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Abstract

For positive integers n and k with n ≥ 2k + 1, the Kneser

graph K(n, k) is the graph with vertex set consisting of all

k-sets of {1, … , n}, where two k-sets are adjacent exactly

when they are disjoint. The independent sets of K(n, k) are

k-uniform intersecting families, and hence the maximum

size independent sets are given by the Erdős–Ko–Rado

Theorem. Let Kp(n, k) be a random spanning subgraph of

K(n, k) where each edge is included independently with

probability p. Bollobás, Narayanan, and Raigorodskii asked

for what p does Kp(n, k) have the same independence num-

ber as K(n, k) with high probability. For n = 2k + 1, we

prove a hitting time result, which gives a sharp threshold for

this problem at p = 3∕4. Additionally, completing work of

Das and Tran and work of Devlin and Kahn, we determine

a sharp threshold function for all n > 2k + 1.
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1 INTRODUCTION

For a positive integer n, we denote by [n] the set {1, 2, … , n}. For a set A, we denote by
(

A

k

)
(

resp.
(

A

≤k

))
the collection of all subsets of A of size (resp. at most) k.

For positive integers n and k, the Kneser graph K(n, k) is the graph on
(

[n]

k

)
, where two sets are

adjacent exactly when they are disjoint. This graph has no edges unless n ≥ 2k, K(2k, k) is just a

matching, and K(n, 1) is a complete graph, so we assume from now on that n ≥ 2k + 1 and k ≥ 2.

The independent sets of K(n, k) are k-uniform intersecting families, important objects of research in
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4 BALOGH ET AL.

extremal combinatorics. For x ∈ [n], we call x =
{

S ∈
(

[n]

k

)
∶ x ∈ S

}
the star based at x. Note that

x is an independent set of K(n, k) of size
(

n−1

k−1

)
. The classical Erdős–Ko–Rado theorem [11] states

that 𝛼(K(n, k)) =
(

n−1

k−1

)
when n ≥ 2k, where 𝛼(G) is the maximum size of an independent set in G.

An extension by Hilton and Milner [17] implies that every maximum independent set of the Kneser

graph is a star, when n ≥ 2k + 1.

Let Kp(n, k) be a random spanning subgraph of K(n, k), where each edge is included independently

with probability p = p(n, k). If E = E(n, k) is an event defined on the probability space associated with

Kp(n, k), we say E occurs with high probability (w.h.p.) if the probability of E tends to 1 as n → ∞.

In general, we consider k to depend on n, so we need only take n → ∞. Bollobás, Narayanan, and

Raigorodskii [8] proposed a random variant of the Erdős–Ko–Rado theorem, following a recent trend

of so-called transference results.

Question 1.1 ([8]). For what p does 𝛼(Kp(n, k)) = 𝛼(K(n, k)) with high probability?

Informally, this is asking whether the Erdős–Ko–Rado theorem still holds if we “forget” that a

randomly selected portion of disjoint pairs are in fact disjoint. Since the probability that 𝛼(Kp(n, k)) =(
n−1

k−1

)
increases with p, to answer Question 1.1, one wants to determine the “smallest” p for which

𝛼(Kp(n, k)) =
(

n−1

k−1

)
w.h.p.

An obvious necessary condition to 𝛼(Kp(n, k)) =
(

n−1

k−1

)
is the maximality of stars as independent

sets. A superstar based at x is a set family of the form {A} ∪x, where A ∉ x. Thus 𝛼(Kp(n, k)) >(
n−1

k−1

)
if there exists a superstar spanning an independent set. The expected number of independent

superstars in Kp(n, k) is

n
(

n − 1

k

)
(1 − p)

(
n−k−1

k−1

)
,

which changes from o(1) to 𝜔(1) when p ≈ p0, where

p = p0 ∶=

⎧
⎪⎨⎪⎩

3∕4, if n = 2k + 1,

log
(

n
(

n−1

k

))
∕
(

n−k−1

k−1

)
, if n > 2k + 1,

(1)

and log denotes the natural logarithm. The only reason that n = 2k + 1 seems different is because we

lose the approximation 1 − p0 ≈ e−p0 in that case. A straightforward second moment calculation (see

[8], [9], or Observation 4.1) gives that for every constant 𝜀 > 0, for every p ≤ (1 − 𝜀)p0, Kp(n, k) has

an independent superstar w.h.p., and thus 𝛼(Kp(n, k)) >
(

n−1

k−1

)
w.h.p.

When they posed Question 1.1, Bollobás, Narayanan, and Raigorodskii [8] effectively answered it

for k = o(n1∕3). They showed that for all constant 𝜀 > 0, for all p ≥ (1 + 𝜀)p0, 𝛼(Kp(n, k)) =
(

n−1

k−1

)

w.h.p., showing that p0 is a “sharp threshold function” for this problem when k = o(n1∕3). Subsequently,

Balogh, Bollobás, and Narayanan [2] made progress on Question 1.1 for all k ≤ (
1

2
− 𝛾)n, for every

constant 𝛾 > 0. Das and Tran [9] formulated a removal lemma for K(n, k), showed that p0 is a sharp

threshold function for k ≤ n∕C, for some constant C, and showed that p0 is a “coarse” threshold

function for k ≤ (
1

2
−𝛾)n, for every constant 𝛾 > 0, meaning that there exists some constant c = c(𝛾) > 1

such that for all p ≥ cp0, 𝛼(Kp(n, k)) =
(

n−1

k−1

)
. Concurrently, Devlin and Kahn [10] showed that p0
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BALOGH ET AL. 5

is a coarse threshold function for all n ≥ 2k + 1, that is, they removed the dependence of c on 𝛾 . In

particular, they made the first progress on Question 1.1 for n = 2k + 1, showing that for some 𝜀 > 0,

𝛼(K(1−𝜀)(2k + 1, k)) =
(

2k

k−1

)
w.h.p. What remains is to show that p0 is a sharp threshold for k ≥ n∕C,

which is what we do in the present work.

In fact, we can prove something stronger, as most previous papers have done: above a threshold,

not only are stars maximum independent sets, but they are unique. We say that a spanning subgraph

of K(n, k) is EKR if every maximum independent set is a star. Clearly, if Kp(n, k) is EKR w.h.p., then

𝛼(Kp(n, k)) =
(

n−1

k−1

)
w.h.p. Thus, to resolve Question 1.1, it suffices to show that for p ≥ (1 + 𝜀)p0,

Kp(n, k) is EKR w.h.p.

Theorem 1.2. Let 𝜀 > 0 be a constant. If n ≥ 2k + 1 and p ≥ (1 + 𝜀)p0, then Kp(n, k) is EKR w.h.p.

Perhaps Theorem 1.2 does not completely resolve Question 1.1 because of the 𝜀. Bollobás,

Narayanan, and Raigorodskii [8] raise the natural question of determining the “width” of the sharp

threshold for Question 1.1: roughly, how small, in terms of n and k, may we take 𝜀 in Theorem 1.2?

Das and Tran [9] proved Theorem 1.2 for all 𝜀 ≫
1

k
and k ≤ n∕C. Such tight control of 𝜀 and the

definition of p0 indicate that in some sense the independence of superstars is the most difficult obsta-

cle to overcome for 𝛼(Kp(n, k)) to equal
(

n−1

k−1

)
. Das and Tran [9] suggested a stronger, hitting time

version of Question 1.1 to capture this notion.

To give the statement, we need to consider the random subgraph process. Consider a graph G,

and let e1, … , em be the edges of G. Given a permutation 𝜋 ∶ E(G) → [m], we define Gi(𝜋) to be

the spanning subgraph of G with edges ek satisfying 𝜋(ek) ≤ i. Note that Gi(𝜋) has exactly i edges.

If we select 𝜋 uniformly at random, we can think of the sequence G1(𝜋),G2(𝜋), … ,Gm(𝜋) as adding

one edge of G picked uniformly at random to V(G) until there are no more edges to be added. For a

monotone property P which G satisfies, we define the hitting time 𝜏P to be the minimum i such that

Gi satisfies property P. Note that 𝜏P is a random variable depending on the permutation 𝜋, and G𝜏P
is

a random subgraph of G satisfying property P, but G𝜏P
is not necessarily chosen uniformly from all

such subgraphs.

For n = 2k + 1, we prove that as soon as stars are maximal independent sets, stars are maximum

independent sets w.h.p., where the “with high probability” is in the context of the underlying probability

space of the random subgraph process. To be precise, let

𝜏super = min{i ∶ Ki(n, k) has no independent superstars},

𝜏𝛼 = min
{

i ∶ 𝛼(Ki(n, k)) =
(

n − 1

k − 1

)}
.

Theorem 1.3. With high probability, 𝜏𝛼 = 𝜏super when n = 2k + 1.

This theorem reduces Question 1.1 to: for what p is it true that Kp(n, k) has no independent

superstars? We defined p0 to answer this question, so with an easy first moment calculation (see

Observation 4.2), Theorem 1.3 gives the sharp threshold for 𝛼(Kp(2k + 1, k)) =
(

2k

k−1

)
.

Analogously, we can prove a hitting time theorem for the EKR property, the property that stars

are the unique maximum independent sets. A near-star based at x is a set family of the form {A} ∪

(x⧵{B}), where A ∉ x and B ∈ x. The obvious necessary condition to Kp(n, k) being EKR is that

there are no independent near-stars. Let

𝜏near = min{i ∶ Ki(n, k) has no independent near-stars},

𝜏EKR = min{i ∶ Ki(n, k) is EKR}.
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Theorem 1.4. W.h.p, 𝜏EKR = 𝜏near when n = 2k + 1.

In fact, p0 is a sharp threshold function for both lacking independent superstars and lacking inde-

pendent near-stars, so Theorem 1.4 proves Theorem 1.2 for n = 2k + 1. But since 𝜏super < 𝜏near

deterministically, neither Theorem 1.3 nor Theorem 1.4 implies the other.

A full resolution of Question 1.1 would be the proof of hitting time theorems for all n and k. We

believe this ought to be true.

Conjecture 1.5. W.h.p., for all n > 2k + 1, 𝜏𝛼 = 𝜏super and 𝜏near = 𝜏EKR.

Our methods for Theorems 1.4 and 1.3 extend easily to when n− 2k = o(n), and a careful analysis

of [8, 9] proves Conjecture 1.5 when k = o(n). To name a particular case of Conjecture 1.5 which we do

not know how to solve, consider n = 4k. See Section 4.5 for some technical remarks on Conjecture 1.5.

Having fully addressed Question 1.1, we now propose an extension of Theorems 1.3 and 1.4, and

we mention other modern extensions of the Erdős–Ko–Rado theorem. With our techniques, one should

be able to obtain finer information about the independent sets of Kp(n, k) for arbitrary p, possibly

answering the following generalization of Question 1.1: what is the size of the largest independent set

of Kp(n, k) not contained in a star? Conjecture 1.5 determines when the size of the largest independent

set not contained in a star is at most
(

n−1

k−1

)
− 𝓁 + 1, for 𝓁 ∈ {1, 2}. The Hilton–Milner theorem [17]

states that the largest independent set of K(n, k) not contained in a star has size
(

n−1

k−1

)
−
(

n−k−1

k−1

)
+ 1.

Thus we can formulate a generalization of Conjecture 1.5 as follows. Define

𝜏𝓁 = min{i ∶ for every x ∈ [n] and A ∉ x, 𝑑Ki(n,k)(A,x) ≥ 𝓁},

where 𝑑G(v, S) is the number of neighbors in G of v in S ⊆ V(G). Note that 𝜏1 = 𝜏super, 𝜏2 = 𝜏near, and

for 𝓁 =
(

n−k−1

k−1

)
, 𝜏𝓁 = |E(K(n, k))| always. In this way, the 𝜏𝓁∕|E(K(n, k))| fill the space between p0

and 1.

Question 1.6. Does the largest independent set of K𝜏
𝓁
(n, k) not contained in a star have size

(
n−1

k−1

)
−

𝓁 + 1 with high probability?

We hesitate to call this a conjecture, because while presumably our techniques would work for

small 𝓁, the situation for large 𝓁 is less clear.

Our proof method does not require too much structural information about K(n, k); in fact, all that

is needed is some regularity in the degrees, that the maximum independent sets are “spread out” in

some sense, and some edge-isoperimetry, which is some upper bound on the number of edges a set of

vertices can contain. The Kneser graph is a special class of so-called distance graphs, where similar

problems have been studied [7], so it is likely our methods may be applied there as well. Arguably

the most studied distance graph is the hypercube. There are many results concerning various graph

parameters of the (edge-)random subgraph of the hypercube; see [21] for a comprehensive, but slightly

outdated, survey. After writing this paper, we learned that some of those results use a method similar

to our Lemma 3.1. In particular, Kostochka [20] gives a result similar to our Lemma 3.1 but in greater

generality.

A more difficult, but natural, random variant of the Erdős–Ko–Rado theorem was proposed by

Balogh, Bohman, and Mubayi [1]: instead of taking a random spanning subgraph of K(n, k), we take a

random induced subgraph of K(n, k), including each vertex with probability p. For what p is a maximum
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BALOGH ET AL. 7

independent set of this random induced subgraph contained in a star? This is more naturally stated in

the hypergraph version of the Erdős–Ko–Rado theorem, where we retain hyperedges with probability

p. Balogh, Bohman, and Mubayi [1] proved a number of results, mostly for k ≤ n1∕2−𝜀. This is a

particularly difficult problem because the property of interest is not monotone; for small p and large

p the property holds, but sometimes for some p in between, the property does not hold. Hamm and

Kahn improved the results for n1∕3 ≪ k ≤
1

2

√
n log n [15] and n = 2k + 1 [16]. Gauy, Hàn and

Oliveira [14] extended [1] and gave the asymptotic size of largest intersecting family for all k and

almost all p. Balogh, Das, Delcourt, Liu, and Sharifzadeh [3] gave additional results up to k ≤ n∕4,

but generally not as tight as [15]. Hamm and Kahn [16] optimistically conjecture that, just like in the

problem addressed in this paper, the maximum independent sets are contained in stars (roughly) when

the stars induce maximal independent sets.

Balogh, Das, Delcourt, Liu, and Sharifzadeh [3] also study the enumeration variant of the

Erdős–Ko–Rado theorem, determining the order of magnitude of the log of the number of indepen-

dent sets in K(n, k). Balogh, Das, Liu, Sharifzadeh, and Tran [4] and independently Kupavskii and

Frankl [12] strengthened this to say that most independent sets of K(n, k) are contained in stars for

n ≥ 2k + c
√

k log k, where c is a large constant in [4] and c = 2 in [12]. Balogh, Garcia, Li, and

Wagner [5] push this c
√

k log k down to 100 log k. They conjecture it is true down to n ≥ 2k + 2,

since a simple computation shows that the families which show the tightness of the Hilton–Milner

theorem [17] outnumber the trivial families for n = 2k + 1.

The rest of the paper is organized as follows. In Section 2 we collect results from prior works

that we use in our proofs. In Section 3 we prove a lemma on counting sets of vertices of K(n, k), in

a similar spirit to the container method [6, 26]. We prove Theorems 1.3 and 1.4 in Section 4 almost

simultaneously, definitively answering the n = 2k+ 1 case of Question 1.1. Section 4.5 contains some

technical remarks concerning Conjecture 1.5. In Section 5, we prove Theorem 1.2 for 2k+1 < n ≤ Ck,

where C is a large constant, the other cases being proven by Theorem 1.4 or [8, 9].

1.1 Standard estimates and notation

All logarithms are base e. We make extensive use of standard asymptotic notation to simplify our

calculations. We say f (n) = O(g(n)) (resp. f (n) = Ω(g(n))) if there exists C > 0 such that f (n) ≤ Cg(n)

(resp. f (n) ≥ Cg(n)) for all n sufficiently large. If f (n) = O(g(n)) and f (n) = Ω(g(n)), then we say

f (n) = Θ(g(n)). We say f (n) = o(g(n)) (resp. f (n) = 𝜔(g(n))) if f (n)∕g(n) → 0 (resp. ∞) as n → ∞.

Since there is only one variable, n, tending to infinity, with the other variables being clearly dependent

or clearly independent of n, we find the asymptotic notation unambiguous. Still, we use the notation

judiciously. If desired, one could eliminate the use of asymptotic notation from this paper entirely,

being explicit throughout with constant or logarithmic factors.

We often make use of the standard bound (
r

s
)s ≤

(
r

s

)
≤ (

er

s
)s in the weaker form

(
r

s

)
,

(
r

≤ s

)
= exp

(
Θ
(

s log
r

s

))
,

for s ≤ .99r. We also use the following version of the Chernoff bound. We use P(E) to denote the

probability of the event E and E[X] to denote the expected value of a random variable X.

Lemma 1.7 (Chernoff Bound). If X is binomially distributed with mean 𝜇, then for 0 ≤ 𝛼 ≤ 1 and

1 < 𝛽, we have the lower tail bound
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8 BALOGH ET AL.

P(X ≤ 𝛼𝜇) ≤ exp (−(1 − 𝛼 + 𝛼 log 𝛼)𝜇) ≤ exp
(
−(1 − 2

√
𝛼)𝜇

)
, (2)

and the upper tail bound

P(X ≥ 𝛽𝜇) ≤ exp (−(1 − 𝛽 + 𝛽 log 𝛽)𝜇) ≤ exp (−𝜇𝛽 log(𝛽∕e)) . (3)

2 PRELIMINARIES

We make the dependence of k on n explicit wherever possible, and we assume that n is sufficiently

large for our calculations to go through. In Section 4, we consider only n = 2k+1, and in Section 5 we

consider only 2k+1 < n ≤ Ck, where C is a sufficiently large constant, since Theorem 1.2 was already

proven for n > Ck in [8, 9]. Despite this, we try to make statements not assuming any relationship

between k and n so that our intermediate results are as useful as possible.

Let  = { ⊆ V(K(n, k)) ∶ | | =
(

n−1

k−1

)
, is not a star}. By the union bound, the probability

that Kp(n, k) is not EKR is at most ∑
∈

(1 − p)e( ). (4)

We are done if we can show that (4) is o(1) for the desired p. Unfortunately,  appears to be too large

for this strategy to give a sharp threshold. Our strategy is to use the lower bounds on e( ) from [9, 10],

refine  , and give improved bounds on the size of the refinement to make this strategy successful.

First, we introduce a framework which appeared in [10], although similar ideas appear in prior

papers. Consider  ⊆ V(K(n, k)) of size
(

n−1

k−1

)
. Let x be the smallest x ∈ [n] minimizing |⧵x|.

For ease of notation here, we write x for x . Let  = ⧵x, and a = | |. This a measures the

“distance” from  to the nearest star.1 Let  = x⧵ , so that | | = a since | | = |x|. Note that

 ⊆

(
[n]⧵{x}

k

)
and  ⊆ x; by  and  we mean  =

(
[n]⧵{x}

k

)
⧵ and  = x⧵ =

x ∩ . Since  is an intersecting set system, E( ), the set of edges spanned by  , is partitioned into

E( ) and E( , ), the set of edges with one endpoint in  and the other in  . We mostly focus

on the bipartite structure between  and  ,2 but whenever we discuss neighborhoods, denoted by

N() for  ⊆ V(K(n, k)), and edges, with e() = |E()| and e(,′) = |E(,′)|, the context is

always K(n, k) unless explicitly stated otherwise. To summarize,

 =  ∪ (x
⧵ ),

where x is chosen to minimize | | = | |. Note that if a = 0, then  is a star, and if a = 1, then

 is a near-star. We drop the  subscript when it is clear from context.

We begin with three helpful observations about the above framework. First, by a simple averaging

argument, we observe that for every  ∈  , a is not too large.

Observation 2.1. For every  ∈  , a ≤
n−k

n

(
n−1

k−1

)
.

1In [23], a is called the diversity of  . The earliest extensions of the Erdős–Ko–Rado theorem, for example [17], gave the

maximum size of independent  ⊆ V(K(n, k)) satisfying restrictions on a .
2It can be helpful to see the hypercube in disguise in these definitions. If one takes the complements of every set of  in

[n]⧵{x}, and one also removes the element x from every set of  , then the disjointness relation between  and  becomes

the subset-superset relation with ground set [n]⧵{x}.
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BALOGH ET AL. 9

Proof. Note that
∑

x∈[n] | ∩x| = k| | for any  . Thus for some x we have

|⧵x| =
(

n − 1

k − 1

)
− | ∩x| ≤ n − k

n

(
n − 1

k − 1

)
.

▪

Second, unless a is very large,  is not close to y for any y ≠ x .

Observation 2.2. For every  ∈  and y ∈ [n] with y ≠ x , we have

|⧵y| ≥
(

n − 2

k − 1

)
− |⧵x|.

Proof. Observe that |⧵y| ≥ |(x ∩  )⧵y| ≥ |x⧵y| − |x⧵ | =
(

n−2

k−1

)
− |⧵x|. ▪

Third, we relate e( , ) to e( , ), the latter of which is more directly related to e( ).

Observation 2.3. For every  ∈  , e( , ) =
(

n−k−1

k

)
a + e( , ).

Proof. The degree of vertices in
(

[n]⧵{x}

k

)
to x is

(
n−k−1

k−1

)
, while the degree of vertices in x to(

[n]⧵{x}

k

)
is
(

n−k

k

)
. Thus

e( , ) =
(

n − k

k

)
a − e( , ) =

(
n − k

k

)
a −

(
n − k − 1

k − 1

)
a + e( , )

=
(

n − k − 1

k

)
a + e( , ).

▪

Let

x(a) = { ∈  ∶ x = x, a = a}.

We define subsets  i of  for i ∈ [5] as is convenient. Whenever  i is defined, we define  i
x (a) to

be  i ∩ x(a). For reference, we list the definitions of all the  i here, along with the subsection where

they first appear; we introduce them formally when we need them, so some notation is not yet defined:

 1 =

⎧
⎪⎨⎪⎩
 ∈  ∶ e( ) ≤

5

p0

a log

(
n−1

k

)

a

⎫
⎪⎬⎪⎭
, (Section 2.1)

 2 =
{
 ∈  1 ∶  ⊆ N( )

}
, (Section 2.2)

 3 =
{
 ∈  2 ∶  is 2-linked

}
, (Section 4.2)

 4 =

{
 ∈  1 ∶

||||A
<1∕

√
k



|||| ≤
a

log log k

}
, (Section 5.2)

 5 =
{
 ∈  4 ∶ e( ) ≤

1

2
e( )

}
. (Section 5.4)
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10 BALOGH ET AL.

As an example of how these definitions are used, in Lemma 2.8, we easily show that no  ∈  ⧵ 1

is independent in Kp(n, k) for p ≥ p0 w.h.p., because by definition, the  ∈  ⧵ 1 have many edges.

In other cases, like Proposition 2.12, we show that if some  ∈  1 is independent in Kp(n, k), then

some  ∈  2 is independent in Kp(n, k), which reduces the problem of showing that no  ∈  1 is

independent to showing that no  ∈  2 is independent.

2.1 Bounding e( )

Since  is determined by x = x ,  ⊆

(
[n]⧵{x}

k

)
, and  ⊆ x, we trivially have

|x(a)| ≤
((

n−1

k

)

a

)((
n−1

k−1

)

a

)
≤

((
n−1

k

)

a

)2

. (5)

To obtain a threshold for Question 1.1, Devlin and Kahn [10] combined (5) with the following very

nontrivial lower bound on e( ):

Theorem 2.4 ([10]). There exists c > 0 such that for all n ≤ 2k + k∕6 and  ∈  ,

e( ) > c
1

k

(
n − k − 1

k − 1

)
a log

(
n−1

k

)

a

. (6)

As we are interested in all n and k, we need a lower bound on e( ) for not just n ≤ 2k + k∕6. We

can remove the assumption on n in Theorem 2.4 with a similar bound due to Das and Tran [9]. It is

implicit in their paper, so for completeness, we derive it from their removal lemma for  .

Theorem 2.5 ([9]). There is an absolute constant D > 1 such that if n ≥ 2k + 1 and  ∈  with

e( ) < 𝛽

(
n−1

k−1

)(
n−k−1

k−1

)
, where 𝛽 ≤

n−2k

(20D)2n
, then there is an x ∈ [n] such that

|⧵x| ≤ D𝛽
n

n − 2k

(
n − 1

k − 1

)
.

Theorem 2.6 ([9]). There exists c > 0 such that for all n ≥ 2k + 1 and  ∈  ,

e( ) ≥ c
n − 2k

n

(
n − k − 1

k − 1

)
a . (7)

Proof. Let  ∈ x(a). Let D be the constant given in Theorem 2.5, and let

𝛽 =
a

(20D)2
n

n−2k

(
n−1

k−1

) ≤
n − 2k

(20D)2n
,

which follows from a = |⧵x| ≤ | | =
(

n−1

k−1

)
. Since x = x, we have that for all stars y,

|⧵y| ≥ |⧵x| = a >
a

400D
= D𝛽

n

n − 2k

(
n − 1

k − 1

)
.
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BALOGH ET AL. 11

Applying the contrapositive of Theorem 2.5 to  with the above 𝛽, we have

e( ) ≥ 𝛽

(
n − 1

k − 1

)(
n − k − 1

k − 1

)
=

1

(20D)2
⋅

n − 2k

n

(
n − k − 1

k − 1

)
a,

which proves the theorem with c = 1∕(20D)2. ▪

For convenience, we combine Theorems 2.4 and 2.6 so that they work for all n and k.

Theorem 2.7. There exists an absolute constant 𝜃 > 0 such that for all n ≥ 2k + 1 and  ∈  ,

e( ) ≥ 𝜃
1

p0

a log

(
n−1

k

)

a

, (8)

and

e( ) ≥ 𝜃
1

p0

a
n − 2k

n
log

(
n − 1

k

)
. (9)

Proof. Note that, from (1), we have

p0 ≥
k log

n−1

k(
n−k−1

k−1

) ≥
k log 2(
n−k−1

k−1

) ,

so we can replace (6) with e( ) ≥ c
1

p0

a log

(
n−1

k

)

a
, albeit with a different constant c. For 2k+k∕6 < n,

we have

1

p0

a log

(
n−1

k

)

a
≤

(
n − k − 1

k − 1

)
a

log
(

n−1

k

)

log
(

n
(

n−1

k

)) ≤

(
n − k − 1

k − 1

)
a ⋅ 13

n − 2k

n
,

so by Theorem 2.6, e( ) ≥ c
1

p0

a log

(
n−1

k

)

a
holds for all n and k, again with a different constant c,

yielding (8). Equation (9) follows directly from Theorem 2.6 and (1). ▪

From here on, we fix 𝜃 sufficiently small given by Theorem 2.7. Using this, we can repeat the

argument of Devlin and Kahn [10], which is just upper bounding (4), to show that we do not need to

consider those  with e( ) large. Let

 1 =

⎧⎪⎨⎪⎩
 ∈  ∶ e( ) ≤

5

p0

a log

(
n−1

k

)

a

⎫⎪⎬⎪⎭
.

Lemma 2.8. Assume k = 𝜔(1) and let p ≥
49

50
p0. Then no  ∈  ⧵ 1 is independent in Kp(n, k)

w.h.p.

Proof. Let x ∈ [n]. By Observation 2.1, for every  ∈  , we have
(

n−1

k

)
∕a ≥

n

k
> 2. Hence

by (5), we have

 1
0

9
8

2
4

1
8

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/rsa.2

1
0

9
0

 b
y

 U
n

iv
ersity

 O
f Illin

o
is A

t U
rb

an
a C

h
am

p
aig

n
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

6
/0

6
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



12 BALOGH ET AL.

|x(a)| ≤
((

n−1

k

)

a

)2

≤ exp

⎛⎜⎜⎝
2a log

e
(

n−1

k

)

a

⎞⎟⎟⎠
≤ exp

⎛⎜⎜⎝

(
2 +

2

log 2

)
a log

(
n−1

k

)

a

⎞⎟⎟⎠
.

Using (1 − p)e( ) ≤ exp(−pe( )) and the union bound, the probability that some  ∈ x(a)⧵
1

x (a) is

independent is at most

exp

⎛⎜⎜⎝

(
2 +

2

log 2

)
a log

(
n−1

k

)

a
−

49

10
a log

(
n−1

k

)

a

⎞⎟⎟⎠
≤ exp

⎛⎜⎜⎝
−

1

70
a log

(
n−1

k

)

a

⎞⎟⎟⎠
.

Taking the union bound over all a, the probability that  ∈  ⧵ 1 with x = x is independent is at

most

n∑
a=1

exp

⎛
⎜⎜⎝
−

1

70
a log

(
n−1

k

)

a

⎞
⎟⎟⎠
+

(
n−1

k

)
∑

a=n+1

exp

⎛
⎜⎜⎝
−

1

70
a log

(
n−1

k

)

a

⎞
⎟⎟⎠

≤ n exp
(
−

1

70
log

(
n − 1

k

))
+
(

n − 1

k

)
exp

⎛
⎜⎜⎝
−

1

70
n log

(
n−1

k

)

n

⎞
⎟⎟⎠

≤ exp(−𝜔(log n)) + exp(−𝜔(n)) = o(1∕n),

since log n = o(log
(

n−1

k

)
) for k = 𝜔(1). A union bound over all x completes the proof. ▪

In the previous proof, we took a union bound over certain  with a = a and x = x, and then we

took a union bound over all a and x. Our proofs often take this form, and since the latter union bound

can often be executed as above, we omit these details going forward.

Note that if  ∈  1, we get the following upper bound on a , which will be particularly useful

when n − 2k is large.

Lemma 2.9. For every  ∈  1, we have

𝜃

5
⋅

n − 2k

n
log

(
n − 1

k

)
≤ log

(
n−1

k

)

a

.

Proof. For  ∈  1, by (9), we have

𝜃
1

p0

a
n − 2k

n
log

(
n − 1

k

)
≤ e( ) ≤

5

p0

a log

(
n−1

k

)

a

.

▪

2.2 Neighborhood assumption

Let  2 =
{
 ∈  1 ∶  ⊆ N( )

}
. Our first reduction is that for most  ∈  1, there exists  ′ ∈  2

such that E( ′) ⊆ E( ). This is helpful because if we know that  ′ is not independent, then we can

automatically conclude that is not independent. To make this reduction, we need a lemma concerning
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BALOGH ET AL. 13

the vertex boundary of  ∈  in K(n, k), which will also be useful for the next reduction. We derive

this from the Kruskal–Katona theorem—in fact, we only need a weaker version due to Lovász. For

real z, we define
(

z

k

)
=

z(z−1)···(z−k+1)

k!
.

Theorem 2.10 (Kruskal [22], Katona [19], Lovász (problem 13.31(b) of [24])). Let  be a nonempty

family of k-sets, and let z ≥ k be a real number such that | | =
(

z

k

)
. Then for every 𝓁 ≤ k,

|{S ∶ |S| = 𝓁,∃F ∈ such that S ⊆ F}| ≥
(

z

𝓁

)
.

Lemma 2.11. Let x ∈ [n]. For every nonempty  ⊆

(
[n]⧵{x}

k

)
with || <

(
n−2

k−1

)
, we have |N() ∩

x| > ||. Moreover, for every  ∈ x(a), we have |N( ) ∩x| > a.

Proof. Consider ⋆ = {([n]⧵{x})⧵A ∶ A ∈ } ⊆

(
[n]⧵{x}

n−k−1

)
. Then |⋆| = || and

|||||

{
S ∈

(
[n]⧵{x}

k − 1

)
∶ ∃A ∈ ⋆ such that S ⊆ A

}|||||
= |N() ∩x| . (10)

Since || <
(

n−2

n−k−1

)
, there exists a real number z < n− 2 such that || =

(
z

n−k−1

)
and n− k− 1 ≤ z.

Applying Theorem 2.10 to ⋆ and using (10), we have

|N() ∩x| ≥
(

z

k − 1

)
>

(
z

n − k − 1

)
= ||, (11)

where the second inequality follows because
(

n−2

k−1

)
=

(
n−2

n−k−1

)
, n − k − 1 > k − 1, and z < n − 2.

To prove the second part of the lemma, note that by Observation 2.1, for any  ∈  ,

| | ≤ n − k

n

(
n − 1

k − 1

)
=

n − 1

n

(
n − 2

k − 1

)
,

and we are done by applying the first part of the lemma. ▪

Now we can give the reduction from  1 to  2, which we employ in Sections 4.5 and 5.6.

Proposition 2.12. For every  ∈  1
x (a) with a <

1

3

(
n−2

k−1

)
, there exists  ′ ∈  2

x (a) satisfying

 ′ =  and E( ′) ⊆ E( ).

Proof. Let  ∈ x(a). Since a ≤ |N( ) ∩x| by Lemma 2.11, there exists ′ of size a such that

N( ) ∩  ⊆ ′ ⊆ N( ) ∩x. Let  ′ =  ∪ (x⧵
′), so

E( ′) = E( ) ∪ E( ,′) ⊆ E( ) ∪ E( ,N( ) ∩  ) = E( ).

By Observation 2.2, for any y ∈ [n] with y ≠ x,

| ′⧵y| ≥ |⧵y| − |′| ≥
(

n − 2

k − 1

)
− 2a > a = | ′⧵x|.

Thus x ′ = x and so  ′ ∈  2
x (a) and  ′ =  . ▪
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14 BALOGH ET AL.

3 MAIN LEMMA

One might hope that, with the extra condition  1 imposes over  , we have much stronger upper bounds

on | 1
x (a)| than (5). This is the content of the following technical lemma, which is one of our main

innovations.

Note that
(

n−k−1

k−1

)
is the degree of vertices in

(
[n]⧵{x}

k

)
to x, and note that

(
n−k

k

)
=

n−k

k

(
n−k−1

k−1

)

is the degree of vertices in x to
(

[n]⧵{x}

k

)
. For each  and 𝛿 = 𝛿(n, k), define ≥𝛿

 = {A ∈  ∶

𝑑(A, ) ≥ 𝛿

(
n−k−1

k−1

)
}, where 𝑑(A, ) = |N(A) ∩  |. Let <𝛿

 = ⧵
≥𝛿
 . We use the structure

between  and  for  ∈  1 to give upper bounds for the number of ≥𝛿
 across all  ∈  1

x (a).

Lemma 3.1. If 𝛿 = 𝜔

(
n log

n

n−2k

k log
(

n−1

k

)
)

and 𝛿 ≤ 1∕2, then the number of choices for ≥𝛿
 across all

 ∈  1
x (a) is at most exp

(
o

(
a log

(
n−1

k

)

a

))
.

Proof. Let D =
(

n−k−1

k−1

)
, and choose p1 so that p1 = 𝜔(1∕𝛿D) and

p1

p0

n

k
log

n

n−2k
= o(1). This is

possible because the assumption on 𝛿 implies that

1

p0

n

k
log

n

n − 2k
= o(𝛿D).

To each ≥𝛿
 we give a certificate ( ,1,2,3) with the following properties:

1  ⊆ x, || ≤ 3ap1,

2 1 ⊆ N(), |1| ≤ p1

p0

⋅
30n

𝜃k
⋅ a log

(
n−1

k

)

a
, |N()⧵1| ≤ a,

3 2 ⊆ N()⧵1, |2| ≤ 10

log
(

n−1

k

)a log

(
n−1

k

)

a
,

4 3 ⊆

(
[n]⧵{x}

k

)
, |3| = o(a),

5 ≥𝛿
 = (N()⧵(1 ∪2)) ∪3.

By the last property, we can reconstruct ≥𝛿
 from its certificate. We postpone counting the number

of choices of possible certificates until after we prove the existence of such certificates.

Fix  ∈  1
x (a), and let ≥𝛿 = ≥𝛿

 and <𝛿 = <𝛿
 . We prove that there is a particular choice

of  for which the elements of the certificate are  , 1 ∶= N()⧵, 2 ∶= (N()⧵1) ∩ <𝛿 ,

and 3 ∶= ≥𝛿⧵N(). Select a random subset  of , including each vertex independently with

probability p1. Then the expected size of  is

E|| = ap1.

The probability that A ∈ ≥𝛿 is not in the neighborhood of  is at most (1 − p1)
𝛿D, so

E|≥𝛿⧵N()| ≤ a(1 − p1)
𝛿D ≤ ae−p1𝛿D = ae−𝜔(1) = o(a).

Note that by Observation 2.3, Theorem 2.7, and the definition of  1,

E|N()⧵| ≤ E

∑
v∈

𝑑(v,) = E

∑
v∈

1v∈𝑑(v,) = p1e(,)
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BALOGH ET AL. 15

= p1

((
n − k − 1

k

)
a + e(,)

)
= p1

⎛⎜⎜⎝

log
(

n
(

n−1

k

))

k
⋅

1

p0

a(n − 2k) + e(,)

⎞⎟⎟⎠

≤ p1

⎛
⎜⎜⎝

n

𝜃k
⋅

log
(

n
(

n−1

k

))

log
(

n−1

k

) + 1

⎞
⎟⎟⎠

e( ) ≤
p1

p0

⋅
10n

𝜃k
⋅ a log

(
n−1

k

)

a
.

By Markov’s inequality, there exists a choice of  such that

|| ≤ 3ap1,

|≥𝛿⧵N()| ≤ o(a),

|N()⧵| ≤ p1

p0

⋅
30n

𝜃k
⋅ a log

(
n−1

k

)

a
.

Since N()⧵1 ⊆ A by definition, all that remains to be shown is the upper bound on |2|. Observe

that

(1 − 𝛿)D|<𝛿| ≤ e(,) ≤ e( ) ≤
5

p0

a log

(
n−1

k

)

a
,

so since 𝛿 ≤ 1∕2,

|2| ≤ |<𝛿| ≤ 10

log
(

n−1

k

)a log

(
n−1

k

)

a
.

We count the number of possible certificates by counting each part of the certificate sequentially.

Since p1 = o(1), || = o(a), so the number of choices for  is at most

((
n−1

k

)

o(a)

)
≤ exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
.

Note that

|N()| ≤
(

n − k

k

)
|| ≤ 3ap1

(
n − k

k

)
,

so given  , the number of choices for 1 is at most, using Lemma 2.9,

⎛⎜⎜⎝

3ap1

(
n−k

k

)

≤
p1

p0

⋅
30n

𝜃k
⋅ a log

(
n−1

k

)

a

⎞⎟⎟⎠
≤ exp

⎛
⎜⎜⎜⎝
O

⎛
⎜⎜⎜⎝

p1

p0

⋅
n

k
⋅ a log

(
n−1

k

)

a
log

p0

(
n−k

k

)

30n

𝜃k
log

(
n−1

k

)

a

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

≤ exp

⎛
⎜⎜⎝
O

⎛
⎜⎜⎝

p1

p0

⋅
n

k
⋅ a log

(
n−1

k

)

a
log

6(n − k)

n − 2k

⎞
⎟⎟⎠

⎞
⎟⎟⎠
= exp

⎛
⎜⎜⎝
O

(
p1

p0

⋅
n

k
log

n

n − 2k

)
a log

(
n−1

k

)

a

⎞
⎟⎟⎠

= exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
.
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16 BALOGH ET AL.

Given  and 1, the number of possible choices for 2 is at most, using Observation 2.1,

⎛⎜⎜⎜⎝

a

≤
10

log
(

n−1

k

)a log

(
n−1

k

)

a

⎞⎟⎟⎟⎠
≤ exp

⎛
⎜⎜⎝
o

⎛
⎜⎜⎝
a log

(
n−1

k

)

a

⎞
⎟⎟⎠

⎞
⎟⎟⎠
.

Finally, since |3| = o(a), the number of choices for 3 is at most

((
n−1

k

)

o(a)

)
≤ exp

⎛
⎜⎜⎝
o

⎛
⎜⎜⎝
a log

(
n−1

k

)

a

⎞
⎟⎟⎠

⎞
⎟⎟⎠
.

▪

Let ≥𝛿
 =

{
B ∈  ∶ 𝑑(B, ) ≥ 𝛿

(
n−k

k

)}
and <𝛿

 = ⧵
≥𝛿
 . There is a nearly identical

lemma for ≥𝛿
 as well.

Lemma 3.2. If 𝛿 = 𝜔

(
k

n

log log
(

n−1

k

)

log
(

n−1

k

)
)

and 𝛿 ≤ 1∕2, then the number of ≥𝛿
 across all  ∈  1

x (a)

is at most exp

(
o

(
a log

(
n−1

k

)

a

))
.

The proof is essentially the same as the proof of the lemma for ≥𝛿
 , except that we use D =

(
n−k

k

)
,

p1

p0

log log
(

n−1

k

)
= o(1), and for  ⊆  randomly chosen with probability p1, we have

E|N(X)⧵| ≤ p1e(,) ≤ 5
p1

p0

a log

(
n−1

k

)

a
.

3.1 Large diversity when n − 2k is small

The following proposition demonstrates our most basic way to show that the  ∈  1 are not indepen-

dent in Kp(n, k) w.h.p.: we use Lemmas 3.1 and 3.2 to bound the number of choices for ≥𝛿
 and ≥𝛿

 ,

while we bound the number of <𝛿
 and <𝛿

 by controlling the size of those sets with e( ). This trick

works when n − 2k is small and a is large.

Proposition 3.3. For any constant 𝜀 > 0, when n − 2k = o(n), no  ∈  1 with log

(
n−1

k

)

a
= o(n) is

independent in Kp(n, k) w.h.p., where p = (1 − 𝜀)p0.

Proof. By Lemmas 3.1 and 3.2, since

n log
n

n−2k

k log
(

n−1

k

) = o(1) and
k

n

log log
(

n−1

k

)

log
(

n−1

k

) = o(1),

the number of distinct 
≥1∕2

 and 
≥1∕2

 across all  ∈  1
x (a) is at most

exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
.
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BALOGH ET AL. 17

Note that since log

(
n−1

k

)

a
= o(n) and  ∈  1,

1

2

(
n − k − 1

k − 1

)
|<1∕2| ≤ e(,) ≤ e( ) ≤

5

p0

a log

(
n−1

k

)

a
= o

(
1

p0

an

)
,

and since log
(

n−1

k

)
= Θ(n), we have |<1∕2| = o(a). Thus the number of such <1∕2 is at most

((
n−1

k

)

o(a)

)
≤ exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
.

We perform a similar calculation for <1∕2. Using Observation 2.3, (8), and n − 2k = o(n),

1

2

(
n − k

k

)
|<1∕2| ≤ e(,) =

(
n − k − 1

k

)
a + e(,) =

(
n − k − 1

k

)
a + o

(
an

p0

)
,

so |<1∕2| = o(a), and we can proceed as before.

Taking the union bound and using (8), we have that the probability some  ∈  1
x (a) is independent

is at most

exp

⎛
⎜⎜⎝
o

⎛
⎜⎜⎝
a log

(
n−1

k

)

a

⎞
⎟⎟⎠

⎞
⎟⎟⎠
⋅ (1 − p)

𝜃
1

p0
a log

( n−1
k )
a ≤ exp

⎛
⎜⎜⎝
−
𝜃

2
a log

(
n−1

k

)

a

⎞
⎟⎟⎠
.

We take a union bound over all possible choices for a and x to finish the proof. ▪

4 HITTING TIME FOR n = 2k + 1

For the entirety of this section, let n = 2k + 1, fix a constant 𝜀 > 0 sufficiently small, and let p and p′

be such that

p = 1 − 4−(1−𝜀) <
3

4
< 1 − 4−(1+𝜀) = p′.

We prove Theorems 1.3 and 1.4 in Section 4.5 as quick corollaries of a characterization of independent

sets in K𝜏super
(n, k) that holds with high probability, which we prove in Section 4.4. To get this charac-

terization, we first show in Section 4.1 that, in a rigorous sense, Kp(n, k) is a subgraph of K𝜏super
(n, k)

w.h.p. In Section 4.2, we describe a method of efficiently counting the number of possible  using

components in an auxiliary graph. We apply this method in Section 4.3 to show that no “connected”

 is independent in Kp(n, k) w.h.p., and we remove the connectedness condition in Section 4.4.

4.1 Approximation by the binomial model

Let G be a graph. Recall the definition of a random subgraph process of G: take a permutation of E(G)

uniformly at random and consider the initial segments of this permutation as a sequence of random

spanning subgraphs of G. It will be convenient for us to generalize this model to the continuous time

random subgraph process, see section 1.1 of [18], which also generalizes the Kp(n, k) model, that is,
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18 BALOGH ET AL.

the model where we include each edge independently with a fixed probability. Assign to each edge e

of G a uniformly randomly chosen real number f (e) between 0 and 1. The underlying probability space

is now the set of functions f ∶ E(G) → [0, 1] with the uniform distribution. Let Gp(f ) be the spanning

subgraph of G with E(Gp(f )) = {e ∈ E(G) ∶ f (e) ≤ p}. For deterministic p, that is, p which do not

depend on f , Gp is simply the random subgraph of G chosen by including each edge with probability

p. However, we can let p be a random variable, depending on f and thus the structure of the random

subgraph. This relates this model to the random subgraph process: with probability 1, f is injective, so

as we slowly increase p from 0 to 1, we randomly add edges one by one. We can analogously define

the hitting time qP(f ) for a monotone property P in the Gp model to be the smallest p ∈ [0, 1] such

that Gp(f ) satisfies property P. If 𝜏P is the hitting time for P in the random subgraph process, then

GqP
= G𝜏P

as distributions. Define

q1(f ) = q1(n, k, f ) = min{p ∈ [0, 1] ∶ Kp(n, k, f ) has no independent superstars},

q2(f ) = q2(n, k, f ) = min{p ∈ [0, 1] ∶ Kp(n, k, f ) has no independent near-stars}.

To prove Theorem 1.3, it suffices to show that 𝛼(Kq1(f )(n, k, f )) =
(

n−1

k−1

)
w.h.p., where the “with high

probability” is taken with respect to the uniform distribution of f ∶ E(K(n, k)) → [0, 1]. Likewise,

to prove Theorem 1.4, it suffices to show that Kq2(f )(n, k, f ) is EKR w.h.p. To this end, we first show

that p0 is a sharp threshold for both containing independent superstars and containing independent

near-stars, thus giving the bounds (1 − 𝜀)p0 ≤ q1(f ) < q2(f ) ≤ (1 + 𝜀)p0 w.h.p., for every constant3

𝜀 > 0. Proofs of the lower bound appear in [8] and [9]: a second moment calculation works for all

n > 2k+1 in [8], while the simple calculation from [9] works for a smaller range including n = 2k+1

just as effectively. We repeat the argument of [9] here for n = 2k + 1 for completeness.

Observation 4.1. There exists an independent superstar in Kp(2k+1, k) w.h.p., where p = 1−4−(1−𝜀).

That is, p < q1(f ) w.h.p.

Proof. Since the superstars based at 1 are edge-disjoint, the probability that Kp(n, k) contains no

independent superstar based at 1 is

(
1 − (1 − p)

(
n−k−1

k−1

))(
n−1

k

)

=
(
1 − 4−(1−𝜀)k

)( 2k

k

)

≤ exp
(
−4−(1−𝜀)k

(
2k

k

))
≤ exp

(
−

4𝜀k

2
√

k

)
→ 0.

▪

The following gives a proof of Theorem 1.2 for n = 2k + 1 from Theorem 1.4.

Observation 4.2. W.h.p., Kp′ (2k + 1, k) has no independent near-stars, where p′ = 1 − 4−(1+𝜀). That

is, q2(f ) < p′ w.h.p.

Proof. We call a near-star {A} ∪ (x⧵{B}), where A ∉ x and B ∈ x, maximal if A and B are

disjoint. If a nonmaximal near-star is independent, then it is contained in an independent superstar.

3In fact, 𝜀 can be taken much smaller than a constant, but for n = 2k + 1 constant 𝜀 is sufficient.
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BALOGH ET AL. 19

Therefore if there are no independent superstars and no independent maximal near-stars, then there

are no independent near-stars. Note that
(

n−k−1

k−1

)
= k is the degree of vertices of

(
[n]⧵{x}

k

)
to x. The

probability A ∉ x forms an independent superstar or maximal near-star based at x is

(1 − p′)k + kp′(1 − p′)k−1 ≤ 4k4−(1+𝜀)k.

Thus the expected number of independent superstars and maximal near-stars is at most

n
(

n − 1

k

)
⋅ 4k4−(1+𝜀)k ≤ k24−𝜀k

→ 0,

so by Markov’s inequality Kp′ (n, k) has no independent near-stars w.h.p. ▪

Going forward, the dependence of the hitting times q1(f ) and q2(f ) and random graphs Kp(n, k, f )

on f will be implicit.

4.2 Connected components

Similar to how we reduced from  1 to  2 in Section 2.2, we reduce to “connected components” to deal

with  ∈  2 with a small. Our goal is to produce a subcollection  3 of  2 such that: for  ∈  2 with

a small, there exists  ′ ∈  3 such that E( ′) ⊆ E( ), and the number of  across all  ∈  3 is

small. This reduction is helpful because it often reduces the number of  we take a union bound over.

We define  3 by a connectedness condition in an auxiliary graph. Let Jx(n, k) be the auxiliary

graph on
(

[n]⧵{x}

k

)
defined by A is adjacent to A′ if and only if N(A) ∩ N(A′) ∩ x ≠ ∅ in K(n, k), or

equivalently, |A ∪ A′| ≤ n − k.4 If A is adjacent to A′ in Jx(n, k), A and A′ are said to be 2-linked with

respect to x. For ′ ⊆  ⊆

(
[n]⧵{x}

k

)
, we say ′ is a 2-linked component of  with respect to x if

′ is a connected component of the subgraph of Jx(n, k) induced by . We say  ⊆

(
[n]

x

)
is 2-linked

with respect to x if the subgraph of J(n, k) induced by ⧵x is connected.

Let  3 = { ∈  2 ∶  is 2-linked with respect to x}. The extra condition that  3 imposes

over  2 cuts down on the number of choices for  . To see this, we need the following lemma about

counting induced connected subgraphs.

Lemma 4.3 ([13], lemma 2.1). Let G be a graph on n vertices of maximum degree at most 𝑑. The

number of A ⊆ V(G) with |A| = a such that G[A] is connected is at most n(e𝑑)a.

Since Jx(2k + 1, k) is k2-regular, we immediately get the following lemma.

Lemma 4.4. The number of  with  ∈  3
x (a) is at most

(
2k

k

)
(ek2)a for n = 2k + 1.

4.3 Small diversity and 2-linked 

Proposition 3.3 already handles with a large; the following proposition deals with when a is small.

Here we bound the number of  by counting 2-linked  with  ⊆ N( ). When a is very small,

4The Johnson “scheme” is a collection of graphs J(n, k, c), defined on
(

[n]

k

)
with U and V adjacent if and only if |U⧵V| = c

(see [25]). The Kneser graph is J(n, k, k), and J(n, k, 1) and J(n, k, n − 2k) were used to establish the main result of [10]. The

union of Jx(n, k) over all x is the union of J(n, k, c) over all c ≤ n − 2k.
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20 BALOGH ET AL.

we use a trivial bound on e( ) instead of Theorem 2.7. We extend this proposition to all  in  2 in

Section 4.4.

Proposition 4.5. No  ∈  3 with log

(
n−1

k

)

a
= 𝜔(log k) is independent in Kp(n, k) except if a = 1

w.h.p., where p = 1 − 4−(1−𝜀) and n = 2k + 1.

Proof. By Lemma 4.4, the number of 2-linked  with  ∈  3
x (a) is at most

(
2k

k

)
exp (O(a log k)) =

(
2k

k

)
exp

⎛
⎜⎜⎝
o

⎛
⎜⎜⎝
a log

(
n−1

k

)

a

⎞
⎟⎟⎠

⎞
⎟⎟⎠
,

since log

(
n−1

k

)

a
= 𝜔(log k). The number of choices for  ⊆ N(), given , is at most

(
a
(

n−k−1

k−1

)

a

)
=

(
ak

a

)
≤ exp (O (a log k)) = exp

⎛
⎜⎜⎝
o

⎛
⎜⎜⎝
a log

(
n−1

k

)

a

⎞
⎟⎟⎠

⎞
⎟⎟⎠
.

Note that e( ) ≥ a(
(

n−k−1

k−1

)
−a) ≥

7

8
ak for a ≤ k∕8, so the probability some  ∈  3

x (a) with a ≤ k∕8

is independent is at most

(
2k

k

)
exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
(1 − p)

7

8
ak

≤ 4k exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
4
−(1−𝜀)

7

8
ak

≤ 4−ak∕2,

using a ≥ 2. For a ≥ k∕8, we use (8), so the probability that some  is independent is at most

exp

⎛
⎜⎜⎝
log

(
2k

k

)
+ o

⎛
⎜⎜⎝
a log

(
n−1

k

)

a

⎞
⎟⎟⎠
− 𝜃a log

(
n−1

k

)

a

⎞
⎟⎟⎠
= exp

⎛
⎜⎜⎝
−
𝜃

2
a log

(
n−1

k

)

a

⎞
⎟⎟⎠
.

In both cases, we can take a union bound over all such a and x to finish the proof. ▪

4.4 Reduction to 2-linked components

Now we extend Proposition 4.5 from  3 to  2 by reducing  ∈  2 to its components in  3. Com-

bined with Proposition 3.3, this gives a characterization of the independent sets of Kq1
(n, k), of which

Theorems 1.3 and 1.4 are a quick corollary.

Proposition 4.6. Let H = Kq1
(n, k). W.h.p., the only  ∈  which are independent in H have the

following form:  = {A1, … ,Am} ∪ (x⧵{B1, … ,Bm}) where EH( ,x) = {A1B1, … ,AmBm} and

m <
1

4

(
n−2

k−1

)
.

Proof. Let H = Kq1
(n, k). By Observation 4.1, q1 > p w.h.p., so assume this is the case. Furthermore,

assume that H satisfies the conclusions of Lemma 2.8 and Propositions 3.3 and 4.5. Let  ∈  be

 1
0

9
8

2
4

1
8

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/rsa.2

1
0

9
0

 b
y

 U
n

iv
ersity

 O
f Illin

o
is A

t U
rb

an
a C

h
am

p
aig

n
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

6
/0

6
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



BALOGH ET AL. 21

independent in H, so by Lemma 2.8,  ∈  1
x (a) for some x. By Proposition 3.3, a <

1

3

(
n−2

k−1

)
, so let

 ′ ∈  2
x (a) be a set family given by applying Proposition 2.12 to  .

Let 1, … ,m be the connected components of  in J(n, k), and let i =  ′ ∩ N(i) for i ∈

[m]. Let i ∈ [m] be such that |i| ≥ |i|. We claim that, with the assumptions on H, |i| = |i| = 1.

Since there are no edges in Jx(n, k) between distinct i, the N(i) ∩x and thus the i are pairwise

disjoint. Because  ′ ∈  2, we have

m∑
i=1

|i| = | ′ | = | ′ | =
m∑

i=1

|i|. (12)

With our claim that |i| ≥ |i| implies |i| = |i| = 1, this gives that |i| = |i| = 1 for all

i ∈ [m], Let i = {Ai} and i = {Bi}. Since the N(i) are disjoint, we have that  ′ = {A1, … ,Am}∪

(x⧵{B1, … ,Bm}) where EH(
′,x) = {A1B1, … ,AmBm}. By construction,  =  ′ , so unless

 =  ′ ,  will contain some edge AiBi. Thus  =  ′, and  has the desired structure.

All that remains is to prove the claim. Since |i| ≤ a <

(
n−2

k−1

)
, by Lemma 2.11, |N(i) ∩x| ≥

|i|, so there exists ′ of size |i| such that N(i)∩ ′ ⊆ ′ ⊆ N(i)∩x. Let  ′′ = i∪(x⧵
′),

and observe that

E( ′′) = E(i) ∪ E(i,′) ⊆ E( ) ∪ E(i,N(i) ∩  ′ ) ⊆ E( ′).

By Observation 2.2, for any y ∈ [n] with y ≠ x,

| ′′⧵y| ≥ | ′⧵y| − |′| − | | ≥
(

n − 2

k − 1

)
− 3a > a ≥ |i| = | ′′⧵x|,

which follows since a <
1

4

(
n−2

k−1

)
by Proposition 3.3. Thus x ′′ = x and so  ′′ = i,  ′′ = ′, and

 ′′ ∈  3
x (|i|). Since H satisfies the conclusion of Proposition 4.5, we must have a ′′ = 1, so |i| = 1.

If |i| = 0, then i ∪x is an independent superstar in H, which is forbidden. Thus |i| = |i| = 1.▪

4.5 Proof of Theorems 1.3 and 1.4

Compiling the results of this section, we first prove the simpler Theorem 1.4 and then Theorem 1.3.

Proof of Theorem 1.4. Let H = Kq2
(n, k). By Proposition 4.6, since q1 < q2, w.h.p. the only set

families in  which are independent in H are {A1, … ,Am}∪ (x⧵{B1, … ,Bm}) where EH( ,x) =

{A1B1, … ,AmBm}. But {A1} ∪ (x⧵{B1}) is a near-star, which is not independent in H. Thus no

 ∈  is independent in H w.h.p., as desired. ▪

Proof of Theorem 1.3. Let H = Kq1
(n, k). Consider a set family  ⊆ V(H) of size

(
n−1

k−1

)
+ 1 which

is independent in H. Let x minimize |x⧵ |, and let B ∈ x ∩ . By Proposition 4.6, w.h.p. ⧵{B} =

{A1, … ,Am} ∪ (y⧵{B1, … ,Bm}), for some y ∈ [n], where EH(⧵{B},y) = {A1B1, … ,AmBm}.

This means that |y⧵ | <
1

4

(
n−2

k−1

)
, so by Observation 2.2, y = x. Thus B = Bi for some i, so 

contains the edge AiBi, a contradiction. ▪

Remark. It is straightforward to generalize the proofs in this section to all k with n − 2k = o(n).

The main difference is that the degrees in the auxiliary graph Jx(n, k) increase, but not so dramatically
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22 BALOGH ET AL.

when n−2k = o(n). However, for say n = 4k, the graph Jx(n, k) becomes complete, and so Lemma 4.3

no longer provides an efficient way to count the number of  .

One may also obtain hitting time results for k = o(n) via a different approach, namely a careful

modification of the argument in [9], which is a slight variation on the argument in [8]. For  with

small a one counts maximal independent sets in K(n, k), while  with large a are already handled

by Lemma 2.8 and (9), which imply

log

(
n−1

k

)

a
>

𝜃

5
⋅

n − 2k

n
log

(
n − 1

k

)
∼ k log

n

k
.

When k is very small, further methods from [8] must be used. One must also be careful with the choice

of 𝜀, as a constant 𝜀 does not work with these techniques. Unfortunately, these techniques break down

when k = Ω(n) and in that case only handle  with a = o(n).

5 SHARP THRESHOLD FOR n ≤ Ck

As Theorem 1.2 is proven for n = 2k + 1 in Section 4, and Das and Tran [9] proved Theorem 1.2 for

k ≤ n∕C for some constant C, we assume for this section that 2k + 1 < n < Ck, fixing this constant C

sufficiently large. Additionally fix a constant 𝜀 > 0 sufficiently small, and let p = (1 + 𝜀)p0.

In Section 5.1, we prove an important assumption about K(1+𝜀)p0
(n, k) that we are unable to make

about the hitting time version K𝜏near
(n, k). Given this, in Section 5.2 we show that for every  in consid-

eration, |<𝛿
 | is small, and so, with Lemma 3.1, the number of choices for  is small. When n − 2k

is small, this allows us to quickly finish in Section 5.3. Otherwise, this allows us to eliminate those 

with e( ) large from consideration in Section 5.4. Finally, in Section 5.5 we deal with counting <𝛿 ,

and we wrap up the proof of Theorem 1.2 in Section 5.6.

While our proof likely works for smaller 𝜀, giving tighter bounds on the “width of the window” for

this threshold, we do not optimize our choice of 𝜀 here, mostly because we think the stronger hitting

time version of Conjecture 1.5 ought to be true.

5.1 Minimum degree assumption

First we show that not only are near-stars not independent in Kp(n, k) w.h.p., but every superstar

contains at least 𝛿k edges in Kp(n, k) for some constant 𝛿 > 0.

Lemma 5.1. Let H = Kp(n, k), where p = (1 + 𝜀)p0. There exists a constant 𝛿 = 𝛿(𝜀) > 0 such that,

w.h.p., for every x ∈ [n] and A ∈
(

[n]⧵{x}

k

)
, we have 𝑑H(A,x) ≥ 𝛿k.

Proof. Let x ∈ [n] and S ∈
(

[n]⧵{x}

k

)
. Let

𝛿 =
𝜀2(1 + 𝜀) log

(
n
(

n−1

k

))

25k
,

and note that 𝛿 is constant, since log
(

n
(

n−1

k

))
= Θ(k). Since 𝑑H(A,x) is binomially distributed

with mean

p
(

n − k − 1

k − 1

)
= (1 + 𝜀) log

(
n
(

n − 1

k

))
= 25𝛿k∕𝜀2,

 1
0

9
8

2
4

1
8

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/rsa.2

1
0

9
0

 b
y

 U
n

iv
ersity

 O
f Illin

o
is A

t U
rb

an
a C

h
am

p
aig

n
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

6
/0

6
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



BALOGH ET AL. 23

by Lemma 1.7, the probability that 𝑑H(A,x) is less than 𝛿k is at most

exp
(
−
(

1 − 2
√
𝜀2∕25

)
(1 + 𝜀) log

(
n
(

n − 1

k

)))
≤

(
n
(

n − 1

k

))−1−𝜀∕2

.

Taking the union bound over all n
(

n−1

k

)
choices for x and A, the lemma follows. ▪

We fix the 𝛿 given by Lemma 5.1 for the remainder of this section. The specific value of 𝛿 is not

important; all that matters is that 𝛿 remains constant as n → ∞.

Remark. Lemma 5.1 already implies that  with a < 𝛿k are not independent in Kp(n, k) w.h.p. This

is because for such  ,  is too small to absorb all the edges from a single vertex of  .

5.2 Few vertices of low degree in 

Vertices of with low degree to in K(n, k) will likely have relatively low degree to  in Kp(n, k).

But if Kp(n, k) satisfies the minimum degree assumption, then there must be edges between  and

 , so  is not independent. We formalize this with the following lemma, which upper bounds the

number of vertices of  with low degree to  and with Lemma 3.1 upper bounds the total number

of choices for  . Let

 4 =

{
 ∈  1 ∶

||||
<1∕

√
k



|||| ≤
a

log log k

}
.

Proposition 5.2. No  ∈  1⧵ 4 is independent in Kp(n, k) w.h.p., where p = (1 + 𝜀)p0.

Proof. Let H = Kp(n, k), and consider  ∈  1
x (a)⧵

4
x (a). For A ∈ 

<1∕
√

k

 , 𝑑H(A, ) is binomially

distributed with mean p𝑑K(n,k)(A, ) ≤ (1+ 𝜀)
1√
k

log
(

n−1

k

)
. By Lemma 1.7, the probability that this

degree is at least 𝛿k is at most

exp

⎛
⎜⎜⎝
−𝛿k log

𝛿k

e(1 + 𝜀)
1√
k

log
(

n−1

k

)
⎞
⎟⎟⎠
≤

(
n − 1

k

)−3 log log k

.

Since the edges incident between different A ∈  and  are distinct, the probability that every

A ∈ 
<1∕

√
k

 satisfies 𝑑H(A, ) ≥ 𝛿k is at most
(

n−1

k

)−3a

. If for some A ∈  , 𝑑H(A, ) < 𝛿k,

but 𝑑H(A,x) ≥ 𝛿k, then  is not independent. By (5), applying the union bound over all  yields

that the probability that some  ∈  1
x (a)⧵

4
x (a) is independent, and H satisfies the minimum degree

assumption, is at most

((
n−1

k

)

a

)((
n−1

k−1

)

a

)(
n − 1

k

)−3a

≤

(
n − 1

k

)−a

.

Taking a union bound over all a and x and applying Lemma 5.1 finishes the proof. ▪

Using the definition of  4, we can conclude the following.

Lemma 5.3. The number of  across all  ∈  4
x (a) is at most exp

(
o

(
a log

(
n−1

k

)

a

))
.
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Proof. By Lemma 3.1, since

1√
k
= 𝜔

⎛⎜⎜⎝
n log

n

n−2k

k log
(

n−1

k

)
⎞⎟⎟⎠
,

the number of 
≥1∕

√
k

 across all  ∈  1
x (a) is at most

exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
.

Since
||||

<1∕
√

k



|||| = o(a) for all  ∈  4
x (a), the number of choices for 

<1∕
√

k

 is at most

((
n−1

k

)

o(a)

)
= exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
.

Multiplying these counts finishes the proof. ▪

5.3 When n − 2k is small

When n − 2k = o(n), we can essentially repeat the proof of Proposition 4.5, although the calculations

are easier this time around.

Proposition 5.4. When n − 2k = o(n), no  ∈  2 ∩  4 with log

(
n−1

k

)

a
= 𝜔

(
log

(
n−k−1

n−2k

))
is

independent in Kp(n, k), where p = (1 + 𝜀)p0

Proof. By Lemma 5.3, the number of  across all  ∈  4
x (a) is at most

exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
.

Recall that for  ∈  2,  ⊆ N( ). Given , the number of choices for  ⊆ N() is at most

(
a
(

n−k−1

k−1

)

a

)
=

(
a
(

n−k−1

n−2k

)

a

)
≤ exp

(
a log

(
n − k − 1

n − 2k

))
≤ exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
.

Using (8), the probability that some  ∈  4
x (a) is independent is at most

exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠
− (1 + 𝜀)𝜃a log

(
n−1

k

)

a

⎞⎟⎟⎠
≤ exp

⎛⎜⎜⎝
−
𝜃

2
a log

(
n−1

k

)

a

⎞⎟⎟⎠
.

Taking a union bound over all a and x finishes the proof. ▪
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5.4 Few disjoint pairs in 

In the next subsection, we need lower bounds on e(,) = e( ) − e(). Unfortunately, lower bounds

for just e( ) are given in Theorem 2.7, so we supply an upper bound on e() here. Let

 5 =
{
 ∈  4 ∶ e( ) ≤

1

2
e( )

}
.

Corollary 5.5. No  ∈  4⧵ 5 is independent in Kp(n, k) w.h.p., where p = (1 + 𝜀)p0.

Proof. By Lemma 5.3, the number of  across all  ∈  4
x (a) is at most

exp

⎛
⎜⎜⎝
o

⎛
⎜⎜⎝
a log

(
n−1

k

)

a

⎞
⎟⎟⎠

⎞
⎟⎟⎠
.

The probability that a particular  is independent, where  ∈  4⧵ 5, is (1 − p)e() ≤ (1 − p)
1

2
e( ),

so the probability that some  ∈  4
x (a)⧵

5
x (a) is independent is at most, using (8),

exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠
−

1

2
𝜃a log

(
n−1

k

)

a

⎞⎟⎟⎠
.

A union bound over all choices of a and x finishes the proof. ▪

5.5 When n − 2k is large

If the number of  across all  ∈  5
x (a) were small, then we could proceed as in Proposition 5.4.

Lemma 3.2 guarantees few choices for 
≥𝜂

 for reasonable 𝜂, so we could try to prove that there are

few choices for 
<𝜂

 . Unfortunately, the strategy we used for 
<𝜂

 will not work here, since although

we can make a similar minimum degree assumption, there would be no analogue of Proposition 5.2,

as eH( ) = 0 does not guarantee that eH(,) = 0.

In fact, we are unable to have good control of |<𝜂| for reasonable 𝜂. Instead, by tak-

ing a union bound over all  and 
≥𝜂

 , we will show that w.h.p. there are many edges

between  and 
≥𝜂

 for every  — too many to be absorbed by 
<𝜂

 , so these  cannot be

independent.

Proposition 5.6. When n − 2k = 𝜔(log n) and k = 𝜔(1), no  ∈  5 is independent in Kp(n, k)

w.h.p., where p = (1 + 𝜀)p0.

Proof. Let H = Kp(n, k). Consider  ∈  5
x (a). Define

𝜂 =
𝜃e−81∕𝜃

16
⋅

k

n − k
⋅

log

(
n−1

k

)

a

log
(

n
(

n−1

k

)) ≥ Ω
(

k

n − k
⋅

n − 2k

n

)
,
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which follows from Lemma 2.9. By Lemma 5.3, the number of  across all  ∈  5
x (a) is at most

exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
.

By Lemma 3.2, the number of distinct 
≥𝜂

 across all  ∈  3 is at most

exp

⎛⎜⎜⎝
o

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
,

since

𝜂 = Ω
(

k

n
⋅

n − 2k

n

)
= 𝜔

⎛
⎜⎜⎝

k

n

log log
(

n−1

k

)

log
(

n−1

k

)
⎞
⎟⎟⎠
.

Thus the number of (,≥𝜂) pairs is at most

exp

⎛
⎜⎜⎝
o

⎛
⎜⎜⎝
a log

(
n−1

k

)

a

⎞
⎟⎟⎠

⎞
⎟⎟⎠
.

Observe that eH(,≥𝜂) is binomially distributed with mean

peK(n,k)(,≥𝜂) ≥
1

2
(1 + 𝜀)p0e( ) ≥

𝜃

2
a log

(
n−1

k

)

a
.

By Lemma 1.7, the probability that eH(,≥𝜂) ≤
𝜃

16
a log

(
n−1

k

)

a
is at most

exp

⎛⎜⎜⎝
−Ω

⎛⎜⎜⎝
a log

(
n−1

k

)

a

⎞⎟⎟⎠

⎞⎟⎟⎠
.

We may take the union bound over all such  , a, and x to get that, w.h.p., eH( ,
≥𝜂

 ) ≥
𝜃

16
a log

(
n−1

k

)

a

for all  ∈  5.

Similarly, observe that eH(,<𝜂) is binomially distributed with mean

peK(n,k)(,<𝜂) ≤ (1 + 𝜀)p0|<𝜂|𝜂
(

n − k

k

)
≤ (1 + 𝜀)

𝜃

16
e−81∕𝜃a log

(
n−1

k

)

a
,

where in the second inequality we simply used |<𝜂| ≤ a. By Lemma 1.7, the probability that

eH(,<𝜂) ≥
𝜃

16
a log

(
n−1

k

)

a
is at most

exp

⎛⎜⎜⎝
−5a log

(
n−1

k

)

a

⎞⎟⎟⎠
.
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Using (5), we can take a union bound over all  ∈  3
x (a), and then union bound over all a and x. Thus

w.h.p., eH(,<𝜂) <
𝜃

16
a log

(
n−1

k

)

a
for all  ∈  5.

Thus w.h.p., for all  ∈  5,

eH( , ) ≥ eH( ,
≥𝜂

 ) − eH( ,
<𝜂

 ) > 0,

so no such  is independent in H. ▪

5.6 Proof of Theorem 1.2

Proof of Theorem 1.2. By Lemma 2.8, the only  ∈  which are independent in Kp(n, k) are in  1

w.h.p.

For n − 2k ≤
√

n, say, Proposition 3.3 gives that the only  ∈  1 which are independent in

Kp(n, k) satisfy log

(
n−1

k

)

a
= o(n). For each such  , there exists  ′ ∈  2 with E( ′′) ⊆ E( ) by

Proposition 2.12. Since

log
(

n − k − 1

n − 2k

)
= O

(
(n − 2k) log

n

n − 2k

)
= o(n),

Propositions 5.2 and 5.4 show that  ′ is not independent w.h.p., completing the proof for n−2k ≤
√

n.

For n − 2k ≥
√

n, Proposition 5.2 gives that the only  ∈  1 which are independent in Kp(n, k)

are in  4. The theorem then follows from Corollary 5.5 and Proposition 5.6. ▪
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Erdős–Ko–Rado theorem, Random Struct. Algorithms. 62 (2023), 3–28. https://doi.org/10.

1002/rsa.21090

 1
0

9
8

2
4

1
8

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/rsa.2

1
0

9
0

 b
y

 U
n

iv
ersity

 O
f Illin

o
is A

t U
rb

an
a C

h
am

p
aig

n
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

6
/0

6
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se


	{Sharp threshold for the Erd&odblac;s--Ko--Rado theorem}
	1 Introduction
	1.1 Standard estimates and notation

	2 Preliminaries
	2.1 Bounding [[math]]
	2.2 Neighborhood assumption

	3 Main lemma
	3.1 Large diversity when [[math]] is small

	4 HITTING TIME FOR [[math]]
	4.1 Approximation by the binomial model
	4.2 Connected components
	4.3 Small diversity and 2-linked [[math]]
	4.4 Reduction to 2-linked components
	4.5 Proof of Theorems 1.3 and 1.4

	5 SHARP THRESHOLD FOR [[math]]
	5.1 Minimum degree assumption
	5.2 Few vertices of low degree in [[math]]
	5.3 When [[math]] is small
	5.4 Few disjoint pairs in [[math]]
	5.5 When [[math]] is large
	5.6 Proof of Theorem 1.2


	References

