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1 | INTRODUCTION

For a positive integer n, we denote by [n] the set {1,2, ... ,n}. For a set A, we denote by (2)

(resp. (fk )) the collection of all subsets of A of size (resp. at most) k.

]

For positive integers n and k, the Kneser graph K(n, k) is the graph on <[Z ), where two sets are

matching, and K(n, 1) is a complete graph, so we assume from now on that n > 2k + 1 and k > 2.
The independent sets of K(n, k) are k-uniform intersecting families, important objects of research in
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extremal combinatorics. For x € [n], we call K, = {S S ( [Z] ) ‘xX€ES } the star based at x. Note that

n—1

K, is an independent set of K(n, k) of size ( i

). The classical Erd6s—Ko—Rado theorem [11] states

that a(K(n, k)) = (Z:: ) when n > 2k, where a(G) is the maximum size of an independent set in G.
An extension by Hilton and Milner [17] implies that every maximum independent set of the Kneser
graph is a star, when n > 2k + 1.

Let K,,(n, k) be arandom spanning subgraph of K(n, k), where each edge is included independently
with probability p = p(n, k). If E = E(n, k) is an event defined on the probability space associated with
K,(n, k), we say E occurs with high probability (w.h.p.) if the probability of E tends to 1 as n — oo.
In general, we consider k to depend on n, so we need only take n — oo. Bollobas, Narayanan, and
Raigorodskii [8] proposed a random variant of the Erd6s—Ko—Rado theorem, following a recent trend
of so-called transference results.

Question 1.1 ([8]). For what p does a(K,(n, k)) = a(K(n, k)) with high probability?

Informally, this is asking whether the Erd6s—Ko—Rado theorem still holds if we “forget” that a
randomly selected portion of disjoint pairs are in fact disjoint. Since the probability that a(K,(n, k)) =

N
ﬂémw»=(ggwhp

An obvious necessary condition to a(K,(n, k)) = (

("_l ) increases with p, to answer Question 1.1, one wants to determine the “smallest” p for which

k
sets. A superstar based at x is a set family of the form {A} U K, where A ¢ K,. Thus a(K,(n, k)) >

:: ) is the maximality of stars as independent

(Z:: ) if there exists a superstar spanning an independent set. The expected number of independent

superstars in K, (n, k) is

n (" a-plE,

k

which changes from o(1) to w(1) when p = pg, where

3/4, it n=2k+1, n
P e (n (7)) () ik, |

and log denotes the natural logarithm. The only reason that n = 2k + 1 seems different is because we
lose the approximation 1 — pg ~ e in that case. A straightforward second moment calculation (see
[8], [9], or Observation 4.1) gives that for every constant € > 0, for every p < (1 — €)po, K,(n, k) has

an independent superstar w.h.p., and thus a(K,(n, k)) > <Z:i ) w.h.p.
When they posed Question 1.1, Bollobas, Narayanan, and Raigorodskii [8] effectively answered it

for k = o(n'/3). They showed that for all constant € > 0, for all p > (1 + €)po, a(K,(n,k)) = (Z::)
w.h.p., showing that p, is a “sharp threshold function” for this problem when k = o(n'/?). Subsequently,
Balogh, Bollobas, and Narayanan [2] made progress on Question 1.1 for all £ < (% — y)n, for every
constant y > 0. Das and Tran [9] formulated a removal lemma for K(n, k), showed that pg is a sharp
threshold function for k < n/C, for some constant C, and showed that p, is a “coarse” threshold

function for k < (%—y)n, for every constant y > 0, meaning that there exists some constant ¢ = c(y) > 1

such that for all p > cpo, a(K,(n,k)) = (Z:i ) Concurrently, Devlin and Kahn [10] showed that pg
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BALOGH ET AL. WILEY 5

is a coarse threshold function for all n > 2k + 1, that is, they removed the dependence of ¢ on y. In
particular, they made the first progress on Question 1.1 for n = 2k + 1, showing that for some £ > 0,
a(Ki-o(2k+1,k)) = (kz_kl ) w.h.p. What remains is to show that py is a sharp threshold for k > n/C,
which is what we do in the present work.

In fact, we can prove something stronger, as most previous papers have done: above a threshold,
not only are stars maximum independent sets, but they are unique. We say that a spanning subgraph
of K(n, k) is EKR if every maximum independent set is a star. Clearly, if K,(n, k) is EKR w.h.p., then

a(K,(n,k)) = <Z:i ) w.h.p. Thus, to resolve Question 1.1, it suffices to show that for p > (1 + €)py,
K,(n, k) is EKR w.h.p.

Theorem 1.2. Let € > 0 be a constant. If n > 2k +1 and p > (1 + €)po, then K,(n, k) is EKR w.h.p.

Perhaps Theorem 1.2 does not completely resolve Question 1.1 because of the €. Bollobas,
Narayanan, and Raigorodskii [8] raise the natural question of determining the “width” of the sharp
threshold for Question 1.1: roughly, how small, in terms of n and k, may we take € in Theorem 1.2?
Das and Tran [9] proved Theorem 1.2 for all £ > % and k < n/C. Such tight control of € and the
definition of py indicate that in some sense the independence of superstars is the most difficult obsta-
cle to overcome for a(K,(n, k)) to equal (Zj ) Das and Tran [9] suggested a stronger, hitting time
version of Question 1.1 to capture this notion.

To give the statement, we need to consider the random subgraph process. Consider a graph G,
and let ey, ... , e, be the edges of G. Given a permutation # : E(G) — [m], we define G;(r) to be
the spanning subgraph of G with edges e satisfying z(e;) < i. Note that G;(x) has exactly i edges.
If we select 7 uniformly at random, we can think of the sequence G(x), G2(x), ... , G,(x) as adding
one edge of G picked uniformly at random to V(G) until there are no more edges to be added. For a
monotone property P which G satisfies, we define the hitting time 7p to be the minimum i such that
G; satisfies property P. Note that zp is a random variable depending on the permutation x, and G, is
a random subgraph of G satisfying property P, but G, is not necessarily chosen uniformly from all
such subgraphs.

For n = 2k + 1, we prove that as soon as stars are maximal independent sets, stars are maximum
independent sets w.h.p., where the “with high probability” is in the context of the underlying probability
space of the random subgraph process. To be precise, let

Tsuper = Min{i : K;(n, k) has no independent superstars},

0 =min{i © a(Ki(n, k) = (Z:})}

Theorem 1.3.  With high probability, 7o, = Tsuper when n = 2k + 1.

This theorem reduces Question 1.1 to: for what p is it true that K,(n,k) has no independent
superstars? We defined py to answer this question, so with an easy first moment calculation (see

Observation 4.2), Theorem 1.3 gives the sharp threshold for a(K,(2k + 1,k)) = ( k2_k1 )

Analogously, we can prove a hitting time theorem for the EKR property, the property that stars
are the unique maximum independent sets. A near-star based at x is a set family of the form {A} U
(K \{B}), where A ¢ K, and B € K,. The obvious necessary condition to K,(n, k) being EKR is that

there are no independent near-stars. Let
Tnear = Min{i : K;(n, k) has no independent near-stars},

tgxkr = min{i : K;(n, k) is EKR}.
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6—I—W[ LEY: BALOGH ET AL.

Theorem 1.4. W.h.p, Tgkr = Tnear When n = 2k + 1.

In fact, py is a sharp threshold function for both lacking independent superstars and lacking inde-
pendent near-stars, so Theorem 1.4 proves Theorem 1.2 for n = 2k + 1. But since Tgper < Tnear
deterministically, neither Theorem 1.3 nor Theorem 1.4 implies the other.

A full resolution of Question 1.1 would be the proof of hitting time theorems for all n and k. We
believe this ought to be true.

Conjecture 1.5. W.h.p., for all n > 2k + 1, T4 = Tguper and Tnear = TEKR-

Our methods for Theorems 1.4 and 1.3 extend easily to when n — 2k = o(n), and a careful analysis
of [8, 9] proves Conjecture 1.5 when k = o(n). To name a particular case of Conjecture 1.5 which we do
not know how to solve, consider n = 4k. See Section 4.5 for some technical remarks on Conjecture 1.5.

Having fully addressed Question 1.1, we now propose an extension of Theorems 1.3 and 1.4, and
we mention other modern extensions of the Erd6s—Ko—Rado theorem. With our techniques, one should
be able to obtain finer information about the independent sets of K,(n, k) for arbitrary p, possibly
answering the following generalization of Question 1.1: what is the size of the largest independent set
of K,(n, k) not contained in a star? Conjecture 1.5 determines when the size of the largest independent

set not contained in a star is at most (::: ) — ¢+ 1,for ¢ € {1,2}. The Hilton—Milner theorem [17]

states that the largest independent set of K(n, k) not contained in a star has size (Z:} ) _ (n;il ) +1.

Thus we can formulate a generalization of Conjecture 1.5 as follows. Define
7, =min{i : forevery x € [n] and A & Ky, dk ni(A, Ky) >},

where dg(v, S) is the number of neighbors in G of vin § C V(G). Note that 71 = Typer, T2 = Tnear, and
for ¢ = (";ﬁl >, 70 = |E(K(n, k))| always. In this way, the 7, /|E(K(n, k))| fill the space between pg
and 1.

Question 1.6.  Does the largest independent set of K, (1, k) not contained in a star have size (Z:: ) —
¢ + 1 with high probability?

We hesitate to call this a conjecture, because while presumably our techniques would work for
small Z, the situation for large £ is less clear.

Our proof method does not require too much structural information about K(n, k); in fact, all that
is needed is some regularity in the degrees, that the maximum independent sets are “spread out” in
some sense, and some edge-isoperimetry, which is some upper bound on the number of edges a set of
vertices can contain. The Kneser graph is a special class of so-called distance graphs, where similar
problems have been studied [7], so it is likely our methods may be applied there as well. Arguably
the most studied distance graph is the hypercube. There are many results concerning various graph
parameters of the (edge-)random subgraph of the hypercube; see [21] for a comprehensive, but slightly
outdated, survey. After writing this paper, we learned that some of those results use a method similar
to our Lemma 3.1. In particular, Kostochka [20] gives a result similar to our Lemma 3.1 but in greater
generality.

A more difficult, but natural, random variant of the Erd6s—Ko—Rado theorem was proposed by
Balogh, Bohman, and Mubayi [1]: instead of taking a random spanning subgraph of K(n, k), we take a
random induced subgraph of K(n, k), including each vertex with probability p. For what p is a maximum
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BALOGH ET AL. WILEY 7

independent set of this random induced subgraph contained in a star? This is more naturally stated in
the hypergraph version of the Erd6s—Ko—Rado theorem, where we retain hyperedges with probability
p. Balogh, Bohman, and Mubayi [1] proved a number of results, mostly for k < n'/27%. This is a
particularly difficult problem because the property of interest is not monotone; for small p and large
p the property holds, but sometimes for some p in between, the property does not hold. Hamm and
Kahn improved the results for n? <« k < %\/nlogn [15] and n = 2k + 1 [16]. Gauy, Han and
Oliveira [14] extended [1] and gave the asymptotic size of largest intersecting family for all k and
almost all p. Balogh, Das, Delcourt, Liu, and Sharifzadeh [3] gave additional results up to k < n/4,
but generally not as tight as [15]. Hamm and Kahn [16] optimistically conjecture that, just like in the
problem addressed in this paper, the maximum independent sets are contained in stars (roughly) when
the stars induce maximal independent sets.

Balogh, Das, Delcourt, Liu, and Sharifzadeh [3] also study the enumeration variant of the
Erd6s—Ko—Rado theorem, determining the order of magnitude of the log of the number of indepen-
dent sets in K(n, k). Balogh, Das, Liu, Sharifzadeh, and Tran [4] and independently Kupavskii and
Frankl [12] strengthened this to say that most independent sets of K(n, k) are contained in stars for
n > 2k + cy/klogk, where c is a large constant in [4] and ¢ = 2 in [12]. Balogh, Garcia, Li, and
Wagner [5] push this cy/klogk down to 1001logk. They conjecture it is true down to n > 2k + 2,
since a simple computation shows that the families which show the tightness of the Hilton—Milner
theorem [17] outnumber the trivial families for n = 2k + 1.

The rest of the paper is organized as follows. In Section 2 we collect results from prior works
that we use in our proofs. In Section 3 we prove a lemma on counting sets of vertices of K(n, k), in
a similar spirit to the container method [6, 26]. We prove Theorems 1.3 and 1.4 in Section 4 almost
simultaneously, definitively answering the n = 2k + 1 case of Question 1.1. Section 4.5 contains some
technical remarks concerning Conjecture 1.5. In Section 5, we prove Theorem 1.2 for 2k+1 < n < Ck,
where C is a large constant, the other cases being proven by Theorem 1.4 or [8, 9].

1.1 | Standard estimates and notation

All logarithms are base e. We make extensive use of standard asymptotic notation to simplify our
calculations. We say f(n) = O(g(n)) (resp. f(n) = Q(g(n))) if there exists C > 0 such that f(n) < Cg(n)
(resp. f(n) > Cg(n)) for all n sufficiently large. If f(n) = O(g(n)) and f(n) = Q(g(n)), then we say
f(n) = ©(g(n)). We say f(n) = o(g(n)) (resp. f(n) = w(g(n))) if f(n)/g(n) — 0 (resp. o) as n — oo.
Since there is only one variable, n, tending to infinity, with the other variables being clearly dependent
or clearly independent of n, we find the asymptotic notation unambiguous. Still, we use the notation
judiciously. If desired, one could eliminate the use of asymptotic notation from this paper entirely,
being explicit throughout with constant or logarithmic factors.

We often make use of the standard bound (E)s < <:> < (%)S in the weaker form

(5)-(£,)=ew (0 (see5)).

for s < .99r. We also use the following version of the Chernoff bound. We use IP(E) to denote the

probability of the event E and E[X] to denote the expected value of a random variable X.

Lemma 1.7 (Chernoff Bound). If X is binomially distributed with mean u, then for 0 < a < 1 and
1 < f, we have the lower tail bound
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PX <ap) <exp(—(1 —a+ aloga)u) < exp (—(1 — 2\/&);4) , 2)
and the upper tail bound

P(X > pu) <exp(—=(1 — f + Blog f)u) < exp (—uplog(B/e)). 3

2 | PRELIMINARIES

We make the dependence of k on n explicit wherever possible, and we assume that 7 is sufficiently
large for our calculations to go through. In Section 4, we consider only n = 2k+ 1, and in Section 5 we
consider only 2k+1 < n < Ck, where C is a sufficiently large constant, since Theorem 1.2 was already
proven for n > Ck in [8, 9]. Despite this, we try to make statements not assuming any relationship
between k and n so that our intermediate results are as useful as possible.
Let 7 = {F C V(K(n,k)) : |F| = (Z:: ) ,F is not a star}. By the union bound, the probability
that K,(n, k) is not EKR is at most
> =py. “)

FeT

We are done if we can show that (4) is o(1) for the desired p. Unfortunately, 7 appears to be too large

for this strategy to give a sharp threshold. Our strategy is to use the lower bounds on e(F) from [9, 10],

refine 7, and give improved bounds on the size of the refinement to make this strategy successful.
First, we introduce a framework which appeared in [10], although similar ideas appear in prior

papers. Consider F C V(K(n, k)) of size (Z:i ) Let xz be the smallest x € [n] minimizing |F\K,|.
For ease of notation here, we write x for xz. Let Ar = F\K,, and ar = | Ar|. This ar measures the
“distance” from F to the nearest star.! Let By = IC,\F, so that | Br| = ar since |F| = |K,|. Note that

Ar C <['1]><{X} > and Br C K,; by Ar and Br we mean Ay = <[n]>{x} > \Ar and Br = K\Br =

K.NF.Since Br is an intersecting set system, E(F), the set of edges spanned by F, is partitioned into
E(Ar) and E(Ar, Br), the set of edges with one endpoint in A7 and the other in Br. We mostly focus
on the bipartite structure between Ay and Br.? but whenever we discuss neighborhoods, denoted by
N(A) for A C V(K(n, k)), and edges, with e(A) = |E(A)| and e(A, A") = |E(A, A")|, the context is
always K(n, k) unless explicitly stated otherwise. To summarize,

F = Ar U (K., \Br),

where x7 is chosen to minimize |.Ar| = |Br|. Note that if ar = 0, then F is a star, and if ar = 1, then
F is a near-star. We drop the F subscript when it is clear from context.

We begin with three helpful observations about the above framework. First, by a simple averaging
argument, we observe that for every F € T, ar is not too large.

Observation2.1. Forevery F € T, ar < "T—k (z:} )

'In [23], ar is called the diversity of F. The earliest extensions of the Erd6s—Ko—Rado theorem, for example [17], gave the
maximum size of independent 7 C V(K(n, k)) satisfying restrictions on a.

21t can be helpful to see the hypercube in disguise in these definitions. If one takes the complements of every set of Ay in
[7]\{x}, and one also removes the element x from every set of Bz, then the disjointness relation between A and B becomes
the subset-superset relation with ground set [n]\ {x}.
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BALOGH ET AL. WILEY 9

Proof.  Note that er[n] |F N K| = k|F| for any F. Thus for some x we have

-1 n—kn-1
rlcxz(” )—r K< )
P\l = () -k < 08 (G

Second, unless ar is very large, T is not close to K, for any y # xr.

Observation 2.2. Forevery F € T and y € [n] with y # xr, we have
n—2
VRS (o EYAVAE

Proof.  Observe that |F\K,| > |(K: N PI\K| > [KAK| — [KN\F| = <Zj> — [P\, [
Third, we relate e(Ar, Br) to e(Ar, Br), the latter of which is more directly related to e(F).

Observation 2.3. Forevery F € T, e(Ar, Br) = ("_];_1 ) ar + e(Ar, Br).

Proof.  The degree of vertices in <[”]>(m ) to Ky is <";ﬁ] ), while the degree of vertices in K, to
[n\{x} )+ [ n—k
( ' >1s<k>.Thus

e(Ar, Br) = (”;")ap—e<AP,Br>= (”;")ap— (n;fIl>aP+e(Ar,Er)

= <n_]]§_1>ar+e(AF,Er).

Let

T(@)={FeT :xrp=x, ar =a}.

We define subsets 77 of 7 for i € [5] as is convenient. Whenever 7 is defined, we define 7;/(a) to
be 77 N T(a). For reference, we list the definitions of all the 7 here, along with the subsection where
they first appear; we introduce them formally when we need them, so some notation is not yet defined:

n—l)
T =dFeT : eF) < 2arlog < k (Section 2.1)
Po

ar ’
T*={FeT':Br CNMUAp}, (Section 2.2)
T°={FeT?:F is2linked}, (Section 4.2)
4 1. | 4<U/Vk ar .
T =S FeT :|Ar <— >, (Section 5.2)
loglogk

7S = {T’ ETY: e(Ar) < %e(}")} . (Section 5.4)
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10_|_Wl LEY BALOGH ET AL.

As an example of how these definitions are used, in Lemma 2.8, we easily show that no F € 7’\71
is independent in K,(n, k) for p > py w.h.p., because by definition, the ¥ € 7\7 ! have many edges.
In other cases, like Proposition 2.12, we show that if some F € T1is independent in K),(n, k), then
some F € T?is independent in K,,(n, k), which reduces the problem of showing that no 7 € Tlis
independent to showing that no F € 72 is independent.

2.1 | Bounding e(F)

Since F is determined by x = xr, Ar C (["]i{x} ), and Br C K,, we trivially have

m(a>|s<<El)><<'§)>s<<"g)>2. 5)

To obtain a threshold for Question 1.1, Devlin and Kahn [10] combined (5) with the following very
nontrivial lower bound on e(F):

Theorem 2.4 ([10]). There exists ¢ > 0 such that for alln <2k +k/6and F € T,

(%)

ar

e(F)>cl<n;f;l)arlog )

k

As we are interested in all n and k, we need a lower bound on e(F) for not just n < 2k + k/6. We

can remove the assumption on » in Theorem 2.4 with a similar bound due to Das and Tran [9]. It is
implicit in their paper, so for completeness, we derive it from their removal lemma for 7.

Theorem 2.5 ([9]). There is an absolute constant D > 1 such that if n > 2k + 1 and F € T with

n—1 n—k—1 n—2k .
e(F)<p (k_l ) ( el ) where f < @002 then there is an x € [n] such that

n n—1
F\K,| <D )
IFAK < ﬂn—2k<k—1

Theorem 2.6 ([9]). There exists ¢ > 0 such that foralln >2k+1and F € T,

n—2k fn—k—-1
e(F) 2 "= ( o )ap. 7

Proof. LetF € T(a). Let D be the constant given in Theorem 2.5, and let

_ a D 2k
- s n_(n-1) = (20D)2n’
(20D) n—-2k <k—1>

which follows from a = |F\K,| < |F| = (Z:i ) Since xr = x, we have that for all stars Ky,

a n n—1
P\, > [F\KCy|=a> —%— =D ( )
P2 TP = a> 2505 = PP 5 Loy
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BALOGHET AL. WI LEY 11

Applying the contrapositive of Theorem 2.5 to 7 with the above f, we have

20T ) = ()

which proves the theorem with ¢ = 1/(20D)>. .
For convenience, we combine Theorems 2.4 and 2.6 so that they work for all » and &.

Theorem 2.7.  There exists an absolute constant 0 > 0 such that for alln > 2k+ 1and F € T,

o(F) > 0 aplog ~* 2, ®)
Po ar
and
e(F) > elar — 2k 0g<n; ! ) )

Proof.  Note that, from (1), we have
klog"  flog2
> k> g
Po=7 00N n—k—l)’
k-1 k-1

n—1
so we can replace (6) with e(F) > cpiap log <‘—'), albeit with a different constant c. For 2k+ /6 < n,
0 a},
we have

n—1
("R, tog (') B G PR RE
Ut M (r)) SN ke n
k
("")

yielding (8). Equation (9) follows d1rectly from Theorem 2.6 and (1). [

1
—alog
Po a

so by Theorem 2.6, e(F) > Cp ar log holds for all n and k, again with a different constant c,

From here on, we fix 8 sufficiently small given by Theorem 2.7. Using this, we can repeat the
argument of Devlin and Kahn [10], which is just upper bounding (4), to show that we do not need to
consider those F with e(F) large. Let

(")
T =dFeT : oF) < 2aplog
Do ar

Lemma 2.8. Assume k = w(1) and let p > on Then no F € T\T ' is independent in K,(n, k)
w.h.p.

n

Proof. Let x € [n]. By Observation 2.1, for every F € T, we have (";1 ) Jar > > 2. Hence

by (5), we have
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12 W[ LEY BALOGHET AL.

|7}(a)|5<<ng>>25exp 2a10g€("a;1> < exp <2+10§2>alog <";1>

a

Using (1 — p)*?) < exp(—pe(F)) and the union bound, the probability that some F € T (a)\7; (a) is

independent is at most
(n—l) (n—l) (n—l)
exp| |2+ 2 alog ¢ —QalogL <exp _L Ak/
log?2 a a a

]
10 70 °°%

Taking the union bound over all a, the probability that 7 € 7\7 ! with xr = x is independent is at

most
n (n—l) <";l) <n—1>
Z exp —Lalog ANLVA) I z exp —ialog Ak/
- 70 a 4 70 a
a=1 a=n+1
(%)
<nex (—Llo (n_l>>+<n_l>ex —inlo k
=P T70 8\ g Kk )EPIT70" R T
< exp(-w(logn)) + exp(—w(n)) = o(1/n),
since logn = o(log (";1 )) for k = w(1). A union bound over all x completes the proof. [

In the previous proof, we took a union bound over certain F with ar = a and xz = x, and then we
took a union bound over all a and x. Our proofs often take this form, and since the latter union bound
can often be executed as above, we omit these details going forward.

Note that if F € 7!, we get the following upper bound on ar, which will be particularly useful
when n — 2k is large.

Lemma 2.9. Forevery F € T, we have

0 n-2k n—1
5 tog (

Proof. ForF €T, by (9), we have

elarn -2k
Po

10g<n; 1) <e(F)< pioarlog

2.2 | Neighborhood assumption

Let7? = {F € T' : Br C N(A)}. Our first reduction is that for most ¥ € 7!, there exists ¥/ € 7>
such that E(F") C E(F). This is helpful because if we know that F’ is not independent, then we can
automatically conclude that F is not independent. To make this reduction, we need a lemma concerning
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BALOGHET AL. WI LEY 13

the vertex boundary of F¥ € T in K(n, k), which will also be useful for the next reduction. We derive

this from the Kruskal-Katona theorem—in fact, we only need a weaker version due to Lovéasz. For
real z, we define (i) = %ﬁkkm

Theorem 2.10 (Kruskal [22], Katona [19], Lovasz (problem 13.31(b) of [24])). Let F be a nonempty
Sfamily of k-sets, and let 7 > k be a real number such that |F| = (Z) Then for every ¢ < k,

I{S : |S] = £,3F € Fsuch that S C F}| > (;)

Lemma 2.11. Let x € [n]. For every nonempty A C <["]>{X} > with |A| < <::? ) we have IN(A) N
K| > |A|. Moreover, for every F € T.(a), we have [IN(Ar) N K| > a.

Proof.  Consider A* = {([n]\{x})\A : A€ A} C (Eﬂ:{—xf > Then |A*| = |.A| and

= [N(A) N K. (10)

{Se <[’Z]>{)1C}> : A € A* suchthat S gA}

Since | A| < (niﬁl > there exists a real number z < n—2 such that | A| = (n_i_l ) andn—k—1<z

Applying Theorem 2.10 to .A* and using (10), we have

vkl z (2 )> (5 ,) =1L (n

where the second inequality follows because (Z:f) = (}:ﬁ | ), n—k—1>k—-1,andz<n-—2.

To prove the second part of the lemma, note that by Observation 2.1, forany F € T,

n—kn-1 n—1/n-2
< =
Mrl< =) (k—l) n (k—l)’

and we are done by applying the first part of the lemma. [

Now we can give the reduction from 7! to 72, which we employ in Sections 4.5 and 5.6.

Proposition 2.12.  For every F € T\ (a) witha < 1 (

3
Ay = Ay and E(F') C E(F).

n—2

P ), there exists F' € TZ(a) satisfying

Proof. LetF € T(a). Since a < [N(Ar) N K;| by Lemma 2.11, there exists 3’ of size a such that
NAr)NBr C B CNUAr)NK,. Let F' = Ar U (K \B), so

E(F') = E(Ar) U E(AF, B') C E(AF) U E(Ar,N(AF) N Br) = E(F).
By Observation 2.2, for any y € [n] with y # x,
n—2

A2 PV =18 = (7

) —2a>a=|F\Kil.

Thus x7 = x and so F/ € T2(a) and Ap = Ap. "

rRIquoUI[U0//SANY WOl paprojuMOQ ‘T ‘€Z0T ‘81+T8601

AN £q 060 1T°8S1/Z001°01/10p/wod" Kajtm An

w1 JO Ansio

QU] uIuQ Kof1 A “USteduiey)) BuEgI 1V SIo0

UONIPUOD) PUT S A1 39S “[£Z07/90/9Z] UO Ax

sdny) st

o Ko Areaqy

® SOOILIE YO 198N JO I[N 10§ AIBIQI QUIUQ AS[IA UO (SUODIPUOD-F

25UDI] SUOWIIOD) 2ANERI) d[quatfdde o) £q PaIoAOS o



14_|_Wl LEY BALOGH ET AL.

3 | MAIN LEMMA

One might hope that, with the extra condition 7! imposes over 7, we have much stronger upper bounds
on |7;!(a)| than (5). This is the content of the following technical lemma, which is one of our main
innovations.

Note that ("Z;l > is the degree of vertices in <["]>{X} ) to K, and note that (";k> = "T_k <";le )

is the degree of vertices in K, to <[”]><{X} > For each F and 6 = 6(n, k), define A%‘s ={A e Ar :

d(A,Br) > 6 (";ﬁl > }, where d(A, Br) = [N(A) N Br|. Let A5 = Ar\Aifs. We use the structure

between Ar and By for F € T'! to give upper bounds for the number of A%‘s across all F € T;!(a).

1 n
nlog —’ =y

=2 ) and 6 < 1/2, then the number of choices for A%‘S across all

klog(”;l>
(")

F € T (a) is at most exp <0 <a10g a>>

Lemma 3.1. If 6 = co(

Proof. LetD = (";ﬁl ), and choose p; so that p; = w(1/6D) and 1’;—(‘)% log n_"Zk = o(1). This is

possible because the assumption on 6 implies that

1n n
n—2k

= 0(5D).

To each A%‘s we give a certificate (), A, A;, A3) with the following properties:

1 ygnxy |y| S3apl9

2 A CNQ), Al <22 glog
Po Ok

() vomal <a

a

3 A, CNO\AL Az £ 10g(l(n’,l)alog ( . )
k

4 A4 ("), 1451 = 0@,

5 A7 = (NO\(A1 U A)) U As.

By the last property, we can reconstruct A%‘S from its certificate. We postpone counting the number
of choices of possible certificates until after we prove the existence of such certificates.

Fix F € T,!(a), and let AZ® = A%E and A<% = A5°. We prove that there is a particular choice
of Y for which the elements of the certificate are Y, A; := N(Y)\A, Ay := W)\ A)) N A<,
and A; := AZ°\N(Y). Select a random subset Y of B, including each vertex independently with
probability p;. Then the expected size of Y is

E|Y| = ap:.
The probability that A € A2? is not in the neighborhood of Y is at most (1 — p;)??, so
E|AZ\ND)| < a(1 = p)®” < aeP = ae™V) = o(a).
Note that by Observation 2.3, Theorem 2.7, and the definition of 7,

EINVN\AI SEY dv, ) =EY Lieyd(v, A) = pie(A, B)

vey veB
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BALOGHET AL.

=p ("5 )area ) =p
w re(n(7))
0k log<”;1)

By Markov’s inequality, there exists a choice of Y such that

n—1
o ()
<pi e—z-alog Z .

+1fer)<BL.
Po

| Y| < 3ap:,
[ AZAND)] < o(a),
n—1
30n -alog 7( £ )

P
INONAT< T ;

Since N(Y)\.A; C A by definition, all that remains to be shown is the upper bound on |.A;,|. Observe

that

a

B 5 (n;l)
(1 =6)D|A%| < e(A, B) < e(F) < —alog ,
Po

so since 6 < 1/2,

n—1
<6 < k >
[As| <A™ < alog P

10
log <";1 >

We count the number of possible certificates by counting each part of the certificate sequentially.

Since p; = o(1), | Y| = o(a), so the number of choices for Y is at most
<n_1 ) (n—l )
k <exp|o alogL
o(a) a

Note that
ol < ("7 vt san ("7F),

so given Y, the number of choices for .4, is at most, using Lemma 2.9,

n—k
3ap1< . )

WILEY——%

p1 n
1\ | <exp|O - —-alog log
p, 30n (") po k "
Sp:) 0k alog 3:]("]0g<2)
(n—l) (n—l)
pr n k 6(n—k) p1 n k
< o|= . —--al 1 = A | 1

e e P I Tl | <Po kOgn—2k>aOg a

a

=exp|o|alog

rRIquoUI[U0//SANY WOl paprojuMOQ ‘T ‘€Z0T ‘81+T8601

AN £q 060 1T°8S1/Z001°01/10p/wod" Kajtm An

w1 JO Ansio

uRqIn 1Y SIO!

QU] unuQ Kof1A “UStedurey) v

UONIPUOD) PUT S A1 39S “[£Z07/90/9Z] UO Ax

sdny) st

o Ko Areaqy

® SOOILIE YO 198N JO SO[n1 10§ K1RIQI] SUIUQ A9[IAL UO (SUOIPUOD-PUT-St

25UDI] SUOWIIOD) 2ANERI) d[quatfdde o) £q PaIoAOS o



16_|_Wl LEY BALOGH ET AL.

Given Y and A;, the number of possible choices for A, is at most, using Observation 2.1,

a (n—l )
n-1 k
a

(k) <exp|o|alog

Finally, since | A3| = o(a), the number of choices for A3 is at most

n—1 (n—l )
( k ) <exp|o alogL
o(a) a
|
Let B2 = {B € Br 1 d(B, Ap) > 6 <";">} and BS® = Bp\B2’. There is a nearly identical
lemma for 37 as well.

1 1 n—1
Lemma3.2. Ifé=w <k0g0g(1‘>> and & < 1/2, then the number of B%‘s across all F € T, (a)

n log(";] )
n—1
is at most exp (0 (a log <Z)> > .

The proof is essentially the same as the proof of the lemma for A%‘S, except that we use D = < ";k ),

Pioglog (") = o(1), and for X C A randomly chosen with probabilit p1, We have
% loglog (" y P y
0

k

7] P1 ("—1)
EINXO\B| < pre(A, B) < 52 alog ~—~
Po a

3.1 | Large diversity when n — 2k is small

The following proposition demonstrates our most basic way to show that the 7 € 7! are not indepen-
dent in K,,(n, k) w.h.p.: we use Lemmas 3.1 and 3.2 to bound the number of choices for A%‘S and B%‘S,
while we bound the number of A5° and /35° by controlling the size of those sets with e(F). This trick
works when n — 2k is small and ar is large.

(%)

Proposition 3.3.  For any constant € > 0, when n — 2k = o(n), no F € T with log ~*~ = o(n) is
ar

independent in K,(n, k) w.h.p., where p = (1 — €)py.

Proof. By Lemmas 3.1 and 3.2, since

n—1
log 10g10g< )
7'1—%:0(1) and k
klog<";1>

H n—1
log ( . )
the number of distinct A;l/ * and B,Zpl/ * across all F € T;/(a) is at most

=o(1),

exp|o|alog
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BALOGHET AL. WI LEY 17

(v) =o(n)and F € T,

a

Note that since log

(n—l)
1(”—k‘1yAﬂﬂ|sdAJ%5eGﬁsSabgk=0<1W0’
2\ k-t o a Po

and since log (";' ) = O(n), we have |.A<1/2| = o(a). Thus the number of such .A<!/2 is at most

(U2)) <cofofone

o(a)

We perform a similar calculation for 3<!/2. Using Observation 2.3, (8), and n — 2k = o(n),

n—k

(") <ot (" = (U s ().

2\ &k
so | B<!/2| = o(a), and we can proceed as before.
Taking the union bound and using (8), we have that the probability some F € T,!(a) is independent

is at most
n—1 ) el n—1
( e ()
exp|o|alog £ -1 —p)é’ﬁoalog « < exp —QalogL .
a 2 a
We take a union bound over all possible choices for a and x to finish the proof. [

4 | HITTING TIME FOR n=2k+1

For the entirety of this section, let n = 2k + 1, fix a constant € > 0 sufficiently small, and let p and p’
be such that

p:l-f“ﬂ<%<1—rmﬂ=¢

We prove Theorems 1.3 and 1.4 in Section 4.5 as quick corollaries of a characterization of independent
sets in K (n, k) that holds with high probability, which we prove in Section 4.4. To get this charac-
terization, we first show in Section 4.1 that, in a rigorous sense, K,,(n, k) is a subgraph of KTsuper (n, k)
w.h.p. In Section 4.2, we describe a method of efficiently counting the number of possible A using
components in an auxiliary graph. We apply this method in Section 4.3 to show that no “connected”

F is independent in K,(n, k) w.h.p., and we remove the connectedness condition in Section 4.4.

4.1 | Approximation by the binomial model

Let G be a graph. Recall the definition of a random subgraph process of G: take a permutation of E(G)
uniformly at random and consider the initial segments of this permutation as a sequence of random
spanning subgraphs of G. It will be convenient for us to generalize this model to the continuous time
random subgraph process, see section 1.1 of [18], which also generalizes the K,(n, k) model, that is,
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18_|_Wl LEY BALOGH ET AL.

the model where we include each edge independently with a fixed probability. Assign to each edge e
of G a uniformly randomly chosen real number f(e) between 0 and 1. The underlying probability space
is now the set of functions f : E(G) — [0, 1] with the uniform distribution. Let G,(f) be the spanning
subgraph of G with E(G,(f)) = {e € E(G) : f(e) < p}. For deterministic p, that is, p which do not
depend on f, G, is simply the random subgraph of G chosen by including each edge with probability
p. However, we can let p be a random variable, depending on f and thus the structure of the random
subgraph. This relates this model to the random subgraph process: with probability 1, f is injective, so
as we slowly increase p from O to 1, we randomly add edges one by one. We can analogously define
the hitting time gp(f) for a monotone property P in the G, model to be the smallest p € [0, 1] such
that G,(f) satisfies property P. If zp is the hitting time for P in the random subgraph process, then
G,, = G, as distributions. Define

q1(f) = q1(n, k,f) = min{p € [0,1] : K,(n, k,f) has no independent superstars},

@ (f) = q2(n, k,f) = min{p € [0, 1] : K,(n, k,f) has no independent near-stars}.

To prove Theorem 1.3, it suffices to show that a(K, (1, k,f)) = (Z:} ) w.h.p., where the “with high
probability” is taken with respect to the uniform distribution of f : E(K(n,k)) — [0, 1]. Likewise,
to prove Theorem 1.4, it suffices to show that K, (n, k, f) is EKR w.h.p. To this end, we first show
that pg is a sharp threshold for both containing independent superstars and containing independent
near-stars, thus giving the bounds (1 — £)py < q1(f) < ¢2(f) < (1 + €)py w.h.p., for every constant?
e > 0. Proofs of the lower bound appear in [8] and [9]: a second moment calculation works for all
n > 2k+ 1 in [8], while the simple calculation from [9] works for a smaller range including n = 2k + 1
just as effectively. We repeat the argument of [9] here for n = 2k + 1 for completeness.

Observation4.1.  There exists an independent superstar in K,,(2k+1, k) w.h.p., where p = 1 —4-1-9),
That is, p < g;(f) w.h.p.

Proof.  Since the superstars based at 1 are edge-disjoint, the probability that K,(n, k) contains no
independent superstar based at 1 is

n—1

<1 —a —p)<"lk7')>< ) _ (1= 4-0-01)(¥)

ek
< exp <_4—(1—5)k (2k>> < exp( - 4 -0,
k 2v/k

The following gives a proof of Theorem 1.2 for n = 2k + 1 from Theorem 1.4.

Observation 4.2.  'W.h.p., K,y (2k + 1, k) has no independent near-stars, where p’ = 1 — 470+9 That
is, ¢2(f) < p’ w.hop.

Proof. ~ We call a near-star {A} U (K, \{B}), where A ¢ K, and B € K, maximal if A and B are
disjoint. If a nonmaximal near-star is independent, then it is contained in an independent superstar.

3In fact, € can be taken much smaller than a constant, but for n = 2k + 1 constant ¢ is sufficient.
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BALOGHET AL. WI LEY 19

Therefore if there are no independent superstars and no independent maximal near-stars, then there
are no independent near-stars. Note that (";kIl ) = k is the degree of vertices of ( ["]im ) to KC,. The

probability A ¢ K, forms an independent superstar or maximal near-star based at x is
A =p' Y +kp'(1 = p' Y= < dka=+ek,
Thus the expected number of independent superstars and maximal near-stars is at most
n (n; 1) - 44— (1H+ek < K247k 0,
so by Markov’s inequality K,,(n, k) has no independent near-stars w.h.p. n

Going forward, the dependence of the hitting times g, (f) and ¢,(f) and random graphs K, (n, k, f)
on f will be implicit.

4.2 | Connected components

Similar to how we reduced from 7! to 72 in Section 2.2, we reduce to “connected components” to deal
with F € 72 with ar small. Our goal is to produce a subcollection 73 of 72 such that: for F € 72 with
ar small, there exists F/ € 73 such that E(F') C E(F), and the number of Ar across all F € 73 is
small. This reduction is helpful because it often reduces the number of 7 we take a union bound over.

We define 73 by a connectedness condition in an auxiliary graph. Let J(n, k) be the auxiliary

graph on ([’”)j’” ) defined by A is adjacent to A’ if and only if N(A) n N(A) 0 K, # @ in K(n, k), o
equivalently, |JA UA’| < n — k.4 If A is adjacent to A’ in J,(n, k), A and A’ are said to be 2-linked with
respect to x. For A’ C A C ([nJi{x} >, we say A’ is a 2-linked component of A with respect to x if

A’ is a connected component of the subgraph of J,(n, k) induced by .A. We say F C ( [z] ) is 2-linked

with respect to x if the subgraph of J(n, k) induced by F\ K, is connected.

Let 73 = {F € T2 : F is 2-linked with respect to xz}. The extra condition that 73 imposes
over T2 cuts down on the number of choices for .Az. To see this, we need the following lemma about
counting induced connected subgraphs.

Lemma 4.3 ([13], lemma 2.1). Let G be a graph on n vertices of maximum degree at most d. The
number of A C V(G) with |A| = a such that G[A] is connected is at most n(ed)".

Since J,(2k + 1, k) is k*>-regular, we immediately get the following lemma.

Lemma 4.4. The number of Ar with F € T(a) is at most <2kk> (ek®)* forn =2k + 1.

4.3 | Small diversity and 2-linked 7

Proposition 3.3 already handles F with ar large; the following proposition deals with when ar is small.
Here we bound the number of F by counting 2-linked F with Br C N(Ar). When ar is very small,

4The Johnson “scheme” is a collection of graphs J(n, k, ¢), defined on ( [:] ) with U and V adjacent if and only if |U\V| = ¢

(see [25]). The Kneser graph is J(n, k, k), and J(n, k, 1) and J(n, k,n — 2k) were used to establish the main result of [10]. The
union of J,(n, k) over all x is the union of J(n, k, c) over all ¢ < n — 2k.
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20_|_Wl LEY BALOGH ET AL.

we use a trivial bound on e(F) instead of Theorem 2.7. We extend this proposition to all 7 in 72 in
Section 4.4.

n—1
Proposition 4.5. No F € T3 with log (+)

ar

w.h.p., wherep =1 —4"1"9 gnd n = 2k + 1.

= w(log k) is independent in K,(n, k) except if ar =1

Proof. By Lemma 4.4, the number of 2-linked Ar with F € T;?(a) is at most

n-1
<2kk) exp (O(alogk)) = (Zkk> exp|o|alog <2) ,

n—1
< k ) = w(log k). The number of choices for 3 C N(A), given A, is at most

a

since log

a

<a<n;il>) = <ak> <exp(O0 (alogk)) =exp|o|alog <n;1)
a a

Note that e(F) > a((”:l ) —a)> %ak for a < k/8, so the probability some F € T;3(a) with a < k/8
is independent is at most

(n—]) (n—l)
<2kk> exp|o alog# (1 —p)%ak < 4k explo alog* 4—(1—5)%ak < 4akl2,
“ a

using a > 2. For a > k/8, we use (8), so the probability that some F is independent is at most

(") (") (")

k k 0 k

- —~ |=exp|—=alog—=~
a a 2 a

exp log(zkk) +o|alog — falog

In both cases, we can take a union bound over all such a and x to finish the proof. [

4.4 | Reduction to 2-linked components

Now we extend Proposition 4.5 from 72 to 72 by reducing F € 72 to its components in 7. Com-
bined with Proposition 3.3, this gives a characterization of the independent sets of K, (n, k), of which
Theorems 1.3 and 1.4 are a quick corollary.

Proposition 4.6. Let H = K, (n,k). W.h.p., the only T € T which are independent in H have the
following form: F = {Ay, ... ,Ap} UK \{B1, ... ,Bn}) where Eg(F,K,) = {A|By, ... ,AnBy} and

1 n-2
m<y <1<—1 )

Proof. LetH = K, (n, k). By Observation 4.1, g1 > p w.h.p., so assume this is the case. Furthermore,
assume that H satisfies the conclusions of Lemma 2.8 and Propositions 3.3 and 4.5. Let F € T be
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BALOGHET AL. WI LEY 21

independent in H, so by Lemma 2.8, F € T;!(a) for some x. By Proposition 3.3, a < % <Zj ), so let
F' € T2(a) be a set family given by applying Proposition 2.12 to F.

Let Ay, ... , A, be the connected components of Az in J(n, k), and let B; = Br N N(A;) fori €
[m]. Let i € [m] be such that | A;| > |/3;]. We claim that, with the assumptions on H, |4;| = |B;| = 1.
Since there are no edges in J,(n, k) between distinct .A;, the N(A;) N K, and thus the B; are pairwise
disjoint. Because F’ € 72, we have

DBl = 1Bl = [Ap| = YAl (12)
i=1 i=1

With our claim that |.A4;| > |B;| implies |.A;| = |B;| = 1, this gives that | A;| = |B;| = 1 for all
i € [m],Let A; = {A;} and B; = {B;}. Since the N(A;) are disjoint, we have that 7’ = {A}, ... ,A,}U
(KA\{Bi, ... ,Bn}) where Ey(F',K,) = {A1By, ... ,AuB,}. By construction, Ar = Ay, so unless
Br = By, F will contain some edge A;B;. Thus F = F’, and F has the desired structure.

All that remains is to prove the claim. Since |A;| < a < <Zj ) by Lemma 2.11, |[N(A;)) N Ky| >
|A;|, so there exists B’ of size |.4;| such that N(A;)NBr € B C N(AHINK,.Let F”" = A, UK \B),
and observe that

E(F") = E(A) U E(A;, B') € E(Ar) U E(A;, N(A) N Brr) C E(F').

By Observation 2.2, for any y € [n] with y # x,

n—2

IFNG | 2 PG = 1B = 1A 2 (7

) =3a> a4l = F\K,
which follows since a < i (Z:?) by Proposition 3.3. Thus xp» = x and so Ar» = A;, Bp» = B/, and

F" € T3(]Ai]). Since H satisfies the conclusion of Proposition 4.5, we must have ap» = 1,50 | A;| = 1.
If | B;| = 0, then A; U K, is an independent superstar in H, which is forbidden. Thus |A;| = |53;| =

4.5 | Proof of Theorems 1.3 and 1.4

Compiling the results of this section, we first prove the simpler Theorem 1.4 and then Theorem 1.3.

Proof of Theorem 1.4.  Let H = K,,(n, k). By Proposition 4.6, since g1 < g2, w.h.p. the only set
families in 7 which are independent in H are {Aq, ... , A, } UK \{B1, ... ,Bn}) where Ex(F, K,) =
{AiBy, ... ,AuB,}. But {A;} U (K \{B1}) is a near-star, which is not independent in H. Thus no
F € T is independent in H w.h.p., as desired. [

Proof of Theorem 1.3.  Let H = K, (n, k). Consider a set family 7 C V(H) of size (Z:; ) + 1 which
is independent in H. Let x minimize |KC,\F|, and let B € K, N F. By Proposition 4.6, w.h.p. F\{B} =
{A1, ... ,An} UK N\{B1, ... ,By}), for some y € [n], where Ex(F\{B},K,) = {AiB1, ... ,AuBn}.
This means that [IC,\F| < i (Zj ), so by Observation 2.2, y = x. Thus B = B; for some i, so F
contains the edge A;B;, a contradiction. n

Remark. 1t is straightforward to generalize the proofs in this section to all k with n — 2k = o(n).
The main difference is that the degrees in the auxiliary graph J,(n, k) increase, but not so dramatically
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22 W[ LEY BALOGHET AL.

when n — 2k = o(n). However, for say n = 4k, the graph J,(n, k) becomes complete, and so Lemma 4.3
no longer provides an efficient way to count the number of Az.

One may also obtain hitting time results for k = o(n) via a different approach, namely a careful
modification of the argument in [9], which is a slight variation on the argument in [8]. For 7 with
small ar one counts maximal independent sets in K(n, k), while 7 with large ar are already handled
by Lemma 2.8 and (9), which imply

n—1

( k ) 0 n-2k n—1 n

log~~ 25 9. 1 ( ) ~klog 2.
T 75 8\ & €%

When £ is very small, further methods from [8] must be used. One must also be careful with the choice

of €, as a constant € does not work with these techniques. Unfortunately, these techniques break down

when k = Q(n) and in that case only handle F with ar = o(n).

5 | SHARP THRESHOLD FOR n < Ck

As Theorem 1.2 is proven for n = 2k + 1 in Section 4, and Das and Tran [9] proved Theorem 1.2 for
k < n/C for some constant C, we assume for this section that 2k + 1 < n < Ck, fixing this constant C
sufficiently large. Additionally fix a constant € > 0 sufficiently small, and let p = (1 + €)py.

In Section 5.1, we prove an important assumption about K(j¢)p, (72, k) that we are unable to make
about the hitting time version K (n, k). Given this, in Section 5.2 we show that for every F in consid-
eration, |A7<,»5| is small, and so, with Lemma 3.1, the number of choices for A# is small. When n — 2k
is small, this allows us to quickly finish in Section 5.3. Otherwise, this allows us to eliminate those F
with e(Ar) large from consideration in Section 5.4. Finally, in Section 5.5 we deal with counting B<?,
and we wrap up the proof of Theorem 1.2 in Section 5.6.

While our proof likely works for smaller €, giving tighter bounds on the “width of the window” for
this threshold, we do not optimize our choice of £ here, mostly because we think the stronger hitting
time version of Conjecture 1.5 ought to be true.

5.1 | Minimum degree assumption

First we show that not only are near-stars not independent in K,(n, k) w.h.p., but every superstar
contains at least 6k edges in K,(n, k) for some constant 6 > 0.

Lemma 5.1. Let H = K,(n, k), where p = (1 + €)po. There exists a constant 6 = 6(e) > 0 such that,
w.h.p., for every x € [n] and A € <[n]>{x} > we have dy(A, K,) > 5k.

Proof. Letx € [n]and S € (“”;‘x} ) Let

€2(1 + ¢) log (n (”;1 ))
6= 25k ’

and note that 6 is constant, since log <n (”;1 )) = O(k). Since dy(A, K,) is binomially distributed

with mean

p(n;ff) = (1 +&)log (n(”;1)> = 256k/€?,
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BALOGHET AL. WI LEY 23

by Lemma 1.7, the probability that dy(A, KCy) is less than 6k is at most

exp (~ (1-2v73 ) 1+ otog (n ("7 1)) ) < (n ("7 1))

Taking the union bound over all n (”;1 ) choices for x and A, the lemma follows. n

We fix the 6 given by Lemma 5.1 for the remainder of this section. The specific value of & is not
important; all that matters is that 6 remains constant as n — 0.

Remark. Lemma 5.1 already implies that 7 with ar < 6k are not independent in K,(n, k) w.h.p. This
is because for such F, By is too small to absorb all the edges from a single vertex of Ar.

5.2 | Few vertices of low degree in Ay

Vertices of Ar with low degree to By in K(n, k) will likely have relatively low degree to B in K,(n, k).
But if K,(n, k) satisfies the minimum degree assumption, then there must be edges between A and
Br, so F is not independent. We formalize this with the following lemma, which upper bounds the
number of vertices of Ar with low degree to 37 and with Lemma 3.1 upper bounds the total number
of choices for Ar. Let

. 1/vVk
T4={Ferl : ‘A;/‘[

<4 1
~ loglogk

Proposition 5.2.  No F € T'\T* is independent in K,(n, k) w.h.p., where p = (1 + €)p.

Proof.  LetH = K,(n, k), and consider ¥ € T;! (@)\T;*(a).ForA € A;l/ﬁ, dy(A, Br) is binomially
distributed with mean pdg . (A, Br) < (1 + e)ﬁ log <";1 > By Lemma 1.7, the probability that this

degree is at least 6k is at most

_ —3loglogk
exp | —6klog ok < (n 1) .
e(l +£)ﬁ log<";1> k

Since the edges incident between different A € Ar and Br are distinct, the probability that every

—3a
A e A;l/ﬁ satisfies dy(A, Br) > 6k is at most (”;1> . If for some A € Ar, dy(A, Br) < 6k,

but dy(A, Ky) > 0k, then F is not independent. By (5), applying the union bound over all F yields
that the probability that some 7 € T;! (a)\TX“(a) is independent, and H satisfies the minimum degree

assumption, is at most
(n;l) (Z:i) (n_1>—3a<<n_1>—a
a a k - k '

Taking a union bound over all a and x and applying Lemma 5.1 finishes the proof. [

Using the definition of 74, we can conclude the following.

n—1
Lemma 5.3.  The number of Ar across all F € T,*(a) is at most exp (0 <a log (Z>> )
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24_|_Wl LEY BALOGH ET AL.

Proof. By Lemma 3.1, since

1 nlog n_”Zk

ﬁ - klog("?) ’

>1/Vk

the number of A% across all F € T, (a) is at most

exp|o|alog

Since A;l/ vk = o(a) for all F € T;*(a), the number of choices for A;l/ vk is at most
(n_l ) (n—' )
k =exp|o|alog ANLAVA
o(a) a
Multiplying these counts finishes the proof. L]

5.3 | When n — 2k is small

When n — 2k = o(n), we can essentially repeat the proof of Proposition 4.5, although the calculations
are easier this time around.

n—1
Proposition 5.4. When n — 2k = o(n), no ¥ € T2 T* with log Q = (10g (";_"2‘; )) is

independent in K,(n, k), where p = (1 + €)pg

Proof. By Lemma 5.3, the number of A across all F* € T;*(a) is at most

exp|o|alog

Recall that for F € T2, B C N(Ar). Given A, the number of choices for 3 C N(A) is at most

n—1
a(n—k—l) a(n—k—l) k-1 < B >
k=1 = n—2k < exp (alog ( )) <exp|o|alog —=
a a n—2k a
Using (8), the probability that some F € 7,*(a) is independent is at most

() (%)

a

(n—1>
exp|o|alog — (1 +¢€)falog < exp —galog ‘ .
a

Taking a union bound over all a and x finishes the proof. n
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BALOGHET AL. WI LEY 25

5.4 | Few disjoint pairs in A

In the next subsection, we need lower bounds on e(A, B) = e(F) — e(A). Unfortunately, lower bounds
for just e(F) are given in Theorem 2.7, so we supply an upper bound on e(.A) here. Let

T ={FeTt: e < %e(?’)}.
Corollary 5.5.  No F € T*\T? is independent in K,(n, k) w.h.p., where p = (1 + €)p.
Proof. By Lemma 5.3, the number of Ar across all F € T(a) is at most

exp|o|alog

The probability that a particular A is independent, where F € T4\773, is (1 — p)*“ < (1 — p)ieD),

so the probability that some F € 7;*(a)\7;’ (a) is independent is at most, using (8),

(") (")
k 1 k
— |- =0al

a 2 alog a

exp|o|alog

A union bound over all choices of a and x finishes the proof. n

5.5 | When n — 2k is large

If the number of Br across all F € T,%(a) were small, then we could proceed as in Proposition 5.4.
Lemma 3.2 guarantees few choices for Bi” for reasonable 7, so we could try to prove that there are
few choices for B;". Unfortunately, the strategy we used for A" will not work here, since although
we can make a similar minimum degree assumption, there would be no analogue of Proposition 5.2,
as ey(F) = 0 does not guarantee that ey (A, B) = 0.

In fact, we are unable to have good control of |B<"| for reasonable #. Instead, by tak-
ing a union bound over all Ay and BZ", we will show that w.h.p. there are many edges
between Ar and B?” for every F — too many to be absorbed by 53", so these 7 cannot be
independent.

Proposition 5.6. When n — 2k = w(logn) and k = w(1), no F € T is independent in K,(n, k)
w.h.p., where p = (1 + €)py.

Proof.  Let H = K,(n, k). Consider F € T2 (a). Define

9310k log = k  n- 2k>

BT 'n_k'10g<n<”;l)>29<n—k n
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26_|_Wl LEY BALOGH ET AL.

which follows from Lemma 2.9. By Lemma 5.3, the number of A across all F € 7, (a) is at most

exp|o|alog

By Lemma 3.2, the number of distinct B?” across all F € 773 is at most
(")
k

exp|o|alog——1]|,
a

since

n—1
k. n =) clogloz (")

=]l —
n n

n n—1
log< f )

n=9(

Thus the number of (A, B>") pairs is at most

exp|o|alog

Observe that ey (A, ﬁ) is binomially distributed with mean

()

Pekn(ABE) 2 2 (1 + epoe(F) > Salog -2
a

n—1
By Lemma 1.7, the probability that ey (A, B21) < l%a log Q is at most

<"§)

exp| —Qalog

- n—1
We may take the union bound over all such F, a, and x to get that, w.h.p., eg(Ar, B?’ ) > %a log Q
forall F € 7°.

Similarly, observe that ey (A, 3<") is binomially distributed with mean

pexan(A BN < (14 apol 5y ("7 1) < (1 + e e alog

where in the second inequality we simply used |B<7| < a. By Lemma 1.7, the probability that

en(A, B<") > %alog ( d ) is at most

(")

exp| —5alog ——|.
a
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BALOGHET AL. WI LEY 27

Using (5), we can take a union bound over all F € 7;3(a), and then union bound over all @ and x. Thus

n—1

wh.p., ey(A, B<) < Lalog Q forall 7 € 75,

Thus w.h.p., forall F € 77,
en(Ar, Br) > €H(AP,137;ZD'7) — en(Ar, By > 0,

so no such F is independent in H. [

5.6 | Proof of Theorem 1.2

Proof of Theorem 1.2. By Lemma 2.8, the only F € T which are independent in K,,(n, k) are in 7!
w.h.p.

Forn — 2k < \/Z, say, Proposition 3.3 gives that the only 7 € 7! which are independent in
n—1

K,(n, k) satisfy log Q = o(n). For each such F, there exists 7/ € T2 with E(F") C E(F) by
Proposition 2.12. Since

log <nn_—kZ_k1 ) =0 ((n —2k)log ﬁ) = o(n),

Propositions 5.2 and 5.4 show that 7’ is not independent w.h.p., completing the proof for n—2k < \/5
For n — 2k > \/ﬁ, Proposition 5.2 gives that the only 7 € 7! which are independent in K,,(n, k)
are in 74, The theorem then follows from Corollary 5.5 and Proposition 5.6. [
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