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Abstract

With the recent approval by the FDA of the first disease-modifying drug for Alzheimer’s Dis-
ease (AD), personalized medicine will be increasingly important for appropriate manage-
ment and counseling of patients with AD and those at risk. The growing availability of clinical
biomarker data and data-driven computational modeling techniques provide an opportunity
for new approaches to individualized AD therapeutic planning. In this paper, we develop a
new mathematical model, based on AD cognitive, cerebrospinal fluid (CSF) and MRI bio-
markers, to provide a personalized optimal treatment plan for individuals. This model is
parameterized by biomarker data from the AD Neuroimaging Initiative (ADNI) cohort, a
large multi-institutional database monitoring the natural history of subjects with AD and mild
cognitive impairment (MCI). Optimal control theory is used to incorporate time-varying treat-
ment controls and side-effects into the model, based on recent clinical trial data, to provide a
personalized treatment regimen with anti-amyloid-beta therapy. In-silico treatment studies
were conducted on the approved treatment, aducanumab, as well as on another promising
anti-amyloid-beta therapy under evaluation, donanemab. Clinical trial simulations were
conducted over both short-term (78 weeks) and long-term (10 years) periods with low-dose
(6 mg/kg) and high-dose (10 mg/kg) regimens for aducanumab, and a single-dose regimen
(1400 mgq) for donanemab. Results confirm those of actual clinical trials showing a large and
sustained effect of both aducanumab and donanemab on amyloid beta clearance. The
effect on slowing cognitive decline was modest for both treatments, but greater for donane-
mab. This optimal treatment computational modeling framework can be applied to other sin-
gle and combination treatments for both prediction and optimization, as well as incorporate
new clinical trial data as it becomes available.

Author summary

Although personalized therapy will likely play a major role in the appropriate manage-
ment and counseling of patients with AD in the future, there are currently no clinically
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utilized markers that can easily distinguish among the different clinical trajectories of
individual patients, nor provide personalized treatment plans. The mathematical model
developed in this paper, based on current theories of AD pathophysiology, enables predic-
tion of disease trajectory under a natural history scenario in individual patients with a
clinical diagnosis of AD or late MCI (L-MCI) using current clinically validated biomark-
ers. This analytical approach also provides an in-silico method to simulate and optimize
treatment at an individual level, thereby accelerating the development of personalized
treatments. By accessing longitudinal biomarker data from the ADNI database, we vali-
date our computational modeling approach to identify patient-specific disease trajectories
and optimize individual treatments for two anti-amyloid-beta therapies, aducanumab and
donanemab, in proof-of-principle clinical trial simulations. Simulation results show that,
with the optimization, the effect on slowing cognitive decline is greater for doneneumab
than aducanumab for a 10-year treatment regimen, although the effect on amyloid beta
clearance is similar for both drugs.

Introduction

Alzheimer’s disease (AD) affects more than 5 million people in the U.S. and is recognized as
one of the leading global health priorities of the 21st century [1]. On June 7, 2021, the U.S.
Food and Drug Administration (FDA) granted accelerated approval for the first-ever disease-
modifying therapy for AD, aducanumab, a monoclonal antibody directed against amyloid-
beta protein. This therapy has been shown to effectively remove amyloid plaques from the
brain. Still, however, questions remain regarding the efficacy of removing amyloid plaques for
preventing or delaying cognitive decline [2]. This uncertainty, combined with the 99% failure
rate of trials of other classes of AD treatments, is rooted in an incomplete understanding of the
complex mechanisms resulting in AD, and how disease trajectory and response to treatment
may vary individual-to-individual. It is likely, therefore, that personalized treatment will need
to play a central role in the future management and counseling of patients with AD [3, 4]. Tai-
lored approaches to treatment will be facilitated by the growing availability of electronic data
in AD subjects and those at risk. Two components are necessary to realize this idea: first, an
abundance of longitudinal data to cover many physiological aspects of individuals when they
are healthy and possibly into disease [5]; second, computational methods and models capable
of analyzing and integrating this data on a large scale [6].

Although computational modeling is still an emerging field in the study of AD, several
mathematical models have been developed based on systems biology approaches to AD molec-
ular and cellular patho-physiologic mechanisms. Our group, for example, built a model based
on AD signaling pathways using a system of partial differential equations (PDEs) [7]. This
model has been used to simulate and validate at a cellular level the mechanisms underlying the
failure of several drugs in recent clinical trials. Because the variables in this and similar mecha-
nistic models cannot be measured directly in living subjects, simulated treatment studies can
only be performed at the population, rather than individual patient, level. Treatment dosage
and regimen, therefore, might not be optimal for each individual. Over the past two decades,
several clinical biomarkers of AD patho-physiologic progression have been developed to track
disease progression in patient-oriented research. Broadening our previous mathematical
modeling approach, based on molecular and cellular mechanisms, to these key AD clinical bio-
markers, we developed a sparse cascade model to include pathologic hallmark biomarkers
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Fig 1. Flowchart of personalized optimal therapeutic study: Starting with the ODE cascade model, we calibrate
individual parameters using longitudinal biomarker data for each subject in the ADNI dataset. Optimal control
theory is then applied to the personalized models with treatment as a control function to simulate both short-term (78
weeks) and long-term (10 years) optimized digital clinical trials initiated at chronological ages 60 and 70. Trials are
conducted for the anti-amyloid-beta agents, aducanamab at two different doses, and for donanemab at a single dose.

https://doi.org/10.1371/journal.pchi.1010481.9001

(amyloid beta and tau), neuronal loss biomarkers, and cognitive impairment using a system of
ordinary differential equations (ODEs) [8].

In this paper, we develop a novel personalized treatment optimization framework based on
a mathematical modeling approach. Our contribution is the following:

« we develop a sparse empirical cascade model of AD progression to include only clinical bio-
markers of beta-amyloid and taupathology, neuronal degeneration, and cognitive
impairment;

we parametrize the model on a multicenter dataset with available cerebrospinal fluid (CSF),
MRI and cognitive biomarkers to build a personalized model for each individual;

we perform personalized therapeutic simulation studies for AD and late mild cognitive
impairment (LMCI) subjects via application of optimal control theory and corresponding
numerical results with our mathematical model.

We apply this modeling framework to conduct in-silico clinical trials of two anti-amyloid-
beta treatments using personalized optimal treatment regimens for each individual. This opti-
mal control application allows for time-varying controls [9] to achieve a desired goal to mini-
mize cognitive impairment and the level of amyloid in the brain while minimizing side effects,
particularly early in the treatment when they are more likely to occur. Although this approach
has been used in various disease treatment models, [10-12] this is a novel application of opti-
mal control theory to treatment of Alzheimer’s disease employing personalized regimens. The
flowchart of the personalized optimal treatment study is shown in Fig 1.

Materials and methods
Mathematical model

In this paper, we develop a cascade model including four AD clinical biomarkers: pathologic
hallmark biomarkers (amyloid beta and tau), neuronal loss biomarkers, and cognitive
impairment. The pathophysiological network of AD starts with amyloid beta in soluble form
and in plaques. This promotes the abnormal phosphorylation of tau protein, leading to neuro-
degeneration, and finally, via large-scale brain network disruption, to cognitive impairment
shown in Fig 2.

Amyloid beta equation. The sentinal event in AD is thought to result from an imbalance
in Az production and clearance, leading to amyloid plaque accumulation. Agaccumulation is
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Fig 2. The biomarker cascade in AD starts with amyloid beta pathology. This leads to amyloid-related tau

pathology, neuronal dysfunction/loss and subsequent cognitive impairment.

https://doi.org/10.1371/journal.pcbi.1010481.g002

modeled by logistic growth [13], namely,

dA A _
d—tﬁ Sy (1 — é) with A,(T,) = Ay, (1)
B

where Ay is the initial condition of amyloid beta at age T, and may vary for different patients.
Here K, is carrying capacity and A 4, 18 the Ag growth rate. The analytical solution of Ay is

obtained by solving the differential equation, namely,

K
Ap Ap

where C, = —- —

At) =———F7F7—
ﬂ( ) Cle*xAﬂ(t*To) + 1 1 A

0

Tau equations. Numerous studies of the pathological changes that characterize AD show
that amyloid beta accumulation initiates phosphorylation of tau protein [14, 15]. Thus we take
the equation of phosphorylated tau, 7, as

T

dr, T, )
i LA T - I with 7, (7)) = 17,,. (2)

Moreover, there may also be nonamyloid-dependent tau accumulation, in which case the
cascade mainly depends on comorbidities, e.g., aging and/or suspected non-Alzheimer pathol-
ogy (SNAP) via nonamyloid-dependent tauopathy, 7,. We assume that 7, linearly grows with
respect to age and take

dr,
dt

=L, with 7,(T,) = 1. (3)
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Neurodegeneration equation. Tau deposition within cells disrupts microtubules, impair-
ing axonal transport. P-tau impairs mitochondria and translocates into the nucleus [13, 16].
Thus the total tau induces the neurodegeneration, N, accordingly, we have the following equa-
tion for N

dN

N .
i (XNTU‘EO + XNIF‘EP) <1 — K) with N(T,) = N,. (4)

N

Cognitive decline equation. Initiation of cognitive decline, C, is directly determined by
both neurodegeneration, N and tau pathology [17, 18]. Therefore we have the equation for C

below
dcC C .
i (AN + e 7)) (1 . K_) with C(T,) = C,. (5)
C
Thus we summarize the mathematical model (for our state variables) as a system of ODEs
below
dA A
—L_, Al1-=L
dt AptTh ( K Aﬂ)
T g, (1_T_P> A(To) = 4,
d Krp Tp(T(]) = Tp
dr, with = ¢ 7,(T,)) =1, - (6)
;;] N N N (To) =N,
P (kNTafo + XNTPTP) (1 — K—N) Cc(t,) = C,
dcC C
ar = (AewN + 7\'(:‘5‘[1)) (1 - K_c)

Parameter estimations via ADNI dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI), a multicenter, prospective, natural-
istic study, began in 2003, comprises four sequential studies—ADNI-1, ADNI-GO, ADNI-2,
and ADNI-3—which followed subjects between 5-15 years, using genetic, blood- and CSF-
based, imaging, and cognitive biomarkers (adni.loni.usc.edu). In this paper, we use biomarker
data from a subset of the ADNI dataset, ADNI-1 which enrolled 819 subjects with LMCI, early
AD, and cognitively normal elderly controls. The study included baseline MRI, CSF, and cog-
nitive data plus 10 years of follow-up at various intervals for the different biomarkers. CSF
beta-amyloid peptide (Af42), total tau, phosphorylated tau levels at baseline and follow up
every 2 years up to 10 years are available in ADNI-1 in a subset of approximately 300-400 sub-
jects to estimate parameters in the equations of Ag, 7, and 7,. Volumetrics, such as hippocam-
pal volume, and neuropsychological tests, such as the Alzheimer’s Disease Assessment Scale
(ADASI13) score, are available at one year and six-month intervals, respectively, and are used
to estimate parameters in the equations of N and C, respectively.

In order to illustrate the numerical algorithm of parameter estimations, for simplicity, we
write the ODE system as

dx

i G(x,p), where x =(4,,1,,7,,N,C)' € R’ (7)
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and p denotes all the parameters and initial conditions. We estimate the parameters for each
patient via solving the optimization problem below:

min Z\Ix(t,-;p) = x(t)l3, (8)

where X(t,) stands for the available longitudinal CSF biomarker, volumetrics, and ADAS13
data at some measuring time points t; and x(¢; p) is the solution of the ODE model for given
parameter p at t;. The optimization (8) is a non-convex optimization on high dimensional
parameter space thus the initial guess for optimization algorithms is very sensitive to find a
good local minimum. In order to find a good initial guess, we estimate the parameters sequen-
tially, namely, equation-by-equation [19], because the ODE model is a natural cascade model.
More specifically, we first estimate the parameters in the equation of Ag, namely, &, , K, , and

the initial condition, A, by using CSF amyloid beta42 biomarker data to solve the sub optimi-
zation problem below

}”A/fvl}if;lﬂAu (A[f(tiE )\‘A/ﬂKA/,) 7A/§(ti))2 with A[f(To) =A, 9)
Of note, CSF levels of Ag peptide go down with increasing disease burden, and therefore are a
surrogate for Az accumulation in the brain. Once the parameters of the A equation are esti-
mated, we perform the similar procedure for Tpy Tos N, and C equations. In this case, this “equa-
tion-by-equation” procedure, following the cascade progression of AD, gives a good initial
guess of the original optimization problem (8) compared to random initialization. In fact, (8)
achieves 0.01 by using the “equation-by-equation” procedure while the best value is 0.03
among 100 random initializations. More details of the parameter estimation are shown in
Algorithm 1. The optimization solver is fimincon in Matlab used for solving each sub optimi-
zation problem.

Algorithm 1 Parameter estimation by solving the optimization problem (8).
Input biomarker datapoints X(f,) at time t; for one patient.
1: Solve (9) to obtain a local minimizer for parameters Kg/ﬁ,Kﬁﬁ and the
initial condition Aj;
2: Fix 7‘3/;7K2,;7 and A} and solve

. . 2
Jpin D (5(tih K,) = 5 (6)
to obtain the parameters ?»?,K?P and the initial condition 1,;
3: Solve the optimization problem

min Z (7,(t; 7\10) - fo(ti))z

Ay 100

to obtain the parameter value XED and the initial condition rgu;
4: Solve the following optimization for

min Z(N(ti;kNrH}\‘Nrp?KN) _N(tx))Z

ANzo Nz, KNsNo

to obtain the parameter values Xg%,}»g,TP,Kﬂ, and the initial condition Nj;
5: Solve the following optimization for
. = 2
, min Z (C(t; Aoy, Ke) — C(1))
renKeCy =

to obtain the parameter values XgN,Kg and the initial condition Cj;
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6: Solve the optimization problem (8) by using all the parameters
obtained in the previous steps as an initial guess.
Output p*.

Personalized optimal anti-amyloid-beta treatment study

In ongoing clinical trials, researchers have developed and are testing several major classes of
AD interventions, including anti-amyloid-beta, anti-tau, neuroprotective and cognitive
enhancing interventions. In this study, we model current anti-amyloid clinical trial agents for
AD and provide a personalized optimal anti-amyloid-beta treatment plan via the ODE model.
This approach can be also applied to other treatment plans. In this section, we perform the
optimal control for both the AD and LMCI groups in ADNI by using the personalized parame-
ters for each subject. More specifically, we represent anti-amyloid-beta therapy, as control
function u(¢), as follows in the first state equation:

dA A
d_t/‘ =My, Ay <1 - K—ﬁ> — u(t)A,. (10)

The optimal anti-amyloid-beta intervention is chosen to minimize both cognitive impairment,
C and side-effects over the treatment interval [T}, T,] as well as minimize cognitive
impairment and the level of amyloid by the end of the treatment, as represented in the follow-
ing objective function:

ueU

min J(u) i= 0,4, (T,) + 0,C(Ty) + /:2 Ct)dt + /TTZS(Aﬂ(t),t)uQ(t)dt, (11)

with the control set,
U= {u(t) € ([T, T,)) [0 < u(t) < u,,}

The term, £(Ax(t), t)u(t)* represents the side-effects of the anti-amyloid-beta treatment relative
to its benefit over time. More specifically, (A4(t), t) depends upon both the level of amyloid
beta and the time duration of the treatment. The most serious side-effects of anti-amyloid-beta
treatment are brain edema and hemorrhage which are thought to result from the removal of
amyloid plaques from the walls of blood vessels [20]. This leads to leakage at the endothelial
junctions and breakdown of the blood-brain barrier. The extent of these gaps in the blood ves-
sel walls is likely related to the overall amyloid burden of the patient and the rate of removal of
amyloid, the latter a function of the drug dosage [21]. Because the side effects of aducanumab
are more likely observed if a high dose is given in patient with a high amyloid burden [22], we
also assume the side effects decay with the time of treatment, in keeping with clinical trial data,
and represented by

£(Ay(t),t) = g,A4(t)e .

We seek to find an optimal control »* such that

J(u*) = Iglelél J(u).

Note that the controls and the state variables and their derivatives are uniformly bounded
in L and the problem is convex in the control, which can used to obtain the existence of an
optimal control, [23, 24] and thus we can apply Pontryagin’s Maximum Principle for the nec-
essary conditions below [25].
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By denoting f(t, C(1), A(t), u(t)) = C(t) + £(Ag(#), Hu?(t), we introduce the Hamiltonian
based on optimal control theory [9, 25],

H(t,x(t), u(t), A(t) = f(t, C(t), Ay(t), u(r)) + A1) G(t,x(t), u(1)),

where the adjoint vector is A = (Ay, Ay, As, Ay, As)T. The state system is denoted by &' = G(t, x,
u(t)). Using Pontryagin’s Maximum Principle [25], we obtain
dn, __oH
e Ox,’

and the system of adjoint equations with its final time conditions,

dA . XA T
d—t]:—gne ’u2—|—< K—IAZAIX—)LAﬁ—Fu)Al—)\.T(l—é)AQ
A A
A, _* PA, =2y N A, — e 1-Sa,
it K, K, i K.
%:_M i A, (12)
dt £ Ky
A, A To+ Ay T
AT N () ”A4—xCN<1—£)A5
dr K, K,
dA, AN
t):_l CN A—
dt TR

with Ay (T2) = o, Ax(T) = A3(T2) = Ay(T) = 0, and A5(T) = a0,
On the interior of the control set, the optimal anti-amyloid-beta therapy u*(¢) satisfies the

optimality equation
OH , A (D)A4(t)
—— frd —_ frng * - — ].3
o f, +A'G, = 2eu(t) — Ay (A (t) = 0 = (1) o (13)

Then applying the bounds on the controls, we obtain the optimal control characterization,

A040))

e (14)

u*(t) = max {u min [0,

max )

The optimality system consists of the state differential equations, (6) and (10) and the adjoint

Eq (12), together with the optimal control characterization (14). Since the state equations have

initial conditions and are coupled the adjoint equations with final time conditions, we use an

iterative method, called the forward-backward sweep algorithms (shown in Algorithm 2) to

solve the optimality system [9].

Algorithm 2 Solving the optimality system
Input personalized parameter values and initial values for each
patient.

1: Initialize the control u(t), as a zero function;

2: Compute x by solving forward the state Eg (6) using the control
u(t);

3: Compute A(t) by solving backwards the adjoint Eg (12) using the
states and the control;

4: Compute the new u(t) by using the optimal control characterization
(14) and update the control function as a convex combination of the
previous control and the new control;
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5: Compute the relative error of states, adjoints and the control.
Continue to repeat steps 2—4, until the error is small.

Results
Personalized parameters

In order to estimate the parameters more accurately, we use the available patient data in
ADNI-1 dataset with at least three longitudinal datapoints for each biomarker and take T, =
50, given that the smallest age across the dataset is 54. The parameter estimation for selected
patients in each group (AD, cognitively normal (CN), LMCI) are illustrated in Fig 3. The
parameter values for each group are shown in Table 1, with relative error given by

% Z (x(t»%?— %)’

where x(t;) is the model value of the biomarker while ¥, is the clinical measurement at age ¢;.

Parameter estimation of u,,,,. Based on the aducanumab data released by Biogen [26],
there are two groups: low dosage and high dosage injections. The low dosage group for aduca-
numab was administered the drug 14 times, each treatment was 3 or 6 mg/kg. The cumulative
dose at week 78 was 56 mg/kg to 98 mg/kg. The amyloid PET assessment was evaluated at
week 78 and was decreased 16.5% comparing to the baseline. In this case, we consider

dA
F_
dt max

A, which implies that Ay(t) = Ay(0)e ",

Accordingly, we have

In(0. ‘
u, = 0835 s 107 week
78
Similarly, the high dosage group was given 6-10 mg/kg aducanumab each time and received

116-153 mg/kg cumulatively at week 78. The amyloid PET assessment was decreased 27.2% at

A[i 7—o N C
300 1 50
| 50 200
a 200 ‘
< 100 <‘ 100 05
ol RE=084% L/ REs51% 4l RE=3.1% =0072% g =6.7
60 80 100 60 80 100 60 80 100 60 80 100
300 100 1 50
g 200 /( 50
—1100 1 05
oL RE=1.7% 0 ol RE=5.3% RE=0.021% 0 =119
60 80 100 60 80 100 60 80 100 60 80 100
300 1 50
50
> 200 |
© 100 05
RE=2% RE=10% RE=8% =0.3% 0 RE=149
60 80 100 60 80 100 60 80 100 60 80 100 60 80 100
Age Age Age Age Age

Fig 3. The parameter fitting of the ODE model for one subject in each group. The AD patient is female with age
84.7 (upper, subject # is AD4), the LMCI patient is male with age 82.8 (middle, subject # is MCI15), and the CN patient
is female with age 81.8 (lower). The relative errors (RE) for each biomarker are also shown in each panel.

https://doi.org/10.1371/journal.pcbi.1010481.9003
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Table 1. The mean initial conditions and parameter values for AD, LMCI and CN groups with relative errors for each of the biomarkers (n is the number of sub-
jects). The values are mean + standard deviation (std).

Descriptions AD group (n =10) LMCI group (n = 32) CN group (n=7)
Initial conditions Ay 36.03 £ 26.52 41.57 £24.23 44.92 +24.54
Tp0 12.38 £ 1447 4.21+£7.68 3.69 + 6.15
Too 66.70 £ 58.57 28.66 + 33.13 24.25 +£26.98
Ny 0.26 £ 0.08 0.48 £0.26 0.42 £0.10
Co 3.68 + 8.30 6.03 £ 6.56 2.58 +2.60
Parameter values My, (18.35+3.11) x 10> (16.12 +5.03) x 10> (16.82 + 5.52) x 107>
KA/} 259.44 +13.21 264.99 + 74.69 276.21 + 88.29
A 0.15+0.16 0.08 £ 0.12 0.12+0.17
K, 123.35 + 81.63 131.66 + 75.89 126.53 £ 91.31
7‘10 1.15+ 1.70 1.74 + 2.08 0.87 + 0.66
My, (3.75+122)x107* (424+1.03)x 107 (441 +0.89) x 107*
M, (6.90 +1.49) x 10~ (7.37 £1.07) x 107* (7.24+1.73) x 107
Ky 1.00 £ 0.01 1.02 + 0.05 1.03 £ 0.07
Aen 1.67 + 2.40 1.26 + 1.99 3.16 £ 3.06
Acr 3.83 £ 8.00 1.93 £3.91 2.48 +3.94
K¢ 169.48 + 63.35 129.40 + 84.31 59.89 £ 80.03
Relative errors Ag 2.83+1.21% 11.31 + 12.60% 4.98 £ 3.56%
Tp 8.44 + 6.41% 15.11 + 11.02% 12.25+6.51%
T, 11.01 + 6.24% 19.28 + 15.02% 18.08 + 7.94%
N 0.17 £ 0.20% 0.58 + 0.63% 0.79 + 1.24%
C 10.25 +4.37% 16.00 + 7.59% 15.04 + 3.79%
https://doi.org/10.1371/journal.pcbi.1010481.t001
week 78. Then
In(0.728)

78

=4.07 x 107 /week.

We also estimate the clearance rate of donanemab by using the data in [27]. In particular,
the amyloid plaque level, assessed by florbetapir PET relative specific uptake values (SUVTr), is
reduced 84.13 from 107.6 after a 76-week treatment. Similarly, we compute the maximum

clearance rate as

_ In(23.47/107.6)

76

=2 x 107* /week.

Parameters in the Side-effect function £. We take o = o, = 1 in the objective function
(11). According to phase 3 studies of aducanumab [28], the dose regimen reaches the maxi-
mum dose after 10 and 25 weeks for the Low and High dose groups, respectively. Thus we esti-

mate £, and y by taking

w(10) ~ 2g,e
0

which yields €y = 5 and y ~ 2.

1 L X
5, = 231 x 10 /week and u*(25) =

m =4.07 x 1073/week
0

Numerical results. We perform the personalized optimal control for each subject in both
AD and LMCI groups with estimated parameters that are shown in Table 1. For each subject,
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Fig 4. Numerical results of the optimal anti-beta therapy for an AD patient (subjective # is AD4) for 78 weeks. Blue and red
curves stand for Aducanumab with low and high doses respectively while green curves stand for Donanemab. The treatment age
starts at 60 (Panel A) and 70 (Panel B). The objective functional values defined in (8) are 187.5 (A, blue), 177.1 (A, red), 33.7 (A,

green), 271.6 (B, blue), 258.6 (B, red), and 71.3 (B, green).

https://doi.org/10.1371/journal.pchi.1010481.g004

we have personalized optimal control for both a 78-week treatment and a 10-year treatment
with low and high dosages. To illustrate the dynamics of biomarkers and the optimal drug dos-
age, we use one AD subject (Subject # is AD4) to show both short-term and long-term treat-
ments in Figs 4 and 5. The efficacy of donanemab on both Agand p-tau is higher than
aducanumab. The effect on cognitive decline, C, is modest for aducanumab while the effect of
donanemab is more significant. In order to better assess the efficacy, we define the cognitive

Ct) — G(1)

percentage change as

. x 100% where C(t) is cognitive decline with treatment and
0

Co(t) is cognitive decline without treatment. Thus the maximum effects of donanemab and
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Fig 5. Numerical results of the optimal anti-beta therapy for an AD patient (subjective # is AD4) for 10 years. The treatment
age starts at 60 (Panel A) and 70 (Panel B). The objective functional values defined in (8) are 216.2 (A, blue), 156.5 (A, red), 67.3 (A,
green), 397.8 (B, blue) 335.1 (B, red), and 234.7 (B, green).

https://doi.org/10.1371/journal.pchi.1010481.g005

aducanumab are 8% and 20% less cognitive decline when the long-term treatment starts at

Age 60. We define the cognitive percentage change at the end of the treatment as

C(Tz) — Co(T2)
Co(T,)

(n =10) in Table 2. It shows that the maximum effects of aducanumab and donanemab have

median values of 5.2% and 13.1%, for the AD group with the long-term treatment. Similarly,

we illustrate the personalized optimal treatment for an LMCI subject (subject # is MCI15) for

the short-term treatment in Fig 6 and for the long-term treatment in Fig 7. The effect of the

personalized optimal donanemab and aducanumab treatments on cognitive decline for the

x 100% and summarize the cognitive percentage change for the AD group
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Table 2. The percentage change of the cognitive decline by the end of the treatment period for the AD group with both the 78-week (upper) and 10-year (lower)
treatments. The treatment age starts at 60 and 70 with both low and high dosages. “NR” stands for “No response” which is defined by percentage change less than 1077,

78 week

10 year

Subject #

AD1
AD2
AD3
AD4
AD5
AD6
AD7
ADS8
AD9
ADI10
Median
AD1
AD2
AD3
AD4
AD5
AD6
AD7
ADS8
AD9
AD10
Median

Starting at Age 60 Starting at Age 70
Aducanumab Donanemab Aducanumab Donanemab

Low dose High dose Low dose High dose

0.13 0.17 1 2.5x 1072 33%x1072 0.22

0.15 0.19 1.2 3.6 x 1072 4.6 x 1072 0.30
12x107° 24x107° 12x1072 53x107* 7.8x107* 12x 1072
2.6x107° 3.7x107° 2x1072 1.1x107° 1.6x107° 9.4x107°

0.15 0.2 1.3 3.8 x 1072 49 %1072 0.32
12x107° 24x107° 5% 107 23x1077 53x1077 15x107°

1x107° 13x107° 9.9x107* NR NR NR

35%x107° 46x107° 34%x107* NR NR NR

0.16 0.21 1.3 3.7 %107 4.8x 1072 0.32

0.13 0.18 1 4x1072 5.2 %1072 0.31
6.6 x 1072 8.6x 1072 0.51 1.3x1072 1.7 x 1072 0.11

6.6 9.9 25 1.8 2.6 7.2

8.1 12 27 2.9 42 10
55x 1077 5.7 %1077 7.9x1077 NR 1.6x 1077 1.9x 1077

0.36 0.54 1.1 0.028 0.048 0.13

8.4 12 28 3 4.4 11
12x107° 22%x107° 53x107° NR NR 1.8x 1077
15%x107* 19x107* 23%x107* NR NR NR
19%x107* 2.8x107* 14x107° NR NR 12x1077

8.5 12 29 2.9 43 11

9.2 13 26 3.8 53 11

3.5 5.2 13.1 0.9 1.3 3.6

https://doi.org/10.1371/journal.pcbi.1010481.t1002

LMCI group is summarized in Table 3 for the short-term treatment, and Table 4 for the long-
term treatment. The maximum effects of aducanumab and donanemab have median values of
5.3% and 13%, respectively, for the LMCI group with the long-term treatment.

Discussion

In this paper we develop a data-driven modeling approach to model the progression of AD
biomarkers which integrates AD pathophysiology and clinical data. We develop and refine a
mathematical model in terms of a system of ODEs to describe progression of the AD bio-
marker cascade. By using available biomarker data in a large multi-center natural history trial,
ADNI, we parametrize the ODE model to build a personalized model for each patient. In
order to solve the non-convex optimization arising from parameter estimation, we develop an
“equation-by-equation” approach to calibrate the cascade model. The average relative errors of
the fitting process are ~10% for AD group and ~15% for CN and LMCI groups.

We also perform an in-silico personalized optimal treatment study by adding a control
function to model anti-amyloid-beta treatment. By maximizing treatment effects on cognitive
decline and minimizing the side effects of anti-amyloid-beta therapy, we develop the first
computational framework to simulate an optimal treatment regimen via optimal control the-
ory. We represent the side effects of anti-amyloid-beta therapy as a function of both the amy-
loid beta concentration, dose and treatment duration. The results show that the optimal
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Fig 6. Numerical results of the optimal anti-beta therapy for the LMCI patient (subject # is MCI15) for 78 weeks. The objective
functional values defined in (8) are 195.5 (A, blue), 184.8 (A, red), 38.2 (A, green), 294.7 (B, blue), 281.3 (B, red), and 87.6 (B,

green).

https://doi.org/10.1371/journal.pcbi.1010481.9006

treatment regimen gradually increases dose until it reaches as maximum dosage steady state. It
approximates the dosage scheduling in the aducanumab clinical trail conducted by Biogen
[22]. In agreement with the data provided by Biogen for the 78-week clinical trial, amyloid
beta concentration is decreased by 27% for high dosage and 16% for low dosage. A decrease of
p-tau concentration is observable for the 10-year optimal treatment study. In keeping with
actual clinical trial results of these agents administered in MCI and AD subjects, anti-amyloid-
beta treatment has a modest mitigation effect on cognitive decline for both short-term and
long-term treatments. Our study shows that aducanumab’s efficacy as a treatment for cognitive
dysfunction in AD is limited even by an optimal dosage regimen with a long-term treatment.
However, donanemab’s efficacy is higher, according to the model, than that of aducanumab.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010481

September 2, 2022 14/19


https://doi.org/10.1371/journal.pcbi.1010481.g006
https://doi.org/10.1371/journal.pcbi.1010481

PLOS COMPUTATIONAL BIOLOGY

Optimal Anti-amyloid-beta Therapy by a personalized AD math model

——
«10°
0 2 4 6 8 10
Time (year)
A = 0.9
0.8
0 2 4 6 8 10
Time (year)
10°
= L
0 2 4 6 8 10
Time (year)
R
= 10°
<
o=
0 2 4 6 8 10
Time (year)
0.995
B-
0.994
0 2 4 6 8 10
Time (year)
1o°f lt®
= ’V/
102
0 2 4 6 8 10
Time (year)

0 4 6 8 10
Time (year)
15
1) 10
5
0 4 6 8 10
Time (year)
X 9 —
(O]
.10
2
5 -20 ‘ ‘ ‘
© 0 4 6 8 10
Time (year)
100
o
80
0 4 6 8 10
Time (year)
40
o 30
20 ‘ ‘ . .
0 4 6 8 10
Time (year)
X 0
(0] —
2
S -5
o
e 10
& 0 4 6 8 10
Time (year)

Fig 7. Numerical results of the optimal anti-beta therapy for the LMCI patient (subject # is MCI15) for 10 years. The objective
functional values defined in (8) are 256.8 (A, blue), 194.7 (A, red), 100.2 (A, green), 493.8 (B, blue), 428.8 (B, red), and 324.8 (B,

green).

https://doi.org/10.1371/journal.pcbi.1010481.g007

The buildup of amyloid plaques in the brains of AD patients is thought to result from an
imbalance between amyloid clearance and production [29]. Removing amyloid plaques via
pharmoco-therapy accelerates amyloid clearance, but only for the duration of treatment, given
that the factors leading to the native imbalance are not removed. For this reason, it is assumed
that anti-amyloid-beta treatment, in the form of the current immunotherapies, will be neces-
sary over remainder of a patient’s lifetime for sustained disease management, similar to insulin
therapy in a diabetic patient. We therefore simulated sustained therapy over the course of a

decade, in addition to the typical clinical trial duration of 78 weeks.

In summary, we developed a novel modeling approach to provide a personalized optimal
AD treatment plan for individual patients, using optimal control theory. This approach allows
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Table 3. The percentage change of the cognitive decline by the end of the 78-week treatment period for the LMCI group.

Subject # Starting at Age 60 Starting at Age 70
Aducanumab Donanemab Aducanumab Donanemab
Low dose High dose Low dose High dose

MCI1 0.1 0.14 0.86 9.7%x107? 1.3x1072 8.4 %1072
MCI2 5.9 %1072 7.9 %1072 0.45 25%1072 33x1072 0.2
MCI3 0.12 0.16 1 1.6 x 1072 2.1x1072 0.14
MCl4 43%x107° 6.1x10°° 33x107° NR NR NR
MCI5 1.6x107° 22%x107° 13x1072 47%107° 63x107° 47%x107°
MCI6 1.9%x 1072 24%x107° 1.8x 1072 7.6x 1077 9.7x 1077 7.8x107°
MCI7 1.1x 1072 14x1072 8.9x 1072 9.6 x107° 1.3%x 1072 8.2 x 1072
MCI8 0.14 0.19 1.2 2.9x1072 3.8x 1072 0.25
MCI9 41x107* 58x107* 32x107° 24x107 33x107* 2x107°
MCI10 83 %1077 1.1x10°° 6.8x107° NR NR NR
MCI11 25x%107* 35x%x107* 2x107° 107" 2x107° NR
MCI12 12x1072 1.5x 1072 9.9% 1072 28x%x107* 3.6x107* 25%x107°
MCI13 0.11 0.15 0.92 1.2x1072 1.6 x 1072 0.1
MCI14 48x107° 6.5%x107° 3.7%x 1072 5.7 %1072 75%x107° 45x% 1072
MCI15 NR NR NR NR NR NR
MCI16 3.6%x 1072 5% 107> 0.3 14x107* 1.9x107* 14x107°
MCI17 7.4x1077 9.5x 1077 85x107° NR NR NR
MCI18 1.7x 1073 22%x107° 14%x1072 1.6x1073 2x107° 1.3%x 1072
MCI19 6.2x 1072 8.4x 1072 0.47 3.7 x 1072 5.1 x 1072 0.29
MCI20 5.1 %1072 6.7 x 1072 0.42 14x1072 1.8x 1072 0.12
MCI21 23x1072 3.2 x 1072 0.18 22x1072 3% 1072 0.17
MCI22 1.9%10°° 25x%107° 2.1x107° NR NR NR
MCI23 45%x107° 59%107° 3.7%x 1072 42x107? 5.4x107° 3.6 x 1072
MCI24 12x107° 1.6 x107° NR NR NR NR
MCI25 44%x107° 6.1x107° 3.7%x 1072 1.8x107° 24%107° 1.8x107*
MCI26 0.13 0.17 1 24%1072 3.1x1072 0.2
MCI27 7.6%x107° 1072 6.4%1072 63x107° 8.1x107° 53 %1072
MCI28 1.7x107° 23%x107° 14x1072 NR NR 3.1x1077
MCI29 0.28 0.4 22 0.16 0.23 13
MCI30 0.12 0.16 0.92 2.8x 1072 3.8x 1072 0.22
MCI31 0.14 0.19 1.1 4x1072 5.2 x 107 0.32
MCI32 0.1 0.15 1 5% 1072 4x1072 0.25
Median 0.12 0.16 0.92 0.16 0.23 0.21

https://doi.org/10.1371/journal.pcbi.1010481.t003

us to integrate personal longitudinal biomarker data into the model by fitting the personalized
parameters. This modeling approach, though a simplification, is based on current theories of
AD pathophysiology which continue to undergo refinement. The optimal treatment takes into
account the side effects of anti-amyloid-beta therapy, including amyloid-related imaging
abnormalities (ARIA). Given the established framework, this approach can be easily extended
to include other treatments, such as anti-tau therapy, as well as combined therapies, as more
clinical trial data becomes available. Future directions include extending the current model to
the spatiotemporal domain, by including spatial information from available imaging biomark-
ers, to evaluate the effects of treatment on whole-brain neuropathology and neurodegenera-
tion. We will further validate and test the optimal treatment approach using other publically
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Table 4. The percentage change of the cognitive decline by the end of the 10-year treatment period for the LMCI group.

Subject # Starting at Age 60 Starting at Age 70
Aducanumab Donanemab Aducanumab Donanemab
Low dose High dose Low dose High dose

MCI1 3.4 5.1 15 0.33 0.49 12
MCI2 5.7 7.8 16 2.8 3.8 8.2
MCI3 4.6 6.9 18 0.55 0.83 2
MCI4 NR NR NR NR NR NR
MCI5 0.12 0.19 0.53 25%107° 33%x107° 43%x107°
MCI6 14x107° 2.2x 107 3.4 %1072 33%x10°° 53x10°° 32%x107°
MCI7 1.9 2.7 5.7 13 1.9 42
MCI8 7.4 11 27 2.1 3.1 8.1
MCI9 0.12 0.17 0.32 1x1072 1.8x 1072 29x107%
MCI10 NR NR 51x 1077 NR NR NR
MCI11 NR NR 12x10°° NR NR 22x107
MCI12 1.1x 1077 5% 1077 5.7x107° NR NR 3.5%1077
MCI13 0.18 0.28 0.71 25x107° 4x107° 43x1072
MCI14 3.6 5.4 15 0.26 0.4 0.88
MCI15 1.1 1.5 2.7 1.1 1.5 2.7
MCI16 1.8x 1077 2.9% 1077 19x107° NR NR NR
MCI17 0.89 1.6 6.5 42x107* 59x107* 1.5%107°
MCI18 7.5% 1077 9.2x 1077 1.1x10°° NR NR NR
MCI19 0.29 0.42 0.73 0.24 0.35 0.63
MCI20 7.3 9.8 19 4.9 6.5 13
MCI21 4 5.9 16 1 1.5 4.1
MCI22 43 5.8 11 3.3 4.5 9.1
MCI23 3.8x107° 47 %107 72x107° NR NR NR
MCI24 0.82 12 2.4 0.62 0.91 1.9
MCI25 NR NR NR NR NR NR
MCI26 0.12 0.2 0.53 6.8x107° 1x107* 32x107°
MCI27 6.3 9.3 24 1.7 2.5 6.6
MCI28 12 1.8 4 0.88 1.3 2.9
MCI29 9.1x107° 1.5x107* 14x107° NR NR NR
MCI30 21 31 55 8.8 14 31
MCI31 7.9 11 23 2.2 3.1 6.8
MCI32 9.2 13 27 3.5 5 11
Median 35 53 13 13 1.9 42

https://doi.org/10.1371/journal.pchi.1010481.1004

available datasets to verify the efficacy of anti-Abeta therapy. Moreover, when the data from
the Aducanumab phase 3 studies become available, we will further calibrate and refine the in-
silico anti-Abeta therapy model and test its efficacy.
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