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Abstract
Cancer cells at the tumor boundary move in the direction of the oxygen gradient,
while cancer cells far within the tumor are in a necrotic state. This paper introduces a
simple mathematical model that accounts for these facts. The model consists of
cancer cells, cytotoxic T cells, and oxygen satisfying a system of partial differential
equations. Some of the model parameters represent the effect of anti-cancer drugs. The
tumor boundary is a free boundary whose dynamics is determined by the movement of
cancer cells at the boundary. The model is simulated for radially symmetric and
axially symmetric tumors, and it is shown that the tumor may increase or decrease in
size, depending on the “strength" of the drugs. Existence theorems are proved, global
in-time in the radially symmetric case, and local in-time for any shape of tumor. In the
radially symmetric case, it is proved, under different conditions, that the tumor may
shrink monotonically, or expand monotonically.

Keywords Free boundary problem · Cancer modeling · Solution existence ·
Treatment studies

Mathematics Subject Classification 35R35 · 35Q92 · 35A35

1 Introduction

We consider a tumor region (t ) in 3-D space with boundary ∂ (t ) that varies in time.
Within (t ) there are cancer cells with density C (x , t ) and other species with
densities/concentrations Xi (x , t ) (1 ≤  i ≤  m). These variables satisfy a system of
partial differential equations (PDEs) of the following form:
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∂t 
−  δC�2C =  λC (X )C1 −  

K 

 
−  F (X )C ,                                       (1.1) 

∂t
i

−  δXi �
2 Xi =  λXi (X , C ) −  dXi (X , C )Xi         (1 ≤  i ≤  m ),          (1.2)

where X =  (X1 , . . . , Xm ), δC and δXi are diffusion coefficients, λC and λXi are
growing rates of C and Xi , F and dXi are killing rate of C and death/degradation rates of
Xi , and K is the carrying capacity of cancer cells. The species Xi are cells, proteins or
other molecules.

The variables C and Xi satisfy boundary conditions on ∂ (t ), but the boundary is
unknown, it is a free boundary that needs to be determined together with the solution
of the PDE system. A fundamental question is how to derive the law that governs the
dynamics of the free boundary ∂ (t ).

This question was addressed by Byrne and Chaplain (1997), starting with the
assumption that

C (x , t ) ≡  const. for all x � (t ), t ≥  0. (1.3)

They introduced variables σ (externally-supplied nutrients), β (externally-supplied
inhibitors), and ω (internally-produced inhibitors) satisfying diffusion equations

�2σ +  Fσ =  �2β +  Fβ =  �2ω +  Fω =  0 in (t )

with appropriate boundary conditions on ∂ (t ), and a proliferation rate func-tion
S(σ, β , ω). Assuming that cancer cells move with velocity v(x , t ), and taking C (x , t )
≡  1, the mass conservation law yields the equation

� · v(x , t ) =  S(σ, β , ω)(x , t ). (1.4)

Byrne and Chaplain (1997) specify the dynamics of the free boundary (t ) by
defining, for each (x , t ) � ∂(t ), the velocity in the outward normal direction, n(x , t ), as

Vn (x , t ) =  v(x , t ) · n(x , t ). (1.5)

Eq. (1.5) alone does not, of course, define the vector v(x , t ), except in the case where
the tumor and all variables are radially symmetric. In the non-radially symmetric case,
another condition is needed, such as Darcy’s law

v =  −� p,
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where p is the pressure within cancer cells in (t ), or Stokes equation which relates v to
� p by a PDE system.

The assumption (1.3) was extended to the general systems (1.1 and 1.2) with cells
X1 , . . . , Xk , and proteins and molecules X k+1 , . . . , Xm , by taking

C (x , t ) +  
 
Xi (x , t ) ≡  const. for all x � (t ), t ≥  0; i =1

see review in (Friedman 2018, Chapter 6). This condition was used also in other free
boundary problems that arise in biology, for example in the growth of plaques in
atherosclerosis (Friedman and Hao 2015; Hao and Friedman 2014) and in multiple
sclerosis (Moise and Friedman 2020) and in the growth of granuloma in tuberculosis
(Hao et al. 2016) and in leishmaniasis (Siewe et al. 2017).

Motivated by the fact that the density of cancer cells is definitely far from being
constant throughout the tumor (see for instance Dini et al. 2016; Freyer and Sutherland
1986; Gallaher et al. 2019), we develop in this paper an alternative approach to defining
the velocity of the free boundary. We denote the volume of (t ) by V (t ) and note that the
growth of V (t ) is positively correlated to the growth of the total mass of cancer cells
in (t ), so that

d V (t ) 
=  μ(t , C )

∂C (x , t )
d x , (1.6)

(t )

where μ(t , C ) is a positively-valued function that depends on t and the aggressiveness
of the cancer. In Sect. 2 we explain how to use the system (1.1 and 1.2) and boundary
conditions to determine the relation between the movement of ∂ (t ) and d V (t ) , and this,
in conjunction with Eq. (1.6), will provide the nonlocal dynamics of the free
boundary in terms of μ(t , C ).

For clarity, we shall do this for a simple PDE system that includes just C and two
other species, namely, effector T cells (T ) and oxygen (w).

In Sect. 2, we develop the mathematical model; the model includes several param-
eters which represent the effect of anti-cancer drugs. Simulations of the model, under
different drug treatments, are given in Sect. 3 in the case of radially symmetric tumors,
and, in Sect. 4, in the case of axially symmetric tumors. In Sect. 5, we prove the exis-
tence of solutions of radially symmetric tumors, for all t >  0, andin Sect. 6 we prove
local-in-time existence for the case of general shaped tumors. Section 7 is concerned
with the behavior of the free boundary r =  R(t ) of radially symmetric tumors. Taking
the killing rate of cancer cells by T cells as a parameter η, we prove that for η large,
d R(t )/dt <  0, while, for η small, d R(t )/dt >  0, and the tumor can grow to any size if
η is arbitrarily decreased.
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2 Mathematical model

The function μ(t , C ) in Eq. (1.6) may depend on the specific cancer and on the shape
of the tumor. For simplicity we take it to be just a positive function of t , μ(t ), so that

d V (t ) 
=  μ(t )

∂C (x , t )
d x for t >  0. (2.1)

(t )

The concentration of oxygen, w(x , t ), within the tumor decreases from the tumor
rim toward the tumor core. Hence, the tumor proliferation rate also decreases from
the rim toward the core. We account for this situation by taking the proliferation rate of

C to be λC 
[w−wh ]+ 

, where w0 is the concentration of oxygen in healthy tissue and wh

is an hypoxic level below which cancer cells do not proliferate; they are either in
senescence or, if they died, their debris remains in the tumor. Naturally, we have w0

>  wh .
In addition to oxygen w(x , t ), we introduce in the model also cytotoxic T cells

(CD8+ T cells), T (x , t ), which kill cancer cells at some constant rate η. Hence the
equation for C takes the following form:

∂t 
−  δC�2C =  λC 

[
w0 −  w

]+ 
C1 −  

K 

 
−  ηT C in (t ), for t >  0. (2.2)

Dendritic cells, a professional antigen-presenting cells that link innate and adaptive
immunity, recognize cancer cells, and then activate the T cells. Noting that T cells
use primarily anaerobic respiration to support bioenergetic needs (Salmond 2018; van
der Windt and Pearce 2012), we denote the proliferation rate of T by λT C for some
parameter λT , independent of w. Denoting by dT the death rate of T cells, the equation
for T cells then takes the following form:

∂t 
−  δT �2T =  λT C −  dT T in (t ), for t >  0.

We shall consider an anti-cancer treatment which increases tumor immunogenicity
(ITI) (Wu and Waxman 2018), that is, it increases the ability of cancer to induce
immune response that can prevent its growth. We represent the effect of this treatment
by an increase in the parameter λT .

We shall also consider anti-cancer treatment by immune checkpoint blockade. T
cells have receptors, such as PD-1, that serve as checkpoints, while cancer cells express
the ligands PD-L1. The complex PD-1/PD-L1 deactivates T cells. A drug that inhibits
PD-1, increases the anti-cancer activity of T cells (Postow et al. 2015; Li et al. 2018;
Fares et al. 2019). We represent the effect of such a drug by an increase in the parameter
η.

We shall finally consider cancer vaccines that serve to enlarge the pool of tumor-
specific T cells which are dormant in the lymph nodes (van der Burg et al. 2016).
GVAX is a common cancer vaccine composed of tumor cells genetically modified to
secrete GM-CSF and then irradiated to prevent further cell division. GM-CSF can
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activate dendritic cells (Kaufman et al. 2014; Gupta and Emens 2010; Simmons et al.
2007) which then activate dormant T cells. We represent the effect of the vaccine by
adding a source εdT T0 to the T-equation, where T0 is the density of the inactive (naive or
dormant) T cells from the lymph nodes, so that

∂t 
−  δT �2T =  λT C −  dT (T −  εT0) in (t ), for t >  0; (2.3)

since, in steady state with C ≡  0, T should be no greater than T0, the parameter ε is
restricted to the interval 0 ≤  εdT ≤  1.

We assume that oxygen is consumed at constant rate by cancer cells, so that

∂t 
−  δw�2w =  −dwC C w −  dww in (t ), for t >  0, (2.4)

where dwC and dw are constants.
Since there are no cancer cells outside (t ), C satisfies a boundary condition of

the from

α 
∂n 

+  (1 −  α)C =  0 on ∂ (t ), for t >  0,

for some 0 ≤  α ≤  1, where n(x , t ) is the outward normal to ∂ (t ) at x . We take α
=  1 so that

∂n 
=  0 on ∂ (t ), for t >  0, (2.5)

but all the analysis and simulation results of this paper can be extended to the case
where 0 <  α <  1. Since C >  0 on the tumor rim, the case α =  0 can be excluded.

We assume that

∂n 
+  γ (t )(T −  T0) =  0 on ∂ (t ), for t >  0,

where γ (t ) >  0 if T <  T0, γ (t ) =  0 if T ≥  T0. (2.6)

Cancer cells under hypoxia secrete vascular endothelial growth factor (VEGF) that
induces the formation of new blood capillaries around the tumor, resulting in increased
oxygen concentration at the boundary ∂ (t ) to some level W above w0; W can be
decreased by treatment with VEGF inhibitor, a commonly used drug. We take

w =  W on ∂ (t ), for t >  0, where W ≥  w0 , (2.7)

assuming that W =  w0 under effective treatment with VEGF inhibitor.
We next consider the dynamics of the free boundary. We assume that cancer cells

that are on the boundary at time t =  0 remain on the boundary for all t >  0; more
precisely, that the movement of boundary points coincides with the movement of cancer

1 2 3
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cells at these boundary points. We consider first the case where (t ) is increasing for 0
≤  t ≤  t0.

Cancer cells proliferate abnormally fast, and require increased supply of oxygen.
We assume that cancer cells at a point x =  x (t ) � (t ) move in the direction of the
gradient �w(x , t ) (of increased oxygen concentration) with velocity proportional to
|�w(x , t)|, so that

d x (t ) 
=  ρ (t )�w(x (t ), t ) in (t ), t >  0; (2.8)

hence the movement of x (t ) along the outward normal n(x (t ), t ) is given by

d

dt

t ) 
· n(x , t ) =  ρ (t )

∂w(x (t ), t ) 
on ∂ (t ), t >  0, (2.9)

where the function ρ (t ) is to be determined.
During a small time interval (t , t + t ), the boundary points of ∂(t ) span a region

of volume approximated by

V (t +  t ) −  V (t ) ≈  ρ (t )
∂w(x (t ), t )

d Sx · t , ∂ (t )

where dSx is the area element on ∂ (t ). Taking t arbitrarily small, we get

d V (t ) ∂w(x (t ), t )
dt ∂ (t )      ∂n(x , t ) x

Substituting dV from Eq. (2.1) with ∂C from Eq. (2.2), and using the non-flux boundary
condition (2.5), we find that

μ(t ) λ [w−wh ]+ 
C1 −  C 

 
−  ηT Cdx

ρ (t ) = ∂w(x (t ),t ) . (2.10)
∂ (t )     ∂n(x ,t )

Since we assumed that (t ) is increasing for 0 ≤  t ≤  t0, we expect ρ (t ) to be
positive for 0 ≤  t ≤  t0. If ρ (t ) <  0 for 0 ≤  t ≤  t0 (for example when ηT is large), it
means that the (t ) is actually decreasing. In this case we assume that the T cells push
back the points x on ∂ (t ) in the reverse direction of �w(x , t ) with a velocity
proportional to |�w(x , t)|, and wefind, as before, that the proportionality coefficient is
ρ (t ) given by the same equation (2.10). Thus, regardless of whether (t) is increasing or
decreasing, the dynamics of the free boundary is given by the system (2.8, 2.9 and
2.10).

To summarize: the surfaces ∂ (t ), t >  0, are spanned by the points whose velocity is
given by Eq. (2.8), and, in the normal direction, by Eq. (2.9), where ρ (t ) is defined by
Eq. (2.10), and (w, C , T ) is the solution of the PDE system (2.2, 2.3, 2.4, 2.5, 2.6 and
2.7) in

1 2 3
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t =  {(x , τ ) : x � (τ ) and 0 ≤  τ ≤  t}

with prescribed initial conditions.
In the special case where (t ), C , T and w are radially symmetric, we have

(t ) =  {0 ≤  r ≤  R(t )}, ∂ (t ) =  {r =  R(t )}, (2.11)

and C =  C (r , t ), T =  T (r , t ), w =  w(r , t ) where r =  |x|, and

d R(t ) ∂w(R(t ), t ) 3μ(t ) 
 R (t ) [w −  wh ]+      C  

2

dt ∂r R(t )2 w0 −  wh K
(2.12)

Parameter values used in the model simulations are given in Table 1.

3 Numerical results for radially symmetric tumors

The choice of μ(t ) determines how fast the tumor volume grows. In the numerical
simulations, for radially symmetric tumors, we take

μ(t ) =  2 +  t /5, γ (t ) =      
0

if T ≤  T0,
if T >  T0,

and the following initial conditions:

d =  0.1 cm, R(0) =  0.5 cm, C (r , 0) =  0.9K 
([r −  R(0) +  d ]+ )2 

,

w(r , 0) =  (W −  wh )
([r −  R(0) +  d ]+ )2 

,

T (r , 0) =  T0 min
([r −  R(0) +  2d ]+ )2 

, 1 .

In the following three figures, we consider the case where the tumor was already
treated with VEGF inhibitor, so that W =  w .

Figure 1 with η =  100, λT =  4 ×  10−3 shows the average density of C , T and w
over 180 days, and the corresponding growth of the tumor radius from R(0) =  0.5 to
R(180) =  1.8 cm. We see that as the tumor radius increases, the average density of
oxygen is decreasing, while the average densities of C and T are increasing in the first 50
days and then remain almost constant. We also see that, at t =  180 days, the spatial
densities of C , T , and w are increasing from the tumor center r =  0 to the tumor
boundary r =  R(180). We note, in particular, that the necrotic core, where w <  wh , is
approximately the region 0 ≤  r <  0.7 cm, and in this region there are hardly any T
cells; T cells are mostly present where the cancer cells are proliferating, and their
density correlates to the density of cancer cells.
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Figure 1 with η =  100 and λT =  4 ×  10−2 , an increase of the parameter λT by
a factor of 10, represents a treatment by ITI therapy. Tumor radius was substantially
decreased, and, in particular, R(180) =  1.4 cm compared to 1.8 cm without ITI
therapy. As a result, the average oxygen concentration is much higher and, in particular,
it is above the hypoxic level wh by day 180.

Treatment by anti-PD-1 means an increase in the effective killing rate η of cancer
cells by T cells. Fig. 1 with η =  500 and λT =  4 ×  10−3 shows that such treatment
reduced R(180) from 1.8 cm to 0.9 cm, the oxygen concentration has increased and
the necrotic core decreased, from 0 ≤  r <  0.5 to 0 ≤  r <  0.2 cm.

In Fig. 2 we simulated the effect of treatment with cancer vaccine (ε =  2) and
gradually increasing anti-PD-1 (η). Starting with R(0) =  0.5 cm, we see that the
radius growth decreases as η increases. In the case where λT =  4 ×  10−3 , η =  500, the
radius R(180) =  1.3 cm in Fig. 1, when ε =  0, is significantly reduced to R(180)
=  0.7 cm with vaccine treatment at ε =  2. We also see an initial oscillation in R(t ) and in
the cancer average density C (t ). Such oscillations were observed also in Friedman et al.
(2006) and can be explained as follows: If C (t ) decreases then λT C , and hence T
decreases, so the killing rate ηT of C decreases and this may result in an increase in C
soon after time t.

4 3D numerical results for axially symmetric tumors

In this section, we consider axially symmetric tumor, that is, all species are functions
of (r , z) where r = x2 +  y2, and

(t ) =  {(r , z); |z| ≤  R(r , t )}.

To simulate (t ), t >  0, we discretize the spatial direction by using thefinite difference
method, solve the semi-discretized temporal system by using the explicit Runge-Kutta

4th order scheme. In particular, we use the uniform grid points on the θ direction with
a stepsize θ =  2π , namely, θj =  jθ, j =  0, . . . , m −  1 where m is the number of grid
points. For the radius on each θj direction, we use the uniform grid points with a

stepsize h j , namely, ri , j =  ρ j + i h j with h j =  R−ρ j  and i =  0, 1, . . . , n, where n is the
number of grid points on each radius. Then we use the central difference scheme to
approximate the derivatives for both r and θ.

Figure 3 shows 2 rows of tumors with μ(t ) =  2 +  t and λT =  4 ×  10−3 . In the first
row, η =  1000 and ε =  0 and in the second row, η =  10000 and ε =  0.1. In the first
row, tumor volume increases in time, and in the second row, the tumor volume is
decreasing.

If the oxygen concentration is linearly decreasing along the internal normal to the
boundary, then, as tumor volume increases, boundary points near a reentrant corner
should be moving with greater velocity than points away from the reentrant corner, and
this results in a decrease in the reentrant corner. Indeed, this is clearly seen in the two
simulations of the top row in Fig. 3. Conversely, for the same reason, as tumor volume
decreases, boundary points near reentrant corner recede further than boundary points
elsewhere, as seen in the second simulation of the bottom row in Fig. 3. Fingers, as in

1 2 3
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Fig. 1 Treatment with VEGF inhibitor. W =  w on the free boundary, with ε =  0 and different λ     and
η. The first four figures describe the dynamic of the average density of w, T , C (in units of g/cm3) within the
tumor, and the radius growth during 180 days. The last three figures describe the densities of w, T , C along
the radius of the tumor at day t =  180

the first simulation of the bottom row of Fig. 3, are also shrinking fast, for the same
reason, in fact they recede so fast that the nearby reentrant corner is even decreasing.

5 Radially symmetric tumors: existence of solutions

In this section we prove existence and uniqueness of global in-time solutions in the
case of radially symmetric tumors. Recall that the tumor boundary r =  R(t ) satisfies
the equation

1 2 3
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Fig. 2 Treatment with VEGF inhibitor, immune checkpoint blockade, and cancer vaccine. W =  w on the
free boundary, with λ     =  4 ×  10−3 and ε =  2. The first four figures describe the dynamic of the average
density of w, T , C (in units of g/cm3) within the tumor, and the radius growth during 180 days. The last
three figures describe the densities of w, T , C along the radius of the tumor at day t =  180

d R(t ) 3μ(t ) 
 R(t ) [w −  wh ]+      C  

2

dt R(t )2     0                      w0 −  wh K

We set

F1(C , T , w) =  λC 
[w −  wh ]+ 

C1 −  
K 

 
−  ηT C ,

F2(C , T ) =  λT C −  αT (T −  εT0),
F3(C , w) =  −dwC C w −  dww,

(5.1)
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Fig. 3 Axially symmetric 3-D tumors with W =  w0 and λT =  4 ×  10−3 . The top row with η =  1000, ε =
0, the bottom row with η =  10000, ε =  0.9. Tumor volumes increase in the top row, and decrease in the
bottom row

and rewrite the system (2.3, 2.7) in the form

∂t 
−  δC 

r2 ∂r 
r2 

∂r 
 
=  F1(C , T , w) ∂t

−  δT r2 ∂r
r2 

∂r 
 
=  F2(C , T )

∂t 
−  δw r2 ∂r

r2 

∂r
=  F3(C , w)

in (t ), t >  0, (5.2)

in (t ), t >  0, (5.3)

in (t ), t >  0, (5.4)

with boundary conditions

∂r 
( R(t ), t ) =  0

∂r 
( R (t ), t ) =  γ (t ) T0 −  T ( R(t ), t )

w(R(t ), t ) =  W

for t >  0, (5.5)

for t >  0, (5.6)

for t >  0. (5.7)
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We take initial conditions

C (r , 0) =  Ci n (r ),     T (r , 0) =  T n (r ),     w(r , 0) =  wi n (r ) for 0 ≤  r ≤  R(0).
(5.8)

We assume that Cin , T n , win belong to C 2+α [0, R(0)] for some 0 ≤  α <  1, and
satisfy

0 ≤  Cin ≤  K ,     0 ≤  T n ≤  T0,     0 ≤  win ≤  W , (5.9)
∂
∂r

n ( R (0)) =  0, wi n (R(0)) =  W , and μ(t ), γ (t ) are in C 1+α/2[0, ∞),

γ (t ) decreasing function, γ (t ) =  0 if T ≥  T0 and γ (t ) >  0 if T <  T0. (5.10)

Theorem 5.1 The system (5.1 – 5.10) has a unique solution for all t >  0, with d R in
C 1+α/2[0, ∞) and C, T , w in C 2+α ,1+α/2 (∞ ), where

∞  =  {(r , t ) : 0 ≤  r ≤  R(t ), 0 ≤  t <  ∞}.

We need the following lemma.

Lemma 5.2 The following estimates hold for any solution of the system (5.1 – 5.10):

0 ≤  w(r , t ) ≤  W , 0 ≤  C (r , t ) ≤  K for 0 ≤  r ≤  R(t ), t >  0,

and

0 ≤  T (r , t ) ≤  Tmax for 0 ≤  r ≤  R(t ), t >  0,

where Tmax : =  max λT K −dT (1−ε )T0 ,  T0.

The first two estimates follow directly by comparing w (respectively C) with the
constants W (respectively K ) by the maximum principle, and the last bound on T
follows by noting that Tmax is a supersolution for T .

Proof of Theorem 5.1 We follow the proof of Theorem 2 in Friedmen et al. (2014), and
begin with a change of variables

y =  
R(t )

,     û (y , t ) =  u(r , t ) for u =  C , T , w,

in order to convert the system (5.1 – 5.10) with free boundary r =  R(t ) to a system
with a fixed boundary y =  1:

∂t 
−  δC y2 R2 ∂ y

y2 

∂ y
−  

R ∂ y 
=  F1(C , T , ŵ ), (5.11)

1 2 3
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∂T 1 ∂ ∂T y R ∂T

∂t T y2 R2 ∂ y ∂ y R ∂ y 2

∂t 
−  δw y2 R2 ∂ y

y2 

∂ y
−  

R ∂ y 
=  F3(C , ŵ ),

A. Friedman et al.

(5.12)

(5.13)

for 0 ≤  y ≤  1, t >  0,

∂ y 
(1, t ) =  0, (5.14)

R ∂ y 
(1, t ) =  γ (t )[T0 −  T (1, t )]+ ,                                

 
(5.15)

ŵ(1, t ) =  W ,                                                                        (5.16)

for t >  0, and

dt 
(t ) =  3μ(t ) R(t )

0

1 

F1(C (y , t ), T (y , t ), ŵ (y , t ))y2 dy. (5.17)

By Lemma 5.2,

0 ≤  C (y , t ) ≤  K ,     0 ≤  T (y , t ) ≤  Tmax ,     0 ≤  ŵ(y , t ) ≤  W ,

and

|F1(C (y, t ), T (y , t ), ŵ(y , t ))| ≤  
λC

(
W −  wh )

 
K +  ηTmax K ≡  Fmax . (5.18)

0 h

For any 0 <  τ <  1, we define a mapping R(t ) →  R(t ) from Cα/2[0, τ ] to Cα/2[0, τ ]
as follows: Given R(t ), we solve the system for C , T , ŵ and take

dt 
R(t ) =  3μ(t ) R(t )

0

1 

F1(C , T , ŵ)y2 dy , R(0) =  R(0).

By (5.18),

 dt 
(t ) ≤  μτ  Fmax R(t ) for 0 ≤  t ≤  τ , (5.19)

where μτ  =  sup0≤t ≤τ μ(t ), and

R (0)e−μτ  Fmax t ≤  R(t ) ≤  R(0)eμτ Fmax t . (5.20)
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By Schauder estimates,

(C , T , ŵ )
C 2+α,1+α/2 ([0,1]×[0,τ ]) 

≤  M , (5.21)

where M depends only on the parameters of the system.
We introduce the subset in Cα/2[0, τ ],

X =  R � Cα/2[0, τ ] : R (0)e−μτ  Fmax t ≤  R(t ) ≤  R(0)eμτ Fmax t ,

and define the mapping τ : X →  X by R →  R. In view of (5.19) and (5.20),  is a
compact mapping from X into X .

We claim that τ is a contraction mapping if τ is small. To prove it we take any
two functions R1 and R2 in X and their corresponding solutions (Ci , T , ŵi ) and Ri
=  τ (Ri ), and consider the differences C =  C1 −  C2 , T =  T1 −  T2,
w =  ŵ1 −  ŵ2, and the corresponding R =  R1 −  R2. Then

� 
∂
∂t

� 
−  δC 

R

1 
2 ∂ y 

y2 

∂ y

�  
−  

R 
1 

∂ y

� 
=  F�(y , t ),

� ∂T� 1 ∂ 2 ∂T� y R1 ∂T�
�

∂t R2 y2 ∂ y ∂ y R1     ∂ y 2

� ∂w� 1 ∂ 2 ∂w� y R1 ∂w�
�

∂t R2 y2 ∂ y ∂ y R1     ∂ y

where, as can be directly verified,

|F�(y, t)| ≤  A(|C�(y, t)| +  |T�(y, t)| +  |w�(y, t)| +  |R1(t) −  R2(t )|)

for some constant A. The Cα,α/2 norm of F� can be estimated in a similar way. Then,
by the Schauder estimates,

(C�, T �, w�)C 2+α,1+α/2 ([0 ,1 ]×[0,τ ]) ≤  AR1 −  R2Cα/2[0 ,τ ]

and

dt 
(log R1 −  log R2)(t ) ≤  AR1 −  R2Cα/2[0,τ ],

with another constant A.
Since R1(0) =  R2(0), we easily deduce that

[R1 −  R2]Cα/2[0 ,τ ] ≤  τ 1−α/2 AR1 −  R2Cα/2[0 ,τ ]

and

R1 −  R2C0[0 ,τ ] ≤  AτR1 −  R2Cα/2[0 ,τ ].
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Taking τ sufficiently small we conclude that the mapping τ is a contraction mapping,
hence it has a unique fixed point. This completes the proof of existence and uniqueness
in a small time interval 0 ≤  t ≤  τ .

The global existence follows from the a priori estimates

 dt 
(t ) ≤  μτ  Fmax R(t )

and

R (0)e−μτ  Fmax t ≤  R(t ) ≤  R(0)eμτ  Fmax t .

6 General domains: local existence of solutions

In this section we consider general domains (t) with free boundary ∂(t ), and prove
existence and uniqueness of solutions of the model equations, for some time interval 0
≤  t ≤  τ , τ >  0.

Equations (5.2 5.3 and 5.4) are replaced by the following equations

∂t 
−  δC�2C =  F1(C , T , w)

∂T 
−  δT �2T =  F2(C , T )

∂t 
−  δw�2w =  F3(C , w)

in (t ), t >  0, (6.1)

in (t ), t >  0, (6.2)

in (t ), t >  0, (6.3)

with the same functions Fj as in Sect. 5. We take boundary conditions

∂n 
=  0,

∂n 
+  γ (t )(T −  T0) =  0,     w =  W on ∂ (t ), t >  0, (6.4)

with a decreasing function γ (t ), γ (t ) =  0 if T ≥  T0, γ (t ) >  0 if T <  T0, and initial
values

C (x , 0) =  Ci n (x ),     T (x , 0) =  T n (x ),     w(x , 0) =  wi n (x ) for x � (0). (6.5)

We denote by U (x , t ) the velocity of cancer cells at the boundary, so that, by (2.8),
the free boundary moves with velocity

U (x , t ) =  ρ (t )�w(x , t ) for x � ∂ (t ), t >  0,

where ρ (t ) is defined in (2.10). However, in order to prove existence of solutions,
we need to modify the definition of the velocity function by approximating it by a
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smoother function: We accordingly define the velocity of the free boundary by

U (x , t ) =  ρ (t ) �w(x , t ) jν (x −  x )d x , (6.6)

where jν (y) is C ∞  function, jν (y) >  0 if |y| <  ν, jν (y) =  0 if |y| >  ν, and
jν (y)dy =  1. Here ν is arbitrarily small but fixed.
We make the following regularity assumptions:

μ(t ) and γ (t ) belong to C 1+α/2[0, ∞);
∂ (0) � C 3+α ,

the functions Cin , T n , win are in C 2+α ((0)), and have

C 2+α ,1+α  extensions to ε1 −  neighborhood of (0) ×  (0, ε2 ), for
some ε1, ε2 >  0, for which the boundary conditions (6.4) are
satisfied at ∂ (0).

(6.7)

(6.8)

(6.9)

Assuming the initial free boundary to be star-shaped, we expect it to remain star-shaped
for a small time. We can then express the free boundary in the spherical coordinates:

∂ (t ) =  {x � R3  : x =  Z (λ , t )}, (6.10)

where λ =  (θ , ϕ) �  : =  −  2 ,  2 

 
×  [0, 2π ], and

Z 0(λ) ≡  Z (λ , 0) � C 3+α ().

We denote by er (λ), eθ (λ), eϕ (λ) the local orthogonal unit vectors on the boundary x
=  Z (λ, 0) in the direction of increasing r , θ , ϕ, respectively, and write the surface x =
Z (λ, t ) in the form

x =  Z (λ, t ) =  Z 0(λ) +  h(λ, t )er (λ). (6.11)

Theorem 6.1 The system (6.1) – (6.9) has a unique solution for some time interval
0 ≤  t ≤  τ (τ >  0) with free boundary of the form (6.11), such that

0≤ t ≤τ  
h(·, t )C 2+α () +  ht (·, t )C 1+α ()

 
<  ∞. (6.12)

Proof The proof uses similar arguments to those used in Friedman et al. (2012) in a
model of wound healing. We first note that

�Zt (λ, t ) =  ht (λ, t )er (λ),
Zθ (λ, t ) =  Z 0(λ) +  hθ (λ, t )er (λ) +  h(λ, t )eθ (λ), (6.13)

Zϕ (λ, t ) =  Zϕ (λ) +  hϕ (λ, t )er (λ) +  h(λ, t )eϕ (λ) cos θ .
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Taking scalar product with er (λ), we get

ht (λ, t ) =  Zt (λ, t )er (λ), (6.14)

hθ (λ, t ) =  Zθ (λ, t )er (λ) −  Zθ (λ)er (λ), (6.15)

hϕ (λ, t ) =  Zϕ (λ, t )er (λ) −  Zϕ (λ)er (λ). (6.16)

As in Friedman et al. (2012), we shall express the velocity of the free boundary by a
first order hyperbolic equation for h(λ, t ). To do that, consider the movement of a
point Z (λ, t +  t ) with λ =  (θ , ϕ) to a point Z (λ, t +  t ) with λ =  (θ , ϕ) at the time t
+  t , and set λ =  (θ , ϕ). We can write

Z (λ, t +  t ) −  Z (λ, t ) =  [Z (λ, t +  t ) −  Z (λ, t )] −  [Z (λ , t ) −  Z (λ, t )] −
[Z (λ, t ) −  Z (λ, t )],

and note that

t→0 

Z (λ, t +  t ) −  Z (λ, t ) 
=  U (Z (λ , t ), t ) · 

e

r ,

Z (λ , t ) −  Z (λ, t ) Z (λ , t ) −  Z (λ, t ) θ −  θ
t→0 t                   t→0               θ −  θ                    t→0      t

U (Z (λ , t ), t ) · e
θ |Z(λ, t)|

Z (λ, t ) −  Z (λ, t ) Z (λ, t ) −  Z (λ, t ) ϕ −  ϕ
t→0 t t→0 ϕ −  ϕ t→0 t

U (Z (λ , t ), t ) · e
ϕ |Z(λ, t)| cosθ

Hence

Zt (λ, t ) =  U (Z (λ, t ), t )er −  Zθ (λ, t )
U (Z

|Z (λ, t )| 
· eθ −  Zϕ(λ, t)

U
|Z (λ, t)| cosθ 

ϕ .

Taking scalar product with er and using Eqs. (6.14–6.16), we obtain a hyperbolic
differential equation for h:

ht (λ, t ) +  
U (Z

|
Z

(λ, t)| 
· eθ hθ (λ, t ) +  

U

|Z

(
λ, t)|

co

sθ
eϕ hϕ (λ, t ) =  G (λ , t ),

(6.17)

where

G (λ , t ) =  U (Z (λ , t ), t ) · er −  Zθ (λ) · er 
U (Z (λ , t ), t

))
 · eθ

0 U (Z (λ , t ), t )) · eϕ
|Z(λ, t)| cosθ
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and

h(λ, 0) =  0. (6.19)

To prove Theorem 6.1 we shall use a fixed point argument in a closed subset of a
Banach space,

Xτ M =  {h(λ, t ) : h(λ, 0) =  0,     hτ ≤  M} , M >  0,

where

hτ =  sup h(·, t ) 2+α +  sup ht (·, t ) 1+α .
0≤ t ≤τ                                                0≤ t ≤τ

From (6.6 and 6.11) we can compute ht (λ, 0), and note that hτ ≤  ∞ if τ =  0; we
choose M to be any number strictly greater than h . Given h � X , we define
surfaces x =  Z (λ , t ) by (6.11) and, using C 2+α ,1+α/2 Schauder estimate, solve the
system (6.1–6.5), (6.7– 6.10). We use this solution to define a function U (Z (λ , t ), t )
by (6.6), where ρ (t ) is defined by (2.10). We then introduce a function h(λ, t ) as the
solution of the equation

ht (λ, t ) +  
U ( 

|
Z (
λ, t

)
| 

· eθ hθ (λ, t ) +  
U

|
Z

(λ, t

)
| cos

θ
 
ϕ hϕ =  G (λ , t ), (6.20)

with h(λ, 0) =  0.
We define a mapping A by Ah =  h and claim that if τ is small enough then A is

a contraction mapping in Xτ M ; hence it has a unique fixed point, which is the unique
solution asserted in Theorem 6.1.

To prove the claim we view (6.20) as an hyperbolic equation of the form

ut +  a(λ , t ) · �λu =  b(λ , t ) for λ � ,  0 ≤  t ≤  τ , (6.21)

with u(λ, 0) =  0, and

a(·, t )C 2+α () +  b(·, t )C 2+α () ≤  B , for 0 ≤  t ≤  τ.

From the proof of (Chen and Friedman 2003, Lemma 2.2) or (Friedman 2008, Lemma
3.2) we conclude that there exists a unique solution u of (6.21) with u(λ, 0) =  0,
satisfying the estimate

u(·, t )C 2+α () ≤  C0(B )τ , (6.22)

where the constant C ( B ) depends only on B.
We denote by � the domain bounded by the surface defined by h(λ, t ), and by ��

the 3-d domain spanned by �, 0 ≤  t ≤  τ . Since the lateral boundary of �� has
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the same regularity as h(λ, t ), the C 2+α ,1+α/2 estimate on the solution of (6.1–6.5),
(6.7– 6.10) imply, in particular, that

sup U (Z (·, t ), t ) 2+α , ≤  C1(M ),
0≤ t ≤τ

where here, and in the sequel, Ci (M ) denote constants depending only on M .
We can therefore apply estimate (6.22) to the solution h(λ, t ) of (6.20) (with

h(λ, 0) =  0) and conclude that

h(·, t )C 2+α () ≤  C2(M )τ .

From (6.20) it then follows that

ht (·, t )C 2+α () ≤  C3(M )τ .

Taking τ such that [C2(M ) +  C3(M )]τ <  M , we deduce that A : h →  h maps Xτ M
into itself.

To prove that A is a contraction, we take h1, h2 in Xτ M with the corresponding
Zi (λ, t ), the solutions (Ci , T , wi ) and Ui (Zi (λ, t ), t ), Gi (λ, t ), and domains  (for i
=  1, 2), and set

δ =  (h1 −  h2)τ .

We transform t ,2 into t ,1 by change of variables

r̃ =  r −  (h2 −  h1)(λ , t ) · ψ,

where ψ is a C3 function with compact support that is equal to 1 in a neighborhood of
the initial domain. The functions C2, T2, w2 in the original variables (r , λ) in

become functions C2, T2, w̃2 in the variables (r̃ , λ) in and they satisfy a
similar system of equations and boundary conditions as C1, T1, w1, but with somewhat
different coefficients, in such a case, we have

C1 −  C2 , T1 −  T2, w1 −  w̃ 2Cα,α/2(τ ,1) ≤  C4(M )(h1 −  h2)(·, t )C 2+α () ≤

C4(M )δ.

Using the Schauder estimates, we get

C1 −  C2 , T1 −  T2, w1 −  w̃ 2C 2+α,1+α/2 (τ ,1 ) ≤  C5(M )δ. (6.23)

We can then extend the solutions (Ci , T , wi ) to �� =  �� ��� so that the estimate (6.23)
yields the estimate

C1 −  C2 , T1 −  T2, w1 −  w2C 2+α,1+α/2 (��) ≤  C6(M )δ. (6.24)
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As before, the same estimate holds also for the λ-derivative of the differences, so that

(U1 −  U2)(·, t ), (G1 −  G2)(·, t )C 2+α () ≤  C7(M )δ. (6.25)

We now write the equations for h1 and h2 in integrated form along their respective
characteristics, and note that, by (6.25), the characteristic curves are close to each
other in the C2+α-norm. Proceeding as in (Chen and Friedman 2003; Friedman 2008),
we can then successively estimate h1 − h 2 , �λ(h1 − h 2 ), �2(h1 − h 2 )  in their Cα ()
norm, for any fixed t , and thus derive the estimate

(h1 −  h2)(·, t )C 2+α () ≤  C8(M )δτ.

From the differential equations for h1, h2 we then also derive the estimate

 ∂ 
(h1 −  h2)(·, t ) ≤  C9(M )δτ. C 1+α ()

Hence, if τ is sufficiently small then

h1 −  h2τ ≤  
2

h1 −  h2τ ,

so that the mapping A is a contraction, and the unique fixed point of A then provides
the unique solution asserted in Theorem 6.1.

7 Analysis of the radially symmetric case

Lemma 7.1 If ε >  0, and

εT0 ≤  T n (r ) ≤  Tmax     and 0 <  Cin (r ) ≤  Cmax : =  K1 −  
λ

T0 

W −  w
h

in [0, Rin], then we have the following:

εT0 ≤  T (r , t ) ≤  Tmax ,
[ 

inf
n] 

Cin     e−ηTmax t ≤  C (r , t ) ≤  Cmax (7.1)

for 0 ≤  r ≤  R(t ), t ≥  0.

Proof It is easy to see that T (r , t ) ≡  εT0 is a sub-solution of the equation of T :

�∂t T −  δT T ≤  λT C (r , t ) −  αT (T −  εT0)

∂r T (R(t ), t ) =  0 ≤  γ (t )[T0 −  T ( R (t ), t )]+

T (r , 0) ≤  T n (r )

for 0 ≤  r ≤  R(t ), t >  0,
for t >  0,
for 0 ≤  r ≤  Rin.
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By comparison, and recalling the upper bound from Lemma 5.2, we have εT0 ≤  T ≤
Tmax . Next, we estimate C by observing that it satisfies the inequality

∂t 
C −  δC C ≤  λC · w0 −  wh 

C 1 −  
λ

T0 · 
W −  wh 

−  
K

with the Neumann boundary condition on r =  R(t ). We again deduce by comparison
the desired upper bound for C . Finally, the lower bound of C follows by observing
that the function C�(t ) =  e−ηTmax t min[0,R(t )] C (·, 0) satisfies

dt 
C�(t ) =  −ηTmax C�(t ) for t ≥  0,

and is a subsolution for C (r , t ).

Define σ (r ) =  sinh(r ) , and for R >  0, define

σ (r ; R) =   
dwC K +d

  σ
dwC K +  dw r .

w

Lemma 7.2 Suppose win ≥  σ (r ; Rin ) for 0 ≤  r ≤  Rin, then

w(r , t ) ≥  w(r , t ) : =  σ (r ; Rmax (t ))     for 0 ≤  r ≤  R(t ), t >  0,

where R (t ) : =  max R(t ).
0≤ t  ≤ t

Proof Indeed, using the facts that  ∂ w(r , t ) ≤  0 and 0 ≤  C (r , t ) ≤  K , we observe
that w(r , t ) satisfies

�∂t w −  δww ≤  −dwC C w −  dww
w( R(t ), t ) ≤  W
w(r , 0) ≤  wi n (r )

for 0 ≤  r ≤  R(t ), t >  0,
for t >  0,
for 0 ≤  r ≤  Rin .

It follows by comparison that w(r , t ) ≥  w(r , t ).

7.1 R(t) is shrinking if  is large

Theorem 7.3 If ε >  0, εT0 ≤  T n (r ) ≤  Tmax , and

λC        W −  wh

εT0      w0 −  wh

then dt R(t ) <  0 for all t ≥  0. In particular, 
t 

lim R(t ) � [0, Rin ) exists.
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3μ(t
2

λ C 1 −R(t ) = −  ηT C

W −  wh

˜ ˜
˜

2
˜

 ̃    ̃
2

˜ ∂r
˜

˜

˜ ˜

R2

δ
˜ ˜

˜

0
η

d

W −  wh

R̂

ˆ ˆ

d
ˆ ˆ ˆ
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Proof Indeed,

d 3μ(t ) 
 R(t ) [w(r , t ) −  wh ]+ C

dt R(t )2     0                
C          w0 −  wh                            K

≤  
R(

t

))
C λC w0 −  wh 

−  η(εT0) r2 dr <  0,

r2 dr

for t ≥  0. Here we used the estimates 0 ≤  w(r , t ) ≤  W (Lemma 5.2), and T (r , t ) ≥
εT0 (Lemma 7.1).

7.2 R(t) is increasing for 0 ≤    1

Lemma 7.4 Given Rin, there exists 0 <  δ <  min{1, 2Rin/3} such that

inf σ (r ; R) ≥  
W +  wh for each R � [Rin ,∞).

r�[ R−δ , R]

Proof Since σ ( R ; R) =  W >  W +wh , and

sup
∂σ 

(·; R) <  +∞ ,
R�[Ri n ,∞)                              L∞ ([0,R])

the assertion follows for any sufficiently small δ >  0.

Remark 7.5 Using the fact that δ � (0, 2Ri n /3), we have

R3 −  (R −  δ)3 
>  3δ −  

3

R

2 
≥  δ , for R � [Rin ,∞).

Lemma 7.6 Given Rin >  0 and μ(t ) >  0 satisfying 
 ∞  μ(t ) d t =  +∞ ,  denote by

G (t ), for any η >  0, the unique solution of

dt 
G(t ) =  η (t , G (t ))     for t � [0, ∞), and G (0) =  Rin ,

where

η (t , G) =  μ(t )λC 2(w0 −  wh ) 
δ(1 −  Cmax /K )

e−ηTmax t −  ηTmax Cmax G. (7.2)

Then for each R � (Ri n ,∞), there exist η̂, t >  0 such that

dt 
G η̂ (t ) >  0 in [0, t ], and G η̂ (t ) =  R.
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∞
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i
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ˆ

ˆ

d
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ˆ
d

ˆ

R2
in 0dt w −  w0 h

C

R2
in 0 w −  w0 h

w −  wR2

≥  μ(0) λ
R

δ −  η̂T C R ,

dt dt
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ˆ ˆ
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Proof Fix Rin <  R. When η =  0, we can make use of the condition 
 ∞  μ(t ) d t =  ∞ to

deduce G (t ) →  ∞ as t →  ∞. Hence, for arbitrarily large R, there exists t  such that
G (t ) >  0 in [0, t ] and G(t ) =  R +  1. Since the solution depends continuously on the
parameter η, there exists a small η̂ such that for η � (0, η̂], we have G (t ) >  0 in [0, t ]
and G(t ) >  R. The lemma holds by choosing t to be the unique point in (0, t ) such
that G (t ) =  R.

Theorem 7.7 Let μ(t ) >  0 be given such that 0     μ(t ) d t =  +∞ ,  and, for any R
>  Rin, let η̂, t be given by Lemma 7.6. Suppose

εT0 ≤  T n (r ) ≤  Tmax , wi n (r ) ≥  σ (r ; Ri n ), Cin (r ) ≥  
R

in [0, Rin].

Then, for any η � [0, η̂], there exists tη such that

dt 
R(t ) >  0 in [0, tη], and R(tη) =  R. (7.3)

Proof Define the set

I : =  {t  � [0, t ] : 
dt 

R(t ) >  0 in [0, t ]}. (7.4)

It is clear that I is connected and is open relative to [0, t ]. Next, we show that I  0.
Indeed, by (5.1), we have

d 
R(0) =  

3μ(0) 
 Rin 

λC 
[win −  wh ]+ 

C 1 −  
K

 
 
−  ηT C r2 dr

≥  
3μ(0) 

 Rin 

λC 
[σ

(
r ; Rin ) −  wh ]+ 

C (r , 0)(1 −  Cmax /K ) −  η̂Tmax K r2 dr

≥  
3μ(0)

 Rin      

λC 
(W −  wh )/2

(1 −  Cmax /K )(inf Ci n )e−η̂Tmax ·0r 2 dr in
Ri n −δ 0 h

−  
Rin 

η̂Tmax Cmaxr2 dr
0

(W −  wh )/2 (1 −  Cmax /K )
C      w0 −  wh ˆ max     max     in

where we used C ≤  Cmax , T ≤  Tmax (see 7.1) for thefirst inequality; win ≥  σ (r ; Rin ),
and Lemma 7.4 for the second inequality, and Remark 7.5 in the last inequality. By
comparison, we have d R (0) ≥  dG (0) >  0, where G is given in Lemma 7.6. This
proves that I  0.

Since I is nonempty, t� : =  sup I � (0, t ] and d R >  0 in [0, t�). We claim that
R(t�) ≥  R. Suppose to the contrary, then that R(t ) <  R for 0 ≤  t <  t�. By Lemma 7.2,
w(r , t ) ≥  σ (r ; R(t )) for t � [0, t�]. Hence, we can repeat the above argument to show
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that for t � [0, t�],

dt 
R(t ) ≥  η̂ (t , R(t )), (7.5)

where η̂ is given in (7.2). Since R(0) =  G η̂ (0) =  Rin , we get, by comparison,

Rin ≤  G η̂ (t ) ≤  R(t ) <  R for t � [0, t�].

This immediately yields t� <  t , since G η̂ (t ) ≥  R. However, by Lemma 7.6, since μ̂

(t , R(t )) >  0 as long as R(t ) ≤  R, we deduce from (7.5) that d 
 R(t ) >  0 in [0, t�],

i.e., [0, t�] � I . Since I is open, we have sup I >  t�, and this contradicts the fact that
t� =  sup I . Having proved that R(t�) ≥  R, we conclude that there exists a t� � (0, t ]
such that

dt 
R(t ) >  0 in [0, t�] and R(t�) ≥  R.

We can then choose tη to be the unique number in [0, t�] such that R(tη) =  R, and
this completes the proof.

Corollary 7.8 If μ(t ) ≤  μ0 (1 +  t ) for some μ0 >  0, then

!1 / 2

tη ≥
μ

0λC (W −  wh )
K

 
log 

R

in
−  1. (7.6)

In particular, the interval where R(t ) is increasing initially can be made arbitrarily
large by choosing R large.

Proof of Corollary 7.8 Let tη >  0 be given such that (7.3) holds. Using (5.1) and that
μ(t ) ≤  μ0 (1 +  t ), we have

dt 
log R(t ) ≤  μ0 (1 +  t )λC w0 −  wh 

· K .

Integrating from 0 to tη, we obtain

ˆ μ0λC (W −  wh )K ˆ2 μ0λC (W −  wh )K (1 +  tη)2

Rin                   w0 −  wh 2                 w0 −  wh 2

from which (7.6) follows.
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8 Conclusion

Cancer cells within a tumor move toward sources of oxygen and nutrients; cells in the
tumor core are mostly in the necrotic state. As a result, the density of cancer cells varies
significantly within the tumor, and it increases toward the tumor boundary. In this paper,
we developed a simple mathematical model that accounts for this density variability.
The model includes, in addition to cancer cells, cytotoxic T cells, and oxygen. The
model consists of three partial differential equations, and the tumor boundary is a free
boundary. Some of the model parameters represent anti-cancer drugs. The dynamics of
the free boundary is determined by the assumption that cancer cells at the boundary
move in the direction of the oxygen gradient.

We simulated the model in cases of radially symmetric and axially symmetric
tumors, and illustrated situations when the tumor volume grows when treated with
“weak” drugs, and shrinks when treated with “strong” drugs. We next proved, by
analysis, that the free boundary problem has a global solution in the radially symmetric
case and local in-time solution for general shaped tumors. Finally, in the radially
symmetric case, we proved under some (strong) assumptions, that the tumor radius
may decrease monotonically or increase monotonically.

In this paper, we used oxygen as the driving force in tumor cell migration and
proliferation. Another approach was proposed by Gatenby and Gawlinsti, based on
the Warburg effect which asserts that malignant cells have increased reliance on aerobic
metabolism of glucose to lactic acid (Gatenby and Gawlinski 1996, 2003). Based on
tumor-induced acidification, they developed a mathematical model consisting of three
reaction-diffusion equations, for tumor cells, healthy cells, and lactic acid, in a fixed
domain. The model was extended in later studies to include, in particular, tumor growth
in the form of a traveling wave, and travelling wave analysis (McGillen et al. 2014;
Colson et al. 2021); see also references in (McGillen et al. 2014; Colson et al. 2021) on
other extensions of the model.

Both oxygen and glucose contribute to the microenvironment of a tumor. It would
be interesting, in future work, to include both oxygen and glucose, healthy cells and
tumor cells, as well as T cells and other immune cells and cytokines that play a role in
the interactions among these cells.

Wefinally note that our existence proof for the free boundary problem in the radially
symmetric case follows the same technique as in the generic class of Stefan problems;
however, in the case of general domains, the situation is quite different. Existence
proofs for free boundary problems in general domains depend, in a very delicate way,
on the specific dynamics of the free boundary.

Funding KYL is supported by NSF Grant DMS-1853561 and WH is supported by NSF Grant DMS-
2052685.
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