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Sociodemographic factors associated with heatwave risk perception 23 
in the United States 24 

 25 
Abstract 26 
Extreme heat events are one of the deadliest weather-related hazards in the United States and are 27 
increasing in frequency and severity due to anthropogenic greenhouse gas emissions. Further, 28 
some subpopulations may be more vulnerable than others due to social, economic, and political 29 
factors that create disparities in hazard impacts and responses. Vulnerability is also affected by 30 
risk perceptions, which can influence protective behaviors. In this study, we use national survey 31 
data to investigate the association of key sociodemographic factors with public risk perceptions 32 
of heat waves. We find that risk perceptions are most associated with income, race/ethnicity, 33 
gender, and disability status. Age, an important predictor of heat mortality, had smaller 34 
associations with heat risk perceptions. Low-income, non-white, and disabled individuals tend to 35 
perceive themselves to be at greater risks from heat waves than other subpopulations, 36 
corresponding with their elevated risk. Men have lower risk perceptions than women despite 37 
their higher mortality and morbidity from heat. This study helps to identify subpopulations in the 38 
U.S. who see themselves as at risk from extreme heat and can inform heat risk communication 39 
and other risk reduction practices.  40 
  41 
 42 

 43 
 44 

1. INTRODUCTION 45 

Extreme heat events are one of the deadliest natural hazards in the United States (Berko 46 

et al. 2014; Gasparrini et al. 2015; U.S. EPA and CDC 2016) and pose deadly threats to people 47 

worldwide (Mora et al. 2017; Franzke and Torelló i Sentelles 2020). Extreme heat is projected to 48 

increase in frequency and severity in response to increasing atmospheric concentrations of 49 

greenhouse gases driven by human activity (Jeon et al. 2016; U.S. EPA and CDC 2016; Angélil 50 

et al. 2017; Vose et al. 2017; IPCC 2021). Urbanization is also increasing the number of people 51 

exposed to deadly heat waves (Tuholske et al. 2021). Furthermore, there is demonstrated 52 

influence of human activity on the severity of heat-health impacts (Vicedo-Cabrera et al. 2021), 53 

and individual behavior and risk judgements can lead to different impacts across similarly 54 

exposed populations (Semenza et al. 2008; White-Newsome et al. 2011; Lefevre et al. 2015; 55 
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Wilhelmi and Hayden 2010). Increasing physical exposure to extreme heat and its complex 56 

interaction with social sensitivity factors associated with social inequities in hazard impacts and 57 

responses (such as gender, age, and race/ethnicity) create varying risk environments for different 58 

subpopulations across the country. This underscores the need for decision-makers and risk 59 

managers to develop strategies and define priorities to mitigate the negative impacts of extreme 60 

heat, since heat mortality and morbidity are often preventable if appropriate individual and 61 

collective actions are taken.  62 

In this study, we examine how sociodemographic indicators associated with health 63 

disparities in the impacts of extreme heat also influence risk perceptions across the contiguous 64 

United States. Using georeferenced survey data and multilevel regression modeling, we report 65 

the associations of individual-level factors (e.g. gender, age, race/ethnicity, work status) with risk 66 

perceptions, while also estimating risk perceptions among different subpopulations. These results 67 

provide decision makers with valuable information about which vulnerable subpopulation tends 68 

to perceive (or not) the threat of extreme heat which informs targeted risk communication and 69 

hazard preparedness campaigns.  70 

 71 

2.  LITERATURE REVIEW 72 

2.1 Extreme heat risk 73 

While there is no universal definition of an extreme heat event or heat wave, these events 74 

are commonly understood as periods characterized by excessively high levels of temperature 75 

and/or humidity that jeopardize human health due to severity of exposure or duration (Robinson 76 

2001; Smith et al. 2013; White-Newsome et al. 2014; U.S. EPA and CDC 2016; Hawkins et al. 77 

2017; Liss et al. 2017). Mora and colleagues (Mora et al. 2017) found that about 30% of the 78 
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global population is exposed to deadly heat conditions for at least 20 days each year, and this 79 

number is expected to increase to between 48–74% by 2100 under different global warming 80 

scenarios. As temperatures continue to rise, a greater proportion of U.S. citizens will be exposed 81 

to extreme heat conditions in the future (Jones et al. 2015).   82 

Extreme heat is a commonly experienced hazard with both immediate and delayed 83 

negative health impacts that can result in illness and fatalities during pronounced heat waves. For 84 

example, in July 1995, during a five-day extreme heat event in Chicago, Illinois, over 700 deaths 85 

were recorded in excess of historical norms, representing an increase of 85% from the previous 86 

year (Semenza et al. 1996; Klinenberg 2003). In May 2015, record temperatures throughout 87 

southern India led to at least 2,320 confirmed fatalities (Ratnam et al. 2016; Mazdiyasni et al. 88 

2017). And in August 2003, a particularly severe heat wave affected much of western Europe 89 

claiming more than 70,000 lives (Robine et al. 2008). Despite these high numbers, heat deaths 90 

are likely underreported due to heat’s tendency to exacerbate existing medical conditions 91 

(Åström et al. 2011; Liss et al. 2017; Mora et al. 2017). Some negative heat-health impacts such 92 

as dizziness and fatigue are experienced by a broader segment of the population (Khare et al. 93 

2015; Hayden et al. 2017). For example, a study in England found that more than half of the 94 

younger adults reported experiencing headache and sunburn during summer 2013 (Khare et al. 95 

2015). The intensity and scope of these impacts are influenced by geographic factors, population 96 

dynamics, time, scale, and the efficacy of communities’ adaptive policies (Semenza et al. 1996; 97 

Klinenberg 2003; U.S. EPA 2006; Anderson and Bell 2011; Reid et al. 2012; IPCC 2014; 98 

Tierney 2014).  99 

 100 
2.2. Risk assessment and extreme heat 101 
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Assessment of vulnerability and risk is critical to identify priorities and develop 102 

management strategies (IPCC 2012). Decision makers need locally relevant information about 103 

the distribution of potential negative impacts to inform mitigation and risk reduction strategies. 104 

The risks associated with climate change and natural hazards can be assessed by supplementing 105 

physical models of hazard exposure (Gill and Malamud 2014; Hawkins et al. 2017; Mora et al. 106 

2017) with analyses that seek to incorporate dynamic human vulnerability factors that affect 107 

sensitivity and adaptive capacity (Reid et al. 2009; Tomlinson et al. 2011; Buscail et al. 2012; 108 

Wolf and McGregor 2013; Weber et al. 2015). Vulnerability is a key determinant of potential 109 

impacts of hazardous events, and sensitivity and lack of adaptive capacities are in turn causes of 110 

vulnerability (IPCC 2012). Sensitivity refers to the potential of being negatively affected by 111 

hazards due to personal, household, and contextual factors (such as social, economic, political, or 112 

cultural factors) that magnify the impact of a hazard event (Grothmann and Reusswig 2006; 113 

Johnson et al. 2012; Reid et al. 2012; IPCC 2014; Tierney 2014; Jones et al. 2015). Adaptive 114 

capacity is the ability of individuals or a group to take actions that mitigate hazard risks such as 115 

social capital (Kalkstein and Sheridan 2007; Bobb et al. 2014; IPCC 2014; Tierney 2014; Jones 116 

et al. 2015). While the ability to predict climatic changes and the occurrence of heat events on a 117 

global scale by better understanding the dynamic properties and interactions of the earth’s 118 

natural systems has improved (Schellnhuber 1999; Famiglietti et al. 2015), the dynamic 119 

properties of human systems remain difficult to capture in comprehensive risk assessments.  120 

In the context of extreme heat, some sociodemographic factors (see Table I) have been 121 

associated with disparities in morbidity and mortality from extreme heat and included in risk 122 

assessments as indicators of heat vulnerability (Harlan et al. 2006, 2013; Medina-Ramón et al. 123 

2006; Anderson and Bell 2009, 2011; Reid et al. 2009, 2012; Buscail et al. 2012; Johnson et al. 124 
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2012; Wolf and McGregor 2013; Gronlund et al. 2014; Weber et al. 2015). Age is a demographic 125 

factor of heat vulnerability because older individuals are statistically more likely to be negatively 126 

impacted by extreme heat exposure as they tend to be more physiologically susceptible to heat, 127 

more limited in their ability to access health services due to mobility constraints, and more prone 128 

to social isolation (Semenza et al. 1996; Stafoggia et al. 2006; Reid et al. 2009; Uejio et al. 2011; 129 

Wolf and McGregor 2013; Gronlund et al. 2014; Liss et al. 2017). In the United States, 130 

epidemiological studies have found that men have higher rates of heat-related mortality and 131 

morbidity than women during extreme heat events (Semenza et al. 1996; Whitman et al. 1997; 132 

Choudhary and Vaidyanathan 2014; Hess et al. 2014; Schmeltz et al. 2015). Being active in the 133 

heat and lower social contact may contribute to higher heat vulnerability among men, although 134 

women face socioeconomic inequities in the United States that may also increase risk (Kovats 135 

and Hajat 2008). People with lower educational attainment tend to face greater natural hazard 136 

risks in general due to difficulties they face in accessing health services and hazard information 137 

(Cutter et al. 2003; Reid et al. 2009; Anderson and Bell 2011; Weber et al. 2015). Low-income 138 

and socioeconomically disadvantaged people, particularly disabled individuals, are significantly 139 

more likely to be negatively affected by natural hazards, including extreme heat, due to a lack of 140 

resources required to cope with the hazard (Harlan et al. 2006; Anderson and Bell 2009; Reid et 141 

al. 2009). Previous studies have indicated that larger households (with a greater number of 142 

residents) tend to have greater access to the social and material resources required to cope with 143 

heat hazards (but are more likely to have children more susceptible to negative heat impacts) 144 

whereas smaller households are more prone to social isolation, a significant source of 145 

vulnerability (Semenza et al. 1996; Cutter et al. 2003; Klinenberg 2003, 80–81; Reid et al. 2009; 146 

Weber et al. 2015). Due to social, political, and economic inequities, minoritized racial and 147 
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ethnic populations often experience greater health impacts from extreme heat (Cutter et al. 2003; 148 

Reid et al. 2009; Anderson and Bell 2011; Weber et al. 2015), and can also be more exposed to 149 

extreme heat at the neighborhood level due to historic patterns of discrimination such as 150 

redlining (Benz and Burney 2021). These social, economic, and demographic factors can be 151 

categorized as “sensitivity” factors, but they may also influence adaptive capacity in shaping 152 

overall vulnerability. 153 

 154 

2.3. Risk perception  155 

In addition to these sensitivity factors, risk perception has also been acknowledged as an 156 

important factor of heat vulnerability (Wilhelmi and Hayden 2010). Risk perception is a 157 

determinant of individual risk decision-making and influences the likelihood of an individual 158 

engaging in personal protective behaviors (Slovic 1987; van der Pligt 1996; Brewer et al. 159 

2004). Personal behavior and preparedness can either attenuate or exacerbate vulnerability. The 160 

relationship between risk perception and behavior has been studied with respect to certain 161 

environmental and health hazards (Wachinger et al. 2013). Previous studies have found that heat 162 

risk perceptions positively influence heat-protective behaviors (Lane et al. 2014; Hayden et al. 163 

2017; Madrigano et al. 2018; Ban et al. 2019; Hass and Ellis 2019; Zander et al. 2019; Hass et al. 164 

2021). For example, a recent U.S. national survey found that risk perceptions and subjective 165 

experience with health effects of extreme heat predicted heat-protective behaviors (Esplin et al. 166 

2019). Data on risk perceptions provide information on how individuals perceive their own 167 

vulnerability and their likelihood of taking protective action (Tierney 2014), which are 168 

increasingly sought by government officials and risk managers (Wolf et al. 2010; Reid et al. 169 

2012; White-Newsome et al. 2014). 170 
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While sociodemographic sensitivity factors such as age and housing characteristics can 171 

be included in risk assessment due to the availability of census data at sub-national levels, risk 172 

assessment typically lacks data on risk perception (Wilhelmi and Hayden 2010). Furthermore, 173 

little is known about what data may be good proxies for heat risk perception due to a lack of 174 

knowledge about how key sensitivity factors are associated with risk perception. Existing 175 

knowledge is limited to surveys in a small number of cities (Kalkstein and Sheridan 2007; 176 

Madrigano et al. 2018; Chakalian et al. 2019). For example, a study conducted in New York City 177 

found that low-income individuals were more likely to be concerned about heat, but men—who 178 

also have elevated vulnerability to heat—tended to have lower heat risk perceptions (Madrigano 179 

et al. 2018).    180 

Risk reduction strategies may be more effective if they account for individual-level social 181 

factors related to hazard awareness, risk judgements, and subsequent decision-making behaviors 182 

that likely vary at sub-national levels (Slovic 1987; Renn 1998; Howe et al. 2019). Failure to 183 

account for risk perception in risk assessment can lead to inadequate hazard communication and 184 

misguided management priorities. For example, a lack of knowledge about the association of 185 

sensitivity factors and risk perception may result in difficulties in identifying communication 186 

priorities since little is known whether vulnerable populations perceive their elevated 187 

vulnerability. If a certain vulnerable subgroup does not perceive a higher risk of extreme heat 188 

events for themselves, their family, and their community, the subgroup should be a priority for 189 

practitioners to target risk communication efforts.  190 

To bridge the knowledge gap, this study investigates how sociodemographic factors are 191 

associated with heat risk perception, using nationally representative survey data from the 192 

contiguous U.S. This study asks: how do key social, economic, and demographic factors known 193 
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to be important indicators of mortality and morbidity from extreme heat (summarized in Table 1) 194 

relate to extreme heat risk perceptions? We hypothesize that individual-level factors that have 195 

been found to be associated with greater personal risk of heat-related impacts in previous studies 196 

will be positively associated with heat wave risk perceptions. This study complements Howe et 197 

al. (2019), which describes place-based geographic patterns in heat risk perceptions at multiple 198 

scales (census tract, county, and state) across the U.S. using small-area estimation models. 199 

Building on the same dataset, in this paper we focus on understanding how individual 200 

sociodemographic factors predict heat risk perceptions and how such factors interact with each 201 

other. By focusing on the predictors of heat risk perceptions, this research helps to identify 202 

particular subpopulations who face well-documented vulnerability but are less likely to perceive 203 

themselves to be at amplified risk from extreme heat. Such information can help decision makers 204 

to define communication priorities and assess hazard vulnerability and risk in a more 205 

comprehensive way.   206 

 207 
3. METHODS  208 
 209 
3.1. Study area and data 210 
 211 
This study examines heat wave risk perceptions across the contiguous U.S. during the warm 212 

months of 2015 using nationally representative survey data (Supplementary Information, Fig. 1). 213 

The survey was administered online biweekly over the course of 20 weeks, beginning in May. The 214 

survey was conducted on the GfK KnowledgePanel Omnibus, a shared-cost weekly online survey 215 

whose respondents are sampled from a probability-based panel. GfK recruited panel members 216 

using address-based sampling of all U.S. addresses from the U.S. Postal Service Delivery 217 

Sequence File and provided households without internet access with a computer and internet 218 

service (in our sample, 20% of respondents lacked home broadband internet access). The overall 219 
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sample size was n = 10,532. However, due to the panel design of this survey, responses were 220 

collected more than once for some individuals. These subsequent responses were filtered from the 221 

dataset before analysis and the final sample size was n = 8,789 unique respondents. Individual 222 

identifiers were removed from the data and the precise geographic coordinates of respondents were 223 

jittered within a radius of 150m for respondent confidentiality. 224 

The survey was composed of three questions measuring heat wave risk perceptions on 225 

three sub-scales, measuring perceived risk to the individual respondent, their family, and their 226 

community:  227 

“A heat wave is a period of unusually and uncomfortably hot 228 

weather. If a heat wave were to occur in your local area, how 229 

much, if at all, do you think it would harm the following: Your 230 

health? Your family’s health? The health of others in your 231 

community?”  232 

The responses to each of the survey questions, which were collected using a slider bar on 233 

a 0-100 scale, were combined to create an overall heat wave risk perception index used as the 234 

dependent variable in this study. This index had high internal consistency (Cronbach’s alpha = 235 

0.95). The index represents heat wave risk perception values on a scale of 0–100 with 100 236 

representing the highest degree of perceived risk to heat. The high internal consistency of the 237 

heat wave risk perception index suggests that it captures a single construct.  238 

The survey also collected data on the sociodemographic characteristics of each 239 

respondent. Seven sociodemographic variables (gender, age, race/ethnicity, income, education, 240 

work status, household size) were used in this study’s regression analyses along with geographic 241 
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data recorded for each response. The structure of these variables is detailed in Supplementary 242 

Info, Table 1.  243 

 244 

3.2. Analysis  245 
 246 

The scope of this analysis is focused on evaluating the sociodemographic factors associated with 247 

risk perceptions, rather than developing an exhaustive model capturing all possible factors. We 248 

fit a random intercept (multilevel) regression model to the heat wave risk perception index, 249 

parameterized according to statistical best practices for confirmatory hypothesis testing 250 

(Hofmann 1997; Gelman and Hill 2007, chap. 11–12; Zuur et al. 2009; Barr et al. 2013). The 251 

purpose of the models in this paper is explanatory rather than predictive, and designed to test 252 

hypotheses about associations between known vulnerability factors and risk perceptions. The 253 

same methods and statistical techniques described below for the initial model build were applied 254 

to each subsequent model. All analyses were performed using the R programming language and 255 

environment using the lme4 package (Bates et al. 2015). 256 

The initial model (Supplementary Table 2) was composed solely of categorical random 257 

effects (Winter; Hofmann 1997; Barr et al. 2013). The model coefficients (effects) associated 258 

with these predictors and their sublevels are random effects estimated with partial pooling—also 259 

known as linear unbiased prediction (Winter; Goldberger 1962; Gelman and Hill 2007, chap. 260 

12). By treating the extreme heat risk factors addressed in the study hypotheses as random 261 

effects, the effect of the levels of each predictor can be assessed in relation to their difference 262 

from the overall mean (i.e., the average risk perception score across the U.S. population) 263 

(Robinson 1991; Hofmann 1997; Barr et al. 2013).  264 
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Multilevel regression models use best linear unbiased predictors (BLUPs) to predict 265 

random effect values rather than estimate fixed parameters and establish a hierarchical 266 

framework through which meaningful differences between levels can be discerned. The BLUPs 267 

are analogous to prediction in the Empirical Bayes methodological framework, in which 268 

parameters associated with a pre-specified prior distribution are estimated from the data, thereby 269 

approximating the full hierarchical Bayes model (Hofmann 1997; Gelman and Hill 2007, chap. 270 

11; Barr et al. 2013). By utilizing prediction instead of estimation, the strengths of Bayesian 271 

inference can be integrated within a classical statistical framework to support hierarchical linear 272 

modeling. Consequently, we employ BLUPs because the primary interest of this study is in 273 

making inferences about the distribution of risk perception values, their degree of variance at 274 

different levels, and the underlying population more so than in the effects themselves (e.g. fixed 275 

effects) or explicitly testing for measurable differences between specific levels (Gelman and Hill 276 

2007, chap. 11).  277 

The following equation shows our initial model specification using variables identified in 278 

previous literature related to heat sensitivity: 279 

𝑌𝑚𝑖,…,𝑣𝑖
= 𝜇 + 𝛼𝑚

𝑎𝑔𝑒
+ 𝛼𝑛

𝑔𝑒𝑛𝑑𝑒𝑟
+ 𝛼𝑜

𝑟𝑎𝑐𝑒/𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦
+ 𝛼𝑝

𝑟𝑎𝑐𝑒/𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦:𝑔𝑒𝑛𝑑𝑒𝑟
+ 𝛼𝑞

𝑖𝑛𝑐𝑜𝑚𝑒280 

+ 𝛼𝑟
𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛼𝑠

𝑤𝑜𝑟𝑘 + 𝛼𝑡
ℎℎ𝑠𝑖𝑧𝑒 + 𝛼𝑢

𝑠𝑡𝑎𝑡𝑒 + 𝛼𝑣
𝑟𝑒𝑔𝑖𝑜𝑛

+ 𝜀𝑖 , for 𝑖 = 1, … 8789 281 

where… 282 

𝛼𝑚
𝑎𝑔𝑒

 ~ 𝑁(0, 𝜎𝑎𝑔𝑒
2 ), for 𝑚 = 1, … ,5 283 

𝛼𝑛
𝑔𝑒𝑛𝑑𝑒𝑟

 ~ 𝑁(0, 𝜎𝑔𝑒𝑛𝑑𝑒𝑟
2 ), for 𝑛 = 1,2 284 

𝛼𝑜
𝑟𝑎𝑐𝑒/𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦

 ~ 𝑁(0, 𝜎𝑟𝑎𝑐𝑒/𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦
2 ), for 𝑜 = 1, … ,5 285 

𝛼𝑝
𝑟𝑎𝑐𝑒/𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦:𝑔𝑒𝑛𝑑𝑒𝑟

 ~ 𝑁(0, 𝜎𝑟𝑎𝑐𝑒/𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦:𝑔𝑒𝑛𝑑𝑒𝑟
2 ), for 𝑝 = 1, … ,10 286 
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𝛼𝑞
𝑖𝑛𝑐𝑜𝑚𝑒  ~ 𝑁(0, 𝜎𝑖𝑛𝑐𝑜𝑚𝑒

2 ), for 𝑞 = 1, … ,7 288 

𝛼𝑟
𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 ~ 𝑁(0, 𝜎𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛

2 ), for 𝑟 = 1, … ,4 289 

𝛼𝑠
𝑤𝑜𝑟𝑘  ~ 𝑁(0, 𝜎𝑤𝑜𝑟𝑘

2 ), for 𝑠 = 1, … ,5 290 

𝛼𝑡
ℎℎ𝑠𝑖𝑧𝑒  ~ 𝑁(0, 𝜎ℎℎ𝑠𝑖𝑧𝑒

2 ), for 𝑡 = 1, … ,4 291 

𝛼𝑢
𝑠𝑡𝑎𝑡𝑒  ~ 𝑁(0, 𝜎𝑠𝑡𝑎𝑡𝑒

2 ), for 𝑢 = 1, … ,51 292 

𝛼𝑣
𝑟𝑒𝑔𝑖𝑜𝑛

 ~ 𝑁(0, 𝜎𝑟𝑒𝑔𝑖𝑜𝑛
2 ), for 𝑣 = 1, … ,4 293 

 287 

Predictors were included or dropped from the model based on tests of model fit. Model fit 294 

was assessed using chi-square tests on the log-likelihood values through iterative ANOVA 295 

testing to compare models reduced by one variable (subject to the ANOVA testing) and 296 

determine that variable’s contribution to the overall model fit via reduction in the residual sum of 297 

squares (Barr et al. 2013; Bates et al. 2015). The contribution of each predictor to variance in risk 298 

perceptions was tested by comparing the null (full Sensitivity Model) to a series of models each 299 

missing one random effect term (Supplementary Table 2).  300 

 In a mixed effect model, inter-correlations between fixed effects can quickly be assessed 301 

en masse via a correlation matrix; however, random effect models require systematic evaluation 302 

of each predictor’s individual contribution to the model. Multilevel modeling best practices 303 

(Hofmann 1997; Gelman and Hill 2007) involve starting with a maximal model and using log-304 

likelihood tests to iteratively pare down the number of predictors. Best practices also indicate 305 

that in many circumstances, it is more appropriate to retain predictors that would otherwise be 306 

eliminated after the log-likelihood test because they are important to the conceptual or theoretical 307 

framework adopted across the study -- for example, including or excluding the theoretically 308 

important random effect “Education” had no quantifiable impact on model output (Table II). 309 
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Our model specification includes the following sociodemographic predictors: gender, 310 

age, race/ethnicity, income, education, work status, and household size. Descriptive statistics are 311 

available in Supplementary Table 1. In addition to these sociodemographic variables, we also 312 

include an interaction term for gender by race and ethnicity, since this interaction is supported by 313 

previous research on hazard risk perceptions: the “white male effect” found in many risk 314 

perception studies (that white males tend to exhibit lower risk perceptions than other 315 

demographic groups) indicates that the interaction of gender and race/ethnicity is important to 316 

include in models of risk perceptions, since the effects of gender and race/ethnicity alone do not 317 

fully capture the effect (Finucane et al. 2000). In addition, by using random effects associated 318 

with geographic factors (Census region, state), the model was able to account for some degree of 319 

spatial autocorrelation and overcome assumptions of independence that would normally be 320 

violated if geographically clustered data were to be analyzed using traditional linear regression 321 

modeling (Hofmann 1997; Gelman and Hill 2007, chap. 11).  322 

Model results describe inter-group variation across sociodemographic factors hypothesized 323 

to influence heat wave risk perceptions. The outcome variable is a risk perception index on a scale 324 

of 0–100 with 100 representing the highest degree of perceived risk. Random effects included in 325 

this model provide a direct measure of how much of the reported risk perception scores’ variance 326 

around this mean is explained by group-level differences.  327 

 328 

4. RESULTS 329 

 Nationwide, the mean heat wave risk perception index was 39 (n = 8789, sd = 330 

24) on a 0-100 scale (Supplementary Fig. 2). Heat wave risk perception was associated 331 
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with the following statistically significant predictors: race/ethnicity, income, gender, 332 

work status, age, state and region (Table 2).  333 

Income was a statistically significant predictor of individual heat wave risk 334 

perceptions with a large effect size (σ = 3.72, X2(1) = 89.52, p < 0.001). Higher-income 335 

individuals tend to have lower risk perceptions than lower-income individuals (Fig. 1) 336 

and the national average. Holding other predictors constant at their means, respondents 337 

earning less than $15,000 per year scored 1.26 times higher on the heat wave risk 338 

perception index (47) than respondents earning over $150,000 per year (37). 339 

Race and ethnicity was also a strong and significant predictor of heat wave risk 340 

perceptions (σ = 3.51, X2 (2) = 103.98, p < 0.001). Holding other variables constant, 341 

white, non-Hispanic or Latino respondents had the lowest estimated heat wave risk 342 

perception index at 37, while Hispanic or Latino (44) and Other, non-Hispanic or Latino 343 

respondents (47) had the highest estimated heat wave risk perception index (this category 344 

includes non-Hispanic or Latino Asian, American Indian or Alaska Native, and Native 345 

Hawaiian or other Pacific Islander U.S. residents). Gender was a statistically significant 346 

predictor of heat wave risk perceptions (σ = 2.32, X2 (2) = 80.27, p < 0.001). Although 347 

the effect was not large, the heat wave risk perception index was higher among women 348 

(44) than men (41). While the race/ethnicity by gender interaction did not significantly 349 

improve model fit overall (σ = 0.95, X2 (2) = 1.84, p = 0.17), white non-Hispanic or 350 

Latino male respondents tended to have much lower heat wave risk perceptions scores 351 

(35) than the mean for all other race by gender groupings (43).  352 

Work status was also a strong and statistically significant predictor of heat wave 353 

risk perceptions (σ = 2.99, X2(1) = 29.77, p < 0.001). Across five work status categories, 354 



 

 
 

16 

disabled non-working respondents reported much higher heat wave risk perceptions (48) 355 

than those in the remaining four work status categories (not working – seeking a job, 42; 356 

working, 41; not working – retired, 41; not working – other, 40).  357 

Age was a small but significant predictor of heat wave risk perceptions (σ = 1.08, 358 

X2 (1) = 6.17, p = 0.0129). Respondents in the older age categories (65 years and older 359 

and 45-54 years) had slightly higher heat wave risk perceptions (44) than those in the 35-360 

44 year old category (41).   361 

The remaining sociodemographic variables did not significantly improve model 362 

fit. Heat wave risk perceptions did not show significant variation by educational 363 

attainment (σ = 0.37, X2 (1) = 0.09, p = 0.76) or household size (σ = 0.58, X2 (1) = 1.35, p 364 

= 0.25).  365 

We estimated variation in the heat wave risk perception index was across geographic 366 

units (state and region) using the same techniques, by specifying geographic units as random 367 

effects. Respondents’ state of residence was a statistically significant predictor of heat wave risk 368 

perceptions (σ = 2.25, X2 (1) = 24.94, p < 0.001). At a broader scale, the US Census region in 369 

which each state was grouped was also a statistically significant predictor of risk perceptions and 370 

explained variation beyond that at the state level (σ = 2.23, (1) = 10.62, p = 0.001). The Midwest 371 

tended to have the lowest heat wave risk perceptions (39.9) while the South had the highest risk 372 

perceptions (44.9). Geographic effects are summarized in Supplementary Fig. 3. Howe et 373 

al.(Howe et al. 2019) provides additional detail on geographic variation in heat risk perceptions 374 

at multiple scales.  375 

 376 
5. DISCUSSION 377 
 378 
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The principal objective of this study was to determine how key sociodemographic factors 379 

known to be important contributors to overall heat vulnerability (summarized in Table I) also 380 

influence heat wave risk perceptions across the contiguous U.S. Several individual-level 381 

sociodemographic factors were associated with differences in heat wave risk perceptions—either 382 

positively or negatively, as hypothesized—and accounted for a statistically significant proportion 383 

of total variance around the national average. Overall, sociodemographic predictors explain a 384 

similar amount of individual variation in heat wave risk perceptions as they do risk perceptions 385 

to other hazards (Peacock et al. 2005; Lindell and Hwang 2008; Kellens et al. 2011; Knuth et al. 386 

2013).  387 

This study also has several limitations. While our findings are based on a nationally 388 

representative survey sample and generalizable to the U.S. population, low-population 389 

sociodemographic groups are less represented in our sample, which limits the ability to draw 390 

conclusions about their heat risk perceptions. Our survey data were collected during one season 391 

(Summer 2015), which may limit our ability to generalize to other seasons where heat is a 392 

potential hazard (such as late spring or early fall) or other years in which the U.S. population 393 

may experience different patterns of weather conditions. A third limitation is that we focus here 394 

only on several survey questions risk perceptions of heat. Resource constraints limited our ability 395 

to collect additional survey questions which may provide a fuller picture of impacts, decision-396 

making, and responses to heat among the American public (e.g. Esplin et al. 2019). For example, 397 

future surveys should examine how experiences with direct and indirect heat-health impacts may 398 

influence risk perceptions.   399 

Heat wave risk perception indices for subpopulations known to be at increased risk 400 

tended to deviate from the national average in line with the directionality of their effect on heat 401 
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vulnerability, as found by previous research, with the notable exception of gender. Gender, a 402 

factor which previous studies have identified as an important determinant of extreme heat 403 

sensitivity, is an important determinant of risk perception. However, men—who experience more 404 

impacts from heat to their health (Semenza et al. 1996; Whitman et al. 1997; Kovats and Hajat 405 

2008; Choudhary and Vaidyanathan 2014; Hess et al. 2014; Schmeltz et al. 2015)—perceive 406 

themselves to be at lower risk than women. This finding suggests particular importance for risk 407 

communicators to conduct targeted communication efforts to men in the United States. 408 

Minoritized racial groups are known to be at increased risk of being negatively impacted by 409 

extreme heat (Cutter et al. 2003; Klinenberg 2003, 80–81; Anderson and Bell 2009, 2011; Reid 410 

et al. 2009, 2012; Wolf and McGregor 2013; Weber et al. 2015) and also tend to have higher 411 

heat risk perceptions. Previous studies have found that working, non-disabled individuals are less 412 

sensitive to negative hazard impacts, while disabled persons are more susceptible to negative 413 

impacts (Semenza et al. 1996; Cutter et al. 2003; Klinenberg 2003, 80–81; U.S. EPA 2006; IPCC 414 

2014; Ebi et al. 2018; U.S. EPA and CDC 2016). In this study, disabled non-working 415 

respondents reported much higher heat wave risk perceptions. As hypothesized, respondents with 416 

higher incomes tended to have much lower heat risk perceptions than the national average, 417 

individuals with lower incomes tended to have higher risk perceptions.  418 

The relatively low variance across some subpopulations may be partially a consequence 419 

of the conservative nature of mixed effect models, which rely upon partial pooling and 420 

combinations of individual-level and contextual-level characteristics that tend to pull 421 

subpopulation estimates toward their respective national averages. Despite this, a few at-risk 422 

subpopulations tended to have lower risk perceptions than expected (Fig. 1). Some factors 423 

known to increase vulnerability, such as age and education, were not associated with substantial 424 
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differences in risk perception. Although age—a factor which previous studies have identified as 425 

an important determinant of extreme heat health impacts (Klinenberg 2003; Anderson and Bell 426 

2009, 2011; White-Newsome et al. 2014; Gronlund et al. 2014)—was found to be a statistically 427 

significant predictor of heat risk perceptions, practically it did not have a pronounced effect on 428 

extreme heat risk perception. The most senior subpopulation (≥ 65 years of age) reported only 429 

slightly higher risk perceptions than younger subpopulations despite their elevated risk. While 430 

we cannot identify whether this pattern is due to younger subpopulations overestimating their 431 

risk or older subpopulations underestimating their risk, we would still expect to find larger 432 

differences between the two groups if risk perceptions aligned with health risks. Since they do 433 

not, the possible underestimation of extreme heat risk by a particularly vulnerable subpopulation 434 

indicates that older populations may be less likely to take protective behaviors than would be 435 

appropriate given their risk profile. This is particularly significant given that an aging, 436 

increasingly urban U.S. population—with an increasing number of individuals considered to be 437 

vulnerable to heat (Basu 2009; Ortman et al. 2014; Jones et al. 2015; Lehner and Stocker 2015; 438 

Mora et al. 2017) —will likely be exposed to more frequent and intense extreme heat events – 439 

particularly in urban heat islands (Tomlinson et al. 2011; Li and Bou-Zeid 2013; U.S. EPA and 440 

CDC 2016). This increasing exposure, combined with a tendency to underestimate age-related 441 

risk, suggests that risk-reduction programs should also be focused on older individuals, including 442 

risk communication efforts.  443 

No relationship was observed between education and heat risk perception despite the fact 444 

that individuals with lower educational attainment often face greater difficulty in accessing 445 

health services and information regarding the nature of natural hazards (Cutter et al. 2003; 446 
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Medina-Ramón et al. 2006; U.S. EPA 2006; Anderson and Bell 2009, 2011; Reid et al. 2009, 447 

2012; Smith 2013, 85–86; Weber et al. 2015; U.S. EPA and CDC 2016).  448 

Additionally, previous research has identified household size as an important predictor of 449 

hazard risk, as larger households with more people living together are more likely to have the 450 

financial and social resources required to cope with environmental hazards and avoid social 451 

isolation (Semenza et al. 1996; Cutter et al. 2003; Klinenberg 2003, 80–81; Reid et al. 2009, 452 

2012; Weber et al. 2015). In our model household size had no effect on heat wave risk 453 

perception when also controlling for income. 454 

Overall, we find evidence that the socioeconomic factors associated with health impacts  455 

from extreme heat correspond in many ways to the factors associated with heat risk perceptions 456 

among the U.S. population. Income tends to be a strong predictor of heat risk perceptions, along 457 

with work status, gender, and race/ethnicity. Conceptually, income is directly associated with the 458 

ability to protect oneself from the heat through, for example, household adaptations such as 459 

installing and using air conditioning. Income is also associated with employment type and 460 

location. While our survey did not include detailed questions on employment type, higher-paying 461 

occupations tend to be located in indoor climate-controlled environments, while many outdoor 462 

occupations are lower paying (such as agricultural and construction labor) and employees in such 463 

outdoor occupations are exposed to greater heat risks.  464 

The results of this study and Howe et al. (2019) show that heat wave perceptions do vary 465 

spatially and demonstrate statistically significant, non-random geographic patterns. People living 466 

in regions with histories of greater exposure to extreme heat events tended to have higher risk 467 

perceptions (Howe et al. 2019). However, this study indicates that the association of key 468 

sociodemographic variables with heat wave risk perceptions persists even after controlling for 469 
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geography. In addition, our individual-level analysis identifies patterns less clearly visible at the 470 

state, community, or neighborhood level. For example, Howe et al. (2019) show that counties 471 

with older populations do not, on average, have higher heat risk perceptions than counties with 472 

younger populations. Our results, however, show a small but statistically significant positive 473 

relationship between age and heat risk perceptions across the population. Furthermore, we 474 

demonstrate the meaningful effects of certain key individual predictors (such as gender and work 475 

status) that may themselves vary less across communities but more between and within 476 

households, and remain important factors for understanding how people perceive risks.  477 

Taken together, heat wave risk perceptions demonstrate substantial variation across the 478 

U.S. population. For example, the combination of race and ethnicity with income illustrates a wide 479 

range of predicted heat wave risk perceptions (Fig. 2). Selected sociodemographic factors 480 

including income, race/ethnicity, work status, and gender exhibit similar or greater variance to the 481 

broad-scale geographic factors of state and region. When combined, demographic and geographic 482 

factors are associated with large variation in risk perceptions across the population. Across all 483 

possible combinations, we estimate that the group with the highest heat wave risk perceptions 484 

(65.1) are Louisiana women 45-54 years old in the “other, non-Hispanic or Latino” race/ethnicity 485 

category (which includes Asian, American Indian or Alaska Native, Native Hawaiian or other 486 

Pacific Islander U.S. residents) who are disabled and not working with incomes of less than 487 

$15,000 per year. By contrast, the group estimated to have the lowest heat wave risk perceptions 488 

(22.0) are Minnesota men 35-44 years old in the “white, non-Hispanic or Latino” race/ethnicity 489 

category who are not disabled with incomes of greater than $150,000 per year.  490 

Findings of this study inform risk communication strategies and risk reduction 491 

management in two ways. First, for men and older adults, our study suggests that these groups 492 
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tend to underestimate their elevated vulnerability from extreme heat (although we cannot rule out 493 

the possibility that comparison groups are relatively overestimating their vulnerability). The 494 

underestimation of risks is likely to contribute to maladaptation during extreme heat events (Esplin 495 

et al. 2019; Hass and Ellis 2019). This finding highlights the importance to conduct targeted risk 496 

communication and help people in the United States to fully understand their risks. Compared to 497 

efficacy statements (e.g., information about the location of cooling centers), communication 498 

strategies that emphasize vulnerability (e.g., explanations about why all people are vulnerable to 499 

extreme heat) should be prioritized to test in future studies to better communicate heat-health risks 500 

(e.g. Li et al. 2021). Second, for low-income, non-white, and disabled subpopulations, this study 501 

found that these subpopulations have much higher heat risk perceptions than the national average, 502 

which is in line with their elevated risk of health impacts from heat. For risk management and 503 

communication with these subpopulations, this finding suggests that it is important to allocate 504 

resources (such as utility bill relief) to help at-risk populations cope with extreme heat. When 505 

communicating with such populations, efficacy statements about how to reduce their risks—506 

compared to strategies emphasizing vulnerability—might be more effective to help them overcome 507 

barriers to taking protective actions.   508 

 509 
6. CONCLUSIONS 510 
 511 

Using national survey data, we used hierarchical linear models to examine how 512 

sociodemographic and geographic variables relate to heat wave risk perception in the U.S. The 513 

direction of heat wave risk perception predictors across the contiguous U.S. generally reflects 514 

trends identified in health impacts for many sociodemographic factors, with the notable 515 

exceptions of gender and, to some extent, age. Highlighting the distribution of perceived risk can 516 

help set priorities for subpopulation-specific risk communication strategies. Our results allow 517 
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estimates of risk perceptions for specific subpopulations in relation to overall national trends. 518 

Variation in specific subpopulations, especially at the extremes, may be of particular interest for 519 

risk reduction efforts, including targeted risk communication.  520 

Low risk perception increases vulnerability because people are less likely to respond to 521 

the hazards they do not perceive. In other words, what we believe to be real shapes our 522 

behavior—reactively or proactively. When vulnerable subpopulations, such as men and the 523 

elderly, do not perceive themselves to be at greater risk from heat, this presents barriers to risk 524 

reduction. This study found that age did not substantively influence heat risk perception, 525 

suggesting that older people may underestimate their elevated risk. In addition, men may also 526 

underestimate their increased risk from extreme heat events. These findings can inform risk 527 

communication programs to target these populations who may not currently fully understand 528 

their vulnerability. Effective risk communication strategies can reduce sensitivity to heat and 529 

enhance adaptive capacity by promoting protective behavior at the individual and community-530 

level. For example, the protective behaviors promoted by risk communication campaigns might 531 

include risk awareness, avoiding unnecessary exposure, developing personal heat-safety plans. 532 

The first steps in designing effective risk communication programs are identifying vulnerable 533 

subpopulations, studying their distribution, and evaluating their unique circumstances; data on 534 

risk perception and its association with sociodemographic factors help accomplish these goals.  535 

Heat risk is increasing around the world due to global warming caused by anthropogenic 536 

greenhouse gas emissions and urbanization, but total hazard risk can be reduced by targeted 537 

interventions aimed at strengthening adaptive capacity and addressing human vulnerability 538 

factors (Adger 2006; Smit and Wandel 2006; Noble et al. 2014, 847–849). To do this, 539 

researchers, risk managers, and community members will need to work together to identify 540 
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vulnerability factors (Mimura et al. 2014, 871–877; Ebi et al. 2018). This study details a new 541 

systematic approach for understanding risk perceptions across subpopulations using nationally 542 

representative survey data that is generalizable to the U.S. population. Leveraging advances in 543 

both the natural and social sciences to understand the drivers and distribution of heat 544 

vulnerability is vital to minimizing future loss in the face of rising exposure. Studying the 545 

landscapes of beliefs, risk perceptions, and behaviors can inform policy as well as our 546 

understanding of vulnerability at a range of temporal and spatial scales.  547 

548 
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Table 1. Summary of Sensitivity Factors Known to Influence Extreme Heat Risk 862 
 863 

Predictor 
Direction 
(+/-) Details References 

Age (65+) + The elderly face higher risk of 
negative physiological impacts 
from exposure to hazard and 
are more likely to be limited in 
their ability to access health 
services due to mobility 
constraints 

Semenza et al. 1996; Cutter et al. 
2003; Klinenberg 2003; Stafoggia et 
al. 2006; U.S. EPA 2006; Harlan et 
al. 2006; Medina-Ramón et al. 
2006; Kovats and Hajat 2008; 
Anderson and Bell 2009, 2011; 
Reid et al. 2009, 2012; Johnson et 
al. 2009; Tomlinson et al. 2011; 
Uejio et al. 2011; Buscail et al. 
2012; Wolf and McGregor 2013; 
White-Newsome et al. 2014; Ebi et 
al. 2018; Weber et al. 2015; U.S. 
EPA and CDC 2016 

Gender (male) + Men have higher rates of heat-
related mortality and morbidity 
than women in the United 
States. The higher heat 
vulnerability among men is 
likely to be attributed to being 
active in the heat and a higher 
level of social isolation.    

Semenza et al. 1996; Whitman et 
al. 1997; Kovats and Hajat 2008; 
Choudhary and Vaidyanathan 
2014; Hess et al. 2014; Schmeltz et 
al. 2015 

 
Educational  
attainment 

– Less educated individuals often 
face greater difficulty in 
accessing health services and 
information regarding the 
nature of the hazard 

Cutter et al. 2003; Medina-Ramón 
et al. 2006; U.S. EPA 2006; 
Anderson and Bell 2009, 2011; 
Reid et al. 2009, 2012; Smith 2013, 
85–86; IPCC 2014; Ebi et al. 2018; 
Weber et al. 2015; U.S. EPA and 
CDC 2016 

Race/ethnicity 
(non-white) 

+ Racial and ethnic minority 
groups often reside in more 
hazard-prone areas, are 
predisposed to having less 
power to cope with negative     
impacts of hazards due to 
socioeconomic inequalities, 
difficulties accessing health 
services, and limited mobility 

Curriero et al. 2002; Cutter et al. 
2003; Klinenberg 2003; Anderson 
and Bell 2009, 2011; Reid et al. 
2009, 2012; Wolf and McGregor 
2013; Tierney 2014, p. 21; IPCC 
2014; Ebi et al. 2018; Weber et al. 
2015 

Income – Individuals with higher incomes 
have more resources to cope 
negative hazard impacts 
 

Semenza et al. 1996; Cutter et al. 
2003; Klinenberg 2003; U.S. EPA 
2006; Kovats and Hajat 2008; Ebi 
et al. 2018; U.S. EPA and CDC 
2016 

Work status 
(disabled) 

+ Disabled persons are more 
susceptible to negative hazard 
impacts  

Semenza et al. 1996; Cutter et al. 
2003; Klinenberg 2003, 80–81; U.S. 
EPA 2006; Kovats and Hajat 2008; 
Ebi et al. 2018; U.S. EPA and CDC 
2016 

Household size ± Smaller households (fewer 
residents) are more susceptible 
to social isolation as a source 
of vulnerability; greater 
numbers may indicate greater 
access to resources (reduced 
vulnerability) or presence of 

Semenza et al. 1996; Cutter et al. 
2003; Klinenberg 2003; Reid et al. 
2009, 2012; Weber et al. 2015 
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children (increased 
vulnerability) 

    
 864 

 865 
 866 
Table 2. Model results predicting heat wave risk perception index 867 
 868 
Fixed effects β Lower 95% CI Upper 95% CI Standard Error 
Intercept 42.50 35.99 49.01 3.32 
Random effects Levels (#) Variance (σ2) Std. dev. (σ) p 
Residual  548.46 23.42  
Age 5 1.16 1.08 0.0129* 
Gender 2 5.38 2.32 0.0000*** 
Race/ethnicity 5 12.29 3.51 0.0000*** 
Race/ethnicity : gender 10 0.91 0.95 0.1739 
Income 7 13.83 3.72 0.0000*** 
Education 4 0.14 0.37 0.7604 
Work status 5 8.99 2.99 0.0000*** 
Household size 4 0.33 0.58 0.2436 
State 49 5.06 2.25 0.0000*** 
Region 4 4.99 2.23 0.0011** 
Notes: Observations = 8789. *p<0.05, **p<0.01, ***, p<0.001 869 

 870 
 871 
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 872 
Figure 1. Effects of model predictors with associated 95% confidence intervals, excluding state 873 
and region. Points represent best linear unbiased predictor estimates for random effects in 874 
multilevel model. 875 

 876 
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 877 

Figure 2. Predicted heat wave risk perception index values for each combination of significant 878 
sociodemographic predictors. Each dot represents one type of individual based on each possible 879 
permutation of income, race/ethnicity, gender, age, and work status. Dots are ordered by estimated 880 
heat wave risk perception index and race/ethnicity.  881 

 882 
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