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Abstract

Modern neural recording techniques allow neuroscientists to observe the spiking
activity of many neurons simultaneously. Although previous work has illustrated
how activity within and between known populations of neurons can be summarized
by low-dimensional latent vectors, in many cases what determines a unique popu-
lation may be unclear. Neurons differ in their anatomical location, but also, in their
cell types and response properties. Moreover, multiple distinct populations may
not be well described by a single low-dimensional, linear representation. To tackle
these challenges, we develop a clustering method based on a mixture of dynamic
Poisson factor analyzers (mixDPFA) model, with the number of clusters treated as
an unknown parameter. To do the analysis of DPFA model, we propose a novel
Markov chain Monte Carlo (MCMC) algorithm to efficiently sample its posterior
distribution. Validating our proposed MCMC algorithm with simulations, we find
that it can accurately recover the true clustering and latent states and is insensitive
to the initial cluster assignments. We then apply the proposed mixDPFA model to
multi-region experimental recordings, where we find that the proposed method can
identify novel, reliable clusters of neurons based on their activity, and may, thus,
be a useful tool for neural data analysis.

1 Introduction

With modern high-density probes [Jun et al., 2017], neuroscientists can observe the spiking activity
of many neurons from many different anatomical regions simultaneously. With these expanding
capabilities, new methods to analyze neural data at the population-level and at the level of multiple
populations become necessary. Several recent models have been developed to extract shared latent
structures from simultaneous neural recordings, assuming that neural activity can be described
through low-dimensional latent states. Many existing approaches are extensions of two basic models:
the linear dynamical system (LDS) model [Macke et al., 2011] and a Gaussian process factor analysis
(GPFA) model [Yu et al., 2009]. The LDS model is built on the state-space model and assumes
latent factors evolve with linear dynamics. On the other hand, GPFA models the latent vectors by
non-parametric Gaussian processes. However, in both cases, the observation model is generalized
linear. Several variants of these models have been implemented to analyze multiple neural populations
and their interactions [Semedo et al., 2019, Glaser et al., 2020]. However, in many cases, the total
number of distinct populations and which neurons belong to a population is unclear.
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Neurons in different anatomical locations may interact with each other or receive common input from
unobserved brain areas, sharing the same latent structure. On the other hand, neurons of different
cell-types within the same brain area may be better described by distinct latent structures. From a
functional point of view, neither the anatomical location nor cell type (Fig. 1A) indicates which
neurons should be grouped into the same populations. The incorrect population assignments can
lead to biased and inconsistent inference on the latent structure [Ventura, 2009]. If we instead ignore
multi-population structure and treat all neurons as a single population, then using linear model based
methods may not describe their activity well, especially when the input is non-homogeneous. Besides,
nonlinear models such as deep learning [Pandarinath et al., 2018, Whiteway et al., 2019] and Gaussian
processes [Wu et al., 2017] have been developed, but these models do not explicitly distinguish
among distinct populations of neurons.

Motivated by the mixture of (Gaussian) factor analyzers (MFA,Arminger et al. 1999, Ghahramani and
Hinton 1996, Fokoué and Titterington 2003), which describes globally nonlinear data by combining
a number of local factor analyzers, here we group neurons based on the latent factors (Fig. 1B). A
similar idea was previously implemented using a mixture of Poisson linear dynamical system (PLDS)
model (mixPLDS, Buesing et al. 2014). The mixPLDS model infers the subpopulations and latent
factors using deterministic variational inference Wainwright and Jordan [2008], Jordan et al. [1999],
Emtiyaz Khan et al. [2013] and the model parameters are estimated by Expectation Maximization
(EM). Unlike MFA, the mixPLDS can capture temporal dependencies of neural activity as well as
interactions between clusters over time. However, there are several limitations for mixPLDS: 1) it
requires we predetermine the number of clusters, and 2) the clustering results are often sensitive to
the initial cluster assignment.

Here we cluster the neurons by a mixture of dynamic Poisson factor analyzers (mixDPFA). The
DPFA model takes the advantages of both Poisson factor analysis (FA) and PLDS and includes both
a population baseline and baselines for individual neurons. The number of clusters is treated as an
unknown parameter in the mixDPFA, and the posteriors are sampled using Markov Chain Monte
Carlo (MCMC). To sample high dimensional latent factors, we approximate the full conditional
distribution of the latent state by a Gaussian, which is similar to results by sampling from exact
full conditional distribution. To improve mixing in the cluster assignments, we marginalize the
loading out for clustering by Poisson-Gamma conjugacy. We also discuss the constraints necessity
for successful sampling of the proposed models. After validating the proposed model with simulated
data, we apply it to analyze multi-region experimental recordings from behaving mice: the Visual
Coding - Neuropixels Dataset from the Allen Institute for Brain Science. Overall, the proposed
method provides a way to efficiently cluster neurons into populations based on their activity.

2 Methods

Here we introduce a mixture of dynamic Poisson factor analyzers (mixDPFA) to cluster neurons
based on multi-population latent structure. The number of mixture components is treated as an
unknown parameter and the posteriors are sampled by MCMC. In this section, we first provide the
single population DPFA for a given cluster. Then, we introduce a prior on the number of clusters and
describe how we use the mixture of finite mixture model (MFM) to efficiently sample the posterior of
the mixDPFA.

2.1 Dynamic Poisson Factor Analyzer

Denote the observed spike count of neuron i ∈ {1, . . . , N} at time bin t ∈ {1, . . . , T} as yit (a
non-negative integer), and let yi = (yi1, . . . , yiT )

′. Further, let zi be the cluster indicator of neuron
i. Motivated by the nature of neural activity and the former PLDS model [Macke et al., 2011],
we propose a new Poisson FA model by adding individual baselines δi. The proposed model is
a combination of PLDS and Poisson FA, which includes both population baseline and individual
baseline. Assume neuron i belongs to the j-th cluster (i.e., zi = j), and its spiking activity is
independently Poisson distributed, conditional on the low-dimensional latent state x(j)

t ∈ Rpj and
population baseline µ(j)

t as follows:

yit ∼ Poi(λit),

log λit = δi + µ
(j)
t + c′ix

(j)
t ,
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Figure 1: Model overview. A. There are multiple potential ways to define neural populations. For
instance, populations could be defined by anatomical regions (left) or by cell types (right). Since the
same latent structure could be shared across anatomical sites and cell types, a useful alternative may
be define populations based on neural activity directly. B. The main goal for the proposed method
is to cluster neurons according to their activity and extract functional grouping structure, based on
spike train observations. The activity of each neuron is determined by a low dimensional latent state,
specific to that neuron’s cluster assignment (e.g. yellow, red, blue). C. Graphical representation of
the mixture of finite mixtures (MFM) of dynamic Poisson factor analyzers (DPFA) generative model.
Here the cluster number is treated as a random variable. The population baseline (µ(j)

t ) and the latent
factor (x(j)

t ) for each cluster is generated by linear dynamics, with a Gaussian noise.

with ci ∼ Npj (0, Ipj ). The neuron-specific baseline δi is a constant across time for the ith neuron
and unrelated to the cluster assignment. For simplicity, we assume the dimension of latent factors
(states) is the same for all clusters, s.t. pj = p, however, our method easily extends to the situation
when pjs differs across clusters (see Discussion). Further, we assume the population baseline µ(j)

t

and the latent state x(j)
t evolve linearly over time with Gaussian noise as following

µ
(j)
t+1 = g(j) + h(j)µ

(j)
t + ε

(j)
t ,

x
(j)
t+1 = b(j) +A(j)x

(j)
t + η

(j)
t ,

where ε(j)t ∼ N (0, σ2(j)) and η(j)
t ∼ Np(0,Q(j)).

If we denote λi = (λi1, . . . , λiT )
′, µ(j) = (µ

(j)
1 , . . . , µ

(j)
T )′ and X(j) = (x

(j)
1 , . . . ,x

(j)
T )′, the

proposed model can be rewritten as

yi ∼ Poi(λi),
logλi = δi1T + µ(j) +X(j)ci.

(1)

Generally, a factor model is consistent only when T/N → 0 [Johnstone and Lu, 2009], but this is
often not the case for most neural spike data. However, when we assume linear dynamics on µ(j)

andX(j), it resolves the consistency issue. As known in a FA model, when p > 1, the model is only
identifiable up to orthogonal rotation on X(j), with ci ∼ N(0, Ip). With including an individual
baseline δi1T in our proposed DPFA model (1), it further makes the model invariant to translation of
µ(j) andX(j). That means if µ(j) andX(j) is a set solution, then µ(j)+a1T andX(j)U+1T ⊗m′
also satisfy the model, for any a,m and orthogonal matrix U . Thus, to make the model identifiable,
we need to add several constraints. Although the clustering is invariant to orthogonal rotation, how
we put constraints on translation will influence the cluster assignments. Here we assumeA(j) and
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Q(j) are diagonal [Peña and Poncela, 2004, Lopes et al., 2008], and, to encourage clustering based
on the trajectories of latent factors, we set

∑T
t=1 µ

(j)
t = 0 and

∑T
t=1 x

(j)
t = 0. See Section 5 for

more discussions about the choice of these constraints.

Given the parameters of the j-th cluster θ(j) =
{
µ(j),X(j), h(j), g(j), σ2(j),A(j), b(j),Q(j)

}
, the

spike counts of neuron i are generated by the dynamic Poisson factor analyzer (DPFA) model as
[yi | zi = j] ∼ DPFA(δi, ci,θ

(zi)). To faciliate the Bayesian computation, we have to impose
priorsH on θ(j), see more details of prior settings in Appendix A.1.

2.2 Clustering by Mixture of Finite Mixtures Model

When the population labels zis are unknown, we cluster the neurons by a mixture of DPFA (mixDPFA).
Since the number of neural populations is finite but unknown, we need to put priors on it. To make the
Bayesian computation more efficient, we utilize the idea from the mixture of finite mixtures (MFM,
Miller and Harrison 2018) model, by assigning the priors for the clusters in the following way:

k ∼ fk, fk is a p.m.f. on{1, 2, . . .},
π = (π1, . . . , πk) ∼ Dirk(γ, . . . , γ) given k,

z1, . . . , zN
i.i.d.∼ π given π,

θ(1), . . . ,θ(k)
i.i.d.∼ H given k,

yi = (yi1, . . . , yiT )
′ ∼ DPFA(δi, ci,θ

(zi)) given δi, ci,θ(zi), zi,∀i = 1, . . . , N,

(2)

where p.m.f denotes the probability mass function. By using the MFM, we can integrate the field
knowledge about the number of neural populations into our analysis. In the analysis of this paper,
we assume k follows a geometric distribution, i.e., k ∼ Geometric(α) with its density defined
as fk(k|α) = (1 − α)k−1α for k = 1, 2, . . ., and let γ = 1. The complete generative model is
summarized in a graphical form shown in Fig. 1C.

2.3 Inference

Here the posteriors of the proposed mixDPFA model are sampled by an MCMC algorithm (see
Appendix A.1). In each iteration, we sample the model parameters assuming the known cluster
indices at first, and then sample the cluster indices given the model parameters. When sampling the
(labeled) model parameters, the latent stateX(j) and population baseline µ(j) have no closed-form
full conditional distributions. Although we could sample the posterior by particle MCMC directly,
convergence may be too slow for clustering. Here, we approximate the full conditional distribution for
X(j) and µ(j) by a Gaussian distribution (a Laplace approximation) and generate samples according
to this approximation. This Laplace approximation is widely used for EM [Macke et al., 2011]
and variational inference [Glaser et al., 2020] with PLDS models and their variants, and Gaussian
approximation of the intractable full conditional distribution of latent effects has also been used in
Bayesian mixed effects binomial regression, where Berman et al. 2022 found that the approximation
provided reasonable estimation accuracy with substantial computational speedups. We, thus, use a
global Laplace approximation that can be efficiently computed in O(T ) [Paninski et al., 2010]. To
help convergence, sampling on (labeled) model parameters is repeated several times before updating
the cluster indices. Approximating the intractable full conditional with a Laplace approximation
also makes computation of the proposed mixDPFA more efficient. However, to assess the accuracy
of the approximation we also compare our approach to directly sampling from the exact posterior
of the model. We develop a Pólya-Gamma (PG) data augmentation approach [Windle et al., 2013,
Linderman et al., 2017, 2016, Polson et al., 2013] with an additional Metropolis-Hastings (MH) step
[Metropolis et al., 1953, Hastings, 1970] to sample exactly from the full conditional ofX(j) and µ(j).
We find that the proposed method using a Laplace approximation is faster but performs similarly as
sampling from the exact joint posterior (Fig. 2, Fig. 5, Appendix A.2, and Table 1)).

Once we update the latent stateX(j) and population baseline µ(j), the cluster index is then sampled
by the analogy of partition-based algorithm in Dirichlet process mixtures (DPM, Neal 2000). See
details in Miller and Harrison 2018 and the Appendix (A.1). When doing the clustering, we need
to evaluate the likelihood for neurons under each cluster. Although we can sample ci directly and
evaluate the full likelihood as in MCMC for Gaussian MFA (data-augmentation/ imputation-posterior
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algorithm, Fokoué and Titterington 2003), the chain has poor mixing and stops after a few iterations,
because of the high dimensionality. The heavy dependency on the starting point when fitting the
mixture of PLDS (mixPLDS, Buesing et al. 2014) model may suggest a similar problem. To resolve
this, we evaluate the marginal likelihood by integrating out the neuron-specific ci, i.e., the marginal
likelihood of neuron i in cluster j is computed by

Mθ(j)(yi) = P (yi|θ(j), δi) =
∫
P (yi|θ(j), δi, ci)P (ci) dci. (3)

However, this marginal likelihood has no closed form. Though we may evaluate it by a Laplace
approximation, but iterating over all potential clusters for each neuron is computationally intensive.
To make faster clustering, we approximate the marginal likelihood by utilizing a Poisson-Gamma
conjugacy. This approach has been previously utilized to approximate posteriors [El-Sayyad, 1973]
and predictive distributions [Chan and Vasconcelos, 2009]. In our situation, since ci ∼ N (0, Ip), we
have λit = exp(δi+µ

(j)
t +c′ix

(j)
t ) ∼ lognormal(δi+µ(j)

t ,x
′(j)
t x

(j)
t ), and then we can approximate

this lognormal distribution by a gamma distribution, i.e., assume λit follows Gamma(ait, bit) with
ait = (x

′(j)
t x

(j)
t )−1 and bit = x

′(j)
t x

(j)
t · eδi+µ

(j)
t . Then, by the conjugate property with Poisson and

Gamma random variables, we have

P (yit|θ(j), δi) =
∫
P (yit|λit)P (λit) dλit ≈ NB(yit|νit, pit),

with νit = ait and pit = 1/(1 + bit). Further, noticing that we have the conditional independence
assumption for P (yi|θ(j), δi), that is P (yi|θ(j), δi) =

∏T
t=1 P (yit|θ(j), δi), we then have a closed-

form for Equation (3).

Another possible idea is to approximate the log-likelihood by second-order polynomials, with
coefficients determined by Chebyshev polynomial approximation [Keeley et al., 2020]. However, we
find that this approximation doesn’t work well in practice when spike counts have a wide range. The
model is implemented in MATLAB and the code is available at https://github.com/weigcdsb/
MFM_DPFA_clean.

3 Simulations

To validate and illustrate the proposed clustering method, we simulate neural data directly from the
generative model (1) . The labels for each neuron are assumed known and fixed at first to check
convergence and model identifiability. We then infer the labels to evaluate clustering performance.
All experiments in this paper were performed using a 3.40 GHz processor with 16 GB of RAM.

3.1 Labeled data

We first simulate 10 clusters with 5 neurons in each, with recording length T = 1000 and p = 2
dimensional latent factors for each cluster. Individual baselines are generated by δi ∼ N(0, 0.52),
and the loading for the latent states are generated by ci ∼ N(0, I2). The population baseline µ(j)

and latent vectorX(j) are generated by the spline interpolation on 10 to 30 evenly spaced knots. The
simulations are conducted 50 times with different seeds. Here we show results for one simulation,
and the performance for the rest is similar.

Since the labels are known, each whole simulation is equivalent to 10 independent simulations,
with 5 neurons in each. Running MCMC for 10,000 iterations, we find that the log-likelihood per
spike converges rapidly for individual clusters and overall (Fig.2A). Trace plots (Fig.2B) of the
(Frobenius) norms for linear dynamics samples (h(j), g(j), σ2(j),A(j), b(j),Q(j)) show rapid mixing
and convergence for each DPFA. The fitted mean firing rate (mean response) (Fig. 2C), µ(j) and
X(j) (Fig. 2D) match the ground truth well. The convergence is fast, especially in terms of mean
response and population baseline µ(j). Together, these results demonstrate the identifiability of the
DPFA with appropriate constraints.

We then compare the 10-cluster model with the simplified model ignoring the clustering structure
(1-cluster model). The p for 1-cluster model is 14, chosen by 5-fold speckled cross-validation
described in [Williams et al., 2020]. To evaluate the fitting performance of these two models, we
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hold out 1/2 of the data and compare the held-out log-likelihood per spike. The distribution training
log-likelihood is evaluated by averaging over the samples in short chains (e.g. iteration 50 to 100),
which is justified by the observed fast convergence. The same procedure is replicated for 50 times.
In this case, ignoring the clustering structure leads to a worse performance (Fig 2E), and the single
population analysis cannot describe the data as accurately, since the input is non-homogeneous and
the data is global nonlinear.

Figure 2: Bayesian inference with labeled data Here we simulate 10 clusters and assess convergence
and mixing of for the DPFA. A. Traceplot of the log-likelihood per spike for all neurons and the
first 3 clusters. B. The traceplot of (Frobenius) norms of linear dynamics of µ(j) andX(j) for each
cluster (showing the first 3). C. The true and the fitted mean firing rate, showing the averages over
samples from iteration 5000 to 10000. D. The true (black) and the fitted (colored) population baseline
and latent factor. The X∗l denotes the l-th latent factor (i.e. the l-th column of X). The dashed
lines show the 95% highest posterior density (HPD) interval. The cosine (the "overlap") between
true values and posterior means shown besides. E. Comparison of the held-out likelihood per spike
when fitting to 1/2 of the data: 1) 10-cluster model where each cluster has p = 2 (true value), and 2)
1-cluster model where a single DPFA describes all neurons, with p = 14 selected by 5-fold speckled
cross-validation. Dots denote results from individual short (iterations 50-100), independent chains.

3.2 Clustering

Using the same simulation, we now infer the cluster labels. The latent factor dimension was first
optimized with p = 2 selected by 5-fold speckled CV on small chains (100 iterations). We then
compare three chains fitting with all data: two unique chains initialized using a single cluster and
one chain initialized with N = 50 clusters (i.e. all clusters are singletons). Traceplots (Fig. 3A) of
training log-likelihood and number of clusters show that all chains converge. When fit to the full data
or only half, the number of clusters converges to 10, although the prior over the number of clusters is
K ∼ Geometric(0.2). When the recording length is sufficiently long, the likelihood will dominate,
and the number of clusters will not be much affected by the prior setting. The true mean firing rate
for each neuron (Fig. 3B) can be well recovered, even with half data held out. To evaluate cluster
membership, here we show a similarity matrix where the entry (i, l) is the posterior probability that
data points i and l belong to the same cluster. The clustering results for all 4 chains recover the true
clusters, no matter what the the starting assignment is (Fig. 3C), which suggest the convergence of
MCMC. The overall performance of the full model, where cluster membership is inferred alongside
the latent states, is similar to the case when cluster labels are known and substantially higher than the
1-cluster model (Fig. 3D and E).
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Figure 3: Bayesian clustering The same simulation setting as in Fig. 2, but inferring cluster labels
from spike observations alone. A. The trace plots of training log-likelihood per spike and the number
of clusters. The model is fitted by using all and half data as training with three chains shown for full
data (initialized with a single cluster, C1 or N = 50 clusters, CN). B. The true and fitted mean firing
rate, averaging from iteration 500 to 1000. C. The posterior similarity matrix for all chains (rows and
columns ordered according to the ground truth). D. Traceplot of the held-out (1/2) log-likelihood for
1) the 10-cluster model with labels known, 2) the full model estimating labels and optimizing p, and
3) the 1-cluster, single population model with p = 14 chosen by CV. E. Held-out log-likelihood per
spike for each model (samples for iteration 500 to 1000).

4 Multi-region neural spike recordings

We then apply the proposed clustering method to the Allen Institute Visual Coding Neuropixels
dataset. The dataset contains spiking activity from hundreds of neurons from multiple brain regions
of an awake mouse. See detailed data description in [Siegle et al., 2021]. Here we investigate the
clustering structure of neurons from four anatomical sites (83 neurons): 1) hippocampal CA1 (24
neurons), 2) dorsal part of the lateral geniculate complex (LGd, 36 neurons), 3) lateral posterior
nucleus of the thalamus (LP, 12 neurons) and 4) primary visual cortex (VISp, 11 neurons). And we
analyze responses to 20s epochs during three visual stimuli: drifting gratings, spontaneous activity,
and natural movies. Only neurons with rates > 1Hz within the selected epochs are included (72% of
115 neurons) and we analyze data with 40ms bins. We use a Geometric(0.33) prior over the number
of clusters, such that p(k ≤ 4) = 0.8.

In responses to drifting gratings, the 5-fold speckled CV log-likelihood is optimized with p = 2, and,
as in the simulations, the log-likelihood and number of clusters show rapid convergence and mixing
(Fig 4A and B). Low firing rates and short recording lengths tend to cause confusions in clustering,
reflecting uncertainty in cluster membership for neurons with little information. Here the average
number of clusters is 16. To summarize the clustering results stored as posterior samples in MCMC,
we give the single estimate for cluster indices ẑi by maximizing the posterior expected adjusted Rand
index (maxPEAR, Fritsch and Ickstadt 2009). The maxPEAR-sorted neural activity and posterior
similarity matrix are shown in Fig. 4C and D. Results sorted by Maximum a posteriori (MAP)
estimate are similar and are shown in the Appendix (Fig. 5). To examine the relationship between the
clustering results and anatomy, we additionally sort the neurons according anatomical labels (upper
left panel in Fig. 4E). Although many identified clusters are neurons from the same anatomical area,
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clusters also include neurons from different regions and neurons within a region are often clustered
into separate populations (P̂ (neuron i, l in the same region|zi = zl, {yi}Ni=1) = 0.57). Together,
these results suggest that a simple assignment of populations based on anatomy many not accurately
represent the latent structure.

We then evaluate the clustering patterns for different visual stimuli. We run 2 independent chains for
each epoch (results from the second chain in Fig. 6D). The similarity matrices show that the pattern
is consistent for the same epoch, but will change along the time even under the same experimental
settings (D1 vs. D2 and S1 vs. S2). The changes in the clustering patterns may suggest long-term
drift for neuron interactions. To quantify the observations, we evaluate the adjusted Rand index
(ARI) of maxPEAR estimates (bottom right panel in Fig. 4E). Between-epoch comparisons tend
to have lower similarity (average ARI from comparing 2 chains for each epoch) than within-epoch
comparisons (different chains) for both maxPEAR and MAP (Fig. 6C).

The MAP number of clusters is largest (18) for the natural movie, suggesting this epoch has the most
severe global non-linearity issue. Here we compare three models: 1) clustering model with p = 2, 2)
single cluster model, with p = 8 selected by 5-fold speckled CV and 3) anatomical cluster model.
The anatomical cluster model fits a single DPFA for each region, using the anatomical labels to define
the clusters explicitly. Using cross-validation, we find that the optimized dimension for each region is
p = (1, 11, 5, 3), respectively. We find that the single cluster model tends to underfit the data, while
the anatomical cluster model tends to overfit the data (Fig. 4F).

Figure 4: Application in Neuropixels data. A. and B. The trace plots of log-likelihood per spike
and number of clusters for drifting grating responses. All results are averages from iteration 500
to 1000. C. The observed spikes and fitted mean firing rate, sorted by the maxPEAR label. D.
The posterior similarity matrix, sorted by the maxPEAR label. E. The posterior similarity matrices
for 4 adjacent epochs and 1 further epoch with different visual stimuli, sorted sorted according to
maxPEAR estimate and anatomical label in the first drifting grating epoch. The last panel shows the
adjusted Rand index of the maxPEAR estimates. The diagonal is the ARI between two chains for
the same data, while off-diagonal values show the mean ARI of maxPEAR for the four comparisons
between two chains from two different epochs. F. For the natural epoch, we hold out 1/2 data as the
training, and show the histograms of training and held-out log-likelihood per spike, from iteration
500 to 1000 for three models: 1) clustering model, 2) single cluster model, and 3) anatomical cluster
model.

5 Discussion

Here we introduce a Bayesian approach to cluster neural spike trains by MCMC. Previous approaches
to multi-population latent variable modeling have used anatomical information to label distinct groups
of neurons, but this choice is somewhat arbitrary. Brain region and cell-type, for instance, can give
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contradictory population labels. The proposed method groups neurons by common latent factors,
which may be useful for identifying "functional populations" of neurons. Here we use a mixDPFA
model and infer the number of clusters by MFM with a partition-based algorithm similar to DPM.
MFM may be more conceptually appropriate than DPM, since the number of neural "populations"
is unknown but finite. Additionally, MFM produces more concentrated, evenly dispersed clusters
(see Miller and Harrison 2018 for detailed discussion). The mixture modeling approach may also be
appropriate in cases where neurons share non-homogeneous inputs, since it can approximate global
nonlinearity with a mixture of locally linear models. Here we find that the mixture model outperforms
globally linear (1-cluster) models in simulations and with experimental data.

Although the proposed method can describe data and cluster neural spiking activity successfully, there
are some potential improvements. Firstly, as mentioned above, the unconstrained model does not have
unique solutions. To ensure model identifiable, we put diagonal constraints on A(j) and Q(j) and
constrain µ(j) andX(j) to have mean zero. The assumption thatA(j) andQ(j) are diagonal does
not allow interaction between latent factors. However, these interactions could be allowed by instead
constraining X ′(j)X(j) to be diagonal [Krzanowski and Marriott, 1994a,b, Fokoué and Titterington,
2003]. Such a constraint could allow unique solutions for the (P)LDS and GPFA. A second potential
improvement would be to automatically infer the dimension of the latent factors (states). In this paper,
we assume pj is the same for all clusters, for convenience. p is a pre-selected value or can be selected
by cross-validation (CV). This may limit the accuracy of the model, since populations of neurons in
experimental data are likely to have different latent dimensionalities. In future work, it would also
be possible to treat pj as a parameter and sample the posterior by a reversible-jump (RJ)MCMC
[Lopes and West, 2004], birth-death (BD)MCMC [Stephens, 2000, Fokoué and Titterington, 2003], or
adaptive Gibbs sampling with shrinkage prior onX(j) [Bhattacharya and Dunson, 2011]. Although
RJMCMC and BDMCMC can be easily implemented, they perform poorly for high dimensional data
and may be sensitive to priors. Adaptive Gibbs sampling with shrinkage, on the other hand, has been
implemented with the infinite mixture of infinite factor analyzers (IMIFA, Murphy et al. 2020). The
same idea may be useful here with an additional prior on linear dynamics (A(j), b(j) andQ(j)) to
encourage shrinkage inX(j). Finally, a deterministic approximation of MCMC, such as variational
inference may be more computationally efficient. Standard methods for fitting the PLDS could be
used directly in the VI updates, and if we further use a stick-breaking representation for the MFM
model, it would be straightforward to use VI for clustering as well, similar to [Blei and Jordan, 2006].

As the number of neurons and brain regions that neuroscientists are able to record simultaneously
continues to grow, understanding the latent structure of multiple populations will be a major statistical
challenge. The Bayesian approach to clustering neural spike trains introduced here converges fast
and is insensitive to the initial cluster assignments, and may, thus, be a useful tool for identifying
"functional populations" of neurons.
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A Appendix

A.1 MCMC updates

The posteriors are sampled by a Gibbs sampler. In each iteration, the sampling scheme has two main
stages: 1) to sample the model parameters assuming known labels and 2) to sample the cluster indices
given model parameters. Before moving into the second stage, the first stage is repeated several times.
The sampling in the first stage is conducted without considering constraints for µ(j)

t and x(j)
t at first,

and then we project the samples onto the constraint space for
∑T
t=1 µ

(j)
t = 0 and

∑T
t=1 x

(j)
t = 0 as

used in [Sen et al., 2018].

Update x(j)
t and µ(j)

t The priors for initial population baseline and latent factor are:

µ
(j)
1 ∼ N (0, 1),

x
(j)
1 ∼ N (0, Ip).

Assume there are nj = #{i : zi = j} neurons belong to the j-th cluster, and denote the spike
counts and firing rates of these neurons at time t as ỹ(j)

t = vec ({yit|zi = j}) ∈ Znj

≥0 and

λ̃
(j)
t = vec ({λit|zi = j}) ∈ Rnj , where Znj

≥0 denotes a nj-dimensional vector with each ele-
ment being non-negative integers. The corresponding loading and baseline for these nj neurons is
C(j) ∈ Rnj×p and ∆j = vec({δi|zi = j}) ∈ Rnj , such that log λ̃(j)

t = ∆j+µ
(j)
t 1nj +C

(j)x
(j)
t =

∆j +
(
1nj ,C

(j)
) (
µ
(j)
t ,x

′(j)
t

)′
. Denote C̃(j) =

(
1nj ,C

(j)
)
, x̃(j)

t =
(
µ
(j)
t ,x

′(j)
t

)′
, x̃(j) =(

x̃
′(j)
1 , . . . , x̃

′(j)
T

)′
, Ã(j) = diag(h(j),A(j)), b̃(j) =

(
g(j), b′(j)

)′
and Q̃(j) = diag(σ2(j),Q(j)).

The full conditional distribution P (x̃(j)| . . .) = P (x̃(j)|{ỹ(j)
t }Tt=1,∆j , C̃

(j), Ã(j), b̃(j), Q̃(j)) is
approximated by a global Laplace approximation, i.e.,

P (x̃(j)| . . .) ≈ N(p+1)T (x̃
(j)|µx̃(j) ,Σx̃(j)),

µx̃(j) = argmax
x̃(j)

P (x̃(j)| . . .),

Σx̃(j)) = −(∇∇ logP (x̃(j)| . . .)|x̃(j)=µ
x̃(j)

)−1.

Then, taking the logarithm of the full conditional distribution, i.e., ` = `(x̃(j)) = logP (x̃(j)| . . .),
we have

` = const +
T∑
t=1

(
ỹ
′(j)
t (∆j + C̃

(j)x̃
(j)
t )− 1′nj

λ̃t

)
− 1

2
(x̃

(j)
1 − x̃

′(j)
0 )[Q̃

(j)
0 ]−1(x̃

(j)
1 − x̃

(j)
0 )

−
T∑
t=2

1

2
(x̃

(j)
t − Ã(j)x̃

(j)
t−1 − b̃′(j))[Q̃(j)]−1(x̃

(j)
t − Ã(j)x̃

(j)
t−1 − b̃(j)).

Here, `(x̃(j)) is concave and unimodal. By the Markovian assumption for latent state vectors, the
Hessian matrix is tri-block diagonal. We can thus compute Newton updates to get µx̃(j) for the
Laplace approximation in O(T ) [Paninski et al., 2010], similar to the E-step for the PLDS [Macke
et al., 2011].
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The gradient∇` and the Hessian∇∇` are provided as follows. For t = 2, . . . , T − 1, the gradient of
`(x̃(j)) is:

∇` =

[(
∂`

∂x̃
(j)
1

)′
, . . . ,

(
∂`

∂x̃
(j)
T

)′]′
,

∂`

∂x̃
(j)
1

= C̃ ′(j)(ỹ
(j)
1 − λ̃1)− [Q̃

(j)
0 ]−1(x̃

(j)
1 − x̃

(j)
0 ) + Ã′(j)[Q̃(j)]−1(x̃

(j)
2 − Ã(j)x̃

(j)
1 − b̃(j)),

∂`

∂x̃
(j)
t

= C̃ ′(j)(ỹ
(j)
t − λ̃t)− [Q̃(j)]−1(x̃

(j)
t − Ã(j)x̃

(j)
t−1 − b̃(j))

+ Ã′(j)[Q̃(j)]−1(x̃
(j)
t+1 − Ã(j)x̃

(j)
t − b̃(j)),

∂`

∂x̃
(j)
T

= C̃ ′(j)(ỹ
(j)
t − λ̃T )− [Q̃(j)]−1(x̃

(j)
T − Ã

(j)x̃
(j)
T−1 − b̃

(j)).

And the Hessian matrix is:

∇∇` =



∂2`

∂x̃
(j)
1 ∂x̃

′(j)
1

Ã′(j)[Q̃(j)]−1 0 · · · 0

[Q̃(j)]−1Ã(j) ∂2`

∂x̃
(j)
2 ∂x̃

′(j)
2

Ã′(j)[Q̃(j)]−1 · · ·
...

0 [Q̃(j)]−1Ã(j) ∂2`

∂x̃
(j)
3 ∂x̃

′(j)
3

· · ·
...

...
...

...
. . .

...
0 · · · · · · · · · ∂2`

∂x̃
(j)
T ∂x̃

′(j)
T


,

∂2`

∂x̃
(j)
1 ∂x̃

′(j)
1

= −C̃ ′(j)diag(λ̃1)C̃
(j) − [Q̃

(j)
0 ]−1 − Ã′(j)[Q̃(j)]−1Ã(j),

∂2`

∂x̃
(j)
t ∂x̃

′(j)
t

= −C̃ ′(j)diag(λ̃t)C̃(j) − [Q̃(j)]−1 − Ã′(j)[Q̃(j)]−1Ã(j),

∂2`

∂x̃
(j)
T ∂x̃

′(j)
T

= −C̃ ′(j)diag(λ̃T )C̃(j) − [Q̃(j)]−1.

Although we can conduct the Newton update efficiently in O(T ), bad initial values may slow down
the convergence. To facilitate convergence, we initialize the Newton update with a smoothing
estimate by local Gaussian approximation. The forward filtering for a dynamic Poisson model has
been previously described [Eden et al., 2004], and we use an additional backward pass to smooth
[Rauch et al., 1965].

Let x̃(j)
t|t−1 = E(x̃

(j)
t |ỹ

(j)
1 , . . . , ỹ

(j)
t−1) and V (j)

t|t−1 = V ar(x̃
(j)
t |ỹ

(j)
1 , . . . , ỹ

(j)
t−1) be the mean and

variance for the one-step prediction density, where x̃(j)
t|t−1 = Ã(j)x̃

(j)
t−1|t−1 + b̃(j) and V (j)

t|t−1 =

Ã(j)V
(j)
t−1|t−1Ã

′(j) + Q̃(j). Then, after we observe the data at time t, we can do a forward filtering

step for the mean x̃(j)
t|t = E(x̃

(j)
t |ỹ

(j)
1 , . . . , ỹ

(j)
t ) and the variance V (j)

t|t = V ar(x̃
(j)
t |ỹ

(j)
1 , . . . , ỹ

(j)
t ),

which are given by

x̃
(j)
t|t = x̃

(j)
t|t−1 + V

(j)
t|t−1[C̃

′(j)(ỹ
(j)
t − λ̃t)]x̃(j)

t =x̃
(j)

t|t−1

,

[V
(j)
t|t ]−1 = [V

(j)
t|t−1]

−1 + [C̃ ′(j)diag(λ̃t)C̃
(j) − [Q̃(j)]−1]

x̃
(j)
t =x̃

(j)

t|t−1

.

Derivation of the filtering estimates can be found in [Eden et al., 2004], and we can further get the
smoothing estimates directly by standard Rauch-Tung-Striebel smoother [Rauch et al., 1965].
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The smoother estimates x̃(j)
t|T and V (j)

t|T are updated as follows:

x̃
(j)
t−1|T = x̃

(j)
t−1|t−1 + Jt−1(x̃

(j)
t|T − x̃

(j)
t|t−1),

V
(j)
t−1|T = V

(j)
t−1|t−1 + Jt−1(V

(j)
t|T − V

(j)
t|t−1)J

′
t−1,

where Jt−1 = V
(j)
t−1|t−1Ã

′(j)[V
(j)
t|t−1]

−1.

Update δi and ci We specify the prior for neuron-specific baseline δi as δi ∼ N (0, 1) and we
have assumed the loading ci ∼ N (0, Ip). Then, from the matrix representation of DPFA in (1), i.e.,
logλi = δi1T + µ(j) +X(j)ci, it is easy to see that given µ(j) and X(j) are known, the update
of δi and ci is just a regular Bayesian Poisson regression problem. Thus, we can sample the full
conditional distribution of δi and ci by a Hamiltonian Monte Carlo (HMC, Duane et al. 1987) within
the Gibbs sampler.

Update parameters of latent state The parameters for linear dynamics are h(j), g(j), σ2(j),A(j),
b(j) and Q(j). To make the model identifiable, we simply assume A(j) = diag(a

(j)
1 , . . . , a

(j)
p )

and Q(j) = diag(q
(j)
1 , . . . , q

(j)
p ). Therefore, we can update A(j), b(j) and Q(j) for each diagonal

element separately, as the update in h(j), g(j) and σ2(j). Here, we update h(j), g(j) and σ2(j) as
follows.

First, we specify the priors for σ2(j) following IG
(
ν0/2, ν0σ

2
0/2
)

and
(
g(j), h(j)

)′ ∼
N (τ0, σ

2(j)Λ−10 ), with ν0 = 1, σ0 = 0.01, τ0 = (0, 1)′ and Λ0 = I2. Here, the "IG" denotes the
inverse-gamma distribution.

Denote µ
(j)
2:T =

(
µ
(j)
2 , . . . , µ

(j)
T

)′
and µ̃

(j)
1:(T−1) =

(
1T−1,µ

(j)
1:(T−1)

)
, with µ

(j)
1:(T−1) =(

µ
(j)
1 , . . . , µ

(j)
T−1

)′
. The full conditional distributions for σ2(j) and

(
g(j), h(j)

)′
are:

σ2(j)|{µ(j)
t }Tt=1 ∼ IG

(
ν0 + T − 1

2
,
ν0σ

2
0 + µ

′(j)
2:Tµ

(j)
2:T + τ ′0Λ0τ0 − τ ′nΛnτn

2

)
,(

g(j), h(j)
)′
|{µ(j)

t }Tt=1 ∼ N (τn, σ
2(j)Λ−1n ),

with Λn = µ̃
′(j)
1:(T−1)µ̃

(j)
1:(T−1) + Λ0, and τn = Λ−1n

(
µ̃
′(j)
1:(T−1)µ

(j)
2:T + Λ0τ0

)
.

For completeness, we also provide the update of latent state parameters when using the more
parsimonious constraint, i.e. diagonal X ′(j)X(j). According to results from previous research
[Krzanowski and Marriott, 1994a,b, Fokoué and Titterington, 2003], this constraint is one of the most
parsimonious one, which only put constraints on p(p− 1)/2 parameters. The constraint can also be
implemented in MCMC by "unconstrained sampling-projection" procedure [Sen et al., 2018].

Without constraints, the sampling of h(j), g(j) and σ2(j) is the same as shown previously. The
update of A(j), b(j) and Q(j) is the standard multivariate Bayesian linear regression. Denote
X

(j)
2:T = (x

(j)
2 , . . . ,x

(j)
T )′ and X̃(j)

1:(T−1) = (1T−1,X
(j)
1:(T−1)), withX(j)

1:(T−1) = (x
(j)
1 , . . . ,x

(j)
T−1)

′.
Let us use the conjugate priors as following forQ(j), b(j) andA(j):

Q(j) ∼ W−1(Ψ0, γ0),

vec((b(j),A′(j))) ∼ N(vec(T0),Q
(j) ⊗ Γ−10 ).

Here, the W−1 denotes the inverse-Wishart distribution. We can set the priors as Ψ0 = 0.01Ip,
γ0 = p+2 and T0 = (0p, Ip)

′. Then, the full conditional distributions forQ(j) and vec((b(j),A(j))′)
are:

Q(j)|X(j) ∼ W−1(Ψn, γn),

vec((b(j),A(j))′)|X(j) ∼ N(vec(Tn),Q
(j) ⊗ Γ−1n ),
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with

Ψn = Ψ0 + (X
(j)
2:T − X̃

(j)
1:(T−1)Tn)

′(X
(j)
2:T − X̃

(j)
1:(T−1)Tn),

+ (Tn − T0)
′Γ0(Tn − T0),

γn = γ0 + T − 1,

Tn = Γ−1n (X̃
′(j)
1:(T−1)X

(j)
2:T + Γ0T0),

Γn = X̃
′(j)
1:(T−1)X̃

(j)
1:(T−1) + Γ0.

Before updating the cluster indices zi, the sampling of {x(j)
t , µ

(j)
t , δi, ci,θ

(j)} is repeated several
times (5 times in both simulation and application for this paper). To save time, we can further allow
the repetitions to be pre-stopped, when the training log-likelihood converges roughly.

Update zi To update the cluster assignments for each neuron i, we use a partition based algorithm
for MFM, similarly as described in Miller and Harrison 2018.

Let C denote a partition of neurons, and C\i denote the partition obtained by removing neuron i from
C.

1. Initialize C and {θ(c) : c ∈ C} (e.g. one cluster).
2. Repeat the following steps G times to obtain G samples. For i = 1, . . . , N : remove neuron
i from C and place it:
(a) in c ∈ C\i with probability ∝ (|c| + γ)Mθ(c)(yi), where γ is defined in the MFM

model in the main text (Equation 2) and Mθ(c)(yi) denotes the marginal likelihood of
neuron i in cluster c, when integrating the loading ci out (Equation (3)). The marginal
likelihood is approximated by using Poisson-Gamma conjugacy.

(b) in a new cluster c∗ with probability ∝ γ Vn(t+1)
Vn(t)

Mθ(c∗)(yi), where t is the number of

partitions obtained by removing the neuron i and Vn(t) =
∑∞
j=1

j(t)
(γj)(n) fk(j), with

x(m) = x(x + 1) · · · (x +m − 1), x(m) = x(x − 1) · · · (x −m + 1), x(0) = 1 and
x(0) = 1.

The update is an adaptation of partition-based algorithm for DPM [Neal, 2000], but with two
substitutions: 1) replace |ci| by |ci| + γ and 2) replace α by γVn(t + 1)/Vn(t). See more details
and discussions in [Miller and Harrison, 2018]. When evaluating the likelihood, we marginalize the
cluster-independent loading ci out. This is necessary for the high dimensional situation, otherwise
the chain will stop moving.

One issue with incremental Gibbs samplers such as Algorithm 3 and 8 in Neal [2000], when applied
to DPM, is that mixing can be somewhat slow. To further improve the mixing, we may intersperse
the "split-merge" Metropolis-Hasting updates [Jain and Neal, 2007, 2004] between Gibbs sweeps, as
in [Miller and Harrison, 2018].

A.2 Sample Latent Vectors Using Pólya-Gamma Augmentation and Metropolis-Hastings
Algorithm

In this section, we provide details of sampling algorithms to draw the latent statesX(j) and population
baseline µ(j) from the exact posterior of the model. In order to explain the algorithm much clearer,
we just focus on a given cluster index, and thus in this section we suspend the superscript (j) as the
cluster index in our notations. We present the sampling idea with two major parts as described below.

Pólya-Gamma Augmentation Although the mixDPFA model does not directly follow the PG
augmentation scheme [Polson et al., 2013], we can approximate the Poisson distribution by a
negative binomial (NB) distribution, i.e., limr→∞ NB(r, σ(ψ − log r)) = Poisson(eψ), where
σ(ψ) = eψ/(1 + eψ) and NB(r, p) denotes the NB distribution with rp/(1− p) as its expectation.
We approximate the proposed DPFA model using a NB, then we can instead sample a mixture of NB
factor analyzers using the PG scheme [Windle et al., 2013]. Further, we use the forward-filtering-
backward-sampling (FFBS) algorithm [Carter and Kohn, 1994, Frühwirth-Schnatter, 1994] to update

16



the latent statesX and population baseline µ. These two steps are summarized in the step 1 and step
2 of Algorithm 1 for updating X̃ = (µ,X).

Metropolis-Hastings Step Next, we use the samples of X̃ yielded from FFBS algorithm as a
proposal, where we employ a Metropolis-Hastings (MH) step to reject or accept the proposal. In this
step, the dispersion parameter r in NB distribution becomes a tuning parameter, to balance acceptance
rate and autocorrelation in MH. When r is large, the approximation to Poisson observation is accurate
and the MH performs similar to the Gibbs sampler. Here, we allow neurons at different time points to
have unique tuning parameters rit. The MH step is summarized in step 3 of Algorithm 1.

We have further implemented Algorithm 1 to fit DPFA model for cluster 1 data in Fig. 2 and the
results have been presented in Fig. 5. We set the tuning parameters for each neuron at all time points
as rit = 10 , to tune the acceptance rate around 0.4. When implementing the PG-MH algorithm
in DPFA, the ωit (i.e., PG random variable) was sampled using pgdraw function in R package
pgdraw, which is called from our MATLAB code. Although we can program Algorithm 1 without
calling pgdraw function from R to save some time, to sample the PG random variable is often much
computationally expensive in comparison to sample from the Gaussian random variable. When fitting
the simulated data with N = 5, T = 1000 and p = 2 (cluster 1 data in Fig. 2) using a 3.40 GHz
processor with 16 GB of RAM, it takes 131.64s for PG-MH to draw 1000 posterior samples, while
the proposed approximation method in the main context of the paper takes 83.86s. Although the
proposed method takes the approximation to the full conditional of the latent stateX and population
baseline µ, the results are similar as to sample directly from the exact full conditional. Table 1 shows
the similarities, defined by cosine function, of fitted µ andX = (X∗1,X∗2) between the PG-MH
and the Gaussian approximation for full conditional, whereX∗l denotes the l-th latent vectors (i.e.
the l-th column ofX). Here, ξ̂PGMH denotes the average from iteration 5000 to 10,000 for chain 1 of
PG-MH (Fig. 5), ξ̂N denotes the average from iteration 5000 to 10,000 for the chain in Fig. 2 of
the Gaussian approximation, and ξtrue denotes the ground truth. In each column, ξ is replaced by µ,
X∗1 and X∗2 respectively. The posterior means for these two method are close to each other, i.e.
cos (ξ̂PGMH, ξ̂N ) ≈ 1.

A.3 Supplementary Results for Neuropixels Application

This section shows supplementary results when applying the proposed model to the Neuropixels
dataset (4 Multi-region neural spike recordings). Here, we show 1) results sorted by maximum a
posteriori probability (MAP) estimates and 2) clustering results in another independent chain (Fig. 6).
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Algorithm 1: Pólya-Gamma-Metropolis-Hastings Algorithm (PG-MH) for Poisson Dynamic
Model
Recall the DPFA model using the notations defined in A.1:

yit ∼ Poi(λit),
log λit = δi + c̃

′
ix̃t,

for i = 1, . . . , n and t = 1, . . . , T . Here, c̃i = (1, c′i)
′ and x̃t = (µt,x

′
t)
′. x̃t follows linear

dynamics x̃t+1|x̃t ∼ N (Ãx̃t + b̃, Q̃). Denote the prior as x̃1 ∼ N (m0,V0). Given the
sample from the (G− 1)-th iteration x̃(G−1)

t and U = {c̃i, δi, Ã, b̃, Q̃}.

1. sample ωit from PG distribution and calculate ŷit, which follows N (c̃′ix̃
(G−1)
t , ω−1it )

for t = 1, . . . , T do
for i = 1, . . . , n do

sample ωit ∼ PPG(rit + yit, δi + c̃
′
ix̃

(G−1)
t − log rit)

κit = (yit − rit)/2 + ωit(log rit − δi)
ŷit = ω−1it κit

end
end

2. Forward-filtering-backward-sampling (FFBS) for X̃
Denote ŷt = (ŷ1t, . . . , ŷNt)

′, Ωt = Diag([ω1t, . . . , ωNt]) and C̃ = (c̃1, . . . , c̃N )′

for t = 1, . . . , T do
mt|t−1 = Ãmt−1 + b̃

Vt|t−1 = ÃVt−1Ã
′ + Q̃

Kt = Vt|t−1C̃
′(C̃Vt|t−1C̃

′ + Ω−1t )−1

mt =mt|t−1 +Kt(ŷt − C̃mt|t−1)

Vt = (I −KtC̃)Vt|t−1
end
sample x̃∗T ∼ N (mT ,VT )
for t = T − 1, . . . , 1 do

Jt = VtÃ
′(ÃVtÃ

′ + Q̃)−1

m∗t =mt + Jt(x
∗
t+1 − Ãmt − b̃)

V ∗t = (I − JtÃ)Vt
sample x∗t ∼ N (m∗t ,V

∗
t )

end

3. Accept or reject the proposal X̃∗
compute the acceptance ratio

ζ =
π(X̃∗|{yi}ni=1,U)

π(X̃(G−1)|{yi}ni=1,U)

q(X̃(G−1)|X̃∗,U)

q(X̃∗|X̃(G−1),U)

=
P ({yi}ni=1|X̃∗)

P ({yi}ni=1|X̃(G−1))

NB({yi}ni=1|X̃(G−1),R)

NB({yi}ni=1|X̃∗,R)
,

whereR = {rit} is matrix for dispersion parameters for each neuron at all time points. P (·)
denotes the Poisson likelihood, and NB(·) denotes the negative binomial likelihood. Accept the
proposal X̃∗ with probability min(1, ζ).
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Table 1: PG-MH vs. Gaussian approximation for µ andX

µ X∗1 X∗2

cos (ξ̂PGMH, ξtrue) 0.9724 0.7663 0.9728

cos (ξ̂N , ξtrue) 0.9680 0.7443 0.9699

cos (ξ̂PGMH, ξ̂N ) 0.9435 0.9664 0.9959

Figure 5: PG-MH for DPFA Two independent chains (10,000 iterations) for cluster 1 data in Figure
2. The full conditional distributions of µ andX are sampled by PG-MH algorithm (Algorithm 1).A.
Traceplot of Frobenius norms of linear dynamics. The acceptance rates in subtitle are for sampling µ
andX (PG-MH step). B. The true (black) and fitted (colored) population baseline and latent factor.
Use samples from iteration 5000 to 10,000 in chain 1, the solid orange lines show averages and the
dashed lines show 95% HPD intervals.

19



Figure 6: Supplementary Results for Neuropixels Application A. The first row shows the spike
counts and fitted mean firing rate, sorted according to the MAP label estimates. The second row sort
the spikes further according the anatomical sites, which shows clustering structure within each region.
B. The posterior similarity matrix sorted by MAP estimates. C. The ARI of MAP estimates. The
diagonal is ARI between 2 chains, and the off-diagonal is mean ARI of MAP for 4 combinations. D.
Posterior similarity matrices for the second chains. Neurons are sorted as in the first panel of Fig. 4E
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