periodicity
theorem [Bot57], the homotopy groups of the unitary groups U(n) are given for
k < 2n by

πk(U(n)) =

{
0 if k is even,

Z if k is odd.

Thus, when k is even, the colimit is zero. Fix k odd and let i0 ∈ N be the smallest
natural number such that ni0 > k/2. Choosing a generator x ∈ πk(U(ni0)) we
obtain generators (fi0i)∗x ∈ πk(U(ni)) for all i ≥ i0. Then for all j ≥ i ≥ i0,

(σij)∗(fi0i)∗x = nij(fi0j)∗x,

where we have restricted σij to the unitary groups. The homomorphisms (σij)∗ are
thus multiplication by nij . Now define homomorphisms

σi : πk(U(ni)) → Q(δA) =
⋃

j∈N

n−1
j Z

as follows. If i ≥ i0, let σi by the unique group homomorphism mapping the
generator (fi0i)∗x to 1/ni. If i < i0, put σi = σi0(σii0)∗. By construction, the
relation σi = σj(σij)∗ then is fulfilled for all j ≥ i. Since the union of the images
of the homomorphisms σi coincides with Q(δA) and since σi is injective for i ≥ i0,
Q(δA) together with the family (σj)j∈N is the directed colimit we are looking for
and formula (3.11) is proven.

We now consider the direct system gij : U(1) × U(ni − 1) → U(1) × U(nj − 1).
For the homotopy groups πk with k > 1, the analysis proceeds in an analogous
way using the fact that the embedding U(nj − 1) →֒ U(1)× U(nj − 1), U 7→ (1, U)
induces an isomorphism πk(U(nj − 1)) → πk(U(1) × U(nj − 1)). Choose i0 such
that ni0 > k/2 + 1. If k is even, then πk(U(1) × U(nj − 1)) = πk(U(nj − 1)) = 0
for all j ≥ i0, hence the colimit colim

j∈N

πk(U(1) × U(nj − 1)) is trivial. If k is odd

and j ≥ i ≥ i0, the homomorphism (gij)∗ maps a generator of πk(U(1)×U(ni− 1))
to nij times a generator of πk(U(1)× U(nj − 1)), hence the colimit coincides with
Q(δA) as before. In case k = 1 we have π1(U(1) × U(ni − 1)) ∼= Z × Z for all
i ≥ i0. Denote by fj : U(1) → U(1) × U(nj − 1) the map z 7→ (1, diag(z, I)) and
by hj : U(1) → U(1) × U(nj − 1) the map z 7→ (z, I). After choice of a generator
x ∈ π1(U(1)) the elements xj = (hj)∗x and yj = (fj)∗x then are generators of
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π1(U(1)×U(nj − 1)). Inspection of equations (3.16) and (3.17) then shows that for
j ≥ i

(gij)∗xi = xj + (nij − 1)yj ,

(gij)∗yi = nijyj .

In other words, (gij)∗ is given by the matrix
(

1 0
nij − 1 nij

)
.

Now let the homomorphisms gj : π1(U(1) × U(nj − 1)) → Z × Q be given by
multiplication by the matrix

(
1 0

1 + n−1
j n−1

j

)
.

Then one checks easily that gj(gij)∗ = gi for all j ≥ i. The union of the images of
the maps gj covers Z×Q. Moreover, each of the maps gj is injective, hence Z×Q
together with the family of maps (gj)j∈N provides the colimit of the inductive
system of abelian groups (π1(U(1)× U(nj − 1)), (gij)∗)i≤j . This finishes the proof

of (3.12). �

Remark 3.17. The proof of the theorem applies to more general situations. Namely,
if A is the colimit of a strict inductive system of C∗-algebras (Aj)j∈J , not necessarily
countable, then the same argument as above using [Glö10, Thm. 1.13] yields

πk(U(A), U) = colim
j∈JU

πk(U(Aj), U) for all k ∈ N and U ∈
⋃

j∈J
U(Aj),

where JU = {j ∈ J : U ∈ U(Aj)}. This result was shown by Handelman in [Han78,
Prop. 4.4] through a different method of proof. Schröder computed in [Sch86]
the homotopy groups of the regular group of a UHF algebra which is homotopy
equivalent to its unitary group. Schröder’s result therefore entails ours. However,
to our knowledge, the homotopy groups πk(Uω(A)) for a UHF algebra A and pure
state ω have not been computed before.

We now can show the claimed nontriviality of the bundle U(A) → Pω(A).

Corollary 3.18. For every infinite dimensional UHF algebra A and pure state ω
on it the bundle pU(A) : U(A) → Pω(A) is nontrivial.

Proof. As a consequence of the preceding theorem, the rationalized fundamental
groups of U(A)

π1(U(A))⊗Z Q ∼= Q(δA)⊗Z Q ∼= Q

and of the trivial bundle Uω(A)× Pω(A)

π1(Uω(A)× Pω(A))⊗Z Q ∼= (Z×A(δA))⊗Z Q ∼= Q2

are not isomorphic, hence pU(A) : U(A) → Pω(A) can not be trivial. �

The theorem also allows to compute the topological K-theory of a UHF algebra.

Corollary 3.19. Under the assumptions of the theorem, the K-theory of the UHF
algebra A is given by

Kk(A) =

{
Q(δA) for k = 0,

0 for k = 1.
(3.18)
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Proof. Denote by GLn(A) and Un(A) the groups of invertible respectively unitary
n × n-matrices with entries in A. Note that both are topological groups in a
natural way and that Un(A) is a deformation retract of GLn(A) [Bla98, Sec. 8.1].
Let GL∞(A) and U∞(A) denote the colimits within the category of topological
groups of the inductive systems (GLn(A))n∈N and (Un(A))n∈N, respectively. The
topological K-theory of A can now be defined as the homotopy groups

Kk(A) =

{
π1
(
GL∞(A)

)
for k = 0 ,

π0
(
GL∞(A)

)
for k = 1 .

(3.19)

Using as before Glöckner’s results [Glö10] on the homotopy groups of colimits of
direct systems of Banach Lie groups possessing well-filled charts or the sightly
stronger direct limit charts one concludes that

πk
(
GL∞(A)

)
= colim

n∈N

πk
(
GLn(A)

)
.

Since GLn(A) and Un(A) are homotopy equivalent, one obtains

πk
(
GL∞(A)

)
= colim

n∈N

πk
(
Un(A)

)
. (3.20)

Note that this equality also holds true when A is replaced by any of the C∗-algebras
Aj ∼= Mnj (C) defining A. Now observe that when i0 is chosen such that ni0 > 2k
there is for all m ≥ n and j ≥ i > i0 a commutative diagram

πk
(
Un(Ai)

)
πk
(
Um(Ai)

)

πk
(
Un(Aj)

)
πk
(
Um(Aj)

)
.

·nij ·nij

The horizontal morphisms in this diagram are induced by embeddings of the form
A 7→ diag(A, I) and are isomorphisms. The vertical morphisms are multiplication
by nij , using notation from the proof of the theorem. For all m ≥ n the induced
maps

colim
j∈N

πk
(
Un(Aj)

)
→ colim

j∈N

πk
(
Um(Aj)

)

are therefore isomorphisms, hence for all n ≥ 1

πk
(
Un(A)

)
= πk

(
U(A)

)
=

{
Q(δA) for k even ,

0 for k odd .

By (3.19) and (3.20) this entails the claim. �

Remark 3.20. The topological K-theory of a UHF algebra is well known; see
e.g. [Sch86], or [RLL00, Sec. 7.4]. The virtue of the approach presented here
is that it avoids the claim occasionally made in the K-theoretic literature that
the colimit topology on GL∞(A) is compatible with the underlying group struc-
ture. For A infinite dimensional, this is in general not true as has been shown in
[TSH98, Yam98]. The appropriate way is to define GL∞(A) as the colimit of the
direct system (GLn(A))n∈N within the category of topological groups. Under this
concept, GL∞(A) is the union of the groups GLn(A) endowed with the natural group
structure. The correct topology turning it into a topological group is the bamboo
shoot topology [TSH98] which in general does not coincide with the colimit topol-
ogy. Glöckner’s approach [Glö10] to determine the homotopy groups of colimits of
Lie groups or manifolds addresses this fact.
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4. The fiberwise GNS construction

In this section we consider a norm-defined C∗-algebra fiber bundle p : A → X
and construct some naturally associated fiber bundles. For the convenience of the
reader we collected in Appendices A.2 and A.3 several fundamental notions from
infinite dimensional bundle theory which are used in the following.

4.1. The setup. Throughout this section we assume to be given a norm-defined
C∗-algebra bundle p : A → X over a locally path connected Hausdorff topological
space X. This means in particular that p : A → X is a continuous surjection such
that Ax = p−1(x) carries the structure of a C∗-algebra for each x ∈ X, that the
typical fiber is a C∗-algebra F and finally that the structure group is the group
Aut(F)n of all automorphisms of F endowed with the norm topology.

Given the C∗-algebra bundle p : A → X we may construct the dual bundle, a
Banach bundle whose fibers are the dual spaces A∗

x with the norm topology. More
precisely, we set

A∗ =
∐

x∈X
A∗
x

as a disjoint union of sets and let p
A∗ : A∗ → X be the natural projection. For

every local trivialization (ϕ,O) of A, we define ϕ∗ : A∗
|O = (p

A∗)−1(O) → O × F∗

by ϕ∗(x, ω) = (x, ω ◦ ϕ−1
x ) for each x ∈ X. Since ϕ−1

x is a ∗-isomorphism, the map
ϕ∗,x : A∗

x → F∗ is a bijective linear isometry. Furthermore, given local trivializations
(ϕi, Oi), i = 1, 2, of A, the transition map

g∗,12 : O1 ∩O2 → Aut(F∗)n, x 7→ ϕ1,∗,x ◦ ϕ−1
2,∗,x = (ϕ1,x ◦ ϕ−1

2,x)∗

is continuous by norm continuity of the map Aut(F) → GL(F∗), α 7→ α∗ = (α−1)∗.
As for the underlying topology, A∗ will be endowed with the coarsest topology such
that for each local trivialization (ϕ,O) of A the set A∗

|O is open and the map ϕ∗
is continuous. Since all transition functions are continuous with values in Aut(F)n,
each local trivialization ϕ∗ then is a homeomorphism, and p

A∗ : A∗ → X becomes
a norm defined Banach vector bundle with typical fiber the dual F∗.

Next we construct the subbundle pP(A) : P(A) → X of p
A∗ : A∗ → X consisting

of fiberwise pure states on A. As a set, let

P(A) =
∐

x∈X
P(Ax)

and endow P(A) with the subspace topology from A∗. The restriction of p
A∗ to

P(A) will be denoted by pP(A). By construction, pP(A) : P(A) → X then is a
continuous surjection. Given a local trivialization (ϕ,O) of A, the restriction of
ϕ∗ to P(A)|O = P(A) ∩ A∗

|O then maps each fiber P(Ax) onto P(F) since ϕx is

a ∗-isomorphism. So ϕ∗|P(A)|O : P(A)|O → O × P(F) is a local trivialization of

P(A). By the following lemma the automorphism group Aut(F)n acts effectively on
P(F), so the family of such restrictions forms a trivializing atlas of P(A) with norm
continuous transition maps. Hence (P(A), X, pP(A),P(F),Aut(F)n) is a subbundle
of the dual bundle p

A∗ : A∗ → X. We call pP(A) : P(A) → X the pure state bundle
of A.

Lemma 4.1. For any C∗-algebra B, the automorphism group Aut(B)n acts effec-
tively and continuously on the pure state space P(B) by

Aut(B)n × P(B)n → P(B)n, (α, ω) 7→ ω ◦ α−1 .
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Proof. We only need to show that Aut(B) acts effectively on the pure state space.
Continuity is obvious. To this end suppose that the automorphism α ∈ Aut(B)
leaves every pure state invariant. Then for every irreducible representation (H , π)
of B, every Ψ ∈ H , and every A ∈ B, we have 〈Ψ, π(α(A))Ψ〉 = 〈Ψ, π(A)Ψ〉, which
implies that π(α(A)) = π(A) for all A ∈ B. This entails that ρ◦α = ρ for a reduced
atomic representation ρ in the sense of [KR97d, Sec. 10.3]. If B is unital, a reduced
atomic representation is faithful by [KR97d, Prop. 10.3.10], so it follows that α
coincides with the identity automorphism and Aut(B) acts effectively on P(B).
If B is non-unital, then the unique extension of α to a unital ∗-automorphism on
the unitization of B leaves every pure state on the unitization invariant, hence the
non-unital case follows from the unital case. �

4.2. The GNS Hilbert bundle. In this section, we construct Hilbert bundles over
pure state spaces whose fibers correspond to the Hilbert spaces of the associated
GNS representations. The most general case, which is the last one presented in
this section, is the construction of a Hilbert bundle H → P(A) associated to a
C∗-algebra bundle A → X which we call the GNS Hilbert bundle. We begin with
some preliminary constructions.

We start with a Hilbert space H and construct a Hilbert bundle p
H

: H → S
over the space S := P∗(B(H))n of pure normal states of the C∗-algebra of bounded
linear operators on H. Note that S is assumed to carry the metric uniformity
induced by the norm on the dual B(H)∗.

As a set, let

H =
∐

̺∈S
H̺

be the disjoint union of the GNS Hilbert spaces H̺. Denote by p
H
: H → S the

projection which associates to every vector Ψ ∈ H̺ the “footpoint” state ̺.
Recall from Cor. 2.2 that the map r : PH → S which associates to each ray

CΨ the pure state ψ it represents is a bi-Lipschitz isomorphism of uniform spaces.
For v ∈ SH let Ov ⊂ S be the open ball of radius 2 around the state r(Cv).
Let sv : Ov → SH be the norm-continuous section of the canonical projection
SH → S from Cor. 2.8 such that 〈sv(̺), v〉 > 0 for all ̺ ∈ Ov. Given a pure
normal state ̺ ∈ Ov, denote by Rv,̺ the cyclic representation (H, idB(H),Pv,̺)
where Pv,̺ = sv(̺).

By construction, the state associated to the unit vector Pv,̺ coincides with ̺.
Hence by Prop. 1.16 (ii) the cyclic representation Rv,̺ is unitarily equivalent to the
GNS representation (H̺, π̺,Ω̺) via a unique unitary map Uv,̺ : H̺ → H which
maps Ω̺ to Pv,̺. The unitary Uv,̺ can actually be written down explicitly. It is
given by

Uv,̺(A+N̺) = A(Pv,̺) for all A ∈ B(H) . (4.1)

From these data we can now define a local trivialization of H over Ov by the
following formula:

χv : p
−1
H

(Ov) = H |Ov → Ov ×H, Ψ 7→ (̺, Uv,̺Ψ) where ̺ = p
H
(Ψ) .

Now endow H with the coarsest topology so that for every v ∈ SH the set H |Ov
is open and the local trivialization χv is continuous.

Before we determine the transition functions let us take a step back and consider
the tautological line bundle p

L
: L → S ∼= PH whose fiber over ̺ ∈ S consists of

all vectors in the complex line r−1(̺). Then L is a smooth line bundle over S with
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structure group given by U(1). By construction L coincides with the pullback by
r−1 of the tautological line bundle over PH. A local smooth frame of L over Ov is
given by the section sv : Ov → SH, ̺ 7→ Pv,̺, hence

τv : L |Ov → Ov × C, Ψ 7→
(
p

L
(Ψ), 〈Pv,p

L
(Ψ),Ψ〉

)

is a local trivialization. Now let w be another unit vector in H and consider the
map

hv,w : Ov ∩Ow → U(1), ̺ 7→ 〈Pv,̺,Pw,̺〉 .
Then

Pv,̺ = hv,w(̺) · Pw,̺ for all ̺ ∈ Ov ∩Ow , (4.2)

hence one obtains for all z ∈ C

τv ◦ τ−1
w (̺, z) = (̺, hv,w(̺) · z) .

Therefore, the family (hv,w)v,w∈SH forms a Čech cocycle of transition functions
defining the tautological line bundle over S.

For the bundle p
H

: H → S, Eq. (4.2) implies that the map

χv ◦ χ−1
w : (Ov ∩Ow)×H → (Ov ∩Ow)×H, (̺,A(Pw,̺)) 7→ (̺,A(Pv,̺)) ,

is given by the fiberwise action of hv,w meaning that

χv ◦ χ−1
w (̺,Ψ) = hv,w(̺) ·Ψ for all (̺,Ψ) ∈ (Ov ∩Ow)×H . (4.3)

On the one hand this implies that each transition function

Ov ∩Ow → U(H ), ̺ 7→ χv,̺ ◦ χ−1
w,̺

is a continuous map and therefore every local trivialization χv a homeomorphism.
Hence, p

H
: H → S is a Hilbert bundle as claimed. On the other hand, Eq. (4.3)

entails that the structure group of the fiber bundle p
H

: H → S can be reduced

to U(1) and that a defining Čech cocycle is given by the Čech cocycle (hv,w)v,w∈SH
defining the dual tautological line bundle L ∗ → S.

Remark 4.2. The argument above shows that p
H

: H → S can be identified
with the associated bundle Fr(L ∗)×U(1)H, where Fr(L ∗) → S denotes the bundle
of unitary frames of the dual tautological bundle. Note that Fr(L ∗) → S is a
U(1)-principal bundle by construction.

We continue with a C∗-algebra F and construct a locally trivial Hilbert bundle
p

H
: H → P(F)n over the pure state space of F which we assume to be endowed

with the metric induced by the norm on F∗. As a set, the Hilbert bundle H we
construct is the disjoint union of the GNS Hilbert spaces H̺, ̺ ∈ P(F). The
projection p

H
: H → P(F) maps each element of H̺ to ̺. Since the pure state

space P(F) is the disjoint union of sectors, we obtain the decomposition

H =
∐

̺∈P(F)

H̺ =
∐

S∈Sec(F)

∐

̺∈S
H̺ , (4.4)

where Sec(F) denotes the space of superselection sectors of F.
Now fix for every sector S ∈ Sec(F) a pure state ̺S ∈ S and a cyclic repre-

sentation (HS , πS ,ΩS) such ΩS is a unit vector representing the state ̺S , e.g. the
GNS representation of ̺S . We then apply over each sector S the construction of
a Hilbert bundle pHS

: HS → S described above. Since each sector is an open
connected component of P(F)n and by the decomposition (4.4), the projection
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p
H

: H → P(F)n carries a unique structure of a Hilbert bundle such that each
subspace H|S = HS is open and such that the canonical injection HS →֒ H is an
embedding of Hilbert bundles. Note that for different sectors S, S′ ∈ Sec(F), the
associated Hilbert spaces HS and HS′ might not be (canonically) isomorphic, so
the typical fiber might change from component to component.

A Čech cocyle of transition functions for the Hilbert bundle p
H

: H → P(F)n
is given as follows. Given a sector S and a vector v ∈ SHS let OS,v ⊂ S be the
open ball of radius 2 around the state rS(Cv), where rS : PHS → S = PπS (F)n
denotes the bi-Lipschitz isomorphism from Cor. 2.2. Let sv : OS,v → SHS be the
unique section according to Cor. 2.8 such that 〈sv(̺), v〉 > 0 for all ̺ ∈ OS,v. The
family of transition functions

hS,v,w : OS,v ∩OS,w → U(1), ̺ 7→ 〈sv(̺), sw(̺)〉 ,
where S runs through the superselection sectors of F and v, w through the unit vec-
tors of HS then is a Čech cocycle whose dual Čech cocycle (hS,v,w)S∈Sec(F), v,w∈SHS

characterizes the Hilbert bundle p
H

: H → P(F) with typical fiber HS over the
sector S up to isomorphism.

Before we tackle the final and general case we need an auxiliary result show-
ing that the unitary associated to an automorphism of a C∗-algebra according to
Prop. 1.16 (i) depends continuously in the norm topology on the argument. This
result will be used to show that out of a system of transition functions for a C∗-
algebra bundle A we get a system of U(H)-valued transition maps for the Hilbert
bundle to be constructed.

For the following proposition, let Iso(B,C)n be the set of ∗-isomorphisms between
C∗-algebras B and C, with the subspace topology inherited from the norm topology
on the bounded linear operators B → C. Likewise, U(H, H̃)n is the set of unitary

operators H → H̃ with the norm topology.

Proposition 4.3. Let B be a C∗-algebra, (H, π) a nonzero irreducible representa-
tion, and r : PH → Pπ(B)n the uniform isomorphism associated to (H, π). For
every Ω ∈ SH, let sΩ : B2(r(CΩ)) → SH be the unique section of the canonical pro-
jection r ◦ pSH such that 〈Ω, sΩ(ω)〉 > 0 for all ω ∈ B2(r(CΩ)), and let ξΩ : B → H
be the map ξΩ(B) = π(B)Ω. Let C be another C∗-algebra with nonzero irreducible

representation (H̃, π̃) and associated maps r̃, s̃Ψ, and ξ̃Ψ for Ψ ∈ SH̃. Define

O =
{
(α,Ω,Ψ) ∈ Iso(B,C)n × SH× SH̃ : α∗r(CΩ) ∈ B2(r̃(CΨ))

}

Then the following hold true:

(i) If B = C and (H, π) = (H̃, π̃), then for each Ω,Ψ ∈ SH there exists α ∈
Aut(B) such that (α,Ω,Ψ) ∈ O.

(ii) The set O is open in Iso(B,C)n × SH× SH̃.

(iii) The map Φ : O → SH̃, Φ(α,Ω,Ψ) = s̃Ψα∗r(CΩ) is continuous.

(iv) The unique map U : O → U(H, H̃)n making the diagram

B C

H H̃

α

ξΩ ξ̃Φ(α,Ω,Ψ)

U(α,Ω,Ψ)

commute for all (α,Ω,Ψ) ∈ O is continuous.
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Proof. (i) This follows from Theorem 1.14 when B is unital. When B is non-unital,

we may extend r(CΩ) and r(CΨ) to pure states on the unitization B̃ in the same

superselection sector. We may then use Theorem 1.14 to find a unitary in B̃ that
generates an inner automorphism that relates the two extended states. Since B is

a two-sided ideal in B̃, this automorphism restricts to an automorphism α on B

such that (α,Ω,Ψ) ∈ O.
(ii) Observe that O is the preimage of [0, 2) under the continuous map

Iso(B,C)n × SH× SH̃ → [0, 2], (α,Ω,Ψ) 7→ ‖α∗r(CΩ)− r̃(CΨ)‖ .

(iii) Fix (α,Ω,Ψ) ∈ O and ε > 0, and choose δ > 0. Let (α′,Ω′,Ψ′) ∈ O such
that ‖α− α′‖ < δ, ‖Ω− Ω′‖ < δ, and ‖Ψ−Ψ′‖ < δ. Choose δ small enough so
that this implies (α′,Ω′,Ψ) ∈ O, which we can do since O is open. We can choose
δ small enough so that ‖Φ(α,Ω,Ψ)− Φ(α′,Ω′,Ψ)‖ < ε/2 by continuity of s̃Ψ and
continuity of (α,Ω) 7→ α∗r(CΩ). We must show that δ can be chosen small enough
so that ‖Φ(α′,Ω′,Ψ)− Φ(α′,Ω′,Ψ′)‖ < ε/2. Since Φ(α′,Ω′,Ψ) and Φ(α′,Ω′,Ψ′)
both represent the state α′

∗r(CΩ
′) in the representation π̃, there exists λ ∈ U(1)

such that Φ(α′,Ω′,Ψ) = λΦ(α′,Ω′,Ψ′). Then
√
1− 1

4
‖α′

∗r(CΩ
′)− r̃(CΨ)‖2 = 〈Ψ,Φ(α′,Ω′,Ψ)〉

= λ 〈Ψ−Ψ′,Φ(α′,Ω′,Ψ′)〉+ λ 〈Ψ′,Φ(α′,Ω′,Ψ′)〉
= λ 〈Ψ−Ψ′,Φ(α′,Ω′,Ψ′)〉

+ λ

√
1− 1

4
‖α′

∗r(CΩ
′)− r̃(CΨ′)‖2.

We may shrink δ to make λ 〈Ψ−Ψ′,Φ(α′,Ω′,Ψ′)〉 arbitrarily small and the two
square roots above arbitrarily close to each other. It follows that we can make
|1− λ| < ε/2, yielding ‖Φ(α′,Ω′,Ψ)− Φ(α′,Ω′,Ψ)‖ < ε/2, as desired.

(iv) Recall that the map U as described above exists because (H, π,Ω) and

(H̃, π̃ ◦ α,Φ(α,Ω,Ψ)) are both cyclic representations representing the pure state
r(CΩ). In particular, we have

U(α,Ω,Ψ)Ω = Φ(α,Ω,Ψ) and U(α,Ω,Ψ)π(B) = π̃(α(B))U(α,Ω,Ψ). (4.5)

for all (α,Ω,Ψ) ∈ O and B ∈ B.
Fix (α,Ω,Ψ) ∈ O and ε > 0, and choose δ > 0. Let (α′,Ω′,Ψ′) ∈ O such

that ‖α− α′‖ < δ, ‖Ω− Ω′‖ < δ, and ‖Ψ−Ψ′‖ < δ. Choose δ small enough
so that this implies (α′,Ω,Ψ), (α′,Ω′,Ψ) ∈ O, which we can do since O is open.
Let v ∈ SH be arbitrary and choose B,B′ ∈ B such that ‖B‖, ‖B′‖ ≤ 1 and
v = π(B)Ω = π(B′)Ω′, which we can do by Theorem 3.4. Observe the following:

‖U(α,Ω,Ψ)v − U(α′,Ω,Ψ)v‖ = ‖π̃(α(B))Φ(α,Ω,Ψ)− π̃(α′(B))Φ(α′,Ω,Ψ)‖
≤ ‖α− α′‖+ ‖Φ(α,Ω,Ψ)− Φ(α′,Ω,Ψ)‖

‖U(α′,Ω,Ψ)v − U(α′,Ω′,Ψ)v‖ = ‖π̃(α′(B))Φ(α′,Ω,Ψ)− π̃(α′(B))U(α′,Ω′,Ψ)Ω‖
≤ ‖Φ(α′,Ω,Ψ)− Φ(α′,Ω′,Ψ)‖+ ‖Ω− Ω′‖

‖U(α′,Ω′,Ψ)v − U(α′,Ω′,Ψ′)v‖ = ‖π̃(α′(B′))Φ(α′,Ω′,Ψ)− π̃(α′(B′))Φ(α′,Ω′,Ψ′)‖
≤ ‖Φ(α′,Ω′,Ψ)− Φ(α′,Ω′,Ψ′)‖.
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By continuity of Φ, all of the quantities on the right can be made less than ε/6 by
shrinking δ, independently of v. Thus, by the triangle inequality, we may choose
δ such that ‖U(α,Ω,Ψ)v − U(α′,Ω′,Ψ′)v‖ < 5ε/6 for all v ∈ SH, which implies
‖U(α,Ω,Ψ)− U(α′,Ω′,Ψ′)‖ < ε, proving continuity of U . �

Finally we consider the general case of a norm defined C∗-algebra bundle p :
A → X with typical fiber F and construct a locally trivial Hilbert bundle p

H
:

H → P(A). As before, we put as a set

H =
∐

̺∈P(A)

H̺ .

Let (ϕi)i∈I be an atlas of local trivializations ϕi : p
−1(Oi) → Oi × F, where each

trivializing domain Oi is an open subset of X. The intersections Oi ∩ Oj will be
denoted by Oij and the transition functions by gij : Oij → Aut(F)n.

As explained above, the trivializing atlas (ϕi)i∈I induces an atlas of local triv-
ializations ϕi,∗ : P(A)|Oi → Oi × P(F), i ∈ I, of the pure state bundle pP(A) :
P(A) → X. Now choose for every sector S ∈ Sec(F) a pure state ̺S ∈ S and
a cyclic representation (HS , πS ,ΩS) such that the unit vector ΩS represents the
state ̺S . Prop. 1.16 (i) shows that given two sectors R,S ∈ Sec(F) for which
there exists an automorphism α ∈ Aut(F) such that α∗̺S = ̺R, the representation
(HR, πR,ΩR) is unitarily equivalent to a cyclic representation in HS . This defines
an equivalence relation on sectors. Therefore, after possibly switching to unitarily
equivalent representations, we can assume that all sectors which are equivalent with
respect to this relation are represented on the same Hilbert space. In particular,
we can assume that for i, j ∈ I with Oij 6= ∅, the Hilbert spaces HS and H

gij(x)(S)

coincide for all x ∈ Oij , where gij(x) : Sec(F) → Sec(F) denotes the permutation of
the sectors induced by the automorphism gij(x) of F according to Prop. 1.16 (ii).

Given i ∈ I, a sector S ∈ Sec(F) and a unit vector v ∈ SHS we define

Oi,S,v := ϕ−1
i,∗ (Oi ×OS,v) ⊂ P(A), (4.6)

where as before OS,v ⊂ S denotes the open ball of radius 2 around the state rS(Cv).
Here, rS : PHS → PπS (F)n is the uniform isomorphism associated to the represen-
tation (HS , πS ,ΩS). Recall that we have a canonical section sv : OS,v → SHS . For
every ̺ ∈ Oi,S,v define Ωi,S,v(̺) = sv(ϕi,∗(̺)) ∈ HS , where here and in what follows
we often identify ϕi,∗(̺) with its projection to P(F). Then (HS , πS ,Ωi,S,v(̺)) is a
cyclic representation of F. According to Prop. 1.16 (i) there exists a unique unitary
Ui,v,̺ : H̺ → HS such that the diagram

Ap(̺) F

H̺ HS

ϕi,p(̺)

ξ̺ ξϕi,∗(̺)

Ui,v,̺

(4.7)

commutes and Ui,v,̺Ω̺ = Ωi,S,v(̺). Here, we have abbreviated the projection
pP(A) : P(A) → X by p.

Theorem 4.4. Define local trivializations over the open sets Oi,S,v ⊂ P(A) of
(4.6) by

χi,S,v : H |Oi,S,v → Oi,S,v ×HS , Ψ 7→ (̺, Ui,v,̺Ψ), where ̺ = pH (Ψ) . (4.8)
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Endow H with the coarsest topology such that each of the subsets H |Oi,S,v is open
and all maps χi,S,v are continuous. Then pH : H → P(A) is a Hilbert bundle.

Proof. We will show that the transition functions

hi,S,v;j,R,w : Oi,S,v;j,R,w := Oi,S,v ∩Oj,R,w → U(HS)n, ̺ 7→ Ui,v,̺ ◦ U−1
j,w,̺ (4.9)

are continuous for all i, j ∈ I, sectors S,R ∈ Sec(F), and unit vectors v, w ∈ SHS

such that Oi,S,v;j,R,w 6= ∅, so that pH : H → P(A) is a Hilbert bundle as claimed.
To prove this, note that Oi,S,v;j,R,w 6= ∅ implies Oij 6= ∅ and HR = HS since for

any ̺ ∈ Oi,S,v;j,R,w, we have gij(p(̺))∗(ϕj,∗(̺)) = ϕi,∗(̺), hence S = gij(p(̺))(R).
Consider the following diagram.

F F

Ap(̺)

H̺

HS HS

gij(p(̺))

ξϕj,∗(̺) ξϕi,∗(̺)

ϕi

ξ̺

ϕj

ξ̺

Uj,w,̺ Ui,v,̺

hi,S,v;j,R,w(̺)

The diagram commutes by definition of the gij and hi,S,v;j,R,w and by construction
of the unitaries Uj,w,̺ and Ui,v,̺. Moreover,

gij(p(̺))∗rR(CΩj,R,w(̺)) = gij(p(̺))∗(ϕj,∗(̺)) = ϕi,∗(̺) = rS(CΩi,S,v(̺)).

Thus, (gij(p(̺)),Ωj,R,w(̺),Ωi,S,v(̺)) ∈ O and

Ωi,S,v(̺) = sv(gij(p(̺))∗rR(CΩj,R,w(̺))) = Φ(gij(p(̺)),Ωj,R,w(̺),Ωi,S,v(̺)),

where O and Φ are as in Prop. 4.3 for the case where B = C = F and the represen-
tations (H, π) and (H̃, π̃) are given by (HS , πS) and (HR, πR), respectively. Since
hi,S,v;j,R,w(Ωj,R,w(̺)) = Ωi,S,v(̺), we know that

hi,S,v;j,R,w(̺) = U
(
gij(p(̺)),Ωj,R,w(̺),Ωi,S,v(̺)

)
(4.10)

where U is as in Prop. 4.3. Since gij(p(̺)), Ωj,R,w(̺), and Ωi,S,v(̺) all depend
continuously on ̺ and U is continuous, the map hi,S,v;j,R,w is continuous. �

Definition 4.5. We call the Hilbert bundle pH : H → P(A) the GNS Hilbert
bundle associated to the C∗-algebra bundle p : A → X.

Remark 4.6. By Kuiper’s theorem [Kui65], the unitary group of a separable infi-
nite dimensional Hilbert space is contractible, hence any Hilbert bundle whose fibers
are separable infinite-dimensional Hilbert spaces is a trivial bundle [Sch18]. Note
that in a footnote to [Kui65, Theorem (3)], Kuiper indicates that the contractibility
of the unitary group holds also for non-separable Hilbert spaces, therefore Hilbert
bundles with such fibers have to be trivial as well. Let us remind the reader at this
point that if A is a separable C∗-algebra and ω ∈ S (A), then the Hilbert space
Hω of its GNS representation is separable.
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Remark 4.7. Given a norm-defined C∗-algebra bundle p : A → X as before and a
continuous section ω : X → P(A) of the associated pure state bundle, the pullback
bundle ω∗H → X of the GNS Hilbert bundle along the section ω is a Hilbert
bundle over X.

4.3. The subbundle of Gelfand ideals. We now construct a locally trivial fiber
bundle pN : N → P(A) out of the Gelfand ideals of elements in the pure state
bundle P(A), retaining the notation of Section §4.2 throughout. As a set, we define

N =
⊔

̺∈P(A)

N̺.

For each sector S ∈ Sec(F), let NS denote the Gelfand ideal of ̺S . Given a sector
S ∈ Sec(F) and a unit vector v ∈ SHS , Corollary 3.12 yields a continuous map
αS,v : OS,v → Aut(F)n such that

αS,v(ψ)∗ψ = rS(Cv)

for all ψ ∈ OS,v. We may also find a fixed automorphism βS,v ∈ Aut(F) such that

βS,v,∗rS(Cv) = ̺S .

We will prove the following result:

Theorem 4.8. For each i ∈ I, S ∈ Sec(F), and unit vector v ∈ SHS, define a local
trivialization

χN
i,S,v : N |Oi,S,v → Oi,S,v ×NS ,

by

A 7→ (̺, βS,v(αS,v(ϕi,∗(̺))(ϕi(A)))), ̺ = pN (A) .

Give N the unique topology such that each N |Oi,S,v is open and each local trivializa-

tion χN
i,S,v : N |Oi,S,v → Oi,S,v ×NS is a homeomorphism. Then pN : N → P(A)

is a fiber bundle.

Proof. One can check that χN
i,S,v is well-defined from the definitions of αS,v(ϕi,∗(̺))

and βS,v. Let HS be the subspace of Aut(F)n that leaves NS invariant. Given
i, j ∈ I, S,R ∈ Sec(F), and v, w ∈ SHS = SHR such that Oi,S,v;j,R,w 6= ∅, the
transition function

hN
i,S,v;j,R,w : Oi,S,v;j,R,w → HS ,

̺ 7→ βS,vαS,v(ϕi,∗(̺))gij(p(̺))αR,w(ϕj,∗(̺))
−1β−1

R,w

is continuous since each term in the composition is a continuous function of ̺. The
following proposition shows that HS is a closed subgroup of Aut(F)n which acts
effectively on NS . In particular, this implies that N is a fiber bundle. �

Proposition 4.9. Let B be a C∗-algebra, let ω ∈ P(B), and let N be the Gelfand
ideal of ω. Given α ∈ Aut(B), the following are equivalent:

(i) α(N) ⊂ N,
(ii) α∗ω = ω,
(iii) α(N) = N.

If H = {α ∈ Aut(B) : α(N) ⊂ N}, then H is a closed subgroup of Aut(B) and H
acts effectively on N by evaluation.
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Proof. To see (i) ⇒ (ii), observe that α(N) is the Gelfand ideal of α∗ω. Maximality
of Gelfand ideals [Mur90, Thm. 5.3.5] implies α∗ω = ω. That (ii) ⇒ (iii) and (iii)
⇒ (i) are trivial. From these equivalences we see that H is a subgroup of Aut(B).
If (αn)n∈N is a sequence in H and αn → α ∈ Aut(B), then for any A ∈ N we have
αn(A) → α(A), hence α(A) ∈ N since αn(A) ∈ N and N is closed. If α ∈ H and
α(A) = A for all A ∈ N, then α(A) = A for all A ∈ kerω since kerω = N + N∗

[Mur90, Thm. 5.3.4]. Finally, let B ∈ A such that ω(B) = 1. Since A = kerω⊕CB,
it remains to show that α(B) = B. There exists C ∈ kerω and λ ∈ C such that
α(B) = C + λB. Applying ω to both sides yields λ = 1. Since α(C) = C, we see
that αn(B) = nC +B for all n ≥ 1. But then

‖B‖ = ‖αn(B)‖ = ‖nC +B‖ ≥ n‖C‖ − ‖B‖,
which is true for all n if and only if C = 0. Therefore α(B) = B, so α = idB. This
proves that H acts effectively. �

Remark 4.10. It is easy to check that the topology on N in Theorem 4.8 is the
subspace topology inherited from P(A)×A. In particular, N is a subspace of the
pullback bundle (pP(A))

∗A since (pP(A))
∗A is a subspace of P(A)×A as well. The

local trivializations χN
i,S,v extend to local trivializations

((pP(A))
∗A)|Oi,S,v → Oi,S,v × F,

so N is a subbundle of (pP(A))
∗A, for subbundles as defined in Appendix A.2.

4.4. The smooth case. It is not immediately clear whether the notion of a topo-
logical C∗-algebra bundle can be generalized to the smooth case. Let us explain
the problem in more detail and assume that p : A → X is a topological C∗-algebra
bundle. Assume further that the total space A and the base space X both carry
the structure of Banach manifolds and that the projection p is smooth. To en-
dow p : A → X with a smooth fiber bundle structure one needs to select an
atlas of local trivializations (ϕi, Oi)i∈I such that the corresponding transition func-
tions gij : Oij → Aut(F) to the automorphism group Aut(F) of the typical fiber
C∗-algebra F are smooth. The main question now is whether Aut(F) carries the
structure of a Lie group, so that smoothness of the transition functions gij makes
sense. This problem seems not to have been studied in the literature before. We
therefore provide an answer and show the following.

Proposition 4.11. The automorphism group Aut(F) of a C∗-algebra F carries
the structure of a real Banach-Lie group with Lie algebra given by the space D of
symmetric bounded derivations on F, i.e., the space of all derivations δ ∈ B(F)
such that (δ(A))∗ = δ(A∗) for all A ∈ F.

Proof. The group GL(F) of invertible linear endomorphisms of F is a topological
group in the norm topology, and Aut(F) is a closed subgroup, hence a topological
group as well. Denote by Aut0(F) the connected component of the unit element
ι = idF in the automorphism group. According to [KR67, Thm. 7], Aut0(F) is an
open subgroup of Aut(F) hence it suffices to show that the connected component
Aut0(F) carries the structure of a Banach Lie group.

Denote by B2(ι) the ball of radius 2 in the automorphism group around the unit.
By [KR67, Thm. 7], B2(ι) is contained in Aut0(F), and each element α ∈ B2(ι) lies
on a norm continuous one-parameter subgroup of automorphisms αt, t ∈ R such
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that α1 = α. By norm continuity of the one-parameter group, the one-parameter
group can be represented in the form

αt = exp(tδ) :=

∞∑

k=0

1

k!
(tδ)k , (4.11)

where δ : F → F is a bounded operator given as the limit δ = limt→0
αt−ι
t ; see

e.g. [HP74, Th. 9.6.1]. Since αt consists of automorphisms of A one readily checks
that δ is a symmetric bounded derivation. The space D of symmetric bounded
derivations on F clearly forms a closed real Lie subalgebra of the Banach algebra
B(F) endowed with the commutator as Lie bracket. Hence, D is a Banach-Lie
algebra.

We observed that every element of B2(ι) can be written in the form exp(δ) for
some δ in the Lie algebra D . Conversely, exp(δ) ∈ Aut0(F) for every δ ∈ D since
t 7→ exp(tδ) is a one-parameter group of automorphisms. This indicates that the
exponential map restricted to D can serve as a differentiable chart for Aut0(F). To
verify this recall that restricted to a sufficently small ball Br(0) ⊂ B(F) around the
origin the exponential function exp : B(F) → GL(F) is a diffeomorphism onto its
image by the inverse function theorem. After possibly shrinking r we can achieve

that Õ := exp(Br(0)) is an open neighborhood of ι in GL(F) contained in the unit

ball around the identity. The inverse of exp : Br(0) → Õ is then given by the
logarithm series

Log : Õ → Br(0), η 7→
∞∑

k=1

(−1)k−1 1

k
(η − ι) .

The restriction χι := exp |D∩Br(0) : D ∩ Br(0) → Aut0(F) therefore is a homeo-

morphism onto O := Aut0(F) ∩ Õ. For each α ∈ Aut0(F) let χα : Oα → W with
W := D ∩ Br(0) denote the homeomorphism which maps γ ∈ Oα to Log(γα−1).
We interpret χα as a chart of Aut0(F) defined over Oα. For α, β ∈ Aut0(F) such
that Oαβ := Oα ∩Oβ 6= ∅ the transition map

χα ◦ χ−1
β : χβ(Oαβ) → χα(Oαβ), δ 7→ Log(exp(δ)βα−1)

now is smooth, hence the family of charts
(
χα
)
α∈Aut0(F)

is a smooth atlas which

defines a manifold structure on Aut0(F). Multiplication and inversion are smooth
with respect to this manifold structure since they are on the ambient Lie group
GL(F) whose manifold structure is also defined by the exponential function. Hence
Aut0(F) carries a canonical Banach Lie group structure modeled on the Banach Lie
algebra D . By translation, the Banach Lie group structure can be extended in a
unique way to the whole group Aut(F) and the claim is proved. �

The observation that Aut(F) is a Banach Lie group now allows us to provide the
following definition.

Definition 4.12. By a smooth C∗-algebra bundle one understands a topological
C∗-algebra bundle p : A → X which in addition is endowed with

(i) Banach manifold structures on the total space A and the base space X such
that the projection p is smooth, and

(ii) a trivializing atlas (ϕi, Oi)i∈I such that the charts ϕi : p
−1(Oi) → Oi×F and

corresponding transition functions gij : Oij → Aut(F), x 7→ ϕi,x ◦ ϕ−1
j,x are

smooth.
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Given a smooth C∗-algebra bundle structure on p : A → X, the corresponding
dual fiber bundle p

A∗ : A∗ → X is a smooth Banach fiber bundle as well since the
map τ : Aut(F) → GL(F∗), α 7→ α∗ is of class C∞. More precisely, if (ϕi, Oi)i∈I
is a smooth trivializing atlas in the sense of Def. 4.12 (ii), then (ϕ∗,i, Oi)i∈I is a
trivializing atlas of p

A∗ : A∗ → X with smooth transition functions

g∗,ij = τ ◦ gij : Oij = Oi ∩Oj → GL(F∗) .

By smoothness of the transition functions, the compositions

ϕ∗,i ◦ ϕ−1
∗,j : Oij × F∗ → Oij × F∗, (x, ω) 7→

(
x, g∗,ij(x)(ω)

)

are smooth, hence the family (ϕ∗,i)i∈I induces a smooth structure on A∗ and be-
comes a smooth trivializing atlas. Therefore, p

A∗ : A∗ → X inherits the structure
of a smooth fiber bundle from the smooth C∗-algebra bundle p : A → X.

Next let us show that also the pure state bundle can be equipped with a smooth
fiber bundle structure whenever the fiber bundle p : A → X is smooth. As explained
before, ϕ∗,i restricts to a homeomorphism from the restricted pure state bundle
P(A)|Oi to the product Oi ×P(F). The latter space carries a canonical structure
of a Banach manifold. Recall that the Banach Lie group Aut(F) leaves P(F)
invariant and acts effectively on P(F) by Lemma 4.1. By the above argument it is
clear that Aut(F) acts smoothly on F∗, but this does not immediately entail that
the action on P(F) is smooth as well; cf. Remark 2.9. The following result resolves
this problem.

Lemma 4.13. The action

Υ : Aut(F)× P(F) → P(F), (α, ω) 7→ Υ(α, ω) = α∗ω

is smooth.

Proof. For fixed α, consider a sector S of F and choose an irreducible represen-
tation (H, π) of F such that S coincides with the space Pπ(F) of pure π-normal
states. Note that the representation (H, πα) then is ireducible as well and that
S = Pπα(F). Let r : PH → Pπ(F) be the uniform isomorphism from Cor. 2.2 and
Ψ ∈ SH. Consider the smooth chart τΨ : B1(CΨ) → CΨ of the projective Hilbert
space PH around the ray CΨ as defined in Theorem 2.5. For every v ∈ CΨ, the
map γv : R → P(F), t 7→ rτ−1

Ψ (tv) then is a smooth path in Pπ(F), and γ̇v(0) is a
tangent vector of P(F) at ̺ = r(CΨ). Let δ be an element of the Lie algebra D of
Aut(F). Now compute

Tα,̺Υ
(
δ, γ̇v(0)

)
=

d

ds

∣∣∣∣
s=0

Υ
(
α exp(sδ), ̺

)
+

d

dt

∣∣∣∣
t=0

Υ
(
α, γv(t)

)
=

=
d

ds

∣∣∣∣
s=0

̺ ◦ exp(−sδ) ◦ α−1 +
d

dt

∣∣∣∣
t=0

〈τ−1
Ψ (tv), πα−1( · )τ−1

Ψ (tv)〉 =

= −α∗(δ
∗̺) + 〈Ψ, πα( · )v〉+ 〈v, πα( · )Ψ〉 .

(4.12)

The right hand side is obvously jointly continuous in α, Ψ, δ and v, so Υ is of class
C 1. Since the right hand side of (4.12) is in addition linear in Ψ, δ and v and
continuously differentiable in α by the argument just provided, one concludes that
Υ is even of class C∞ and the claim is proved. �

Note that the restricted maps ϕ∗,i,P(A) := ϕ∗,i|P(A)Oi
: P(A)|Oi → Oi × P(F)

with i ∈ I form a trivializing atlas of the pure state bundle pP(A) : P(A) → X.
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Since each of the spaces Oi×P(F) carries the natural product manifold structure,
Lemma 4.13 entails that the compositions

ϕ∗,i,P(A) ◦ ϕ−1
∗,j,P(A) : Oij × P(F) → Oij × P(F), (x, ω) 7→

(
x,Υ(gij(x), ω)

)

are smooth. Arguing as before, the pure state bundle pP(A) : P(A) → X therefore
inherits a smooth fiber bundle structure from the one on the bundle p : A → X.

Finally we consider the GNS Hilbert bundle p
H

: H → P(A) in the smooth
case. Given an atlas (ϕi, Oi)i∈I of smooth trivializations of p : A → X consider
the local trivializations χi,S,v : H |Oi,S,v → Oi,S,v × HS defined by (4.8), where
S ∈ Sec(F) is a sector and v ∈ SHS . The sets Oi,S,v are open in the pure state
bundle P(A) and inherit a manifold structure from the ambient P(A). Therefore,
each of the cartesian products Oi,S,v ×HS carries the product manifold structure.
The Hilbert bundle p

H
: H → P(A) can now be endowed with a compatible

smooth structure if we can yet show that the transition functions hi,S,v;j,R,w :
Oi,S,v ∩ Oj,R,w → U(HS) given by Eq. (4.9) are smooth. By equation (4.10), the
transition function hi,S,v;j,R,w is smooth whenever the maps Ωi,S,v : Oi,S,v → Hs,
̺ 7→ sv(ϕi,∗(̺)) and U : O → U(HS) from Prop. 4.3 applied to the case where

B = C = F, (H, π) = (HS , πS) and (H̃, π̃) = (HR, πR) are smooth. Smoothness
of Ωi,S,v is clear since by Corollary 2.8 the section sv is smooth and since ϕi,∗ is a
smooth local trivialization of the pure state bundle. Smoothness of U is shown in
the following, where we silently use notation from Prop. 4.3.

Proposition 4.14. Let B be a C∗-algebra, (H, π) and (H, π̃) two irreducible rep-
resentations, and let O be the open and non-empty set

O =
{
(α,Ω,Ψ) ∈ Aut(B)n × SH× SH̃ : α∗r(CΩ) ∈ B2(r̃(CΨ))

}
.

Then the following holds true:

(i) The map Φ : O → SH̃, (α,Ω,Ψ) 7→ s̃Ψα∗r(CΩ) is smooth.
(ii) The unique map U : O → U(H) making the diagram

B B

H H

α

ξΩ ξ̃Φ(α,Ω,Ψ)

U(α,Ω,Ψ)

commute for all (α,Ω,Ψ) ∈ O is smooth.

Proof. (i) First observe that the map

f : Aut(B)n × SH → SH, (α,Ω) 7→ r̃−1α∗r(CΩ)

is smooth by Lemma 4.13 and since r and r̃ are holomorphic. Next recall from
Section 2.1 that for a given unit vector Ψ ∈ SH and the corresponding pure state
ψ = r̃(CΨ) the section s̃Ψ : B1(ψ) → SH maps every pure state of the form
ω = r̃(CΩ) with Ω ∈ SH \ SH ∩ CΨ to the unit vector

s̃Ψ(ω) = σ−1
Ψ

(
τΨ(CΩ), 1

)
=

Ω

〈Ψ,Ω〉 ·
√

1 +
∥∥∥ Ω
〈Ψ,Ω〉 −Ψ

∥∥∥
2
=

〈Ω,Ψ〉
|〈Ω,Ψ〉|Ω .

The right hand side is obviously a smooth map on the open set

W = {(Ψ,Ω) ∈ SH× SH : Ω /∈ CΨ} .
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Since the projection p : SH → PH is a surjective submersion, this implies that the
map

g : W̃ → SH, (Ψ,Ω) 7→ s̃Ψ(r̃(CΩ))

is smooth, where W̃ ⊂ SH× PH is the open set

W̃ = (idSH ×p)(W ) = {(Ψ,l) ∈ SH× PH : l ∈ B1(CΨ)} .

Now observe that the image of an element (α,Ω,Ψ) ∈ O under the map Φ can be
rewritten as

Φ(α,Ω,Ψ) = s̃Ψα∗r(CΩ) = σ−1
Ψ

(
τΨ(r̃

−1α∗r(CΩ)), 1
)
= g
(
Ψ, f(α,Ω)

)
.

By smoothness of f and g, Φ then has to be smooth as well.
(ii) Fix a vector v ∈ H. Given Ω ∈ SH choose B ∈ B such that v = π(B)Ω and

put OΩ = {(α,Ψ) ∈ Aut(B)n × SH : (α,Ω,Ψ) ∈ O}. The map

U(·,Ω, ·)v : OΩ → H, (α,Ψ) 7→ U(α,Ω,Ψ)v

then is smooth by (i) and since by Eq. (4.5)

U(α,Ω,Ψ)v = U(α,Ω,Ψ)π(B)Ω = π̃(α(B))U(α,Ω,Ψ)Ω = π̃(α(B))Φ(α,Ω,Ψ) .

Next fix (α,Ψ) ∈ Aut(B)n × SH such that (α,Ω,Ψ) ∈ O and let γ : R → SH be a
smooth path such that γ(0) = Ω and (α, γ(t),Ψ) ∈ O for all t ∈ R. Then compute
using Eq. (4.5) again:

d

dt

∣∣∣∣
t=0

U(α, γ(t),Ψ)v = lim
t→0

U(α, γ(t),Ψ)v − U(α,Ω,Ψ)v

t
=

= lim
t→0

π̃(α(B))U(α, γ(t),Ψ)Ω− π̃(α(B))U(α,Ω,Ψ)Ω

t
=

= lim
t→0

π̃(α(B))
U(α, γ(t),Ψ)(Ω− γ(t)) +

(
Φ(α, γ(t),Ψ)− Φ(α,Ω,Ψ)

)

t
=

=π̃(α(B))

(
∂Φ(α,Ω,Ψ)

∂Ω
− U(α,Ω,Ψ)

)
· γ′(0)

The right hand side is continuous in (α,Ω,Ψ) ∈ O, hence the map U(− )v : O → H
is continuously differentiable for all v ∈ H. Therefore U is C 1. By induction one
concludes that U is C∞. �

In summary, we obtain the following result.

Theorem 4.15. Let p : A → X be a smooth C∗-algebra bundle. Then the associ-
ated dual bundle p

A∗ : A∗ → X, the pure state bundle pP(A) : P(A) → X and the
GNS Hilbert bundle p

H
: H → X all carry natural smooth structures compatible

with their underlying fiber bundle structures. In particular this means for the GNS
Hilbert bundle that there exists an atlas of smooth local trivializations whose tran-
sition functions have values in the unitary group of the (local) typical fiber Hilbert
space.
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5. Examples of quantum systems

We give two simple physical examples to illustrate how the fiberwise GNS con-
struction may be used and how one might obtain a norm-continuous family of pure
states. The first is a finite-dimensional example coming from a spin- 12 particle in a
magnetic field. The second is an infinite-dimensional example of a non-interacting
system obtained by copying the finite-dimensional example at each point of a count-
able lattice.

5.1. Particle in a magnetic field. In this section, we consider the trivial C∗-
algebra bundle

M2(C) := S2 ×M2(C) → S2.

The continuous family of states will be the ground states of a family of self-adjoint
operators over S2. To this end, we define a smooth section H : S2 →M2(C) by the
Hamiltonians

Hr = r · σ =

(
z x− iy

x+ iy −z

)
,

where r = (x, y, z) ∈ S2 and σ = (σx, σy, σz) are the Pauli matrices. Physically, the
Hamiltonian Hr corresponds to the energy of a spin- 12 particle in a magnetic field
pointing in the direction r. It is easily verified that the spectrum of this matrix is
σ(Hr) = {−1, 1} and that

Ψr =
1√

2 + 2z

(
−x+ iy
z + 1

)
, z 6= −1 and Ψr =

(
1
0

)
, z = −1 (5.1)

gives the ground state unit vector of Hr. The map Ψ : S2 → C2 is continuous
everywhere except when r = (0, 0,−1). It is helpful to note that we can also
redefine the ground state unit vector Ψ to be continuous everywhere except when
r = (0, 0, 1):

Ψr =
1√

2− 2z

(
z − 1
x+ iy

)
, z 6= 1 and Ψr =

(
0
1

)
, z = 1. (5.2)

In either case, the state ψr(A) = 〈Ψr, AΨr〉 may be expressed as

ψr = τ0 − r · τ ,
where τ0, τx, τy, τz is the dual basis of I, σx, σy, σz and τ = (τx, τy, τz). The state
ψr is pure since M2(C) acts irreducibly on C2. Thus, ψ : S2 → M2(C)

∗ defines
a manifestly smooth section of pure states of the dual bundle, for which we can
perform the fiberwise GNS construction of §4. In this case, since our C∗-algebra
bundle is finite dimensional, the Hilbert bundle H that we obtain is simply the
quotient of M2(C) by N = {M | ψ(M∗M) = 0}.

In Remark 4.6, we noted that, in the infinite dimensional case, the Hilbert bundle
obtained via the fiberwise GNS construction is necessarily trivial. We show that
in this finite dimensional example H is nontrivial. First, consider the subbundle
E ⊂ S2 ×C2 := C

2 defined as the kernel of the bundle map I +H. The fiber above
r ∈ S2 is the 1-dimensional subspace of ground states of Hr. The map

S2 → E , r 7→
(
−x+ iy
z + 1

)

is a section of E . This section has a unique zero at z = −1, and one can check that
this intersection with the zero section is transverse. It follows that the first Chern
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class c1(E) is Poincaré dual to a point in S2, hence
∫
S2 c1(E) = 1. Therefore, c1(E)

is non-trivial.
Now let F be the orthonognal complement of E in the trivial bundle C

2 so that
the fiber Fr consists of vectors orthogonal to Ψr. We then have

M2(C)
∼= C

2 ⊗ (C2)∗ ∼= C
2 ⊗ (E∗ ⊕F∗) ∼= (C2 ⊗ E∗)⊕ (C2 ⊗F∗).

Since

Nr = {M | 〈MΨr,MΨr〉 = 0} = {M |MEr = 0},
it follows that N ∼= C

2 ⊗F∗. Thus,

H =M2(C)/N
∼= C

2 ⊗ E∗,

implying that c1(H) = 2c1(E∗) ∼= −2c1(E) is a nontrivial cohomology class.

Remark 5.1. More generally, for any n-dimensional Hilbert bundle C over X,
we obtain a C∗-algebra bundle as the endomorphism bundle B(C) of C. Given a
continuous section H : X → B(C) such that Hx is a self-adjoint operator whose
smallest eigenvalue has a one-dimensional eigenspace Ex (i.e., Hx is gapped), the
Ex assemble into a line bundle E over X. As above, the assignment A ∈ B(Cx) 7→
〈ψx, Aψx〉 for any unit vector ψx ∈ Ex gives a continuous section of ground states
ψ : X → B(C)∗. The fiberwise GNS construction for ψ gives a Hilbert bundle H
whose first Chern class satisfies c1(H) = c1(C) − nc1(E). This is shown as in our
example above by establishing that H ∼= C ⊗ E∗.

5.2. Non-interacting lattice system. Perhaps the simplest way of obtaining a
norm-continuous family of pure states of an infinite-dimensional C∗-algebra A is
to start with a nonzero irreducible representation (H, π) and a continuous map
Ω : X → SH and to lift Ω to P(A) using Lemma 1.1. Below we give an example
of a different flavor.

We copy the finite-dimensional model above to each vertex of a lattice Zd for
some positive d ∈ N. The C∗-algebra of this system is the quasi-local algebra

A =
⋃

Λ∈℘f (Zd)
A(Λ) for A(Λ) =

⊗

v∈Λ

M2(C),

where ℘f (Z
d) is the set of all finite subsets of Zd. We also define the local algebra

as the dense ∗-algebra Aloc =
⋃

Λ∈℘f (Zd) A(Λ). For more on quasi-local algebras

obtained from lattices see, for example, [Naa17, Ch. 3].
Our parameter space is X =

∏
v∈Zd

S2. We will consider both the product and
box topologies on X. For each r = (rv)v∈Zd ∈ X, we will construct the ground
state ωr ∈ P(A) of the interaction1 Φr : ℘f (Z

d) → A, defined as

Φr(Λ) =

{
Hrv

Λ = {v} for some v ∈ Zd,

0 otherwise.

Consider the map r 7→ Φr into the space of bounded, finite-range interactions with
the norm

‖Φ‖ := sup
v∈Zd

∑

v∈Λ∈℘f (Zd)
‖Φ(Λ)‖.

1Although it is standard terminology, “interaction” is a bit of a misnomer in this case since
the lattice sites are non-interacting.
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Given r, r′ ∈ X, we have

‖Φr − Φr
′‖ = sup

v∈Zd

∥∥Hrv
−Hr

′
v

∥∥ = sup
v∈Zd

‖(rv − r′v) · σ‖ = sup
v∈Zd

‖rv − r′v‖,

This implies that r 7→ Φr is continuous when X is given the box topology, but
discontinuous when X is given the product topology. Interestingly, it also shows
that composing with the diagonal map S2 → X yields a continuous function into the
space of interactions, even though the diagonal map is discontinuous with respect
to the box topology.

We construct the ground state of Φr by an application of the following theorem.
The analogous statement for not necessarily pure states is a rephrasal of Theorem
2 in [Tak55]. The proof of Proposition 5 in the same paper shows that the result
holds for pure states.

Theorem 5.2. Let (Ai)i∈I be an inductive system of C∗-algebras indexed by the
directed set I and let A be the inductive limit. If ωi ∈ P(Ai) for all i ∈ I and
ωi = ωj |Ai whenever i ≤ j, then there exists a unique pure state ω ∈ P(A) such
that ωi = ω|Ai for all i ∈ I.

Thus, it suffices to define a compatible system of pure states ωr,Λ ∈ P(A(Λ)).
Given Λ ∈ ℘f (Z

d) we define ωr,Λ to be the vector state represented by

Ωr,Λ = ⊗
v∈Λ

Ψrv
∈
⊗

v∈Λ

C2,

that is, ωr,Λ(A) = 〈Ωr,Λ, AΩr,Λ〉 for all A ∈ A(Λ). The state ωr,Λ is pure since
A(Λ) acts irreducibly on

⊗
v∈Λ C2. Observe that

ωr,Λ

(
⊗
v∈Λ

Av

)
=
∏

v∈Λ

ψrv
(Av) (5.3)

for all simple tensors ⊗v∈ΛAv. In particular, if Λ1 ⊂ Λ2, then the above formula
implies that ωr,Λ1 = ωr,Λ2 |A(Λ1) since ψrv

(I) = 1. Theorem 5.2 now yields a unique
pure state ωr ∈ P(A) that restricts to ωr,Λ on A(Λ). We consider the continuity
properties of ω : X → P(A).

We show that ω is norm-continuous when X is given the box topology. Observe
that for any r, r′ ∈ X and A ∈ A(Λ),

‖ωr(A)− ωr
′(A)‖ = ‖ωr,Λ(A)− ωr

′,Λ(A)‖ ≤ ‖A‖‖ωr,Λ − ωr
′,Λ‖

≤ 2‖A‖‖Ωr,Λ − Ωr
′,Λ‖ ≤ 2‖A‖

∑

v∈Λ

∥∥Ψrv
−Ψr

′
v

∥∥, (5.4)

where in the last step we have used multilinearity of the tensor product, the triangle
inequality, and the definition of the norm on the tensor product of Hilbert spaces.
Given r ∈ X and ε > 0, we may define Ψrv

by (5.1) or (5.2) depending on whether
rv is the north pole or the south pole, or neither, in which case the choice does not
matter. Then we may choose a neighborhood U of r such that

∑

v∈Zd

∥∥Ψrv
−Ψr

′
v

∥∥ < ε

2
.

for all r′ ∈ U . Again, we see that it is crucial to use the box topology on X. With
the above inequality, (5.4) implies that ‖(ωr − ωr

′)(A)‖ < ε‖A‖ for all A ∈ Aloc,
so ‖ωr − ωr

′‖ ≤ ε by the density of Aloc in A. This proves norm-continuity of
ω : X → P(A).
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When X is given the product topology, we can show that r 7→ ωr is weakly∗

continuous. It follows from equation (5.3) and continuity of ψ : S2 → P(M2(C))
that r 7→ ωr(A) is continuous with respect to the product topology for all simple
tensors A = ⊗v∈ΛAv ∈ A(Λ). Since any element of Aloc can be written as a linear
combination of such simple tensors, we see that r 7→ ωr(A) is continuous for all
A ∈ Aloc. Continuity of r 7→ ωr(A) for all A ∈ A can then be checked using density
of Aloc in A.

Norm-continuity fails, however, when X is given the product topology. This will
follow from the theorem below. This result appears in a much more general form
as Corollary 2.6.11 in [BR87]. We supply a different proof of the specific part we
need under milder assumptions.

Theorem 5.3. Let A be a C∗-algebra and let (Aα)α∈I be a family of C∗-subalgebras
of A such that A =

⋃
α∈I Aα. Suppose there exists a symmetric relation ⊥ on I

such that α ⊥ β implies
[Aα,Aβ ] = {0}.

If ω1, ω2 ∈ P(A) are in the same superselection sector, then for any ε > 0 there
exists α ∈ I such that

|ω1(A)− ω2(A)| < ε‖A‖
for any β ⊥ α and A ∈ Aβ.

Typically, I is a causal index set and the relation ⊥ is defined by α ⊥ β if and
only if α ⊂ β⊥ (see Remark 1.15).

Proof. Since ω1, ω2 ∈ P(A) are in the same superselection sector, they extend to
pure states ω̃1, ω̃2 on the unitization A1 that are in the same superselection sector.
Theorem 1.14 yields a unitary U ∈ A1 such that ω̃2 = U · ω̃1. We may write
U = λ + B where λ ∈ C and B ∈ A. There exists α ∈ I and C ∈ Aα such that
‖B − C‖ < ε/2. Set V = λ + C. Given β ∈ I such that β ⊥ α and A ∈ Aβ , we
have

|ω1(A)− ω2(A)| = |ω̃1(A)− ω̃1(U
∗AU)|

≤ |ω̃1(U
∗UA)− ω̃1(U

∗AV )|+ |ω̃1(U
∗AV )− ω̃1(U

∗AU)|
≤ |ω̃1(U

∗(U − V )A)|+ |ω̃1(U
∗A(V − U))|

≤ 2‖B − C‖‖A‖ < ε‖A‖,
as desired. Note that we used the fact that [V,A] = [λ+C,A] = 0 since α ⊥ β. �

In our case, the index set is I = ℘f (Z
d) and Λ1 ⊥ Λ2 if and only if Λ1 ∩Λ2 = ∅.

Intuitively, the theorem states that if two pure states on a quasi-local C∗-algebra
are in the same superselection sector, then they are equal to each other “at infinity.”
To prove that our map ω is not norm-continuous when X has the product topology,
we prove that the composition of ω with the diagonal map ∆ : S2 → X is not norm-
continuous. In fact, for distinct r, s ∈ S2, we prove that ω∆(r) and ω∆(s) are in

different superselection sectors. Since S2 is path connected, the diagonal map is
continuous for the product topology, and the superselection sectors are the path
components of P(A) with the norm topology by Theorem 1.14, this implies that
ω is not norm-continuous when X has the product topology.

Given any Λ ∈ ℘f (Z
d), choose v ∈ Zd \ Λ and consider Hr ∈ A({v}). Then

∣∣ω∆(r)(Hr)− ω∆(s)(Hr)
∣∣ = |ψr(Hr)− ψs(Hr)| = |1− r · s| > 0.
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If 0 < ε < |1− r · s|, then the above line shows that for no Λ ∈ ℘f (Z
d) can we

achieve ∣∣ω∆(r)(A)− ω∆(s)(A)
∣∣ < ε‖A‖

for all Λ′ ∈ ℘f (Z
d) such that Λ ∩ Λ′ = ∅ and A ∈ A(Λ′). Therefore Theorem 5.3

implies that ω∆(r) and ω∆(s) are in different superselection sectors.

Remark 5.4. Note that this is in contrast to the case of the interaction Φ, where
Φ failed to be continuous with the product topology on X, but continuity was
restored when we composed with the diagonal map.

Remark 5.5. It is perhaps worth observing that the box topology has a certain
“quasi-local” character to it. The intuition behind the topologies used here is that
the box topology is fine enough to allow only local deformations to be continuous,
which correspond to norm-continuous deformations of states. Indeed, the connected
component of r ∈ X is the set of all r′ for which rv 6= r′v for only finitely many
v ∈ Zd. If we had used the product topology on X, then we would be allowing
continuous non-local deformations and ω would only be weakly∗ continuous.

More generally, if X1, . . . , Xn, . . . is a countably infinite collection of Hausdorff,
regular, path-connected spaces and X =

∏∞
n=1Xn with the box topology, then for

any x = (xn) ∈ X, the set

C(x) = {y ∈ X : xn 6= yn for only finitely many n}
is the path component of X containing x. If we define

Cn(x) =
n∏

k=1

Xk ×
∞∏

k=n+1

{xk},

then C(x) =
⋃∞
n=1 Cn(x) as sets. If, in addition, each space Xn is compact, then

the subspace topology on C(x) coincides with the union topology induced by the
Cn(x).

Finally, we show that ωr is indeed a ground state for the interaction Φr. The
interaction defines local Hamiltonians Hr,Λ =

∑
v∈ΛHrv

, where Hrv
is now short-

hand for the simple tensor in A(Λ) with Hrv
in the v-component and the iden-

tity in every other component. The local Hamiltonians define a derivation on
Aloc =

⋃
Λ∈℘f (Zd) A(Λ) by

δr(A) = i[Hr,Λ, A] for A ∈ A(Λ).

The state ωr is a ground state for the one-parameter family of automorphisms
generated by this derivation, i.e. the time evolution, if and only if the inequality
−iωr(A

∗δr(A)) ≥ 0 is satisfied for all A ∈ Aloc [Naa17, Theorem 3.4.3]. Thus, we
take A ∈ A(Λ) for some Λ ∈ ℘f (Z

d) and compute

−iωr(A
∗δr(A)) =

∑

v∈Λ

ωr,Λ(A
∗[Hrv

, A])

=
∑

v∈Λ

〈AΩr,Λ, (Hrv
A−AHrv

)Ωr,Λ〉

=
∑

v∈Λ

〈AΩr,Λ, (Hrv
+ I)AΩr,Λ〉 ≥ 0.
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We have used the fact that Hrv
Ωr,Λ = −Ωr,Λ by definition of Ωr,Λ and the fact

that Hrv
+ I is a positive operator to conclude that the above it nonnegative. This

verifies that ωr is a ground state for Φr.
In fact, we can show that ωr is the unique ground state for the interaction

Φr. First note that for any Λ ∈ ℘f (Z
d), the derivation δr restricts to a bounded

derivation δr,Λ : A(Λ) → A(Λ). If ω̃r : A → C is any ground state for Φr, then
for any Λ ∈ ℘f (Z

d), we have −iω̃r,Λ(A
∗δr,Λ(A)) ≥ 0 for all A ∈ A(Λ), where

ω̃r,Λ = ω̃r|A(Λ). Thus, ω̃r,Λ is a ground state for δr,Λ. By [BR97, Thm. 5.3.37], the
set of ground states for δr,Λ is a convex, weakly∗ compact, face of S (A(Λ)), and is
therefore the closed convex hull of the pure ground states. Any pure state of A(Λ)
can be represented by a unit vector in

⊗
v∈Λ C2. It is therefore a finite-dimensional

linear algebra problem to show that there exists a unique pure ground state δr,Λ,
and this is indeed the case because the lowest eigenvalue of Hr,Λ, which is −|Λ|, has
a one-dimensional eigenspace. It follows from the aforementioned result in [BR97]
that there is a unique (not necessarily pure) ground state for δr,Λ. We conclude
that ωr and ω̃r are equal for all local operators, hence equal everywhere by density
of Aloc.
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Appendix A. Infinite dimensional manifolds

For the convenience of the reader we will briefly recapitulate here some notions
from infinite dimensional manifold theory. For more details see [Mil84, KM97,
Lan02b, Nee06].

A.1. Banach and Hilbert manifolds. Assume thatM is a Hausdorff topological
space. By a C∞-chart or just a chart of M modeled on a Banach space E (over
the field K of real or complex numbers) one understands a pair (U, x) consisting of
an open subset U ⊂ M and a homeomorphism x : U → x(U) ⊂ E onto an open
subset of E. Two charts (U, x) and (V, y) modeled on Banach spaces EU and EV ,
respectively, are called compatible if either U and V are disjoint or if EU = EV and
the transition map

x ◦ y|−1
U∩V : y(U ∩ V ) → x(U ∩ V )

is a C∞-diffeomorphism. A collection A of pairwise compatible charts of M is
called a C∞-atlas or just an atlas of M if the domains of the charts contained in
A cover M . An atlas A of M is said to be maximal if every chart compatible with
all charts in A is an element of A . A Banach manifold or just a manifold is then a
Hausdorff topological space endowed with a maximal C∞-atlas of charts modeled
in Banach spaces. In case the charts of the maximal atlas of the manifold M are
modeled all in Hilbert spaces, one calls M a Hilbert manifold.

In a similar fashion one defines real analytic and complex or holomorphic Banach
manifolds. These are Hausdorff topological spaces endowed with a maximal atlas of
charts so that all transition maps (and their inverses) are real or complex analytic,
respectively. An atlas of charts with biholomorphic transition maps is referred to
as a holomorphic atlas.

Given a Banach manifold M and an open subset O ⊂ M the space C∞(O) of
smooth functions on O consists of all maps g : O → R such that for each chart
(U, x) with O ∩ U 6= ∅ the composition g ◦ x|−1

O∩U : x(O ∩ U) → R is smooth. A
map f : N →M between two manifolds is called of class C∞ or smooth if for each
open O ⊂ M and each element g ∈ C∞(O) the pullback f∗g = g ◦ f |f−1(O) is an

element of C∞(f−1(O)). The spaces C∞(O) give rise to a sheaf on M called the
sheaf of smooth functions on M . Likewise, one defines the sheaf C ω of real analytic
functions and the sheaf O of holomorphic functions on a real analytic respectively
a holomorphic Banach manifold.

Remark A.1. The notion of infinite dimensional manifolds as defined above can
be extended in a natural way to Fréchet spaces or even convenient vector spaces;
see [KM97] for details. The virtue of using convenient vector spaces for defining
manifolds lies in the fact that for any pair of convenient vector spaces E,F the
space C∞(E,F ) of smooth functions between them is again convenient [KM91,
1.7. Lemma] and that an exponential law holds for smooth mappings [KM97, 3.12.
Thm. & 3.13. Cor.]. The latter means in particular that for G a third convenient
vector space the natural map

∨ : C
∞(E × F,G) → C

∞ (E,C∞(F,G)) , f 7→ f∨ =
(
v 7→ f(v,−)

)
(A.1)

is a linear diffeomorphism meaning it is invertible, linear, smooth and has a smooth
inverse. Note that Banach and Fréchet spaces are convenient vector spaces, so the
smooth exponential law applies to them.
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A group G equipped with a manifold structure so that both multiplication and
inversion are smooth maps will be called a Lie group. In case the Lie group G is
modeled on Banach or Hilbert spaces, one calls it a Banach or a Hilbert Lie group
respectively.

A.2. Topological fiber bundles. We define topological fiber bundles as in [Ste99,
§. 2] and denote them as quintuples (E,B, π, F,G) where E is the total space, B
the base space, π : E → B the projection, F the typical fiber, and G the structure
group. The latter is assumed to be a topological group acting continuously and
effectively on F . In case the typical fiber F and the structure group G are clear from
context, we usually denote a fiber bundle just by its projection π : E → B. Attached
to a fiber bundle (E,B, π, F,G) is a maximal trivializing atlas. Such a trivializing
atlas consists of pairwise compatible local trivializations which are homeomorphisms
ϕ : π−1(O) → O × F with O ⊂ B open such that prO ◦ϕ = π|π−1(O) and whose

domains are assumed to cover the base B. Two local trivializations ϕi : π
−1(Oi) →

Oi × F and ϕj : π
−1(Oj) → Oj × F are hereby called compatible if the map

ϕi,• ◦ ϕ−1
j,• : Oi ∩Oj → C (F, F ), p 7→ ϕi ◦ ϕ−1

j (p,−)

factors through a continuous map gij : Oi ∩ Oj → G called transition function. In
other words this means that the diagram

Oi ∩Oj G

C (F, F )

gij

ϕi,•◦ϕ−1
j,•

commutes, where G →֒ C (F, F ) is the canonical continuous injection and C (F, F )
carries the topology of pointwise convergence. Note that gij is uniquely determined
since G acts effectively on E.

For convenience, we sometimes write (ϕ,O) for a local trivialization of the form
ϕ : π−1(O) → O×F . A local trivialization (ϕ,O) defined over some open neighbor-
hood O of a point p ∈ B gives rise to a homeomorphism ϕp : Ep → F by putting
ϕp(e) = ϕ(p, e) for all e ∈ Ep, where as usual Ep denotes the fiber π−1(p) over p.
If the fiber bundle has a global trivialization, that is, a trivialization of the form
ϕ : E → B × F , the fiber bundle is called trivial. Instead of fiber bundle we there-
fore sometimes say locally trivial bundle. Note that if the group G is contractible,
then a fiber bundle with structure group G is necessarily trivial, see [Ste99]. More
generally, the family of transition functions (gij)i,j∈I associated to a trivializing

atlas (ϕi, Oi)i∈I of the fiber bundle defines a topological invariant called the Čech
cohomology of the bundle since by construction the family (gij)i,j∈I satisfies the

Čech cocycle conditions

gij · gjk = gij over Oijk = Oi ∩Oj ∩Ok for all i, j, k ∈ I .

The associated Čech cohomology class in Ȟ1(B,G) = colimUȞ1(U , G), where U
runs through the open covers of B, does not depend on the chosen trivializing atlas,
hence is a topological invariant indeed. If the underlying bundle is a G-principal
bundle, its Čech cohomology determines the bundle up to isomorphism. For more
details on the Čech cohomology of (principal) fiber bundles see [Bry08, Chpt. 4]
and [HJJS08, Sec. 25.8].
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In case H →֒ G is a continuous injective homomorphism between topological
groups one says that the structure group of a fiber bundle (E,B, π, F,G) can be
reduced to H if there exists a trivializing atlas such that for any pair of local
trivializations (ϕi, Oi) and (ϕj , Oj) in this atlas the transition function gij : Oi ∩
Oj → G factors through a continuous map hij : Oi ∩Oj → H.

Under the assumption that the typical fiber F is a Banach space, and that G
coincides with the group Aut(F )s of isometric automorphism of F endowed with
the strong topology, a fiber bundle of the form (E,B, π, F,G) just corresponds to
what is usually called a Banach vector bundle or locally trivial Banach bundle with
typical fiber F . Note that Aut(F )s is a topological group, cf. [Sch18]. The fiberwise
homeomorphisms ϕp : Ep → F then endow each Ep with the structure of a Banach
space which is independent of the chosen local trivialization ϕ around p. Following
[Sch18], a Banach fiber bundle is called norm defined if its structure group can
be reduced to the group Aut(F )n of isometric automorphisms endowed with the
norm topology. Still under the assumption that F is a Banach space, a vector
bundle (E,B, π, F,G) is called banachable whenever the structure group G is the
topological group GL(F )n of topological linear isomorphisms of the Banach space
F . Note that when endowed with the norm topology, GL(F ) becomes a topological
group, but in general not when endowed with the strong topology and F is infinite
dimensional. Therefore, a banachable vector bundle is always norm defined by
definition.

In case the typical fiber is a Hilbert space H, the natural structure group G is
the unitary group U(H)s with the strong topology. A corresponding fiber bundle
will then be referred to as a Hilbert vector bundle. We also say that a locally trivial
Hilbert bundle is norm defined if the structure group can be reduced to the unitary
group U(H)n with the norm topology. By Kuiper’s theorem, the unitary group of an
infinite dimensional separable Hilbert space is contractible, both in the strong and
norm topologies, so a Hilbert fiber bundle with an infinite dimensional separable
typical fiber has to be trivial, even when norm defined [Sch18, Sec. 4].

In case the typical fiber F carries some additional structure like the structure
of a Banach algebra or a C∗-algebra and the group G is the topological group of
automorphisms F endowed with the strong topology, a fiber bundle of the form
(E,B, π, F,G) is called a Banach algebra fiber bundle or a C∗-algebra fiber bundle,
respectively. It is called norm defined whenever the structure group G can be
chosen to be the automorphism group endowed with the norm topology. In other
words, this means that there exists a trivializing atlas such that all transition maps
are norm continuous. Note that the fibers of a Banach or C∗-algebra fiber bundle
carry in a canonical way the structure of a Banach or C∗-algebra, respectively.

By a subbundle of a fiber bundle (E,B, π, F,G) we mean a fiber bundle of the

form (Ẽ, B, π|Ẽ , S,H) endowed with a trivializing atlas T so that S ⊂ F is a

subspace, Ẽ is a subspace of E, the restriction π|Ẽ : Ẽ → B is surjective, the
group H of all elements of G leaving S invariant is a closed subgroup, and for
each element (ϕ̃, O) ∈ T there is a local trivialization (ϕ,O) of (E,B, π, F,G)

such that ϕ̃ coincides with the restriction of ϕ to ẼO = π−1(O) ∩ Ẽ. As a slight
generalization one sometimes allows H to be a topological group for which there
exists a distinguished injective morphism of topological groups H → G. Note that
we have not required in our definition that S is complementable in F . This differs
from some definitions, for example, that of [Lan02b, Ch. 3, §3]. The exception are
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Hilbert bundles, where our definition coincides with the one of [Lan02b] since every
closed subspace of a Hilbert space has a closed complement.

A.3. Smooth fiber bundles. Next, we consider the smooth case. Assume that
E, B and F are smooth manifolds and that G is a subgroup of the diffeomorphism
group of F . Assume further that G is endowed with a Lie group structure so
that the canonical map G → C∞(F, F ) is smooth. By the smooth exponential
law from Remark A.1 this is equivalent to the map G × F → F , (g, v) 7→ gv
being smooth. By a smooth structure on the fiber bundle (E,B, π, F,G) with
smooth projection π : E → B we understand a maximal collection of smooth local
trivializations ϕ : π−1(O) → O × F so that their domains O cover B and so that
the transition function gij = ϕi,• ◦ ϕ−1

j,• : Oi ∩ Oj → G is smooth for any pair of

smooth local trivializations (ϕi, Oi) and (ϕj , Oj). A fiber bundle endowed with a
smooth structure is called a smooth fiber bundle.

Next assume that F is a Banach space and that G is the group Aut(F )n of
isometric automorphisms endowed with the norm topology. This group inherits
a canonical Lie group structure as a closed subgroup of the general linear group
GL(B(F )) which is a Banach Lie group since GL(B(F )) is an open subset of the
Banach space B(F ) of bounded linear endomorphisms of F . A smooth Banach fiber
bundle now is a smooth fiber bundle with structure group Aut(F )n.

If a Banach or C∗-algebra fiber bundle (E,B, π, F,G) carries a smooth structure
so that its transition maps are smooth into the structure group G = Aut(F )n
endowed with the canonical Lie group structure, we call (E,B, π, F,G) a smooth
Banach or C∗-algebra fiber bundle, respectively.

In case all data are smooth, S is a submanifold of F , if H is a Lie subgroup of G
or more generally if there is a distinguished injective smooth group homomorphism
H →֒ G, and finally if the subbundle atlas T has smooth transition maps, one calls

(Ẽ, B, π|Ẽ , S,H) a smooth subbundle of (E,B, π, F,G).
As an example we briefly discuss the construction of tangent, cotangent and

tensor bundles in the described setting.

Example A.2. Let E be a Banach space. Denote by

TrsE = L(E′, . . . , E′
︸ ︷︷ ︸
r-times

, E, . . . , E︸ ︷︷ ︸
s-times

;R)

the space of continuous real valued functionals r-times multilinear in the topological
dual E′ = L(E;R) and s-times multilinear in E and call it the space of r-fold
contravariant and s-fold covariant tensors on E. The space TrsE then becomes a
Banach space with norm induced by the norm on E.

Now assume to be given a Banach manifold M modeled on E. Let A be an
atlas of M and consider the disjoint unions

T̃M =
⊔

(x,U)∈A

U × E =
⋃

(x,U)∈A

U × E × {x} ,

T̃ ∗M =
⊔

(x,U)∈A

U × E′ =
⋃

(x,U)∈A

U × E′ × {x} ,

T̃ rsM =
⊔

(x,U)∈A

U × TrsE =
⋃

(x,U)∈A

U × TrsE × {x} .
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Given charts (x, U), (y, V ) ∈ A call elements (p, v)x ∈ U×E and (q, w)y ∈ ×V ×E
equivalent, in signs (p, v)x ∼ (q, w)y, if p = q and v = D(x ◦ y−1)(y(q))(w). Note
that hereby we have written (p, v)x instead of (p, v) - and likewise for (q, w)y - to
denote that the pair (p, v)x is actually regarded as lying in U × E × {x}. The
quotient space with respect to the equivalence relation ∼ will be denoted TM and
endowed with the unique topology such that for each chart (x, U) ∈ A the subspace
TU = U ×E×{x}/ ∼ is open and such that the canonical mapping U ×E → TM ,
(p, v) 7→ [(p, v)x] is a homeomorphism onto TU . Denote by (Tx, TU) : TU →
U × E the chart which maps the equivalence class [(p, v)x] to the pair (p, v). By
construction, Tx then is a homeomorphism, and for each other chart (y, V ) ∈ A

the transition map

Tx ◦ Ty|−1
TU∩TV : Ty(TU ∩ TV ) → Tx(TU ∩ TV ),

(
y(q), w

)
7→
(
x(q), D(x ◦ y−1)(y(q))(w)

)

is smooth. This endows TM with the structure of a smooth vector bundle modeled
on E × E.

In a somewhat more technical but analogous way one constructs the tensor
bundle T rsM . Given again charts (x, U), (y, V ) ∈ A one calls elements (p, λ)x ∈
U ×TrsE and (q, µ)y ∈ ×V ×TrsE equivalent, in signs (p, λ)x ∼ (q, µ)y, if p = q and

λ = µ ◦


Tq(x ◦ y−1)∗ × . . .× Tq(x ◦ y−1)∗︸ ︷︷ ︸

r-times

×Tp(y ◦ x−1)× . . .× Tp(y ◦ x−1)︸ ︷︷ ︸
s-times


 ,

where Tp(y ◦ x−1) stands for the linear map D(y ◦ x−1)(x(p)) and Tq(x ◦ y−1)∗

is the pullback by D(x ◦ y−1)(y(q)). Analogously as before T rsM is now defined

as the quotient space T̃ rsM/ ∼ and given the unique topology such that all for
(x, U) ∈ A the set T rsU = U×TrsE×{x}/ ∼ is open and the map U×TrsE → T rsM ,
(p, λ) 7→ [(p, λ)x] is a homeomorphism. The maps

T rs x : T rsU → U × TrsE, [(p, λ)x] 7→ (p, λ)

then form an atlas of T rsM turning it into a smooth vector bundle modeled on
E×TrsE. It is called the tensor bundle of r-fold contravariant and s-fold covariant
tensors on M . In case the modeling Banach space is even a Hilbert space, one can
express the typical fiber of the tensor bundle T rsM as the completed tensor product

E⊗̂r⊗̂E′⊗̂s, which explains the term tensor bundle.
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[Glö10] Helge Glöckner, Homotopy groups of ascending unions of infinite-dimensional mani-

folds, arXiv:0812.4713.
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[Sch86] H. Schröder, A note on the classification of UHF-algebras, Integral Equations Operator
Theory 9 (1986), no. 5, 748–751, https://doi.org/10.1007/BF01195812.

[Sch18] Martin Schottenloher, The unitary group in its strong topology, Advances in Pure
Mathematics 8 (2018), 508–515.

[Ste99] Norman Steenrod, The topology of fibre bundles, Princeton Landmarks in Mathemat-
ics, Princeton University Press, Princeton, NJ, 1999, Reprint of the 1957 edition,
Princeton Paperbacks.

[Stø68] Erling Størmer, On partially ordered vector spaces and their duals, with applications

to simplexes and c*-algebras, Proceedings of the London Mathematical Society s3-18

(1968), no. 2, 245–265.
[Tak55] Ziro Takeda, Inductive limit and infinite direct product of operator algebras, Tohoku

Math. J. (2) 7 (1955), no. 1-2, 67–86.
[TSH98] Nobuhiko Tatsuuma, Hiroaki Shimomura, and Takeshi Hirai, On group topologies and

unitary representations of inductive limits of topological groups and the case of the

group of diffeomorphisms, J. Math. Kyoto Univ. 38 (1998), no. 3, 551–578, https:
//doi.org/10.1215/kjm/1250518067.

[Wol90] Manfred Wollenberg, On causal nets of algebras, Linear operators in function spaces
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