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Abstract

“Behavior-blind” risk assessments, mapping, and policy do not account for
individual responses to risks, due to challenges in collecting accurate
information at scales relevant to decision-making. There is useful spatial
information in social survey data that is sometimes analyzed for spatial
patterns despite potential biases. This paper explores whether risk
perception and adaptive behavior can be inferred from census and
exposure data with a specifically designed survey. An underlying question
1s what precautions surveys should take before mapping the results. We
find that an hybrid multilevel regression and (synthetic) poststratification
(MRP-MRSP) model can facilitate the transition from individual survey
data to small-area estimations at different scales, including 200-meter grid
cells. We demonstrate this model using municipal-level survey data
collected in the Paris region, France. We find that model accuracy is not
decreased at finer scales provided there is a strong spatial predictor such as
hazard exposure. Our findings show that a wide range of risk perception
and evacuation behavior can be estimated with such downscaling
techniques. While not yet commonly used among geographers, our study
suggests that this kind of modeling can improve mapping of survey results
and, in particular, can provide spatially-explicit behavioral information for

risk assessment and policy.

Keywords: survey data; small-area estimations; mapping; risk perception;

evacuation behavior
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1. Introduction

During the last decade, floods have caused the largest share of economic losses among
all disasters and associated with other weather-related hazards they have affected 2bn
people (IFRC, 2018). This has been attributed to population and economic growth in
disaster-prone areas (Coronese et al. 2019), and the most recent IPCC report (2018)
emphasized that climate change has increased flooding due to more intense rainfall. The
costs associated with flood protection continue to rise along European rivers due to
climate change (Bldschl et al. 2019). Despite the substantial public funds allocated to
flood risk reduction, governmental investments in flood protection are often inadequate
and planning policies are failing to reverse the trends of rising risk and the increasing
number of exposed people. The evacuation of high-density districts to safer areas before
a disaster 1s proving increasingly challenging (OECD, 2018). This is leading to a
“behavioral turn” in disaster risk management (Kuhlicke et al., 2020), with recent
strategies advocating that less protected households are individually responsible to look
after themselves, as stretched public budgets are deemed unable to carry the costs for
upgrading structural measures (Slavikova, 2018) and policy is increasingly relying on
individual resilience (Begg et al., 2017) — 1.e. the ability to individually prepare for,
respond to and recover from disasters (Reghezza-Zitt & Rufat, 2019).

Whilst the perception and behavior of individuals, businesses and public
services before, during and after a crisis has a significant impact on damages, recovery
and resilience, current assessments fail to include such critical factors because they are
not well understood (Ward et al., 2020). While there have been extensive efforts to
model and map proxy indicators of hazard vulnerability from broad to fine scales ) —

e.g. SoVI (Cutter 1996) and other vulnerability or resilience index projects (Beccari
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2016), vulnerability indices typically lack relevant self-reported information from
residents on topics like risk perception and preparedness behavior (de Sherbinin et al.
2019). Many previous efforts to measure disaster risk perception and preparedness take
place either at broad scales, such as national surveys (Lee et al. 2015), or fine-scale case
studies limited to individual communities or neighborhoods (Rufat et al. 2020).
Spatially disaggregating data from broad-scale surveys has limitations due to lack of
representativeness within geographic subunits (Lax & Phillips, 2009). Comparisons
between community-scale studies can also be limited by varying times and modes of
data collection or absence of data entirely in certain communities of interest.
Furthermore, even data from a study that is representative at the community level may
mask important variations among people and places within communities.

Recent advances in statistical and spatial modeling for small-area estimation are
one avenue to overcome some of these data and research design limitations. Multi-level
regression and poststratification (MRP) and associated methods combine self-reported
data from surveys with census or other data on population characteristics to
systematically estimate responses across a study area at specified geographic scales.
MRP has been widely applied to estimate responses from national-level surveys to
states, counties, or other administrative units (Caughey & Warshaw, 2019; Howe, 2018;
Howe et al., 2015; Lax & Phillips, 2009; Mildenberger et al., 2016; Park et al., 2004). It
has also been used to map public health indicators at similar scales (Downes et al.,
2018; Howe et al., 2019a; Zhang et al., 2014, 2015). Although MRP has been typically
used to estimate responses in geographic subunits from national data, it is not limited to

these scales and can conceptually be applied to estimate public responses from any



corpus of survey data within a defined study area, as long as appropriate population-
level data are available at the geographic scale of interest.
The aim of this paper is to explore whether risk perception and adaptive

80 behavior can be inferred from census and exposure data, for the purpose of integrating
spatially explicit data on perceptions and behavior into risk, vulnerability, resilience or
adaptation assessments. The ability to predict risk perception from census data would
also be valuable in informing decision-makers, helping to develop targeted
communication, tailoring risk communication strategies and campaigns. Predicting

85 Dbehavior and evacuation from census data would also prove critical for emergency
management, helping to anticipate the magnitude of shelter and other special needs,
pinpointing the areas and groups most likely to end up refusing to evacuate or coming
back too soon, and bring into sharp focus the key role of spontaneous evacuation
triggers, degraded living conditions exhaustion, or delayed panic reactions. Several

90 research questions arise from such a goal; for example, which risk perceptions or
behaviors are possible to estimate or infer from census data? An underlying question is
what precautions users of survey data should take before jumping to mapping the
results, not only to disentangle social and spatial variations but also to assess the
relevance of mapping survey results while avoiding ecological bias and finding the right

95 Dbalance between the fineness of the scale and the robustness of the estimates. This
requires consideration not only of the relevance of MRP to provide accurate estimates at
different scales, including fine-scale uniform geographic units, but also the data
requirements to validate such downscaled survey results.

Here we provide an example application of MRP using a large survey dataset on

100 flood risk perceptions and behavior collected in Paris, France. We further model
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responses at very high spatial resolution using population data at the municipality,
census tract and the 200m grid scale. The remainder of the article 1s organized as
follows. Section 2 present the current issues of “behavior-blind” risk assessments and
mapping and how applying MRP to risk perception and behavior survey data could lead
to a model improvement. Section 3 describes the context of our case study, while
Section 4 details the methods to produce small-area estimation at different scales. The
results are compared across scales and validated in Section 5. The discussion in Section
6 includes recommendations for using MRP and downscaling techniques to infer results
from survey data while considering some precautions before mapping surveys results,

and conclusions are provided in Section 7.

2. Literature review

2. 1 “Behavior-blind” risk assessments and mapping

Whilst the perception and behavior of individuals, businesses, and public services
before, during and after a crisis has a significant impact on damages, recovery and
resilience, current assessments fail to include such critical factors because they are not
well understood (Ward et al., 2020). The current focus on structural measures, monetary
impacts and cost-benefit analyses (Hudson & Botzen, 2019) relies on some flawed
underlying assumptions that leave aside social inequalities, actual behavior, underlying
motivations, and capacities that can lead to significant differences in resilience across
society (Rufat et al., 2020). The new EU Strategy on Adaptation to Climate Change is
relying on the same “behavior-blind” assumptions (citizens will be aware, capable,
motivated, abiding, etc.) and investing mostly on digital transformation and resilient

infrastructure. A similar focus is present in recent U.S. government investments in the

6
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Federal Emergency Management Agency’s new Building Resilient Infrastructure and
Communities program (Mendelsohn et al., 2021). Such a narrow focus runs the risk of
hollowing out resilience by overlooking the perception, knowledge, capacity,
motivation, and behavior of citizens (Kuhlicke et al., 2020). This hinders the movement
towards more inclusive CCA & DRR called for by the UN Sendai Framework (2015-
2030) and the UN Sustainable Development Goals (SDGs 2030). They require a robust
knowledge base for action on behavior, resilience and adaptation to inform the
prioritization of actions, test policies and measure progress (Michel-Kerjan, 2015). The
vision of a 2050 disaster- and climate-resilient society cannot be achieved by relying on

“behavior-blind” assessments, decisions, and policy.

2.2 Risk perception and census data

One of the key challenges in risk, vulnerability and resilience 1s how to address the role
of risk perceptions and how perceptions influence behavior (Siegrist & Arvai, 2020).
Previous contradictory evidence on behavior hampers giving recommendations for
policy and risk management (Lechowska, 2018), such as the design of targeted risk
communication strategies (Hoppner et al., 2012). Although numerous theoretical
frameworks have been developed (Kuhlicke, 2019), no definitive explanation has yet
been found (Siegrist & Arvai, 2020) and opposite conclusions can be reached from
different case studies (Wachinger et al., 2013). As they focus in turn on different
dimensions (sociological, economical, psychological, etc.), either on internal or
personal factors (gender, age, education, income, values, trust, etc.), external or
contextual factors (vulnerability, institutions, power, oppression, cultural backgrounds,

etc.), risk or environmental factors (perceived likelihood, experienced frequency, etc.),
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or informational factors (media coverage, experts, risk management, etc.), they rely on
hardly compatible qualitative and quantitative approaches, diverging sets of variables,
and different methods.

Whilst most theories assume that high risk perception will lead to personal
preparedness and then to risk mitigation behavior, the opposite has been repeatedly
verified (Wachinger et al., 2013). The main sources of uncertainty include the many
drivers beyond demographic, social, and cultural factors (Rufat et al., 2020), awareness,
underestimation of risk (Poussin et al., 2014), place attachment (De Dominicis et al.,
2015), previous hazard experience (Botzen et al., 2015) or the use of short-term
horizons by households (Haer et al. 2017) and decision-makers in planning and risk
management (Hartmann & Driessen, 2017). However, it is still challenging to
disentangle which factors drive risk perception in a specific area or among specific
groups (Rufat, 2014). One of the reasons stems from the interdisciplinary nature of the
field, shaped by different sets of assumptions, theories, methodologies, the lack of
consideration for the spatial dimension, leading in turn often to diverging results (Rufat
et al., 2015). A final challenge is the facts that risk perception, motivations, capacity and
behavior are rarely linked, virtually never spatially analyzed (O Neill et al., 2015), and
studies usually overlook scale-dependency issues. This situation is hindering the
production of spatially explicit risk perception and evacuation baseline data that would
be essential to emergency management. As a result, contemporary flood management
(among other hazards) is inadequately informed by risk perception (Birkholz et al.,

2014).
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2.3 Evacuation behavior, risk perception and census data

The evacuation of high-density districts to safer areas before or during a disaster is
proving increasingly challenging, as demonstrated by the misplaced trust in public
preparedness (Baubion, 2015) and misleading lessons drawn from recent experiences,
such as before the 2016 flood in Paris (OECD, 2018), or the discarding of the
evacuation plan of London when Operation Sassoon was deemed unfeasible (Fekete &
Fiedrich, 2018). While the importance of social and behavioral determinants of
vulnerability and resilience has been addressed by a wide range of disciplines (Fuchs &
Thaler, 2018), predicting the actual behavior of citizens is still a major challenge
(Poussin et al., 2015). It 1s equally difficult to appreciate how disputed factors in risk
perception influence households’ or individuals’ choices to take protective action or the
non-actions that may exacerbate the risk (Bamberg et al., 2017), as well as the trigger of
the evacuation decision, or even the refusal to evacuate (Kreibich et al., 2017). An
especially broad gap can be observed between risk perception and behavior leading to a
disconnection between decision-makers and affected people with respect to risk
communication, risk management and risk knowledge (Kellens et al., 2013). People can
have complex and sometimes risk-taking attitudes (Lazrus et al., 2016), and such a
multidimensional issue is quite challenging to implement in the current single-number
indices and aggregative assessment methods (Rufat, 2013). In addition, while most
assessments assume that vulnerability remains constant over time and most evacuation
plans suppose fixed behaviors, perception and behavior dynamics are influencing each
other, interacting with the flow of events, past experience and other’s decisions,

sometimes in unpredictable ways (Wang et al., 2021).
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The literature on evacuation is focused on compliance with protective action
recommendations and mandatory evacuations, when decision-makers consider the risk
to the population too great to permit them to remain at their place (Lindell et al., 2019).
Compliance behavior plays a key role in the success of emergency management and
response operations (Kuhlicke, 2019). Previous studies found inconsistent and
inconclusive results on the determinants of evacuation-related decisions; the relatively
small number of empirical studies point towards highly hazard-specific and context-
specific factors (Wang et al., 2021). Conversely, spontaneous or voluntary evacuation
refers to people leaving their location because of perceived risk without being directed
to do so (Lindell et al., 2011). This dimension is even less often empirically studied
(Kim & Oh, 2015), just as other critical factors are usually overlooked in models and
simulations because of the lack of empirical knowledge (Aerts et al., 2018). These
factors include people refusing to evacuate, panics or weariness to stay in degraded
living conditions after a few days, bursts of spontaneous evacuation that can overwhelm
or even defeat the rescue, safety and recovery operations. Tackling the interplay
between risk perception, motivations, capacity and individual behavioral dynamics
including evacuation is challenging, and they are virtually never spatially analyzed
(O’Neill et al., 2015). Digital technologies have recently prompted high expectations
about their ability to facilitate evacuation (Wang et al., 2019; Zou et al., 2018), however
with the exception of hurricanes in the United States (Kim & Oh, 2015), little empirical
knowledge has been collected on warning, communication and actual evacuation
behavior, especially in large cities (Kreibich et al., 2017). A final challenge stems from
risk-taking behavior during an emergency (Rufat et al., 2015). During floods most

studies highlight the fatalities associated with the use of motor vehicles (Hamilton et al.,

10
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2020), the lack of trust in warnings and forecasts, and/or getting out to move a car,
prevent or limit its immersion (Debionne et al., 2016). Finally, while the question of
evacuation compliance and re-entry management are the most examined issues,
evacuation refusals are less often explicitly addressed and might be linked to risk

perception or vulnerability.

2.4 Statistical and spatial modeling for small-area estimation (MRP)

Hazard vulnerability and resilience are highly dependent on individual and household-
level perceptions and behaviors, yet acquiring data on these topics typically requires
household surveys that are resource-intensive. Survey samples are typically designed to
achieve representativeness of a target population, and disaggregating these data across
geographic subunits can result in highly uncertainty estimates, particularly across many
units of varying population sizes (Lax & Phillips, 2009). Small-area estimation
techniques like MRP can overcome these limitations to accurately estimate individual
responses at subnational scales, and also inform understanding of the processes that
influence geographic variation in responses (Howe et al., 2015). Survey sampling is
often not perfectly representative due to overrepresentation of certain sociodemographic
groups or geographic clustering in sample design (Groves et al., 2004). MRP can
address these issues, and it can even provide accurate population-level estimates from
highly non-representative polls (W. Wang et al., 2015). Researchers in political science,
sociology, geography, and public health have adopted and validated MRP methods
(Allan et al., 2020; Fowler, 2016; L. C. Hamilton et al., 2015; Howe et al., 2015, 2019a;
Lax & Phillips, 2009; Mildenberger et al., 2016; Pacheco, 2011; Tausanovitch &

Warshaw, 2013; Warshaw & Rodden, 2012; Zhang et al., 2014, 2015).
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MRP takes place in two steps. First, a multilevel regression model is fit to an
individual-level dependent variable using a combination of individual-level
demographic predictors, grouped random effects, and group-level predictors across
geographic or other groupings of individuals within the dataset. In addition to using
fixed effects as in classical regression, the multilevel model uses random effects for
grouping predictors. Random effects are related to each other by their hierarchical
structure and thus are partially pooled towards their group mean. Greater pooling occurs
for smaller groups and when group-level variance is low. Group-level predictors are
also used to improve model fit (Buttice & Highton, 2013). Group-level predictors can
be extracted from external datasets based on respondents’ geographic location.
Examples include county- or district-level census aggregated data (Howe et al., 2015;
Tausanovitch & Warshaw, 2013), or even finer resolution tract-level climate or land
cover data (Howe et al., 2019b). In the second step, the fitted model is poststratified to
the population of the study area across each demographic-geographic type within the
population, using census data cross-tabulated across each type. Estimates for each
demographic-geographic type can then be aggregated by their population to produce
estimates for every geographic unit. Importantly, poststratification can correct for
differences in representativeness between the survey sample and the population.

Recent examples applying MRP in the domain of climate change and hazards
include Mildenberger et al. (2016) and Howe et al. (2015), which produce estimates of
climate change opinion within Canada and the U.S., respectively, by fitting a multilevel
model to a dataset of multiple national surveys. In addition, the MRP models of climate
opinion in Howe et al. (2015) were shown to be unbiased when compared to a set of

independent county-level surveys (L. C. Hamilton et al., 2015). Recent work has also

12
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validated MRP estimates of U.S. disaster preparedness behavior in metropolitan areas
against American Housing Survey data and found the estimates to be unbiased and
similar in accuracy to representative surveys (Howe, 2018). Extending MRP to fine
spatial scales within urban areas, another recent study applied and validated MRP to
map risk perceptions of extreme heat hazards at the U.S. census tract level (Howe et al.,
2019a). MRP requires population-level data with joint distributions (i.e. crosstabs)
across individual-level predictors. However, recent advances using multilevel regression
with synthetic poststratification (MRSP) can eliminate the need for joint distributions
and instead rely on marginal distributions to generate synthetic population crosstabs

(Leemann & Wasserfallen, 2017).

3. Context

Two flood events in 2016 and 2018 and one major European flood exercise in 2016
occurred in rapid succession in the Paris metropolitan area in France. Each one was
salient enough to receive international coverage for days. On the flood plain of the
Seine River with an oceanic climate, Paris 1s exposed to river lowland floods, urban
floods with drainage issues paralyzing the historical core and other weather-related
hazards (Reghezza-Zitt & Rufat, 2015). Shortly before the floods, a study raised the
alarm about the fading flood memory and recommended the intensification of risk
awareness (Baubion, 2015). After the 2016 and 2018 floods, a study by the
Organization for Economic Co-operation and Development (OECD) estimated that a
major flooding of the Seine River could affect up to 5 million residents and cause up to
€30 billion worth of damage (OECD, 2018). After the major EU Sequana flood exercise

in March 2016, the June 2016 flood affected 486 municipalities over the course of

13
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several weeks, causing 1bn € damages when the Seine River reached a 6.3m level in
Paris: 18,000 were evacuated, 750 refused to evacuate and 4 people died (Richert et al.,
2017). In January 2018, the Seine River reached a 5.9m level in Paris, causing 200
million € damages and affecting 242 municipalities over the course of several weeks:

2,500 people were evacuated and over 300 refused to evacuate (OECD, 2018).

4. Methods

4.1 Survey

We surveyed about flood risk perception and evacuation behavior from households 6
months after the last flood in Paris, France. The survey was administered face to face in
the Paris metropolitan area from September to December 2018 to a representative
sample (n = 2,976) of the population, with a random sampling and a spatial and social
stratification to ensure the representativeness at different scales. Half of the sample are
residents living in the flood zone, and one-third are living in the indirect impact zones,
indicating that while their home might not be flooded, they might still face power, water
or heating outages, sewer backflow and similar situations lasting several days. The rest
of the sampled respondents live outside the direct and indirect exposure zones (Fig.1).
The questionnaire was administered face to face with a geolocation of the place of
residence, which is used to compute actual flood risk, with a 100m buffer to ensure
privacy. The full questionnaire comprised 80 questions and required 15-20 minutes to

complete.

4.2 Variables

We selected the answers to eleven questions representing a wide range of risk

14



perception and behavior as the dependent variables for this study. Two represent trust
and flood predictions, five represent flood risk perception (worry, awareness, relative
310 exposure, control over floods, self-assessed preparedness), and five capture flood
evacuation behavior (abide official order, go out for car, spontaneous evacuation, no
evacuation at all):
(1) trust forecast: Is it possible to rely on flood forecasts?
(2) predict difficult: In your neighborhood, are floods easy, or difficult to predict?
315 (3) flood worry: Do you worry about flooding?
(4) flood awareness: Is your home in a flood risk zone?
(5) more exposed: Is your home more or less exposed to flooding than the rest of
the Paris metropolitan region?
(6) control difficult: In your neighborhood, are floods easy, or difficult, to prevent
320 and control?
(7) well prepared: In the event of a flood, how would you assess your household's
level of preparedness?
(8) evacuation_abide: If you received an official evacuation instruction, but you
couldn't see any flood, would you leave?
325 (9) get car: In the event of a flood, would you go outside to get your car?
(10) evacuation spontaneous: In case of flooding, the water is not visible, and you
experience no effects. However, if 1 in 3 families on your street had already left
(33%), would you spontaneously evacuate, without being instructed to do so?
(11) evacuation_refuse: respondents refusing to evacuate (this is not a direct
330 question, but and indicator of responses where no evacuation question was

answered with a “yes” under any scenario or circumstance).
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4.3 MRP-MRSP models at three geographic levels

There 1s useful spatial information in social survey data that is sometimes analyzed
explicitly for spatial patterns that may not accurately account for biases due to sampling
or underlying demographic variation. Small-area estimation methods like MRP can
reveal spatial patterns in survey data while also accounting for how representative the
sample 1s of the broader population (Howe, 2018). However, the transition from
individual data to aggregation in administrative units might subject interpretations to
ecological bias. The “modifiable areal unit problem” (MAUP) commonly refers to two
separate effects: variation in statistical results between different levels of aggregation
and by the regrouping of data into different configurations at the same scale. In its
traditional application MRP can be constrained by the MAUP since it relies on existing
admuinistrative units. These existing units, due to the way their boundaries are drawn,
may propagate biases into subsequent small-area estimates. For example, U.S.
congressional district boundaries are often drawn for partisan advantage (e.g.
gerrymandering). In addition, administrative units at the same scale may vary
dramatically in population (such as U.S. counties or states), which leads to varying
uncertainties in small-area estimates for different units at the same scale, if the estimates
are based on representative survey data (Howe et al. 2015) Here we show how MRP can
be extended from larger-scale (municipality) to finer-scale administrative divisions
(tracts) and uniform geographic units (grid cells with population counts) to map
geographic variation in our outcome variable. The approach also frees us from relying
on data often aggregated in administrative units. Another potential bias could be the
“neighborhood effect averaging problem” (NEAP) referring to the traditional approach

of measuring individual exposure by the static residence or by averaging it at the

16
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neighborhood level (Kwan, 2018). The NEAP implies that the geographic contextual
variables used as covariates in small-area-estimation models are inherently uncertain
since they only incorporate data based on where respondents live—not where they work
or may otherwise travel—and do so using arbitrary administrative units to define
respondents’ neighborhoods. In extending our model to uniform geographic units (grid
cells), we attempt to address the latter potential bias described by the NEAP. We do not
have data on individual mobility to address potential uncertainties introduced by people
being exposed to flooding beyond their residential neighborhood. However, we assume
that effect of flood exposure on risk perceptions is likely to be strongest when
individuals’ homes or neighborhoods are flooded. We therefore compute for all scales
the share of each geographic unit inside the flood delineation zone as well as the
exposure to indirect effects — 1.e. residences that might not be directly flooded but might
still face power, water or heating outages, sewer backflow and similar situations lasting
several days during a major flooding.

We develop a hybrid MRP-MRSP (Leemann & Wasserfallen, 2017) model to
estimate population proportions for our eleven variables at the census tract scale and
200m grid scale within the Paris metropolitan area (we also develop a municipality-
scale model by aggregating tract-level model estimates). We first acquire tract-level
census joint distributions for age (5 groups) and sex (2 groups) (INSEE, 2017a). We
also utilize estimates of total population at the 200m grid scale across the Paris
metropolitan area (INSEE, 2015). At the grid scale, we estimate synthetic joint
population distributions for age and sex for each grid cell by identifying the most-
overlapping census tract polygon for each grid cell, and applying the tract’s population

proportions for each age by sex combination to the estimated population of the grid cell.
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For each tract and associated grid cell we extract a variable termed exposure indicating
whether the polygon has (0) low flood exposure; (1) indirect flood exposure; and (2)
direct flood exposure (IIBRBS, 2013). We also extract a numeric variable termed
share_flood indicating the proportion of the polygon in the zone of direct exposure to
flooding. At the tract level we also use additional census data on income, poverty and
living standards as potential covariates (INSEE, 2017b).

We next fit a multilevel logistic regression model to the individual-level survey
data for each dependent variable. The model includes random effects for the individual
demographic variables (age, sex, and sex by age). It also includes nested geographic
random effects for the census tract, municipality, and department. We then include
census tract-level fixed effects (or covariates) for exposure and share flood. To
determine these tract-level covariates, we iteratively tested sets of models using tract-
level fixed effects for flood exposure (exposure and share flood), per capita income,
poverty rate, educational attainment (proportion with a less than high school education
and proportion with at least a university-level education), national origin (proportion of
immigrants), home ownership (proportion of renters), household tenure (proportion who
moved within the past two years), and family structure (proportion of households with
children under 25 years and proportion of single-parent households). Starting with a
base “null” model using only individual-level predictors and geographic random effects,
we fit subsequent models using each possible geographic covariate individually and in
combination. We selected sets of covariates that resulted in a lower Bayesian
Information Criterion (BIC) for the respective model, relative to the null model. Across
all dependent variables, the only models that consistently returned lower BIC values

were those that included our two flood exposure variables.

18



Our model estimates the probability Pr that a given respondent 7 had one of two
405 possible responses to the question being modeled, represented by y;7. The model for

each dependent variable is specified as follows at the individual level:
Pr(y; =1) = logit™?*
a}?geN(O, oﬁge), forj=1,..,5
apf*N(0,0%,), fork =1,...,3

410 a; " N(0,02%x.qge), forl = 1,...,15

Each variable 1s indexed over individual 7 and over response categories j, k, /, m,
n, and o for age, gender, the interaction of age by gender, and geography (census tract)
respectively. Each variable 1s modeled as drawn from a normal distribution with mean
zero and estimated variance ¢2. The census tract geography variable, m, is modeled as

415 follows:

(Ifr{aCtN((I:?nﬁl + ﬁexposure - exposure,, + ﬁshm’e.ﬂood

- share. floody, 6&act ), form = 1, ...,1023

Exposure 1s a three-level ordinal variable indicating whether the census tract has
low, indirect, or direct flood exposure, and share.flood is the proportion of the census
420 tract in the zone of direct flooding exposure. Muni indicates the municipality within

which the census tract is nested, and is modeled as:

a,T“"iN(CISES:Jr%mni)’forn =1,..,111
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Each municipality is further nested within eight broader departement-level
(county) administrative areas in the Paris metropolitan region, which are modeled in

turn as:
agepN(O,aéep),foro =1,..8

Models for each dependent variable were fit in R using the Ime4 package’s
GLMER function (Bates et al., 2014).

In the next step, poststratification, we apply our fitted regression model to every
populated census tract and grid cell, resulting in estimated proportions for each age by
sex population cell. We then weight these proportions by their population within each
geographic unit, resulting in a total estimated proportion for each geographic unit
(census tract or grid cell) for the modeled dependent variable. Municipal-level results
are then calculated by aggregating proportions across census tracts by municipality.

Finally, we compare the model estimates at different scales by creating three
new geographical variables for each dependent variable. Each time, we subtract the
estimates from the top level to the bottom level estimates in order to highlight the
discrepancies: the delta between municipal-level and tract-level estimates for each of
the eleven dependent variables, the delta between municipal-level and grid cells, and the
delta between tract-level and grid cells. Positive values indicate that the upper-level
estimates are higher than the lower-level estimates, negative values represent the
opposite situation, while values close to zero indicate that the two estimate converge for
these geographical units. This allows to assess the convergence or discrepancies of the

results between the three geographical levels.
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4.4 Validation

We validate our model estimates at the grid, tract, and municipality level using two
cross-validation approaches. We first cross-validate at the municipality level by
randomly selecting groups of sampled municipalities with at least 100 respondents
across three urban-periurban categories with varying levels of flood exposure:
downtown Paris (3 groups), inner counties (2 groups), and outer counties (3 groups).
We chose municipalities within these categories for validation with the goal of
representing a diverse set of neighborhoods with varying population densities and flood
exposure, under the assumption that these contextual factors may be associated with
flood risk perceptions. For each group, we create a new simulated dataset by removing
all respondents from that group, then fitting and poststratifying our MRP model to the
simulated dataset. We then compare these MRP estimates for the selected group of
municipalities to the actual proportion of responses from the selected area.

We next cross-validate at the grid cell and census tract level using a modified
cross-validation technique that allows us to simulate the presence of an individual grid
cell or census tract with a large number of responses (# > 50), since our primary survey
dataset lacks such response density in any one small geography. For each dependent
variable we extract the distribution of model predictions across all grid cells (or census
tracts). For each distribution, we identify values in the distribution where the number of
respondents » in the sample who live in grid cells with the same predicted value,
rounded to the nearest whole number, is greater than 50 (the median number of
residents per grid cell). For each value where n > 50, we iteratively create a simulated
survey dataset that randomly sets aside 50 respondents who live in grid cells with that

predicted value. The set-aside respondents then serve as a comparison group against
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grid-level predictions from a model fit to the simulated dataset without these
respondents. After fitting this model, we calculate the mean absolute difference between
the proportion in the set-aside sample and the mean predicted proportion across those
respondent’s respective grid cells. For comparison, we also calculate mean absolute
difference between the proportion of respondents in the set-aside sample and the
disaggregated proportion of remaining respondents in the simulated survey dataset as a
baseline indicator of model accuracy. We repeat this sampling and cross-validation

process 99 times for each dependent variable at both the grid cell and census tract level.

5. Results

5.1 Statistical distribution of the estimates

Overall, the model estimates are well dispersed for all variables at all scales (Fig.2). The
only exception is evacuation refuse summarizing the answers on evacuation, reflecting
the fact that there might be no situation in which the respondents would consider to
evacuate. The incidence of this indicator in the population is small as only a slim
minority of respondents to the survey reflected such a behavior (4%). At all scales, the
model estimates for this variable are both consistently very low and narrowly focused
around the median. Comparing scales, the distributions appear more dispersed and more
symmetrical for the other variables at the tract level, followed by the grid level. The
dispersion is lower and dissymmetry more pronounced at the municipality level (which

includes fewer geographic units).

5.2 Estimates at the municipal scale (n = 1,300)

Figure 3 displays the spatial distribution of the estimates for all questions at the
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municipal scale. This spatial distribution is both well differentiated and well distributed;
it does not remain homogeneous throughout the area nor depend too much on the higher
admunistrative level, except for predict difficult and evacuation spontaneous for which
a county effect is noticeable. Overall, flood exposure seems to play a critical role in the
models as the municipal level estimates often reflect the river network, especially
towards the outskirts. The outlier is again the model for evacuation refuse producing
almost homogeneous estimates for most of the metropolitan area, except for some focal

points downtown and in the north-east.

5.3 Estimates at the tract scale (n = 5,261)

Overall, the estimates at the census tract scale support the previous findings (Fig.4). The
county effect is less noticeable for predict difficult and evacuation _spontaneous,
especially downtown. The dependence on the hydrographic network is quite noticeable
for flood awareness, which is to be expected, whereas evacuation refuse on evacuation
refusal remains an outlier with little variation and very low estimates except for some
focal points downtown and in the north-east. For all other models, a diversity of factors

seems to be at play and the estimates present a well-distributed spatial pattern.

5.4 Estimates at the grid scale (n = 73,166)

Figure 5 displays the spatial distribution of the MRP estimates for all questions at the
200m grid scale. Only inhabited cells are represented. The spatial distribution of
estimates at the 200m grid scale is convergent with the previous results for all questions.
Some county and municipal effects are still apparent, especially for predict difficult and

evacuation_spontaneous, evacuation_refuse on evacuation refusal remains an outlier,
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whereas hazard exposure proves to be a more powerful predictor for flood awareness

on flood exposure awareness.

5.5 Comparison between the estimates at the different scales

We compare municipal and tract scale estimates by subtracting the upper level
(municipal) results from the lower level (tract) ones for all questions. Higher estimates
at the lower level (tract) than upper level (municipal) result in positive values
represented in red on Figure 6, higher estimates at the upper level result in negative
values and are represented in blue, while convergent estimates result in values close to
zero represented in white. In general, the differences are quite small, except for
flood awareness on flood exposure awareness and more_exposed on perceived relative
exposure. There is less convergence downtown though, where densities are higher and
municipalities are subdivided into a greater number of tracts. Outwards, the outliers
reflect specific places with very low densities, most notably the Fontainebleau forest, a
very large tract with only around 200 residents in the Southeast. For the same tract,
these small differences can be positive for one question and negative for another.
Figure 7 displays the subtraction of upper level (municipal) estimates from the
lower level (grid) ones for all 10 questions using the same representation modalities,
200m cells intersecting the border of the upper level geographic units are removed to
reduce false positives. Overall, the differences are quite small, except for
flood awareness on flood exposure awareness and more_exposed on perceived relative
exposure, both of which are heavily impacted by the flood zone delineation. The flood
zone delineation is also apparent in the small differences for control difficult on

perception of flood prevention and control. For the other models, a diversity of factors
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seems to be at play and the estimates present varied spatial pattern. Once again, for the
same geographic unit, these small differences can be positive for one question and
negative for another.

The comparison of tract and grid scale estimates with the same representation

540 modalities in Figure 8 is convergent with the previous results.

5.6 Validation of the estimates at the different scales

We conducted cross-validation tests of our model estimates at the tract, grid, and
municipality level, as described above. Averaging across each variable, the mean
absolute error (MAE) was 6.7+2.3 percentage points at the municipality level, 6.6+1.4
545 points at the grid cell level, and 8.5+1.9 points at the census tract level (Figure 9). The
median MAE was 6.8 points at the municipality level, 7.0 points at the grid cell level,
and 8.3 points at the census tract level. For the majority of variables, the municipality-
level estimates had a lower MAE than the grid-level and tract-level estimates, and the
grid-level estimates had a uniformly lower MAE than the tract-level estimates. The
550 lowest MAE was found for the evacuation refuse variable, which reflects the highly
asymmetric distribution of responses to this variable (with only 4% of respondents

indicating refusal to evacuate).

6. Discussion

Our main objective was to assess whether survey results on risk perception and adaptive
555 behavior can be inferred from census and exposure data using a small-area estimation
model, and to discuss their possible subsequent implementations in risk, vulnerability,
resilience or adaptation models and assessments. We find that an hybrid MRP-MRSP
model can transition from individual survey data to small-area estimation, relying on
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individual demographic variables and flood exposure data to provide estimates at
different scales, including fine-scale uniform geographic units (e.g. 200m grid cells of
populated areas). While MRP has been applied to estimate responses from national-
level surveys to states, counties, or lower administrative units (Caughey & Warshaw,
2019:; Downes et al., 2018; Howe, 2018; Howe et al., 2015; Mildenberger et al., 2016;
Zhang et al., 2015), our results show that an hybrid MRP-MRSP model is not limited to
these scales and can be applied to estimate public responses using survey data for fine
scales within municipalities and neighborhoods. Our findings show that a wide range of
risk perception and adaptive behavior can be estimated with this approach, as the model
estimates are well statistically dispersed for all variables at all scales while the spatial
distribution is both well differentiated and well distributed. This remains true for all
scales; estimates do not remain homogeneous throughout the area nor depend too much
on the higher administrative level. Therefore, one promising result of this study is that a
carefully designed survey within any defined study area allows to infer small-area
estimations of risk perception and adaptive behavior from census data, including for
fine-scale uniform geographic units.

Another aim of our study was to assess the relevance of mapping survey results
while avoiding ecological bias and finding the right balance between the fineness of the
scale and the robustness of the estimates. Our findings show convergence between
estimates at different scales, even if this is less consistent for flood awareness and
perceived relative flood exposure. As a result, we suggest that our approach — when
using uniform areal units — reduces potential MAUP biases in interpretation of MRP
results. In this particular case, the NEAP bias is less of a concern as flood exposure is

more residence-based than mobility-dependent and we have implemented both direct
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flood exposure and exposure to indirect effects. The novelty of our approach is to
compare small-area estimations at different scales, allowing to analyze the sensibility of
MRP estimates to MAUP and NEAP biases, which has not been systematically studied
yet. Furthermore, our iterative cross-validation process show that the resulting estimates
are robust with a mean absolute error of about 7 percentage points at both the broadest
geographic scale (municipality level) and the finest geographic scale (grid cell level).
These results suggest that small-area estimation models can make robust fine-scale
predictions when using appropriate geographic covariates that exhibit strong
associations with the outcome variable, as is the case with flood exposure in our model.
Researchers have validated MRP methods (Allan et al., 2020; Fowler, 2016; Hamilton
et al., 2015; Howe et al., 2015, 2019a; Lax & Phillips, 2009; Mildenberger et al., 2016;
Pacheco, 2011; Tausanovitch & Warshaw, 2013; Warshaw & Rodden, 2012; Zhang et
al., 2014, 2015). MRP models of climate opinion in were shown to be unbiased when
compared to a set of independent county-level surveys (Hamilton et al., 2015) while
MRP estimates of U.S. disaster preparedness behavior were to be similar in accuracy to
representative surveys (Howe, 2018). While we lack external datasets for comparable
direct validation, our MRP model accuracy based on internal cross-validation was
similar to that found in an internal cross-validation of estimates for U.S. counties and
small-population states from a national MRP model (Howe et al., 2015).

Contrary to our expectations, the level of precision of small-area estimations is
not decreased at finer scales, even as the number of geographic sub-units increases
dramatically. The validation of estimates at grid level (n = 73,166) performed
systematically better than estimates at the tract level (n = 5,261), and performed

similarly to the higher level municipality estimates (n = 1,300). We suggest one reason
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may be that population composition is more homogeneous at finer scales, making
prediction easier. Performance at finer scales is less consistent, however, when the
initial survey data for a specific question are skewed (as in our case for trust in
forecast), where respondents giving the same answer are spatially clustered (e.g. flood
awareness), or the subpopulation giving a specific answer is low (e.g. evacuation
refusal). While small-area estimation techniques like MRP can overcome the
uncertainties deriving from disaggregating data across geographic subunits (Howe et al.,
2015), particularly across many units of varying population sizes (Lax & Phillips,
2009), our findings suggest that robust estimates can be achieved at a very fine spatial
scale, provided there 1s a strong spatial predictor. Further accuracy gains at fine
geographic scales may also be achieved if more detailed census demographic data are
available as joint distributions (i.e. crosstabs) at the geographic scales to be predicted in
the poststratification stage, or alternatively through synthetic crosstabs based on
marginal distributions (Leemann & Wasserfallen, 2017). The choice of individual-level
predictors for small-area estimation is context-dependent, and should be informed by
previous research about predictors known to be associated with the outcome variable.
For instance, race/ethnicity was used as an individual-level predictor in small-area
estimates of climate change opinion in the U.S. (Howe et al., 2015), while first language
was used in a similar model in Canada (Mildenberger et al., 2016). Here, we used joint
distributions of sex by age at the census tract and grid cell level, since more detailed
demographic joint distributions were not available at these fine geographic scales (for
example, data on race or ethnicity are not collected in France).

Small-area estimation techniques like MRP are not commonly used among

geographers. One promising result from our study is that this kind of modeling is a
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fruitful direction to improve mapping of survey results. Survey sampling is often not
perfectly representative due to overrepresentation of certain socio-demographic groups
or geographic clustering in sample design (Downes et al., 2018; Groves et al., 2004;
Wang et al., 2015). We argue that small-area estimation models, such as the hybrid
MRP-MRSP modeling employed here, can address these issues; it can even provide
accurate population-level estimates from highly non-representative surveys (e.g. Wang
et al. 2015).

An underlying question is what precautions surveys should take before jumping
to mapping the results, disentangling social and spatial variations, inferring sample
survey results at different scales, while tackling scale-dependency issues. Our findings
suggest that unless survey sampling is conducted to be representative at the scale
needed, then it is important to model and adjust for population characteristics before
making claims about geographic patterns in survey results.

Therefore, greater efforts to explicitly collect validation data from randomly
selected locations that are set aside for later validation analyses should be considered by
future projects. Survey samples are typically designed to achieve representativeness of a
target population; however our validation results show that is less straightforward when
a respondents’ subgroup is small or clustered. As a result, caution about interpreting
model estimates like those we have produced here 1s required. An important step is to
understand the underlying survey data and sampling design. The estimates for small-
population areas have more inherent uncertainty because they may not have respondents
included in the survey sample, in which case their estimates are driven entirely by the
modeled relationships present in the remaining data. This could lead to errors in the

estimates for some small-population areas if they are different from the remaining
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region in ways not known to the model. This limitation is why we indicate data-poor
areas in our maps. By contrast, areas with larger populations are likely to have lower
uncertainties because their residents are more likely to be present in a representatively-
sampled dataset. We advise thus to increase the sample size for smaller subpopulations
(e.g. vulnerable people or people refusing to evacuate) and/or less dense neighborhoods
(e.g. having a higher sampling ratio in suburban peripheries than in the city center),

when accurate estimates of both high- and low-population areas are needed.

7. Conclusion

We find that a wide range of risk perception and adaptive behavior can be estimated
with an hybrid MRP-MRSP model combining a specifically designed survey with
census and exposure data. The model estimates are statistically well dispersed for all
variables and the spatial distribution is both well differentiated and well distributed at
all scales, including fine-scale uniform geographic units. The small-area estimations do
not remain homogeneous throughout the area nor depend too much on information at
higher administrative levels. The primary limiting factor is with low-incidence
variables: when only a slim minority of respondents to the survey display a specific
behavior. This limitation 1s evident in our measure of refusals to evacuate (4% total
incidence), reflecting the fact that for very few respondents was there no situation in
which they would consider evacuation.

While our measures of flood risk awareness and perceived flood exposure are, as
expected, highly dependent on location relative to the hydrographic network, questions
on trust, confidence in forecast and control over floods are more challenging to spatially
dissagregate since they are less predicted by flood exposure. These variables, especially

at the higher levels with fewer spatial units, display greater dependence on information
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at higher administrative levels. Performance at finer scales is less consistent when the
initial survey data for a specific question are skewed (as in our case for trust in
forecast), where respondents giving the same answer are spatially clustered (e.g. flood
awareness), or the subpopulation giving a specific answer is low (e.g. evacuation
refusal). For all other risk perception and adaptive behavior, a diversity of factors is at
play and the estimates have a spatial distribution with complex marquetry. We also find
convergence between estimates at different scales. Furthermore, our iterative cross-
validation process demonstrates that the model estimates are robust, with a low error
rate (7%) similar to that found for small-area estimates of U.S. counties from national
surveys (Marlon et al., 2020). Contrary to our expectations, the level of precision of
small-area estimations is not decreased at finer scales, even as the number of geographic
sub-units increases dramatically.

One promising result is that a carefully designed survey allows for small-area
estimation of risk perception and adaptive behavior from census data, including for fine-
scale uniform geographic units. We advise researchers, however, to consider
oversampling smaller subpopulations (e.g. vulnerable people or people refusing to
evacuate) and/or less dense neighborhoods (e.g. having a higher sampling ratio in
suburban peripheries than in the city center), which will likely improve accuracy of the
estimates across the area of interest. The resulting accurate population-level estimates
and multilevel estimates of risk perception and adaptive behavior can help overcome
current shortcomings in risk, vulnerability, resilience or adaptation indices that typically
lack relevant information on risk perception, adaptation or preparedness behavior. The
ability to infer perceptions and behavior from census data would be most valuable for

decision-makers and first-responders, helping to develop targeted communication,
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tailoring risk communication strategies and campaigns, and helping to anticipate the
magnitude of shelter and other special needs. For example, emergency managers could
pinpoint the areas and groups most likely to end up refusing to evacuate or coming back
too soon after a disaster.

This study demonstrates that an hybrid MRP-MRSP model is not limited to
broad geographic scales and can be applied to estimate public responses using survey
data for fine scales within municipalities and neighborhoods. We show how small-area
estimation can be extended from existing administrative divisions to uniform
geographic units (grid cells with population counts) to map geographic variation in
survey outcome variables. Small-area estimation techniques using survey data are not
commonly used among geographers. We argue that this kind of modeling is a fruitful
direction to improve mapping of survey results. We raise the underlying question of
what precautions surveys should take before inferring sample results at different scales
or mapping them. We advise specifically designing survey samples to be representative
at the scales needed and to account for biases due to sampling or underlying
demographic variation, i.e. to model and adjust for population characteristics before
making claims about geographic patterns in unweighted survey results. Geographers
and other social scientists should strongly consider using small-area estimation
techniques to infer and map results from survey data to understand underlying spatial
patterns in ways that account for how representative the sample is of the broader
population. This opens the door to other applications that require accurate population-
level estimates and spatially disaggregated estimates from polls and survey data.
Beyond hazard mitigation and preparedness, additional practical applications could

include, for example, mapping health-related perceptions and behavior for public health
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campaigns, mapping energy-related behaviors to optimize transmission infrastructure,

or mapping local government policy preferences to inform decision-making.
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Figure 1. Map presenting the sampling method, flood zone and geotagged respondents.
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Figure 6. Map comparing estimates for the 11 questions at the municipal and tract scale.
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