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Abstract

In many areas of the brain, neural spiking activity covaries with features of the external

world, such as sensory stimuli or an animal’s movement. Experimental findings suggest
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that the variability of neural activity changes over time and may provide information

about the external world beyond the information provided by the average neural activity.

To flexibly track time-varying neural response properties, here we developed a dynamic

model with Conway-Maxwell Poisson (CMP) observations. The CMP distribution can

flexibly describe firing patterns that are both under- and over-dispersed relative to the

Poisson distribution. Here we track parameters of the CMP distribution as they vary

over time. Using simulations, we show that a normal approximation can accurately

track dynamics in state vectors for both the centering and shape parameters (λ and ν).

We then fit our model to neural data from neurons in primary visual cortex, “place cells”

in the hippocampus and a speed-tuned neuron in anterior pretectal nucleus. We find that

this method outperforms previous dynamic models based on the Poisson distribution.

The dynamic CMP model provides a flexible framework for tracking time-varying non-

Poisson count data and may also have applications beyond neuroscience.

1 Introduction

Although many models of neural activity assume that neurons respond with stable re-

sponses to external sensory stimuli or movements, there is substantial evidence that

neural spiking activity changes over time due to adaptation and plasticity (Brown et al.,

2001; Lesica et al., 2007) as well as spontaneously (Rokni et al., 2007; Tomko and

Crapper, 1974). At the same time, a neuron’s spiking responses on individual trials

can be highly variable, even in the controlled settings with constant stimuli. In most

previous research, trial-to-trial neural variability is assumed to be Poisson distributed.

However, spike count distributions can be substantially more or less variable than Pois-

son (Maimon and Assad, 2009; Amarasingham et al., 2006; DeWeese et al., 2003; Kara

et al., 2000), and that the variability also appears to change over time, in many cases

(Churchland et al., 2010, 2011). Here we introduce a dynamic model with Conway-

Maxwell Poisson observations that can describe non-Poisson spike statistics and track
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changing response properties.

Variability appears to be an increasingly important feature of neural responses and can

act as a signature of decision making (Churchland et al., 2011), movement preparation

(Churchland et al., 2006), or stimulus onset (Churchland et al., 2010). Although sys-

tems neuroscience has a long history of studying how external variables influence mean

firing rates, less is known about response variability. Neural activity changes on dif-

ferent timescales, and distinguishing changes in variability from changes in the mean

response based on sparse, spike observations is a nontrivial statistical challenge (De-

Weese and Zador, 1998). Statistical tools to accurately track the sources of variability

within a given experiment may be useful for understanding neural systems. There has

been substantial work developing dynamic Poisson models (Brown et al., 2001; Eden

et al., 2004), as well as, other Poisson models that can account for fluctuating response

properties with latent or observed variables (Czanner et al., 2008; Smith and Brown,

2003). Several models of neural activity with non-Poisson observations have also been

described (DeWeese et al., 2003; Gao et al., 2015; Pillow and Scott, 2012), including

a static model with Conway-Maxwell Poisson observations (Stevenson, 2016). Each

of these models, however, whether static or dynamic, assumes a fixed mean-variance

relationship (i.e. fixed dispersion parameters). Here, to flexibly track how neural vari-

ability might change over time, we explicitly consider changes in both the mean and

dispersion.

Here we develop a dynamic GLM with Conway-Maxwell-Poisson (CMP) observations.

The CMP distribution can account for both over- and under-dispersion in spike count

data. To get the closed-form posterior for state vectors with CMP likelihood, we fit

the model using a global Gaussian approximation (Laplace approximation). Since the

state-space of the dynamic model has Markovian structure, inference is efficient with

this approximation, and we estimate the process noise by maximizing the predictive

likelihood. After illustrating the proposed method in simulations, we apply it to neu-
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ral activity from primary visual cortex, place cells in the hippocampus and a speed-

tuned neuron in anterior pretectal nucleus. The dynamic CMP model can track changes

in both the mean and variance of neural responses and outperforms previous Poisson

models.

2 Methods

Here we consider a dynamic GLM with Conway-Maxwell Poisson (CMP) observations

to describe time-varying spike counts. We first introduce the model. Although the

CMP distribution allows us to flexibly model non-Poisson variability, one major chal-

lenge with using this model is that there are no closed-form posteriors for the CMP

likelihood. Here, we fit the model using a global Gaussian approximation, and we dis-

cuss several additional technical challenges that arise when using the CMP distribution

with a dynamic GLM. Code is available at https://github.com/weigcdsb/

COM_POISSON.

2.1 Dynamic Conway-Maxwell Poisson Model

A count observation y, such as the spike count for a neuron, is assumed to follow the

CMP distribution, with parameters λ and ν. The probability mass function (pmf) of

CMP distribution is:

P (Y = y|λ, ν) = λy

(y!)ν
· 1

Z(λ, ν)
, (1)

where Z(λ, ν) =
∑∞

k=0
λk

(k!)ν
is the normalizing constant. The shape parameter ν ≥ 0

controls different dispersion patterns, i.e. equi- (ν = 1), over- (0 ≤ ν < 1) or under-

dispersion (ν > 1). Three common distributions occur as special cases: 1) the Poisson

(ν = 1), 2) the geometric (ν = 0, λ < 1), and 3) the Bernoulli (ν →∞).

For multiple observations up to T steps, such as simultaneous spike counts from n neu-

rons, denote the counts at time bin t as yt = (y1t, . . . , ynt)
′, for t = 1, . . . , T . The
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corresponding CMP parameters at t are λt = (λ1t, . . . , λnt)
′ and νt = (ν1t, . . . , νnt)

′.

Previous work has examined the CMP-GLM (Chatla and Shmueli, 2018; Sellers and

Shmueli, 2010), and here we focus on the dynamic version of this GLM. The CMP pa-

rameters at t are modeled by two log-linear models, logλt =Xtβt and log νt = Gtγt,

with βt ∈ Rp and γt ∈ Rq, and Xt and Gt denote known predictors. Under the

CMP-GLM, the parameters are static. Here, we assume that they progress linearly with

Gaussian noise.

The observations follow conditionally independent CMP distributions, given the state

vector θt = (β′t,γ
′
t)
′.

yt ∼ CMP (λt,νt),

logλt =Xtβt, log νt = Gtγt.

(2)

While the state vector θt evolves linearly with Gaussian noise:

θ1 ∼ Np+q(θ0,Q0),

θt|θt−1 ∼ Np+q(Fθt−1,Q).

(3)

Given the initial state mean θ0, covariance Q0, linear dynamics F and process covari-

anceQ.

2.2 Inference by Gaussian approximation

To fit the model to data we need to estimate the time-varying state vector Θ = (θ′1, . . . ,θ
′
T )

∈ R(p+q)T . In this section, we first assume F andQ are known. Since the observations

are CMP distributed, we cannot estimate Θ in closed form. Instead, here we approx-

imate it by a multivariate Gaussian distribution, P (Θ|Y ) ≈ N(p+q)T (Θ|, µ,Σ), with

Y = (y′1, . . . ,y
′
T )
′. The parameters of this Gaussian are found by a global Laplace

approximation, i.e. µ = argmaxΘ P (Θ|Y ) and Σ = −(∇∇Θ logP (Θ|Y )|Θ−µ)−1.

The log-posterior is given by:
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logP (Θ|Y ) =
T∑
t=1

lt −
1

2
(θ1 − θ0)′Q−10 (θ1 − θ0)

− 1

2

T∑
t=2

(θt − Fθt−1)′Q−1(θt − Fθt−1),

lt = l(θt) = logP (yt|θt) =
n∑
i=1

yit log λit − νityit!− logZ(λit, νit),

(4)

where l(·)is the log-likelihood. The log-posterior is concave (Gupta et al., 2014), and

the Markovian structure of the state vector dynamics makes it possible to optimize by

Newton-Raphson (NR) in O(T ) time (Paninski et al., 2010).After the Newton update,

we can further quantify the uncertainty for the CMP parameters and the underlying

rates, as in Appendix A.

There are several technical challenges involved with performing the Newton update

with CMP observations. Firstly, in order to find the gradient and Hessian we need

to calculate moments of Yit and log Yit!, which have no closed forms (Shmueli et al.,

2005). We can calculate these moments by truncated summation. However, when λ ≥ 2

and ν ≤ 1, truncated summation is computationally costly since we need many steps

for accurate approximation. In this case, we approximate the moments using previous

(Chatla and Shmueli, 2018; Gaunt et al., 2019) asymptotic results as in Appendix B. A

second challenge is that the Hessian is not robust to outliers. Outliers often result in the

Hessian being close to singular or even positive-definite. See details in Appendix C. To

ensure robustness, we use Fisher scoring where the observed information is replaced by

the expected information. Finally, a third challenge is that the Newton updates take a

long time to converge if the initial state estimate is far from the maximum of the pos-

terior, especially when T is large. To resolve this issue, we use a smoothing estimate

with local Gaussian approximation as a “warm start”. Forward filtering for a dynamic

Poisson model has been previously described in Eden et al. (2004), and here we im-

plement CMP filtering following the same rationale. Let θt|t−1 = E(θt|y1, . . . ,yt−1)
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and Σt|t−1 = V ar(θt|y1, . . . ,yt−1) be the mean and variance for the one-step predic-

tion density and θt|t = E(θt|y1, . . . ,yt) and Σt|t = V ar(θt|y1, . . . ,yt) be mean and

variance for the posterior density, then the filtering update for step t is given by

θt|t−1 = Fθt−1|t−1,

Σt|t−1 = FΣt−1|t−1F
′ +Q,

θt|t = θt|t−1 + (Σt|t)

[
∂lt
∂θt

]
θt|t−1

,

Σ−1t|t = Σ−1t|t−1 −
[

∂2lt
∂θt∂θ′t

]
θt|t−1

.

(5)

Here, to again ensure robustness, we use Fisher scoring when updating the state co-

variance. We then find smoothed estimates using a backward pass (Rauch et al., 1965).

Although doing smoothing is fast, the estimates can be inaccurate, especially when

there are large changes in the state vector. In the forward filtering stage, the Gaussian

approximation at each step t is conducted locally at the recursive prior θt|t−1. This will

be statistically inefficient when the recursive prior is too far away from the posterior

mode, or when there is a large change in the state vector. Moreover, Fisher scoring

reduces the efficiency of the smoother even further. The smoother provides reasonable

initial estimates, but estimation accuracy is substantially improved by using Newton’s

method to find the global Laplace approximation for the posterior.

2.3 Estimating process noise

For the applications to neural data examined here, we assume that F = I . However,

we still need to estimate the process noiseQ. When n is small, especially when n = 1,

differentQ values will have a substantial influence on estimation. One possible way to

estimate Q is to use an Expectation Maximization (EM) algorithm as in Macke et al.

(2011). However, using the Laplace approximation for Θ during E-step breaks the usual

guarantee of non-decreasing likelihoods in EM, and, hence, may lead to divergence.
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To avoid that, we could sample the posterior directly by MCMC. However, the lack

of closed-form moments for the CMP distribution makes sampling computationally

intensive. Here, to estimate Q robustly and quickly, we instead assume Q is diagonal

and estimate it by maximizing the prediction likelihood in the filtering stage, as in Wei

and Stevenson (2021).

3 Results

3.1 Tracking the mean and dispersion of spike counts over time

To illustrate how the dynamic CMP model can track both time-varying mean and dis-

persion, we simulated a neuron with a time-varying tuning curve, where the response to

100 evenly-spaced hypothetical visual stimuli shifts over 100 trials. Here, the neuron’s

tuning curve is determined by a linear combination of cubic B-spline basis functions

with equally-spaced knots. The stimulus that evokes the highest average response – the

“preferred orientation” – is initially 80 deg, but shifts over the course of the experi-

ment, and the response amplitude also increases over time (Fig. 1A). Meanwhile, the

dispersion pattern also changes: the responses are initially over-dispersed relative to a

Poisson distribution and then become under-dispersed (Fig. 1B). Noisy observations

are sampled from the Conway-Maxwell Poisson distribution at each time (Fig. 1C),

mimicking the types of experimental observations collected during adaptation experi-

ments in primary visual cortex (Dragoi et al., 2000). We then fitted the simulated spike

observations using the same predictor variables as the generative model: the covariates

for λt capture the tuning curve with Xt as a 10-knot cubic spline basis expansion of

the orientation, and the covariate for the shape parameter νt does not depend on the

stimulus orientation Gt. The fitted results match the ground truth well, for both the

mean (Fig. 1C) and Fano factors (variance-to-mean ratio, Fig. 1D).

This model-based approach provides estimates of tuning curves and dispersion at each
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time point. In cases where the tuning curve and variability change simultaneously,

this approach can efficiently track both. By using the model with CMP observations,

rather than Poisson or negative-binomial observations, the Fano factor can be both < 1

(under-dispersed) and > 1 (over-dispersed).

Figure 1: A simulated neuron with a shifting firing and dispersion pattern. (A)
The tuning curve of the neuron shifts over time, with the preferred stimulus orientation
changing and the response amplitude increasing. (B) At the same time, the variability
in spiking changes from being over-dispersed relative to a Poisson distribution to under-
dispersed. This leads to a decreasing Fano factor (variance-to-mean ratio) from 1.9 to
0.4 overall. (C) To illustrate the shifts, we show the tuning curve at two time points:
Trial 20 (blue) and Trial 80 (red). Dots denote observed spike counts. The solid lines
are the ground truth in mean firing rate, while the corresponding dashed lines are the
fitted values. (D) To illustrate the shift in dispersion over time we show the true (solid)
and estimated (dashed) Fano factor for two specific stimuli as a function of time. The
dispersion for the early preferred orientation is shown in cyan, while the dispersion for
the late preferred orientation is shown in yellow.

Changes in tuning have been widely documented in systems neuroscience both due

to changing environment and spontaneous nonstationarity. Changes in variability also

occur, but have been less well studied. With the CMP model, the mean and dispersion

are both tracked and, thus, changes in variability can occur even when the mean is
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stable. To illustrate this potential, we simulated a neuron whose mean firing rate is

controlled to be constant, but whose Fano factor varies over time. Here Xt is a 5-knot

cubic B-spline basis expansion of the orientation and Gt = 1. The model recovers the

true mean firing rate (Fig. 2A) and capture the fluctuations in variance (Fig. 2B) at the

same time. However, the estimated Fano factor is somewhat oversmoothed when the

process noiseQ is optimized by maximizing the predictive likelihood (see 2.3).

Figure 2: Constant mean with fluctuations in dispersion. (A) The first two panels
show the true mean firing rate and the simulated observations. The last panel show
the fitted mean response. (B) Although the mean response is constant, the Fano factor
varies across the trial (black line). The colored line show the fitted result.

Although dynamic Poisson models have been applied in some neuroscientific settings,

when spike counts are not Poisson distributed the model estimates can be biased. Since

the dispersion influences estimates of the process noise Q, estimates of the mean in

the dynamic Poisson model can be effected by over- or under-dispersion. To illus-

trate this interaction here we simulate a place cell from the hippocampus whose “place

field” drifts over time. The true mean is determined by a Gaussian function where the

preferred position varies over time. The spike counts are then generated by CMP dis-

tributions, here over-dispersed with constant shape parameter νt = 0.1. We fit 1000

observations randomly sampled from 100 “runs” of a linear track. We find that, in this

data-limited regime, the dynamic Poisson model and the dynamic CMP model give

substantially different estimates of the time-varying place field (Fig. 3A). The dynamic

Poisson model, in this case, under-estimates the firing rate at the true preferred position
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and under-estimates the uncertainty (Fig. 3B).

Figure 3: Dynamic CMP and dynamic Poisson estimates differ. Simulated over-
dispersed place cell spiking is generated by the dynamic CMP model with νt = 0.1.
(A) We then fit dynamic CMP and dynamic Poisson models withXt, a 2-knot B-spline
expansion for position (Gt = 1 for the CMP). (B) When evaluating the response at the
true preferred position for each run, the dynamic Poisson estimates are biased (under-
estimated) and the uncertainty is also underestimated. The solid line gives the MAP
estimates of mean firing rate, and the dashed lines show one S.D. credible intervals.
The standard deviations of dynamic CMP estimates are calculated using the truncated
summations (see details in Appendix B), while the standard deviations for the dynamic
Poisson model are from a log-normal distribution.

3.2 Application to Experimental Data

We next applied our method to three publicly available datasets of extracellular spike

recordings: 1) Utah array recordings of visually evoked activity from anesthetized

macaque primary visual cortex (“V1 data”), 2) multi-shank silicon probe recordings

from hippocampus of a rat running back-and-forth on a linear maze (“HC data”) and 3)

a speed-tuned neuron recorded from the anterior pretectal nucleus (APN) of an awake

mouse (”APN neuron”)

3.2.1 V1 Data

In the V1 dataset. CRCNS pvc-11 (Kohn and Smith, 2016), anesthetized macaque mon-

keys viewed full-field sinusoidal grating movies while neural activity was recorded by

a 96-channel “Utah” array. Extracellular spiking activity was recorded on each elec-

trode, and spike waveform segments were sorted by hand with modified competitive
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mixture decomposition methods (Shoham et al., 2003). Here we use data from one ani-

mal (Monkey 1) viewing a movie of drifting sinusoidal gratings with 100 different drift

directions presented in pseudorandom order (300ms each, 30s movie in total), and the

movie was repeated 120 times. Here we analyze spike counts following each stimulus

presentation from the period 50-350ms after stimulus onset, considering the response

delay. For further details on how the data were obtained, see Kelly et al. (2010); Smith

and Kohn (2008).

As with many neurons in visual cortex, the responses of the neurons in this dataset are

tuned to the stimulus direction. Neurons respond to some directions of stimuli more

than others, but the spike counts from trial to trial are highly variable. Here, we are

specifically interested in tracking changes tuning curves and changes in variability over

time. Fig. 4A shows responses from one example neuron with a preferred direction

around 240 deg. This neuron is somewhat direction insensitive, and also responds with

increased spiking to stimuli moving in the opposite direction, around 70 deg. After

fitting the dynamic CMP model to these data, we find that the tuning curve itself appears

mostly stable, but the overall firing rate increases over the course of the recording (Fig.

4B). At the same time, the Fano factor decreases over the course of the recording (Fig.

4C).

Although the data here is structured in 120 “trials” the data are collected sequentially,

and we model nonstationary at the level of individual observations. For the predictors

Xt and Gt we use cubic B-spline basis functions with periodic boundary conditions

over the grating directions. Results for the example neuron use 5 and 3 equally-spaced

knots forXt andGt, respectively. Fitting the model with half of the data (in a speckled

hold-out pattern) gives patterns for the mean response (Fig. 4B) and Fano factor (Fig.

4C) that are similar to those using the full data. However, since the model-based ap-

proach provides a continuous estimate of the state vectors, the Fano factor estimated by

the dynamic CMP model differs from a simple estimate of the Fano factor calculated

12



using a sliding window (Fig. 4C).

We then compare the performance of multiple models on data from all 74 neurons in

this recording (Fig. 4D). We assess four dynamic models: (1) dynamic CMP, with

5 knots for Xt and 3 knots for Gt, denoted as dCMP-(5,3); (2) dynamic CMP with

Gt = 1, dCMP-(5,1); (3) dynamic CMP with constant νt, dCMP-(5)-ν (fit by coordi-

nate descent) and (4) a dynamic Poisson model, dPoi-(5). Additionally, we assess three

static models: (1) static CMP, sCMP-(5,3); (2) static CMP with Gt = 1, sCMP-(5,1)

and (3) static Poisson, sPoi-(5). The held-out log-likelihoods relative to a homogeneous

static Poisson model show that the CMP-based models, both dynamic and static, outper-

form the Poisson-based models (Fig. 4D). The dynamic models perform slightly better

than the corresponding static models, on average. The best performance on test data

comes from modeling nonstationarity and stimulus-dependence with the full dynamic

CMP model dCMP-(5,3). However, the benefit of adding nonstationary shape param-

eter (dCMP-(5)-ν vs. dCMP-(5,1)) and of adding stimulus-dependent shape parameter

(dCMP-(5,1) vs dCMP-(5,3)) tend to be small for these data.

3.2.2 HC Data

In the HC dataset, CRCNS hc-3 (Mizuseki et al., 2013), a rat was running back and

forth along a 250cm linear track. Extra cellular spiking activity was recorded in dorsal

hippocampus using multi-shank silicon probes. Spikes were automatically sorting using

KlustaKwik followed by manual adjustment (Rossant et al., 2016). Here we use data

from one 66 min recording session (ec014-468) and analyze spike counts in 200ms bins.

For further details on how the data were obtained, see Mizuseki et al. (2014)

As with many neurons in hippocampus, the responses of the neurons in this dataset are

tuned to the rat’s position along the track. Neurons spike at specific locations, but the

place fields can also shift over time and the spike counts from run to run are highly

variable. Fig. 5A shows an example from one neuron with two place fields where
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Figure 4: Modeling nonstationary spiking from visual cortex. (A) The spike counts
of one example neuron from V1 in response to drifting grating stimuli with different
drift directions presented over 120 trials. Two preferred directions (estimated by the
CMP model) are marked by the dashed lines. (B) Estimated mean for the dynamic
CMP model dCMP-(5,3) when fit to all the data and only half of the observations (held
out in a speckled pattern). (C) Fano factor estimates for the two models, along with a
direct estimate from 15-trial sliding windows, at the two preferred directions. Dashed
lines denote ±1 standard deviation around the window estimates, obtained by Bayesian
bootstrapping. (D) Model comparison for all 74 neurons in the V1 dataset. In these
models, 4 are dynamic and the remaining 3 are static, with different noise distributions
(Poisson vs CMP) and bases. The training and test log-likelihood ratios (bits/spike)
with respect to a homogeneous static Poisson model are shown for all neurons in grey
lines. The solid orange lines and numbers denote the medians, and the dashed lines
show the first and third quartiles.

the location and firing within the place field vary over the course of the recording.

Compared to the data from V1, neural responses of place cells in hippocampus tend to

be sparser and more selective. Many place cells also tend to be direction tuned – spiking
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only when the animal is running in one direction down the track but not the other. We,

thus, fit the data using a dynamic CMP model with 12 equally-spaced knots forXt with

a circular representation of position, and letGt = 1.

For this example neuron, the dynamic CMP model accurately tracks the time-varying

place field (Fig. 5B). We then evaluate the fitted Fano factors at the peaks of the two

place fields (Fig. 5C). Compared to example from the V1 data, the spiking of this

example place cell is much more highly dispersed. The Fano factors vary over time

and are also specific in both position and running direction. We then compare model

performance on 78 neurons from this recording (19 neurons were excluded due to sparse

spiking patterns). In these data, the dynamic models are generally better than the static

models (Fig. 5D). Within groups of dynamic or static models, CMP-based models are

consistently better than the Poisson-based models.

3.2.3 APN Neuron

To illustrate a case where the dynamic CMP provides a qualitatively better descrip-

tion of neural activity compared to previous models we show results from one neuron

recorded from the Allen Institute Visual Coding Neuropixels dataset. See detailed data

description in Siegle et al. (2021). Here, when examining tuning to running speed we

found a neuron in APN, whose responses were speed tuned - increasing firing with in-

creasing running speed (Fig. 6A), but also highly under-dispersed relative to a Poisson

distribution (Fano factor < 1). We analyzed spike counts in 200ms bins for the 160

min recording (ecephys session id 719161530, unit id 950917034), and fit the spiking

activity for the whole session using the dynamic CMP model. Here we use a nonlinear

function of the running speed vt for the Xt = [1 f(vt)] (f(v) = v/(1 + 0.1v)) and

Gt = [1 vt].

Evaluating all of the data and averaging over time, the neuron is significantly under-

dispersed (Fano factors less than 1), and both the mean response and dispersion appear
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Figure 5: Modeling nonstationarity in hippocampal spiking activity. (A) Spike
counts of an example neuron from the hippocampus recorded while a rat was running
back-and-forth on a linear maze. The blue lines show the animal’s position over time.
The black circles denote spike counts with the radius of each circle corresponding to
number of spikes. (B) The heatmap shows fitted mean firing rate for the dynamic CMP
model dCMP-(12,1). The colored lines show peaks for two place fields, chosen based
on the model fit. (C) The estimated Fano factors at the two place field peaks, with each
running direction (+ vs. -) shown separately. (D) The training and test log-likelihood
ratios (bits/spike) with respect to a homogeneous static Poisson model for 78 neurons
(gray lines). Here the test set log-likelihood ratios are calculated using 5% of the data
held-out in a speckled pattern. The red solid lines and numbers denote median values,
while the dashed lines show the first and third quartiles.

tuned to running speed (Fig. 6B). However, we found that this neuron’s speed tuning

is somewhat nonstationary, with the baseline firing rate shifting over time (Fig. 6C).

Within individual segments of the recording the Fano factor is much lower than the

Fano factor evaluated for the entire recording. Moreover, the Fano factor within each

chunk doesn’t show a strong relationship to running speed (Fig. 6D). This suggests

that the apparent relationship between running speed and the overall Fano factor is a

byproduct of the nonstationarity. Using the static CMP model may be able to describe

the underdispersion of these responses, but would miss this key feature of the data by

assuming that the tuning curve is static. The dynamic Poisson model, on the other
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hand, is able to describe the nonstationary in the tuning curve, but cannot describe the

underdispersion of these data, since the Poisson model always assumes Fano factor = 1.

Figure 6: Modeling a speed-tuned neuron in mouse anterior pretectal nucleus with
the dynamic CMP model Here we analyze a 160 min recording of a neuron from
APN, with spike counts calculated in 200ms bins. The whole session was evenly parti-
tioned into chunks for visualization. (A) Spike counts and mouse running speed for the
recording session. (B) The spiking activity and Fano factor as a function of speed for
the whole session. Dots denote results from observed spike counts. Errorbars denote
95% confidence intervals from Bayesian bootstrapping. Red lines denote fits from the
dynamic CMP model averaged over time. (C) The top row shows 2D histograms for
spiking counts vs. running speed for each chunk. The second row shows corresponding
model fitted densities (averages within each chunk). The lines show predicted aver-
age spike counts (tuning curves) for each chunk. (D) There is substantial variation in
the tuning curves across chunks, and the Fano factor tends to be smaller on individual
chunks than in the overall recording.

4 Discussion

Here we introduced a dynamic CMP model to track changes in both the mean and dis-

persion of neural spikes over time. A global Laplace approximation with a smoothing-

based initialization can provide accurate and computationally efficient model estimates.

In both simulations and applications with experimental data we find that this model out-

performs previous static and dynamic Poisson models, and may, thus, be a useful tool

for understanding the role of variability in neural systems. While many studies have

characterized noise (DeWeese et al., 2003; Deweese and Zador, 2004; Taouali et al.,

2016) or non-stationarity (Tomko and Crapper, 1974; Wu and Hatsopoulos, 2008) sep-
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arately, modeling changes in the mean-variance relationship directly may allow us to

more closely examine the role of variability in the brain.

The original motivation for the development the CMP distribution is from industrial re-

search on queuing theory where production resources are allocated in a state-dependent

way to meet demand (Conway and Maxwell, 1962). Although spiking neurons may

not be exactly analogous to production queues, they are both multi-input, single-output,

resource-limited nonlinear systems. Previous studies have proposed that resources in

neurons may be dynamically allocated across dendrites (Acharya et al., 2022) and

that neural networks may share some features with queued, packet-switching systems

(Luczak et al., 2015).

The extent to which the dynamic CMP model can predict neural responses more ac-

curately than the dynamic Poisson model or static non-Poisson models depends on the

neural activity itself. Here with the V1 data we found a 6% improvement in test log-

likelihood ratios between the dynamic and static CMP, while in the HC data there is a

35% improvement. The extent of spontaneous changes in neural responses is somewhat

unclear, some evidence suggests that neurons can be relatively stable in some circum-

stances (Chestek et al., 2007; Stevenson et al., 2011; Dickey et al., 2009), but variability

appears to differ across brain areas (Mochizuki et al., 2016). More accurate spike sort-

ing may account for some degree of instability (Steinmetz et al., 2021), and the degree

of spontaneous changes may also depends on the brain area (Rule et al., 2019). How-

ever, neurons do clearly change both their average responses and dispersion in many

situations.

Although the current model works well for fitting neural spikes, there are some poten-

tial improvements. First, the state transition matrix F is currently assumed to be known

and is fixed to I for convenience in our simulations and experimental analysis. This

doesn’t allow for interactions between state vectors and may limit the usage in some

situations. However, when using a Laplace approximation for the state vectors, F can
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be estimated using the EM algorithm as in Macke et al. (2011). Secondly, although the

CMP distribution can flexibly model over- and under-dispersed data, the assumed mean-

variance relationship may not be appropriate in some cases. To more flexibly model the

dispersion for single observations, it may be useful to instead consider the generalized

count (GC) distribution (del Castillo and Pérez-Casany, 2005), which includes the CMP

distribution as a special case. This model has been applied in the context of linear dy-

namical systems, similar to the dynamical factor analysis model, with a fixed dispersion

function (Gao et al., 2015). To track fluctuations in dispersion more flexibly, it could

be useful to allow the function to vary dynamically similar to νt in the dynamic CMP

model here.

The best modeling strategy also likely depends on what researchers want to know about

the variability. Omitted variables (Stevenson, 2018; Goris et al., 2014) and history

effects (Uzzell and Chichilnisky, 2004) can alter apparent observation noise. For exam-

ple, in the hippocampus, place cell firing is highly variable on different passes through

the field (Fenton and Muller, 1998). This may be partially due to joint selectivity to

position, speed, and head direction, as well as the influence of local field potentials.

Here, rather than model these distinct covariates assuming Poisson observations, we

allow the variability to be non-Poisson and introduce a dynamic GLM with CMP ob-

servations. However, doubly stochastic Poisson models (Barbieri et al., 2001) or latent

variable models with fixed mean-variance relationships (Gao et al., 2015; Pillow and

Scott, 2012) may also be able to account for some differences in the variance over time.

Nonetheless, the dynamic CMP model may provide a useful tool for neuroscientists to

study the role of variance directly. Since the static CMP model can improve decod-

ing of external variables in some cases (Ghanbari et al., 2019), the dynamic CMP may

lead to further improvements in decoding by tracking nonstationarity in neural response

properties.
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Appendices

A Quantifying Uncertainties

After convergence, we have an approximation of the log-posterior P (θt|Y ) ≈ N(θt|µt,Σt),

and we can use this approximation to quantify the uncertainty about the CMP parame-

ters, as well as about the mean rate at each time.

The CMP parameters are log-normal distributed. LetZit =

x′it 0

0 g′it

, then (λit, νit)
′ =

exp(Zitθt) ∼ Lognormal2(Zitµt,ZitΣtZ
′
it). Denote the variance of CMP parameters

as Vit., where for a = Zµ and S = ZΣZ′, [V ]mn = eam+an+
1
2
(Smm+Snn)(eSmn − 1)

The conditional mean firing rate is δit = E(Yit), whose variance can be calculated by

the Delta method:

V̂ ar(δit) =

(
∂δit
∂λit

∂δit
∂νit

)
Vit

 ∂δit
∂λit

∂δit
∂νit

 ,

∂δit
∂λit

=
∂2 logZit
∂ log λit∂λit

=
V ar(Yit)

λit
,

∂δit
∂νit

=
∂2 logZit
∂ log λit∂νit

= −Cov(Yit, log Yit!).

(6)

We can calculate the moments as in Appendix B, or we can use simpler approximations

E(Y ) = λ1/ν − ν−1
2ν

when ν ≤ 1 or λ > 10ν . Then ∂δit
∂λit
≈ 1

νit
λ
1/νit−1
it and δit

νit
≈
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−λ
1/νit
it log λit

ν2it
− 1

2ν2it
.

B Moments approximation for Conway-Maxwell Pois-

son distribution

To estimate the state-vector for the dynamic CMP model, we need to find first and

second moments for Y and log Y !. For Y ∼ CMP (λ, ν),

Z(λ, ν) =
∞∑
k=0

λk

(k!)ν
,

E(Y ) =
∂ logZ

∂ log λ
=

1

Z

∞∑
k=0

kλk

(k!)ν
,

V ar(Y ) =
∂2 logZ

∂(log λ)2
=

1

Z

∞∑
k=0

k2λk

(k!)ν
− E2(Y )

E(log Y !) = −∂ logZ
∂ν

=
1

Z

∞∑
k=0

(log k!)λk

(k!)ν
,

V ar(log Y !) =
∂2 logZ

∂ν2
=

1

Z

∞∑
k=0

(log k!)2λk

(k!)ν
− E2(log Y !),

Cov(Y, log Y !) = − ∂2 logZ

∂ log λ∂ν
=

1

Z

∞∑
k=0

(log k!)kλk

(k!)ν
− E(log Y !)E(Y ).

(7)

Generally, these moments can be calculated by truncated summation. However, when

λ ≥ 2 and ν ≤ 1, we need many steps for accurate approximation. In this case, we

make use of a previous asymptotic results (Chatla and Shmueli (2018); Gaunt et al.

(2019)) for efficient calculation. Let α = λ1/ν , c1 =
ν2−1
24

and c2 = ν2−1
48

+
c21
2

,

Z(λ, ν) =
eνα

λ
ν−1
2ν (2π)

ν−1
2
√
ν
(1 + c1(να)

−1 + c2(να)
−2 +O(λ−3/ν)). (8)
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Then the moments can be calculated as follows:

E(Y ) = α− ν − 1

2ν
− ν2 − 1

24ν2
α−1 − ν2 − 1

24ν3
α−2 +O(α−3),

V ar(Y ) =
α

ν
+
ν2 − 1

24ν3
α−1 +

ν2 − 1

12ν4
ℵ−2 +O(α−3),

E(log Y !) = α

(
log λ

ν
− 1

)
+

log λ

2ν2
+

1

2ν
+

log 2π

2

− α−1

24

(
1 +

1

ν2
+

log λ

ν
− log λ

ν3

)
− α−2

24

(
1

ν3
+

log λ

ν2
− log λ

ν4

)
+O(α−3),

V ar(log Y !) =
α(log λ)2

ν3
+

log λ

ν3
+

1

2ν2

+
α−1

24ν5
[−2ν2 + 4ν log λ+ (−1 + ν2)(log λ)2]

+
α−2

24ν6
[−3ν2 − 2ν(−3 + ν2) log λ+ 2(−1 + ν2)(log λ)2]

+O(α−3),

Cov(Y, log Y !) =
α log λ

ν2
+

1

2ν2
+
α−1

24

(
2

ν3
+

log λ

ν2
− log λ

ν4

)
− 1

24α2

(
1

ν2
− 3

ν4
− 2 log λ

ν3
+

2 log λ

ν5

)
+O(α−3).

(9)

C Gradient and Hessian of the log-posterior

We estimate the state vector by maximizing the log-posterior with Newton-Raphson

updates. Denote f = P (Θ|Y ), the (k + 1)-th update of NR algorithm is Θ(k+1) =
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Θ(k) + [∇∇Θ(k)f ]−1∇Θ(k)f . The gradient is:

∇Θf =

[(
∂f

∂θ1

)′
, . . . ,

(
∂f

∂θT

)′]′
,

∂f

∂θ1
=

∂l1
∂θ1
−Q−10 (θ1 − θ0) + F ′Q−1(θ2 − Fθ1),

∂f

∂θt
=

∂lt
∂θt
−Q−1(θt − Fθt−1) + F ′Q−1(θt+1 − Fθt),

∂f

∂θT
=

∂lT
∂θT

−Q−1(θT − FθT−1),

∂lt
∂θt

=
n∑
i=1

 (yit − E (Yit))xit

νit (E (log Yit!)− log yit!) git

 .

(10)

The Hessian matrix is:

∇∇Θf =



∂2f

∂θ1∂θ
′
1

F ′Q−1 0 · · · 0

Q−1F ∂2f

∂θ2∂θ
′
2

F ′Q−1 · · · ...

0 Q−1F ∂2f

∂θ3∂θ
′
3

· · · ...
...

...
... . . . ...

0 · · · · · · · · · ∂2f

∂θT ∂θ
′
T


,

∂2f

∂θ1∂θ
′
1

=
∂2l1

∂θ1∂θ
′
1

−Q−10 − F ′Q−1F ,

∂2f

∂θt∂θ
′
t

=
∂2lt

∂θt∂θ
′
t

−Q−1 − F ′Q−1F ,

∂2f

∂θT∂θ
′
T

=
∂2lT

∂θT∂θ
′
T

−Q−1,

(11)

where

∂2lt
∂θt∂θ

′
t

=
n∑
i=1

Ait Bit

B′it Cit

 ,

Ait = V ar(Yit)xitx
′
it,

Bit = −νitCov(Yit, log Yit!)xitg′it,

Cit = νit[νitV ar(log Yit)− E(log Yit!) + log yit!]gitg
′
it.

(12)
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When log yit! � E(log Yit!), the Hessian may be ill-conditioned or even positive-

definite. To ensure the robustness, do Fisher scoring, i.e. replace the observed informa-

tion−∇∇Θf by the expected informationE(−∇∇Θf), so thatCit = ν2itV ar(log Yit!)gitg
′
it.

The observed information may provide more accurate estimates of the variance at the

MAP estimate (Efron and Hinkley, 1978), but these estimates may not be robust. Ro-

bustness to outliers is especially necessary for convergence during optimization of CMP

models (Green, 1984; Chatla and Shmueli, 2018).
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