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Sociodemographic factors associated with heatwave risk perception
in the United States

Abstract

Extreme heat events are one of the deadliest weather-related hazards in the United States and are
increasing in frequency and severity due to anthropogenic greenhouse gas emissions. Further,
some subpopulations may be more vulnerable than others due to social, economic, and political
factors that create disparities in hazard impacts and responses. Vulnerability is also affected by
risk perceptions, which can influence protective behaviors. In this study, we use national survey
data to investigate the association of key sociodemographic factors with public risk perceptions
of heat waves. We find that risk perceptions are most associated with income, race/ethnicity,
gender, and disability status. Age, an important predictor of heat mortality, had smaller
associations with heat risk perceptions. Low-income, non-white, and disabled individuals tend to
perceive themselves to be at greater risks from heat waves than other subpopulations,
corresponding with their elevated risk. Men have lower risk perceptions than women despite
their higher mortality and morbidity from heat. This study helps to identify subpopulations in the
U.S. who see themselves as at risk from extreme heat and can inform heat risk communication
and other risk reduction practices.

1. INTRODUCTION

Extreme heat events are one of the deadliest natural hazards in the United States (Berko
et al. 2014; Gasparrini et al. 2015; U.S. EPA and CDC 2016) and pose deadly threats to people
worldwide (Mora et al. 2017; Franzke and Torell6 i Sentelles 2020). Extreme heat is projected to
increase in frequency and severity in response to increasing atmospheric concentrations of
greenhouse gases driven by human activity (Jeon et al. 2016; U.S. EPA and CDC 2016; Angélil
etal. 2017; Vose et al. 2017; IPCC 2021). Urbanization is also increasing the number of people
exposed to deadly heat waves (Tuholske et al. 2021). Furthermore, there is demonstrated
influence of human activity on the severity of heat-health impacts (Vicedo-Cabrera et al. 2021),
and individual behavior and risk judgements can lead to different impacts across similarly

exposed populations (Semenza et al. 2008; White-Newsome et al. 2011; Lefevre et al. 2015;
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Wilhelmi and Hayden 2010). Increasing physical exposure to extreme heat and its complex
interaction with social sensitivity factors associated with social inequities in hazard impacts and
responses (such as gender, age, and race/ethnicity) create varying risk environments for different
subpopulations across the country. This underscores the need for decision-makers and risk
managers to develop strategies and define priorities to mitigate the negative impacts of extreme
heat, since heat mortality and morbidity are often preventable if appropriate individual and
collective actions are taken.

In this study, we examine how sociodemographic indicators associated with health
disparities in the impacts of extreme heat also influence risk perceptions across the contiguous
United States. Using georeferenced survey data and multilevel regression modeling, we report
the associations of individual-level factors (e.g. gender, age, race/ethnicity, work status) with risk
perceptions, while also estimating risk perceptions among different subpopulations. These results
provide decision makers with valuable information about which vulnerable subpopulation tends
to perceive (or not) the threat of extreme heat which informs targeted risk communication and

hazard preparedness campaigns.

2. LITERATURE REVIEW
2.1 Extreme heat risk

While there is no universal definition of an extreme heat event or heat wave, these events
are commonly understood as periods characterized by excessively high levels of temperature
and/or humidity that jeopardize human health due to severity of exposure or duration (Robinson
2001; Smith et al. 2013; White-Newsome et al. 2014; U.S. EPA and CDC 2016; Hawkins et al.

2017; Liss et al. 2017). Mora and colleagues (Mora et al. 2017) found that about 30% of the
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global population is exposed to deadly heat conditions for at least 20 days each year, and this
number is expected to increase to between 48—74% by 2100 under different global warming
scenarios. As temperatures continue to rise, a greater proportion of U.S. citizens will be exposed
to extreme heat conditions in the future (Jones et al. 2015).

Extreme heat is a commonly experienced hazard with both immediate and delayed
negative health impacts that can result in illness and fatalities during pronounced heat waves. For
example, in July 1995, during a five-day extreme heat event in Chicago, Illinois, over 700 deaths
were recorded in excess of historical norms, representing an increase of 85% from the previous
year (Semenza et al. 1996; Klinenberg 2003). In May 2015, record temperatures throughout
southern India led to at least 2,320 confirmed fatalities (Ratnam et al. 2016; Mazdiyasni et al.
2017). And in August 2003, a particularly severe heat wave affected much of western Europe
claiming more than 70,000 lives (Robine et al. 2008). Despite these high numbers, heat deaths
are likely underreported due to heat’s tendency to exacerbate existing medical conditions
(Astrom et al. 2011; Liss et al. 2017; Mora et al. 2017). Some negative heat-health impacts such
as dizziness and fatigue are experienced by a broader segment of the population (Khare et al.
2015; Hayden et al. 2017). For example, a study in England found that more than half of the
younger adults reported experiencing headache and sunburn during summer 2013 (Khare et al.
2015). The intensity and scope of these impacts are influenced by geographic factors, population
dynamics, time, scale, and the efficacy of communities’ adaptive policies (Semenza et al. 1996;
Klinenberg 2003; U.S. EPA 2006; Anderson and Bell 2011; Reid et al. 2012; IPCC 2014;

Tierney 2014).

2.2. Risk assessment and extreme heat
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Assessment of vulnerability and risk is critical to identify priorities and develop
management strategies (IPCC 2012). Decision makers need locally relevant information about
the distribution of potential negative impacts to inform mitigation and risk reduction strategies.
The risks associated with climate change and natural hazards can be assessed by supplementing
physical models of hazard exposure (Gill and Malamud 2014; Hawkins et al. 2017; Mora et al.
2017) with analyses that seek to incorporate dynamic human vulnerability factors that affect
sensitivity and adaptive capacity (Reid et al. 2009; Tomlinson et al. 2011; Buscail et al. 2012;
Wolf and McGregor 2013; Weber et al. 2015). Vulnerability is a key determinant of potential
impacts of hazardous events, and sensitivity and lack of adaptive capacities are in turn causes of
vulnerability (IPCC 2012). Sensitivity refers to the potential of being negatively affected by
hazards due to personal, household, and contextual factors (such as social, economic, political, or
cultural factors) that magnify the impact of a hazard event (Grothmann and Reusswig 2006;
Johnson et al. 2012; Reid et al. 2012; IPCC 2014; Tierney 2014; Jones et al. 2015). Adaptive
capacity is the ability of individuals or a group to take actions that mitigate hazard risks such as
social capital (Kalkstein and Sheridan 2007; Bobb et al. 2014; IPCC 2014; Tierney 2014; Jones
et al. 2015). While the ability to predict climatic changes and the occurrence of heat events on a
global scale by better understanding the dynamic properties and interactions of the earth’s
natural systems has improved (Schellnhuber 1999; Famiglietti et al. 2015), the dynamic
properties of human systems remain difficult to capture in comprehensive risk assessments.

In the context of extreme heat, some sociodemographic factors (see Table I) have been
associated with disparities in morbidity and mortality from extreme heat and included in risk
assessments as indicators of heat vulnerability (Harlan et al. 2006, 2013; Medina-Ramon et al.

2006; Anderson and Bell 2009, 2011; Reid et al. 2009, 2012; Buscalil et al. 2012; Johnson et al.
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2012; Wolf and McGregor 2013; Gronlund et al. 2014; Weber et al. 2015). Age is a demographic
factor of heat vulnerability because older individuals are statistically more likely to be negatively
impacted by extreme heat exposure as they tend to be more physiologically susceptible to heat,
more limited in their ability to access health services due to mobility constraints, and more prone
to social isolation (Semenza et al. 1996; Stafoggia et al. 2006; Reid et al. 2009; Uejio et al. 2011;
Wolf and McGregor 2013; Gronlund et al. 2014; Liss et al. 2017). In the United States,
epidemiological studies have found that men have higher rates of heat-related mortality and
morbidity than women during extreme heat events (Semenza et al. 1996; Whitman et al. 1997;
Choudhary and Vaidyanathan 2014; Hess et al. 2014; Schmeltz et al. 2015). Being active in the
heat and lower social contact may contribute to higher heat vulnerability among men, although
women face socioeconomic inequities in the United States that may also increase risk (Kovats
and Hajat 2008). People with lower educational attainment tend to face greater natural hazard
risks in general due to difficulties they face in accessing health services and hazard information
(Cutter et al. 2003; Reid et al. 2009; Anderson and Bell 2011; Weber et al. 2015). Low-income
and socioeconomically disadvantaged people, particularly disabled individuals, are significantly
more likely to be negatively affected by natural hazards, including extreme heat, due to a lack of
resources required to cope with the hazard (Harlan et al. 2006; Anderson and Bell 2009; Reid et
al. 2009). Previous studies have indicated that larger households (with a greater number of
residents) tend to have greater access to the social and material resources required to cope with
heat hazards (but are more likely to have children more susceptible to negative heat impacts)
whereas smaller households are more prone to social isolation, a significant source of
vulnerability (Semenza et al. 1996; Cutter et al. 2003; Klinenberg 2003, 80—81; Reid et al. 2009;

Weber et al. 2015). Due to social, political, and economic inequities, minoritized racial and
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ethnic populations often experience greater health impacts from extreme heat (Cutter et al. 2003;
Reid et al. 2009; Anderson and Bell 2011; Weber et al. 2015), and can also be more exposed to
extreme heat at the neighborhood level due to historic patterns of discrimination such as
redlining (Benz and Burney 2021). These social, economic, and demographic factors can be
categorized as “sensitivity” factors, but they may also influence adaptive capacity in shaping

overall vulnerability.

2.3. Risk perception

In addition to these sensitivity factors, risk perception has also been acknowledged as an
important factor of heat vulnerability (Wilhelmi and Hayden 2010). Risk perception is a
determinant of individual risk decision-making and influences the likelihood of an individual
engaging in personal protective behaviors (Slovic 1987; van der Pligt 1996; Brewer et al.
2004). Personal behavior and preparedness can either attenuate or exacerbate vulnerability. The
relationship between risk perception and behavior has been studied with respect to certain
environmental and health hazards (Wachinger et al. 2013). Previous studies have found that heat
risk perceptions positively influence heat-protective behaviors (Lane et al. 2014; Hayden et al.
2017; Madrigano et al. 2018; Ban et al. 2019; Hass and Ellis 2019; Zander et al. 2019; Hass et al.
2021). For example, a recent U.S. national survey found that risk perceptions and subjective
experience with health effects of extreme heat predicted heat-protective behaviors (Esplin et al.
2019). Data on risk perceptions provide information on how individuals perceive their own
vulnerability and their likelihood of taking protective action (Tierney 2014), which are
increasingly sought by government officials and risk managers (Wolf et al. 2010; Reid et al.

2012; White-Newsome et al. 2014).
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While sociodemographic sensitivity factors such as age and housing characteristics can
be included in risk assessment due to the availability of census data at sub-national levels, risk
assessment typically lacks data on risk perception (Wilhelmi and Hayden 2010). Furthermore,
little is known about what data may be good proxies for heat risk perception due to a lack of
knowledge about how key sensitivity factors are associated with risk perception. Existing
knowledge is limited to surveys in a small number of cities (Kalkstein and Sheridan 2007;
Madrigano et al. 2018; Chakalian et al. 2019). For example, a study conducted in New York City
found that low-income individuals were more likely to be concerned about heat, but men—who
also have elevated vulnerability to heat—tended to have lower heat risk perceptions (Madrigano
et al. 2018).

Risk reduction strategies may be more effective if they account for individual-level social
factors related to hazard awareness, risk judgements, and subsequent decision-making behaviors
that likely vary at sub-national levels (Slovic 1987; Renn 1998; Howe et al. 2019). Failure to
account for risk perception in risk assessment can lead to inadequate hazard communication and
misguided management priorities. For example, a lack of knowledge about the association of
sensitivity factors and risk perception may result in difficulties in identifying communication
priorities since little is known whether vulnerable populations perceive their elevated
vulnerability. If a certain vulnerable subgroup does not perceive a higher risk of extreme heat
events for themselves, their family, and their community, the subgroup should be a priority for
practitioners to target risk communication efforts.

To bridge the knowledge gap, this study investigates how sociodemographic factors are
associated with heat risk perception, using nationally representative survey data from the

contiguous U.S. This study asks: how do key social, economic, and demographic factors known
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to be important indicators of mortality and morbidity from extreme heat (summarized in Table 1)
relate to extreme heat risk perceptions? We hypothesize that individual-level factors that have
been found to be associated with greater personal risk of heat-related impacts in previous studies
will be positively associated with heat wave risk perceptions. This study complements Howe et
al. (2019), which describes place-based geographic patterns in heat risk perceptions at multiple
scales (census tract, county, and state) across the U.S. using small-area estimation models.
Building on the same dataset, in this paper we focus on understanding how individual
sociodemographic factors predict heat risk perceptions and how such factors interact with each
other. By focusing on the predictors of heat risk perceptions, this research helps to identify
particular subpopulations who face well-documented vulnerability but are less likely to perceive
themselves to be at amplified risk from extreme heat. Such information can help decision makers
to define communication priorities and assess hazard vulnerability and risk in a more

comprehensive way.

3. METHODS

3.1. Study area and data

This study examines heat wave risk perceptions across the contiguous U.S. during the warm
months of 2015 using nationally representative survey data (Supplementary Information, Fig. 1).
The survey was administered online biweekly over the course of 20 weeks, beginning in May. The
survey was conducted on the GfK KnowledgePanel Omnibus, a shared-cost weekly online survey
whose respondents are sampled from a probability-based panel. GfK recruited panel members
using address-based sampling of all U.S. addresses from the U.S. Postal Service Delivery
Sequence File and provided households without internet access with a computer and internet

service (in our sample, 20% of respondents lacked home broadband internet access). The overall
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sample size was n = 10,532. However, due to the panel design of this survey, responses were
collected more than once for some individuals. These subsequent responses were filtered from the
dataset before analysis and the final sample size was n = 8,789 unique respondents. Individual
identifiers were removed from the data and the precise geographic coordinates of respondents were
jittered within a radius of 150m for respondent confidentiality.

The survey was composed of three questions measuring heat wave risk perceptions on
three sub-scales, measuring perceived risk to the individual respondent, their family, and their
community:

“A heat wave is a period of unusually and uncomfortably hot
weather. If a heat wave were to occur in your local area, how
much, if at all, do you think it would harm the following: Your
health? Your family’s health? The health of others in your
community?”’

The responses to each of the survey questions, which were collected using a slider bar on
a 0-100 scale, were combined to create an overall heat wave risk perception index used as the
dependent variable in this study. This index had high internal consistency (Cronbach’s alpha =
0.95). The index represents heat wave risk perception values on a scale of 0—100 with 100
representing the highest degree of perceived risk to heat. The high internal consistency of the
heat wave risk perception index suggests that it captures a single construct.

The survey also collected data on the sociodemographic characteristics of each
respondent. Seven sociodemographic variables (gender, age, race/ethnicity, income, education,

work status, household size) were used in this study’s regression analyses along with geographic
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data recorded for each response. The structure of these variables is detailed in Supplementary

Info, Table 1.

3.2. Analysis

The scope of this analysis is focused on evaluating the sociodemographic factors associated with
risk perceptions, rather than developing an exhaustive model capturing all possible factors. We
fit a random intercept (multilevel) regression model to the heat wave risk perception index,
parameterized according to statistical best practices for confirmatory hypothesis testing
(Hofmann 1997; Gelman and Hill 2007, chap. 11-12; Zuur et al. 2009; Barr et al. 2013). The
purpose of the models in this paper is explanatory rather than predictive, and designed to test
hypotheses about associations between known vulnerability factors and risk perceptions. The
same methods and statistical techniques described below for the initial model build were applied
to each subsequent model. All analyses were performed using the R programming language and
environment using the Ime4 package (Bates et al. 2015).

The initial model (Supplementary Table 2) was composed solely of categorical random
effects (Winter; Hofmann 1997; Barr et al. 2013). The model coefficients (effects) associated
with these predictors and their sublevels are random effects estimated with partial pooling—also
known as linear unbiased prediction (Winter; Goldberger 1962; Gelman and Hill 2007, chap.
12). By treating the extreme heat risk factors addressed in the study hypotheses as random
effects, the effect of the levels of each predictor can be assessed in relation to their difference
from the overall mean (i.e., the average risk perception score across the U.S. population)

(Robinson 1991; Hofmann 1997; Barr et al. 2013).

11
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Multilevel regression models use best linear unbiased predictors (BLUPs) to predict
random effect values rather than estimate fixed parameters and establish a hierarchical
framework through which meaningful differences between levels can be discerned. The BLUPs
are analogous to prediction in the Empirical Bayes methodological framework, in which
parameters associated with a pre-specified prior distribution are estimated from the data, thereby
approximating the full hierarchical Bayes model (Hofmann 1997; Gelman and Hill 2007, chap.
11; Barr et al. 2013). By utilizing prediction instead of estimation, the strengths of Bayesian
inference can be integrated within a classical statistical framework to support hierarchical linear
modeling. Consequently, we employ BLUPs because the primary interest of this study is in
making inferences about the distribution of risk perception values, their degree of variance at
different levels, and the underlying population more so than in the effects themselves (e.g. fixed
effects) or explicitly testing for measurable differences between specific levels (Gelman and Hill
2007, chap. 11).

The following equation shows our initial model specification using variables identified in

previous literature related to heat sensitivity:

gender

_ age race/ethnicity race/ethnicity:gender income
Ymi,...,vi - ﬂ + am + an +a Ta

+a, p q

i i region .
+ qeducation  gwork | ghhsize 4 gstate 4 o €9'" 4 ¢ fori=1,..8789

where. ..

ay® ~ N(O, agge),form =1,..,5

gender 2 _
a, ~ N(O, agender), forn=1,2

race/ethnicity 2 _

a, ~ N(O' Urace/ethnicity)' foro=1,..,5
race/ethnicity:gender 2 _

ap ~ N(O, Urace/ethnicity:gender)l for b= 1,..,10
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aéncome ~ N(O' Uizrzcome)' for q= 1’ s/

aﬁducatlon

~ N(O; O-ezducation)' forr=1,...,4
a;vork ~ N(O: O-v%/ork)' fors =1,..,5
a?hsize ~ N(O: O-i%hsize)' fort = L..4

astete ~ N(0,044.) foru=1,..,51
a;egion ~ N(O, arzegion), forv=1,..,4

Predictors were included or dropped from the model based on tests of model fit. Model fit
was assessed using chi-square tests on the log-likelihood values through iterative ANOVA
testing to compare models reduced by one variable (subject to the ANOVA testing) and
determine that variable’s contribution to the overall model fit via reduction in the residual sum of
squares (Barr et al. 2013; Bates et al. 2015). The contribution of each predictor to variance in risk
perceptions was tested by comparing the null (full Sensitivity Model) to a series of models each
missing one random effect term (Supplementary Table 2).

In a mixed effect model, inter-correlations between fixed effects can quickly be assessed
en masse via a correlation matrix; however, random effect models require systematic evaluation
of each predictor’s individual contribution to the model. Multilevel modeling best practices
(Hofmann 1997; Gelman and Hill 2007) involve starting with a maximal model and using log-
likelihood tests to iteratively pare down the number of predictors. Best practices also indicate
that in many circumstances, it is more appropriate to retain predictors that would otherwise be
eliminated after the log-likelihood test because they are important to the conceptual or theoretical
framework adopted across the study -- for example, including or excluding the theoretically

important random effect “Education” had no quantifiable impact on model output (Table II).

13
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Our model specification includes the following sociodemographic predictors: gender,
age, race/ethnicity, income, education, work status, and household size. Descriptive statistics are
available in Supplementary Table 1. In addition to these sociodemographic variables, we also
include an interaction term for gender by race and ethnicity, since this interaction is supported by
previous research on hazard risk perceptions: the “white male effect” found in many risk
perception studies (that white males tend to exhibit lower risk perceptions than other
demographic groups) indicates that the interaction of gender and race/ethnicity is important to
include in models of risk perceptions, since the effects of gender and race/ethnicity alone do not
fully capture the effect (Finucane et al. 2000). In addition, by using random effects associated
with geographic factors (Census region, state), the model was able to account for some degree of
spatial autocorrelation and overcome assumptions of independence that would normally be
violated if geographically clustered data were to be analyzed using traditional linear regression
modeling (Hofmann 1997; Gelman and Hill 2007, chap. 11).

Model results describe inter-group variation across sociodemographic factors hypothesized
to influence heat wave risk perceptions. The outcome variable is a risk perception index on a scale
of 0—100 with 100 representing the highest degree of perceived risk. Random effects included in
this model provide a direct measure of how much of the reported risk perception scores’ variance

around this mean is explained by group-level differences.

4. RESULTS
Nationwide, the mean heat wave risk perception index was 39 (n = 8789, sd =

24) on a 0-100 scale (Supplementary Fig. 2). Heat wave risk perception was associated

14
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with the following statistically significant predictors: race/ethnicity, income, gender,
work status, age, state and region (Table 2).

Income was a statistically significant predictor of individual heat wave risk
perceptions with a large effect size (6 = 3.72, X*(1) = 89.52, p < 0.001). Higher-income
individuals tend to have lower risk perceptions than lower-income individuals (Fig. 1)
and the national average. Holding other predictors constant at their means, respondents
earning less than $15,000 per year scored 1.26 times higher on the heat wave risk
perception index (47) than respondents earning over $150,000 per year (37).

Race and ethnicity was also a strong and significant predictor of heat wave risk
perceptions (o = 3.51, X? (2) = 103.98, p < 0.001). Holding other variables constant,
white, non-Hispanic or Latino respondents had the lowest estimated heat wave risk

perception index at 37, while Hispanic or Latino (44) and Other, non-Hispanic or Latino

respondents (47) had the highest estimated heat wave risk perception index (this category

includes non-Hispanic or Latino Asian, American Indian or Alaska Native, and Native
Hawaiian or other Pacific Islander U.S. residents). Gender was a statistically significant
predictor of heat wave risk perceptions (¢ = 2.32, X? (2) = 80.27, p < 0.001). Although
the effect was not large, the heat wave risk perception index was higher among women
(44) than men (41). While the race/ethnicity by gender interaction did not significantly
improve model fit overall (c = 0.95, X? (2) = 1.84, p = 0.17), white non-Hispanic or
Latino male respondents tended to have much lower heat wave risk perceptions scores
(35) than the mean for all other race by gender groupings (43).

Work status was also a strong and statistically significant predictor of heat wave

risk perceptions (o = 2.99, X*(1) =29.77, p < 0.001). Across five work status categories,
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disabled non-working respondents reported much higher heat wave risk perceptions (48)
than those in the remaining four work status categories (not working — seeking a job, 42;
working, 41; not working — retired, 41; not working — other, 40).

Age was a small but significant predictor of heat wave risk perceptions (¢ = 1.08,
X2 (1)=6.17, p = 0.0129). Respondents in the older age categories (65 years and older
and 45-54 years) had slightly higher heat wave risk perceptions (44) than those in the 35-
44 year old category (41).

The remaining sociodemographic variables did not significantly improve model
fit. Heat wave risk perceptions did not show significant variation by educational
attainment (¢ = 0.37, X> (1) = 0.09, p = 0.76) or household size (¢ = 0.58, X*> (1) =1.35,p
=0.25).

We estimated variation in the heat wave risk perception index was across geographic
units (state and region) using the same techniques, by specifying geographic units as random
effects. Respondents’ state of residence was a statistically significant predictor of heat wave risk
perceptions (o = 2.25, X? (1) = 24.94, p < 0.001). At a broader scale, the US Census region in
which each state was grouped was also a statistically significant predictor of risk perceptions and
explained variation beyond that at the state level (¢ = 2.23, (1) = 10.62, p = 0.001). The Midwest
tended to have the lowest heat wave risk perceptions (39.9) while the South had the highest risk
perceptions (44.9). Geographic effects are summarized in Supplementary Fig. 3. Howe et
al.(Howe et al. 2019) provides additional detail on geographic variation in heat risk perceptions

at multiple scales.

5. DISCUSSION
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The principal objective of this study was to determine how key sociodemographic factors
known to be important contributors to overall heat vulnerability (summarized in Table I) also
influence heat wave risk perceptions across the contiguous U.S. Several individual-level
sociodemographic factors were associated with differences in heat wave risk perceptions—either
positively or negatively, as hypothesized—and accounted for a statistically significant proportion
of total variance around the national average. Overall, sociodemographic predictors explain a
similar amount of individual variation in heat wave risk perceptions as they do risk perceptions
to other hazards (Peacock et al. 2005; Lindell and Hwang 2008; Kellens et al. 2011; Knuth et al.
2013).

This study also has several limitations. While our findings are based on a nationally
representative survey sample and generalizable to the U.S. population, low-population
sociodemographic groups are less represented in our sample, which limits the ability to draw
conclusions about their heat risk perceptions. Our survey data were collected during one season
(Summer 2015), which may limit our ability to generalize to other seasons where heat is a
potential hazard (such as late spring or early fall) or other years in which the U.S. population
may experience different patterns of weather conditions. A third limitation is that we focus here
only on several survey questions risk perceptions of heat. Resource constraints limited our ability
to collect additional survey questions which may provide a fuller picture of impacts, decision-
making, and responses to heat among the American public (e.g. Esplin et al. 2019). For example,
future surveys should examine how experiences with direct and indirect heat-health impacts may
influence risk perceptions.

Heat wave risk perception indices for subpopulations known to be at increased risk

tended to deviate from the national average in line with the directionality of their effect on heat
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vulnerability, as found by previous research, with the notable exception of gender. Gender, a
factor which previous studies have identified as an important determinant of extreme heat
sensitivity, is an important determinant of risk perception. However, men—who experience more
impacts from heat to their health (Semenza et al. 1996; Whitman et al. 1997; Kovats and Hajat
2008; Choudhary and Vaidyanathan 2014; Hess et al. 2014; Schmeltz et al. 2015)—perceive
themselves to be at lower risk than women. This finding suggests particular importance for risk
communicators to conduct targeted communication efforts to men in the United States.
Minoritized racial groups are known to be at increased risk of being negatively impacted by
extreme heat (Cutter et al. 2003; Klinenberg 2003, 80—81; Anderson and Bell 2009, 2011; Reid
et al. 2009, 2012; Wolf and McGregor 2013; Weber et al. 2015) and also tend to have higher
heat risk perceptions. Previous studies have found that working, non-disabled individuals are less
sensitive to negative hazard impacts, while disabled persons are more susceptible to negative
impacts (Semenza et al. 1996; Cutter et al. 2003; Klinenberg 2003, 80-81; U.S. EPA 2006; IPCC
2014; Ebi et al. 2018; U.S. EPA and CDC 2016). In this study, disabled non-working
respondents reported much higher heat wave risk perceptions. As hypothesized, respondents with
higher incomes tended to have much lower heat risk perceptions than the national average,

individuals with lower incomes tended to have higher risk perceptions.

The relatively low variance across some subpopulations may be partially a consequence
of the conservative nature of mixed effect models, which rely upon partial pooling and
combinations of individual-level and contextual-level characteristics that tend to pull
subpopulation estimates toward their respective national averages. Despite this, a few at-risk
subpopulations tended to have lower risk perceptions than expected (Fig. 1). Some factors

known to increase vulnerability, such as age and education, were not associated with substantial
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differences in risk perception. Although age—a factor which previous studies have identified as
an important determinant of extreme heat health impacts (Klinenberg 2003; Anderson and Bell
2009, 2011; White-Newsome et al. 2014; Gronlund et al. 2014)—was found to be a statistically
significant predictor of heat risk perceptions, practically it did not have a pronounced effect on
extreme heat risk perception. The most senior subpopulation (> 65 years of age) reported only
slightly higher risk perceptions than younger subpopulations despite their elevated risk. While
we cannot identify whether this pattern is due to younger subpopulations overestimating their
risk or older subpopulations underestimating their risk, we would still expect to find larger
differences between the two groups if risk perceptions aligned with health risks. Since they do
not, the possible underestimation of extreme heat risk by a particularly vulnerable subpopulation
indicates that older populations may be less likely to take protective behaviors than would be
appropriate given their risk profile. This is particularly significant given that an aging,
increasingly urban U.S. population—with an increasing number of individuals considered to be
vulnerable to heat (Basu 2009; Ortman et al. 2014; Jones et al. 2015; Lehner and Stocker 2015;
Mora et al. 2017) —will likely be exposed to more frequent and intense extreme heat events —
particularly in urban heat islands (Tomlinson et al. 2011; Li and Bou-Zeid 2013; U.S. EPA and
CDC 2016). This increasing exposure, combined with a tendency to underestimate age-related
risk, suggests that risk-reduction programs should also be focused on older individuals, including
risk communication efforts.

No relationship was observed between education and heat risk perception despite the fact
that individuals with lower educational attainment often face greater difficulty in accessing

health services and information regarding the nature of natural hazards (Cutter et al. 2003;
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Medina-Ramon et al. 2006; U.S. EPA 2006; Anderson and Bell 2009, 2011; Reid et al. 2009,
2012; Smith 2013, 85-86; Weber et al. 2015; U.S. EPA and CDC 2016).

Additionally, previous research has identified household size as an important predictor of
hazard risk, as larger households with more people living together are more likely to have the
financial and social resources required to cope with environmental hazards and avoid social
isolation (Semenza et al. 1996; Cutter et al. 2003; Klinenberg 2003, 80—81; Reid et al. 2009,
2012; Weber et al. 2015). In our model household size had no effect on heat wave risk
perception when also controlling for income.

Overall, we find evidence that the socioeconomic factors associated with health impacts
from extreme heat correspond in many ways to the factors associated with heat risk perceptions
among the U.S. population. Income tends to be a strong predictor of heat risk perceptions, along
with work status, gender, and race/ethnicity. Conceptually, income is directly associated with the
ability to protect oneself from the heat through, for example, household adaptations such as
installing and using air conditioning. Income is also associated with employment type and
location. While our survey did not include detailed questions on employment type, higher-paying
occupations tend to be located in indoor climate-controlled environments, while many outdoor
occupations are lower paying (such as agricultural and construction labor) and employees in such
outdoor occupations are exposed to greater heat risks.

The results of this study and Howe et al. (2019) show that heat wave perceptions do vary
spatially and demonstrate statistically significant, non-random geographic patterns. People living
in regions with histories of greater exposure to extreme heat events tended to have higher risk
perceptions (Howe et al. 2019). However, this study indicates that the association of key

sociodemographic variables with heat wave risk perceptions persists even after controlling for
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geography. In addition, our individual-level analysis identifies patterns less clearly visible at the
state, community, or neighborhood level. For example, Howe et al. (2019) show that counties
with older populations do not, on average, have higher heat risk perceptions than counties with
younger populations. Our results, however, show a small but statistically significant positive
relationship between age and heat risk perceptions across the population. Furthermore, we
demonstrate the meaningful effects of certain key individual predictors (such as gender and work
status) that may themselves vary less across communities but more between and within
households, and remain important factors for understanding how people perceive risks.

Taken together, heat wave risk perceptions demonstrate substantial variation across the
U.S. population. For example, the combination of race and ethnicity with income illustrates a wide
range of predicted heat wave risk perceptions (Fig. 2). Selected sociodemographic factors
including income, race/ethnicity, work status, and gender exhibit similar or greater variance to the
broad-scale geographic factors of state and region. When combined, demographic and geographic
factors are associated with large variation in risk perceptions across the population. Across all
possible combinations, we estimate that the group with the highest heat wave risk perceptions
(65.1) are Louisiana women 45-54 years old in the “other, non-Hispanic or Latino” race/ethnicity
category (which includes Asian, American Indian or Alaska Native, Native Hawaiian or other
Pacific Islander U.S. residents) who are disabled and not working with incomes of less than
$15,000 per year. By contrast, the group estimated to have the lowest heat wave risk perceptions
(22.0) are Minnesota men 35-44 years old in the “white, non-Hispanic or Latino” race/ethnicity
category who are not disabled with incomes of greater than $150,000 per year.

Findings of this study inform risk communication strategies and risk reduction

management in two ways. First, for men and older adults, our study suggests that these groups
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tend to underestimate their elevated vulnerability from extreme heat (although we cannot rule out
the possibility that comparison groups are relatively overestimating their vulnerability). The
underestimation of risks is likely to contribute to maladaptation during extreme heat events (Esplin
et al. 2019; Hass and Ellis 2019). This finding highlights the importance to conduct targeted risk
communication and help people in the United States to fully understand their risks. Compared to
efficacy statements (e.g., information about the location of cooling centers), communication
strategies that emphasize vulnerability (e.g., explanations about why all people are vulnerable to
extreme heat) should be prioritized to test in future studies to better communicate heat-health risks
(e.g. Lietal. 2021). Second, for low-income, non-white, and disabled subpopulations, this study
found that these subpopulations have much higher heat risk perceptions than the national average,
which is in line with their elevated risk of health impacts from heat. For risk management and
communication with these subpopulations, this finding suggests that it is important to allocate
resources (such as utility bill relief) to help at-risk populations cope with extreme heat. When
communicating with such populations, efficacy statements about how to reduce their risks—
compared to strategies emphasizing vulnerability—might be more effective to help them overcome

barriers to taking protective actions.

6. CONCLUSIONS

Using national survey data, we used hierarchical linear models to examine how
sociodemographic and geographic variables relate to heat wave risk perception in the U.S. The
direction of heat wave risk perception predictors across the contiguous U.S. generally reflects
trends identified in health impacts for many sociodemographic factors, with the notable
exceptions of gender and, to some extent, age. Highlighting the distribution of perceived risk can

help set priorities for subpopulation-specific risk communication strategies. Our results allow
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estimates of risk perceptions for specific subpopulations in relation to overall national trends.
Variation in specific subpopulations, especially at the extremes, may be of particular interest for
risk reduction efforts, including targeted risk communication.

Low risk perception increases vulnerability because people are less likely to respond to
the hazards they do not perceive. In other words, what we believe to be real shapes our
behavior—reactively or proactively. When vulnerable subpopulations, such as men and the
elderly, do not perceive themselves to be at greater risk from heat, this presents barriers to risk
reduction. This study found that age did not substantively influence heat risk perception,
suggesting that older people may underestimate their elevated risk. In addition, men may also
underestimate their increased risk from extreme heat events. These findings can inform risk
communication programs to target these populations who may not currently fully understand
their vulnerability. Effective risk communication strategies can reduce sensitivity to heat and
enhance adaptive capacity by promoting protective behavior at the individual and community-
level. For example, the protective behaviors promoted by risk communication campaigns might
include risk awareness, avoiding unnecessary exposure, developing personal heat-safety plans.
The first steps in designing effective risk communication programs are identifying vulnerable
subpopulations, studying their distribution, and evaluating their unique circumstances; data on
risk perception and its association with sociodemographic factors help accomplish these goals.

Heat risk is increasing around the world due to global warming caused by anthropogenic
greenhouse gas emissions and urbanization, but total hazard risk can be reduced by targeted
interventions aimed at strengthening adaptive capacity and addressing human vulnerability
factors (Adger 2006; Smit and Wandel 2006; Noble et al. 2014, 847-849). To do this,

researchers, risk managers, and community members will need to work together to identify
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vulnerability factors (Mimura et al. 2014, 871-877; Ebi et al. 2018). This study details a new
systematic approach for understanding risk perceptions across subpopulations using nationally
representative survey data that is generalizable to the U.S. population. Leveraging advances in
both the natural and social sciences to understand the drivers and distribution of heat
vulnerability is vital to minimizing future loss in the face of rising exposure. Studying the
landscapes of beliefs, risk perceptions, and behaviors can inform policy as well as our

understanding of vulnerability at a range of temporal and spatial scales.
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862  Table 1. Summary of Sensitivity Factors Known to Influence Extreme Heat Risk

863
Direction
Predictor (+/-) Details References
Age (65+) + The elderly face higher risk of Semenza et al. 1996; Cutter et al.
negative physiological impacts  2003; Klinenberg 2003; Stafoggia et
from exposure to hazard and g1 2006; U.S. EPA 2006; Harlan et
f‘hre.m‘ﬁt”"te'y o be “rrl“”?tf] N al. 2006; Medina-Ramén et al.
eir ability to access hea .
Sovicee duo to mobilty 2006; Kovats and Hajat 2008;
constraints AnQerson and Bell 2009, 2011;
Reid et al. 2009, 2012; Johnson et
al. 2009; Tomlinson et al. 2011;
Uejio et al. 2011; Buscail et al.
2012; Wolf and McGregor 2013;
White-Newsome et al. 2014; Ebi et
al. 2018; Weber et al. 2015; U.S.
EPA and CDC 2016
Gender (male) + Men have higher rates of heat- Semenza et al. 1996; Whitman et
related mortality and morbidity  a|. 1997; Kovats and Hajat 2008;
than women in the United Choudhary and Vaidyanathan
States. The higher heat . 2014; Hess et al. 2014; Schmeltz et
vulnerability among men is al. 2015
likely to be attributed to being )
active in the heat and a higher
level of social isolation.
Educational - Less educated individuals often  Cutter et al. 2003; Medina-Ramon
attainment face greater difficulty in et al. 2006; U.S. EPA 2006;
accessing health services and Anderson and Bell 2009, 2011:
information regarding the Reid et al. 2009, 2012; Smith 2013,
nature of the hazard 85-86; IPCC 2014; Ebi et al. 2018;
Weber et al. 2015; U.S. EPA and
CDC 2016
Race/ethnicity + Racial and ethnic minority Curriero et al. 2002; Cutter et al.
(non-white) groups often reside in more 2003; Klinenberg 2003; Anderson
hazard-prone areas, are and Bell 2009, 2011; Reid et al.
predisposed to having less 5009, 2012; Wolf and McGregor
power (o cope With negaiive  2013; Tiemey 2014, p. 21; IPCC
impacts of hazards due to ’ . P !
sogioeconomic inequalities, 2014; Ebi et al. 2018; Weber et al.
difficulties accessing health 2015
services, and limited mobility
Income — Individuals with higher incomes  Semenza et al. 1996; Cutter et al.
have more resources to cope 2003; Klinenberg 2003; U.S. EPA
negative hazard impacts 2006; Kovats and Hajat 2008; Ebi
et al. 2018; U.S. EPA and CDC
2016
Work status + Disabled persons are more Semenza et al. 1996; Cutter et al.
(disabled) _susceptible to negative hazard 2003; Klinenberg 2003, 80-81; U.S.
impacts EPA 2006; Kovats and Hajat 2008;
Ebi et al. 2018; U.S. EPA and CDC
2016
Household size Smaller households (fewer Semenza et al. 1996; Cutter et al.

residents) are more susceptible
to social isolation as a source
of vulnerability; greater
numbers may indicate greater
access to resources (reduced
vulnerability) or presence of

2003; Klinenberg 2003; Reid et al.
2009, 2012; Weber et al. 2015
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864

865
866
867
868

869
870
871

children (increased
vulnerability)

Table 2. Model results predicting heat wave risk perception index

Fixed effects B Lower 95% ClI Upper 95% CI Standard Error
Intercept 42.50 35.99 49.01  3.32
Random effects Levels (#) Variance (o0?) Std. dev. (0) p
Residual 548.46 23.42

Age 5 1.16 1.08 0.0129*
Gender 2 5.38 2.32 0.0000***
Race/ethnicity 5 12.29 3.51 0.0000***
Race/ethnicity : gender 10 0.91 0.95 0.1739
Income 7 13.83 3.72 0.0000***
Education 4 0.14 0.37 0.7604
Work status 5 8.99 2.99 0.0000***
Household size 4 0.33 0.58 0.2436
State 49 5.06 2.25 0.0000***
Region 4 4.99 2.23 0.0011**

Notes: Observations = 8789. *p<0.05, **p<0.01, ***, p<0.001
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872
873

874
875
876

Female

Male -

Less than high school diploma -
Bachelors degree or higher -
Some college or associates degree
High school graduate, GED, or alternative -
45-54 years

65+ years -

25-34 years

18-24 years -

35-44 years A

Other, Non-Hispanic A
Hispanic -

Black, Non-Hispanic 1

2+ Races, Non-Hispanic -
White, Non-Hispanic

1: Less than $15,000 4

2: $15,000 to $29,999 -

3: $30,000 to $49,999 4

4: $50,000 to $74,999

5: $75,000 to $99,999 -

6: $100,000 to $149,999 4
7:$150,000 or more -

Disabled -

Seeking Job -

Working

Retired -

Not Working

2 -

1 -

3 -

4 or more

White, Non-Hispanic:Female -
Hispanic:Male -

Other, Non-Hispanic:Female
2+ Races, Non-Hispanic:Male -
Other, Non-Hispanic:Male -
Black, Non-Hispanic:Male
Black, Non-Hispanic:Female -
Hispanic:Female -

2+ Races, Non-Hispanic:Female -
White, Non-Hispanic:Male -

Variable level

?*H’Hw HH +w +++++*¢ *'
| fl W |

+

|
BRI

—

——
——
_._

_‘_

—e-

Variable
® gender
® education
® age
® race/ethnicity
® income
®  work status
® household size

® race by gender

-0.05

0.00
Effect

0.05

Figure 1. Effects of model predictors with associated 95% confidence intervals, excluding state
and region. Points represent best linear unbiased predictor estimates for random effects in

multilevel model.
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877

878
879
880
881
882

White, Non-Hispanic o

Other, Non-Hispanic

Hispanic 4

race and ethnicity

Black, Non-Hispanic 4

2+ Races, Non-Hispanic 4

. .005-‘.

Estimated heatwave risk perception index

income

1: Less than $15,000
2:$15,000 to $29,999

3: $30,000 to $49,999
4: $50,000 to $74,999

5: $75,000 to $99,999
6: $100,000 to $149,999
7:$150,000 or more

Figure 2. Predicted heat wave risk perception index values for each combination of significant
sociodemographic predictors. Each dot represents one type of individual based on each possible
permutation of income, race/ethnicity, gender, age, and work status. Dots are ordered by estimated
heat wave risk perception index and race/ethnicity.
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